WO2002023159A1 - Scanning probe microscope, method for measuring band structure of substance by using the microscope, and microscopic spectroscopy - Google Patents

Scanning probe microscope, method for measuring band structure of substance by using the microscope, and microscopic spectroscopy Download PDF

Info

Publication number
WO2002023159A1
WO2002023159A1 PCT/JP2001/007935 JP0107935W WO0223159A1 WO 2002023159 A1 WO2002023159 A1 WO 2002023159A1 JP 0107935 W JP0107935 W JP 0107935W WO 0223159 A1 WO0223159 A1 WO 0223159A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sample
electric field
tunnel current
probe
Prior art date
Application number
PCT/JP2001/007935
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Maeda
Akira Hida
Original Assignee
Center For Advanced Science And Technology Incubation,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Center For Advanced Science And Technology Incubation,Ltd. filed Critical Center For Advanced Science And Technology Incubation,Ltd.
Priority to JP2002527759A priority Critical patent/JPWO2002023159A1/en
Priority to AU2001286215A priority patent/AU2001286215A1/en
Publication of WO2002023159A1 publication Critical patent/WO2002023159A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/10STM [Scanning Tunnelling Microscopy] or apparatus therefor, e.g. STM probes
    • G01Q60/12STS [Scanning Tunnelling Spectroscopy]

Definitions

  • the present invention relates to a scanning probe microscope (SPM), a method for measuring a band structure of a substance using the same, and a microspectroscopy method. Instead of this, it relates to a new STM-EFMS (STM-Electric-Field Modulation Spectroscopy) that measures the tunnel current and significantly improves the spatial resolution.
  • SPM scanning probe microscope
  • STM-EFMS STM-Electric-Field Modulation Spectroscopy
  • STM Sccanning Tuning Microscopy
  • the STM is a device that can detect information about the shape and electronic state of the sample surface using the electron tunneling phenomenon with a spatial resolution on the order of atoms, and in addition to its use as a microscope, a microfabrication device and information recording / playback Application to similar devices such as devices is possible.
  • the STM scans the sample surface with a pointed tip while controlling the distance by using the tunnel current generated when the distance between the tip and the sample is several nm or less as a servo signal to control the distance. Detected.
  • FIG. 8 is a functional block diagram of the STM disclosed in Japanese Patent Application Laid-Open No. Hei 6-137810.
  • reference numeral 51 denotes a probe having a sharp tip
  • reference numeral 52 denotes a sample arranged to face the probe 51
  • Numeral 53 denotes a probe control function, which scans the probe 51 in the XY-axis direction and moves it in the Z-axis direction by an XY scanning signal generating circuit (not shown).
  • 54 is a bias circuit that applies a voltage between the probe and the sample
  • 55 is a current-to-voltage converter that detects a tunnel current generated when the probe 51 and the sample 52 approach each other in a biased state and converts it into a voltage.
  • Circuit a logarithmic conversion circuit for further converting the converted voltage into a logarithm, and outputting the converted voltage; 57, a difference circuit for setting a desired tunnel current value as a set value and detecting a difference signal from an input; 59, a difference circuit A mouth-to-pass filter that removes the high-frequency component of the signal and outputs the top signal is a probe Z control signal generation circuit that forms a servo signal from the output of the LPF 59, and is used to control the probe control. Output to 53 to control the distance between the probe samples.
  • Reference numeral 61 denotes a topo (Tbpograph image) signal output from a low-pass filter 59
  • 62 denotes a current signal output from a logarithmic conversion circuit 56
  • a screen information signal Used as a number.
  • the tunnel current flows between the probe and the sample. Start flowing.
  • This tunnel current is converted into a voltage by a current-to-voltage conversion circuit 55, and a difference signal from a desired set tunnel current value is detected by a difference circuit 57 through a logarithmic conversion circuit 56, and a low-pass filter 59, a probe A servo signal is formed through the Z control signal generation circuit 58.
  • the servo signal is input to a probe control device 53 composed of a piezoelectric element or the like to control the distance, and at the same time, an XY scanning signal is input by an XY scanning signal generation circuit (not shown), and the XY scanning signal is input along the in-plane direction of the sample.
  • a probe control device 53 composed of a piezoelectric element or the like to control the distance
  • an XY scanning signal is input by an XY scanning signal generation circuit (not shown), and the XY scanning signal is input along the in-plane direction of the sample.
  • an object of the present invention is to provide an apparatus / method capable of obtaining an extremely high spatial resolution by measuring the tunnel current instead of the intensity of the reflected light and increasing the S / N ratio by orders of magnitude.
  • This is the new STM-Electric-Field Modulation Spectroscopy (STM-EFMS) or SPM-EFMS (applicable to the type that can measure tunneling current even with a scanning probe microscope, for example, those with a conductive probe. is there).
  • This device / method measures the band structure of a semiconductor at the nanoscale. It is used to detect changes in band structure due to defects in semiconductors directly at the nanoscale, and more generally to detect light-absorbing substances at the nanoscale.
  • the need for local band structure measurement includes, for example, measurement of the forbidden band width of each layer in semiconductor well structures and superlattices, evaluation of the blur of layer boundaries due to diffusion, and evaluation of distortion due to crystal defects.
  • the present invention has been made in order to solve the above problems, and has a scanning probe microscope capable of measuring a semiconductor band structure on a nanoscale and directly detecting a foreign substance in a semiconductor on a nanoscale, and a substance using the same. It is an object of the present invention to provide a method for measuring the band structure of the above. Another object is to provide a novel nano-resolution microspectroscopy method.
  • a scanning probe microscope is configured such that a tip provided near a sample and a tunnel current generated when the tip approaches the surface of the sample are maintained at a constant level.
  • a negative feedback controller that controls a distance between the probe and the sample; a light source; a spectroscope that extracts light of a predetermined wavelength from light emitted from the light source; and an output light of the spectroscope to the sample.
  • the method for measuring the band structure of a substance according to the present invention comprises:
  • FIG. 1 is a functional block diagram of the device according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart of the observation method according to the first embodiment of the present invention.
  • FIG. 3 is a functional block diagram of the device according to Embodiment 2 of the present invention.
  • FIG. 4 is a flowchart of the observation method according to the second embodiment of the present invention.
  • c 6 is an example of EFMS spectrum measured by the apparatus / method according to the second embodiment of the invention, in EFMS scan Bae spectrum measured by the apparatus Z method according to the second embodiment of the present invention is there.
  • Fig. 7 shows an EFMS image obtained by scanning the probe while fixing the wavelength to the band edge near the interface between the epi film and the substrate (Fig. 7 (a)), and an STM image recorded simultaneously (Fig. 7 (b)).
  • FIG. 8 is a functional block diagram of a conventional scanning probe microscope.
  • FIG. 9 is an explanatory diagram of the Franz-Keldish effect.
  • FIG. 10 is an explanatory diagram of the principle of electric field modulation spectroscopy (ER). BEST MODE FOR CARRYING OUT THE INVENTION
  • the light-absorbing substance is referred to as “foreign substance” for convenience and used in the description.
  • FIG. 1 is a configuration diagram of an STM-EFMS (STM-Electric-Field Modulation Spectroscopy) according to an embodiment of the present invention.
  • STM-EFMS STM-Electric-Field Modulation Spectroscopy
  • Reference numeral 1 denotes an ultra-high vacuum scanning tunneling microscope (UHV-STM).
  • UHV-STM ultra-high vacuum scanning tunneling microscope
  • the embodiments of the present invention can be applied to other than UHV-STM.
  • inert surfaces such as graphite can be measured in air and do not require high vacuum.
  • Reference numeral 2 is a feedback circuit.
  • the UHV-STM1 is the probe 51, probe control actuator 53 shown in FIG. 8 and the bias circuit 54 shown in FIG. It has a substantial part of them.
  • the feedback circuit 2 includes the current-voltage conversion circuit 55, the logarithmic conversion circuit 56, the difference circuit 57, the probe Z control signal generation circuit 58, and the LPF 59 shown in FIG.
  • a tunnel current starts to flow between the probe tf and the sample, and this tunnel current is controlled by the current-voltage converter, logarithmic converter, difference circuit, and LPF.
  • An XY scanning signal is input by an XY scanning signal generation circuit (not shown), and a top signal, which is an output signal of the feedback circuit 2, is monitored while scanning along the in-plane direction of the sample, and the shape of the sample surface is obtained by performing image processing. Observed images reflecting the electronic state can be obtained.
  • Reference numeral 11 denotes a DC power supply for applying a bias voltage between the probe and the sample
  • reference numeral 12 denotes a modulator for modulating the bias voltage with an appropriate amplitude and frequency.
  • Reference numeral 3 is a lock-in amplifier
  • reference numeral 4 is a white lamp as a light source
  • reference numeral 5 is a lens
  • reference numeral 7 is a monochromator for separating light of a specific narrow wavelength band from light of the white lamp 4
  • Reference numeral 8 denotes an optical fiber for guiding the light from the monochromator 7
  • reference numeral 9 denotes a condenser lens for condensing the light emitted from the optical fiber 8 onto the sample 10.
  • the lock-in amplifier 3 is an amplifier for performing synchronous detection with an external reference signal, and can detect and measure a signal modulated at the reference frequency from a very high noise level.
  • the lock-in amplifier 3 takes in the tunnel current signal 1 using the modulated bias voltage as a reference signal and outputs it as a current amplitude signal.
  • optical fiber 8 and the lens 9 in FIG. 1 may be replaced by an appropriate optical system for guiding light from the light source to the sample.
  • the device shown in Fig. 1 has a condensing optical system that condenses light of a specific wavelength on the sample 10, and takes in the tunnel current signal It as a reference signal using the modulated bias voltage and outputs it as an amplitude image signal. It differs from the conventional STM in that it has a lock-in amplifier 3.
  • a condensing optical system consisting of a halogen lamp 4, a lens 5, a monochromator 7, an optical fiber 8, and a condensing lens 9, a modulator 12 for modulating a bias voltage, and a lock-in amplifier 3, a sample ( Band structures in semiconductors, for example, can be detected directly at the nanoscale.
  • a two-dimensional distribution image of the current amplitude ⁇ may be obtained.
  • the process of step S3 is repeated while scanning the surface of the sample 10 to obtain a two-dimensional distribution image of the current amplitude ⁇ .
  • the presence or absence of foreign substances and their positions are determined by measuring the two-dimensional distribution image while fixing the wavelength to a certain appropriate wavelength.
  • the band structure (or foreign substance or structural irregularity 'defect) in a semiconductor can be directly detected on a nanoscale by using an STM tip.
  • the conventional device / method has only a spatial resolution of about several Aims, but according to the first embodiment of the present invention, it is possible to detect with a much higher spatial resolution of 10 nm or less.
  • the bias voltage of the probe is modulated in order to modulate the band structure.
  • the sample is irradiated with monochromatic light (for example, laser light) having a gap energy or more and SPV ( (Not to be confused with continuous light-induced SPV, which plays an essential role in the embodiment of the present invention).
  • monochromatic light for example, laser light
  • SPV continuous light-induced SPV, which plays an essential role in the embodiment of the present invention.
  • FIG. 3 shows a configuration example of the device according to the second embodiment of the present invention.
  • the apparatus of FIG. 3 includes a second irradiation optical system including a chopper 6 instead of the modulator 12 of the bias power supply 11 of the apparatus of FIG.
  • reference numeral 4a is a white lamp as a first light source
  • reference numeral 5a is a lens
  • reference numeral 6a is a chopper for intermittently intermitting light beams
  • reference numeral 7a is light from a white lamp 4a.
  • 8a is a monochromator for separating light of a specific wavelength band from the light.
  • Reference numeral 8a is an optical fiber that guides light from the monochromator 7a.
  • Reference numeral 9a is the light emitted from the optical fiber 8a. This is a focusing lens for focusing light on the top.
  • the lock-in amplifier 3 takes in the tunnel current signal 11 using the intermittent frequency signal f of the chopper 6 as a reference signal, and outputs it as a current amplitude signal.
  • the intermittent frequency of the illuminating light is set sufficiently higher than the response frequency of the feedback circuit that keeps the tunnel current constant, so that the modulation signal accompanying the light irradiation appears in the tunnel current.
  • the intermittent frequency of the irradiation light is set high enough to reduce the change in tunnel current due to thermal expansion and contraction of the probe caused by light irradiation.
  • optical modulation spectrometry can be performed by artificially causing surface band bending (TIBB) by a probe-sample bias.
  • TIBB surface band bending
  • an SPV is generated by irradiating a sample with monochromatic light having a gap energy or more, and the monochromatic light is chopped to cause surface electric field modulation. Further, the sample is irradiated with the separated continuous light, and the tunnel current modulation component ⁇ is measured as a function of the irradiation light wavelength.
  • sample for example, a (110) cross section obtained by cleaving a homoepitaxial film grown on an n-GaAs substrate at a low temperature by ultra-high vacuum was used, and the sample bias voltage V s > 0 was set to generate SPV. Measure at room temperature with TIBB induced. The procedure is shown in the flowchart of FIG.
  • S11 For example, a sample is irradiated with laser light to generate SPV (Surface Photo Voltage). The laser light is chopped to cause surface electric field modulation.
  • SPV Surface Photo Voltage
  • monochromatic light obtained through the monochromator shown in FIG. 3 may be used instead of the laser light.
  • any light having an energy greater than the band gap of the sample, including the laser can be used here.
  • too repeated strong and probe with the Chiyotsubi ring is the thermal expansion and contraction, in order to suppress this c background of the scan Bae spectrum rises, the response of the thermal expansion of the modulation frequency as described above The frequency should be higher than the frequency (about 1 kHz).
  • S13 Measure the amplitude of the tunneling current modulation signal as a function of the wavelength of the continuous light. Specifically, a current amplitude ⁇ I obtained by performing a lock-in detection of the modulated tunnel current waveform with a bias voltage is obtained.
  • FIG. 5 shows an example of the EFMS spectrum measured with the probe fixed to the substrate.
  • the background independent of photon energy is due to the intermittently irradiated laser light.
  • Figure 5 clearly shows the band edge structure of GaAs split by spin orbit interaction.
  • 6 is a EFMS scan Bae spectrum was measured by changing the sample bias voltage V s. Signal with the increase in V s becomes stronger, but the position of the band edge is not changed. Vibrational structures are also observed in the sub-band gap.
  • Fig. 7 shows a modulated signal image obtained by scanning the probe near the interface between the epi film and the substrate while fixing the wavelength to the band edge (referred to as EFMS image for convenience) (Fig. 7 (a)) And STM topographic images recorded simultaneously (Fig. 7 (b)).
  • EFMS image for convenience
  • Fig. 7 (a) contrast unevenness is observed in the interface layer.
  • the band gap E measured by EFMS spectrum
  • the size of each unevenness is on the nanometer scale, and the spatial resolution of the EFMS image is extremely high.
  • STM-EFMS can be expected as a new method that has a wide range of applications, such as microscopic analysis of materials, in the sense that bandgap can be measured on a nanoscale.
  • This technique makes it possible to analyze the light energy absorption of various substances, and provides an unprecedented nano-resolution microspectroscopy.
  • the first and second embodiments of the present invention are not limited to such an example.
  • biomolecules, chemical molecules, impurity atoms, etc. based on the light absorption wavelength.
  • bonding state and electronic state of atomic molecules can be measured on an atomic scale from the fine structure of the absorption spectrum.
  • means does not necessarily mean physical means, but also includes a case where the function of each means is realized by software. Further, the function of one means may be realized by two or more physical means, or the functions of two or more means may be realized by one physical means.
  • the band structure of a semiconductor can be measured at a high resolution on the order of nm using an STM needle.
  • the present invention unlike so-called scanning tunneling spectroscopy (STS), can measure the deep structure of a band with high energy resolution and reliability and reproducibility.
  • STS scanning tunneling spectroscopy
  • the present invention can be widely applied to, for example, semiconductor analysis. The present invention does not create the interpretive ambiguity of STS. Industrial applicability
  • This apparatus / method is applied to, for example, a semiconductor inspection apparatus.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A novel apparatus/method for directly detecting a light-absorbing substance on the order of nanometers by using a scanning tunnel microscope (STM) probe. When the surface of a semiconductor where band bending (BB) occurs for some cause is irradiated with light of energy more than the bandgap width, generated photocarriers drift because of the electric field produced by the BB, thereby causing charge separation that lowers the BB. The decrease of the BB is called a surface photovoltage (SPV). If an SPV is produced in a specimen being observed by an STM, the PPV is effectively added to the bias voltage applied between the probe and the specimen, varying the tunneling current. If a modulator (12) modulates the surface electric field by modulating the bias voltage, this modulates the band structure. During the modulation, if light causing interband transition is continuously applied, the SPV produced by the light application varies synchronously with the electric field modulation. Therefore, if the amplitude of a tunneling current modulation signal as a function of the wavelength of continuous light is measured, a spectrum equivalent to that obtained by the ER (electro-reflectance) method widely used as means for examining the electronic structure of the band deep part.

Description

明 細 書 走査型プロ一ブ顕微鏡及びこれを用いた物質のバンド構造の測定方法並びに顕微分光方法 技術分野  TECHNICAL FIELD Scanning probe microscope, method for measuring band structure of substance using the same, and microspectroscopy method
この発明は走査型プローブ顕微鏡 (SPM)及びこれを用いた物質のバンド構造の測定方法並びに顕 微分光方法に関し、 特に、 ER (Electro-Reflectance)法や PR (Photo-Reflectance)法における反 射光強度のかわりにトンネル電流を測定して空間分解能を著しく改善した、 新規な STM- EFMS (STM-Electric-Field Modulation Spectroscopy) に関する。 背景技術  The present invention relates to a scanning probe microscope (SPM), a method for measuring a band structure of a substance using the same, and a microspectroscopy method. Instead of this, it relates to a new STM-EFMS (STM-Electric-Field Modulation Spectroscopy) that measures the tunnel current and significantly improves the spatial resolution. Background art
探針と試料間に流れるトンネル電流を利用して試料表面を観察する装置(S canning Tu nne l ing Mi c ro s c o y, 以下「S TM」 と記す) が知られている。  2. Description of the Related Art An apparatus for observing a sample surface using a tunnel current flowing between a probe and a sample (Scanning Tuning Microscopy, hereinafter referred to as "STM") is known.
S TMは電子のトンネル現象を利用して試料表面の形状及び電子状態に関する情報を原子オーダ 一の空間分解能で検出可能な装置であり、 顕微鏡としての用途のほかに微細加工装置、 情報記録再 生装置等の類似装置への応用が可能である。  The STM is a device that can detect information about the shape and electronic state of the sample surface using the electron tunneling phenomenon with a spatial resolution on the order of atoms, and in addition to its use as a microscope, a microfabrication device and information recording / playback Application to similar devices such as devices is possible.
S TMでは先端の尖った探針で試料面上を走査しながら、 探針と試料間の距離が数 nm以下で発 生するトンネル電流をサ一ボ信号として距離を制御することによって測定信号を検出している。  The STM scans the sample surface with a pointed tip while controlling the distance by using the tunnel current generated when the distance between the tip and the sample is several nm or less as a servo signal to control the distance. Detected.
STMの従来技術について説明する。 図 8は特開平 6—137810号公報に開示された S TM の機能ブロック図である。  The conventional technology of STM will be described. FIG. 8 is a functional block diagram of the STM disclosed in Japanese Patent Application Laid-Open No. Hei 6-137810.
図 8において、 51は、先端が尖った探針、 52は、探針 51と対向して配置された試料である。 53は探針制御用ァクチユエ一夕で、 図示しない XY走査信号発生回路によって探針 51を XY軸 方向に走査し、 Z軸方向に移動させる。 54は、探針と試料との間に電圧を印加するバイアス回路、 55は、 バイアス印加状態で探針 51と試料 52とを接近させると発生するトンネル電流を検出し 電圧に変換する電流電圧変換回路、 56は、 変換された電圧をさらに対数変換して出力する対数変 換回路、 57は、 所望のトンネル電流値を設定値とし、 入力との差分信号を検出する差分回路、 5 9は差分信号の高周波分を除去し、 トポ信号を出力する口一パスフィル夕一、 58は、 探針 Z制御 信号発生回路で、 LP F 59の出力よりサーボ信号を形成し、 探針制御用ァクチユエ一夕 53に出 力して、 探針試料間の距離制御を行なわせる。 61はローパスフィル夕一 59から出力されるトポ (Tbpograph Image)信号、 62は対数変換回路 56から出力されるカレント信号で、 画面情報信 号として用いられる。 In FIG. 8, reference numeral 51 denotes a probe having a sharp tip, and reference numeral 52 denotes a sample arranged to face the probe 51. Numeral 53 denotes a probe control function, which scans the probe 51 in the XY-axis direction and moves it in the Z-axis direction by an XY scanning signal generating circuit (not shown). 54 is a bias circuit that applies a voltage between the probe and the sample, and 55 is a current-to-voltage converter that detects a tunnel current generated when the probe 51 and the sample 52 approach each other in a biased state and converts it into a voltage. Circuit, a logarithmic conversion circuit for further converting the converted voltage into a logarithm, and outputting the converted voltage; 57, a difference circuit for setting a desired tunnel current value as a set value and detecting a difference signal from an input; 59, a difference circuit A mouth-to-pass filter that removes the high-frequency component of the signal and outputs the top signal is a probe Z control signal generation circuit that forms a servo signal from the output of the LPF 59, and is used to control the probe control. Output to 53 to control the distance between the probe samples. Reference numeral 61 denotes a topo (Tbpograph image) signal output from a low-pass filter 59, 62 denotes a current signal output from a logarithmic conversion circuit 56, and a screen information signal. Used as a number.
バイアス回路 5 4によって先端の尖った探針 5 1と試料 5 2間にバイアスを印加した状態で、 探 針 5 1を試料面に対して 1 n m付近まで接近させるとトンネル電流が探 試料間に流れ始める。 このトンネル電流を電流電圧変換回路 5 5によって電圧に変換し、 対数変換回路 5 6を経て差分回 路 5 7によって所望の設定トンネル電流値との差分信号を検出し、 ローパスフィルター 5 9、 探針 Z制御信号発生回路 5 8を通してサーボ信号を形成する。 このサーボ信号を圧電素子などで構成さ れる探針制御用ァクチユエ一夕 5 3に入力し距離制御すると同時に、 図示しない X Y走査信号発生 回路によって X Y走査信号を入力し、 試料面内方向に沿って走査しながら差分回路 5 7、 ローパス フィルター 5 9を介して形成されるトポ信号 6 1、 又は電流電圧変換回路 5 5の出力信号である力 レント信号 6 2をモニターし、 画像処理を施すことによって試料表面の形状、 及び電子状態を反映 する観察像を得ることができる。  When a bias is applied between the pointed probe 51 and the sample 52 by the bias circuit 54 and the probe 51 approaches the sample surface to near 1 nm, the tunnel current flows between the probe and the sample. Start flowing. This tunnel current is converted into a voltage by a current-to-voltage conversion circuit 55, and a difference signal from a desired set tunnel current value is detected by a difference circuit 57 through a logarithmic conversion circuit 56, and a low-pass filter 59, a probe A servo signal is formed through the Z control signal generation circuit 58. The servo signal is input to a probe control device 53 composed of a piezoelectric element or the like to control the distance, and at the same time, an XY scanning signal is input by an XY scanning signal generation circuit (not shown), and the XY scanning signal is input along the in-plane direction of the sample. By monitoring the top signal 61 formed through the difference circuit 57 and the low-pass filter 59 or the power signal 62 output from the current-voltage conversion circuit 55 while scanning, and performing image processing. Observed images reflecting the shape of the sample surface and the electronic state can be obtained.
ところで、 結晶に電場を加えると、 図 9のようにバンドが傾き、 バンド端からの波動関数の浸み 出しにより吸収端よりも低いエネルギーの光子でも光吸収が起こることが知られている (Franz-Keldish効果)。 このような見かけのバンド構造の変形は吸収端以外でも起こり、 電場によ つて光の吸収係数 aに図 1 0 (a)のような振動的変化が誘起される。電場変調した表面にさらに連続 光を照射し、 光反射率 (光吸収係数) の変調成分を掃引波長の関数として測定すると、 図 1 0 (b) のようにバンド構造の特異点に対応して鋭いスぺク トル構造が現れる。 これを利用した By the way, it is known that when an electric field is applied to a crystal, the band tilts as shown in Fig. 9 and light absorption occurs even for photons with lower energy than the absorption edge due to the leaching of the wave function from the band edge (Franz -Keldish effect). Such deformation of the apparent band structure occurs at other than the absorption edge, and the electric field induces a vibrational change in the light absorption coefficient a as shown in Fig. 10 (a). By irradiating the electric field modulated surface with continuous light and measuring the modulated component of the light reflectance (light absorption coefficient) as a function of the sweep wavelength, the singular point of the band structure corresponding to the singular point as shown in Fig. 10 (b) was obtained. A sharp spectrum structure appears. I used this
Electro-Reflectance = ER 法や Photo-Reflectance = PR 法 [ D. E. Aspnes, Handbook on Semiconductors vol. , ed. By T, S. Moss (North -Holland, Amsterdam, 1980) p.109.] は、 ノ ンド 端からバンド深部にわたる電子構造を調べる手段として広く使われている。 The Electro-Reflectance = ER method and the Photo-Reflectance = PR method [DE Aspnes, Handbook on Semiconductors vol., Ed. By T, S. Moss (North-Holland, Amsterdam, 1980) p.109.] It is widely used as a means to study the electronic structure from to deep band.
さて、 同じ原理にもとづいて、 STM探針を使って局所的に電場変調を行い顕微的に ER測定をする 方法が可能であるように思えるかもしれない。 しかし、 マクロな反射光の極めて微小な変化を検出 するのは、 S/N比の点でほとんど不可能である。 発明の開示  Now, based on the same principle, it may seem that a method of locally modulating the electric field using the STM tip and performing microscopic ER measurement is possible. However, it is almost impossible to detect very small changes in macro reflected light in terms of S / N ratio. Disclosure of the invention
そこで、 この発明は、 反射光強度のかわりにトンネル電流を測定して S/N比を桁違いに稼く、こと により、 きわめて高い空間分解能を得ることができる装置/方法を提供することを目的とする。 こ れが、 新規な STM-EFMS (STM-Electric-Field Modulation Spectroscopy) あるいは SPM-EFMSで ある (走査プローブ顕微鏡でもトンネル電流を測定できるタイプ、 例えば、 導電性プローブを備え るものには適用可能である)。 この装置/方法は、例えば、半導体のバンド構造をナノスケールで測 定したり、 半導体中の欠陥によるバンド構造変化をナノスケールで直接検出したり、 より一般的に は光吸収物質をナノスケールで検出するために用いられる。 Therefore, an object of the present invention is to provide an apparatus / method capable of obtaining an extremely high spatial resolution by measuring the tunnel current instead of the intensity of the reflected light and increasing the S / N ratio by orders of magnitude. And This is the new STM-Electric-Field Modulation Spectroscopy (STM-EFMS) or SPM-EFMS (applicable to the type that can measure tunneling current even with a scanning probe microscope, for example, those with a conductive probe. is there). This device / method, for example, measures the band structure of a semiconductor at the nanoscale. It is used to detect changes in band structure due to defects in semiconductors directly at the nanoscale, and more generally to detect light-absorbing substances at the nanoscale.
半導体素子が複合化 ·微細化するにつれ、 lOOnm以下の分解能で、 素子内に混在する異物質を検 出 -同定し、 所望の組成 ·バンド構造が実現しているか否か、 欠陥など予期しない構造が局所的に 存在しないか、 など半導体の製造工程で評価する必要性、 もしくは製造後の半導体を検査し構造的 欠陥を発見する必要 ¾feが増大している。  As semiconductor devices become more complex and finer, foreign substances mixed in the device are detected with a resolution of less than 100 nm.- Identify and identify the desired composition.Whether or not the band structure is realized, and unexpected structures such as defects. The necessity of evaluating semiconductors in the manufacturing process, such as whether or not they exist locally, or the need to inspect semiconductors after manufacturing to find structural defects has increased.
局所的バンド構造測定の必要性は、 例えば半導体井戸構造や超格子における各層の禁制帯幅の測 定、 拡散による層境界のぼけの評価、 結晶欠陥による歪みの評価などにおいてある。  The need for local band structure measurement includes, for example, measurement of the forbidden band width of each layer in semiconductor well structures and superlattices, evaluation of the blur of layer boundaries due to diffusion, and evaluation of distortion due to crystal defects.
従来このような局所バンド構造を測定する手段として、 力ソードルミネッセンス法があるが、 分 解能は少数キヤリァの拡散長で決まり、 一般に 1 ミクロン程度と高くない。  Conventionally, there is a force luminescence method as a means for measuring such a local band structure, but the resolution is determined by the diffusion length of a small number of carriers, and is generally not as high as about 1 micron.
従来このような局所バンド構造を測定する手段として、 走査トンネル分光法 (STS) があり、 ナ ノスケールの測定が可能である。 しかし、 STSのスペクトル形状は探針の状態に敏感に依存し、 ま たエネルギー位置が真の値とずれるなど、 測定結果の解釈に不確実性があり、 また実験を制御して これを除くことも困難であることが多いという欠点がある。  Conventionally, there is scanning tunneling spectroscopy (STS) as a means for measuring such a local band structure, and it is possible to measure nanoscale. However, the spectral shape of the STS depends sensitively on the state of the probe, and there is uncertainty in the interpretation of the measurement results, such as the energy position deviating from the true value. Also has the disadvantage that it is often difficult.
この発明は、 係る課題を解決するためになされたもので、 半導体のバンド構造をナノスケールで 測定したり、 半導体中の異物質をナノスケールで直接検出できる走査型プローブ顕微鏡及びこれを 用いた物質のバンド構造の測定方法を提供することを目的とする。 また、 新規なナノ分解能顕微分 光法を提供することを目的とする。  The present invention has been made in order to solve the above problems, and has a scanning probe microscope capable of measuring a semiconductor band structure on a nanoscale and directly detecting a foreign substance in a semiconductor on a nanoscale, and a substance using the same. It is an object of the present invention to provide a method for measuring the band structure of the above. Another object is to provide a novel nano-resolution microspectroscopy method.
この発明に係る走査型プローブ顕微鏡は、 試料に近接して設けられる探針と、 前記探針が前記試 料の表面に近づいたときに生じるトンネル電流を受けて前記トンネル電流を一定に保持するように 前記探針と前記試料間の距離を制御する負帰還制御器と、 光源と、 前記光源の出射光から所定の波 長の光を取り出す分光器と、 前記分光器の出射光を前記試料に照射する照射手段と、 前記試料の表 面の電場を変調するための表面電場変調手段と、 前記変調手段の変調信号と同期をとることにより 前記トンネル電流の振幅を検出して出力する増幅器とを備える。  A scanning probe microscope according to the present invention is configured such that a tip provided near a sample and a tunnel current generated when the tip approaches the surface of the sample are maintained at a constant level. A negative feedback controller that controls a distance between the probe and the sample; a light source; a spectroscope that extracts light of a predetermined wavelength from light emitted from the light source; and an output light of the spectroscope to the sample. Irradiating means for irradiating, surface electric field modulating means for modulating an electric field on the surface of the sample, and an amplifier for detecting and outputting the amplitude of the tunnel current by synchronizing with a modulation signal of the modulating means. Prepare.
この発明に係る物質のバンド構造の測定方法は、  The method for measuring the band structure of a substance according to the present invention comprises:
禁制帯幅以上のエネルギーを有する所定の波長の光を試料に照射するステップと、  Irradiating the sample with light of a predetermined wavelength having energy equal to or greater than the forbidden band width,
前記試料の表面の電場を変調するステップと、  Modulating the electric field on the surface of the sample;
前記試料に探針を近接させ、 前記探針が前記試料の表面に近づいたときにトンネル電流を変調信 号と同期をとることにより前記トンネル電流の振幅を検出して出力するステップと、  Bringing a probe close to the sample, detecting and outputting the amplitude of the tunnel current by synchronizing the tunnel current with the modulation signal when the probe approaches the surface of the sample,
前記トンネル電流の振幅に基づき前記試料における物質のバンド構造を検出するステップとを備 える。 Detecting a band structure of a substance in the sample based on an amplitude of the tunnel current. I can.
この発明に係る顕微分光方法は、  The microspectroscopy method according to the present invention,
禁制帯幅以上のエネルギーを有する所定の波長の光を試料に照射するステップと、  Irradiating the sample with light of a predetermined wavelength having energy equal to or greater than the forbidden band width,
前記試料の表面の電場を変調するステップと、  Modulating the electric field on the surface of the sample;
前記試料に探針を近接させ、 前記探針が前記試料の表面に近づいたときにトンネル電流を変調信 号と同期をとることにより前記トンネル電流の振幅を検出して出力するステップと、  Bringing a probe close to the sample, detecting and outputting the amplitude of the tunnel current by synchronizing the tunnel current with the modulation signal when the probe approaches the surface of the sample,
予め定められた範囲において前記光の波長を走査しつつ上記ステツプを繰り返すステツプと、 前記トンネル電流の振幅と波長の特性を求めるステップとを備える。 図面の簡単な説明  A step of repeating the above steps while scanning the wavelength of the light within a predetermined range; and a step of obtaining characteristics of amplitude and wavelength of the tunnel current. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 この発明の実施の形態 1に係る装置の機能プロック図である。  FIG. 1 is a functional block diagram of the device according to Embodiment 1 of the present invention.
図 2は、 この発明の実施の形態 1に係る観察方法のフローチヤ一トである。  FIG. 2 is a flowchart of the observation method according to the first embodiment of the present invention.
図 3は、 この発明の実施の形態 2に係る装置の機能プロヅク図である。  FIG. 3 is a functional block diagram of the device according to Embodiment 2 of the present invention.
図 4は、 この発明の実施の形態 2に係る観察方法のフローチャートである。  FIG. 4 is a flowchart of the observation method according to the second embodiment of the present invention.
図 5は、この発明の実施の形態 2に係る装置/方法により測定した EFMSスペクトルの一例である c 図 6は、 この発明の実施の形態 2に係る装置 Z方法により測定した EFMSスぺクトルである。 図 7は、 ェピ膜と基板の界面付近で、 波長をバンド端に固定しながら探針を走査して得た EFMS 像 (図 7 ( a )) と、 同時に記録した STM像である (図 7 ( b ))。 5, c 6 is an example of EFMS spectrum measured by the apparatus / method according to the second embodiment of the invention, in EFMS scan Bae spectrum measured by the apparatus Z method according to the second embodiment of the present invention is there. Fig. 7 shows an EFMS image obtained by scanning the probe while fixing the wavelength to the band edge near the interface between the epi film and the substrate (Fig. 7 (a)), and an STM image recorded simultaneously (Fig. 7 (b)).
図 8は、 従来の走査型プローブ顕微鏡の機能プロヅク図である。  FIG. 8 is a functional block diagram of a conventional scanning probe microscope.
図 9は、 Franz-Keldish効果の説明図である。  FIG. 9 is an explanatory diagram of the Franz-Keldish effect.
図 1 0は、 電場変調分光 (ER)の原理の説明図である。 発明を実施するための最良の形態  FIG. 10 is an explanatory diagram of the principle of electric field modulation spectroscopy (ER). BEST MODE FOR CARRYING OUT THE INVENTION
以下では、 光吸収物質を便宜上 「異物質」 と呼び説明に用いる。  In the following, the light-absorbing substance is referred to as “foreign substance” for convenience and used in the description.
図 1はこの発明の実施の形態に係る STM- EFMS (STM- Electric-Field Modulation Spectroscopy) の構成図である。  FIG. 1 is a configuration diagram of an STM-EFMS (STM-Electric-Field Modulation Spectroscopy) according to an embodiment of the present invention.
符号 1は超高真空走査トンネル顕微鏡 (U H V - S T M) である。 なお、 本発明の実施の形態は U H V - S T M以外にも適用できる。 例えば、 グラフアイトのような不活性表面ならば空気中でも 測定可能であり、 高真空を必要としない。 符号 2はフィードバック回路である。 U H V— S TM 1 は、 図 8に示した探針 5 1、 探針制御用ァクチユエ一夕一 5 3及びバイアス回路 5 4あるいはこれ らの相当部分を備える。 フィードバック回路 2は、 図 8に示した電流電圧変換回路 5 5、 対数変換 回路 5 6、 差分回路 5 7、 探針 Z制御信号発生回路 5 8及び L P F 5 9あるいはこれらの相当部分 を備える。 Reference numeral 1 denotes an ultra-high vacuum scanning tunneling microscope (UHV-STM). The embodiments of the present invention can be applied to other than UHV-STM. For example, inert surfaces such as graphite can be measured in air and do not require high vacuum. Reference numeral 2 is a feedback circuit. The UHV-STM1 is the probe 51, probe control actuator 53 shown in FIG. 8 and the bias circuit 54 shown in FIG. It has a substantial part of them. The feedback circuit 2 includes the current-voltage conversion circuit 55, the logarithmic conversion circuit 56, the difference circuit 57, the probe Z control signal generation circuit 58, and the LPF 59 shown in FIG.
探針を試料面に対して 1 nm付近まで接近させるとトンネル電流が探 tf~試料間に流れ始め、 こ のトンネル電流を電流電圧変換回路、 対数変換回路、 差分回路及び L P Fにより探針 Z制御信号発 生回路のフィードバック信号を発生し、 探針の Z方向の位置を制御する。 図示しない X Y走査信号 発生回路によって XY走査信号を入力し、 試料面内方向に沿って走査しながらフィードバック回路 2の出力信号であるトポ信号モニターし、 画像処理を施すことによって試料表面の形状、 及び電子 状態を反映する観察像を得ることができる。  When the probe approaches the sample surface near 1 nm, a tunnel current starts to flow between the probe tf and the sample, and this tunnel current is controlled by the current-voltage converter, logarithmic converter, difference circuit, and LPF. Generates a feedback signal from the signal generation circuit and controls the position of the probe in the Z direction. An XY scanning signal is input by an XY scanning signal generation circuit (not shown), and a top signal, which is an output signal of the feedback circuit 2, is monitored while scanning along the in-plane direction of the sample, and the shape of the sample surface is obtained by performing image processing. Observed images reflecting the electronic state can be obtained.
符号 1 1は探針一試料間にバイアス電圧を加えるための直流電源、 符号 1 2はバイアス電圧を適 当な振幅と周波数で変調させるための変調器である。  Reference numeral 11 denotes a DC power supply for applying a bias voltage between the probe and the sample, and reference numeral 12 denotes a modulator for modulating the bias voltage with an appropriate amplitude and frequency.
符号 3はロックインアンプ、 符号 4は光源である白色ランプ、 符号 5はレンズ、 符号 7は白色ラ ンプ 4の光から特定の狭い波長帯域の光を分離するためのモノクロメータ一 (monochromator)、 符 号 8はモノクロメーター 7からの光を導く光フアイノ'、 符号 9は光ファイバ 8の出射光を試料 1 0 上に集光するための集光レンズである。 ロヅクインアンプ 3は、 外部参照信号との同期検波を行う ための増幅器であり、 参照周波数で変調された信号を, 非常に高い雑音レベルの中から検出し測定 することができる。 ロックインアンプ 3は、 変調されたバイアス電圧を参照信号としてトンネル電 流信号 1 を取り込み、 電流振幅信号として出力する。  Reference numeral 3 is a lock-in amplifier, reference numeral 4 is a white lamp as a light source, reference numeral 5 is a lens, reference numeral 7 is a monochromator for separating light of a specific narrow wavelength band from light of the white lamp 4, Reference numeral 8 denotes an optical fiber for guiding the light from the monochromator 7, and reference numeral 9 denotes a condenser lens for condensing the light emitted from the optical fiber 8 onto the sample 10. The lock-in amplifier 3 is an amplifier for performing synchronous detection with an external reference signal, and can detect and measure a signal modulated at the reference frequency from a very high noise level. The lock-in amplifier 3 takes in the tunnel current signal 1 using the modulated bias voltage as a reference signal and outputs it as a current amplitude signal.
図 1の光ファイバ 8およびレンズ 9は、 光源から試料に光を導く適当な光学系で置き換えてもよ い。  The optical fiber 8 and the lens 9 in FIG. 1 may be replaced by an appropriate optical system for guiding light from the light source to the sample.
図 1の装置は、 試料 1 0上に特定波長の光を集光させる集光光学系を備えるとともに、 変調され たバイアス電圧を参照信号としてトンネル電流信号 I t を取り込み、 振幅イメージ信号として出力 するロックィンアンプ 3を備える点で、従来の S TMとは相違する。ハロゲンランプ 4、レンズ 5、 モノクロメーター 7、 光ファイバ 8及び集光レンズ 9からなる集光光学系と、 バイアス電圧を変調 するための変調器 1 2と、 ロヅクインアンプ 3とを備えることにより、 試料 (例えば半導体) 中の バンド構造をナノスケールで直接検出することができる。  The device shown in Fig. 1 has a condensing optical system that condenses light of a specific wavelength on the sample 10, and takes in the tunnel current signal It as a reference signal using the modulated bias voltage and outputs it as an amplitude image signal. It differs from the conventional STM in that it has a lock-in amplifier 3. By providing a condensing optical system consisting of a halogen lamp 4, a lens 5, a monochromator 7, an optical fiber 8, and a condensing lens 9, a modulator 12 for modulating a bias voltage, and a lock-in amplifier 3, a sample ( Band structures in semiconductors, for example, can be detected directly at the nanoscale.
次に、 図 1の装置の動作について説明する。  Next, the operation of the device in FIG. 1 will be described.
何らかの原因でバンドベンディング (BB) している半導体表面に禁制帯幅以上のエネルギーの光 を照射すると、 生成した光キャリアは BBに起因する電場によってドリフトし、 BBを低下させるよ うな電荷分離が起こる。 この BBの低下量を表面光起電力 (Surface Photo Voltage = SPV) と呼ぶ。 STMで観察する試料に SPVが発生すると、 探針一試料間にかかるバイァス電圧に実効的に SPVが加 わり、 トンネル電流が変化する。 いっぽう適当な方法で (例えば、 図 .1に示すように変調器 1 2で バイアス電圧を変調して) 表面電場を変調すると、 これによつてバンド構造が変調される。 このと きパンド間遷移を起こす を連続的に照射すると、 連続光照射に伴い発生する SPVは電場変調に同 期して変化する。 従って、 連続光の波長の関数としてトンネル電流変調信号の振幅を測定すると、 ERと同様のスぺクトル (Electric Field Modulation = EFMSスぺクトル) が得られる。 When a semiconductor surface that is band-bending (BB) for some reason is irradiated with light with energy greater than the forbidden band width, the generated photocarriers drift due to the electric field caused by the BB, causing charge separation that lowers the BB. . This decrease in BB is called surface photovoltage (Surface Photo Voltage = SPV). When an SPV occurs in the sample observed by the STM, the SPV is effectively added to the bias voltage applied between the probe and the sample, and the tunnel current changes. On the other hand, modulating the surface electric field in a suitable manner (for example, by modulating the bias voltage with a modulator 12 as shown in FIG. 1) will modulate the band structure. At this time, when the 起 こ す that causes transition between bands is continuously irradiated, the SPV generated by continuous light irradiation changes synchronously with the electric field modulation. Therefore, measuring the amplitude of the tunneling current modulation signal as a function of the wavelength of the continuous light yields a spectrum similar to ER (Electric Field Modulation = EFMS spectrum).
その手順を図 2のフローチヤ一トに示す。  The procedure is shown in the flowchart of FIG.
S 1 :例えば、 表面光起電力の発生に必要な表面バンドベンディングを人為的に誘起するため、 探 針一試料間に適当な極性と大きさをもつた直流バイァス電圧を加える。 S1: For example, in order to artificially induce surface band bending required for generation of surface photovoltaic force, a DC bias voltage having appropriate polarity and magnitude is applied between the probe and the sample.
S 2 :バイアス電圧を変調する。 これにより、 試料表面電場がバイアスに同期し、 従ってバンド構 造がバイアスに同期して変化する。 S 2: Modulate the bias voltage. As a result, the sample surface electric field is synchronized with the bias, and thus the band structure changes in synchronization with the bias.
5 3 :バンド間遷移を起こす光を連続的に照射する。 これにより発生する SPV ( Surface PhotoVoltage:表面光起電力) がバイアス変調に同期して変化する。  5 3: Continuously irradiate light causing inter-band transition. The generated SPV (Surface PhotoVoltage) changes in synchronization with the bias modulation.
5 4 :連続光の波長の関数としてトンネル電流変調信号の振幅を測定する。 具体的には、 変調トン ネル電流波形をバイアス電圧でロックィン検波して得た電流振幅△ Iを求める。  5 4: Measure the amplitude of the tunneling current modulation signal as a function of the wavelength of the continuous light. More specifically, a current amplitude △ I obtained by lock-in detection of the modulated tunnel current waveform with a bias voltage is obtained.
S 5 :バンド構造の特異点に対応して鋭いスペクトル構造が現れる ER (Electro-Reflectance) と 同様のスぺクトルを得る。  S 5: Obtain a spectrum similar to ER (Electro-Reflectance) where a sharp spectrum structure appears corresponding to the singular point of the band structure.
S 6 :異物質の判定 S 6: Judgment of foreign substances
異物質がない場合は、 スペクトルは場所によらず一様である。 異物質がある場合はスペクトルが その周りと異なる。 なお実際の測定例については、 下記の発明の実施の形態 2で説明する。  In the absence of foreign substances, the spectrum is uniform regardless of location. If there is a foreign substance, the spectrum is different from that around it. An actual measurement example will be described in the following second embodiment of the present invention.
さらに、 電流振幅 ΔΙ の二次元分布像を求めてもよい。 試料 1 0の表面を走査しながらステップ S 3の処理を繰り返して電流振幅 ΔΙ の二次元分布像を求める。 ある適当な波長に固定して二次元 分布像を測定することにより、 異物質の有無及びその位置を判定する。  Further, a two-dimensional distribution image of the current amplitude ΔΙ may be obtained. The process of step S3 is repeated while scanning the surface of the sample 10 to obtain a two-dimensional distribution image of the current amplitude ΔΙ. The presence or absence of foreign substances and their positions are determined by measuring the two-dimensional distribution image while fixing the wavelength to a certain appropriate wavelength.
以上のように、 この発明の実施の形態 1の装置/方法によれば、 S TM探針を用いて半導体中の バンド構造 (あるいは異物質や構造不整 '欠陥) をナノスケールで直接検出することができる。 従 来の装置/方法では、数 Aim前後の空間分解能しかなかったが、この発明の実施の形態 1によれば、 十 nm以下のはるかに高レ、空間分解能で検出できる。  As described above, according to the apparatus / method of Embodiment 1 of the present invention, the band structure (or foreign substance or structural irregularity 'defect) in a semiconductor can be directly detected on a nanoscale by using an STM tip. Can be. The conventional device / method has only a spatial resolution of about several Aims, but according to the first embodiment of the present invention, it is possible to detect with a much higher spatial resolution of 10 nm or less.
また、 この発明の実施の形態 1の装置/方法によれば、 GaAsへき開面のように表面バンドべンデ ィングが起こっておらず、 そのままでは SPVが発生しないため変調分光が適用できないような試料 表面に対しても、 探針-試料間バイアスによって人為的に表面バンドベンディング (Tip- induced Band Bending = TIBB) を起こさせることにより、 変調分光測定が可能となる。 発明の実施の形態 2 . Further, according to the apparatus / method of the first embodiment of the present invention, a sample in which modulation band spectroscopy cannot be applied because surface band banding does not occur as in the case of a GaAs cleavage surface and SPV does not occur as it is. Surface band bending (Tip-induced) caused by tip-sample bias (Band Bending = TIBB) makes modulation spectroscopy possible. Embodiment 2 of the invention 2.
上記発明の実施の形態 1では、 バンド構造を変調するために探針のバイァス電圧を変調したが、 これに代えて、 試料にギャップエネルギー以上の単色光 (例えばレーザー光) を照射して SPV (本 発明の実施の形態で本質的な役割をする連続光で誘起される SPVと混同しないようにされたい) を 発生させてもよい。 この単色光を断続照射して表面電場変調を起こさせる。 これは Photo-Reflectance=PR法と同じであり、 この場合、 電場変調は一様で、 空間分解能は検出系 =トン ネル電流プローブだけで実現している。  In the first embodiment of the present invention, the bias voltage of the probe is modulated in order to modulate the band structure. Instead, the sample is irradiated with monochromatic light (for example, laser light) having a gap energy or more and SPV ( (Not to be confused with continuous light-induced SPV, which plays an essential role in the embodiment of the present invention). This monochromatic light is intermittently irradiated to cause surface electric field modulation. This is the same as the Photo-Reflectance = PR method, in which the electric field modulation is uniform and the spatial resolution is achieved only by the detection system = tunnel current probe.
発明の実施の形態 2の装置の構成例を図 3に示す。 図 3の装置は、 図 1の装置のバイアス電源 1 1の変調器 1 2に代えて、 チョッパー 6を含む第 2の照射光学系を備える。  FIG. 3 shows a configuration example of the device according to the second embodiment of the present invention. The apparatus of FIG. 3 includes a second irradiation optical system including a chopper 6 instead of the modulator 12 of the bias power supply 11 of the apparatus of FIG.
図 3において、 符号 4 aは第 1の光源である白色ランプ、 符号 5 aはレンズ、 符号 6 aは光線を 一定間隔で断続するチヨヅパ一 (chopper), 符号 7 aは白色ランプ 4 aの光から特定の波長帯域の 光を分離するためのモノクロメ一ター (nionochroniator)、 符号 8 aはモノクロメーター 7 aからの 光を導く光フアイノ^ 符号 9 aは光ファイバ 8 aの出射光を試料 1 0上に集光するための集光レン ズである。 ロックインアンプ 3は、 チョッパー 6の断続周波数信号 fを参照信号としてトンネル電 流信号 1 1を取り込み、 電流振幅信号として出力する。  In FIG. 3, reference numeral 4a is a white lamp as a first light source, reference numeral 5a is a lens, reference numeral 6a is a chopper for intermittently intermitting light beams, and reference numeral 7a is light from a white lamp 4a. 8a is a monochromator for separating light of a specific wavelength band from the light. Reference numeral 8a is an optical fiber that guides light from the monochromator 7a. Reference numeral 9a is the light emitted from the optical fiber 8a. This is a focusing lens for focusing light on the top. The lock-in amplifier 3 takes in the tunnel current signal 11 using the intermittent frequency signal f of the chopper 6 as a reference signal, and outputs it as a current amplitude signal.
照射光の断続周波数は、 トンネル電流を一定に保つフィードバック回路の応答周波数より十分高 くすることによって、 光照射に伴う変調信号がトンネル電流に現れるようにする。  The intermittent frequency of the illuminating light is set sufficiently higher than the response frequency of the feedback circuit that keeps the tunnel current constant, so that the modulation signal accompanying the light irradiation appears in the tunnel current.
また、 照射光の断続周波数は、 光照射に伴う探針の熱膨張収縮によるトンネル電流変化を小さく するよう十分高くする。  The intermittent frequency of the irradiation light is set high enough to reduce the change in tunnel current due to thermal expansion and contraction of the probe caused by light irradiation.
この発明の実施の形態 2の装置/方法によれば、探針-試料間バイァスによって人為的に表面バン ドベンディング (TIBB) を起こさせることにより、 光変調分光測定が可能となる利点がある。 この発明の実施の形態では、試料にギヤップエネルギー以上の単色光を照射して SPVを発生させ、 この単色光をチョップして表面電場変調を起こさせる。 さらに分光した連続光を試料に照射し、 ト ンネル電流変調成分 Δ Ιを照射光波長の関数として測定する。試料には、 例えば、 n-GaAs基板上に MBE低温成長したホモェピタキシャル膜を超高真空へき開した得た(110)断面を用い、 SPVを発生さ せるためにサンプルバイアス電圧 Vs > 0にし TIBBを誘起した状態に保って、 室温で測定を行う。 その手順を図 4のフローチャートに示す。 According to the apparatus / method of the second embodiment of the present invention, there is an advantage that optical modulation spectrometry can be performed by artificially causing surface band bending (TIBB) by a probe-sample bias. In the embodiment of the present invention, an SPV is generated by irradiating a sample with monochromatic light having a gap energy or more, and the monochromatic light is chopped to cause surface electric field modulation. Further, the sample is irradiated with the separated continuous light, and the tunnel current modulation component ΔΙ is measured as a function of the irradiation light wavelength. For the sample, for example, a (110) cross section obtained by cleaving a homoepitaxial film grown on an n-GaAs substrate at a low temperature by ultra-high vacuum was used, and the sample bias voltage V s > 0 was set to generate SPV. Measure at room temperature with TIBB induced. The procedure is shown in the flowchart of FIG.
S 1 1 :例えば、 試料にレーザー光を照射して SPV (Surface Photo Voltage:表面光起電力) を発 生させ、 このレーザー光をチヨップして表面電場変調を起こさせる。 S11: For example, a sample is irradiated with laser light to generate SPV (Surface Photo Voltage). The laser light is chopped to cause surface electric field modulation.
なお、 レーザー光に代えて図 3に示されたモノクロメータを通して得た単色光を用いてもよい。 一般的には、 レ一ザ一を含め、 試料のバンドギャップ以上のエネルギーの光であればここで用いる ことができる。 ただし、 ある程度強い光であることが望ましい。 他方、 あまりにも強いとチヨツビ ングに伴い探針が熱膨張と収縮を繰り返し、 スぺクトルのバックグラウンドが上昇してしまう c これを抑えるためには、 前述のように変調周波数の熱膨張の応答周波数 (約 1 k H z ) より高くす るとよい。 Note that monochromatic light obtained through the monochromator shown in FIG. 3 may be used instead of the laser light. Generally, any light having an energy greater than the band gap of the sample, including the laser, can be used here. However, it is desirable that the light be somewhat strong. On the other hand, too repeated strong and probe with the Chiyotsubi ring is the thermal expansion and contraction, in order to suppress this c background of the scan Bae spectrum rises, the response of the thermal expansion of the modulation frequency as described above The frequency should be higher than the frequency (about 1 kHz).
S 1 2 :バンド間遷移を起こす光を連続的に照射する。 これにより照射波長に依存して付加的に発 生する SPVが電場変調に同期して変化する。  S 12: Continuous irradiation with light that causes inter-band transition. As a result, the SPV additionally generated depending on the irradiation wavelength changes in synchronization with the electric field modulation.
S 1 3 :連続光の波長の関数としてトンネル電流変調信号の振幅を測定する。 具体的には、 変調ト ンネル電流波形をバイアス電圧でロヅクイン検波して得た電流振幅 Δ Iを求める。 S13: Measure the amplitude of the tunneling current modulation signal as a function of the wavelength of the continuous light. Specifically, a current amplitude ΔI obtained by performing a lock-in detection of the modulated tunnel current waveform with a bias voltage is obtained.
S 1 4 :バンド構造の特異点に対応して鋭いスぺクトル構造が現れる PR (Photo-Reflectance) と 同様のスぺクトルを得る。 S14: Obtain a spectrum similar to PR (Photo-Reflectance) where a sharp spectrum structure appears corresponding to the singular point of the band structure.
S 1 5 :異物質の判定 S15: Determination of foreign substances
図 5は、基板部に探針を固定して測定した EFMSスぺクトルの一例である。光子エネルギーに依存 しないバヅクグラウンドは断続照射したレーザー光によるものである。 図 5には、 スピン .軌道相 互作用により分裂した GaAs のバンド端の構造が明瞭に観測される。 図 6はサンプルバイアス電圧 Vsを変えて測定した EFMSスぺクトルである。 Vsの増大に伴い信号は強くなるが、バンド端の位置は 変化しない。 サブバンドギャップには振動構造が現れるのも観測される。 FIG. 5 shows an example of the EFMS spectrum measured with the probe fixed to the substrate. The background independent of photon energy is due to the intermittently irradiated laser light. Figure 5 clearly shows the band edge structure of GaAs split by spin orbit interaction. 6 is a EFMS scan Bae spectrum was measured by changing the sample bias voltage V s. Signal with the increase in V s becomes stronger, but the position of the band edge is not changed. Vibrational structures are also observed in the sub-band gap.
図 7は、 ェピ膜と基板の界面付近で、 波長をバンド端に固定しながら探針を走査して得た変調信 号像 (便宜的に EFMS像と呼ぶ) (図 7 ( a))と、同時に記録した STMトポグラフ像である(図 7 (b ) )。 界面に存在する非常に乱れた界面層で、 EFMS像のコントラストが異なることが分かる。 図 7 (a)で 界面層内にコントラス卜のムラが観察されるが、 この原因の一部はバンドギャップ E (EFMSスぺク トルで測定) が基板と異なる場所があることに起因する。 それそれのムラの大きさはナノメートル スケールで、 EFMS像の空間分解能が非常に高いことが分かる。  Fig. 7 shows a modulated signal image obtained by scanning the probe near the interface between the epi film and the substrate while fixing the wavelength to the band edge (referred to as EFMS image for convenience) (Fig. 7 (a)) And STM topographic images recorded simultaneously (Fig. 7 (b)). It can be seen that the contrast of the EFMS image is different due to the very disordered interface layer present at the interface. In Fig. 7 (a), contrast unevenness is observed in the interface layer. Part of the cause is that there is a place where the band gap E (measured by EFMS spectrum) is different from that of the substrate. It can be seen that the size of each unevenness is on the nanometer scale, and the spatial resolution of the EFMS image is extremely high.
図 6において、 Vsの増大に伴い信号が強くなる理由は、 TIBBの増大→断続光で誘起される SPV変 調の増大→バンド構造の変調度の増大→電流変調幅の増大、 を考えればよく理解できる。 サブバン ドギヤッフ 動構造はへテ口ェピ膜で良く観測されるものと似ているが、 普通その原因は膜の表裏 で反射する光の干渉効果に帰せられている [N. Kallergi, B. Roughani, J. Aubel and S. Sundaram, J. Appl. Phys. 68, 04656 (1990)]。 本発明の実施の形態のような断面観察で同様な説明が可能かど うかは、 Red Shiftの原因も含めて今後の課題である。 In Fig. 6, the reason why the signal becomes stronger with an increase in V s is as follows: increase in TIBB → increase in SPV modulation induced by intermittent light → increase in modulation of band structure → increase in current modulation width. Can understand well. The dynamic structure of the subband gear is similar to that often observed in the Hepi-epi film, but is usually attributed to the interference effect of the light reflected on the front and back of the film [N. Kallergi, B. Roughani , J. Aubel and S. Sundaram, J. Appl. Phys. 68, 04656 (1990)]. Whether the same explanation can be made by cross-section observation as in the embodiment of the present invention It is a future task including the cause of Red Shift.
STM-EFMSは、 バンドギヤヅプをナノスケールで測定できる意味で、 物質の顕微分析など広い応用 を持った新手法として期待できる。  STM-EFMS can be expected as a new method that has a wide range of applications, such as microscopic analysis of materials, in the sense that bandgap can be measured on a nanoscale.
この手法により種々の物質の光エネルギー吸収に関する分析が可能になり、 これまでにないナノ 分解能顕微分光法を提供することができる。  This technique makes it possible to analyze the light energy absorption of various substances, and provides an unprecedented nano-resolution microspectroscopy.
なお、 以上の説明においては原子配列構造の違いによるバンド構造の差異を検出する場合を例に とり説明してきたが、本発明の実施の形態 1、 2は、対象はこのような例に限定されない。例えば、 生体分子、 化学分子、 不純物原子などを光吸収波長によって同定することが可能である。 また吸収 スぺクトルの微細構造から原子分子の結合状態、 電子状態を原子スケールで測定可能である。 これらの特徴は、 極めて高い空間分解能をもつ S TMに、 従来なかった元素分析機能を付与する ものである。  In the above description, the case where the difference in the band structure due to the difference in the atomic arrangement structure is detected has been described as an example, but the first and second embodiments of the present invention are not limited to such an example. . For example, it is possible to identify biomolecules, chemical molecules, impurity atoms, etc. based on the light absorption wavelength. In addition, the bonding state and electronic state of atomic molecules can be measured on an atomic scale from the fine structure of the absorption spectrum. These features give STM, which has extremely high spatial resolution, an elemental analysis function that has never existed before.
本発明は、 以上の実施の形態に限定されることなく、 特許請求の範囲に記載された発明の範囲内 で、 種々の変更が可能であり、 それらも本発明の範囲内に包含されるものであることは言うまでも ない。  The present invention is not limited to the embodiments described above, and various modifications are possible within the scope of the invention described in the claims, which are also included in the scope of the present invention. Needless to say,
また、 本明細書において、 手段とは必ずしも物理的手段を意味するものではなく、 各手段の機能 が、 ソフトウェアによって実現される場合も包含する。 さらに、 一つの手段の機能が、 二つ以上の 物理的手段により実現されても、 若しくは、 二つ以上の手段の機能が、 一つの物理的手段により実 現されてもよい。  Further, in this specification, means does not necessarily mean physical means, but also includes a case where the function of each means is realized by software. Further, the function of one means may be realized by two or more physical means, or the functions of two or more means may be realized by one physical means.
以上のように、 この発明に係る新規な STM- EFMS (STM- Electric- Field Modulation Spectroscopy) によれば、 半導体のバンド構造を STMの針を使い nmオーダーの高分解能で測定することができる。 この発明は、 いわゆる走査トンネル分光 ( S T S ) とは異なり、 バンドの深部構造をエネルギー分 解能も高く、 また信頼性 '再現性をもって測定できる。 この発明は、 例えば、 半導体の分析に広く 適用できる。 この発明は、 S T Sのような解釈上のあいまいさが生じない。 産業上の利用可能性  As described above, according to the novel STM-EFMS (STM-Electric-Field Modulation Spectroscopy) according to the present invention, the band structure of a semiconductor can be measured at a high resolution on the order of nm using an STM needle. The present invention, unlike so-called scanning tunneling spectroscopy (STS), can measure the deep structure of a band with high energy resolution and reliability and reproducibility. The present invention can be widely applied to, for example, semiconductor analysis. The present invention does not create the interpretive ambiguity of STS. Industrial applicability
この装置/方法は、 例えば半導体の検査装置に応用される。  This apparatus / method is applied to, for example, a semiconductor inspection apparatus.

Claims

請 求 の 範 囲 The scope of the claims
1 . 試料に近接して設けられる探針と、 前記探針が前記試料の表面に近づいたときに生じるトン ネル電流を受けて前記トンネル電流を一定に保持するように前記探針と前記試料間の距離を制御す る負帰還制御器と、 光源と、 前記光源の出射光から所定の波長の光を取り出す分光器と、 前記分光 器の出射光を前記試料に照射する照射手段と、 前記試料の表面の電場を変調するための表面電場変 調手段と、 前記変調手段の変調信号と同期をとることにより前記トンネル電流の振幅を検出して出 力する増幅器とを備え、 前記試料に照射される光は禁制帯幅以上のエネルギーを有する走査型プロ1. A probe provided close to a sample, and a tunnel current generated when the probe approaches the surface of the sample is received between the probe and the sample so as to maintain the tunnel current constant. A negative feedback controller that controls the distance between the light source, a light source, a spectroscope that extracts light of a predetermined wavelength from the light emitted from the light source, an irradiation unit that irradiates the sample with the light emitted from the spectroscope, and the sample. Surface electric field modulation means for modulating the electric field of the surface of the sample, and an amplifier for detecting and outputting the amplitude of the tunnel current by synchronizing with a modulation signal of the modulation means. Light is a scanning professional with energy greater than the forbidden bandwidth.
—ブ顕微鏡 —Microscope
2 . 前記照射手段は、 所定波長の光を集光させる集光光学系を備えることを特徴とする請求項 1 記載の走査型プロ一ブ顕微鏡。 2. The scanning probe microscope according to claim 1, wherein the irradiating means includes a condensing optical system for condensing light of a predetermined wavelength.
3 . 前記表面電場変調手段は、 前記試料にバイアス電圧を加えるバイアス電源と、 前記バイアス 電圧を変調する変調器とを備えることを特徴とする請求項 1記載の走査型プローブ顕微鏡。 3. The scanning probe microscope according to claim 1, wherein the surface electric field modulation means includes a bias power supply for applying a bias voltage to the sample, and a modulator for modulating the bias voltage.
4 . 前記表面電場変調手段は、 第 2の光源と、 前記第 2の光源の出射光を所定の時間間隔で透過 させる光変調器と、 前記第 2の光源の出射光から所定の波長の光を取り出す第 2の分光器と、 前記 第 2の分光器の出射光を前記試料に照射する第 2の照射手段とを備えることを特徴とする請求項 1 記載の走査型プローブ顕微鏡。 4. The surface electric field modulating means comprises: a second light source; an optical modulator for transmitting light emitted from the second light source at predetermined time intervals; and light having a predetermined wavelength from the light emitted from the second light source. 2. The scanning probe microscope according to claim 1, further comprising: a second spectroscope for extracting the light; and second irradiation means for irradiating the sample with light emitted from the second spectroscope.
5 . 前記表面電場変調手段は、試料の禁制帯幅以上のエネルギーを有する光を発するレーザ一と、 前記レ一ザ一の出射光を所定の時間間隔で透過させる光変調器と、 前記レ一ザ一の出射光を前記試 料に照射する第 2の照射手段とを備えることを特徴とする請求項 1記載の走査型プローブ顕微鏡。 5. The surface electric field modulating means includes: a laser that emits light having energy equal to or greater than the band gap of the sample; an optical modulator that transmits light emitted from the laser at predetermined time intervals; 2. The scanning probe microscope according to claim 1, further comprising: a second irradiating unit that irradiates the sample with the emitted light.
6 . 前記表面電場変調手段は、試料の禁制帯幅以上のエネルギーを有する光を発するレーザーと、 前記レーザーを所定の時間間隔で断続的に発振させる電源と、 前記レーザーの出射光を前記試料に 照射する第 2の照射手段とを備えることを特徴とする請求項 1記載の走査型プローブ顕微鏡。 6. The surface electric field modulating means includes: a laser that emits light having energy equal to or greater than the forbidden band width of the sample; a power source that intermittently oscillates the laser at predetermined time intervals; 2. The scanning probe microscope according to claim 1, further comprising a second irradiating means for irradiating.
7 . 前記増幅器の出力に基づき前記試料における光吸収物質を検出する検出部を備えることを特 徴とする請求項 1記載の走査型プローブ顕微鏡。 7. It is characterized by comprising a detecting unit for detecting a light absorbing substance in the sample based on the output of the amplifier. The scanning probe microscope according to claim 1, wherein
8 . 前記検出部は、 トンネル電流振幅が通常のトンネル電流振幅よりも大きいときに光吸収係数 が電場変調を受けていると判定することを特徴とする請求項 7記載の走査型プローブ顕微鏡。 8. The scanning probe microscope according to claim 7, wherein the detection unit determines that the light absorption coefficient is subjected to electric field modulation when the tunnel current amplitude is larger than a normal tunnel current amplitude.
9 . 前記増幅器の出力に基づき二次元分布画像を生成する画像処理部を備え、 前記検出部は、 前 記二次元分布画像においてコントラストの高い部分の光吸収係数が電場変調を受けていると判定す ることを特徴とする請求項 7記載の走査型プロ一ブ顕微鏡。 9. An image processing unit that generates a two-dimensional distribution image based on the output of the amplifier, wherein the detection unit determines that a light absorption coefficient of a high contrast portion in the two-dimensional distribution image is subjected to electric field modulation. The scanning probe microscope according to claim 7, wherein:
1 0 . 前記分光器は、 予め定められた範囲において前記波長を走査することを特徴とする請求項 1記載の走査型プローブ顕微鏡。 10. The scanning probe microscope according to claim 1, wherein the spectroscope scans the wavelength in a predetermined range.
1 1 . 禁制帯幅以上のエネルギーを有する所定の波長の光を試料に照射するステップと、 前記試料の表面の電場を変調するステップと、 11. irradiating the sample with light of a predetermined wavelength having energy equal to or greater than the forbidden band width; and modulating an electric field on the surface of the sample,
前記試料に探針を近接させ、 前記探針が前記試料の表面に近づいたときにトンネル電流を変調信 号と同期をとることにより前記トンネル電流の振幅を検出して出力するステップと、  Bringing a probe close to the sample, detecting and outputting the amplitude of the tunnel current by synchronizing the tunnel current with the modulation signal when the probe approaches the surface of the sample,
前記トンネル電流の振幅に基づき前記試料における物質のバンド構造を検出するステップとを備 える物質のバンド構造の測定方法。  Detecting the band structure of the substance in the sample based on the amplitude of the tunnel current.
1 2 . 禁制帯幅以上のエネルギーを有する所定の波長の光を試料に照射するステップと、 前記試料の表面の電場を変調するステップと、 12. irradiating the sample with light of a predetermined wavelength having energy equal to or greater than the forbidden band width; and modulating an electric field on the surface of the sample,
前記試料に探針を近接させ、 前記探針が前記試料の表面に近づいたときにトンネル電流を変調信 号と同期をとることにより前記トンネル電流の振幅を検出して出力するステップと、  Bringing a probe close to the sample, detecting and outputting the amplitude of the tunnel current by synchronizing the tunnel current with the modulation signal when the probe approaches the surface of the sample,
予め定められた範囲において前記光の波長を走査しつつ上記ステツプを繰り返すステップと、 前記トンネル電流の振幅と波長の特性を求めるステップとを備える顕微分光方法。  A microspectroscopy method comprising: repeating the above steps while scanning the wavelength of the light within a predetermined range; and obtaining characteristics of the amplitude and wavelength of the tunnel current.
PCT/JP2001/007935 2000-09-13 2001-09-13 Scanning probe microscope, method for measuring band structure of substance by using the microscope, and microscopic spectroscopy WO2002023159A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002527759A JPWO2002023159A1 (en) 2000-09-13 2001-09-13 Scanning probe microscope, method for measuring band structure of substance using the same, and microspectroscopic method
AU2001286215A AU2001286215A1 (en) 2000-09-13 2001-09-13 Scanning probe microscope, method for measuring band structure of substance by using the microscope, and microscopic spectroscopy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-277600 2000-09-13
JP2000277600 2000-09-13

Publications (1)

Publication Number Publication Date
WO2002023159A1 true WO2002023159A1 (en) 2002-03-21

Family

ID=18762904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007935 WO2002023159A1 (en) 2000-09-13 2001-09-13 Scanning probe microscope, method for measuring band structure of substance by using the microscope, and microscopic spectroscopy

Country Status (3)

Country Link
JP (1) JPWO2002023159A1 (en)
AU (1) AU2001286215A1 (en)
WO (1) WO2002023159A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224477A (en) * 2007-03-14 2008-09-25 Japan Science & Technology Agency Scanning probe microscope
WO2014054741A1 (en) * 2012-10-03 2014-04-10 独立行政法人科学技術振興機構 Scanning tunneling microscope and observation image display method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933545A (en) * 1995-07-21 1997-02-07 Hitachi Ltd Spectral equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933545A (en) * 1995-07-21 1997-02-07 Hitachi Ltd Spectral equipment

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AKIRA HIDA, YUTAKA MERA, KOJI MAEDA: "Electric field modulation spectroscopy by scanning tunneling microscopy with a nanometer-scale resolution", APPLIED PHYSICS LETTERS, US, AMERICAN INSTITUTE OF PHYSICS, vol. 78, no. 20, 14 May 2001 (2001-05-14), S, pages 3029 - 3031, XP002949748 *
DAVID G. CAHILL, R.J. HAMERS: "Scanning tunneling microscopy of photoexcited carriers at the Si(001) surface", JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, US, AMERICAN VACUUM SOCIETY, vol. 9, no. 2, March 1991 (1991-03-01) - April 1991 (1991-04-01), pages 564 - 567, XP002949752 *
M. MCELLISTREM ET AL.: "Electrostatic sample-tip interactions in the scanning tunneling microscope", PHYSICAL REVIEW LETTERS, US, THE AMERICAN PHYSICAL SOCIETY, vol. 70, no. 16, 19 April 1993 (1993-04-19), pages 2471 - 2474, XP002949749 *
M. WEINER, J. KRAMAR, J.D. BALDESCHWIELER: "Band bending and the apparent barrier height in scanning tunneling microscopy", PHYSICAL REVIEW B, US, THE AMERICAN PHYSICAL SOCIETY, vol. 39, no. 8, 15 March 1989 (1989-03-15), pages 5572 - 5575, XP002949750 *
R.J. HAMERS, K. MARKERT: "Surface photovoltage on Si(111)-(7x7) probed by optically pumped scanning tunneling microscopy", JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, US, AMERICAN VACUUM SOCIETY, vol. 8, no. 4, July 1990 (1990-07-01) - August 1990 (1990-08-01), pages 3524 - 3530, XP002949751 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224477A (en) * 2007-03-14 2008-09-25 Japan Science & Technology Agency Scanning probe microscope
WO2014054741A1 (en) * 2012-10-03 2014-04-10 独立行政法人科学技術振興機構 Scanning tunneling microscope and observation image display method
US9335342B2 (en) 2012-10-03 2016-05-10 Japan Science And Technology Agency Scanning tunneling microscope and method of displaying observation image

Also Published As

Publication number Publication date
JPWO2002023159A1 (en) 2004-01-22
AU2001286215A1 (en) 2002-03-26

Similar Documents

Publication Publication Date Title
US10845382B2 (en) Infrared characterization of a sample using oscillating mode
Lucas et al. Invited review article: combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science
Kuschewski et al. Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz
JP2010197208A (en) Scanning probe microscope and sample observation method using same
JPH03129850A (en) Method for measuring material characteristic by light reflection method using improved computor method
US8869311B2 (en) Displacement detection mechanism and scanning probe microscope using the same
US10928329B2 (en) Method and system for optically detecting and characterizing defects in semiconductors
JPH03163842A (en) Method for measuring interface characteristic of semiconductor material by light reflection method
JPH03175340A (en) Method and apparatus for reflecting light using acoustic optical modulation
US5198667A (en) Method and apparatus for performing scanning tunneling optical absorption spectroscopy
Hallen et al. Near‐field scanning optical microscopy and spectroscopy for semiconductor characterization
JP2001507127A (en) In-situ observation of electronic properties by ellipsometry
WO2003046519A1 (en) Delay time modulation femtosecond time-resolved scanning probe microscope apparatus
US5262642A (en) Scanning tunneling optical spectrometer
WO2002023159A1 (en) Scanning probe microscope, method for measuring band structure of substance by using the microscope, and microscopic spectroscopy
US7038768B2 (en) Optical measuring method for semiconductor multiple layer structures and apparatus therefor
Stöger-Pollach et al. Fundamentals of cathodoluminescence in a STEM: The impact of sample geometry and electron beam energy on light emission of semiconductors
US5159410A (en) Method for in-situ determination of the fermi level in GaAs and similar materials by photoreflectance
Maliński Investigations and modeling aspects of the influence of the high energy and high dose implantation on the optical and transport parameters of implanted layers in silicon
Duncan Near‐field scanning optical microscope for microelectronic materials and devices
JP4857157B2 (en) Scanning probe microscope
CN108646160B (en) Device and method for measuring minority carrier spatial distribution in narrow bandgap semiconductor
Cheng et al. Examination on Optical Properties of Two-Dimensional Materials Using Near-Field Optical Microscopy.
JP2001305037A (en) Scanning probe microscope, light absorbing material detecting method using it, and microspectroscopy method
US20240168053A1 (en) Nano-Mechanical Infrared Spectroscopy System and Method Using Gated Peak Force IR

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002527759

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase