WO2002021515A1 - Dissimulation d'erreurs de transmission dans un signal audio - Google Patents
Dissimulation d'erreurs de transmission dans un signal audio Download PDFInfo
- Publication number
- WO2002021515A1 WO2002021515A1 PCT/FR2001/002747 FR0102747W WO0221515A1 WO 2002021515 A1 WO2002021515 A1 WO 2002021515A1 FR 0102747 W FR0102747 W FR 0102747W WO 0221515 A1 WO0221515 A1 WO 0221515A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- samples
- synthesis
- valid
- decoded
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 34
- 230000005236 sound signal Effects 0.000 title claims abstract description 6
- 238000000034 method Methods 0.000 claims abstract description 66
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 49
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 49
- 230000007774 longterm Effects 0.000 claims abstract description 16
- 230000005284 excitation Effects 0.000 claims description 31
- 230000015654 memory Effects 0.000 claims description 26
- 238000012545 processing Methods 0.000 claims description 18
- 238000001914 filtration Methods 0.000 claims description 15
- 230000003595 spectral effect Effects 0.000 claims description 12
- 230000007423 decrease Effects 0.000 claims description 11
- 230000006870 function Effects 0.000 claims description 10
- 230000002441 reversible effect Effects 0.000 claims description 10
- 238000001228 spectrum Methods 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 claims description 3
- 230000036961 partial effect Effects 0.000 claims description 3
- 238000001356 surgical procedure Methods 0.000 claims 1
- 238000004458 analytical method Methods 0.000 description 17
- OVOUKWFJRHALDD-UHFFFAOYSA-N 2-[2-(2-acetyloxyethoxy)ethoxy]ethyl acetate Chemical compound CC(=O)OCCOCCOCCOC(C)=O OVOUKWFJRHALDD-UHFFFAOYSA-N 0.000 description 16
- 239000000523 sample Substances 0.000 description 12
- 230000009466 transformation Effects 0.000 description 7
- 230000006978 adaptation Effects 0.000 description 6
- 239000013598 vector Substances 0.000 description 6
- 241001237745 Salamis Species 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 235000015175 salami Nutrition 0.000 description 5
- 230000003111 delayed effect Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 description 2
- 108050003267 Prostaglandin G/H synthase 2 Proteins 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 235000018084 Garcinia livingstonei Nutrition 0.000 description 1
- 240000007471 Garcinia livingstonei Species 0.000 description 1
- 241001530606 Maxomys moi Species 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000005311 autocorrelation function Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- AYEKOFBPNLCAJY-UHFFFAOYSA-O thiamine pyrophosphate Chemical compound CC1=C(CCOP(O)(=O)OP(O)(O)=O)SC=[N+]1CC1=CN=C(C)N=C1N AYEKOFBPNLCAJY-UHFFFAOYSA-O 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/005—Correction of errors induced by the transmission channel, if related to the coding algorithm
Definitions
- the present invention relates to techniques for concealing consecutive transmission errors in transmission systems using any type of digital coding of the speech and / or sound signal.
- time coders which carry out the compression of samples of digitized signal sample by sample
- the coded values are then transformed into a binary train which will be transmitted on a transmission channel.
- disturbances can affect the transmitted signal and produce errors on the bit stream received by the decoder. These errors can occur in isolation in the bitstream but very frequently occur in bursts. It is then a packet of bits corresponding to a complete portion of signal which is erroneous or not received. This type of problem is encountered for example for transmissions on mobile networks. It is also encountered in transmissions on packet networks and in particular on internet-type networks.
- a general object of the invention is to improve, for any system of speech and sound compression, the subjective quality of the speech signal restored to the decoder when, due to poor quality of the transmission channel or due to the loss or non-reception of a packet in a packet transmission system, a set of consecutive coded data has been lost.
- Most predictive coding algorithms offer techniques for recovering erased frames ([GSM-FR], [REC G.723.1A], [SALAMI], [HONKA EN], [COX-2], [CHEN- 2], [CHEN-3], [CHEN-4], [CHEN-5], [CHEN-6], [CHEN-7], [KROON-2], [WATKINS]).
- the decoder is informed of the occurrence of a frame erased in one way or another, for example in the case of radio mobile systems by the transmission of the frame erasure information coming from the channel decoder.
- the purpose of the devices for recovering erased frames is to extrapolate the parameters of the erased frame from the last previous frame (s) considered to be valid.
- Some parameters manipulated or coded by predictive coders have a strong inter-frame correlation (case of short-term prediction parameters, also called “Lear” of "Linear Predictive Coding” (see [RABINER]) which represent the spectral envelope, and long-term prediction settings for voiced sounds, for example). Because of this correlation, it is much it is more advantageous to reuse the parameters of the last valid frame to synthesize the erased frame than to use erroneous or random parameters.
- the LPC filter is obtained from the LPC parameters of the last valid frame either by copying the parameters or with the introduction of a certain damping (cf. encoder G723.1 [REC G.723.1A]).
- the voicing is detected to determine the degree of harmonicity of the signal at the level of the erased frame ([SALAMI], this detection taking place as follows:
- the procedures for concealing erased frames are strongly linked to the decoder and use modules of this decoder, such as the signal synthesis module. They use also intermediate signals available within this decoder such as the excitation signal passed and stored during the processing of valid frames preceding the erased frames.
- the techniques for reconstructing erased frames are also based on the coding structure used: algorithms, such as [PICTEL, MAHIEUX-2], aim to regenerate the lost transformed coefficients from the values taken by these coefficients before erasure.
- a prior art which can be considered as closest to the present invention is that which is described in [COMBESCURE], which proposed a method for concealing erased frames equivalent to that used in CELP coders for a transform coder.
- the disadvantages of the proposed method were the introduction of audible spectral distortions
- the invention allows for the concealment of erased frames without marked distortion at higher error rates and / or for longer erased intervals.
- the energy of the synthesis signal thus generated is controlled using a gain calculated and adapted sample by sample.
- the gain for controlling the synthesis signal is advantageously calculated as a function of at least one of the following parameters: energy values previously stored for the samples corresponding to valid data, fundamental period for the voiced sounds, or any parameter characterizing the frequency spectrum.
- the gain applied to the synthesis signal decreases progressively as a function of the duration during which the synthesis samples are generated.
- the contents of the memories used for the decoding processing are updated as a function of the synthesis samples generated.
- a coding analogous to that implemented at the transmitter is implemented at least partially on the synthesized samples possibly followed by a decoding operation (possibly partial), the data obtained serving to regenerate the memories of the decoder.
- this optionally partial coding-decoding operation can be advantageously used to regenerate the first erased frame because it makes it possible to exploit the content of the memories of the decoder before the cut, when these memories contain information not provided by the last valid samples. decoded (for example in the case of addition-overlap transformers, see paragraph 5.2.2.2.1 point 10).
- an excitation signal is generated at the input of the short-term prediction operator which, in the neighboring zone, is the sum of a harmonic component and a weakly harmonic component or non harmonic, and in the voiced zone limited to the non harmonic component.
- the harmonic component is advantageously obtained by implementing a filtering by means of the long-term prediction operator applied to a residual signal calculated by implementing reverse short-term filtering on the stored samples.
- the other component can be determined with the idea of a long-term prediction operator to which pseudo-random disturbances (for example gain or period disturbances) are applied.
- pseudo-random disturbances for example gain or period disturbances
- the harmonic component represents the low frequencies of the spectrum, while the other component represents the high frequency part.
- the long-term prediction operator is determined from the samples of valid stored frames, with a number of samples used for this estimation varying between a minimum value and a value equal to at least twice the estimated fundamental period for voiced sound.
- the residual signal is advantageously modified by treatments of the non-linear type to eliminate amplitude peaks.
- voice activity is detected by estimating noise parameters when the signal is considered to be non-active, and parameters of the synthesized signal are made to tend towards those of the estimated noise.
- the spectral envelope of the noise of the decoded samples is estimated. valid and one generates a synthesized signal evolving towards a signal having the same spectral envelope.
- the invention also provides a method for processing sound signals, characterized in that a discrimination is made between speech and musical sounds and when musical sounds are detected, a method of the aforementioned type is implemented without the estimation of a long-term prediction operator, the excitation signal being limited to a non-harmonic component obtained for example by generating uniform white noise.
- the invention further relates to a device for concealing a transmission error in an audio-digital signal which receives as input a decoded signal which is transmitted to it by a decoder and which generates missing or erroneous samples in this decoded signal, characterized in that 'It includes processing means capable of implementing the above method.
- It also relates to a transmission system comprising at least one encoder, at least one transmission channel, a module capable of detecting that transmitted data has been lost or is greatly erroneous, at least one decoder and an error concealment device which receives the decoded signal, characterized in that this error concealment device is a device of the aforementioned type.
- FIG. 1 is a block diagram illustrating a transmission system according to a possible embodiment of the invention
- FIG. 2 and Figure 3 are block diagrams illustrating an implementation according to a possible embodiment of the invention.
- FIGS. 4 to 6 schematically illustrate the windows used with the error concealment method according to a possible embodiment of one invention
- Figures 7 and 8 are schematic representations illustrating a possible embodiment of the invention in the case of musical signals.
- FIG. 1 shows a device for coding and decoding the digital audio signal, comprising an encoder 1, a transmission channel 2, a module 3 making it possible to detect that the transmitted data has been lost or is strongly erroneous, a decoder 4, and a module 5 for concealing errors or lost packets in accordance with a possible embodiment of the invention.
- this module in addition to the indication of erased data, receives the decoded signal in valid period and transmits signals used to update it to the decoder.
- module 5 is based on:
- the memory of the decoded samples is updated, containing a sufficient number of samples for the regeneration of any periods erased subsequently.
- a signal of the order of 20 to 40 ms is stored.
- the energy of the valid frames is also calculated and the energies corresponding to the last valid frames processed are stored in memory (typically of the order of 5 s).
- a method for detecting voiced sounds (processing 12 in FIG. 3: V / NV detection, for "voiced / unvoiced") is used on the last stored data. For example one can use for that the normalized correlation ([KLEIJN]), or the criterion presented in the example of realization which follows.
- a residual signal is calculated by reverse filtering LPC (processing 10) of the last stored samples. This signal is then used to generate an excitation signal from the LPC 11 synthesis filter (see below).
- the synthesis of the replacement samples is carried out by introducing an excitation signal (calculated in 13 from the signal at the output of the inverse LPC filter) in the LPC synthesis filter 11 (l / A (z)) calculated in 1.
- This excitation signal is generated in two different ways depending on whether the signal is voiced or unvoiced:
- the excitation signal is the sum of two signals, one strongly harmonic component and the other less harmonic or not at all.
- the strongly harmonic component is obtained by LTP filtering (processing module 14) using the parameters calculated in 2, of the residual signal mentioned in 3.
- the second component can also be obtained by LTP filtering but made non-periodic by random modifications of the parameters, by generation of a pseudo-random signal.
- the residual signal used for generating the excitation is processed to eliminate the amplitude peaks significantly above the average.
- the energy of the synthesis signal is controlled using a gain calculated and adapted sample by sample. In the case where the erasure period is relatively long, it is necessary to gradually lower the energy of the synthesis signal.
- the gain adaptation law is calculated according to different parameters: stored energy values before erasure (see in 1), fundamental period, and local stationarity of the signal at the time of cutting.
- the system includes a module allowing the discrimination of stationary (like music) and non-stationary (like speech) sounds, different adaptation laws can also be used.
- the first half of the memory of the last frame correctly received contains fairly precise information on the first half of the first lost frame (its weight in the addition-recovery is more important than that of the current frame). This information can also be used to calculate the adaptive gain.
- the synthesis parameters can also be changed. If the system is coupled to a voice activity detection device with estimation of the noise parameters (such as [REC-G.723.1A], [SALAMI-2],
- KLEIJN predictions
- This information is normally available both to the coder, who must have done this for these preceding samples have a form of local decoding, and at the remote decoder present at the reception. As soon as the transmission channel is disturbed and the remote decoder no longer has the same information as the local decoder present at transmission, there is desynchronization between the encoder and the decoder.
- this desynchronization can cause audible degradations which can last a long time or even increase over time if there are instabilities in the structure. In this case, it is therefore important to endeavor to resynchronize the coder and the decoder, that is to say to make an estimation of the memories of the decoder as close as possible to those of the coder.
- resynchronization techniques depend on the coding structure used. One will be presented, the principle of which is general in this patent, but the complexity of which is potentially significant.
- One possible method consists in introducing into the decoder on reception a coding module of the same type as that present on the transmission, making it possible to carry out the coding-decoding of the samples of the signal produced by the techniques mentioned in the preceding paragraph during the periods deleted. In this way the memories necessary to decode the following samples are completed with a priori similar data.
- This update can be carried out at the time of production of the replacement samples, which distributes the complexity over the entire erasure zone, but is combined with the synthesis procedure described above.
- the above procedure can also be limited to an intermediate zone at the start of the period of valid data succeeding an erased period, the updating procedure then being combined with the decoding operation. .
- TDAC or TCDM ([MAHIEUX]) type transform coders are particularly addressed.
- Broadband encoder (50-7000 Hz) at 24 kb / s or 32 kb / s. 20 ms frame (320 samples).
- a binary frame contains the coded parameters obtained by the TDAC transformation on a window. After decoding these parameters, by doing the reverse transformation TDAC, we obtain an output frame of 20 ms which is the sum of the second half of the previous window and the first half of the current window.
- the two parts of windows used for the reconstruction of the frame n have been marked in bold.
- a lost binary frame disturbs the reconstruction of two consecutive frames (the current one and the next one, Figure 5).
- FIG. 6 binary frame
- the memory of the decoded samples is updated.
- This memory is used for LPC and LTP analyzes of the signal passed in the event of erasure of a binary frame.
- the LPC analysis is performed over a signal period of 20 ms (320 samples).
- LTP analysis requires more samples to be stored.
- the number of samples stored is equal to twice the maximum value of the pitch. For example, if the maximum value of the MaxPitch pitch is fixed at 320 samples (50 Hz, 20 ms), the last 640 samples will be memorized (40 ms of the signal).
- MaxCorr 0.6
- Tj the position of this maximum
- MaxCorrL Corr (T] _) If ⁇ > MinPitch and MaxCorrL> 0.75 * MaxCorr, we choose i as the new fundamental period.
- T p is less than MaxPitch / 2
- we can check if it is really a voiced frame by looking for the local maximum of the correlation around 2 * TP (TPP) and checking if Corr (T PP )> 0.4. If Corr (T) ⁇ 0.4 and if the signal energy decreases, we set DiminFlag l and we decrease the value of MaxCorr, otherwise we look for the next local maximum between the current T P and MaxPitch.
- Another voicing criterion consists in checking whether at least in 2/3 of the cases the signal delayed by the fundamental period has the same sign as the non-delayed signal.
- the voicing decision also takes into account the signal energy: if the energy is strong, the value of MaxCorr is increased, so it is more likely that the frame is decided voiced. On the other hand, if the energy is very low, the value of MaxCorr is reduced.
- this vector of Tp samples is processed.
- the method used in our example is as follows: "We calculate the mean MeanAmpl of the absolute values of the last Tp samples of the residual signal.
- the excitation signal is the sum of two signals, a strongly harmonic component limited in band at the low frequencies of the excb spectrum and another less harmonic limited to the highest frequencies exch.
- the coefficients [0.15, 0.7, 0.15] correspond to a low pass FIR filter of 3 dB attenuation at Fs /.
- the second component is also obtained by an LTP filtering made non-periodic by the random modification of its fundamental period Tph.
- Tph is chosen as the integer part of a random real value Tpa.
- the initial value of Tpa is equal to Tp then it is modified sample by sample by adding a random value in [-0.5, 0.5].
- the voiced excitation is then the sum of these 2 components:
- the excitation signal exe is also obtained by LTP filtering of order 3 with the coefficients [0.15, 0.7, 0.15] but it is made non-periodic by increasing the fundamental period d 'a value equal to 1 every 10 samples, and inversion of the sign with a probability of 0.2.
- the memory of the decoder is updated for decoding the next frame (synchronization of the encoder and the decoder, see paragraph 5.1.4).
- the addition-recovery technique makes it possible to check whether the synthesized voiced signal corresponds well to the original signal or not because for the first half of the first frame lost the weight of the last window memory correctly received is greater ( figure 6). So by taking the correlation between the first half of the first synthesized frame and the first half of the frame obtained after the TDAC g reverse TDAC operations, we can estimate the similarity between the lost frame and the replacement frame. A weak correlation ( ⁇ 0.65) indicates that the original signal is enough different from that obtained by the replacement method, and it is better to decrease the energy of the latter quickly to the minimum level.
- points 1-6 relate to the analysis of the decoded signal preceding the first erased frame and allowing the construction of a synthesis model (LPC and possibly LTP) of this signal.
- LPC synthesis model
- the analysis is not repeated, the replacement of the lost signal is based on the parameters (LPC coefficients, pitch, MaxCorr, ResMem) calculated during the first erased frame.
- Such processing implements the following steps for the music synthesis module, illustrated in FIG. 8:
- the synthesis of the replacement samples is carried out by introducing an excitation signal into the LPC synthesis filter (l / A (z)) calculated in step 19.
- This excitation signal - calculated in a step 20 - is a white noise whose amplitude is chosen to obtain a signal having the same energy as that of the last N samples stored in valid period.
- the filtering step is referenced by 21.
- Example of the control of the amplitude of the residual signal If the excitation is presented as a uniform white noise multiplied by a gain, one can calculate this gain G as follows:
- Durbin's algorithm gives the energy of the residual signal. Knowing also the energy of the signal to be modeled, the gain G ⁇ c: of the LPC filter is estimated as the ratio of these two energies. Calculation of the target energy:
- the target energy is estimated equal to the energy of the last N samples stored in a valid period (N is typically ⁇ the length of the signal used for the LPC analysis).
- the energy of the synthesized signal is the product of the energy of white noise by G 2 and G ⁇ ⁇ . We choose G so that this energy is equal to the target energy.
- the energy of the synthesis signal is controlled at using a gain calculated and adapted sample by sample. In the case where the erasure period is relatively long, it is necessary to gradually lower the energy of the synthesis signal.
- the gain adaptation law can be calculated as a function of various parameters such as the energy values memorized before erasure, and local stationarity of the signal at the time of cutting. 6. Evolution of the synthesis procedure over time:
- the synthesis parameters can also be changed. If the system is coupled to a device for detecting voice activity or musical signals with estimation of the noise parameters (such as [REC-G.723.1A],
- the technique which has just been described has the advantage of being usable with any type of coder; in particular it makes it possible to remedy the problems of lost bit packets for time or transform coders, on speech and music signals with good performance: indeed in the present technique, the only signals memorized during periods when the data transmitted are valid are the samples from the decoder, information that is available regardless of the coding structure used.
- AT&T DA Kapilo, RV Cox
- FEC frame erasure concealment
- GSM-FR GSM Recommendation 06.11. "Substitution and muting of lost frames for full rate speech traffic channels”. ETSI / TC SMG, ver. : 3.0.1. , February 1992.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Acoustics & Sound (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Signal Processing (AREA)
- Computational Linguistics (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
- Detection And Prevention Of Errors In Transmission (AREA)
- Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
- Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
- Mobile Radio Communication Systems (AREA)
- Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE60132217T DE60132217T2 (de) | 2000-09-05 | 2001-09-05 | Übertragungsfehler-verdeckung in einem audiosignal |
IL15472801A IL154728A0 (en) | 2000-09-05 | 2001-09-05 | Transmission error concealment in an audio signal |
AU2001289991A AU2001289991A1 (en) | 2000-09-05 | 2001-09-05 | Transmission error concealment in an audio signal |
US10/363,783 US7596489B2 (en) | 2000-09-05 | 2001-09-05 | Transmission error concealment in an audio signal |
EP01969857A EP1316087B1 (fr) | 2000-09-05 | 2001-09-05 | Dissimulation d'erreurs de transmission dans un signal audio |
JP2002525647A JP5062937B2 (ja) | 2000-09-05 | 2001-09-05 | オーディオ信号における伝送エラーの抑止シミュレーション |
IL154728A IL154728A (en) | 2000-09-05 | 2003-03-04 | Transmission error concealment in an audio signal |
HK03107426A HK1055346A1 (en) | 2000-09-05 | 2003-10-15 | Transmission error concealment in an audio signal |
US12/462,763 US8239192B2 (en) | 2000-09-05 | 2009-08-07 | Transmission error concealment in audio signal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0011285A FR2813722B1 (fr) | 2000-09-05 | 2000-09-05 | Procede et dispositif de dissimulation d'erreurs et systeme de transmission comportant un tel dispositif |
FR00/11285 | 2000-09-05 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10363783 A-371-Of-International | 2001-09-05 | ||
US12/462,763 Continuation US8239192B2 (en) | 2000-09-05 | 2009-08-07 | Transmission error concealment in audio signal |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002021515A1 true WO2002021515A1 (fr) | 2002-03-14 |
Family
ID=8853973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2001/002747 WO2002021515A1 (fr) | 2000-09-05 | 2001-09-05 | Dissimulation d'erreurs de transmission dans un signal audio |
Country Status (11)
Country | Link |
---|---|
US (2) | US7596489B2 (fr) |
EP (1) | EP1316087B1 (fr) |
JP (1) | JP5062937B2 (fr) |
AT (1) | ATE382932T1 (fr) |
AU (1) | AU2001289991A1 (fr) |
DE (1) | DE60132217T2 (fr) |
ES (1) | ES2298261T3 (fr) |
FR (1) | FR2813722B1 (fr) |
HK (1) | HK1055346A1 (fr) |
IL (2) | IL154728A0 (fr) |
WO (1) | WO2002021515A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008047051A2 (fr) * | 2006-10-20 | 2008-04-24 | France Telecom | Attenuation du survoisement, notamment pour la generation d'une excitation aupres d'un decodeur, en absence d'information |
WO2009047461A1 (fr) * | 2007-09-21 | 2009-04-16 | France Telecom | Dissimulation d'erreur de transmission dans un signal numerique avec repartition de la complexite |
US7650280B2 (en) | 2003-01-30 | 2010-01-19 | Fujitsu Limited | Voice packet loss concealment device, voice packet loss concealment method, receiving terminal, and voice communication system |
KR20170103027A (ko) * | 2013-09-30 | 2017-09-12 | 코닌클리케 필립스 엔.브이. | 저지연 인코딩/디코딩을 위한 오디오 신호의 리샘플링 |
Families Citing this family (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030163304A1 (en) * | 2002-02-28 | 2003-08-28 | Fisseha Mekuria | Error concealment for voice transmission system |
FR2849727B1 (fr) * | 2003-01-08 | 2005-03-18 | France Telecom | Procede de codage et de decodage audio a debit variable |
US7835916B2 (en) * | 2003-12-19 | 2010-11-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Channel signal concealment in multi-channel audio systems |
KR100587953B1 (ko) * | 2003-12-26 | 2006-06-08 | 한국전자통신연구원 | 대역-분할 광대역 음성 코덱에서의 고대역 오류 은닉 장치 및 그를 이용한 비트스트림 복호화 시스템 |
JP4761506B2 (ja) * | 2005-03-01 | 2011-08-31 | 国立大学法人北陸先端科学技術大学院大学 | 音声処理方法と装置及びプログラム並びに音声システム |
DE502006004136D1 (de) * | 2005-04-28 | 2009-08-13 | Siemens Ag | Verfahren und vorrichtung zur geräuschunterdrückung |
US7831421B2 (en) * | 2005-05-31 | 2010-11-09 | Microsoft Corporation | Robust decoder |
US8620644B2 (en) * | 2005-10-26 | 2013-12-31 | Qualcomm Incorporated | Encoder-assisted frame loss concealment techniques for audio coding |
US7805297B2 (en) | 2005-11-23 | 2010-09-28 | Broadcom Corporation | Classification-based frame loss concealment for audio signals |
US8417185B2 (en) | 2005-12-16 | 2013-04-09 | Vocollect, Inc. | Wireless headset and method for robust voice data communication |
US8160874B2 (en) * | 2005-12-27 | 2012-04-17 | Panasonic Corporation | Speech frame loss compensation using non-cyclic-pulse-suppressed version of previous frame excitation as synthesis filter source |
US7773767B2 (en) | 2006-02-06 | 2010-08-10 | Vocollect, Inc. | Headset terminal with rear stability strap |
US7885419B2 (en) | 2006-02-06 | 2011-02-08 | Vocollect, Inc. | Headset terminal with speech functionality |
CA2658962A1 (fr) * | 2006-07-27 | 2008-01-31 | Nec Corporation | Dispositif de decodage de donnees audio |
US8015000B2 (en) * | 2006-08-03 | 2011-09-06 | Broadcom Corporation | Classification-based frame loss concealment for audio signals |
EP1921608A1 (fr) * | 2006-11-13 | 2008-05-14 | Electronics And Telecommunications Research Institute | Procédé d'insertion d'informations de vecteurs pour estimer les données vocales dans une période de resynchronisation clé, procédé de transmission de vecteur, et procédé d'estimation de données vocales dans une resynchronisation clé utilisant des informations vectorielles |
KR100862662B1 (ko) | 2006-11-28 | 2008-10-10 | 삼성전자주식회사 | 프레임 오류 은닉 방법 및 장치, 이를 이용한 오디오 신호복호화 방법 및 장치 |
JP4504389B2 (ja) * | 2007-02-22 | 2010-07-14 | 富士通株式会社 | 隠蔽信号生成装置、隠蔽信号生成方法および隠蔽信号生成プログラム |
BRPI0808200A8 (pt) * | 2007-03-02 | 2017-09-12 | Panasonic Corp | Dispositivo de codificação de áudio e dispositivo de decodificação de áudio |
US7853450B2 (en) * | 2007-03-30 | 2010-12-14 | Alcatel-Lucent Usa Inc. | Digital voice enhancement |
US8126707B2 (en) * | 2007-04-05 | 2012-02-28 | Texas Instruments Incorporated | Method and system for speech compression |
EP2112653A4 (fr) * | 2007-05-24 | 2013-09-11 | Panasonic Corp | Dispositif de décodage audio, procédé de décodage audio, programme et circuit intégré |
KR100906766B1 (ko) * | 2007-06-18 | 2009-07-09 | 한국전자통신연구원 | 키 재동기 구간의 음성 데이터 예측을 위한 음성 데이터송수신 장치 및 방법 |
FR2929466A1 (fr) * | 2008-03-28 | 2009-10-02 | France Telecom | Dissimulation d'erreur de transmission dans un signal numerique dans une structure de decodage hierarchique |
CN101588341B (zh) * | 2008-05-22 | 2012-07-04 | 华为技术有限公司 | 一种丢帧隐藏的方法及装置 |
KR20090122143A (ko) * | 2008-05-23 | 2009-11-26 | 엘지전자 주식회사 | 오디오 신호 처리 방법 및 장치 |
MX2011000375A (es) * | 2008-07-11 | 2011-05-19 | Fraunhofer Ges Forschung | Codificador y decodificador de audio para codificar y decodificar tramas de una señal de audio muestreada. |
USD605629S1 (en) | 2008-09-29 | 2009-12-08 | Vocollect, Inc. | Headset |
JP2010164859A (ja) * | 2009-01-16 | 2010-07-29 | Sony Corp | オーディオ再生装置、情報再生システム、オーディオ再生方法、およびプログラム |
CN101609677B (zh) | 2009-03-13 | 2012-01-04 | 华为技术有限公司 | 一种预处理方法、装置及编码设备 |
US8160287B2 (en) | 2009-05-22 | 2012-04-17 | Vocollect, Inc. | Headset with adjustable headband |
US8438659B2 (en) | 2009-11-05 | 2013-05-07 | Vocollect, Inc. | Portable computing device and headset interface |
US9123334B2 (en) * | 2009-12-14 | 2015-09-01 | Panasonic Intellectual Property Management Co., Ltd. | Vector quantization of algebraic codebook with high-pass characteristic for polarity selection |
KR101551046B1 (ko) * | 2011-02-14 | 2015-09-07 | 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. | 저-지연 통합 스피치 및 오디오 코딩에서 에러 은닉을 위한 장치 및 방법 |
CN103477387B (zh) | 2011-02-14 | 2015-11-25 | 弗兰霍菲尔运输应用研究公司 | 使用频谱域噪声整形的基于线性预测的编码方案 |
MY166394A (en) | 2011-02-14 | 2018-06-25 | Fraunhofer Ges Forschung | Information signal representation using lapped transform |
BR112013020482B1 (pt) | 2011-02-14 | 2021-02-23 | Fraunhofer Ges Forschung | aparelho e método para processar um sinal de áudio decodificado em um domínio espectral |
ES2639646T3 (es) | 2011-02-14 | 2017-10-27 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Codificación y decodificación de posiciones de impulso de pistas de una señal de audio |
KR101525185B1 (ko) | 2011-02-14 | 2015-06-02 | 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. | 트랜지언트 검출 및 품질 결과를 사용하여 일부분의 오디오 신호를 코딩하기 위한 장치 및 방법 |
US8849663B2 (en) * | 2011-03-21 | 2014-09-30 | The Intellisis Corporation | Systems and methods for segmenting and/or classifying an audio signal from transformed audio information |
US8767978B2 (en) | 2011-03-25 | 2014-07-01 | The Intellisis Corporation | System and method for processing sound signals implementing a spectral motion transform |
US9026434B2 (en) * | 2011-04-11 | 2015-05-05 | Samsung Electronic Co., Ltd. | Frame erasure concealment for a multi rate speech and audio codec |
US8620646B2 (en) | 2011-08-08 | 2013-12-31 | The Intellisis Corporation | System and method for tracking sound pitch across an audio signal using harmonic envelope |
US8548803B2 (en) | 2011-08-08 | 2013-10-01 | The Intellisis Corporation | System and method of processing a sound signal including transforming the sound signal into a frequency-chirp domain |
US9183850B2 (en) | 2011-08-08 | 2015-11-10 | The Intellisis Corporation | System and method for tracking sound pitch across an audio signal |
CN107068156B (zh) | 2011-10-21 | 2021-03-30 | 三星电子株式会社 | 帧错误隐藏方法和设备以及音频解码方法和设备 |
EP2830062B1 (fr) * | 2012-03-21 | 2019-11-20 | Samsung Electronics Co., Ltd. | Procédé et appareil de codage/décodage de haute fréquence pour extension de largeur de bande |
US9123328B2 (en) * | 2012-09-26 | 2015-09-01 | Google Technology Holdings LLC | Apparatus and method for audio frame loss recovery |
US20150302892A1 (en) * | 2012-11-27 | 2015-10-22 | Nokia Technologies Oy | A shared audio scene apparatus |
US9437203B2 (en) * | 2013-03-07 | 2016-09-06 | QoSound, Inc. | Error concealment for speech decoder |
FR3004876A1 (fr) * | 2013-04-18 | 2014-10-24 | France Telecom | Correction de perte de trame par injection de bruit pondere. |
BR122022008603B1 (pt) | 2013-10-31 | 2023-01-10 | Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. | Decodificador de áudio e método para fornecer uma informação de áudio decodificada utilizando uma dissimulação de erro que modifica um sinal de excitação no domínio de tempo |
JP6306175B2 (ja) * | 2013-10-31 | 2018-04-04 | フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ | 時間ドメイン励振信号に基づくエラーコンシールメントを用いて、復号化されたオーディオ情報を提供するオーディオデコーダおよび復号化されたオーディオ情報を提供する方法 |
US9437211B1 (en) * | 2013-11-18 | 2016-09-06 | QoSound, Inc. | Adaptive delay for enhanced speech processing |
EP2922055A1 (fr) | 2014-03-19 | 2015-09-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Appareil, procédé et programme d'ordinateur correspondant pour générer un signal de dissimulation d'erreurs au moyen de représentations LPC de remplacement individuel pour les informations de liste de codage individuel |
EP2922056A1 (fr) * | 2014-03-19 | 2015-09-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Appareil,procédé et programme d'ordinateur correspondant pour générer un signal de masquage d'erreurs utilisant une compensation de puissance |
EP2922054A1 (fr) * | 2014-03-19 | 2015-09-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Appareil, procédé et programme d'ordinateur correspondant permettant de générer un signal de masquage d'erreurs utilisant une estimation de bruit adaptatif |
TWI602172B (zh) | 2014-08-27 | 2017-10-11 | 弗勞恩霍夫爾協會 | 使用參數以加強隱蔽之用於編碼及解碼音訊內容的編碼器、解碼器及方法 |
CN112967727A (zh) * | 2014-12-09 | 2021-06-15 | 杜比国际公司 | Mdct域错误掩盖 |
US9922668B2 (en) | 2015-02-06 | 2018-03-20 | Knuedge Incorporated | Estimating fractional chirp rate with multiple frequency representations |
US9870785B2 (en) | 2015-02-06 | 2018-01-16 | Knuedge Incorporated | Determining features of harmonic signals |
US9842611B2 (en) | 2015-02-06 | 2017-12-12 | Knuedge Incorporated | Estimating pitch using peak-to-peak distances |
EP3427257B1 (fr) * | 2016-03-07 | 2021-05-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Unité de dissimulation d'erreur, décodeur audio, et procédé et programme informatique associés permettant d'atténuer une trame audio dissimulée en fonction de différents facteurs d'amortissement pour différentes bandes de fréquence |
WO2017153300A1 (fr) * | 2016-03-07 | 2017-09-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Unité de dissimulation d'erreur, décodeur audio et procédé et programme informatique associés utilisant des caractéristiques d'une représentation décodée d'une trame audio correctement décodée |
EP3553777B1 (fr) * | 2018-04-09 | 2022-07-20 | Dolby Laboratories Licensing Corporation | Dissimulation de perte de paquets à faible complexité pour des signaux audio transcodés |
US10763885B2 (en) | 2018-11-06 | 2020-09-01 | Stmicroelectronics S.R.L. | Method of error concealment, and associated device |
JP7130878B2 (ja) * | 2019-01-13 | 2022-09-05 | 華為技術有限公司 | 高分解能オーディオコーディング |
WO2020164751A1 (fr) * | 2019-02-13 | 2020-08-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Décodeur et procédé de décodage pour masquage lc3 comprenant un masquage de perte de trame complète et un masquage de perte de trame partielle |
CN111063362B (zh) * | 2019-12-11 | 2022-03-22 | 中国电子科技集团公司第三十研究所 | 一种数字语音通信噪音消除和语音恢复方法及装置 |
CN111554309A (zh) * | 2020-05-15 | 2020-08-18 | 腾讯科技(深圳)有限公司 | 一种语音处理方法、装置、设备及存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5717822A (en) * | 1994-03-14 | 1998-02-10 | Lucent Technologies Inc. | Computational complexity reduction during frame erasure of packet loss |
US5884010A (en) * | 1994-03-14 | 1999-03-16 | Lucent Technologies Inc. | Linear prediction coefficient generation during frame erasure or packet loss |
FR2774827A1 (fr) * | 1998-02-06 | 1999-08-13 | France Telecom | Procede de decodage d'un flux binaire representatif d'un signal audio |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2746033B2 (ja) * | 1992-12-24 | 1998-04-28 | 日本電気株式会社 | 音声復号化装置 |
US5732389A (en) * | 1995-06-07 | 1998-03-24 | Lucent Technologies Inc. | Voiced/unvoiced classification of speech for excitation codebook selection in celp speech decoding during frame erasures |
US5699485A (en) * | 1995-06-07 | 1997-12-16 | Lucent Technologies Inc. | Pitch delay modification during frame erasures |
CA2177413A1 (fr) * | 1995-06-07 | 1996-12-08 | Yair Shoham | Affaiblissement du gain durant l'effacement des blocs |
CN1494055A (zh) * | 1997-12-24 | 2004-05-05 | ������������ʽ���� | 声音编码方法和声音译码方法以及声音编码装置和声音译码装置 |
US6449590B1 (en) * | 1998-08-24 | 2002-09-10 | Conexant Systems, Inc. | Speech encoder using warping in long term preprocessing |
US6188980B1 (en) * | 1998-08-24 | 2001-02-13 | Conexant Systems, Inc. | Synchronized encoder-decoder frame concealment using speech coding parameters including line spectral frequencies and filter coefficients |
US6556966B1 (en) * | 1998-08-24 | 2003-04-29 | Conexant Systems, Inc. | Codebook structure for changeable pulse multimode speech coding |
US6240386B1 (en) * | 1998-08-24 | 2001-05-29 | Conexant Systems, Inc. | Speech codec employing noise classification for noise compensation |
JP3365360B2 (ja) * | 1999-07-28 | 2003-01-08 | 日本電気株式会社 | 音声信号復号方法および音声信号符号化復号方法とその装置 |
US7590525B2 (en) * | 2001-08-17 | 2009-09-15 | Broadcom Corporation | Frame erasure concealment for predictive speech coding based on extrapolation of speech waveform |
-
2000
- 2000-09-05 FR FR0011285A patent/FR2813722B1/fr not_active Expired - Fee Related
-
2001
- 2001-09-05 EP EP01969857A patent/EP1316087B1/fr not_active Expired - Lifetime
- 2001-09-05 IL IL15472801A patent/IL154728A0/xx unknown
- 2001-09-05 US US10/363,783 patent/US7596489B2/en not_active Expired - Lifetime
- 2001-09-05 DE DE60132217T patent/DE60132217T2/de not_active Expired - Lifetime
- 2001-09-05 WO PCT/FR2001/002747 patent/WO2002021515A1/fr active IP Right Grant
- 2001-09-05 AT AT01969857T patent/ATE382932T1/de not_active IP Right Cessation
- 2001-09-05 ES ES01969857T patent/ES2298261T3/es not_active Expired - Lifetime
- 2001-09-05 JP JP2002525647A patent/JP5062937B2/ja not_active Expired - Lifetime
- 2001-09-05 AU AU2001289991A patent/AU2001289991A1/en not_active Abandoned
-
2003
- 2003-03-04 IL IL154728A patent/IL154728A/en unknown
- 2003-10-15 HK HK03107426A patent/HK1055346A1/xx not_active IP Right Cessation
-
2009
- 2009-08-07 US US12/462,763 patent/US8239192B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5717822A (en) * | 1994-03-14 | 1998-02-10 | Lucent Technologies Inc. | Computational complexity reduction during frame erasure of packet loss |
US5884010A (en) * | 1994-03-14 | 1999-03-16 | Lucent Technologies Inc. | Linear prediction coefficient generation during frame erasure or packet loss |
FR2774827A1 (fr) * | 1998-02-06 | 1999-08-13 | France Telecom | Procede de decodage d'un flux binaire representatif d'un signal audio |
Non-Patent Citations (2)
Title |
---|
COMBESCURE P ET AL: "A 16, 24, 32 KBIT/S WIDEBAND SPEECH CODEC BASED ON ATCELP", PHOENIX, AZ, MARCH 15 - 19, 1999,NEW YORK, NY: IEEE,US, 15 March 1999 (1999-03-15), pages 5 - 8, XP000898251, ISBN: 0-7803-5042-1 * |
ERDOL N ET AL: "RECOVERY OF MISSING SPEECH PACKETS USING THR SHORT-TIME ENERGY AND ZERO-CROSSING MEASUREMENTS", IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING,US,IEEE INC. NEW YORK, vol. 1, no. 3, 1 July 1993 (1993-07-01), pages 295 - 303, XP000388573, ISSN: 1063-6676 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7650280B2 (en) | 2003-01-30 | 2010-01-19 | Fujitsu Limited | Voice packet loss concealment device, voice packet loss concealment method, receiving terminal, and voice communication system |
CN101573751B (zh) * | 2006-10-20 | 2013-09-25 | 法国电信 | 一种合成用连续的采样块表示的数字音频信号的方法和装置 |
WO2008047051A3 (fr) * | 2006-10-20 | 2008-06-12 | France Telecom | Attenuation du survoisement, notamment pour la generation d'une excitation aupres d'un decodeur, en absence d'information |
KR101409305B1 (ko) | 2006-10-20 | 2014-06-18 | 오렌지 | 정보의 부재 시에 디코더측에서의 여기를 생성하기 위한 과유성음화의 감쇄 |
WO2008047051A2 (fr) * | 2006-10-20 | 2008-04-24 | France Telecom | Attenuation du survoisement, notamment pour la generation d'une excitation aupres d'un decodeur, en absence d'information |
US8417520B2 (en) | 2006-10-20 | 2013-04-09 | France Telecom | Attenuation of overvoicing, in particular for the generation of an excitation at a decoder when data is missing |
CN101802906B (zh) * | 2007-09-21 | 2013-01-02 | 法国电信公司 | 传送误差隐藏的方法和装置、以及数字信号解码器 |
US8607127B2 (en) | 2007-09-21 | 2013-12-10 | France Telecom | Transmission error dissimulation in a digital signal with complexity distribution |
WO2009047461A1 (fr) * | 2007-09-21 | 2009-04-16 | France Telecom | Dissimulation d'erreur de transmission dans un signal numerique avec repartition de la complexite |
KR20170103027A (ko) * | 2013-09-30 | 2017-09-12 | 코닌클리케 필립스 엔.브이. | 저지연 인코딩/디코딩을 위한 오디오 신호의 리샘플링 |
KR20210142765A (ko) * | 2013-09-30 | 2021-11-25 | 코닌클리케 필립스 엔.브이. | 저지연 인코딩/디코딩을 위한 오디오 신호의 리샘플링 |
KR20210142766A (ko) * | 2013-09-30 | 2021-11-25 | 코닌클리케 필립스 엔.브이. | 저지연 인코딩/디코딩을 위한 오디오 신호의 리샘플링 |
KR20230009516A (ko) * | 2013-09-30 | 2023-01-17 | 코닌클리케 필립스 엔.브이. | 저지연 인코딩/디코딩을 위한 오디오 신호의 리샘플링 |
KR102505501B1 (ko) | 2013-09-30 | 2023-03-03 | 코닌클리케 필립스 엔.브이. | 저지연 인코딩/디코딩을 위한 오디오 신호의 리샘플링 |
KR102505502B1 (ko) | 2013-09-30 | 2023-03-03 | 코닌클리케 필립스 엔.브이. | 저지연 인코딩/디코딩을 위한 오디오 신호의 리샘플링 |
KR102514983B1 (ko) | 2013-09-30 | 2023-03-29 | 코닌클리케 필립스 엔.브이. | 저지연 인코딩/디코딩을 위한 오디오 신호의 리샘플링 |
KR102638785B1 (ko) | 2013-09-30 | 2024-02-21 | 코닌클리케 필립스 엔.브이. | 저지연 인코딩/디코딩을 위한 오디오 신호의 리샘플링 |
Also Published As
Publication number | Publication date |
---|---|
IL154728A0 (en) | 2003-10-31 |
JP5062937B2 (ja) | 2012-10-31 |
DE60132217T2 (de) | 2009-01-29 |
US20100070271A1 (en) | 2010-03-18 |
DE60132217D1 (de) | 2008-02-14 |
FR2813722B1 (fr) | 2003-01-24 |
HK1055346A1 (en) | 2004-01-02 |
EP1316087A1 (fr) | 2003-06-04 |
EP1316087B1 (fr) | 2008-01-02 |
US8239192B2 (en) | 2012-08-07 |
AU2001289991A1 (en) | 2002-03-22 |
JP2004508597A (ja) | 2004-03-18 |
FR2813722A1 (fr) | 2002-03-08 |
IL154728A (en) | 2008-07-08 |
ATE382932T1 (de) | 2008-01-15 |
US20040010407A1 (en) | 2004-01-15 |
US7596489B2 (en) | 2009-09-29 |
ES2298261T3 (es) | 2008-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1316087B1 (fr) | Dissimulation d'erreurs de transmission dans un signal audio | |
EP2277172B1 (fr) | Dissimulation d'erreur de transmission dans un signal audionumerique dans une structure de decodage hierarchique | |
AU2003233724B2 (en) | Method and device for efficient frame erasure concealment in linear predictive based speech codecs | |
RU2419891C2 (ru) | Способ и устройство эффективной маскировки стирания кадров в речевых кодеках | |
EP2026330B1 (fr) | Dispositif et procede pour dissimulation de trames perdues | |
EP2080195B1 (fr) | Synthèse de blocs perdus d'un signal audionumérique | |
EP1051703B1 (fr) | Procede decodage d'un signal audio avec correction des erreurs de transmission | |
EP2080194B1 (fr) | Attenuation du survoisement, notamment pour la generation d'une excitation aupres d'un decodeur, en absence d'information | |
EP3175444B1 (fr) | Gestion de la perte de trame dans un contexte de transition fd/lpd | |
EP2347411B1 (fr) | Attenuation de pre-echos dans un signal audionumerique | |
FR2830970A1 (fr) | Procede et dispositif de synthese de trames de substitution, dans une succession de trames representant un signal de parole | |
MX2008008477A (es) | Metodo y dispositivo para ocultamiento eficiente de borrado de cuadros en codec de voz |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 154728 Country of ref document: IL Ref document number: 2002525647 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001969857 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001969857 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10363783 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 2001969857 Country of ref document: EP |