WO2002021192A1 - Polarized light multiplexer - Google Patents

Polarized light multiplexer Download PDF

Info

Publication number
WO2002021192A1
WO2002021192A1 PCT/JP2001/007577 JP0107577W WO0221192A1 WO 2002021192 A1 WO2002021192 A1 WO 2002021192A1 JP 0107577 W JP0107577 W JP 0107577W WO 0221192 A1 WO0221192 A1 WO 0221192A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
parallel
birefringent crystal
polarization maintaining
optical fiber
Prior art date
Application number
PCT/JP2001/007577
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiro Konno
Original Assignee
Namiki Seimitsu Houseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Seimitsu Houseki Kabushiki Kaisha filed Critical Namiki Seimitsu Houseki Kabushiki Kaisha
Publication of WO2002021192A1 publication Critical patent/WO2002021192A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • G02B6/2713Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2773Polarisation splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • G02B6/4203Optical features

Definitions

  • the present invention relates to a polarization combiner for optical fiber amplification mainly used for optical communication and optical measurement, and a polarization separator.
  • optical fiber amplifiers which amplify optical signals with light, have attracted attention and are being used.
  • This optical fiber amplifier has many advantages, such as high gain, low noise, and suitability for wavelength multiplexing, and plays an important role in current optical communication technology.
  • the active layer has a more flat structure, so that the spot shape of the light beam emitted from the semiconductor laser also becomes flat.
  • a special polishing technique is used to process the tip of the optical fiber 102 into a semi-cylindrical shape as shown in Fig. 3.
  • a coupling technology for increasing the optical coupling efficiency with a flat light beam from the semiconductor laser 101 for excitation has already been developed.
  • reference numerals 201a and 201b denote polarization maintaining fibers, and the two polarization maintaining fibers 201a and 201b have polarization planes of light (F1, F2) passing therethrough which are orthogonal to each other.
  • Retention fibers 201a and 201b pass through separate lenses 202a and 202b, respectively, and enter polarization beam splitter 203 as shown.
  • the polarization beam splitter 203 has a multi-stage structure in which a multilayer film is formed on the surface to which the triangular prism is bonded, and is adhered and fixed with an optical organic adhesive. Inside the polarization beam splitter 203, the light (P The wave: F1) is transmitted in the straight direction, and the light (S wave: F2) on the other side of the polarization maintaining fiber 201b has the function of being reflected by the multilayer film surface. Show.
  • the light (P wave: F1) on the polarization maintaining fiber 201a side and the light (S wave: F2) on the polarization maintaining fiber 201b side are synthesized in the polarization beam splitter 203, pass through the lens 202c, and pass through the optical fiber.
  • Light (F3) is propagated to 204.
  • the polarization beam splitter 203 itself has a multi-stage structure in which a large number of triangular prisms are adhered to each other.
  • the adhesive for fixing the triangular prisms is an organic adhesive, so there was a particular problem in reliability.
  • the polarization maintaining fiber 201a and the lens 202a, the polarization maintaining fiber 201b and the lens 202b, and the optical fiber 20 and the lens 202c, which are respectively integrated, are assembled one by one first.
  • a polarizing beam splitter 203 having a structure in which the four triangular prisms are bonded to each other and assemble the light.
  • the present invention solves the above-described problems, and provides a polarization combining structure that can improve light resistance and high reliability, increase optical coupling efficiency, facilitate assembly, and further reduce the size compared to a conventional polarization combining device.
  • the purpose is to: Disclosure of the invention
  • the present invention provides, as a polarization combiner, a two-core filter having a structure in which two polarization maintaining fibers whose polarization maintaining surfaces are orthogonal to each other can be arranged in parallel in an axial direction.
  • the outgoing fiber assembly inserted and fixed inside, and one uniaxial birefringent crystal parallel plate with an optical path length such that two light beams from both polarization maintaining fibers are combined into one.
  • this polarization synthesizer is described in more detail as shown in FIG.
  • light (F1, F2) from the left side of the figure passes through each polarization maintaining fiber 301a and the polarization maintaining fiber 301b, and passes through a two-core ferrule (not shown) having a parallel arrangement structure.
  • the optical path system is housed and configured as an integrated assembly.
  • One end of the optical fibers of the polarization maintaining fibers 301a and 301b is obliquely polished and is provided with an antireflection film in order to improve the return loss performance.
  • Polarization synthesis for the light beam whose two polarization maintaining surfaces are orthogonal to each other is performed by the following parallel plate 302 made of uniaxial birefringent crystal.
  • the uniaxial birefringent crystal parallel flat plate 302 is disposed between the two polarization maintaining fibers and a lens 303a to be described later, and emits two orthogonally polarized light beams emitted from the polarization maintaining fibers 301a and 301b. (F1, F2) passes through the optical path system of the uniaxial birefringent crystal parallel flat plate 302, and is polarized and combined into one light beam.
  • the structure shown in Fig. 1 uses two lenses 303a and 303b for highly efficient optical coupling.
  • either one of the lenses can be optically coupled. It satisfies enough.
  • the new structure without using the conventional triangular prism enables a structure without an adhesive on the optical path, eliminating the risk of light deterioration of the adhesive and improving the reliability over time.
  • the polarization maintaining fibers 301a and 301b are housed in a two-core ferrule with their respective polarization maintaining surfaces perpendicular to each other.Since the two axes of the fiber are structurally integrated with the ferrule, they are made of uniaxial birefringent crystal.
  • the optical beam is monitored by an imager and made of a uniaxial birefringent crystal so that the two light beams become one.
  • the uniaxial birefringent crystal parallel plate 302 After the uniaxial birefringent crystal parallel plate 302, the light passing through the two lenses 303a '303b and the optical fiber 304 can be treated as one light beam. Since one end of each of these optical fibers is obliquely polished to improve the return loss performance, it is not necessary to structurally incline the side of the uniaxial birefringent crystal parallel plate 302. Therefore, the two light beams emitted from the two polarization maintaining fibers 301a '301b and passing through the uniaxial birefringent crystal parallel plate 302 become one light beam so that the uniaxial birefringent crystal parallel plate is used. By setting the thickness (optical path length) of 302, the two light beams are always one, and high efficiency optical coupling can be obtained easily.
  • Equation 1 The equation representing the relationship between the distance between the two light beams on the orthogonal polarization planes and the thickness for obtaining the optical path length of the uniaxial birefringent crystal parallel plate 302 for combining the two light beams into one is:
  • the contents are shown as the explanatory words of the following Equation 1 and symbols.
  • one light beam from a single mode optical fiber is divided into two light beams through a lens.
  • Two cores in which one uniaxial birefringent crystal parallel plate having an optical path length to be separated as a polarization maintaining light beam and two polarization maintaining fibers whose polarization maintaining surfaces are orthogonal to each other are arranged in parallel in the axial direction.
  • the entrance-side fiber assembly which is inserted and fixed in the ferrule, faces
  • the arrangement order is one optical fiber on the entrance side, one or two lenses, one parallel plate made of uniaxial birefringent crystal, and two polarization maintaining fibers on the entrance side fixed to a ferrule.
  • this polarization separator includes a polarization mode dispersion (PMD) (Polarization Mode Dispersion) monitor in the transmission line and coherent optical communication.
  • PMD Polarization Mode Dispersion
  • the uniaxial birefringent crystal rutile (Ti0 2), ortho yttrium Vanadium (YV0 4), can be considered parallel plates of Karusai bets (calcite) selected from the plate.
  • Karusai bets in three calcite is because of the deliquescence, preferably rutile (Ti0 2), ortho yttrium Vanadium (YV0 4) are suitable.
  • FIG. 1 is a schematic diagram showing a configuration of a polarization synthesizer according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of a conventional polarization synthesizer.
  • FIG. 3 is a schematic perspective view showing an example of a mode in which a light beam from a semiconductor laser for excitation is efficiently coupled to an optical fiber.
  • FIG. 4 is an example of a two-core ferrule used in the embodiment of the present invention, in which (a) is a cross-sectional view, and (b) is a view schematically showing a hole see through from the front.
  • FIG. 1 is a diagram showing a schematic structure of a polarization synthesizer of the present invention.
  • the 2-core ferrule 401 see Fig. 4
  • the polarization maintaining surfaces are housed in a perpendicular combination, fixed with a glass adhesive, polished diagonally on the tip of the firer to improve the return loss performance, and coated with an anti-reflection film on the processed end surface.
  • the outgoing side firer assembly was used.
  • a laser beam for adjustment is passed through two polarization maintaining fibers 301a and 301b, and a parallel plate 302 made of rutile uniaxial birefringent crystal with a thickness of 1.26 mm is attached.
  • the parallel plate 302 made of uniaxial birefringent crystal is rotated and adjusted so that two light beams passing through the parallel plate 302 made of uniaxial birefringent crystal become one beam.
  • the holding case and the holding case made of a uniaxial birefringent crystal parallel plate were fused and fixed by YAG laser welding.
  • two lenses 303a-303b and an optical fiber 304 are added as the side receiving the light adjusted to one light beam, and the beam axis is adjusted to achieve more efficient optical coupling.
  • the bodies were fused and fixed by YAG laser welding to complete the polarization synthesizer body.
  • a parallel plate made of a small uniaxial birefringent crystal can be used without using a polarization beam splitter that frequently uses a conventional organic adhesive.
  • polarization beam splitter that frequently uses a conventional organic adhesive.
  • each optical fiber of the polarization maintaining fiber is obliquely polished to improve the return loss performance, and the end face is coated with an antireflection film. You don't have to.
  • work such as optical axis adjustment and assembly can be easily performed, and high optical coupling efficiency can be easily obtained.
  • each component in particular, a plurality of prism components constituting the polarizing beam splitter is eliminated, and only one uniaxial birefringent crystal parallel plate is required.
  • a space-saving polarization combiner and polarization separator can be obtained.

Abstract

A polarized light multiplexer comprises an outgoing-side fiber assembly part inserted and fixed in a two-core ferrule having a structure where two polarization retaining fibers having two polarization retaining planes perpendicular to each other and parallel with the axial direction, parallel flat plates made of one uniaxial double-refraction crystal having such an optical path that two light beams from the two polarization retaining fibers are multiplexed into one beam, a lens for multiplexing the light beams outgoing from the parallel flat plates, another lens arranged at the front end of the optical fiber on the incoming side, and one optical fiber on the incoming side. These components are arranged in the order of the two-outgoing-side polarization retaining fibers, one parallel flat plate of the uniaxial double-refraction crystal, one or two lenses, and one incoming side optical fiber.

Description

明 細 書 偏光合成器 技術分野  Description Polarization synthesizer Technical field
本発明は、 主に光通信や光計測に用いる光フアイバー増幅用の偏光合成 器、 及び偏光分離器に関するものである。 背景技術  The present invention relates to a polarization combiner for optical fiber amplification mainly used for optical communication and optical measurement, and a polarization separator. Background art
近年の光通信技術の発展に伴って、 光信号を光で増幅するいわゆる光フ アイパー増幅器が注目され活用されている。 この光ファイバ増幅器は、 高 利得、 低雑音、 波長多重に適しているなどの数々の利点があり、 現在の光 通信技術において重要な役割を果たしている。  With the recent development of optical communication technology, so-called optical fiber amplifiers, which amplify optical signals with light, have attracted attention and are being used. This optical fiber amplifier has many advantages, such as high gain, low noise, and suitability for wavelength multiplexing, and plays an important role in current optical communication technology.
例えば、 波長多重光通信は、 1本の光ファイバ一に異なる波長の信号光 を数百チャンネル入れることができるが、 しかしチャンネル数が増えるに 伴って、 光増幅に必要な励起光パワーも高くする必要が出てくる。 その 1 つの励起光パワーを高くする方法として、 励起用半導体レーザーの出射光 パワーを高くする方法が知られている。  For example, in wavelength division multiplexing optical communication, several hundred channels of signal light with different wavelengths can be put in one optical fiber, but as the number of channels increases, the pumping light power required for optical amplification also increases. The need comes out. As one method of increasing the power of the pumping light, there is known a method of increasing the output light power of the semiconductor laser for pumping.
この出射光パワーの高い励起用半導体レーザーの導波路構造は、 活性層 がより偏平な構造になるため、 半導体レーザーから出射される光ビームの スポット形状も偏平状となる。 このような偏平なスポット形状の光ビーム を効率良く光ファイバ一に結合するため、 特殊な研磨加工技術を用いて、 第 3図に示すように光ファイバ一 102 の先端を半円筒状にレンズ加工し、 励起用半導体レーザー 101 からの偏平な光ビームとの光結合効率を高くす る結合技術もすでに開発されている。  In the waveguide structure of the pumping semiconductor laser having a high output light power, the active layer has a more flat structure, so that the spot shape of the light beam emitted from the semiconductor laser also becomes flat. In order to efficiently couple such a flat spot-shaped light beam to the optical fiber, a special polishing technique is used to process the tip of the optical fiber 102 into a semi-cylindrical shape as shown in Fig. 3. However, a coupling technology for increasing the optical coupling efficiency with a flat light beam from the semiconductor laser 101 for excitation has already been developed.
さらにまた、 励起光パワーを高くするには、 このような光出力半導体レ 一ザ一からの出射光を光ファイバ一に高効率光結合した光同士を合成する 方法もある。 この合成方法としては、 「偏光合成」 と 「波長合成」 の 2つ があるが、 本発明は前者の 「偏光合成」 に関し研究を行った。 「偏光合成」 は直交した 2つの偏光面をもつ光同士を合成する方法であ る。 第 2図に示す構成は、 従来の偏光合成器の概略構成の一例を示すもの である。 第 2図において記号 201aと 201bとは共に偏光保持ファイバーを 示しており、 2本の偏光保持ファイバー 201a と 201b とは通光する光 ( F1, F2) の偏光面が互いに直交し、 それぞれの偏光保持ファイバー 201a と 201bが各別々のレンズ 202a及び 202b を通過し、 図に示す偏光ビームス プリッタ 203に入る。 Furthermore, in order to increase the power of the pumping light, there is a method in which light emitted from such an optical output semiconductor laser is optically coupled to an optical fiber with high efficiency to combine the light. There are two methods of this synthesis, "polarization synthesis" and "wavelength synthesis". The present invention has conducted research on the former "polarization synthesis". “Polarization synthesis” is a method of combining lights having two orthogonal polarization planes. The configuration shown in FIG. 2 is an example of a schematic configuration of a conventional polarization synthesizer. In FIG. 2, reference numerals 201a and 201b denote polarization maintaining fibers, and the two polarization maintaining fibers 201a and 201b have polarization planes of light (F1, F2) passing therethrough which are orthogonal to each other. Retention fibers 201a and 201b pass through separate lenses 202a and 202b, respectively, and enter polarization beam splitter 203 as shown.
この偏光ビームスプリッタ 203は、 三角プリズムの貼り合わせ面に多層 膜を形成し、 光学系有機接着剤により接着固定した多段構造であり、 偏光 ビームスプリッタ 203 内部では、 偏光保持ファイバー 201a側の光 (P波 : F1) は直進方向に透過させ、 一方の偏光保持ファイバー 201b 側の光 ( S波: F2) は多層膜面で反射させる機能を持たせてあるので、 図のような 矢印の光路系を示す。  The polarization beam splitter 203 has a multi-stage structure in which a multilayer film is formed on the surface to which the triangular prism is bonded, and is adhered and fixed with an optical organic adhesive. Inside the polarization beam splitter 203, the light (P The wave: F1) is transmitted in the straight direction, and the light (S wave: F2) on the other side of the polarization maintaining fiber 201b has the function of being reflected by the multilayer film surface. Show.
このようにして偏光ビームスプリッタ 203内で偏光保持ファイバー 201a 側の光 (P波: F1) と偏光保持ファイバー 201b 側の光 (S波: F2) は合 成され、 レンズ 202c を通り、 光ファイバ一 204 に光 (F3) は伝播される こととなる。  In this manner, the light (P wave: F1) on the polarization maintaining fiber 201a side and the light (S wave: F2) on the polarization maintaining fiber 201b side are synthesized in the polarization beam splitter 203, pass through the lens 202c, and pass through the optical fiber. Light (F3) is propagated to 204.
しかしながら上記従来の構成では、 偏光ビームスプリッタ 203自身が多 数個の三角プリズムを貼り合わせた多段構造をもち、 その偏光合成面は共 に接着剤を介した接着面となっているので、 光や熱などに対し経時的な耐 光性と信頼性が低いという構造的な問題があった。 つまり各三角プリズム の固定のための接着剤は、 有機系接着剤であるため、 特に信頼性に問題が めつた。  However, in the above-described conventional configuration, the polarization beam splitter 203 itself has a multi-stage structure in which a large number of triangular prisms are adhered to each other. There was a structural problem that the light resistance and reliability over time against heat and the like were low. In other words, the adhesive for fixing the triangular prisms is an organic adhesive, so there was a particular problem in reliability.
また従来構成の組立手順としては、 偏光保持ファイバー 201a とレンズ 202a, 及び偏光保持ファイバー 201b とレンズ 202b、 同じく光ファイバ一 20 とレンズ 202c、 がそれぞれ一体化されたものを 1本づっ先に組み立て て、 前記 4個の三角プリズムを貼り合わせた構造の偏光ビームスプリッタ 203 を間に介して位置調整して組立てるのが一般的だが、 このとき、 偏光 回転調整を行いながら高効率光結合になるように光線軸調整を行うために は、 組立作業時において各調整部分に多くの手間や時間を費やしていた。 また同時に、 偏光ビームスプリッタ 203端面からの反射光が出射側の光 ファイバーに再ぴ戻ることを避けるために、 偏光ビームスプリッタ 203を 傾斜させる必要が構造的に必然となる。 このため、 3次元的に 2本の光ビ ームを調整して 1本にすることが技術的にさらに難くなり、 従って高効率 光結合が非常に取りにくいという構造的な問題もあった。 Also, as an assembly procedure of the conventional configuration, the polarization maintaining fiber 201a and the lens 202a, the polarization maintaining fiber 201b and the lens 202b, and the optical fiber 20 and the lens 202c, which are respectively integrated, are assembled one by one first. However, it is general to adjust the position through a polarizing beam splitter 203 having a structure in which the four triangular prisms are bonded to each other and assemble the light. To adjust the beam axis Spent a lot of trouble and time on each adjustment part during the assembly work. At the same time, it is structurally necessary to incline the polarizing beam splitter 203 in order to prevent the reflected light from the end face of the polarizing beam splitter 203 from returning to the optical fiber on the emission side. For this reason, it was technically more difficult to adjust two light beams three-dimensionally to make one light beam, and there was also a structural problem that highly efficient optical coupling was extremely difficult to obtain.
また、 装置構成全体の小型化に対しても、 各部品、 特に偏光ビームスプ リッタを構成するプリズム部品の点数が多く、 省スペース化が偏光ビーム スプリツター単体で難しいという問題もあつた。  Also, with respect to the miniaturization of the entire device configuration, there was a problem that the number of components, particularly the prism components constituting the polarizing beam splitter, was large, and it was difficult to save space with the polarizing beam splitter alone.
本発明は上記問題を解決するもので、 従来の偏光合成器に比べ、 耐光性 と高信頼性の向上、 高光結合効率化及び組立容易化、 さらには小型化が図 れる偏光合成構造を提供することを目的とする。 発明の開示  The present invention solves the above-described problems, and provides a polarization combining structure that can improve light resistance and high reliability, increase optical coupling efficiency, facilitate assembly, and further reduce the size compared to a conventional polarization combining device. The purpose is to: Disclosure of the invention
上記の目的を達成するため、 本発明においては、 偏光合成器として、 偏 光保持面が互いに直交した 2本の偏光保持ファイバーを、 軸方向に平行並 列に配置できる構造を有する 2芯フ ルール中に挿入固着した出射側ファ ィバー組立部品と、 両偏光保持ファイバーからの 2本の光ビームが合成さ れ 1本になるような光路長をもつ 1個の一軸性複屈折結晶製平行平板と、 前記一軸性複屈折結晶製平行平板から出射される光ビームをビーム結合す るためのレンズと、 入射側の 1本の光ファイバ一とで構成し、 その偏光合 成器の構成配置を、 光の出射側から順に、 2芯フ ルールに保持された 2 本の出射側偏光保持ファイバー、 1個の一軸性複屈折結晶製平行平板、 1個又は 2個のレンズ、 1本の入射側のシングルモード光ファイバ一と なるように各部品を構成配置するものである。  In order to achieve the above object, the present invention provides, as a polarization combiner, a two-core filter having a structure in which two polarization maintaining fibers whose polarization maintaining surfaces are orthogonal to each other can be arranged in parallel in an axial direction. The outgoing fiber assembly inserted and fixed inside, and one uniaxial birefringent crystal parallel plate with an optical path length such that two light beams from both polarization maintaining fibers are combined into one. A lens for beam-combining a light beam emitted from the uniaxial birefringent crystal parallel plate, and one optical fiber on the incident side. From the light output side, in order from the output side, two output side polarization maintaining fibers held in a two-core filter, one uniaxial birefringent crystal parallel plate, one or two lenses, one input side Single-mode optical fiber The components are arranged and arranged.
この偏光合成器の構造をさらに詳しく説明すると、 図 1のような概略に なる。 まず図左側からの光 (F1,F2) は、 各偏光保持ファイバー 301a と偏 光保持ファイバー 301b を通光しながら、 平行な配置構造をもつ 2芯フエ ルール (図示していない) の中にそれぞれの偏光保持面が直交した状態で 収納されて一体の組立部品とて構成された光路系を進む。 この偏光保持フ アイパー 301a と 301bの光ファイバ一先端は反射減衰量性能を向上させる ために斜め研磨され、 且つ反射防止膜が施されている。 The structure of this polarization synthesizer is described in more detail as shown in FIG. First, light (F1, F2) from the left side of the figure passes through each polarization maintaining fiber 301a and the polarization maintaining fiber 301b, and passes through a two-core ferrule (not shown) having a parallel arrangement structure. With the polarization maintaining surfaces of The optical path system is housed and configured as an integrated assembly. One end of the optical fibers of the polarization maintaining fibers 301a and 301b is obliquely polished and is provided with an antireflection film in order to improve the return loss performance.
先の 2本の偏光保持面が直交した光ビームに対する偏光合成は、 次の一 軸性複屈折結晶製平行平板 302により行われる。 この一軸性複屈折結晶製 平行平板 302 は前記 2本の偏光保持ファイバーと後述するレンズ 303aの 間に配置され、 偏光保持フアイパー 301a と 301bから出射された 2本の直 交した偏光面の光ビーム (F1, F2) は、 一軸性複屈折結晶製平行平板 302 の光路系を通過することで偏光合成され 1本の光ビームになる。  Polarization synthesis for the light beam whose two polarization maintaining surfaces are orthogonal to each other is performed by the following parallel plate 302 made of uniaxial birefringent crystal. The uniaxial birefringent crystal parallel flat plate 302 is disposed between the two polarization maintaining fibers and a lens 303a to be described later, and emits two orthogonally polarized light beams emitted from the polarization maintaining fibers 301a and 301b. (F1, F2) passes through the optical path system of the uniaxial birefringent crystal parallel flat plate 302, and is polarized and combined into one light beam.
その後、 2個のレンズ 303aと 303bを通り、 シングルモード光ファイバ 一 304 に光 ( F3 ) が伝播される。 このとき図 1 では構造上レンズ 303a, 303b を 2個使用して高効率光結合させているが、 ここではどちらか のレンズ 1個でも光結合可能で、 効率は多少劣るが本発明の機能を十分に 満たすものである。 この従来技術の三角プリズムを用いない新規な構成に より、 光路上に接着剤が存在しない構造が可能となり、 接着剤の光劣化の 心配がなく、 経時的な信頼性が各段に向上する。  After that, the light (F3) is propagated through the two lenses 303a and 303b to the single mode optical fiber 304. At this time, the structure shown in Fig. 1 uses two lenses 303a and 303b for highly efficient optical coupling. Here, either one of the lenses can be optically coupled. It satisfies enough. The new structure without using the conventional triangular prism enables a structure without an adhesive on the optical path, eliminating the risk of light deterioration of the adhesive and improving the reliability over time.
次に構造的な組立容易性について説明する。 偏光保持ファイバー 301a と 301b は、 2芯フヱルールの中でそれぞれの偏光保持面が直交した状態 で収納され、 ファイバー 2軸が構造的にフヱルールで一体となっているた め、 一軸性複屈折結晶製平行平板 302 の光軸と偏光保持ファイバー 301a ' 301b の偏光保持面とを合わせる方法として、 光ビームを撮像機でモニタ して 2つの光ビームが 1つになるように、 一軸性複屈折結晶製平行平板 302を微小回転調'整するか、 または何れかの偏光保持ファイバー (301a又 は 301b) の偏光保持面と一軸性複屈折結晶製平行平板 302 の光軸をマー キングにより合わせる方法をとることができる。  Next, the structural ease of assembly will be described. The polarization maintaining fibers 301a and 301b are housed in a two-core ferrule with their respective polarization maintaining surfaces perpendicular to each other.Since the two axes of the fiber are structurally integrated with the ferrule, they are made of uniaxial birefringent crystal. As a method of aligning the optical axis of the parallel plate 302 with the polarization maintaining surface of the polarization maintaining fiber 301a '301b, the optical beam is monitored by an imager and made of a uniaxial birefringent crystal so that the two light beams become one. Either fine-tuning the parallel plate 302 or aligning the polarization axis of either polarization maintaining fiber (301a or 301b) with the optical axis of the uniaxial birefringent crystal parallel plate 302 by marking. be able to.
いずれの方法も中間にレンズを介せず、 偏光保持ファイバー 301a ' 301b と一軸性複屈折結晶製平行平板 302のみで偏光面の調整ができるため、 偏 光回転調整と高効率光結合になるような光線軸調整を同時に行う必要がな い。 従って組立工程を分けることができるので、 結果的に容易に組立作業 をすることができる。 従って組立工程における生産性の向上が図れる。 また高効率光結合については 2本の偏光保持ファイバー 301a ' 301b と一 軸性複屈 η η折結晶製平行平板 302のみの構成で 2つの光ビームが 1つになる Either method without through the intermediate lens, since it is polarization maintaining fiber 301a '3 01b and the adjustment of the polarization plane only uniaxial birefringent crystal made parallel plate 302, the polarization rotation adjustment and high efficiency optical coupling It is not necessary to perform such beam axis adjustment at the same time. Therefore, the assembly process can be separated, resulting in easier assembly work Can be. Therefore, the productivity in the assembly process can be improved. For high-efficiency optical coupling, only two polarization maintaining fibers 301a and 301b and a uniaxial birefringent η η-fold crystal parallel plate 302 are used to make two light beams into one.
ο λ e  ο λ e
ため、 一軸性複屈折結晶製平行平板 302以後、 2個のレンズ 303a ' 303bと 、 光フアイパー 304を通る光は 1本の光ビームとして扱うことができる。 これらの各光ファイバ一先端は反射減衰量性能を向上させるために斜め 研磨されているため、 一軸性複屈折結晶製平行平板 302側を構造的に傾斜 させる必要がない。 従って 2本の偏光保持ファイバー 301a' 301b から出射 され、 一軸性複屈折結晶製平行平板 302を通った 2つの光ビームが、 1つ の光ビームになるように、 一軸性複屈折結晶製平行平板 302の厚さ (光路 長) を設定することで、 2つの光ビームは必ず 1つになり、 容易に高効率 光結合をえることができる。 Therefore, after the uniaxial birefringent crystal parallel plate 302, the light passing through the two lenses 303a '303b and the optical fiber 304 can be treated as one light beam. Since one end of each of these optical fibers is obliquely polished to improve the return loss performance, it is not necessary to structurally incline the side of the uniaxial birefringent crystal parallel plate 302. Therefore, the two light beams emitted from the two polarization maintaining fibers 301a '301b and passing through the uniaxial birefringent crystal parallel plate 302 become one light beam so that the uniaxial birefringent crystal parallel plate is used. By setting the thickness (optical path length) of 302, the two light beams are always one, and high efficiency optical coupling can be obtained easily.
尚、 直交した偏光面の 2本の光ビーム間距離と 2本の光ビームを 1本に するための一軸性複屈折結晶製平行平板 302の光路長を得る厚さとの関係 を表す式は、 以下に示した数式 1と記号の説明語句として内容を示す。 数式 1  The equation representing the relationship between the distance between the two light beams on the orthogonal polarization planes and the thickness for obtaining the optical path length of the uniaxial birefringent crystal parallel plate 302 for combining the two light beams into one is: The contents are shown as the explanatory words of the following Equation 1 and symbols. Formula 1
nn-no  nn-no
d = t ■  d = t ■
λ ne2- no2 λ ne 2 -no 2
ηη =  ηη =
ne2' cos2af+ no2- s i n2 ne 2 'cos 2 af + no 2 -sin 2
d 2本の光ビ一ム間距離  d Distance between two optical beams
一軸性複屈折結晶製平行平板の厚さ  Thickness of uniaxial birefringent crystal parallel plate
一軸性複屈折結晶の常光屈折率  Ordinary refractive index of uniaxial birefringent crystal
一軸性複屈折結晶の異常光屈折率  Extraordinary light refractive index of uniaxial birefringent crystal
一軸性複屈折結晶製平行平板の入射面と結晶光軸のなす角度 さらに、 本発明の別な態様においては、 シングルモード光ファイバ一から の 1本の光ビームを、 レンズを介して 2本の偏波保持光ビームとして分離 させる光路長を有する 1個の一軸性複屈折結晶製平行平板と、 偏光保持面 が互いに直交した 2本の偏光保持ファイバーを軸方向に平行並列に配置す る 2芯フェルール中に挿入固着した入射側フアイパー組立部、 とを対向さ させて組み合わせ、 その配置順が 1本の入射側光フアイパー、 1個又は 2 個のレンズ、 1個の一軸性複屈折結晶製平行平板、 フェルールに固定され た入射側の 2本の偏光保持ファィバー、 となるように各部品を配置構成す ることにより、 前記偏光合成器とは光路進行系が全く逆な作用効果を示す 偏光分離器としても用いることもできる。 Angle formed between the plane of incidence of the uniaxial birefringent crystal parallel plate and the crystal optical axis Further, in another embodiment of the present invention, one light beam from a single mode optical fiber is divided into two light beams through a lens. Two cores in which one uniaxial birefringent crystal parallel plate having an optical path length to be separated as a polarization maintaining light beam and two polarization maintaining fibers whose polarization maintaining surfaces are orthogonal to each other are arranged in parallel in the axial direction. The entrance-side fiber assembly, which is inserted and fixed in the ferrule, faces The arrangement order is one optical fiber on the entrance side, one or two lenses, one parallel plate made of uniaxial birefringent crystal, and two polarization maintaining fibers on the entrance side fixed to a ferrule. By arranging and configuring the components in such a manner as described above, it can be used also as a polarization separator in which an optical path advancing system has the completely opposite operation effect to the polarization synthesizer.
例えば第 1図において入出射の光 (F1, F2,F3) の進行方向を逆にすると 、 当然、 図の構成配置から光が F3から F1,F2へ逆に戻り、 偏光合成機構 ではなく偏光分離機構となる。 この偏光分離器の用途としては、 伝送路の P M D (Polarization Mode Dispersion)モニタゃコヒーレン卜光通信にお ける偏波ダイパーシティ部等が考えられる。  For example, if the traveling direction of the incoming and outgoing light (F1, F2, F3) in FIG. 1 is reversed, the light naturally returns from F3 to F1, F2 from the configuration shown in FIG. Mechanism. Applications of this polarization separator include a polarization mode dispersion (PMD) (Polarization Mode Dispersion) monitor in the transmission line and coherent optical communication.
なお、 前記一軸性複屈折結晶は、 ルチル (Ti02)、 オルトイットリウム 酸バナジウム (YV04)、 カルサイ ト (方解石) から選択された板状の平行 平板が考えられる。 しかし、 3種の中でカルサイ ト (方解石) は潮解性が あるため、 好ましくはルチル (Ti02)、 オルトイットリウム酸バナジウム (YV04) が適している。 図面の簡単な説明 Incidentally, the uniaxial birefringent crystal, rutile (Ti0 2), ortho yttrium Vanadium (YV0 4), can be considered parallel plates of Karusai bets (calcite) selected from the plate. However, Karusai bets in three (calcite) is because of the deliquescence, preferably rutile (Ti0 2), ortho yttrium Vanadium (YV0 4) are suitable. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施の形態に係る偏光合成器の構成を示す概略図。 第 2図は、 従来の偏光合成器の構成を示す概略図。  FIG. 1 is a schematic diagram showing a configuration of a polarization synthesizer according to an embodiment of the present invention. FIG. 2 is a schematic diagram showing the configuration of a conventional polarization synthesizer.
第 3図は、 励起用半導体レーザーからの光ビームを光ファイバ一に効率 良く結合する形態の一例を示す概略斜視図。  FIG. 3 is a schematic perspective view showing an example of a mode in which a light beam from a semiconductor laser for excitation is efficiently coupled to an optical fiber.
第 4図は、 本発明の実施の形態に用いた 2芯フェルールの一例であり、 (a)は断面図、 (b)は正面から見た穴部透視を概略で示す図。 発明を実施するための最良の形態  FIG. 4 is an example of a two-core ferrule used in the embodiment of the present invention, in which (a) is a cross-sectional view, and (b) is a view schematically showing a hole see through from the front. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明にかかる偏光合成器の好適な実施の形態について、 図面を 参照し、 具体的に説明する。  Hereinafter, preferred embodiments of the polarization synthesizer according to the present invention will be specifically described with reference to the drawings.
なお、 本発明はこの実施の形態に限定されるものではなく、 部品構造は 一例とする。 第 1図は本発明の偏光合成器の概略構造を示す図である。 クラッド外径 0. 125mmの 2本の偏光保持フアイパー 301a と 301b のクラッド外径同士を 外接で接触させ、 平行に並設できる構造をもつ 2芯フ ルール 401 (第 4 図参照) の穴の中に、 それぞれの偏光保持面が直交した組み合わせ状態で 収納させ、 ガラス接着剤で固定後、 反射減衰量性能を向上させるためにフ アイパー先端に斜め研磨を行い、 加工した端面に反射防止膜を施し、 出射 側フアイパー組立部品とした。 Note that the present invention is not limited to this embodiment, and the component structure is an example. FIG. 1 is a diagram showing a schematic structure of a polarization synthesizer of the present invention. In the hole of the 2-core ferrule 401 (see Fig. 4), which has a structure in which the cladding outer diameters of two polarization maintaining fibers 301a and 301b having a cladding outer diameter of 0.125mm and 301b can be circumscribed and arranged in parallel. Then, the polarization maintaining surfaces are housed in a perpendicular combination, fixed with a glass adhesive, polished diagonally on the tip of the firer to improve the return loss performance, and coated with an anti-reflection film on the processed end surface. The outgoing side firer assembly was used.
次に 2本の偏光保持ファイバー 301a と 301bに調整用レーザー光を通光 して厚さ 1. 26mmのルチル製の一軸性複屈折結晶製平行平板 302 を取り付 け、 撮像機でモニタしながら一軸性複屈折結晶製平行平板 302を通過する 2本の光ビームが 1本になるように、 一軸性複屈折結晶製平行平板 302を 回転調整し、 フェルールー体の偏光保持出射側ファイバー組立部品の保持 筐体と一軸性複屈折結晶製平行平板の保持筐体を YAG レーザー溶接により 融着固定した。  Next, a laser beam for adjustment is passed through two polarization maintaining fibers 301a and 301b, and a parallel plate 302 made of rutile uniaxial birefringent crystal with a thickness of 1.26 mm is attached. The parallel plate 302 made of uniaxial birefringent crystal is rotated and adjusted so that two light beams passing through the parallel plate 302 made of uniaxial birefringent crystal become one beam. The holding case and the holding case made of a uniaxial birefringent crystal parallel plate were fused and fixed by YAG laser welding.
その後、 1本の光ビームに調整した光を受ける側として、 2個のレンズ 303a - 303b 及び光フアイパー 304 を追加し、 より高効率光結合になるよう に光線軸調整を行い、 それぞれの保持筐体どうしを YAG レーザー溶接によ り融着固定し、 偏光合成器本体を完成させた。  After that, two lenses 303a-303b and an optical fiber 304 are added as the side receiving the light adjusted to one light beam, and the beam axis is adjusted to achieve more efficient optical coupling. The bodies were fused and fixed by YAG laser welding to complete the polarization synthesizer body.
得られた偏光合成器の揷入損失を測定したところ、 挿入損失値は 0. 3dB が得られ、 従来構造に対して高特性を示した。 以上、 本明細書中で使用した用語及び表現は単に説明のためにのみ用い たのに過ぎないものであり、 本発明の内容を何ら限定するものではない。 仮に限定的な用語や表現を用いたからといって、 そのことにより上述した 本発明の形態と均等なものやその一部を排除する意図はない。 このため、 権利が請求されている本発明の範囲内で種々の変更を加えることが可能で あることは明らかである。 産業上の利用の可能性 以上説明したように、 本発明に係る偏光合成器及び偏光分離器によれば 、 従来タイプの有機系接着剤を多用する偏光ビームスプリ ッターを用いず とも、 小型な一軸性複屈折結晶製平行平板を偏光合成に用いることにより 、 耐光性と信頼性が向上する。 When the insertion loss of the obtained polarization synthesizer was measured, an insertion loss value of 0.3 dB was obtained, which was higher than that of the conventional structure. As described above, the terms and expressions used in the present specification are used merely for explanation, and do not limit the content of the present invention in any way. Even if limited terms and expressions are used, there is no intention to exclude equivalents or some of the embodiments of the present invention described above. Obviously, various modifications may be made within the scope of the claimed invention. Industrial applicability As described above, according to the polarization synthesizer and the polarization separator according to the present invention, a parallel plate made of a small uniaxial birefringent crystal can be used without using a polarization beam splitter that frequently uses a conventional organic adhesive. By using for polarization synthesis, light resistance and reliability are improved.
また、 偏光保持ファイバーの各光ファイバ一先端は反射減衰量性能を向 上させるために斜め研磨し、 かつ端面に反射防止膜が施されているので、 一軸性複屈折結晶製平行平板自身を傾斜させる必要がない。 また、 構造的 にも簡素でありながら、 光軸調整等の作業と組立てが容易にでき、 さらに は高光結合効率を容易に得ることができる。  In addition, one end of each optical fiber of the polarization maintaining fiber is obliquely polished to improve the return loss performance, and the end face is coated with an antireflection film. You don't have to. In addition, while being structurally simple, work such as optical axis adjustment and assembly can be easily performed, and high optical coupling efficiency can be easily obtained.
また、 装置構成全体の小型化に対しても、 各部品、 特に偏光ビームスプ リッタを構成する複数のプリズム部品が無くなり、 1個の一軸性複屈折結 晶製平行平板のみでよいので、 軽薄短小、 省スペースな偏光合成器及び偏 光分離器が得られる。  Also, in order to reduce the size of the entire device configuration, each component, in particular, a plurality of prism components constituting the polarizing beam splitter is eliminated, and only one uniaxial birefringent crystal parallel plate is required. A space-saving polarization combiner and polarization separator can be obtained.

Claims

求 の 範 囲 Range of request
1 . 偏光保持面が互いに直交した 2本の偏光保持ファイバーを、 軸方向 に平行並列に配置可能な構造を有する 2芯フ ルール中に挿入固着した出 射側ファイバー組立部品と、 両偏光保持ファイバーからの 2本の出射光ビ ームが合成され 1本になるような光路長をもつ 1個の一軸性複屈折結晶製 平行平板と、 前記一軸性複屈折結晶製平行平板から出射される光ビームを ビーム結合するレンズと、 入射側の 1本のシングルモード光ファイバ一と で構成され、 その各部品構成配置順が、 2本の出射側偏光保持ファイバー 、 1個の一軸性複屈折結晶製平行平板、 1個又は 2個のレンズ、 1本の入 射側シングルモード光ファイバ一、 となるように配置構成されたことを特 徴とする偏光合成器。 1. An emitting fiber assembly component in which two polarization maintaining fibers whose polarization maintaining surfaces are orthogonal to each other are inserted and fixed in a two-core ferrule that has a structure that can be arranged in parallel and parallel to the axial direction. And the light emitted from one uniaxial birefringent crystal parallel flat plate having an optical path length such that two outgoing light beams from It consists of a lens that couples the beam and one single-mode optical fiber on the incident side, and the order of each component is two emission-side polarization maintaining fibers and one uniaxial birefringent crystal. A polarization synthesizer characterized by being arranged so as to be a parallel plate, one or two lenses, and one input single-mode optical fiber.
2 · 1本のシングルモー ド光ファイバ一からの出射光ビームを、 レンズ を介し、 2本の偏波保持光ビームとして分離出射させる光路長を有する 1 個の一軸性複屈折結晶製平行平板と、 偏光保持面が互いに直交した 2本の 偏光保持ファィパーを軸方向に平行並列に配置する 2芯フニルール中に挿 入固着した入射側ファイバー組立部品、 とを対向させて組み合わせ、 その 部品の配置順が 1本の入射側光ファイバ一、 1個又は 2個のレンズ、 1個 の一軸性複屈折結晶製平行平板、 フェルールに固定された入射側の 2本の 偏光保持ファイバー、 となるように配置構成されたことを特徴とする偏光 分離器。  A single uniaxial birefringent crystal parallel plate with an optical path length that separates and emits the light beam emitted from one single-mode optical fiber through a lens as two polarization-maintaining light beams. An incident-side fiber assembly component, which is inserted and fixed in a two-core funirule, in which two polarization maintaining fibers whose polarization maintaining surfaces are orthogonal to each other are arranged in parallel and parallel in the axial direction, are combined in opposition, and the arrangement order of the components Are arranged to be one optical fiber on the incident side, one or two lenses, one parallel plate made of uniaxial birefringent crystal, and two polarization maintaining fibers on the incident side fixed to a ferrule. A polarized light separator, comprising:
3 . 前記一軸性複屈折結晶が、 ルチル (Ti02)、 オルトイットリウム酸 バナジウム (YV04)、 カルサイ ト (方解石) から選択された板状の平行平 板からなることを特徴とする請求の範囲第 1項又は第 2項に記載の偏光合 成器又は偏光分離器。 3. The uniaxial birefringent crystal, the scope of the claims, characterized in that it consists of rutile (Ti0 2), ortho yttrium Vanadium (YV0 4), Karusai bets (calcite) selected from a plate-like parallel flat plate 3. The polarization synthesizer or polarization separator according to paragraph 1 or 2.
PCT/JP2001/007577 2000-09-04 2001-08-31 Polarized light multiplexer WO2002021192A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-267008 2000-09-04
JP2000267008A JP2002072141A (en) 2000-09-04 2000-09-04 Polarized light-synthesizing device

Publications (1)

Publication Number Publication Date
WO2002021192A1 true WO2002021192A1 (en) 2002-03-14

Family

ID=18753996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007577 WO2002021192A1 (en) 2000-09-04 2001-08-31 Polarized light multiplexer

Country Status (2)

Country Link
JP (1) JP2002072141A (en)
WO (1) WO2002021192A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6560378B1 (en) * 2001-08-02 2003-05-06 Alliance Fiber Optic Products, Inc. Compact polarization couplers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6558960B2 (en) * 2015-06-02 2019-08-14 株式会社小野測器 Laser beam combining / branching device and laser measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886936A (en) * 1994-09-19 1996-04-02 Oki Electric Ind Co Ltd Method for synthesizing polarized wave and polarized wave synthesized module
EP0959375A2 (en) * 1998-05-21 1999-11-24 Jds Fitel Inc. Optical attenuator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0886936A (en) * 1994-09-19 1996-04-02 Oki Electric Ind Co Ltd Method for synthesizing polarized wave and polarized wave synthesized module
EP0959375A2 (en) * 1998-05-21 1999-11-24 Jds Fitel Inc. Optical attenuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6560378B1 (en) * 2001-08-02 2003-05-06 Alliance Fiber Optic Products, Inc. Compact polarization couplers

Also Published As

Publication number Publication date
JP2002072141A (en) 2002-03-12

Similar Documents

Publication Publication Date Title
JP2665097B2 (en) Optical coupler
JP2009512182A5 (en)
JP7167776B2 (en) optical connection structure
KR20030017468A (en) Fiber optic isolator for use with multiple-wavelength optical signals
US9069135B2 (en) Optical depolarizer
JP2003500863A (en) Compact optical amplifier package with integrated optical channel waveguide amplifier and pump source
JP2001230476A (en) Light amplifier
EP3667839B1 (en) Optical module and erbium-doped fiber amplifier
WO2002021192A1 (en) Polarized light multiplexer
US6236497B1 (en) Direct free space pump signal mixing for EDFA
JP3282246B2 (en) Optical module for optical amplifier
US6876491B2 (en) Highly integrated hybrid component for high power optical amplifier application
JP3162625B2 (en) Optical circuit module
US20070171528A1 (en) Polarized wave coupling optical isolator
JP2001147341A (en) Optical circuit module
JP4375659B2 (en) Polarization separator / synthesizer
US20240055820A1 (en) Folded hybrid assembly for doped fiber amplifier
JP2959287B2 (en) Optical coupler
US6317253B1 (en) 1.06 μm band optical amplifier apparatus utilizing induced emission in optical fiber by excited rare-earth element
US6900933B1 (en) Integrated two-pump combiner for optical fiber amplifiers
CN211907942U (en) Laser energy amplifier
CN218728159U (en) Light splitting isolator
JPH1012953A (en) Composite module for optical fiber amplifier
JPH0764021A (en) Optical coupler and optical fiber amplifier
JPH07301763A (en) Optocoupler and optical fiber amplifier

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2003106433

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

Ref document number: 2003106420

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

Ref document number: 2003106434

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase