JP3282246B2 - Optical module for optical amplifier - Google Patents

Optical module for optical amplifier

Info

Publication number
JP3282246B2
JP3282246B2 JP33438992A JP33438992A JP3282246B2 JP 3282246 B2 JP3282246 B2 JP 3282246B2 JP 33438992 A JP33438992 A JP 33438992A JP 33438992 A JP33438992 A JP 33438992A JP 3282246 B2 JP3282246 B2 JP 3282246B2
Authority
JP
Japan
Prior art keywords
optical
light
film
signal light
excitation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33438992A
Other languages
Japanese (ja)
Other versions
JPH06181352A (en
Inventor
輝洋 久保
典久 長沼
達也 村井
暢洋 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP33438992A priority Critical patent/JP3282246B2/en
Publication of JPH06181352A publication Critical patent/JPH06181352A/en
Application granted granted Critical
Publication of JP3282246B2 publication Critical patent/JP3282246B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、希土類ドープ光ファイ
バを用いた光増幅器に励起光を供給するための光モジュ
ール構成に関する。近年光ファイバ増幅器の実用化が進
められており、特に高出力の目的の光ファイバ増幅器の
場合は高出力後方励起方式が有効である。このため、高
出力・高信頼の励起用光モジュールが必要である
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical module for supplying pumping light to an optical amplifier using a rare earth doped optical fiber. In recent years, practical use of optical fiber amplifiers has been promoted. In particular, in the case of an optical fiber amplifier intended for high output, a high output backward pumping method is effective. For this reason, a high-output and highly-reliable pumping optical module is required.

【0002】[0002]

【従来の技術】従来の光モジュールの構成例を図11に、
従来の合波プリズムの構成例を図12にそれぞれ示す。図
中、10はエルビウムドープファイバで、増幅機能を持つ
もの、61及び71は励起レーザーダイオードで、エルビウ
ムドープファイバを励起するもの、50は前段光回路で信
号光を送出するもの、90は光モジュール構成で、励起レ
ーザー光を結合してエルビウムドープファイバに注入す
ると共に増幅された信号光を分離するもの、91は筐体
で、結合レンズと分合波プリズムを固定するもの、40は
合分波プリズムで、複数のガラスプリズム41を接着して
構成したもの、43は合分波膜、44は偏光分離膜であり、
合分波を司るものである。
2. Description of the Related Art FIG. 11 shows a configuration example of a conventional optical module.
FIG. 12 shows a configuration example of a conventional multiplexing prism. In the figure, 10 is an erbium-doped fiber, which has an amplifying function, 61 and 71 are pump laser diodes, which pump an erbium-doped fiber, 50 is a signal light sent by a pre-stage optical circuit, and 90 is an optical module In the configuration, the pump laser beam is combined and injected into the erbium-doped fiber, and the amplified signal light is separated.91 is a housing that fixes the coupling lens and the demultiplexing / multiplexing prism. A prism formed by bonding a plurality of glass prisms 41, 43 is a multiplexing / demultiplexing film, 44 is a polarization separating film,
It is responsible for multiplexing and demultiplexing.

【0003】このように、従来、エルビム等の希土類
元素をドープした光ファイバを使用した光増幅器用の光
モジュールは、光路構成を簡略にするために、ガラスプ
リズム41間に挟んで光学接着された光学膜42(ショート
膜と言う。)を用いた個別デバイスで構成されていた。
ところが、励起光出力および信号光出力が高出力である
ため、有機物質である光学接着剤45が光エネルギーで劣
化損傷する可能性がある。
[0003] Thus, conventionally, an optical module for optical amplifier using an optical fiber doped with a rare earth element such as Erubi c beam, in order to simplify the optical path configuration, optical bonding sandwiched between the glass prisms 41 The optical device was configured as an individual device using the optical film 42 (referred to as a short film).
However, since the output of the excitation light and the output of the signal light are high, the optical adhesive 45, which is an organic substance, may be deteriorated and damaged by light energy.

【0004】[0004]

【発明が解決しようとする課題】このため、デバイスの
信頼性を損ない、ひいては光中継器全体の信頼性を損な
うおそれがあるという問題があった。本発明は、光増幅
用光モジュールに、光学接着剤を使用しない構成を採
り、光学接着剤がレーザー光によって損傷を受けること
によるデバイスの劣化を回避することを目的とする。
For this reason, there has been a problem that the reliability of the device may be impaired, and the reliability of the entire optical repeater may be impaired. SUMMARY An advantage of some aspects of the invention is to employ a configuration in which an optical adhesive is not used in an optical module for optical amplification, and to avoid device deterioration due to damage of the optical adhesive by laser light.

【0005】[0005]

【課題を解決するための手段】図1は本発明の原理説明
図である。図中、21は複屈折結晶のプリズムで、光を屈
折させるもの、22はオープン膜、即ち複屈折結晶のプリ
ズムの表面に蒸着した光学膜で、光を選択的に反射若し
くは透過するものである。本発明は、複屈折結晶に入射
または出射する常光及び異常光に対する屈折率が相違す
ることを利用するものである、すなわち二つの励起光線
を複屈折結晶のプリズム(21)にそれぞれ常光及び異常
光として、一定の入射角で入射させ、オープン膜(22)
で反射した後、プリズムから出射するときは、同じ出射
位置、角度になるようにして、二つの励起光を合成する
ものである。
FIG. 1 is a diagram illustrating the principle of the present invention. In the drawing, reference numeral 21 denotes a birefringent crystal prism that refracts light, and 22 denotes an open film, that is, an optical film deposited on the surface of the birefringent crystal prism, which selectively reflects or transmits light. . The present invention makes use of the fact that the refractive indices for ordinary light and extraordinary light entering or exiting the birefringent crystal are different, that is, two excitation rays are applied to the prism (21) of the birefringent crystal, respectively. As an open film (22)
When the light is emitted from the prism after being reflected by the light source, the two excitation lights are combined so as to have the same emission position and angle.

【0006】[0006]

【作用】光増幅器用光モジュールにはその光学機能上、
波長合分波膜(WDM膜と略す。)や偏光合分波膜(P
BS膜と略す。)が用いられることが多いが、これらの
オープン膜を独立したガラス基板に蒸着して、独立に本
体基板に固定すると、ガラス基板相互の位置・角度を精
密に制御しにくく、またそれぞれのガラス基板の角度ず
れ(温度・経時変化による)が反射回数分加算されて、
光軸の安定度が低いという問題が発生する。
The optical module for an optical amplifier has the following optical functions.
A wavelength multiplexing / demultiplexing film (abbreviated as WDM film) or a polarization multiplexing / demultiplexing film (P
Abbreviated as BS film. ) Is often used, but if these open films are deposited on independent glass substrates and fixed independently to the main substrate, it is difficult to precisely control the position and angle between the glass substrates, and each glass substrate Angle deviation (due to temperature and aging) is added for the number of reflections,
The problem that the stability of the optical axis is low occurs.

【0007】ところで、複屈折結晶に光線を入射した場
合、入射光線は結晶軸に垂直な成分(常光)と結晶軸を
含め面に平行な成分(異常光)とに別れ、それぞれ異な
る屈折角で屈折する。従って、該複屈折結晶から出射す
る際、常光と異常光とでは出射点が異なる事になる。こ
の出射点から、逆に常光と異常光を入射すると、逆の経
路を辿って、両者の合成した光が一点から一方向に出射
されることが期待される。
When a light beam is incident on a birefringent crystal, the incident light beam is divided into a component perpendicular to the crystal axis (ordinary light) and a component parallel to the plane including the crystal axis (extraordinary light). Bend. Therefore, when the light exits from the birefringent crystal, the emission point differs between ordinary light and extraordinary light. Conversely, when ordinary light and extraordinary light enter from this emission point, it is expected that the combined light of the two will be emitted in one direction from one point along the reverse path.

【0008】本含発明は、この原理を使って、相異なる
2点から励起光を入射して合成する方法を提供するもの
である。即ち、WDM膜を複屈折結晶の一面に蒸着し、
その複屈折結晶内で反射屈折させる光路構成により、2
つの励起光を二重化し、信号光と励起光を合分波する機
能を一個の結晶に一体化する。この事により、オープン
膜を使用して信頼性が高く、且つ一体化構造で光軸の安
定性が高い構成が実現する。
The present invention provides a method of using the above principle to combine excitation light from two different points. That is, a WDM film is deposited on one surface of a birefringent crystal,
Due to the optical path configuration for reflection and refraction within the birefringent crystal, 2
One pump light is duplicated, and the function of combining and demultiplexing the signal light and the pump light is integrated into one crystal. This realizes a configuration having high reliability using the open film and having high stability of the optical axis due to the integrated structure.

【0009】本発明では、図1の如く、複屈折結晶板21
の一つの面にWDM膜を構成したもので、WDM膜を構
成した面に対向する面から、互いに偏波面の直交する二
つの励起光を当該結晶に対して常光及び異常光として、
適当な角度で入射すると、WDM膜で反射して、対向面
から2重化された励起光として、エルビウムドープファ
イバに注入される。エルビウムドープファイバで増幅さ
れた信号光は、WDM膜に入射するが、WDM膜は信号
光に対しては透過特性を示すので、その点で結晶外に出
射する。
In the present invention, as shown in FIG.
The WDM film is configured on one surface of the two, from the surface opposite to the surface that configures the WDM film, two excitation lights whose polarization planes are orthogonal to each other as ordinary light and extraordinary light for the crystal,
When the light is incident at an appropriate angle, the light is reflected by the WDM film and injected into the erbium-doped fiber as doubled excitation light from the facing surface. The signal light amplified by the erbium-doped fiber is incident on the WDM film, but the WDM film shows transmission characteristics with respect to the signal light, and is emitted out of the crystal at that point.

【0010】[0010]

【実施例】以下の実施構成例に共通する光増幅器の全体
の構成を図2に示す。本願発明は図中の破線で示す部分
の構成に関する。第1の実施構成例のモジュール構造を
図3に、その複屈折結晶板の構成を図4に示す。エルビ
ウムドープファイバ10で増幅された信号光は、偏波面保
存ファイバ12から筐体91に固定されたレンズAs11でコ
リメートビームにされ、複屈折結晶板の第1面の無発射
膜(AR膜と略す。)23に入射する(AR膜の無い場合
もあるが、以下の説明では在るものとする。)。ここで
の信号光の電束密度ベクトルDの振動方向は主断面(光
線と光軸を含む平面のことである。)と垂直(或いは平
行)である。このため、信号光は第2面から単一の光信
号の状態で結晶外の一定方向に出射し、次段(アイソレ
ータ等)に入力される。また、信号光が任意の偏光状態
(即ち、常光、異常光共に存在する)場合でも、常光と
異常光の分離度が低い場合には、次段(レンズアッセン
ブリイーやアイソレータ等)に対して問題なく結合でき
る。
FIG. 2 shows an entire configuration of an optical amplifier common to the following embodiments. The present invention relates to a configuration of a portion indicated by a broken line in the drawing. FIG. 3 shows the module structure of the first embodiment, and FIG. 4 shows the structure of the birefringent crystal plate. The signal light amplified by the erbium-doped fiber 10 is converted into a collimated beam by the lens As11 fixed to the housing 91 from the polarization plane preserving fiber 12, and is a non-emission film (abbreviated as an AR film) on the first surface of the birefringent crystal plate. .) (There is a case where there is no AR film, but it is assumed in the following description). Here, the vibration direction of the electric flux density vector D of the signal light is perpendicular (or parallel) to the main section (a plane including the light ray and the optical axis). Therefore, the signal light is emitted from the second surface in a single optical signal state in a certain direction outside the crystal, and is input to the next stage (such as an isolator). Further, even if the signal light has an arbitrary polarization state (that is, both ordinary light and extraordinary light), if the degree of separation between ordinary light and extraordinary light is low, there is a problem with the next stage (such as a lens assembly or an isolator). Can be combined without.

【0011】二つの励起光の内、一つは励起レーザ61か
ら偏波面保存ファイバ62及びレンズアッセンブリ(レン
ズASと略す。)63を通って、複屈折結晶21に第1面か
ら入射するが、ここで電束密度ベクトルDの振動方向は
主断面と垂直(或いは平行)にして第1面上のAR膜23
に入射する。複屈折結晶21に入射した励起光は第2面上
の合分波膜22で反射する。信号光の電束密度ベクトルD
の振動方向が主断面と垂直(或いは平行)の時にとりう
る光軸に、この反射光の光軸を一致させる様に入射する
位置、角度を設定する。
One of the two pumping lights enters the birefringent crystal 21 from the pumping laser 61 through the polarization preserving fiber 62 and the lens assembly (abbreviated as lens AS) 63 from the first surface. Here, the vibration direction of the electric flux density vector D is perpendicular (or parallel) to the main section, and the AR film 23 on the first surface is set.
Incident on. The excitation light incident on the birefringent crystal 21 is reflected by the multiplexing / demultiplexing film 22 on the second surface. Electric flux density vector D of signal light
The position and angle of the incident light are set so that the optical axis of the reflected light coincides with the optical axis that can be taken when the vibration direction is perpendicular (or parallel) to the main section.

【0012】またもう一つの励起光は励起レーザ71から
偏波面保存ファイバ72、レンズAS73を通り第1面上の
AR膜23に入射するがその際の電束密度ベクトルDの振
動方向は主断面に平行(或いは垂直)で、前の励起光と
同様第2面上の分波膜22で反射する。この光軸を信号光
が電束密度ベクトルDの振動方向が主断面に対し平行
(或いは垂直)の時にとりうる光軸と一致する様に入射
位置、角度を設定する。
Another pumping light passes from the pumping laser 71 to the AR film 23 on the first surface through the polarization preserving fiber 72 and the lens AS73. , And is reflected by the demultiplexing film 22 on the second surface similarly to the previous excitation light. The incident position and angle of this optical axis are set so that the signal light coincides with the optical axis that can be taken when the vibration direction of the electric flux density vector D is parallel (or perpendicular) to the main section.

【0013】このようにして、第2面上の合分波膜22で
反射した二つの励起光は第1面で屈折して共にレンズA
s11を通って、エルビウムドープファイバ10に入射され
エルビュウムを励起する。第2の実施構成例の複屈折結
晶板の構成を図5に示す。第1面の信号光が入射する部
分に信号光反射・励起光透過特性を有するWDM膜をつ
け、第2面に全反射膜(HR膜と略する。)を付け、こ
のHR膜を反射した漏洩信号光が第1面に入射する部分
にAR膜を付けた構成とする。第1の実施構成例と同様
にして複屈折結晶板に入射した励起光は第2面のHR膜
で全反射し、第1面のWDM膜を透過してエルビウムド
ープファイバに入射する。エルビウムドープファイバで
増幅された信号光は第1面のWDM膜で反射して結晶外
の一定方向に出射し、次段(アイソレータ等)に入力さ
れる。第1面のWDM膜を透過した漏洩信号光は第2面
のHR膜で全反射し、第1面のAR膜の箇所から結晶外
へ放出される。
In this way, the two excitation lights reflected by the multiplexing / demultiplexing film 22 on the second surface are refracted on the first surface and both are excited by the lens A.
The light enters the erbium-doped fiber 10 through s11 and excites erbium. FIG. 5 shows the configuration of the birefringent crystal plate of the second embodiment. A WDM film having signal light reflection / excitation light transmission characteristics is provided on a portion of the first surface where the signal light is incident, and a total reflection film (abbreviated as HR film) is provided on the second surface, and the HR film is reflected. An AR film is provided on a portion where the leakage signal light enters the first surface. Excitation light that has entered the birefringent crystal plate is totally reflected by the HR film on the second surface, passes through the WDM film on the first surface, and enters the erbium-doped fiber in the same manner as in the first embodiment. The signal light amplified by the erbium-doped fiber is reflected by the WDM film on the first surface, exits in a certain direction outside the crystal, and is input to the next stage (such as an isolator). The leaked signal light transmitted through the WDM film on the first surface is totally reflected by the HR film on the second surface and emitted out of the crystal from the AR film on the first surface.

【0014】同じ構造で第2面のAR膜を、信号光透過
・励起光反射のWDM膜で置き換えることにより同様の
機能を実現することが出来る。この場合、第1面のWD
M膜を透過した漏洩信号光は第2面のWDM膜を透過し
て結晶外へ放出され、漏洩信号光が励起LDに入るのを
防ぐことができる。その他の動作はHR膜使用の場合と
同様である。
A similar function can be realized by replacing the AR film on the second surface with a WDM film for transmitting signal light and reflecting excitation light with the same structure. In this case, the WD of the first surface
The leak signal light that has passed through the M film is transmitted through the WDM film on the second surface and is emitted outside the crystal, thereby preventing the leak signal light from entering the pump LD. Other operations are the same as in the case of using the HR film.

【0015】第3の実施構成例の複屈折結晶板の構成を
図6に示す。第1面の信号光が入射する部分にAR膜を
つけ、このAR膜を透過した信号光が第2面に入射する
部分に信号光透過・励起光反射のWDM膜をつけ、第1
面の励起光の入射する部分にAR膜をつけ、励起光が第
1面と第2面で複数回反射して第2面のWDM膜で反射
後第1面の信号光入射部分に到達する光路の第1面と第
2面の反射部分にHR膜をつけた構成とする。第1の実
施構成例と同様にして複屈折結晶板に入射した励起光は
第2面及び第1面のHR膜で全反射を繰り返し、第2面
のWDM膜で反射後、第1面のAR膜を透過してエルビ
ウムドープファイバに入射する。エルビウムドープファ
イバで増幅された信号光は第1面のAR膜を透過後、第
2面のWDM膜を透過して結晶外の一定方向に出射し、
次段(アイソレータ等)に入力される。本構成の場合励
起光が複数回反射を繰り返すので、2つの励起光の入射
点でのビームの間隔を大きくすることができる。
FIG. 6 shows the structure of a birefringent crystal plate according to a third embodiment. An AR film is provided on a portion of the first surface where the signal light is incident, and a WDM film for transmitting the signal light and reflecting the excitation light is provided on a portion where the signal light transmitted through the AR film is incident on the second surface.
An AR film is applied to a portion of the surface where the excitation light is incident, and the excitation light is reflected a plurality of times by the first surface and the second surface and is reflected by the WDM film of the second surface before reaching the signal light incidence portion of the first surface. An HR film is provided on the reflection portions of the first surface and the second surface of the optical path. Excitation light incident on the birefringent crystal plate is repeatedly total-reflected by the HR film on the second surface and the first surface in the same manner as in the first embodiment, and is reflected by the WDM film on the second surface. The light passes through the AR film and enters the erbium-doped fiber. The signal light amplified by the erbium-doped fiber passes through the AR film on the first surface and then passes through the WDM film on the second surface and exits in a certain direction outside the crystal.
It is input to the next stage (such as an isolator). In the case of this configuration, since the excitation light is repeatedly reflected a plurality of times, the interval between the beams at the incident points of the two excitation lights can be increased.

【0016】同じ構造で第1面及び第2面の励起光反射
用のHR膜を信号光透過・励起光反射のWDM膜で置き
換えることにより同様の機能を実現することが出来る。
この場合第2面は前面同一のWDM膜を使用できるので
膜構成が簡単になる、又漏洩信号光は各反射点で結晶外
に放出され、信号光の漏れ込みを低減できる。第4の実
施構成例の複屈折結晶板の構成を図7に示す。本構成は
第3の実施構成例の複屈折結晶板の構成において、第1
面の信号光が入射する部分のAR膜の代わりに信号光反
射・励起光透過のWDM膜をつけ、第2面にHR膜をつ
けたものである。エルビウムドープファイバで増幅され
た信号光は第1面のWDM膜で反射され結晶外の一定方
向に出射し、次段(アイソレータ等)に入力される。励
起光の伝搬については第3の実施構成例の場合と同じで
ある。
The same function can be realized by replacing the HR film for reflecting the excitation light on the first surface and the second surface with the WDM film for transmitting the signal light and reflecting the excitation light with the same structure.
In this case, since the second surface can use the same WDM film on the front surface, the film structure is simplified, and the leaked signal light is emitted out of the crystal at each reflection point, so that the leak of the signal light can be reduced. FIG. 7 shows the configuration of the birefringent crystal plate of the fourth embodiment. This configuration is different from the configuration of the birefringent crystal plate of the third embodiment in that
Instead of the AR film at the portion where the signal light is incident on the surface, a WDM film for signal light reflection / excitation light transmission is provided, and an HR film is provided on the second surface. The signal light amplified by the erbium-doped fiber is reflected by the WDM film on the first surface, exits in a certain direction outside the crystal, and is input to the next stage (such as an isolator). The propagation of the pump light is the same as in the case of the third embodiment.

【0017】同じ構造で第1面及び第2面の励起光反射
用のHR膜を信号光透過・励起光反射のWDM膜で置き
換えることにより同様の機能を実現することが出来る。
この場合第2面は前面同一のWDM膜を使用できるので
膜構成が簡単になる、又漏洩信号光は各反射点で結晶外
に放出され、信号光の漏れ込みを低減できる。第5の実
施構成例の複屈折結晶板の構成を図8に示す。本実施構
成例は第1面と第2面が平行でない複屈折結晶板を使用
し、第1面の光線が入射する部分にAR膜を付け、第2
面に信号光を透過し励起光を反射するWDM膜を付けた
ものである。
The same function can be realized by replacing the HR film for reflecting the excitation light on the first and second surfaces with the WDM film for transmitting and reflecting the signal light with the same structure.
In this case, since the second surface can use the same WDM film on the front surface, the film structure is simplified, and the leaked signal light is emitted out of the crystal at each reflection point, so that the leak of the signal light can be reduced. FIG. 8 shows the configuration of the birefringent crystal plate of the fifth embodiment. This embodiment uses a birefringent crystal plate in which the first surface and the second surface are not parallel to each other.
The surface is provided with a WDM film that transmits signal light and reflects excitation light.

【0018】第6の実施構成例の複屈折結晶板の構成を
図9に示す。本実施構成例は第1面と第2面が平行でな
い複屈折結晶板を使用し、第1面の光線が入射する部分
に信号光を反射し励起光を透過するWDM膜を付け、第
2面にHR膜を付けたものである。同じ構造で第2面の
HR膜を信号光透過・励起光反射のWDM膜に置き換え
ることにより同様の機能を実現することが出来る。
FIG. 9 shows the structure of a birefringent crystal plate according to a sixth embodiment. The present embodiment uses a birefringent crystal plate in which the first surface and the second surface are not parallel, and attaches a WDM film that reflects signal light and transmits excitation light to a portion of the first surface where light rays are incident. The HR film is provided on the surface. The same function can be realized by replacing the HR film on the second surface with a WDM film for transmitting signal light and reflecting excitation light with the same structure.

【0019】第7の実施構成例を図10に示す。本構成例
は、第1の複屈折結晶プリズムとして、図8の複屈折結
晶板の構成を用い、その信号出力側に、光信号の偏波面
を45°回転させる磁気光学結晶を配置し、更に第2の
複屈折結晶プリズムを配した構成である。第2の複屈折
結晶プリズムの結晶軸を第1のそれに対して45°回転
させておく。このことにより、アイソレータ内蔵の構成
となる。
FIG. 10 shows a seventh embodiment. This configuration example uses the configuration of the birefringent crystal plate of FIG. 8 as the first birefringent crystal prism, and arranges a magneto-optical crystal on the signal output side to rotate the polarization plane of the optical signal by 45 °. This is a configuration in which a second birefringent crystal prism is arranged. The crystal axis of the second birefringent crystal prism is rotated by 45 ° with respect to the first. This results in a configuration with a built-in isolator.

【0020】なお、第1の複屈折結晶プリズム及び第2
の複屈折結晶プリズムの構成は、図4、図5、図6の複
屈折結晶板の構成でも同様の効果を得ることが出来る。
また、以上の実施構成例のいずれについても、光信号出
力側に、狭帯域帯域濾波器、分岐器等の光学膜を用いた
光回路を挿入する構成も採ることができる。以上の説明
から明らかなように、請求項1ないし請求項8の発明に
より、
Note that the first birefringent crystal prism and the second
In the configuration of the birefringent crystal prism described above, the same effect can be obtained by the configuration of the birefringent crystal plate shown in FIGS .
Also, in any of the above embodiments, a configuration in which an optical circuit using an optical film such as a narrow-band filter or a splitter is inserted on the optical signal output side can be adopted. The above explanation
As apparent from FIG.
Than,

【発明が解決しようとする課題】に記載した「光学接着SUMMARY OF THE INVENTION
剤を使用しない構成を採り、光学接着剤がレーザー光にAdopts a configuration that does not use an adhesive, and the optical adhesive
よって損傷を受けることによるデバイスの劣化を回避すThis avoids device degradation due to damage
る」ことが可能となった。”Is possible.

【0021】[0021]

【発明の効果】本請求項1ないし8の構成を用いること
により、偏光分離膜をガラスプリズムの間に挟み込むた
めに必要であった光学接着剤が不要となり、その光学接
着剤がレーザ光によって損傷を受けることによるデバイ
スの劣化を回避することが可能となった。 したがって、
本実施例によれば、偏波合成して高出力化した励起光を
エルビウムドープファイバへ後方励起する光モジュール
の信頼性を損なうことなく、その光モジュールを小型・
低損失に構成する事ができ、光増幅器の小型化・高性能
化を図ることができる。
According to the first to eighth aspects of the present invention,
With this, the polarization separation film was sandwiched between the glass prisms.
Optical adhesive, which was necessary for
Debonding due to damage to the adhesive by laser light
It is possible to avoid deterioration of the quality. Therefore,
According to the present embodiment, an optical module for backward pumping of a pumping light having a high output by polarization synthesis into an erbium-doped fiber
The optical module can be reduced in size and size without impairing the reliability of
The optical amplifier can be configured with low loss, and downsizing and high performance of the optical amplifier can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理説明図である。FIG. 1 is a diagram illustrating the principle of the present invention.

【図2】光増幅器の全体の構成例である。FIG. 2 is an example of the overall configuration of an optical amplifier.

【図3】第1の実施構成例のモジュール構造である。FIG. 3 is a module structure of the first embodiment.

【図4】第1の実施構成例の複屈折結晶板の構成であ
る。
FIG. 4 shows a configuration of a birefringent crystal plate according to the first embodiment.

【図5】第2の実施構成例の複屈折結晶板の構成であ
る。
FIG. 5 shows a configuration of a birefringent crystal plate according to a second embodiment.

【図6】第3の実施構成例の複屈折結晶板の構成であ
る。
FIG. 6 shows a configuration of a birefringent crystal plate according to a third embodiment.

【図7】第4の実施構成例の複屈折結晶板の構成であ
る。
FIG. 7 shows a configuration of a birefringent crystal plate according to a fourth embodiment.

【図8】第5の実施構成例の複屈折結晶板の構成であ
る。
FIG. 8 shows a configuration of a birefringent crystal plate according to a fifth embodiment.

【図9】第6の実施構成例の複屈折結晶板の構成であ
る。
FIG. 9 shows a configuration of a birefringent crystal plate according to a sixth embodiment.

【図10】第7の実施構成例の複屈折結晶板の構成であ
る。
FIG. 10 shows a configuration of a birefringent crystal plate according to a seventh embodiment.

【図11】従来の光モジュールの構成例である。FIG. 11 is a configuration example of a conventional optical module.

【図12】従来の合分波プリズムの構成例である。 10 エルビウムドープファイバ 11、63、73 レンズAS 12、62、72 偏波面保存ファイバ 21 複屈折結晶 22 光学膜(オープン膜) 23 AR膜 40 合波プリズム 41 ガラスプリズム 42 光学膜(ショート膜) 43 合分波膜 44 偏光分離膜 45 光学接着剤 50 前段回路 61、71 励起レーザ 90 光モジュール構成 91 筐体FIG. 12 is a configuration example of a conventional multiplexing / demultiplexing prism. 10 Erbium-doped fiber 11, 63, 73 Lens AS 12, 62, 72 Polarization preserving fiber 21 Birefringent crystal 22 Optical film (open film) 23 AR film 40 Combining prism 41 Glass prism 42 Optical film (short film) 43 Demultiplexing film 44 Polarization separation film 45 Optical adhesive 50 Pre-stage circuit 61, 71 Excitation laser 90 Optical module configuration 91 Housing

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H04B 10/17 (72)発明者 福島 暢洋 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 (56)参考文献 特開 平3−252629(JP,A) 特開 平4−127130(JP,A) 特開 平5−341232(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01S 3/00 - 3/30 G02F 1/35 501 H04B 10/16 H04B 10/17 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification symbol FI H04B 10/17 (72) Inventor Nobuhiro Fukushima 1015 Ueodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fujitsu Limited (56) References JP JP-A-3-252629 (JP, A) JP-A-4-127130 (JP, A) JP-A-5-341232 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01S 3 / 00-3/30 G02F 1/35 501 H04B 10/16 H04B 10/17 JICST file (JOIS)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】コリメータビーム中に光学機能部品を挿入
し、希土類ドープ光ファイバ増幅器の後方励起光と信号
光の結合及び分岐をする光増幅用モジュールにおいて、 信号光入力光軸に対し一定の角度だけ傾けて配置した複
屈折結晶平板の、信号光からみての第1面に対向する第
2面に信号光は透過、励起光は反射する光学膜を付けて
光路を構成した事を特徴とする光モジュール構成。
1. An optical amplification module in which an optical functional component is inserted into a collimator beam to couple and branch a backward pumping light and a signal light of a rare-earth doped optical fiber amplifier. The birefringent crystal plate, which is disposed only at an angle, has an optical path formed by attaching an optical film that transmits signal light and reflects excitation light to a second surface facing the first surface as viewed from the signal light. Optical module configuration.
【請求項2】請求項1において、第1面の光線が入射す
る部分に信号光は反射、励起光は透過する波長分波膜を
付け、第2面に少なくとも励起光は反射する光学膜を付
けた事を特徴とする光モジュール構成。
2. An optical film according to claim 1, wherein a wavelength demultiplexing film for reflecting the signal light and transmitting the excitation light is provided on a portion of the first surface where the light beam enters, and an optical film for reflecting at least the excitation light is provided on the second surface. Optical module configuration characterized by being attached.
【請求項3】請求項1において、第1面を透過した光線
が第2面に入射する部分に波長分波膜を付け、励起光の
第1面への入射点と信号光の第1面への入射点の間の第
1面上及び該光学膜で反射した励起光が入射する第2面
上に少なくとも励起光を反射する光学膜を付けた事を特
徴とする光モジュール構成。
3. The apparatus according to claim 1, wherein a wavelength demultiplexing film is provided at a portion where the light beam transmitted through the first surface is incident on the second surface, and the point of incidence of the excitation light on the first surface and the first surface of the signal light are provided. An optical module configuration, wherein an optical film that reflects at least the excitation light is provided on the first surface between the points of incidence on the first surface and on the second surface on which the excitation light reflected by the optical film is incident.
【請求項4】請求項3において、第1面の信号光の入射
する部分に信号光は反射、励起光は透過する光学膜を付
けた事を特徴とする光モジュール構成。
4. An optical module according to claim 3, wherein an optical film for reflecting signal light and transmitting excitation light is provided on a portion of the first surface where the signal light is incident.
【請求項5】コリメータビーム中に光学機能部品を挿入
する構成を採り、希土類ドープ光ファイバ増幅器の後方
励起光と信号光の結合及び分岐に使用する光増幅用モジ
ュールにおいて、 信号光入力光軸に対し一定の角度だけ傾けて配置したテ
ーパ型複屈折結晶板の信号光からみての第1面に対向す
る第2面に信号光は透過、励起光は反射する光学膜を付
けて光路を構成した事を特徴とする光モジュール構成。
5. An optical amplification module used for coupling and branching backward pumping light and signal light of a rare earth-doped optical fiber amplifier, wherein an optical functional component is inserted into a collimator beam. On the other hand, the optical path is formed by attaching an optical film that transmits the signal light and reflects the excitation light to the second surface facing the first surface as viewed from the signal light of the tapered birefringent crystal plate that is arranged to be inclined at a certain angle. Optical module configuration characterized by the following.
【請求項6】請求項5において、第1面の光線が入射す
る部分に信号光は反射、励起光は透過する波長分波膜を
付け、第2面に少なくとも励起光は反射する光学膜を付
けた事を特徴とする光モジュール構成。
6. An optical film according to claim 5, wherein a wavelength demultiplexing film for reflecting the signal light and transmitting the excitation light is provided on a portion of the first surface where the light beam enters, and an optical film for reflecting at least the excitation light is provided on the second surface. Optical module configuration characterized by being attached.
【請求項7】請求項1、請求項3、請求項5において、
信号光の出射光軸上に、光線の偏波軸を45°回転させ
る磁気光学結晶を配置し、さらに請求項1、請求項3、
請求項5の複屈折結晶に対し45°結晶軸が回転してい
る複屈折結晶を置き、信号光に対しアイソレーション機
能を持たせた事を特徴とする光モジュール構成。
7. The method according to claim 1, 3 or 5,
4. A magneto-optical crystal for rotating a polarization axis of a light beam by 45 degrees on an emission optical axis of the signal light, further comprising:
6. An optical module configuration, wherein a birefringent crystal whose crystal axis is rotated by 45 ° with respect to the birefringent crystal according to claim 5 is provided to have an isolation function for signal light.
【請求項8】請求項1から請求項7までの各請求項にお
いて、信号光入射部分又は励起光入射部分で波長分波
膜、全反射膜のいずれをも付していない部分に無反射膜
を付けたことを特徴とする光モジュール構成。
8. In each of the first to seventh aspects, a non-reflection film is applied to a portion where neither the wavelength demultiplexing film nor the total reflection film is provided in the signal light incidence portion or the excitation light incidence portion. An optical module configuration characterized by adding.
JP33438992A 1992-12-15 1992-12-15 Optical module for optical amplifier Expired - Fee Related JP3282246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33438992A JP3282246B2 (en) 1992-12-15 1992-12-15 Optical module for optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33438992A JP3282246B2 (en) 1992-12-15 1992-12-15 Optical module for optical amplifier

Publications (2)

Publication Number Publication Date
JPH06181352A JPH06181352A (en) 1994-06-28
JP3282246B2 true JP3282246B2 (en) 2002-05-13

Family

ID=18276829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33438992A Expired - Fee Related JP3282246B2 (en) 1992-12-15 1992-12-15 Optical module for optical amplifier

Country Status (1)

Country Link
JP (1) JP3282246B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545783B1 (en) 1996-10-29 2003-04-08 Chorum Technologies Lp Optical wavelength add/drop multiplexer
US6847786B2 (en) 1996-10-29 2005-01-25 Ec-Optics Technology, Inc. Compact wavelength filter using optical birefringence and reflective elements
US6243200B1 (en) 2000-03-02 2001-06-05 Chorum Technologies, Inc. Optical wavelength router based on polarization interferometer
US6163393A (en) 1996-10-29 2000-12-19 Chorum Technologies Inc. Method and apparatus for wavelength multipexing/demultiplexing
US6115155A (en) 1996-10-29 2000-09-05 Chorum Technologies Inc. System for dealing with faults in an optical link
US6519060B1 (en) 1999-06-04 2003-02-11 Chorum Technologies Lp Synchronous optical network in frequency domain
US6515786B1 (en) 2001-08-03 2003-02-04 Chorum Technologies Lp Bandwidth variable wavelength router and method of operation

Also Published As

Publication number Publication date
JPH06181352A (en) 1994-06-28

Similar Documents

Publication Publication Date Title
US5572357A (en) Optical system for amplifying signal light
JP2665097B2 (en) Optical coupler
US6081367A (en) Optical filter module and optical amplifier using the same
US5355249A (en) Optical passive components
US5125053A (en) Optical coupler ultizing prisms
JPH10511476A (en) Integrable fiber optic coupler and device and system made thereby
JPH11258453A (en) Polarized light synthesizer, polarized light separating device and excited light output device
US6310717B1 (en) Optical amplifier and fiber module for optical amplification
JP3282246B2 (en) Optical module for optical amplifier
US5890816A (en) Polarization maintaining optical amplifier
JP3251330B2 (en) Optical module for optical amplifier
US6876491B2 (en) Highly integrated hybrid component for high power optical amplifier application
JPH05341233A (en) Optical module for optical amplifier
JP3453767B2 (en) Optical module for optical amplifier
JP2959287B2 (en) Optical coupler
JPH0764021A (en) Optical coupler and optical fiber amplifier
KR100261089B1 (en) Optical isolator and optical amplifier adopting the same
JP2790520B2 (en) Optical fiber amplifier
JPH07301763A (en) Optocoupler and optical fiber amplifier
JP2953189B2 (en) Optical coupler
US5625490A (en) Optical coupler
CN117631402A (en) Folded hybrid assembly for doped fiber amplifiers
JP2758243B2 (en) Optical fiber amplifier
JP2834528B2 (en) Optical fiber amplifier parts
JP2004031477A (en) Optical amplifier

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees