WO2002019370A1 - Plasma screen with enhanced contrast - Google Patents

Plasma screen with enhanced contrast Download PDF

Info

Publication number
WO2002019370A1
WO2002019370A1 PCT/EP2001/010107 EP0110107W WO0219370A1 WO 2002019370 A1 WO2002019370 A1 WO 2002019370A1 EP 0110107 W EP0110107 W EP 0110107W WO 0219370 A1 WO0219370 A1 WO 0219370A1
Authority
WO
WIPO (PCT)
Prior art keywords
black matrix
layer
front plate
plasma
reflecting layer
Prior art date
Application number
PCT/EP2001/010107
Other languages
French (fr)
Inventor
Hans-Helmut Bechtel
Wolfgang Busselt
Joachim Opitz
Original Assignee
Koninklijke Philips Electronics N.V.
Philips Corporate Intellectual Property Gmbh
Glaeser, Harald
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics N.V., Philips Corporate Intellectual Property Gmbh, Glaeser, Harald filed Critical Koninklijke Philips Electronics N.V.
Priority to EP01962992A priority Critical patent/EP1314177B1/en
Priority to DE60127142T priority patent/DE60127142T2/en
Priority to JP2002524178A priority patent/JP2004508664A/en
Priority to US10/111,883 priority patent/US6750610B2/en
Publication of WO2002019370A1 publication Critical patent/WO2002019370A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/44Optical arrangements or shielding arrangements, e.g. filters, black matrices, light reflecting means or electromagnetic shielding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/44Optical arrangements or shielding arrangements, e.g. filters or lenses
    • H01J2211/442Light reflecting means; Anti-reflection means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/44Optical arrangements or shielding arrangements, e.g. filters or lenses
    • H01J2211/444Means for improving contrast or colour purity, e.g. black matrix or light shielding means

Definitions

  • the invention relates to a plasma screen comprising a front plate which comprises a glass plate on which a dielectric layer and a protective layer are deposited, comprising a carrier plate coated with a fluorescent layer having a rib structure, which divides the space between front plate and carrier plate in plasma cells which are filled with a gas, and comprising one or more electrode arrays on the front plate and the carrier plate for generating silent electrical discharges in the plasma cells.
  • Plasma screens enable color pictures with high definition, large screen diagonals and have a compact structure.
  • a plasma screen comprises a gas-filled sealed glass cell with grid-like arranged electrodes. By applying an electric voltage, a gas discharge is caused which mainly generates light in the vacuum ultraviolet range. Fluorescence transforms this NUN light into visible light and the front plate of the glass cell emits this visible light to the viewer.
  • Plasma screens are subdivided into two classes: DC plasma screens and AC plasma screens. With the DC plasma screens the electrodes are in direct contact with the plasma. With AC plasma screens the electrodes are separated from the plasma by a dielectric layer.
  • two types of AC plasma screens are distinguished: a matrix arrangement and a co-planar arrangement of the electrode arrays.
  • the gas discharge is ignited and maintained at the point of intersection of two electrodes on the front plate and carrier plate.
  • the gas discharge between the electrodes on the front plate is maintained and at the point of intersection * ignited with an electrode, a so-called address electrode on the carrier plate.
  • the address electrode is located in this case beneath the fluorescent layer. Fluorescent substances which emit different colors are separated by barriers so that only light of the desired color is generated. For a sufficient picture contrast in daylight it is important for a plasma screen to have a high luminance and the least possible reflection of external light.
  • the parameter of this property is the Luminance Contrast Performance (LCP): luminance (L)
  • An enhancement of the contrast and thus an improvement of the LCP value can be achieved, for example, by depositing a so-called black matrix on the barriers or on the areas of the front plate opposite the barriers. Such a black matrix reduces the reflection of ambient light so that the picture contrast is enhanced when the surrounding light is increased.
  • JP 10-269951 discloses a plasma screen with a black matrix on the front plate which absorbs visible light incident from outside and at the same time reflects light incident from inside. This is achieved in that the side of the black matrix turned away from the viewer is coated with a layer which reflects visible light. This reflecting layer may then be provided directly on the black matrix or parallel therewith with a certain distance.
  • the black matrix and the reflecting layer are embedded in the dielectric layer, which consists of PbO-containing glass.
  • the dielectric layer which consists of PbO-containing glass.
  • a plasma screen comprising a front plate which comprises a glass plate on which a dielectric layer and a protective layer are deposited, comprising a carrier plate coated with a fluorescent layer having a rib structure, which divides the space between front plate and carrier plate in plasma cells which are filled with a gas, and comprising one or more electrode arrays on the front plate and the carrier plate for generating silent electrical discharges in the plasma cells and comprising a structured black matrix which is coated with a reflecting layer between dielectric layer and protective layer on the side turned away from the viewer.
  • the arrangement of the structured black matrix on which is coated with a reflecting layer is deposited on the side turned away from the viewer, provides that on the dielectric layer and not in the dielectric layer a reaction of the dielectric layer with the reflecting layer is avoided and reactions with the structured black matrix are minimized.
  • a further advantage of this arrangement is that the reflecting layer on the structured black matrix is closer to the discharge cell. This increases the intensity of the generated light because it is reflected directly and not first passes through the dielectric layer where it may be partially absorbed.
  • Fig. 1 shows the structure and the function principle of an individual plasma cell in an AC plasma screen.
  • a plasma cell of an AC plasma screen with a coplanar arrangement of the electrodes has a front plate 1 and a carrier plate 2.
  • the front plate 1 comprises a glass plate 3 and on the glass plate 3 is deposited a dielectric layer 4, preferably of glass containing PbO.
  • a dielectric layer 4 preferably of glass containing PbO.
  • On the glass plate 3 are deposited parallel, strip-like discharge electrodes 6, 7 which are coated with the dielectric layer 4.
  • the discharge electrodes 6, 7 are made of metal or ITO.
  • the reflecting layer 9 is located on the side of the structured black matrix 8 turned away from the viewer.
  • the carrier plate 2 is made of glass and parallel, strip-like address electrodes 12 of, for example, Ag, running perpendicularly to the discharge electrodes 6, 7 are deposited on the carrier plate 2. These address electrodes are coated with a fluorescent layer 11 which emits light in one of the basic colors red, green or blue.
  • the individual plasma cells are separated by a rib structure 14 with separating ribs of preferably dielectric material.
  • a structured black matrix 8 is deposited on a front plate 1 in strips so that it is always positioned between two pairs of discharge electrodes 6, 7.
  • the strips of the structured black matrix 8 may partially overlap the discharge electrodes 6, 7.
  • the reflecting layer 9 may be as wide as or less wide than the respective strips of the structured black matrix on which it is deposited.
  • the layer thickness of the structured black matrix 8 and of the reflecting layer 9 may be the same or different.
  • a gas preferably a rare gas mixture of, for example, He, Ne or Kr, which contains Xe as an UN light generating component.
  • a plasma is formed by which radiation 13 is generated in the UN range, more particularly in the NUN range in the plasma area 10. This radiation 13 excites the fluorescent layer 11 which fluorescent layer emits visible light in one of the three basic colors which light emerges through the front plate 1 and thus represents a lighting pixel on the screen.
  • the fluorescent layer 11 may be used, for example, as blue-emitting fluorescent substance BaMgAl ⁇ oO ⁇ 7 :Eu, as a green-emitting fluorescent substance, for example, Zn 2 SiO 4 :Mn and as a red-emitting fluorescent substance, for example (Y,Gd)BO 3 :Eu.
  • the structured black matrix 8 absorbs light incident from outside, whereas the reflecting layer 9 reflects visible light 15 incident from the inside.
  • the dielectric layer 4 over the transparent discharge electrodes 6, 7 is used, for example, in AC plasma screens, for avoiding a direct discharge between the discharge electrodes 6, 7 consisting of conductive material and thus the formation of a light arc when the discharge is ignited.
  • a front plate 1 having a structured black matrix 8 which is coated with a reflecting layer 9 on the side turned away from the viewer first the discharge electrodes 6, 7 are deposited by the vapor deposition technique and subsequent structuring on a glass plate 3 whose size corresponds to the desired screen size. Subsequently, the dielectric layer 4 is deposited.
  • a suitable black pigment is dispersed in water with a mixer or mill while dispersing agents are added.
  • a black pigment may be used, for example, soot, graphite, ferrites such as MnFe 2 O or spinels such as Cu(Cr,Mn) 2 O 4 , Cu(Fe,Cr) 2 O 4 , Cu(Fe,Mn) 2 O 4 , ⁇ i or Mn(Mn,Fe,Cr) 2 O 4 .
  • To the suspension may be added further additives such as, for example, organic binders, solvents or a defoaming agent.
  • low-melting glasses or oxides can be added to the suspension.
  • a suitable white pigment which does not absorb in the visible range of the light is dispersed in water with a mixer or mill while dispersing means are added.
  • a white pigment may be used, for example, TiO 2 , or Y 2 O 3 .
  • Further additives such as, for example, organic binders, solvents or a defoaming agent may be added to the suspension.
  • low-melting glasses or oxides may be added to the suspension.
  • Depositing and structuring the black matrix 8, which is coated with a reflecting layer 9 on the side turned away from the viewer, may be effected with different methods.
  • One possibility is to replace the obtained suspensions with a photosensitive addition, which may contain, for example, polyvinyl alcohol and sodium dichromate.
  • the suspension with the black pigment is first homogeneously deposited on the dielectric layer 4 by means of spraying, immersing or spin coating.
  • the "wet" film is dried, for example, by heating, infrared radiation or microwave radiation.
  • this step is repeated with the suspension with the white pigment.
  • the obtained black matrix 8 which is coated with a reflecting layer 9 on the side turned away from the viewer is exposed by a mask and the exposed surfaces are cured. By spraying with water the non-exposed areas are rinsed and removed.
  • a photosensitive polymer layer is then deposited on the dielectric layer 4 and, subsequently, exposed through a mask.
  • the exposed areas are cross-linked and the unexposed areas are deposited by a developing step.
  • the black pigment suspension on the remaining polymer sample is removed by means of spraying, immersing or spin coating and this suspension is then dried. After this, the suspension with the white pigment is similarly deposited on the black matrix and dried.
  • a reactive dissolution caused by, for example, a strong acid makes the cross-linked polymer soluble.
  • This is a high-pressure method in which only the areas of the dielectric layer 4 to be coated come into contact with the print drum.
  • a protective layer 5 of MgO is deposited on the reflecting layer 9 and in the spaces between the black matrix/reflecting layer units.
  • the whole front plate 1 is dried, post-processed for two hours at 400 °C and, together with a carrier plate 2 of glass which has a rib structure 14, conducting address electrodes 12 and a fluorescent layer 11, as well as a gas, used for forming an AC plasma screen with improved LCP value.
  • Embodiment 1 For manufacturing a front plate 1 with a structured black matrix 8 and a reflecting layer 9, first 62.5 g of graphite having a mean particle diameter smaller than 1 ⁇ m is mixed in a dispersing means solution of 31.25 g of a pigment-affine dispersing means in 530 g of water by mixing it well. The suspension obtained was mixed with 10 g of a 5% watery solution of a non-ionogenic defoaming agent and ground with glass spheres in a ball mill. In this way a stable, fine-particle suspension was obtained which was filtered by a wire gauze. The suspension was mixed with a 10% polyvinyl alcohol solution and, in addition, sodium dichromate was added to the suspension.
  • the suspension of the black pigment was deposited on the dielectric layer 4 of a front plate 1 by means of spin coating, which front plate 1 comprised a glass plate 3, a dielectric layer 4 and discharge electrodes 6, 7.
  • the dielectric layer 4 comprised PbO- containing glass and the two discharge electrodes 6, 7 were made of ITO.
  • the distance between the two discharge electrodes was 60 ⁇ m in a screen line, the distance between two screen lines was 500 ⁇ m.
  • the black matrix 8 with a reflecting layer 9 was radiated with UN light through a mask and thus the polymer on the radiated positions was cross-linked. Subsequently, by spraying with warm water the non-cross-linked areas of the black matrix 8 and of the reflecting layer 9 were rinsed.
  • the width of a row of the structured black matrix 8 was 400 ⁇ m.
  • the whole front plate 1 was dried and post-processed at 450 °C for two hours. Subsequently, the protective layer 5 of MgO was deposited.
  • the layer thickness of the dielectric layer 4 was 30 ⁇ m, the layer thickness of the black matrix 8 was 3 ⁇ m and the layer thickness of the reflecting layer 9 was 10 ⁇ m.
  • Embodiment 2 For manufacturing a front plate 1 with a structured black matrix 8 which is coated with a reflecting layer 9 on the side turned away from the viewer, first 62.5 g Cu(Cr,Mn) 2 O 4 having a mean particle diameter smaller than 1 ⁇ m, is mixed with the fivefold mixture of low-temperature melting glass. After water and an anorganic binding agent were added, the black matrix 8 was printed on the dielectric layer 4 of a front plate 1 by means of flexoprinting, which front plate 1 comprised a glass plate 3, a dielectric layer 4 and discharge electrodes 6, 7. The structured black matrix 8 was dried at 150 °C. Subsequently, the reflecting layer 9 was similarly printed by means of flexoprinting on the structured black matrix 8. For this purpose, 62.5 g of Y 2 O 3 having a mean particle diameter of 500 nm was mixed with the five-fold mixture of low-temperature melting glass and then water and a binding agent were added to this mixture.
  • the distance between the two discharge electrodes 6 and 7 in a screen line was 60 ⁇ m, the distance between two screen lines was 500 ⁇ m and the width of one row of the structured black matrix 8 which is coated with a reflecting layer 9 was 600 ⁇ m.
  • the whole front plate 1 was dried and post-processed at 450 °C for two hours.
  • the protective layer 5 of MgO was deposited.
  • the layer thickness of the dielectric layer 4 was 30 ⁇ m, the layer thickness of the structured black matrix 8 was 5 ⁇ m and the layer thickness of the reflecting layer 9 was 20 ⁇ m.
  • the obtained front plate 1 together with a carrier plate 2 of glass, which has a rib structure 14, address electrodes 12 of Ag and a fluorescent layer 11 and also with a xenon-containing gas mixture was used for manufacturing a plasma screen.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Abstract

The invention relates to a plasma screen having a structured black matrix (8) which is coated with a reflecting layer (9) on the side turned away from the viewer. Visible light incident from outside is absorbed by the black matrix (8) and light incident from inside is reflected by the reflecting layer (9). This enhances the LCP value of the whole plasma screen.

Description

Plasma screen with enhanced contrast
The invention relates to a plasma screen comprising a front plate which comprises a glass plate on which a dielectric layer and a protective layer are deposited, comprising a carrier plate coated with a fluorescent layer having a rib structure, which divides the space between front plate and carrier plate in plasma cells which are filled with a gas, and comprising one or more electrode arrays on the front plate and the carrier plate for generating silent electrical discharges in the plasma cells.
Plasma screens enable color pictures with high definition, large screen diagonals and have a compact structure. A plasma screen comprises a gas-filled sealed glass cell with grid-like arranged electrodes. By applying an electric voltage, a gas discharge is caused which mainly generates light in the vacuum ultraviolet range. Fluorescence transforms this NUN light into visible light and the front plate of the glass cell emits this visible light to the viewer.
Plasma screens are subdivided into two classes: DC plasma screens and AC plasma screens. With the DC plasma screens the electrodes are in direct contact with the plasma. With AC plasma screens the electrodes are separated from the plasma by a dielectric layer.
In principle, two types of AC plasma screens are distinguished: a matrix arrangement and a co-planar arrangement of the electrode arrays. In the matrix arrangement the gas discharge is ignited and maintained at the point of intersection of two electrodes on the front plate and carrier plate. In the coplanar arrangement the gas discharge between the electrodes on the front plate is maintained and at the point of intersection* ignited with an electrode, a so-called address electrode on the carrier plate. The address electrode is located in this case beneath the fluorescent layer. Fluorescent substances which emit different colors are separated by barriers so that only light of the desired color is generated. For a sufficient picture contrast in daylight it is important for a plasma screen to have a high luminance and the least possible reflection of external light. The parameter of this property is the Luminance Contrast Performance (LCP): luminance (L)
LCP =
-^reflection (R) An enhancement of the contrast and thus an improvement of the LCP value can be achieved, for example, by depositing a so-called black matrix on the barriers or on the areas of the front plate opposite the barriers. Such a black matrix reduces the reflection of ambient light so that the picture contrast is enhanced when the surrounding light is increased.
JP 10-269951 discloses a plasma screen with a black matrix on the front plate which absorbs visible light incident from outside and at the same time reflects light incident from inside. This is achieved in that the side of the black matrix turned away from the viewer is coated with a layer which reflects visible light. This reflecting layer may then be provided directly on the black matrix or parallel therewith with a certain distance.
In either case the black matrix and the reflecting layer are embedded in the dielectric layer, which consists of PbO-containing glass. Under the drastic circumstances during the manufacturing of plasma screens, more particularly high temperatures, this may lead to undesired reactions between the black matrix and/or the reflecting layer with the dielectric layer, which reactions result in discolorations and thus certainly in a reduction of the reflection properties of the reflecting layer.
Therefore, it is an object of the present invention to provide a plasma screen which produces a picture with improved contrast.
The object is achieved by a plasma screen comprising a front plate which comprises a glass plate on which a dielectric layer and a protective layer are deposited, comprising a carrier plate coated with a fluorescent layer having a rib structure, which divides the space between front plate and carrier plate in plasma cells which are filled with a gas, and comprising one or more electrode arrays on the front plate and the carrier plate for generating silent electrical discharges in the plasma cells and comprising a structured black matrix which is coated with a reflecting layer between dielectric layer and protective layer on the side turned away from the viewer. The arrangement of the structured black matrix on which is coated with a reflecting layer is deposited on the side turned away from the viewer, provides that on the dielectric layer and not in the dielectric layer a reaction of the dielectric layer with the reflecting layer is avoided and reactions with the structured black matrix are minimized. A further advantage of this arrangement is that the reflecting layer on the structured black matrix is closer to the discharge cell. This increases the intensity of the generated light because it is reflected directly and not first passes through the dielectric layer where it may be partially absorbed.
These and other aspects of the invention are apparent from and will be elucidated with reference to the embodiments described hereinafter.
In the drawing: Fig. 1 shows the structure and the function principle of an individual plasma cell in an AC plasma screen.
According to Fig. 1 a plasma cell of an AC plasma screen with a coplanar arrangement of the electrodes has a front plate 1 and a carrier plate 2. The front plate 1 comprises a glass plate 3 and on the glass plate 3 is deposited a dielectric layer 4, preferably of glass containing PbO. On the glass plate 3 are deposited parallel, strip-like discharge electrodes 6, 7 which are coated with the dielectric layer 4. The discharge electrodes 6, 7 are made of metal or ITO. On the dielectric layer 4 there is a structured black matrix 8 with a reflecting layer 9 which is embedded in the protective layer 5. The reflecting layer 9 is located on the side of the structured black matrix 8 turned away from the viewer.
The carrier plate 2 is made of glass and parallel, strip-like address electrodes 12 of, for example, Ag, running perpendicularly to the discharge electrodes 6, 7 are deposited on the carrier plate 2. These address electrodes are coated with a fluorescent layer 11 which emits light in one of the basic colors red, green or blue. The individual plasma cells are separated by a rib structure 14 with separating ribs of preferably dielectric material.
Usually, a structured black matrix 8 is deposited on a front plate 1 in strips so that it is always positioned between two pairs of discharge electrodes 6, 7. The strips of the structured black matrix 8 may partially overlap the discharge electrodes 6, 7. The reflecting layer 9 may be as wide as or less wide than the respective strips of the structured black matrix on which it is deposited. The layer thickness of the structured black matrix 8 and of the reflecting layer 9 may be the same or different.
In the plasma cell, that is to say, between the discharge electrodes 6, 7 of which a respective one alternately works as a cathode or anode, there is a gas, preferably a rare gas mixture of, for example, He, Ne or Kr, which contains Xe as an UN light generating component. After the surface discharge has been ignited, so that charges may flow over a discharge path between the discharge electrodes 6, 7 in the plasma area 10, depending on the composition of the gas, a plasma is formed by which radiation 13 is generated in the UN range, more particularly in the NUN range in the plasma area 10. This radiation 13 excites the fluorescent layer 11 which fluorescent layer emits visible light in one of the three basic colors which light emerges through the front plate 1 and thus represents a lighting pixel on the screen. In the fluorescent layer 11 may be used, for example, as blue-emitting fluorescent substance BaMgAlιoOι7:Eu, as a green-emitting fluorescent substance, for example, Zn2SiO4:Mn and as a red-emitting fluorescent substance, for example (Y,Gd)BO3 :Eu.
The structured black matrix 8 absorbs light incident from outside, whereas the reflecting layer 9 reflects visible light 15 incident from the inside.
The dielectric layer 4 over the transparent discharge electrodes 6, 7 is used, for example, in AC plasma screens, for avoiding a direct discharge between the discharge electrodes 6, 7 consisting of conductive material and thus the formation of a light arc when the discharge is ignited.
For manufacturing a front plate 1 having a structured black matrix 8 which is coated with a reflecting layer 9 on the side turned away from the viewer, first the discharge electrodes 6, 7 are deposited by the vapor deposition technique and subsequent structuring on a glass plate 3 whose size corresponds to the desired screen size. Subsequently, the dielectric layer 4 is deposited.
For manufacturing a structured black matrix 8, first a suitable black pigment is dispersed in water with a mixer or mill while dispersing agents are added. As a black pigment may be used, for example, soot, graphite, ferrites such as MnFe2O or spinels such as Cu(Cr,Mn)2O4, Cu(Fe,Cr)2O4, Cu(Fe,Mn)2O4, Νi or Mn(Mn,Fe,Cr)2O4. To the suspension may be added further additives such as, for example, organic binders, solvents or a defoaming agent. For stabilizing the structured black matrix 8, low-melting glasses or oxides can be added to the suspension.
For manufacturing a reflecting layer 9, first a suitable white pigment which does not absorb in the visible range of the light is dispersed in water with a mixer or mill while dispersing means are added. As a white pigment may be used, for example, TiO2, or Y2O3. Further additives such as, for example, organic binders, solvents or a defoaming agent may be added to the suspension. For stabilizing the reflecting layer 9, low-melting glasses or oxides may be added to the suspension. Depositing and structuring the black matrix 8, which is coated with a reflecting layer 9 on the side turned away from the viewer, may be effected with different methods.
One possibility is to replace the obtained suspensions with a photosensitive addition, which may contain, for example, polyvinyl alcohol and sodium dichromate.
Subsequently, the suspension with the black pigment is first homogeneously deposited on the dielectric layer 4 by means of spraying, immersing or spin coating. The "wet" film is dried, for example, by heating, infrared radiation or microwave radiation. Subsequently, this step is repeated with the suspension with the white pigment. The obtained black matrix 8 which is coated with a reflecting layer 9 on the side turned away from the viewer is exposed by a mask and the exposed surfaces are cured. By spraying with water the non-exposed areas are rinsed and removed.
Another possibility is represented by the so-called lift-off method. First a photosensitive polymer layer is then deposited on the dielectric layer 4 and, subsequently, exposed through a mask. The exposed areas are cross-linked and the unexposed areas are deposited by a developing step. The black pigment suspension on the remaining polymer sample is removed by means of spraying, immersing or spin coating and this suspension is then dried. After this, the suspension with the white pigment is similarly deposited on the black matrix and dried. A reactive dissolution caused by, for example, a strong acid, makes the cross-linked polymer soluble. By spraying a developer, the polymer together with parts of the covering black matrix 8 and the parts of the covering reflecting layer 9 is removed, whereas the black matrix 8 direct stuck on the dielectric layer 4 together with its covering reflecting layer 9 is not removed.
A further possibility of manufacturing a structured black matrix 8, which is coated with a reflecting layer 9 on the side turned away from the viewer, is the flexographic printing method. This is a high-pressure method in which only the areas of the dielectric layer 4 to be coated come into contact with the print drum.
Subsequently, a protective layer 5 of MgO is deposited on the reflecting layer 9 and in the spaces between the black matrix/reflecting layer units. The whole front plate 1 is dried, post-processed for two hours at 400 °C and, together with a carrier plate 2 of glass which has a rib structure 14, conducting address electrodes 12 and a fluorescent layer 11, as well as a gas, used for forming an AC plasma screen with improved LCP value.
In the following examples of embodiment of the invention will be explained.
Embodiment 1 For manufacturing a front plate 1 with a structured black matrix 8 and a reflecting layer 9, first 62.5 g of graphite having a mean particle diameter smaller than 1 μm is mixed in a dispersing means solution of 31.25 g of a pigment-affine dispersing means in 530 g of water by mixing it well. The suspension obtained was mixed with 10 g of a 5% watery solution of a non-ionogenic defoaming agent and ground with glass spheres in a ball mill. In this way a stable, fine-particle suspension was obtained which was filtered by a wire gauze. The suspension was mixed with a 10% polyvinyl alcohol solution and, in addition, sodium dichromate was added to the suspension. (The polyvinyl-alcohol-to-sodium dichromate proportion was 10:1). Furthermore, an analogous suspension of TiO2 with a mean particle diameter of 300 nm was made which was subsequently mixed with a 10% polyvinyl alcohol solution and with sodium-dichromate (polyvinyl alcohol/sodium dichromate = 10:1).
The suspension of the black pigment was deposited on the dielectric layer 4 of a front plate 1 by means of spin coating, which front plate 1 comprised a glass plate 3, a dielectric layer 4 and discharge electrodes 6, 7. The dielectric layer 4 comprised PbO- containing glass and the two discharge electrodes 6, 7 were made of ITO. The distance between the two discharge electrodes was 60 μm in a screen line, the distance between two screen lines was 500 μm. After drying the obtained black matrix which is to be covered with a reflecting layer on the side turned away from the viewer, the suspension of the white pigment was deposited on the black matrix 8 by means of spin coating.
The black matrix 8 with a reflecting layer 9 was radiated with UN light through a mask and thus the polymer on the radiated positions was cross-linked. Subsequently, by spraying with warm water the non-cross-linked areas of the black matrix 8 and of the reflecting layer 9 were rinsed. The width of a row of the structured black matrix 8 was 400 μm.
The whole front plate 1 was dried and post-processed at 450 °C for two hours. Subsequently, the protective layer 5 of MgO was deposited.
The layer thickness of the dielectric layer 4 was 30 μm, the layer thickness of the black matrix 8 was 3 μm and the layer thickness of the reflecting layer 9 was 10 μm. The obtained front plate 1 together with a carrier plate 2 of glass, which has a rib structure 14, address electrodes 12 of Ag and a fluorescent layer 11 and also with a xenon-containing gas mixture was used for manufacturing a plasma screen whose LCP value was increased by 15%.
Embodiment 2 For manufacturing a front plate 1 with a structured black matrix 8 which is coated with a reflecting layer 9 on the side turned away from the viewer, first 62.5 g Cu(Cr,Mn)2O4 having a mean particle diameter smaller than 1 μm, is mixed with the fivefold mixture of low-temperature melting glass. After water and an anorganic binding agent were added, the black matrix 8 was printed on the dielectric layer 4 of a front plate 1 by means of flexoprinting, which front plate 1 comprised a glass plate 3, a dielectric layer 4 and discharge electrodes 6, 7. The structured black matrix 8 was dried at 150 °C. Subsequently, the reflecting layer 9 was similarly printed by means of flexoprinting on the structured black matrix 8. For this purpose, 62.5 g of Y2O3 having a mean particle diameter of 500 nm was mixed with the five-fold mixture of low-temperature melting glass and then water and a binding agent were added to this mixture.
The distance between the two discharge electrodes 6 and 7 in a screen line was 60 μm, the distance between two screen lines was 500 μm and the width of one row of the structured black matrix 8 which is coated with a reflecting layer 9 was 600 μm. The whole front plate 1 was dried and post-processed at 450 °C for two hours.
Subsequently, the protective layer 5 of MgO was deposited.
The layer thickness of the dielectric layer 4 was 30 μm, the layer thickness of the structured black matrix 8 was 5 μm and the layer thickness of the reflecting layer 9 was 20 μm. The obtained front plate 1 , together with a carrier plate 2 of glass, which has a rib structure 14, address electrodes 12 of Ag and a fluorescent layer 11 and also with a xenon-containing gas mixture was used for manufacturing a plasma screen.

Claims

CLAIMS:
1. A plasma screen comprising a front plate (1) which comprises a glass plate (3) on which a dielectric layer (4) and a protective layer (5) are deposited, comprising a carrier plate (2) coated with a fluorescent layer (11) having a rib structure (14), which divides the space between front plate (1) and carrier plate (2) in plasma cells which are filled with a gas, and comprising one or more electrode arrays (6, 7, 12) on the front plate (1) and the carrier plate (2) for generating silent electrical discharges in the plasma cells and comprising a structured black matrix (8) which is coated with a reflecting layer (9) between dielectric layer (4) and protective layer (5) on the side turned away from the viewer.
PCT/EP2001/010107 2000-08-30 2001-08-29 Plasma screen with enhanced contrast WO2002019370A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01962992A EP1314177B1 (en) 2000-08-30 2001-08-29 Plasma screen with enhanced contrast
DE60127142T DE60127142T2 (en) 2000-08-30 2001-08-29 Plasma screen with improved contrast
JP2002524178A JP2004508664A (en) 2000-08-30 2001-08-29 Plasma screen with enhanced contrast
US10/111,883 US6750610B2 (en) 2000-08-30 2001-08-29 Plasma display with enhanced contrast and protective layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10042427.9 2000-08-30
DE10042427A DE10042427A1 (en) 2000-08-30 2000-08-30 Plasma screen with improved contrast

Publications (1)

Publication Number Publication Date
WO2002019370A1 true WO2002019370A1 (en) 2002-03-07

Family

ID=7654194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/010107 WO2002019370A1 (en) 2000-08-30 2001-08-29 Plasma screen with enhanced contrast

Country Status (8)

Country Link
US (1) US6750610B2 (en)
EP (1) EP1314177B1 (en)
JP (1) JP2004508664A (en)
KR (1) KR100760266B1 (en)
AT (1) ATE356423T1 (en)
DE (2) DE10042427A1 (en)
TW (1) TW550619B (en)
WO (1) WO2002019370A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1376643A2 (en) * 2002-06-28 2004-01-02 Pioneer Corporation Plasma display panel
US7605540B2 (en) 2004-04-27 2009-10-20 Hitachi, Ltd. Plasma display panels and plasma display devices which use the panel

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100669692B1 (en) * 2003-10-21 2007-01-16 삼성에스디아이 주식회사 Plasma display panel having high brightness and high contrast
KR100592255B1 (en) 2003-11-03 2006-06-21 삼성에스디아이 주식회사 Plasma Display Panel to Reduce Light Loss
US7523098B2 (en) * 2004-09-15 2009-04-21 International Business Machines Corporation Systems and methods for efficient data searching, storage and reduction
JP4908787B2 (en) * 2005-06-29 2012-04-04 株式会社日立製作所 Plasma display panel and image display system using the same.
KR100813037B1 (en) * 2005-07-01 2008-03-14 엘지전자 주식회사 plasma display panel and the Manufacturing method of plasma display panel
KR100696815B1 (en) * 2005-09-07 2007-03-19 삼성에스디아이 주식회사 Plasma display panel of Micro Discharge type
KR100749614B1 (en) * 2005-09-07 2007-08-14 삼성에스디아이 주식회사 Plasma display panel of Micro Discharge type
KR100768198B1 (en) * 2005-12-30 2007-10-18 삼성에스디아이 주식회사 Plasma display panel
JP2009081151A (en) * 2009-01-23 2009-04-16 Hitachi Ltd Plasma display panel, and plasma display device utilizing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814492A2 (en) * 1996-06-21 1997-12-29 Nec Corporation Color plasma display panel and method of manufacturing the same
JPH10269951A (en) * 1997-03-28 1998-10-09 Fujitsu Ltd Plasma display panel
JPH11297220A (en) * 1998-04-14 1999-10-29 Mitsubishi Electric Corp Ac surface discharge type plasma display panel and ac surface discharge type plasma display panel board

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3739163B2 (en) * 1997-03-31 2006-01-25 三菱電機株式会社 Plasma display panel
WO2000019479A1 (en) * 1998-09-29 2000-04-06 Fujitsu Limited Method of manufacturing plasma display and substrate structure
US6614183B2 (en) * 2000-02-29 2003-09-02 Pioneer Corporation Plasma display panel and method of manufacturing the same
US6674238B2 (en) * 2001-07-13 2004-01-06 Pioneer Corporation Plasma display panel
KR100421489B1 (en) * 2001-09-28 2004-03-11 엘지전자 주식회사 Plasma Display Panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814492A2 (en) * 1996-06-21 1997-12-29 Nec Corporation Color plasma display panel and method of manufacturing the same
JPH10269951A (en) * 1997-03-28 1998-10-09 Fujitsu Ltd Plasma display panel
JPH11297220A (en) * 1998-04-14 1999-10-29 Mitsubishi Electric Corp Ac surface discharge type plasma display panel and ac surface discharge type plasma display panel board

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 01 29 January 1999 (1999-01-29) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 01 31 January 2000 (2000-01-31) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1376643A2 (en) * 2002-06-28 2004-01-02 Pioneer Corporation Plasma display panel
EP1376643A3 (en) * 2002-06-28 2005-08-17 Pioneer Corporation Plasma display panel
US7605540B2 (en) 2004-04-27 2009-10-20 Hitachi, Ltd. Plasma display panels and plasma display devices which use the panel

Also Published As

Publication number Publication date
DE10042427A1 (en) 2002-03-14
EP1314177B1 (en) 2007-03-07
US6750610B2 (en) 2004-06-15
US20020167275A1 (en) 2002-11-14
DE60127142T2 (en) 2007-10-31
JP2004508664A (en) 2004-03-18
KR100760266B1 (en) 2007-09-20
EP1314177A1 (en) 2003-05-28
KR20020062929A (en) 2002-07-31
TW550619B (en) 2003-09-01
DE60127142D1 (en) 2007-04-19
ATE356423T1 (en) 2007-03-15

Similar Documents

Publication Publication Date Title
KR100338269B1 (en) Color plasma display panel and method of manufacturing the same
US6573654B2 (en) Plasma picture sceen with a terbium(III)-activated phosphor
EP1314177B1 (en) Plasma screen with enhanced contrast
EP1130619A2 (en) AC plasma display device
CN101145486B (en) Electrode-forming composition and plasma display panel manufactured using the same
EP1754722A1 (en) Black paste composite, upper plate of plasma display panel, and manufacturing method by using the same
JP2773393B2 (en) Color discharge display panel and method of manufacturing the same
EP1381071A1 (en) Plasma display device
EP1067574A1 (en) Plasma display panel
KR100858810B1 (en) Plasma display panel and method of manufacturing the same
US20030151362A1 (en) Composition for the production of a black matrix, process for producing a black matrix and plasma display panel comprising such a black matrix
JP2815012B2 (en) Method of manufacturing color discharge display panel
EP1085555A1 (en) Composition for black matrix, formation of black matrix and display device provided with black matrix
US20040245926A1 (en) Plasma color display screen with color filters
KR20090013234A (en) Process for producing plasma display panel
KR100863957B1 (en) Composition of electrode paste and plasma display panel using the same
KR100863973B1 (en) Composition of electrode paste and plasma display panel using the same
JPH0447640A (en) Color discharge display panel and its manufacture
WO2003085691A2 (en) Plasma picture screen with enhanced efficiency
KR20050052234A (en) Green phosphor for plasma display panel
KR20090035210A (en) Plasma display panel and method for fabricating thereof
JP2002075212A (en) Plasma display member and plasma display
KR20000047666A (en) A fluorescent substance film structure, a paste for forming the fluorescent substance film, and a plasma display panel using the fluorescent substance film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 1020027005287

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 524178

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10111883

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020027005287

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001962992

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001962992

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001962992

Country of ref document: EP