WO2002018828A1 - Solenoid valve - Google Patents

Solenoid valve Download PDF

Info

Publication number
WO2002018828A1
WO2002018828A1 PCT/JP2001/007282 JP0107282W WO0218828A1 WO 2002018828 A1 WO2002018828 A1 WO 2002018828A1 JP 0107282 W JP0107282 W JP 0107282W WO 0218828 A1 WO0218828 A1 WO 0218828A1
Authority
WO
WIPO (PCT)
Prior art keywords
plunger
solenoid valve
inner peripheral
sleeve
peripheral wall
Prior art date
Application number
PCT/JP2001/007282
Other languages
French (fr)
Japanese (ja)
Inventor
Ichiro Hirata
Norio Uemura
Yoshinari Kasagi
Original Assignee
Nok Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corporation filed Critical Nok Corporation
Priority to US10/362,372 priority Critical patent/US6971627B2/en
Priority to AU2001280160A priority patent/AU2001280160A1/en
Priority to DE10196576T priority patent/DE10196576B4/en
Priority to JP2002523515A priority patent/JP4210775B2/en
Publication of WO2002018828A1 publication Critical patent/WO2002018828A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • F16K31/061Sliding valves
    • F16K31/0613Sliding valves with cylindrical slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0668Sliding valves

Definitions

  • the present invention relates to a solenoid suitably used for various fluid pressure controls and the like.
  • FIG. 8 is a schematic configuration sectional view of a solenoid valve according to the related art.
  • the solenoid valve 200 includes a solenoid part 200 A, a valve part 200 B, and a cap.
  • the knob portion 200B is a spool valve, and since the opening area of the valve changes in accordance with the stroke of the spool, the amount of fluid inflow and the amount of fluid can be controlled by controlling the stroke amount of the spool with a solenoid. It is configured to control the amount of outflow.
  • the solenoid part 200 A is generally driven by a coil 203, a plunger 201 magnetically attracted to the center post 202 by energizing the coil 203, and a drive of the plunger 201. And a rod 204 connected to the plunger 201 for transmitting the pressure to the valve portion 200B (specifically, the spool).
  • the plunger 201 is configured to be located away from the center post 202 in a normal state, that is, in a state in which the coil 203 is not energized.
  • the plunger 201 is configured to be biased in a direction away from the center post 202 by a biasing member such as a spring.
  • the plunger is configured to be separated from the center post 202 via the spool by providing a spring that biases the spool in the direction of the solenoid portion 20OA.
  • the magnetic force can be controlled by the magnitude of the current flowing through the coil 203, whereby the amount of movement of the plunger 201 is controlled by controlling the balance with the biasing member such as a spring.
  • the stroke amount can be controlled, thereby controlling the flow rate of the fluid, and performing various fluid pressure controls such as hydraulic control.
  • the basic performance required of a solenoid valve generally includes coaxiality. This is because if the coaxiality is insufficient, the plunger rod tilts with respect to the axis and repeats reciprocating motion, resulting in uneven wear in which only a part is worn, and the characteristics in the forward and return paths are reduced. This is because it leads to deterioration of control characteristics such as changing hysteresis and bias of magnetic flux toward the plunger.
  • This coaxiality is determined by the dimensioning of each member, but as the number of members involved in axis alignment increases, the error propagation increases due to the dimensional tolerance of each member. You.
  • the members involved in centering directly or indirectly contact the plunger 201, the center-to-bottom 202 and the opening 204. It is a supporting member.
  • the plate 207, the lower plate 209, and the case 209 are nine members.
  • the members involved in the centering are five members: a plunger, a rod, a center post, a sleeve, and a rod bearing. It is possible to improve the degree.
  • the plunger performs smoothly and stably in a reciprocating motion, so that it has excellent slidability with respect to the inner circumference of the sleeve serving as the bearing, and has both ends in the axial direction.
  • Pressure at It is required to provide a flow path (oil path etc.) on the outer peripheral surface of the plunger in order to eliminate the force load and enhance the slidability.
  • FIG. Fig. 7 is a schematic cross-sectional view of a plunger according to the prior art.
  • (A) is a cross-sectional view cut through the shaft center
  • (B) is a cross-sectional view cut along the axis ⁇ vertical direction (AA in (A)).
  • (It is a cross section and corresponds to the whole part.)
  • the plunger 301 As shown in the figure, the plunger 301 according to the prior art has a substantially cylindrical shape, is provided with a large-diameter portion 301 a that slides on the inner periphery of the sleeve, and has a groove 310 serving as a flow path. 1b is formed by cutting.
  • the inner circumference of the sleeve and the plunger 301 slide while contacting curved surfaces having substantially the same diameter, and the liquid (oil) force S flows through the flow path, so that no pressure load is applied. Since the liquid slides while obtaining lubricity, the reciprocating operation can be suitably performed.
  • the plunger slides against the sleeve while making contact at one point in the cross section perpendicular to the axis.
  • the sliding wear was poor.
  • the gap near the sliding part is very narrow, and when foreign matter (impurity) enters, the foreign matter remains trapped. There was a problem that slidability deteriorated.
  • An object of the present invention is to provide a solenoid pulp having improved controllability and improved slidability of a plunger. Disclosure of the invention
  • a solenoid pulp comprising: a plunger that reciprocates by a magnetic force generated by an exciting unit; and a sleeve that slidably supports the outer periphery of the plunger to perform a bearing.
  • the sleeve has an inner peripheral wall surface for carrying a bearing, and has a circular cross-sectional shape of the inner peripheral wall surface perpendicular to the shaft,
  • a plurality of convex portions extending in the axial direction, having a curved shape having a radius of curvature smaller than a distance from the axis to the outer peripheral surface, and sliding on the inner peripheral wall surface;
  • the curved surface has a radius of curvature smaller than the distance from the axis to the outer peripheral surface, that is, the inner peripheral surface of the sleep also slides on a small curved surface, sliding with only one convex portion is difficult. As it becomes unstable, it slides on two adjacent convex surfaces. In other words, sliding at two points instead of one point in the section perpendicular to the axis as in the past become. As a result, sliding wear is reduced in the case of two-point contact as compared with the case of one-point contact because the load is dispersed.
  • the gap near the sliding portion can be made relatively large, and fluid can easily enter, so that lubricity is improved, and Even if foreign matter enters, it can easily escape to the flow path.
  • the convex portions are provided in the same orientation with respect to the circumferential direction, and are provided at odd positions.
  • the convex portion and the groove have a positional relationship symmetrical with respect to the axis, and in a state where two adjacent convex portions move, the axial center of the intermediate position (groove) between the two convex portions is shifted.
  • the outer peripheral surface on the opposite side across the is most distant from the inner periphery of the sleeve, but since this portion is a convex portion, rattling can be suppressed.
  • the cross section perpendicular to the axial direction of the flow path formed by the groove and the inner peripheral wall has a structure in which impurities contained in the fluid flowing into the solenoid pulp body are removed outside the solenoid valve body before flowing.
  • the size and shape may be set to include the size and shape of the eye of the filter.
  • the size of impurities contained in the fluid flowing into the solenoid valve body by the filter is limited to a size that can pass through the eyes of the filter. Therefore, no impurities are trapped in the flow path.
  • the convex portion and the groove provided on the outer periphery of the plunger are obtained by forging, and
  • a concave portion recessed inside On the end face of the plunger on the side opposite to the pressing direction at the time of forging molding, a concave portion recessed inside is provided, The bottom surface of the concave portion may be a pressed portion which is pressed against the ejector pin to remove the plunger body from the forging die after forging.
  • a solenoid valve comprising: a plunger that reciprocates by a magnetic force of an exciting unit; and a sleeve that slidably supports the outer periphery of the plunger to perform a bearing.
  • the sleeve has an inner peripheral wall surface for carrying a bearing, and has a circular cross-sectional shape of the inner peripheral wall surface perpendicular to the shaft,
  • the outer peripheral shape of a cross section perpendicular to the axial direction, which is a sliding portion with respect to the inner peripheral wall surface of the plunger, is a polygon.
  • polygon means that each corner is R This shall include cases where the shape is used.
  • the plunger having a polygonal cross-sectional outer shape is slidably supported by the inner peripheral wall surface of the sleep having a circular cross-sectional shape. Therefore, the plunger slides at only one corner, so that the plunger slides at two adjacent corners.
  • sliding occurs at two points instead of one point in a cross section perpendicular to the axis.
  • the sliding wear is reduced in the two-point contact as compared with the one-point contact because the load is dispersed.
  • sliding at the corners makes it possible to make the gap near the sliding part relatively large, facilitates fluid entry, and improves lubricity, and even when foreign matter enters. However, the air will escape into the flow path.
  • the outer peripheral shape may be an odd polygon.
  • the outer peripheral shape is preferably a substantially regular octagon.
  • the angular portion and the flat portion of the outer periphery of the plunger have a symmetrical positional relationship with respect to the axis center, and rattling can be reduced.
  • the cross-sectional area of the flow path formed by the outer flat surface portion of the plunger and the inner peripheral wall surface of the sleeve can be set to an appropriate size in consideration of the balance between the supply of the magnetic path and the discharge of foreign matter. .
  • the chuck be a three-point chuck.
  • the outer peripheral shape is a multiple polygon of 3 (regular polygon). It is necessary that the regular octagon satisfies the condition suitably.
  • the cross section perpendicular to the axial direction of the flow path formed by the flat surface portion of the outer periphery of the plunger and the inner peripheral wall surface of the sleeve is provided with impurities contained in the fluid flowing into the solenoid valve main body before the flow. It is recommended that the filter be set to a shape including the size of the mesh of the filter to be removed outside the body of the solenoid valve.
  • the size of the impurities contained in the fluid flowing into the solenoid valve body by the filter is limited to such a size as to pass through the eyes of the filter, and the cross section of the flow path is the size of the eyes of the filter. Since the dimensions include the shape, the impurities do not get caught in the flow path.
  • FIG. 1 is a schematic configuration sectional view of a solenoid valve according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration sectional view of a plunger according to the first embodiment of the present invention
  • Fig. 3 is a schematic diagram showing the sliding part between the plunger and the inner periphery of the sleeve.
  • FIG. 4 is a schematic diagram showing an example of the shape of a groove provided in the plunger
  • FIG. 5 is a schematic configuration sectional view of the plunger according to the second embodiment of the present invention.
  • FIG. 6 is a schematic view showing a part of the manufacturing process of the plunger according to the embodiment of the present invention.
  • FIG. 7 is a schematic configuration cross-sectional view of a plunger according to the related art
  • FIG. 8 is a schematic configuration cross-sectional view of a solenoid valve according to the related art.
  • FIG. 1 is a schematic configuration of a solenoid valve according to an embodiment of the present invention.
  • FIG. FIG. 2 is a schematic cross-sectional view of a plunger according to a first embodiment of the present invention ((A) is a cross-sectional view cut through an axis, and (B) is a cross-sectional view cut in a direction perpendicular to an axis). (This is the BB cross section in (A) and corresponds to the whole part.)
  • Fig. 3 is a schematic diagram showing the sliding portion between the plunger and the inner periphery of the sleeve.
  • Fig. 5 is a schematic view showing a part of a manufacturing process of a plunger according to an embodiment of the present invention.
  • the solenoid pulp 100 is composed of a solenoid 100 A, a valve 100 B, and a force.
  • valve portion 100B is a spoon lever, and a spool 15 is provided inside the valve sleeve 16 so as to be able to reciprocate, and according to the stroke of the spoon lever 15. Since the opening area of the valve formed in the vanoleb sleeve 16 changes, the amount of fluid inflow and outflow can be controlled by controlling the stroke amount of the spool 15 by the solenoid.
  • the solenoid section 100 A generally includes a coil 3, a plunger 1 magnetically attracted to the center boss 2 by conduction to the coil 3, a sleeve 4 serving as a bearing for the plunger 1, and a plunger 1. And a rod 7 connected to the plunger 1 for transmitting the drive of the motor to the spool 15.
  • It includes a packing 10 for preventing the magnetic field, an upper plate 11 for forming a magnetic path, and a bracket plate 12 for forming a magnetic path and fixing the solenoid valve body at a predetermined position.
  • the spring 14 includes a spring 14 that urges the coil 3 away from the connector 2, and a connector 17 that includes a terminal 17 a for energizing the coil 3.
  • the coil 3 bobbin 6 is molded into an Assy (assemb1y) by a mold, and constitutes a mono-red coil sub-Asy5.
  • the plunger 1 is configured to be located away from the center boss 2 in a normal state, that is, in a state where the coil 3 is not energized, that is, in the present embodiment, as described above, By biasing the spool 15 in the direction of the solenoid 100 A through the E-ring 18 by the spring 14, the plunger 1 is separated from the center post 2.
  • a magnetic path (a magnetic path formed by the case 9, the upper plate 11, the plunger 1, the center post 2, and the bracket plate 12) is formed. Is magnetically attracted to the center post 2.
  • the magnetic force can be controlled by the magnitude of the current flowing through the coil 3, whereby the amount of movement of the plunger 1 is controlled by controlling the amount of movement of the plunger 1 by controlling the balance with the biasing force of the spring 14.
  • the stroke amount of 5 can be controlled, whereby the flow rate of the fluid can be controlled, and various fluid pressure controls such as hydraulic control can be performed.
  • the members involved in the centering are There are five members: the lancer 1, rod 7, center post 2, sleeve 4, and rod bearing 13.Therefore, the burden of dimensional control is relatively small, and the coaxiality can be improved. .
  • the plunger 1 has a substantially cylindrical shape, and the rod 7 is fitted into the hole 1 b on the inner peripheral side, and is slidably supported by the sleep 4 on the outer peripheral side as described above, so that it becomes a sliding portion.
  • a large diameter portion 1a is provided.
  • the large-diameter portion 1a is provided with a plurality of convex portions 1d and a plurality of groove portions 1e alternately, and has a cross-sectional shape like a petal. It has become.
  • the convex portion 1 d extends in the axial direction, and the distance from the tip (the farthest position from the axis) of each convex portion 1 d to the axis is set to be equal.
  • the convex portion 1d has a smooth curved shape, and the radius of curvature of the outer peripheral curved surface in a cross section perpendicular to the axis is set to be smaller than the distance from the tip of the convex portion 1d to the axis. I have. As a result, the distance from the tip of the convex portion 1d to the axis becomes smaller by the clearance than the inner peripheral diameter of the sleeve 4, so that the radius of curvature of the outer peripheral curved surface is naturally larger than the inner peripheral diameter of the sleeve 4. Become smaller.
  • the distance from the tip of the convex portion 1d to the axis is 5 mm, and the radius of curvature near the tip of the convex portion 1d is 3 mm.
  • the radius of the inner circumference of the sleeve 4 is 5 mm and is equal to the clearance. The diameter becomes larger.
  • the tip of the convex portion 1 d is disposed so as to be slidable on the inner peripheral surface of the sleeve 4.
  • a groove 1 e extending in the axial direction is provided between each adjacent convex surface 1 d, and a flow path is formed between the groove 1 e and the inner peripheral surface of the sleep 4.
  • the plunger 1 when the plunger 1 slides on the inner periphery of the sleeve 4, the sliding is performed smoothly as described in the above-described related art. Since the clearance is provided in the plunger, the plunger 1 does not reciprocate while keeping the axis completely coaxial with the sleeve 4.
  • the radius of curvature (outer diameter) of the sliding surface is not substantially the same as the radius of curvature (inner diameter) of the inner peripheral surface of the sleeve.
  • the load is dispersed and the load on the sliding portion is reduced as compared with the case where one point contact is made in a cross section perpendicular to the axis as in the prior art, so that the sliding wear property is improved.
  • the gap near the sliding portion is larger than that of the conventional technology. Even if) has entered, foreign matter can easily escape into the flow path, so that a decrease in slidability due to the foreign matter can be prevented.
  • the above-mentioned convex portion 1d is preferably oriented in the circumferential direction, and is preferably provided in an odd number.
  • the plunger 1 slides while contacting the two points by the adjacent convex portions 1 d, so that the outer peripheral surface on the opposite side with respect to the axis of the groove portion 1 e located at an intermediate position between the two points. Since this is the most distant from the inner circumference of the sleeve, making this portion a convex portion Id has the effect of minimizing the gap and suppressing rattling.
  • the groove 1e is a curved surface that smoothly connects the convex surface 1d and the curved surface, and has a radius of curvature R2 equivalent to the radius of curvature R1 of the convex surface 1d.
  • a triangular groove 1 h as shown in (B) may be used.
  • the cross section perpendicular to the axis of the flow path formed between the groove 1 e and the inner periphery of the sleep 4 should be dimensioned so that impurities contained in the fluid flowing through the flow path will not be caught and caught. desirable.
  • the fluid flows into the solenoid pulp 100.
  • the impurities contained in the fluid are smaller than those of the filter.
  • the dimension of the cross section perpendicular to the axis of the flow channel to include the size of the mesh of the filter, the inside of the channel formed by the groove 1 e and the inner periphery of the sleeve 4 is formed. It can be prevented that impurities are caught and clogged.
  • the control of the pulp timing can be performed by shifting the cam shaft in the rotation direction and changing the phase, and a technique of performing this using a solenoid valve is known as a known technique.
  • a function such as a force S for performing hydraulic control by a solenoid valve and an arrangement space are required.
  • a solenoid valve is installed on the path of the engine oil flow path to use the engine oil.
  • the above-described solenoid valve according to the embodiment of the present invention can be suitably used as such a linear control solenoid valve for valve timing control (VTC).
  • VTC valve timing control
  • the plurality of convex portions 1 d and the plurality of grooves 1 e of the large-diameter portion 1 a of the plunger 1 are clamped by forging dies 50 and 51, and are pressed in the direction of arrow P in the figure to form a forging. It can be made by molding.
  • the forging die 51 is shown by a dotted line in the figure for explanation of the subsequent manufacturing process.
  • 1f in the figure is the cutting part that is cut by the cutting process after forging.
  • the forging die 51 is removed to remove the plunger 1 body from the mold. It is necessary to press (hit) the opposite end face in the direction of arrow Q with the ejector pin 52.
  • a concave portion 1c recessed inward from the tip surface is provided on the end surface opposite to the arrow P direction, and the bottom surface of the concave portion 1c is pressed by the ejector pin 52. It is a pressed part.
  • burrs when pressed by the ejector pins 52, burrs generally occur.
  • the bottom surface of the concave portion 1c is the pressed portion, (P) in FIG.
  • the burrs B 1 and B 2 occur only in the concave portion, and do not affect the entire length of the plunger 1.
  • a solenoid valve according to a second embodiment of the present invention will be described with reference to FIG.
  • the solenoid valve according to the second embodiment of the present invention only the configuration of the plunger is different from that of the first embodiment, so only the plunger will be described in detail, and the description of the other components will be omitted. .
  • FIG. 5 is a schematic configuration sectional view of a plunger according to a second embodiment of the present invention cut in a direction perpendicular to an axis.
  • the cross-sectional view taken along the axis of the plunger according to the present embodiment is the same as that of the above embodiment. This is the same as FIG. 2 (A) shown in the embodiment. Therefore, FIG. 5 is a view corresponding to the BB section in FIG. 2 (A).
  • the large-diameter portion 1′a serving as a sliding portion with respect to the sleeve 4 of the plunger according to the present embodiment has a polygonal cross section perpendicular to the axial direction as shown in FIG. In the example, it is approximately a regular octagon.
  • the distance from the axis to the corner 1′d is set to be smaller than the inner diameter of the sleeve 4 by the clearance. Therefore, the corner 1 ′ d is disposed so as to be slidable on the inner peripheral surface of the sleeve 4.
  • the plunger By configuring the plunger as described above, it is very unstable to slide at only one point in the cross section perpendicular to the axis, as in the case of the first embodiment. In reality, this is not the case, and the adjacent corners 1'd slide with two points of contact.
  • the load is dispersed and the load on the sliding portion is reduced as compared with the case where one point contact is made in a cross section perpendicular to the axis as in the prior art, so that the sliding wear property is improved.
  • the corner 1 ′ d slides on the inner peripheral wall surface of the sleeve 4, the corner 1 ′ d is formed between the flat surface 1 ′ e and the inner peripheral surface of the sleeve 4. Since the fluid easily flows into the sliding part from the flow path, the lubricating property is more excellent than that of the conventional technology, so that the sliding property is improved.
  • the corner 1′d slides on the inner peripheral wall surface of the sleeve 4. Therefore, the gap near the sliding part is larger than that of the conventional technology. Therefore, even if foreign matter enters the vicinity of the sliding part, the foreign matter easily escapes to the flow path. Can be prevented.
  • the cross section is a substantially regular polygon and an odd-numbered polygon (in the illustrated example, a substantially regular octagon), so that the corner 1 ′ d and the plane 1 ′ e However, they are arranged in a symmetrical positional relationship with respect to the axis.
  • the plunger 1 slides while being in two contact points by the adjacent corners 1′d, so that the plunger 1 is on the opposite side of the axis of the plane part 1′e which is an intermediate position between these two points. Since the outer peripheral surface of the sleeve is most distant from the inner periphery of the sleeve, making this part a corner 1'd has the effect of minimizing the gap and suppressing rattling.
  • the corners 1 and d have an R shape, and if the R is too small, the wear will increase. Therefore, it is necessary to set the R to an appropriate value.
  • the flow path formed between the peripheral surface and the peripheral surface will be described in detail.
  • the lubrication of the fluid (oil) is sufficient, and the larger the cross-sectional area of the flow path, the better, so that the oil does not stick. It is also desirable that the dimensions be such that impurities contained in the fluid flowing through the flow channel are not caught.
  • the dimension and shape of the flow path are determined mainly by the regular square and the R dimension of the corner.
  • the plunger can be formed by cutting.
  • cutting it is necessary to perform chucking in order to fix the plunger.
  • the flat part 1'e is used to prevent the corner 1'd serving as the sliding part from being scratched.
  • the chuck is a three-point chuck (third in the direction of 120 °) Force S Since it is suitable for machining with high accuracy, to fix the flat part 1'e with a three-point chuck,
  • the outer shape of a simple section must be a multiple of 3 (regular polygon).
  • the outer peripheral shape of the cross section perpendicular to the axis of the plunger is The shape should be a regular polygon and an odd-numbered polygon from the viewpoint of preventing rattling, the size of the cross-sectional area of the flow path should be appropriate from the viewpoint of magnetic flux supply and lubricity, and the shape should be regular from the viewpoint of cutting. It is necessary to consider that it is a square and a multiple of three.
  • the setting range of R at corner 1'd is necessarily determined by the above conditions, but if R is too small, wear will increase. It is desirable to set to.
  • the plunger slides on the inner peripheral surface of the sleeve at two points in a cross section perpendicular to the axis.
  • the load on the sliding portion is reduced, the sliding wear property is improved, and the control characteristics are improved.
  • the inner circumference of the sleeve also slides on a small curved surface, the gap near the sliding portion can be made relatively large, and fluid can easily enter, so that lubricity is improved, and Even when foreign matter enters, the foreign matter can escape into the flow path, so that the sliding property is improved and the control characteristics are improved.
  • the convex portions are provided in the same orientation with respect to the circumferential direction and are provided in an odd number, rattling can be suppressed.
  • the cross-section perpendicular to the axial direction of the flow path formed by the groove and the inner peripheral wall is set to the size and shape including the size and shape of the filter that removes impurities contained in the fluid, impurities will There is no pinching, and stable slidability can be maintained.
  • a concave recess is provided inside, and this bottom face is pressed against the ejector pin to remove the plunger body from the forging die after forging. If the pressing portion is used, even if a paris is generated by the ezieta pin, the overall length of the plunger is not affected, and stable control can be performed without requiring a cutting process.
  • the plunger slides against the inner peripheral surface of the sleeve at two points in the cross section perpendicular to the axis.
  • the load on the moving part is reduced, sliding wear is improved, and control characteristics are improved.
  • sliding at the corners makes it possible to make the gap near the sliding part relatively large, facilitates fluid entry, improves lubricity, and ensures that even if foreign matter enters, In addition, since foreign substances can escape into the flow path, the slidability is improved, and the control characteristics are improved.
  • the corners and the plane part have a symmetrical positional relationship with respect to the axis center, which can reduce rattling and set the cross-sectional area of the flow passage to an appropriate size. And a three-point check can be performed when cutting.
  • the cross-section perpendicular to the axial direction of the flow path formed by the flat surface portion of the outer periphery of the plunger and the inner peripheral wall surface of the sleeve is set to the size and shape including the size and shape of the filter for removing impurities contained in the fluid, No impurities are trapped in the flow path, and stable slidability can be maintained.

Abstract

A solenoid valve used suitably for various types of hydraulic pressure controls, capable of increasing the slidability of a plunger, and providing excellent control characteristics, wherein the plunger (1) is formed generally in a cylindrical shape, a large diameter part (1a) forming a sliding portion is provided on the outer peripheral side of the plunger to slidably support the plunger on a sleeve, a plurality of projected surface parts (1d) and a plurality of groove parts (1e) are alternately provided in the large diameter part (1a), and the cross section thereof is formed in the shape of a petal.

Description

明細 : ソレノィ ドパノレブ 技術分野 Description : Solenoy Dopano Lev Technical Field
この発明は、各種流体圧力制御等に好適に用いられるソレノィ に関する。 背景技術  The present invention relates to a solenoid suitably used for various fluid pressure controls and the like. Background art
従来、 この種のソレノィ ドバルブとしては、 たとえば、 図 8に 示すものがある。図 8は従来技術に係るソレノィ ドバルブの概略 構成断面図である。  Conventionally, as this type of solenoid valve, for example, there is one shown in FIG. FIG. 8 is a schematic configuration sectional view of a solenoid valve according to the related art.
ソレノィ ドバルブ 2 0 0は、ソレノィ ド部 2 0 0 Aとバルブ部 2 0 0 Bとカゝら構成される。  The solenoid valve 200 includes a solenoid part 200 A, a valve part 200 B, and a cap.
ここで、 ノ ルブ部 2 0 0 Bはスプールバルブであり、 スプール のス トロークに応じて弁の開口面積が変化するため、ソレノィ ド によりスプールのス トローク量を制御することによって流体の 流入量や流出量を制御できる構成となっている。  Here, the knob portion 200B is a spool valve, and since the opening area of the valve changes in accordance with the stroke of the spool, the amount of fluid inflow and the amount of fluid can be controlled by controlling the stroke amount of the spool with a solenoid. It is configured to control the amount of outflow.
ソレノィ ド部 2 0 0 Aは、 概略、 コイル 2 0 3 と、 コイル 2 0 3への通電によってセンターポス ト 2 0 2に磁気的に吸引され るプランジャ 2 0 1 と、プランジャ 2 0 1の駆動をバルブ部 2 0 0 B (具体的にはスプール) に伝達するためにプランジャ 2 0 1 に連結されたロッ ド 2 0 4と、 を備えている。  The solenoid part 200 A is generally driven by a coil 203, a plunger 201 magnetically attracted to the center post 202 by energizing the coil 203, and a drive of the plunger 201. And a rod 204 connected to the plunger 201 for transmitting the pressure to the valve portion 200B (specifically, the spool).
また、往復動を行うプランジャ 2 0 1ゃロッ ド 2 0 4の同軸度 を高めるための第 1軸受 2 0 5及ぴ第 2軸受 2 1 0 と、プランジ ャ 2 0 1等を支持するスリープ 2 0 6 と、磁路を形成するァッパ 一プレート 2 0 7及びロアプレート 2 0 9と、ケース 2 0 8等を 備えている。 Also, a first bearing 205 and a second bearing 210 for improving the coaxiality of the reciprocating plunger 201 and the rod 204 and a sleep 2 for supporting the plunger 201 etc. 0 6 and the upper part that forms the magnetic path It is provided with a plate 207, a lower plate 209, a case 208, and the like.
ここで、 プランジャ 2 0 1は、 通常状態、 すなわちコイル 2 0 3に通電していない状態では、センターポス ト 2 0 2から離間す る方向に位置する構成となっている。  Here, the plunger 201 is configured to be located away from the center post 202 in a normal state, that is, in a state in which the coil 203 is not energized.
なお、 一般的にはスプリング等の付勢部材によって、 プランジ ャ 2 0 1 をセンターポス ト 2 0 2から離間する方向に付勢する よ うに構成されている。 図示の例では、 スプールをソレノィ ド部 2 0 O A方向に付勢するスプリングを設けることによって、プラ ンジャはスプールを介してセンターポス ト 2 0 2から離間され るように構成されている。  Generally, the plunger 201 is configured to be biased in a direction away from the center post 202 by a biasing member such as a spring. In the illustrated example, the plunger is configured to be separated from the center post 202 via the spool by providing a spring that biases the spool in the direction of the solenoid portion 20OA.
そして、 コイル 2 0 3に通電することによって、磁路が形成さ れ、プランジャ 2 0 1はセンターポス ト 2 0 2に磁気的に吸引さ れる。  By energizing the coil 203, a magnetic path is formed, and the plunger 201 is magnetically attracted to the center post 202.
従って、 コイル 2 0 3に通電する電流の大きさによって、磁気 力を制御することができ、これによりスプリング等の付勢部材と のバランス制御によってプランジャ 2 0 1 の移動量を制御する ことでスプールのス トローク量を制御でき、これにより流体の流 量を制御し、油圧制御などの各種流体圧力制御等を行うことがで きるというものである。  Therefore, the magnetic force can be controlled by the magnitude of the current flowing through the coil 203, whereby the amount of movement of the plunger 201 is controlled by controlling the balance with the biasing member such as a spring. Thus, the stroke amount can be controlled, thereby controlling the flow rate of the fluid, and performing various fluid pressure controls such as hydraulic control.
ここで、一般的にソレノィ ドバルブに要求される基本的性能に 同軸度が挙げられる。 これは、 同軸度が不十分な場合には、 軸心 に対してプランジャゃロッ ドが傾いて往復動を繰り返すことに よって、一部のみが磨耗する偏磨耗が生じて往路と復路で特性が 変わってしまう ヒステリシスや、プランジャに向かう磁束の偏り 等、 制御特性の低下につながるからである。 この同軸度を決定するのは、各部材の寸法出しによって決めら れるものであるが、 軸出しにかかわる部材が多ければ多いほど、 各部材の寸法公差によって誤差伝播が拡がってしま うことにな る。 Here, the basic performance required of a solenoid valve generally includes coaxiality. This is because if the coaxiality is insufficient, the plunger rod tilts with respect to the axis and repeats reciprocating motion, resulting in uneven wear in which only a part is worn, and the characteristics in the forward and return paths are reduced. This is because it leads to deterioration of control characteristics such as changing hysteresis and bias of magnetic flux toward the plunger. This coaxiality is determined by the dimensioning of each member, but as the number of members involved in axis alignment increases, the error propagation increases due to the dimensional tolerance of each member. You.
上述した図 8に示すソレノィ ドバルブ 2 0 0の場合において、 軸出しにかかわる部材は、 プランジャ 2 0 1 , センタ一ボス ト 2 0 2および口ッ ド 2 0 4に直接当接する、あるいは間接的に支持 する部材であり、 プランジャ 2 0 1, センターポス ト 2 0 2およ びロッ ド 2 0 4自体と、 第 1軸受 2 0 5 , 第 2軸受 2 1 0 , スリ ーブ 2 0 6 , アッパープレート 2 0 7 , ロアプレート 2 0 9及び ケース 2 0 8の 9個の部材である。  In the case of the solenoid valve 200 shown in FIG. 8 described above, the members involved in centering directly or indirectly contact the plunger 201, the center-to-bottom 202 and the opening 204. It is a supporting member. The plunger 201, the center post 202, and the rod 204 themselves, the first bearing 205, the second bearing 210, the sleeve 206, and the upper The plate 207, the lower plate 209, and the case 209 are nine members.
従って、 9個の部材の寸法管理を厳しく しなければならないた め、 同軸度を精度良くするための負担が大きかった。  Therefore, the dimensional control of the nine members had to be strictly controlled, which placed a heavy burden on improving the coaxiality with high accuracy.
そこで、 この負担を軽くするために、 プランジャを支持するス リープで、 プランジャ自体の軸受を行うことによって、 軸出しに かかわる部材の数を減らす構造が開発されている。  Therefore, in order to reduce this burden, a structure has been developed to reduce the number of members involved in centering by using the sleeper that supports the plunger and bearing the plunger itself.
詳細は省略するが、 この場合、 軸出しにかかわる部材は、 ブラ ンジャ, ロッ ド, センターポス ト, スリーブ及びロッ ド軸受の 5 個の部材となるため、 寸法管理の負担が減り、 かつ、 同軸度の向 上を図ることが可能となる。  Although details are omitted, in this case, the members involved in the centering are five members: a plunger, a rod, a center post, a sleeve, and a rod bearing. It is possible to improve the degree.
また、 図 8に示した構成のように、 プランジャの両端側でそれ ぞれ軸受構造を必要とするようなことはなく なるため、軸方向を 小型化することもできるという利点もある。  Also, unlike the configuration shown in FIG. 8, there is no need for a bearing structure at each end of the plunger, so that there is an advantage that the axial direction can be reduced.
このように構成されるソレノィ ドパルプの場合には、プランジ ャがスムーズに安定した往復動作を行うために、軸受となるス リ 一ブの内周に対する摺動性に優れることと、軸方向両端側での圧 力負荷をなく し、かつ摺動性を高めるためにプランジャの外周面 に流路 (油路等) を設けることが要求される。 In the case of a solenoid pulp configured in this way, the plunger performs smoothly and stably in a reciprocating motion, so that it has excellent slidability with respect to the inner circumference of the sleeve serving as the bearing, and has both ends in the axial direction. Pressure at It is required to provide a flow path (oil path etc.) on the outer peripheral surface of the plunger in order to eliminate the force load and enhance the slidability.
この点について図 7を参照して説明する。図 7は従来技術に係 るプランジャの概略構成断面図 ( (A ) は軸心を通るように切断 した断面図, (B ) は軸^垂直方向に切断した断面図 ( (A ) に おける A A断面であって、 全体部分に相当する) である。  This will be described with reference to FIG. Fig. 7 is a schematic cross-sectional view of a plunger according to the prior art. ((A) is a cross-sectional view cut through the shaft center, (B) is a cross-sectional view cut along the axis ^ vertical direction (AA in (A)). (It is a cross section and corresponds to the whole part.)
図に示すように、従来技術に係るプランジャ 3 0 1は略円筒形 状であり、スリーブ内周に摺動する大径部 3 0 1 aを備えており 、 また、 流路となる溝 3 0 1 bを切削により形成した構成となつ ている。  As shown in the figure, the plunger 301 according to the prior art has a substantially cylindrical shape, is provided with a large-diameter portion 301 a that slides on the inner periphery of the sleeve, and has a groove 310 serving as a flow path. 1b is formed by cutting.
これにより、スリーブ内周とプランジャ 3 0 1はほぼ同径の曲 面同士が接触しながら摺動し、 かつ、 流路によって液体 (油) 力 S 流れ込むため、 圧力負荷を受けることなく、 また、 液体によって 潤滑性を得ながら摺動するため、好適に往復動作を行うことがで きる。  As a result, the inner circumference of the sleeve and the plunger 301 slide while contacting curved surfaces having substantially the same diameter, and the liquid (oil) force S flows through the flow path, so that no pressure load is applied. Since the liquid slides while obtaining lubricity, the reciprocating operation can be suitably performed.
ただし、 実際には、 摺動を円滑に行わせるために、 スリーブ内 周径とプランジャ外周径との間には所定のク リアランスを設け る必要があるために、プランジャがスリーブに対して完全に同軸 を保ちながら往復動を行う というようなことはなく、 図 3 ( B ) に示すように、プランジャの大径部 3 0 1 a とスリーブの内周 3 0 2が軸に垂直な断面において 1点で接触しながら摺動するこ とになる。  However, in practice, it is necessary to provide a predetermined clearance between the inner diameter of the sleeve and the outer diameter of the plunger in order to smoothly slide, so that the plunger is completely removed from the sleeve. There is no reciprocating motion while maintaining coaxiality. As shown in Fig. 3 (B), the large-diameter portion 301a of the plunger and the inner circumference 302 of the sleeve are 1 in the cross section perpendicular to the axis. It will slide while touching at points.
しかしながら、 上記のような従来技術の場合には、 下記のよう な問題が生じていた。  However, in the case of the conventional technology as described above, the following problems have occurred.
上述のよ うに軸に垂直な断面において 1点で接触しながらプ ランジャがスリーブに対して摺動するため、摺動時の荷重の負担 が大きくなりやすく、 摺動磨耗性が悪いという欠点があった。 また、プランジャ外径とス リーブ内周径とがほぼ同じ寸法であ るため、 摺動部付近の隙間は非常に狭く、 異物 (不純物) が侵入 した場合に、 異物が挟まったままとなり、 更に摺動性が悪くなる という問題があった。 As described above, the plunger slides against the sleeve while making contact at one point in the cross section perpendicular to the axis. However, there was a disadvantage that the sliding wear was poor. Also, since the outer diameter of the plunger and the inner diameter of the sleeve are almost the same, the gap near the sliding part is very narrow, and when foreign matter (impurity) enters, the foreign matter remains trapped. There was a problem that slidability deteriorated.
本発明の目的とするところは、プランジャの摺動性の向上を図 り、 制御特性に優れたソレノィ ドパルプを提供することにある。 発明の開示  An object of the present invention is to provide a solenoid pulp having improved controllability and improved slidability of a plunger. Disclosure of the invention
上記目的を達成するために本発明にあっては、  In order to achieve the above object, in the present invention,
励磁手段による磁気力によって往復動を行うプランジャと、 該プランジャ外周を摺動自在に支持して軸受を行うス リーブ と、 を備えたソレノイ ドパルプにおいて、  A solenoid pulp comprising: a plunger that reciprocates by a magnetic force generated by an exciting unit; and a sleeve that slidably supports the outer periphery of the plunger to perform a bearing.
前記スリーブは、 軸受を行うための内周壁面を備え、 かつ、 軸 に垂直な内周壁面の断面形状を円形とすると共に、  The sleeve has an inner peripheral wall surface for carrying a bearing, and has a circular cross-sectional shape of the inner peripheral wall surface perpendicular to the shaft,
前記プランジャの外周には、  On the outer periphery of the plunger,
軸心から外周表面までの距離よ り も小さな曲率半径を有する 曲面形状であって、 かつ、前記内周壁面に摺動する軸方向に伸び る複数の凸面部と、  A plurality of convex portions extending in the axial direction, having a curved shape having a radius of curvature smaller than a distance from the axis to the outer peripheral surface, and sliding on the inner peripheral wall surface;
それぞれ隣接する凸面部間に設けられる、軸方向に伸びる流路 を形成する複数の溝部と、 を備えることを特徴とする。  And a plurality of grooves, each of which is provided between adjacent convex surfaces and forms a channel extending in the axial direction.
従って、軸心から外周表面までの距離より も小さな曲率半径で ある曲面、 つまり、 ス リープ内周の径ょりも小さな曲面で摺動す るため、 一つの凸面部だけで摺動するのは不安定になるので、 隣 接する二つの凸面部で摺動することになる。 すなわち、 従来のよ うに軸に垂直な断面において 1点ではなく 2点で摺動すること になる。 これにより、 1点接触に比べて 2点接触の方が、 荷重が 分散されるため摺動摩耗が軽減される。 Therefore, since the curved surface has a radius of curvature smaller than the distance from the axis to the outer peripheral surface, that is, the inner peripheral surface of the sleep also slides on a small curved surface, sliding with only one convex portion is difficult. As it becomes unstable, it slides on two adjacent convex surfaces. In other words, sliding at two points instead of one point in the section perpendicular to the axis as in the past become. As a result, sliding wear is reduced in the case of two-point contact as compared with the case of one-point contact because the load is dispersed.
また、スリーブ內周の径ょり も小さな曲面で摺動することから 、 摺動部付近の隙間を比較的大きくすることが可能となり、 流体 の進入が容易となるため潤滑性が良くなり、 かつ、 異物が侵入し た場合でも、 流路に逃がしやすくなる。  In addition, since the circumference of the sleeve also slides on a small curved surface, the gap near the sliding portion can be made relatively large, and fluid can easily enter, so that lubricity is improved, and Even if foreign matter enters, it can easily escape to the flow path.
前記凸面部は周方向に対して等配向に設けられると共に、奇数 箇所設けられるとよい。  It is preferable that the convex portions are provided in the same orientation with respect to the circumferential direction, and are provided at odd positions.
従って、 凸面部と溝部とは、 軸心を挟んで対称する位置関係と なるため、 隣接する 2つの凸面部が搢動する状態では、 この 2つ の凸面部の中間位置 (溝部) の軸心を挟んで反対側の外周面が最 もスリーブ内周から離れることになるが、この部分が凸面部とな るため、 がたつきを抑えることができる。  Therefore, the convex portion and the groove have a positional relationship symmetrical with respect to the axis, and in a state where two adjacent convex portions move, the axial center of the intermediate position (groove) between the two convex portions is shifted. The outer peripheral surface on the opposite side across the is most distant from the inner periphery of the sleeve, but since this portion is a convex portion, rattling can be suppressed.
前記溝部と内周壁面によって形成される流路の軸方向に垂直 な断面は、ソレノィ ドパルプ本体内に流入する流体に含まれる不 純物を、流入する前にソレノィ ドバルブ本体の外部で除去するフ ィルタの目の寸法形状を含む寸法形状に設定されるとよい。  The cross section perpendicular to the axial direction of the flow path formed by the groove and the inner peripheral wall has a structure in which impurities contained in the fluid flowing into the solenoid pulp body are removed outside the solenoid valve body before flowing. The size and shape may be set to include the size and shape of the eye of the filter.
従って、フィルタによってソレノィ ドバルブ本体に流入する流 体に含まれる不純物の大きさは、フィルタの目を通る程度の大き さに制限されることになるが、流路の断面はフィルタの目の寸法 形状を含む寸法形状であるので、流路内に不純物が挟まってしま うことはない。  Therefore, the size of impurities contained in the fluid flowing into the solenoid valve body by the filter is limited to a size that can pass through the eyes of the filter. Therefore, no impurities are trapped in the flow path.
前記ブランジャの外周に設けられる凸面部及び溝部は鍛造成 型によって得られると共に、  The convex portion and the groove provided on the outer periphery of the plunger are obtained by forging, and
前記プランジャの鍛造成型時の加圧方向とは反対側の端面に、 内部に凹んだ凹部を設けて、 該凹部の底面を、鍛造成型後に鍛造金型からプランジャ本体が 取り出されるためにェジェクタピンに押圧される被押圧部とす るとよい。 On the end face of the plunger on the side opposite to the pressing direction at the time of forging molding, a concave portion recessed inside is provided, The bottom surface of the concave portion may be a pressed portion which is pressed against the ejector pin to remove the plunger body from the forging die after forging.
従って、ェジェクタピンによってプランジャ本体が鍛造金型か ら押し出される際に、 ェジヱクタピンで押圧される部分 (被押圧 部) にバリが生じても、 凹部の底面においてバリが生ずるだけで あるので、 プランジャ全長に影響が出るということはない。  Therefore, when the ejector pin pushes the plunger body out of the forging die, even if burrs are generated at the portion pressed by the ejector pin (pressed portion), only burrs are generated at the bottom surface of the concave portion. There is no impact.
また、 本発明のソレノィ ドバルブにおいては、  In the solenoid valve of the present invention,
励磁手段による磁気力によって往復動を行うプランジャと、 該プランジャ外周を摺動自在に支持して軸受を行うスリーブ と、 を備えたソレノイ ドバルブにおいて、  A solenoid valve comprising: a plunger that reciprocates by a magnetic force of an exciting unit; and a sleeve that slidably supports the outer periphery of the plunger to perform a bearing.
前記スリーブは、 軸受を行うための内周壁面を備え、 かつ、 軸 に垂直な内周壁面の断面形状を円形とすると共に、  The sleeve has an inner peripheral wall surface for carrying a bearing, and has a circular cross-sectional shape of the inner peripheral wall surface perpendicular to the shaft,
前記プランジャの前記内周壁面に対する摺動部分であって、軸 方向に垂直な断面の外周形状を、多角形とすることを特徴とする ここで、 「多角形」 とは、 各角部を R形状とする場合を含むも のとする。  The outer peripheral shape of a cross section perpendicular to the axial direction, which is a sliding portion with respect to the inner peripheral wall surface of the plunger, is a polygon. Here, “polygon” means that each corner is R This shall include cases where the shape is used.
本構成により、 断面形状が円形である、 スリープの内周壁面に よって、断面の外周形状が多角形状であるプランジャを摺動自在 に支持することになる。 従って、 プランジャは、 一つの角部だけ で摺動するのは不安定になるので、隣接する二つの角部.で摺動す ることになる。 すなわち、従来のように軸に垂直な断面において 1点ではなく 2点で摺動することになる。 これにより、 1点接触 に比べて 2点接触の方が、荷重が分散されるため摺動摩耗が軽減 される。 また、 角部で摺動することから、 摺動部付近の隙間を比較的大 きくすることが可能となり、流体の進入が容易となるため潤滑性 が良く なり、 かつ、 異物が侵入した場合でも、 流路に逃がしゃす くなる。 According to this configuration, the plunger having a polygonal cross-sectional outer shape is slidably supported by the inner peripheral wall surface of the sleep having a circular cross-sectional shape. Therefore, the plunger slides at only one corner, so that the plunger slides at two adjacent corners. In other words, as in the conventional case, sliding occurs at two points instead of one point in a cross section perpendicular to the axis. As a result, the sliding wear is reduced in the two-point contact as compared with the one-point contact because the load is dispersed. In addition, sliding at the corners makes it possible to make the gap near the sliding part relatively large, facilitates fluid entry, and improves lubricity, and even when foreign matter enters. However, the air will escape into the flow path.
前記外周形状を奇数角形とするとよい。 特に、 前記外周形状を 略正 9角形とするとよい。  The outer peripheral shape may be an odd polygon. In particular, the outer peripheral shape is preferably a substantially regular octagon.
従って、 プランジャの外周の角部と平面部分とは、 軸中心に対 して対称な位置関係となり、 がたつきを低減できる。 また、 ブラ ンジャの外周の平面部分とス リーブの内周壁面によって形成さ れる流路の断面積を、磁路供給と異物の排出とのバランスを考慮 した場合に、 適当な大きさに設定できる。 プランジャの切削加工 をする場合に、プランジャの平面部分をチヤックすることになる が、 チャックは 3点チャックとするのが好適であり、 この場合、 前記外周形状を 3の倍数角形 (正多角形) とする必要性があり、 正 9角形は条件を好適に満たす。  Therefore, the angular portion and the flat portion of the outer periphery of the plunger have a symmetrical positional relationship with respect to the axis center, and rattling can be reduced. In addition, the cross-sectional area of the flow path formed by the outer flat surface portion of the plunger and the inner peripheral wall surface of the sleeve can be set to an appropriate size in consideration of the balance between the supply of the magnetic path and the discharge of foreign matter. . When cutting the plunger, the flat part of the plunger is checked. It is preferable that the chuck be a three-point chuck. In this case, the outer peripheral shape is a multiple polygon of 3 (regular polygon). It is necessary that the regular octagon satisfies the condition suitably.
前記ブランジャの外周の平面部分と前記ス リーブの内周壁面 によって形成される流路の軸方向に垂直な断面は、ソレノィ ドバ ルブ本体内に流入する流体に含まれる不純物を、流入する前にソ レノィ ドバルブ本体の外部で除去するフィルタの目の寸法形状 を含む寸法形状に設定されるとよい。  The cross section perpendicular to the axial direction of the flow path formed by the flat surface portion of the outer periphery of the plunger and the inner peripheral wall surface of the sleeve is provided with impurities contained in the fluid flowing into the solenoid valve main body before the flow. It is recommended that the filter be set to a shape including the size of the mesh of the filter to be removed outside the body of the solenoid valve.
従って、フィルタによってソレノィ ドバルブ本体に流入する流 体に含まれる不純物の大きさは、フィルタの目を通る程度の大き さに制限されることになる力 S、流路の断面はフィルタの目の寸法 形状を含む寸法形状であるので、流路内に不純物が挟まってしま う ことはない。 図面の簡単な説明 Therefore, the size of the impurities contained in the fluid flowing into the solenoid valve body by the filter is limited to such a size as to pass through the eyes of the filter, and the cross section of the flow path is the size of the eyes of the filter. Since the dimensions include the shape, the impurities do not get caught in the flow path. BRIEF DESCRIPTION OF THE FIGURES
図 1は、本発明の実施の形態に係るソレノィ ドバルブの概略構 成断面図であり、  FIG. 1 is a schematic configuration sectional view of a solenoid valve according to an embodiment of the present invention.
図 2は、本発明の第 1の実施の形態に係るプランジャの概略構 成断面図であり、  FIG. 2 is a schematic configuration sectional view of a plunger according to the first embodiment of the present invention,
図 3は、プランジャとスリーブ内周との摺動部の様子を示す模 式図であり、  Fig. 3 is a schematic diagram showing the sliding part between the plunger and the inner periphery of the sleeve.
図 4は、 プランジャに設ける溝の形状例を示す模式図であり、 図 5は、本発明の第 2の実施の形態に係るプランジャの概略構 成断面図であり、  FIG. 4 is a schematic diagram showing an example of the shape of a groove provided in the plunger, and FIG. 5 is a schematic configuration sectional view of the plunger according to the second embodiment of the present invention.
図 6は、本発明の実施の形態に係るプランジャの製造工程の一 部を示す模式図であり、  FIG. 6 is a schematic view showing a part of the manufacturing process of the plunger according to the embodiment of the present invention.
図 7は、 従来技術に係るプランジャの概略構成断面図であり、 図 8は、従来技術に係るソレノィ ドバルブの概略構成断面図で める。 発明を実施するための最良の形態  FIG. 7 is a schematic configuration cross-sectional view of a plunger according to the related art, and FIG. 8 is a schematic configuration cross-sectional view of a solenoid valve according to the related art. BEST MODE FOR CARRYING OUT THE INVENTION
以下に図面を参照して、この発明の好適な実施の形態を例示的 に詳しく説明する。 ただし、 この実施の形態に記載されている構 成部品の寸法、 材質、 形状、 その相対配置などは、 特に特定的な 記載がない限りは、この発明の範囲をそれらのみに限定する趣旨 のものではない。  Hereinafter, preferred embodiments of the present invention will be illustratively described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are intended to limit the scope of the present invention only to them unless otherwise specified. is not.
(第 1の実施の形態)  (First Embodiment)
図 1〜図 5を参照して、本発明の第 1の実施の形態に係るソレ ノィ ドバルブについて説明する。  With reference to FIGS. 1 to 5, a solenoid valve according to a first embodiment of the present invention will be described.
図 1は本発明の実施の形態に係るソレノイ ドバルブの概略構 成断面図である。図 2は本発明の第 1 の実施の形態に係るプラン ジャの概略構成断面図 ( (A ) は軸心を通るよ うに切断した断面 図, (B ) は軸に垂直方向に切断した断面図 ( (A ) における B B断面であって、 全体部分に相当する) である。 図 3はプランジ ャとスリ一ブ内周との摺動部の様子を示す模式図である。図 4は プランジャに設ける溝の形状例である。図 5は本発明の実施の形 態に係るプランジャの製造工程の一部を示す模式図である。 FIG. 1 is a schematic configuration of a solenoid valve according to an embodiment of the present invention. FIG. FIG. 2 is a schematic cross-sectional view of a plunger according to a first embodiment of the present invention ((A) is a cross-sectional view cut through an axis, and (B) is a cross-sectional view cut in a direction perpendicular to an axis). (This is the BB cross section in (A) and corresponds to the whole part.) Fig. 3 is a schematic diagram showing the sliding portion between the plunger and the inner periphery of the sleeve. Fig. 5 is a schematic view showing a part of a manufacturing process of a plunger according to an embodiment of the present invention.
ソレノィ ドパルプ 1 0 0は、ソレノィ ド部 1 0 0 Aとバルブ部 1 0 0 Bと力 ら構成される。  The solenoid pulp 100 is composed of a solenoid 100 A, a valve 100 B, and a force.
ここで、 バルブ部 1 0 0 Bはスプーノレバノレブであり、 バルブス リ ーブ 1 6の内部にスプール 1 5が往復動自在に備えられてお り、このスプーノレ 1 5 のス トロークに応じてバノレブス リーブ 1 6 に形成した弁の開口面積が変化するため、ソレノィ ドによりスプ ール 1 5 のス トローク量を制御することによって流体の流入量 や流出量を制御できる構成となっている。  Here, the valve portion 100B is a spoon lever, and a spool 15 is provided inside the valve sleeve 16 so as to be able to reciprocate, and according to the stroke of the spoon lever 15. Since the opening area of the valve formed in the vanoleb sleeve 16 changes, the amount of fluid inflow and outflow can be controlled by controlling the stroke amount of the spool 15 by the solenoid.
ソ レノィ ド部 1 0 0 Aは、 概略、 コイル 3 と、 コィノレ 3への通 電によってセンターボス ト 2に磁気的に吸引されるプランジャ 1 と、 プランジャ 1の軸受となるスリーブ 4 と、 プランジャ 1 の 駆動をスプール 1 5に伝達するためにプランジャ 1 に連結され たロッ ド 7 と、 を備えている。  The solenoid section 100 A generally includes a coil 3, a plunger 1 magnetically attracted to the center boss 2 by conduction to the coil 3, a sleeve 4 serving as a bearing for the plunger 1, and a plunger 1. And a rod 7 connected to the plunger 1 for transmitting the drive of the motor to the spool 15.
また、 コイル 3が巻かれるボビン 6 と、 プランジャ 1がセンタ ーポス ト 2から離間しやすくするためのシム 8 と、 ケース 9 と、 バルブ部 1 0 0 B内部からコイル 3側への流体の漏れを防止す るパッキン 1 0 と、 磁路を形成するァッパープレート 1 1 と、 同 じく磁路を形成すると共にソレノィ ドバルブ本体を所定の位置 に固定するためのブラケッ トプレート 1 2 とを備えている。 更に、 ロ ッ ド 7の軸受 1 3 と、 スプール 1 5に固定された E型 リ ング 1 8 を付勢することによつてスプール 1 5 と共にロ ッ ド 7 を介してプランジャ 1 をセンターポス ト 2から離間させる方 向に付勢するスプリ ング 1 4 と、コイル 3に通電を行うための端 子 1 7 aを備えたコネクタ 1 7 と、 を備えている。 In addition, the bobbin 6 around which the coil 3 is wound, the shim 8 for facilitating the plunger 1 being separated from the center post 2, the case 9, and the leakage of fluid from the inside of the valve portion 100B to the coil 3 side. It includes a packing 10 for preventing the magnetic field, an upper plate 11 for forming a magnetic path, and a bracket plate 12 for forming a magnetic path and fixing the solenoid valve body at a predetermined position. Further, by urging the bearing 13 of the rod 7 and the E-shaped ring 18 fixed to the spool 15, the plunger 1 is center-posted together with the spool 15 via the rod 7 together with the spool 15. The spring 14 includes a spring 14 that urges the coil 3 away from the connector 2, and a connector 17 that includes a terminal 17 a for energizing the coil 3.
なお、 コイル 3ゃボビン 6はモールドによって A s s y ( a s s e m b 1 y ) ィ匕され、 モーノレドコィルサブ A s s y 5を構成し ている。  Note that the coil 3 bobbin 6 is molded into an Assy (assemb1y) by a mold, and constitutes a mono-red coil sub-Asy5.
ここで、 プランジャ 1は、 通常状態、 すなわちコイル 3に通電 していない状態では、センターボス ト 2から離間する方向に位置 する構成となっており、 すなわち、 本実施の形態では、 上述のよ うにスプール 1 5を、スプリ ング 1 4によって E型リ ング 1 8を 介してソレノイ ド部 1 0 0 A方向に付勢することによって、ブラ ンジャ 1はセンターポス ト 2から離間される。  Here, the plunger 1 is configured to be located away from the center boss 2 in a normal state, that is, in a state where the coil 3 is not energized, that is, in the present embodiment, as described above, By biasing the spool 15 in the direction of the solenoid 100 A through the E-ring 18 by the spring 14, the plunger 1 is separated from the center post 2.
そして、 コイル 3に通電することによって、 磁路 (ケース 9 , アッパープレー ト 1 1 , プランジャ 1 , センターポス ト 2, ブラ ケッ トプレー ト 1 2によって形成される磁路) が形成され、 ブラ ンジャ 1はセンターポス ト 2に磁気的に吸引される。  Then, by energizing the coil 3, a magnetic path (a magnetic path formed by the case 9, the upper plate 11, the plunger 1, the center post 2, and the bracket plate 12) is formed. Is magnetically attracted to the center post 2.
従って、 コイル 3に通電する電流の大きさによって、 磁気力を 制御することができ、これによりスプリ ング 1 4による付勢力と のバランス制御によ りプランジャ 1 の移動量を制御することで スプール 1 5のス トローク量を制御でき、これにより流体の流量 を制御し、油圧制御などの各種流体圧力制御等を行う ことができ るという ものである。  Therefore, the magnetic force can be controlled by the magnitude of the current flowing through the coil 3, whereby the amount of movement of the plunger 1 is controlled by controlling the amount of movement of the plunger 1 by controlling the balance with the biasing force of the spring 14. The stroke amount of 5 can be controlled, whereby the flow rate of the fluid can be controlled, and various fluid pressure controls such as hydraulic control can be performed.
ここで、 本実施の形態においては、 スリーブ 4によってプラン ジャ 1 を軸受する構成であるため、 軸出しにかかわる部材は、 プ ランジャ 1 , ロッ ド 7 , センターポス ト 2 , スリーブ 4及びロッ ド軸受 1 3の 5個の部材となるため、寸法管理の負担が比較的少 なく、 同軸度の向上を図ることが可能となる。 Here, in the present embodiment, since the configuration is such that the plunger 1 is bearing by the sleeve 4, the members involved in the centering are There are five members: the lancer 1, rod 7, center post 2, sleeve 4, and rod bearing 13.Therefore, the burden of dimensional control is relatively small, and the coaxiality can be improved. .
また、プランジャ 1の両端側でそれぞれ軸受構造を必要とする よ うなことはなくなるため、軸方向を小型化することもできると レ、う利点もある。  Further, since there is no need to provide a bearing structure at both ends of the plunger 1, there is also an advantage that the axial direction can be reduced in size.
次に、 プランジャ 1について更に詳しく説明する。  Next, the plunger 1 will be described in more detail.
プランジャ 1は、 略円筒形状であり、 内周側では孔 1 bにロッ ド 7が嵌合され、外周側では上述のようにスリープ 4によって摺 動自在に支持されるため、摺動部分となる大径部 1 aが設けられ ている。  The plunger 1 has a substantially cylindrical shape, and the rod 7 is fitted into the hole 1 b on the inner peripheral side, and is slidably supported by the sleep 4 on the outer peripheral side as described above, so that it becomes a sliding portion. A large diameter portion 1a is provided.
この大径部 1 aには、 図 2 ( B ) に示すように、 複数の凸面部 1 dと複数の溝部 1 eが交互に複数設けられており、その断面形 状は花びらのような形状となっている。 As shown in FIG. 2 (B), the large-diameter portion 1a is provided with a plurality of convex portions 1d and a plurality of groove portions 1e alternately, and has a cross-sectional shape like a petal. It has become.
凸面部 1 dは軸方向に伸びており、 また、 各凸面部 1 dの先端 (軸心から最も離れたところ)から軸心までの距離は等しく設定 されている。  The convex portion 1 d extends in the axial direction, and the distance from the tip (the farthest position from the axis) of each convex portion 1 d to the axis is set to be equal.
そして、 凸面部 1 dは滑らかな曲面形状をしており、 軸に対し て垂直な断面における外周曲面の曲率半径は、上記凸面部 1 dの 先端から軸心までの距離よりも小さく設定されている。これによ り、凸面部 1 dの先端から軸心までの距離はスリーブ 4の内周径 より もクリァランス分だけ小さくなるため、 当然、 上記外周曲面 の曲率半径はスリーブ 4の内周径より も小さくなる。  The convex portion 1d has a smooth curved shape, and the radius of curvature of the outer peripheral curved surface in a cross section perpendicular to the axis is set to be smaller than the distance from the tip of the convex portion 1d to the axis. I have. As a result, the distance from the tip of the convex portion 1d to the axis becomes smaller by the clearance than the inner peripheral diameter of the sleeve 4, so that the radius of curvature of the outer peripheral curved surface is naturally larger than the inner peripheral diameter of the sleeve 4. Become smaller.
例えば、凸面部 1 dの先端から軸心までの距離を 5 m mと して 、 凸面部 1 dの先端付近の曲率半径を 3 m mとする。 なお、 この と きスリーブ 4の内周の半径は 5 m mに対してク リ ァランス分 だけ大きく した径となる。 For example, the distance from the tip of the convex portion 1d to the axis is 5 mm, and the radius of curvature near the tip of the convex portion 1d is 3 mm. In this case, the radius of the inner circumference of the sleeve 4 is 5 mm and is equal to the clearance. The diameter becomes larger.
この凸面部 1 dの先端が、スリーブ 4の内周表面に摺動自在と なるように配置される。  The tip of the convex portion 1 d is disposed so as to be slidable on the inner peripheral surface of the sleeve 4.
そして、 それぞれ隣接する凸面部 1 d間には、軸方向に伸びる 溝部 1 eが各々設けられており、この溝部 1 e とスリープ 4の内 周表面との間で流路を形成する。  A groove 1 e extending in the axial direction is provided between each adjacent convex surface 1 d, and a flow path is formed between the groove 1 e and the inner peripheral surface of the sleep 4.
以上のように構成されたソレノィ ドバルブ 1 0 0において、プ ランジャ 1がスリーブ 4の内周で摺動を行う場合には、上記従来 技術の中でも説明したように、摺動が円滑に行われるためにクリ ァランスを設けているため、プランジャ 1がスリーブ 4に対して 完全に同軸を保ちながら往復動を行う というようなことはない。 本実施の形態では、 従来技術のように、 摺動面部の曲率半径 ( 外周径) がスリ一ブの内周表面の曲率半径 (内周径) とほぼ同一 とはなっておらず、摺動面部である凸面部 1 dの曲率半径の方が スリーブ 4の曲率半径 (内周径) より も小さいため、 軸に垂直な 断面において 1点のみで摺動するのは非常に不安定なものとな るため現実的にはそのようにはならずに、 図 3 ( A ) に示すよう に、隣接する凸面部 1 dによって 2点接触しながら摺動すること になる。  In the solenoid valve 100 configured as described above, when the plunger 1 slides on the inner periphery of the sleeve 4, the sliding is performed smoothly as described in the above-described related art. Since the clearance is provided in the plunger, the plunger 1 does not reciprocate while keeping the axis completely coaxial with the sleeve 4. In the present embodiment, unlike the prior art, the radius of curvature (outer diameter) of the sliding surface is not substantially the same as the radius of curvature (inner diameter) of the inner peripheral surface of the sleeve. Since the radius of curvature of the convex portion 1d, which is the surface portion, is smaller than the radius of curvature (inner diameter) of the sleeve 4, it is extremely unstable to slide at only one point in a section perpendicular to the axis. Therefore, in reality, this is not the case, and as shown in Fig. 3 (A), the object slides while making two-point contact with the adjacent convex portion 1d.
従って、従来技術のように軸に垂直な断面において 1点接触す る場合に比べて荷重が分散され、摺動部の荷重負担が減少するた め摺動磨耗性が向上する。  Therefore, the load is dispersed and the load on the sliding portion is reduced as compared with the case where one point contact is made in a cross section perpendicular to the axis as in the prior art, so that the sliding wear property is improved.
また、 曲面同士で接触しながら摺動し、 かつ、 流路によって液 体 (油) が流れ込むため、 圧力負荷を受けることなく、 また、 液 体によって潤滑性を得ながら摺動するため、好適に往復動さを行 うことができることについては従来技術と同様である。 また、 本実施の形態では、 凸面部 1 dの曲率半径の方がスリ一 ブ 4の曲率半径 (内周径) よりも小さいため、 溝部 1 eによって 形成された流路から流体が摺動部内に流れ込みやすいため、従来 技術に比べて、 より潤滑性に優れるため、 摺動性が向上する。 更に、 凸面部 1 dの曲率半径の方がスリーブ 4の曲率半径 (内 周径) より も小さいため、 摺動部付近の隙間は従来技術に比べて 大きいため、 摺動部付近で異物 (不純物) が侵入した場合であつ ても、 異物が流路に逃げやすいため、 異物による摺動性の低下を 防止できる。 In addition, since sliding occurs while the curved surfaces are in contact with each other, and the liquid (oil) flows through the flow path, there is no pressure load, and the liquid slides while obtaining lubricity. The reciprocating motion is the same as in the prior art. In the present embodiment, since the radius of curvature of the convex portion 1 d is smaller than the radius of curvature (inner peripheral diameter) of the sleeve 4, fluid flows from the flow path formed by the groove 1 e into the sliding portion. It is easy to flow into the pipe, so it has better lubricity than the conventional technology, and the slidability is improved. Furthermore, since the radius of curvature of the convex portion 1 d is smaller than the radius of curvature (inner diameter) of the sleeve 4, the gap near the sliding portion is larger than that of the conventional technology. Even if) has entered, foreign matter can easily escape into the flow path, so that a decrease in slidability due to the foreign matter can be prevented.
このように、 プランジャの摺動性が向上するため、 油圧制御等 の流体制御性が向上する。  As described above, since the sliding property of the plunger is improved, fluid controllability such as hydraulic control is improved.
以下、 より好適な具体例について説明する。  Hereinafter, more preferable specific examples will be described.
上述した凸面部 1 dは、周方向に対して当配向であって、 かつ 奇数箇所設けるのが好ましい。  The above-mentioned convex portion 1d is preferably oriented in the circumferential direction, and is preferably provided in an odd number.
これは、 等配向かつ奇数箇所設けることによって、 凸面部 1 d と溝部 1 eは、軸心を挟んで対称な位置関係に配置されることに なる (図 2 ( B ) 参照) 。  This is because the convex portion 1d and the groove portion 1e are arranged in a symmetrical positional relationship with respect to the axis center by providing the same orientation and an odd number of locations (see FIG. 2 (B)).
従って、 上述のように、 プランジャ 1は、 隣接する凸面部 1 d によって 2点接触しながら摺動するため、この 2点の中間位置と なる溝部 1 eの軸心を挟んで反対側の外周面が最もスリーブ内 周から離れるため、 この部分を凸面部 I dとすることによって、 隙間を極力小さく してがたつきを抑える効果がある。  Therefore, as described above, the plunger 1 slides while contacting the two points by the adjacent convex portions 1 d, so that the outer peripheral surface on the opposite side with respect to the axis of the groove portion 1 e located at an intermediate position between the two points. Since this is the most distant from the inner circumference of the sleeve, making this portion a convex portion Id has the effect of minimizing the gap and suppressing rattling.
また、 溝部 1 eについて、 図 2 ( B ) に示す例では、 凸面部 1 dと曲面と滑らかに結ぶ曲面として、曲率半径も凸面部 1 dの曲 率半径 R 1 と同等の R 2となるような場合を示したが、これに限 らずに、 図 4 ( A ) に示すような方形状の溝部 1 gと したり、 図 4 ( B ) に示すような 3角形状の溝部 1 hとしたり しても良い。 ここで、溝部 1 e とスリープ 4の内周で形成される流路の軸に 垂直な断面は、流路を流れる流体に含まれる不純物が引っ掛かつ てしまわないような寸法形状とするのが望ましい。 In the example shown in Fig. 2 (B), the groove 1e is a curved surface that smoothly connects the convex surface 1d and the curved surface, and has a radius of curvature R2 equivalent to the radius of curvature R1 of the convex surface 1d. Such a case was shown, but the invention is not limited to this, and a square groove 1 g as shown in FIG. 4 A triangular groove 1 h as shown in (B) may be used. Here, the cross section perpendicular to the axis of the flow path formed between the groove 1 e and the inner periphery of the sleep 4 should be dimensioned so that impurities contained in the fluid flowing through the flow path will not be caught and caught. desirable.
このようにするために、例えば、 ソレノィ ドバルブ 1 0 0内に 流体を導く流路上に、流体中に含まれる不純物を除去するフィル タが設置される場合には、ソレノィ ドパルプ 1 0 0内に流入する 流体に含まれる不純物はフィルタの目より も小さなものだけに なる。  In order to achieve this, for example, if a filter for removing impurities contained in the fluid is installed on the flow path for guiding the fluid into the solenoid valve 100, the fluid flows into the solenoid pulp 100. The impurities contained in the fluid are smaller than those of the filter.
従って、 上記流路の軸に垂直な断面の寸法形状を、 フィルタの 目の寸法形状を含むような寸法形状にすることによって、溝部 1 e とス リーブ 4 の内周で形成される流路内に不純物が引っ掛か つて詰まってしまうようなことを防止できる。  Therefore, by setting the dimension of the cross section perpendicular to the axis of the flow channel to include the size of the mesh of the filter, the inside of the channel formed by the groove 1 e and the inner periphery of the sleeve 4 is formed. It can be prevented that impurities are caught and clogged.
従って、 安定した摺動性を維持することができる。  Therefore, stable slidability can be maintained.
次に、本実施の形態に係るソレノィ ドバルブ 1 0 0の好適な適 用例について説明する。  Next, a preferred application example of the solenoid valve 100 according to the present embodiment will be described.
自動車等のエンジンにおいては、ェンジンの吸排気バルブを力 ムシャフ トの回転によってバルブ開閉を行うが、 運転状態 (高速 •低速) によって、 パルプのタイミングを適切に制御することに よって、燃費が向上し、 高い排ガス清浄化を得ることが可能にな る。  In engines such as automobiles, the intake and exhaust valves of the engine are opened and closed by the rotation of the force shaft. However, by controlling the pulp timing appropriately depending on the operating conditions (high speed / low speed), fuel efficiency is improved. Therefore, high exhaust gas purification can be obtained.
このパルプタイ ミ ングの制御は、カムシャフ トを回転方向にず らして、位相を変えることにより行うことができ、 これをソ レノ ィ ドバルブによつて行う技術が公知技術として知られている。  The control of the pulp timing can be performed by shifting the cam shaft in the rotation direction and changing the phase, and a technique of performing this using a solenoid valve is known as a known technique.
ここで、 カムシャフ トを回転方向にずらすために、 ソ レノィ ド バルブによる油圧制御を行うことになる力 S、配置スペース等の関 係からエンジンオイルの流路の経路上にソ レノイ ドバルブが設 置されて、 エンジンオイルを利用するのが一般的である。 Here, in order to shift the camshaft in the rotation direction, a function such as a force S for performing hydraulic control by a solenoid valve and an arrangement space are required. In general, a solenoid valve is installed on the path of the engine oil flow path to use the engine oil.
従来、オンオフ制御を行うソレノィ ドバルブを用いることによ つて、高速時と低速時の 2種類の状態に分けて制御を行うことが なされていたが、 近年、 より高精細な制御を行うべく、 リニア制 御が可能なソレノィ ドパルプが用いられるようになっている。  Conventionally, a solenoid valve that performs on / off control has been used to perform control in two states, high speed and low speed.In recent years, linear control has been performed to achieve higher precision control. Solenoid pulp, which can be controlled, is being used.
そこで、上述した本発明の実施の形態に係るソレノィ ドバルブ をこのようなバルブタイミングコントロール (V T C ) 用のリニ ァ制御ソレノィ ドバルブとして好適に用いることが可能となる。  Therefore, the above-described solenoid valve according to the embodiment of the present invention can be suitably used as such a linear control solenoid valve for valve timing control (VTC).
ここで、 上述のように、 エンジンオイルを利用する場合には、 エンジンオイル内には鉄粉等の異物が多く含まれるため、比較的 悪条件の流体を用いることになる力 本実施の形態に係るソ レノ ィ ドバルブでは、異物を流路に流すことによって摺動性に優れる ものであることから、そのような悪条件のもとでも好適に利用す ることが可能となる。  Here, as described above, in the case of using engine oil, since a large amount of foreign matter such as iron powder is contained in the engine oil, a force that uses a fluid under relatively bad conditions is used in the present embodiment. Such a solenoid valve is excellent in slidability by flowing foreign matter into the flow path, and thus can be suitably used even under such bad conditions.
次に、本実施の形態に係るソレノィ ドバルブ 1 0 0を構成する プランジャ 1の製造方法について図 6を参照して説明する。  Next, a method of manufacturing the plunger 1 constituting the solenoid valve 100 according to the present embodiment will be described with reference to FIG.
プランジャ 1における大径部 1 aの、複数の凸面部 1 dと複数 の溝部 1 eは、 鍛造金型 5 0 , 5 1により型締めして、 図中矢印 P方向に加圧することで、 鍛造成型によって作ることができる。 なお、 鍛造金型 5 1については、 その後の製造工程の説明のため 図中点線で示している。  The plurality of convex portions 1 d and the plurality of grooves 1 e of the large-diameter portion 1 a of the plunger 1 are clamped by forging dies 50 and 51, and are pressed in the direction of arrow P in the figure to form a forging. It can be made by molding. The forging die 51 is shown by a dotted line in the figure for explanation of the subsequent manufacturing process.
また、 図中 1 f は、鍛造成型後に切削工程によって切削される 切削部である。  In addition, 1f in the figure is the cutting part that is cut by the cutting process after forging.
ここで、 鍛造成型がなされた後に、 プランジャ 1本体を型から 取り出すために、鍛造金型 5 1を外した後に、 上記矢印 P方向と は反対側の端面を、ェジェクタピン 5 2によって矢印 Q方向に押 圧する (たたく) 必要がある。' Here, after the forging is performed, the forging die 51 is removed to remove the plunger 1 body from the mold. It is necessary to press (hit) the opposite end face in the direction of arrow Q with the ejector pin 52. '
そこで、 本実施の形態に係るプランジャでは、 上記矢印 P方向 とは反対側の端面に先端面から内部に凹んだ凹部 1 cを設けて、 この凹部 1 cの底面を、ェジェクタピン 5 2によって押圧される 被押圧部と している。  Therefore, in the plunger according to the present embodiment, a concave portion 1c recessed inward from the tip surface is provided on the end surface opposite to the arrow P direction, and the bottom surface of the concave portion 1c is pressed by the ejector pin 52. It is a pressed part.
これにより、ェジェクタピン 5 2によって押圧される場合には 、 一般的にバリが生ずるが、本実施の形態では凹部 1 cの底面を 被押圧部と しているために、 図 6中 (P ) の拡大図に示すように 、 バリ B 1 , B 2は凹部内でのみ発生するためプランジャ 1の全 長に変化を及ぼすことはない。  As a result, when pressed by the ejector pins 52, burrs generally occur. However, in the present embodiment, since the bottom surface of the concave portion 1c is the pressed portion, (P) in FIG. As shown in the enlarged view, the burrs B 1 and B 2 occur only in the concave portion, and do not affect the entire length of the plunger 1.
従って、プランジャのス トロークがソレノィ ドバルブとしての 制御に影響を及ぼすような場合には、プランジャの全長の管理を 厳しく行う必要があるため、 パリが影響するような場合には、 通 常、 バリ取り加工のための切削加工を施さねばならないが、 本実 施の形態では、バリがプランジャの全長に影響を及ぼさないため 、 そのような加工工程が不要となる。  Therefore, if the stroke of the plunger affects the control as a solenoid valve, it is necessary to strictly control the entire length of the plunger. Cutting must be performed for the processing, but in the present embodiment, such a processing step is unnecessary because the burr does not affect the entire length of the plunger.
(第 2の実施の形態)  (Second embodiment)
図 5を参照して、本発明の第 2の実施の形態に係るソレノィ ド バルブについて説明する。本発明の第 2の実施の形態に係るソレ ノィ ドバルブにおいては、プランジャの構成のみが上記第 1の実 施の形態と異なるので、 プランジャについてのみ詳しく説明し、 その他の構成については説明を省略する。  A solenoid valve according to a second embodiment of the present invention will be described with reference to FIG. In the solenoid valve according to the second embodiment of the present invention, only the configuration of the plunger is different from that of the first embodiment, so only the plunger will be described in detail, and the description of the other components will be omitted. .
図 5は本発明の第 2の実施の形態に係るブランジャの軸に垂 直な方向に切断した概略構成断面図である。 なお、本実施の形態 に係るブランジャの軸心を通るように切断した断面図は、上記実 施の形態で示した図 2 ( A ) と同様である。 従って、 図 5は図 2 ( A ) における B B断面に相当する図である。 FIG. 5 is a schematic configuration sectional view of a plunger according to a second embodiment of the present invention cut in a direction perpendicular to an axis. The cross-sectional view taken along the axis of the plunger according to the present embodiment is the same as that of the above embodiment. This is the same as FIG. 2 (A) shown in the embodiment. Therefore, FIG. 5 is a view corresponding to the BB section in FIG. 2 (A).
本実施の形態に係るプランジャの、スリーブ 4に対する摺動部 分となる大径部 1 ' aは、 図 5に示すように、 軸方向に垂直な断 面の外周形状を、 多角形 (図示の例では、 略正 9角形) としてい る。  As shown in FIG. 5, the large-diameter portion 1′a serving as a sliding portion with respect to the sleeve 4 of the plunger according to the present embodiment has a polygonal cross section perpendicular to the axial direction as shown in FIG. In the example, it is approximately a regular octagon.
そして、 軸心から角部 1 ' dまでの距離が、 ス リーブ 4の内周 径より もク リアランス分だけ小さくするように設定している。従 つて、 角部 1 ' dがス リーブ 4の内周表面に摺動自在となるよう に配置される。  The distance from the axis to the corner 1′d is set to be smaller than the inner diameter of the sleeve 4 by the clearance. Therefore, the corner 1 ′ d is disposed so as to be slidable on the inner peripheral surface of the sleeve 4.
そして、 角部 1 ' d間の平面部 1 ' e とス リープ 4の内周表面 との間で流路を形成する。  Then, a flow path is formed between the flat portion 1 ′ e between the corner portions 1 ′ d and the inner peripheral surface of the sleep 4.
以上のようにプランジャを構成することによつて、上記第 1の 実施の形態の場合と同様に、軸に垂直な断面において 1点のみで 摺動するのは非常に不安定なものとなるため現実的にはそのよ うにはならずに、 隣接する角部 1 ' dによって、 2点接触しなが ら摺動することになる。  By configuring the plunger as described above, it is very unstable to slide at only one point in the cross section perpendicular to the axis, as in the case of the first embodiment. In reality, this is not the case, and the adjacent corners 1'd slide with two points of contact.
従って、従来技術のように軸に垂直な断面において 1点接触す る場合に比べて荷重が分散され、摺動部の荷重負担が減少するた め摺動磨耗性が向上する。  Therefore, the load is dispersed and the load on the sliding portion is reduced as compared with the case where one point contact is made in a cross section perpendicular to the axis as in the prior art, so that the sliding wear property is improved.
また、 本実施の形態では、 角部 1 ' dがス リーブ 4の内周壁面 に摺動する構成であるので、 平面部 1 ' e とスリーブ 4の内周表 面との間で形成された流路から流体が摺動部内に流れ込みやす いため、 従来技術に比べて、 より潤滑性に優れるため、 摺動性が 向上する。  Further, in the present embodiment, since the corner 1 ′ d slides on the inner peripheral wall surface of the sleeve 4, the corner 1 ′ d is formed between the flat surface 1 ′ e and the inner peripheral surface of the sleeve 4. Since the fluid easily flows into the sliding part from the flow path, the lubricating property is more excellent than that of the conventional technology, so that the sliding property is improved.
更に、 角部 1 ' dがス リーブ 4の内周壁面に摺動する構成であ るので、 摺動部付近の隙間は従来技術に比べて大きいため、 摺動 部付近で異物が侵入した場合であっても、異物が流路に逃げやす いため、 異物による摺動性の低下を防止できる。 Further, the corner 1′d slides on the inner peripheral wall surface of the sleeve 4. Therefore, the gap near the sliding part is larger than that of the conventional technology. Therefore, even if foreign matter enters the vicinity of the sliding part, the foreign matter easily escapes to the flow path. Can be prevented.
このよ う に、 プランジャの摺動性が向上するため、 油圧制御等 の流体制御性が向上する。  In this way, the slidability of the plunger is improved, so that fluid controllability such as hydraulic control is improved.
また、 本実施の形態では、 断面を略正多角形であって、 かつ、 奇数角形 (図示の例では、 略正 9角形) とすることにより、 角部 1 ' dと平面部 1 ' eは、 軸心を挟んで対称な位置関係に配置さ れることになる。  Further, in the present embodiment, the cross section is a substantially regular polygon and an odd-numbered polygon (in the illustrated example, a substantially regular octagon), so that the corner 1 ′ d and the plane 1 ′ e However, they are arranged in a symmetrical positional relationship with respect to the axis.
従って、 上述のように、 プランジャ 1は、 隣接する角部 1 ' d によって 2点接触しながら摺動するため、この 2点の中間位置と なる平面部 1 ' eの軸心を挟んで反対側の外周面が最もスリーブ 内周から離れるため、 この部分を角部 1 ' dとすることによって 、 隙間を極力小さく してがたつきを抑える効果がある。  Therefore, as described above, the plunger 1 slides while being in two contact points by the adjacent corners 1′d, so that the plunger 1 is on the opposite side of the axis of the plane part 1′e which is an intermediate position between these two points. Since the outer peripheral surface of the sleeve is most distant from the inner periphery of the sleeve, making this part a corner 1'd has the effect of minimizing the gap and suppressing rattling.
また、 角部 1, dは R形状とするのが望ましく、 Rを小さく し すぎると摩耗が大きくなることから、適正な Rとする必要がある 次に、 平面部 1 ' e とスリーブ 4の内周表面との間で形成され る流路について詳しく説明する。  Also, it is desirable that the corners 1 and d have an R shape, and if the R is too small, the wear will increase. Therefore, it is necessary to set the R to an appropriate value. The flow path formed between the peripheral surface and the peripheral surface will be described in detail.
プランジャの外周表面とスリーブ 4の内周表面間は、磁路が形 成される部分であるため、磁束供給に支障が出ないようにする必 要性から、 平面部 1 ' e とスリープ 4の内周表面の間隔が狭いほ ど望ましい。  Since a magnetic path is formed between the outer peripheral surface of the plunger and the inner peripheral surface of the sleeve 4, it is necessary to prevent the supply of magnetic flux from being hindered. The smaller the distance between the inner peripheral surfaces, the better.
一方、 摺動性を良くするためには、 流体 (油) の潤滑が十分で あり、 油の固着が起きないように、流路の断面積が大きいほど望 ましい。 また、流路を流れる流体に含まれる不純物が引っ掛かってしま わないような寸法形状とするのが望ましい。 On the other hand, in order to improve the slidability, the lubrication of the fluid (oil) is sufficient, and the larger the cross-sectional area of the flow path, the better, so that the oil does not stick. It is also desirable that the dimensions be such that impurities contained in the fluid flowing through the flow channel are not caught.
例えば、 ソレノィ ドパルプ 1 0 0内に流体を導く流路上に、 流 体中に含まれる不純物を除去するフィルタが設置される場合に は、ソレノィ ドバルブ 1 0 0内に流入する流体に含まれる不純物 はフィルタの目よりも小さなものだけになる。 従って、 上記流路 の軸に垂直な断面の寸法形状を、フィルタの目の寸法形状を含む ような寸法形状にすることによって、流路内に不純物が引っ掛か つて詰まってしまうようなことを防止できる。  For example, when a filter that removes impurities contained in a fluid is installed on a flow channel that guides fluid into the solenoid pulp 100, impurities contained in the fluid flowing into the solenoid valve 100 are Only those smaller than the eyes of the filter. Therefore, by setting the cross-sectional dimension perpendicular to the axis of the flow path to include the size of the filter eye, it is possible to prevent impurities from being caught and clogged in the flow path. it can.
以上の点を考慮して、 流路の寸法形状を設定する必要がある。 なお、 本実施の形態では、 断面形状を正多角形とするため、 流路 の寸法形状は、 主として、 正何角形にするのかにより、 また、 角 部の R寸法により定められることになる。  In consideration of the above points, it is necessary to set the dimensions and shape of the flow channel. In the present embodiment, since the cross-sectional shape is a regular polygon, the dimension and shape of the flow path are determined mainly by the regular square and the R dimension of the corner.
また、 本実施の形態におけるプランジャの形成法としては、 引 抜き加工によるのが望ましい。 これにより、 従来のように、 流路 を形成するためのス リ ッ ト加工等が不要となるという利点があ る。  In addition, as a method of forming the plunger in the present embodiment, it is preferable to use a drawing process. Thus, there is an advantage that a slit process or the like for forming a flow path is not required as in the related art.
また、 切削加工によってプランジャを形成することもできる。 ここで、切削加ェを行う場合には、 プランジャを固定するために チャックを行う必要があるが、 摺動部となる角部 1 ' dにチヤッ ク傷をつけないように平面部 1 ' eを固定しなければならない。 ここで、 チャックは 3点チャック ( 1 2 0度方向の 3づめ) 力 S 精度良く加工するのに適していることから、 3点チヤックで平面 部 1 ' eを固定するには、 軸に垂直な断面の外周形状が、 3の倍 数角形 (正多角形) である必要がある。  Also, the plunger can be formed by cutting. Here, when performing cutting, it is necessary to perform chucking in order to fix the plunger.However, the flat part 1'e is used to prevent the corner 1'd serving as the sliding part from being scratched. Must be fixed. Here, the chuck is a three-point chuck (third in the direction of 120 °) Force S Since it is suitable for machining with high accuracy, to fix the flat part 1'e with a three-point chuck, The outer shape of a simple section must be a multiple of 3 (regular polygon).
以上のように、 プランジャの軸に垂直な断面の外周形状は、 が .たつき防止の観点から正多角形かつ奇数角形とすること、磁束供 給や潤滑性の観点から流路の断面積の大きさを適正にすること、 切削加工を行う場合の観点から正多角形かつ 3の倍数角形とす ることを考慮する必要がある。 As described above, the outer peripheral shape of the cross section perpendicular to the axis of the plunger is The shape should be a regular polygon and an odd-numbered polygon from the viewpoint of preventing rattling, the size of the cross-sectional area of the flow path should be appropriate from the viewpoint of magnetic flux supply and lubricity, and the shape should be regular from the viewpoint of cutting. It is necessary to consider that it is a square and a multiple of three.
これらを考慮すると、 略正 9角形とするのが最適である。  Considering these, it is optimal to use a substantially regular octagon.
また、 角部 1 ' dの Rは、 上記条件によって設定範囲が必然的 に決められてしまうが、 Rを小さく しすぎると摩耗が大きくなる ことから、上記条件を満たす範囲内で最大とするように設定する のが望ましい。 産業上の利用可能性  Also, the setting range of R at corner 1'd is necessarily determined by the above conditions, but if R is too small, wear will increase. It is desirable to set to. Industrial applicability
以上説明したように、本発明は、 プランジャの外周に複数の凸 面部と複数の溝部を設けたので、プランジャがスリ一ブ内周表面 に対して、 軸に垂直な断面において 2点で摺動するため、摺動部 の荷重負担が減り摺動磨耗性が向上し、 制御特性が向上する。 また、スリーブ内周の径ょり も小さな曲面で摺動することから 、 摺動部付近の隙間を比較的大きくすることが可能となり、 流体 の進入が容易となるため潤滑性が良くなり、 かつ、 異物が侵入し た場合でも、異物を流路に逃がしゃすくなるため摺動性が向上し 、 制御特性が向上する。  As described above, in the present invention, since a plurality of convex portions and a plurality of grooves are provided on the outer periphery of the plunger, the plunger slides on the inner peripheral surface of the sleeve at two points in a cross section perpendicular to the axis. As a result, the load on the sliding portion is reduced, the sliding wear property is improved, and the control characteristics are improved. In addition, since the inner circumference of the sleeve also slides on a small curved surface, the gap near the sliding portion can be made relatively large, and fluid can easily enter, so that lubricity is improved, and Even when foreign matter enters, the foreign matter can escape into the flow path, so that the sliding property is improved and the control characteristics are improved.
凸面部を周方向に対して等配向に設けて、 奇数箇所設ければ、 がたつきを抑えることができる。  If the convex portions are provided in the same orientation with respect to the circumferential direction and are provided in an odd number, rattling can be suppressed.
溝部と内周壁面によって形成される流路の軸方向に垂直な断 面を、流体に含まれる不純物を除去するフィルタの目の寸法形状 を含む寸法形状に設定すれば、流路内に不純物が挟まってしまう ことはなく、 安定した摺動性を維持できる。 プランジャの鍛造成型時の加圧方向とは反対側の端面に、内部 に凹んだ凹部を設けて、 この底面を、鍛造成型後に鍛造金型から プランジャ本体が取り出されるためにェジェクタピンに押圧さ れる被押圧部とすれば、ェジエタタピンによってパリが生じても 、 プランジャ全長に影響が出ることはなく、切削工程を必要とす ることなく安定した制御が可能となる。 If the cross-section perpendicular to the axial direction of the flow path formed by the groove and the inner peripheral wall is set to the size and shape including the size and shape of the filter that removes impurities contained in the fluid, impurities will There is no pinching, and stable slidability can be maintained. On the end face of the plunger opposite to the pressing direction at the time of forging, a concave recess is provided inside, and this bottom face is pressed against the ejector pin to remove the plunger body from the forging die after forging. If the pressing portion is used, even if a paris is generated by the ezieta pin, the overall length of the plunger is not affected, and stable control can be performed without requiring a cutting process.
また、 プランジャの軸方向に垂直な断面の外周形状を、 多角形 と した場合にも、 プランジャがスリ一ブ内周表面に対して、 軸に 垂直な断面において 2点で摺動するため、摺動部の荷重負担が減 り摺動磨耗性が向上し、 制御特性が向上する。  In addition, even when the outer peripheral shape of the cross section perpendicular to the axial direction of the plunger is a polygon, the plunger slides against the inner peripheral surface of the sleeve at two points in the cross section perpendicular to the axis. The load on the moving part is reduced, sliding wear is improved, and control characteristics are improved.
また、 角部で摺動することから、 摺動部付近の隙間を比較的大 きくすることが可能となり、流体の進入が容易となるため潤滑性 が良くなり、 かつ、 異物が侵入した場合でも、 異物を流路に逃が しゃすくなるため摺動性が向上し、 制御特性が向上する。  In addition, sliding at the corners makes it possible to make the gap near the sliding part relatively large, facilitates fluid entry, improves lubricity, and ensures that even if foreign matter enters, In addition, since foreign substances can escape into the flow path, the slidability is improved, and the control characteristics are improved.
外周形状を略正 9角形とすれば、角部と平面部分とは、軸中心 に対して対称な位置関係となり、 がたつきを低減できると共に、 流路の断面積を適当な大きさに設定でき、 かつ、切削加工を行う 場合に 3点チヤックを行うことができる。  If the outer peripheral shape is a substantially regular octagon, the corners and the plane part have a symmetrical positional relationship with respect to the axis center, which can reduce rattling and set the cross-sectional area of the flow passage to an appropriate size. And a three-point check can be performed when cutting.
プランジャの外周の平面部分とスリーブの内周壁面によって 形成される流路の軸方向に垂直な断面を、流体に含まれる不純物 を除去するフィルタの目の寸法形状を含む寸法形状に設定すれ ば、 流路内に不純物が挟まってしまうことはなく、 安定した摺動 性を維持できる。  If the cross-section perpendicular to the axial direction of the flow path formed by the flat surface portion of the outer periphery of the plunger and the inner peripheral wall surface of the sleeve is set to the size and shape including the size and shape of the filter for removing impurities contained in the fluid, No impurities are trapped in the flow path, and stable slidability can be maintained.

Claims

請求の範囲 The scope of the claims
1 . 励磁手段による磁気力によって往復動を行うプランジャと、 該プランジャ外周を摺動自在に支持して軸受を行うスリーブ と、 を備えたソレノイ ドバルブであって、  1. A solenoid valve comprising: a plunger that reciprocates by a magnetic force generated by an exciting unit; and a sleeve that slidably supports the outer periphery of the plunger to perform a bearing,
前記スリーブは、 軸受を行うための内周壁面を備え、 かつ、 軸 に垂直な内周壁面の断面形状を円形とすると共に、  The sleeve has an inner peripheral wall surface for carrying a bearing, and has a circular cross-sectional shape of the inner peripheral wall surface perpendicular to the shaft,
前記プランジャの外周には、  On the outer periphery of the plunger,
軸心から外周表面までの距離より も小さな曲率半径を有する 曲面形状であって、 かつ、 前記内周壁面に摺動する軸方向に伸ぴ る複数の凸面部と、  A plurality of convex portions extending in the axial direction sliding on the inner peripheral wall surface, the curved surface shape having a radius of curvature smaller than the distance from the axis to the outer peripheral surface;
それぞれ隣接する凸面部間に設けられる、軸方向に伸びる流路 を形成する複数の溝部と、を備えることを特徴とするソレノィ ド バノレブ。  A plurality of grooves, each of which is provided between adjacent convex surfaces, and which forms a flow path extending in the axial direction.
2 . 前記凸面部は周方向に対して等配向に設けられると共に、 奇 数箇所設けられることを特徵とする請求の範囲第 1項に記載の ソレノィ ドバルブ。  2. The solenoid valve according to claim 1, wherein the convex portion is provided in an equal orientation with respect to a circumferential direction, and is provided at an odd number of positions.
3 .前記溝部と内周壁面によって形成される流路の軸方向に垂直 な断面は、ソレノィ ドバルブ本体内に流入する流体に含まれる不 純物を、流入する前にソレノィ ドパルプ本体の外部で除去するフ ィルタの目の寸法形状を含む寸法形状に設定されることを特徴 とする請求の範囲第 1項または 2項に記載のソレノィ ドバルブ。 3.The cross section perpendicular to the axial direction of the flow path formed by the groove and the inner peripheral wall removes impurities contained in the fluid flowing into the solenoid valve body outside the solenoid pulp body before flowing. 3. The solenoid valve according to claim 1, wherein the size of the filter is set to a size including a size of an eye of the filter.
4 .前記プランジャの外周に設けられる凸面部及ぴ溝部は鍛造成 型によって得られると共に、 4. The convex surface and the groove provided on the outer periphery of the plunger are obtained by forging,
前記プランジャの鍛造成型時の加圧方向とは反対側の端面に、 内部に凹んだ凹部を設けて、  On the end face of the plunger on the side opposite to the pressing direction at the time of forging molding, a concave portion recessed inside is provided,
該凹部の底面を、鍛造成型後に鍛造金型からプランジャ本体が 取り出されるためにェジェクタピンに押圧される被押圧部とす ることを特徴とする請求の範囲第 1, 2項または第 3項に記載の ソレノィ ドバルブ。 The plunger body is forged from the forging die after forging 4. The solenoid valve according to claim 1, wherein the solenoid valve is a pressed portion which is pressed by an ejector pin to be taken out.
5 . 励磁手段による磁気力によって往復動を行うプランジャと、 該プランジャ外周を摺動自在に支持して軸受を行うスリーブ と、 を備えたソレノイ ドバルブにおいて、  5. A solenoid valve comprising: a plunger that reciprocates by a magnetic force of an exciting unit; and a sleeve that slidably supports the outer periphery of the plunger to perform a bearing.
前記スリーブは、 軸受を行うための内周壁面を備え、 かつ、 軸 に垂直な内周壁面の断面形状を円形とすると共に、  The sleeve has an inner peripheral wall surface for carrying a bearing, and has a circular cross-sectional shape of the inner peripheral wall surface perpendicular to the shaft,
前記プランジャの前記内周壁面に対する摺動部分であって、軸 方向に垂直な断面の外周形状を、多角形とすることを特徴とする ソレノィ ドノくノレブ。  A sliding part of the plunger with respect to the inner peripheral wall surface, wherein an outer peripheral shape of a cross section perpendicular to the axial direction is a polygon.
6 .前記外周形状を奇数角形とすることを特徴とする請求の範囲 第 5項に記載のソレノィ ドバルブ。  6. The solenoid valve according to claim 5, wherein the outer peripheral shape is an odd-numbered polygon.
7 .前記外周形状を略正 9角形とすることを特徴とする請求の範 囲第 5項に記載のソレノィ ドバルブ。  7. The solenoid valve according to claim 5, wherein the outer peripheral shape is a substantially regular octagon.
8 .前記プランジャの外周の平面部分と前記スリ一ブの内周壁面 によって形成される流路の軸方向に垂直な断面は、ソレノィ ドバ ルプ本体内に流入する流体に含まれる不純物を、流入する前にソ レノィ ドバルブ本体の外部で除去するフィルタの目の寸法形状 を含む寸法形状に設定されることを特徴とする請求の範囲第 5 , 6項または第 7項に記載のソレノィ ドパルプ。 補正書の請求の範囲 8.The cross section perpendicular to the axial direction of the flow path formed by the outer peripheral flat surface portion of the plunger and the inner peripheral wall surface of the sleeve allows impurities contained in the fluid flowing into the solenoid valve body to flow therein. 8. The solenoid pulp according to claim 5, 6 or 7, wherein the dimension is set to include a dimension of a filter to be removed outside the solenoid valve body beforehand. Claims of amendment
[ 2 0 0 2年 1 月 1 0日 (1 0 . 0 1 . 0 2 ) 国際事務局受理:出願当初の請求の範囲 及び 6は取り下げられた;出願当初の請求の範囲 1, 3— 5, 7及び 8は補正された [January 10, 2010 (10.0.102) Accepted by the International Bureau: Claims originally filed and 6 were withdrawn; Claims originally filed 1, 3-5 , 7 and 8 have been corrected
;他の請求の範囲は変更なし。 (2頁) ] 請求の範囲 The other claims remain unchanged. (Page 2)] Claims
1 . (補正後) 励磁手段による磁気力によって往復動を行うプラ ンジャと、  1. (After correction) A plunger that reciprocates by the magnetic force of the excitation means,
該プランジャ外周を摺動自在に支持して軸受を行うスリーブ と、 を備えたソレノイ ドパルプであって、  A sleeve for slidably supporting the outer periphery of the plunger and performing a bearing; and a solenoid pulp comprising:
前記スリーブは、 軸受を行うための内周壁面を備え、 かつ、 軸 に垂直な内周壁面の断面形状を円形とすると共に、  The sleeve has an inner peripheral wall surface for carrying a bearing, and has a circular cross-sectional shape of the inner peripheral wall surface perpendicular to the shaft,
前記プランジャの外周には、  On the outer periphery of the plunger,
軸心から外周表面までの距離より も小さな曲率半径を有する 曲面形状であって、 かつ、周方向に対して等配向に奇数箇所設け られる、前記内周壁面に摺動する軸方向に伸びる少なく とも 5以 上の凸面部と、  A curved surface shape having a radius of curvature smaller than the distance from the axis to the outer peripheral surface, and at least odd-numbered portions provided equidistantly with respect to the circumferential direction and extending in the axial direction sliding on the inner peripheral wall surface. 5 or more convex surfaces,
それぞれ隣接する凸面部間に設けられる、軸方向に伸びる流路 を形成する複数の溝部と、を備えることを特徴とするソレノイ ド ノ ノレブ。  A plurality of grooves, each of which is provided between adjacent convex surfaces and forms a flow path extending in the axial direction, comprising: a plurality of grooves;
2 . (削除) 2. (Delete)
3 . (補正後) 前記溝部と内周壁面によって形成される流路の軸 方向に垂直な断面は、ソレノィ ドバルブ本体内に流入する流体に 含まれる不純物を、流入する前にソレノィ ドパルプ本体の外部で 除去するフィルタの目の寸法形状を含む寸法形状に設定される ことを特徴とする請求の範囲第 1項に記載のソレノィ ドバルブ。  3. (After the correction) The cross section perpendicular to the axial direction of the flow path formed by the groove and the inner peripheral wall is formed so that impurities contained in the fluid flowing into the solenoid valve body can be removed from the outside of the solenoid pulp body before flowing. 2. The solenoid valve according to claim 1, wherein the size of the filter is set to a size including a size of an eye of the filter to be removed.
4 . (補正後) 前記プランジャの外周に設けられる凸面部及び溝 部は鍛造成型によって得られると共に、  4. (after correction) The convex surface and the groove provided on the outer periphery of the plunger are obtained by forging, and
前記プランジャの鍛造成型時の加圧方向とは反対側の端面に、 内部に凹んだ QII部を設けて、  On the end face of the plunger opposite to the pressing direction at the time of forging, a QII part recessed inside is provided,
該凹部の底面を、鍛造成型後に鍛造金型からプランジャ本体が 捕正された用紙 (条約第 条》 取り出されるためにェジヱクタピンに押圧される被押圧部とす ることを特徴とする請求の範囲第 1項または第 3項に記載のソ レノィ ドバルブ。 The bottom surface of the recess is set on a paper in which the plunger body is recovered from the forging die after forging (Article 2 of the Convention). 4. The solenoid valve according to claim 1, wherein the portion is a pressed portion pressed by an ejector pin to be taken out.
5 . (補正後) 励磁手段による磁気力によって往復動を行うブラ ンジャと、  5. (After correction) A plunger that reciprocates by the magnetic force of the excitation means,
該プランジャ外周を摺動自在に支持して軸受を行うスリーブ と、 を備えたソレノイ ドバルブにおいて、  A sleeve for slidably supporting the outer periphery of the plunger to perform a bearing.
前記スリーブは、 軸受を行うための内周壁面を備え、 かつ、 軸 に垂直な内周壁面の断面形状を円形とすると共に、  The sleeve has an inner peripheral wall surface for carrying a bearing, and has a circular cross-sectional shape of the inner peripheral wall surface perpendicular to the shaft,
前記プランジャの前記内周壁面に対する摺動部分であって、軸 方向に垂直な断面の外周形状を、 5角形以上の奇数角形とするこ とを特徴とするソレノィ ドバルブ。  A solenoid valve, wherein a sliding portion of the plunger with respect to the inner peripheral wall surface, the outer peripheral shape of a cross section perpendicular to the axial direction is an odd-numbered polygon of pentagon or more.
6 . (削除)  6. (Delete)
7 . (補正後) 前記外周形状を略正 9角形とすることを特徴とす る請求の範囲第 5項に記載のソレノィ ドバルブ。  7. (After correction) The solenoid valve according to claim 5, wherein the outer peripheral shape is a substantially regular octagon.
8 . (捕正後) 前記プランジャの外周の平面部分と前記スリーブ の内周壁面によつて形成される流路の軸方向に垂直な断面は、ソ レノィ ドバルブ本体内に流入する流体に含まれる不純物を、流入 する前にソレノイ ドパルプ本体の外部で除去するフィルタの目 の寸法形状を含む寸法形状に設定されることを特徴とする請求 の範囲第 5項または第 7項に記載のソレノィ ドバルブ。 8. (After capture) The cross section perpendicular to the axial direction of the flow path formed by the outer flat surface portion of the plunger and the inner peripheral wall surface of the sleeve is included in the fluid flowing into the solenoid valve body. 8. The solenoid valve according to claim 5, wherein the size of the filter is set to include the size and shape of an eye of a filter for removing impurities outside the body of the solenoid pulp before flowing in.
捕正された用紙 (条約第 条》 Paper captured (Article of the Convention)
PCT/JP2001/007282 2000-08-28 2001-08-24 Solenoid valve WO2002018828A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/362,372 US6971627B2 (en) 2000-08-28 2001-08-24 Solenoid valve
AU2001280160A AU2001280160A1 (en) 2000-08-28 2001-08-24 Solenoid valve
DE10196576T DE10196576B4 (en) 2000-08-28 2001-08-24 solenoid valve
JP2002523515A JP4210775B2 (en) 2000-08-28 2001-08-24 Solenoid valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-257804 2000-08-28
JP2000257804 2000-08-28

Publications (1)

Publication Number Publication Date
WO2002018828A1 true WO2002018828A1 (en) 2002-03-07

Family

ID=18746213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007282 WO2002018828A1 (en) 2000-08-28 2001-08-24 Solenoid valve

Country Status (4)

Country Link
JP (1) JP4210775B2 (en)
AU (1) AU2001280160A1 (en)
DE (1) DE10196576B4 (en)
WO (1) WO2002018828A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050000A1 (en) * 2003-11-11 2005-06-02 Robert Bosch Gmbh Valve used to control a fluid
JP2008202701A (en) * 2007-02-20 2008-09-04 Inax Corp Hot-and-cold-water mixing valve
WO2011036731A1 (en) * 2009-09-28 2011-03-31 三菱電機株式会社 Hydraulic pressure controlling solenoid valve
WO2022097515A1 (en) * 2020-11-05 2022-05-12 イーグル工業株式会社 Spool valve

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10311486A1 (en) * 2002-09-27 2004-04-08 Continental Teves Ag & Co. Ohg Electromagnetic valve especially for a motor vehicle wheel slip control, has gap between magnetic core and armature permitting flow around switch element in any switch position
DE102004028871A1 (en) * 2004-06-15 2006-01-05 Hydac Electronic Gmbh Actuating device, in particular for actuating valves
DE102009043320B4 (en) * 2009-09-28 2012-01-12 Hydraulik-Ring Gmbh Electrohydraulic valve
DE102015102066A1 (en) * 2015-02-13 2016-08-18 Hilite Germany Gmbh Central actuator for a Schwenkmotorversteller a camshaft
DE102017119001A1 (en) * 2017-08-21 2019-02-21 Kendrion (Villingen) Gmbh Electromagnetic actuator
JP2019110747A (en) * 2017-12-18 2019-07-04 フスコ オートモーティブ ホールディングス エル・エル・シーHUSCO Automotive Holdings LLC Latch prevention damping shim for electromagnetic actuator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139321U (en) * 1978-03-22 1979-09-27
JPS57141278U (en) * 1981-02-27 1982-09-04
JPH06137453A (en) * 1992-10-23 1994-05-17 Honda Motor Co Ltd Electromagnetic needle valve
JPH10196829A (en) * 1996-12-30 1998-07-31 Tosok Corp Solenoid valve
JP2000046227A (en) * 1998-07-31 2000-02-18 Aisin Seiki Co Ltd Solenoid valve device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2466630B1 (en) * 1979-10-05 1985-06-28 Weber Spa ELECTROMAGNETICALLY ACTUATED INJECTOR FOR INTERNAL COMBUSTION ENGINES
JPH02209706A (en) * 1988-11-08 1990-08-21 Higashifuji Seisakusho:Kk Plunger type solenoid
DE3904447A1 (en) * 1989-02-15 1990-08-16 Bosch Gmbh Robert MAGNETIC TANK
DE3933331A1 (en) * 1989-10-06 1991-04-11 Bosch Gmbh Robert Electromagnetic fuel injection valve for internal combustion engine - has grooves along internal surface of hollow armature conducting fuel from coil space to injection nozzle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139321U (en) * 1978-03-22 1979-09-27
JPS57141278U (en) * 1981-02-27 1982-09-04
JPH06137453A (en) * 1992-10-23 1994-05-17 Honda Motor Co Ltd Electromagnetic needle valve
JPH10196829A (en) * 1996-12-30 1998-07-31 Tosok Corp Solenoid valve
JP2000046227A (en) * 1998-07-31 2000-02-18 Aisin Seiki Co Ltd Solenoid valve device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050000A1 (en) * 2003-11-11 2005-06-02 Robert Bosch Gmbh Valve used to control a fluid
JP2008202701A (en) * 2007-02-20 2008-09-04 Inax Corp Hot-and-cold-water mixing valve
WO2011036731A1 (en) * 2009-09-28 2011-03-31 三菱電機株式会社 Hydraulic pressure controlling solenoid valve
JPWO2011036731A1 (en) * 2009-09-28 2013-02-14 三菱電機株式会社 Hydraulic control solenoid valve
WO2022097515A1 (en) * 2020-11-05 2022-05-12 イーグル工業株式会社 Spool valve

Also Published As

Publication number Publication date
AU2001280160A1 (en) 2002-03-13
DE10196576B4 (en) 2005-01-27
DE10196576T1 (en) 2003-07-10
JP4210775B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
JP4790441B2 (en) Electromagnetic fuel injection valve and method of assembling the same
JP2008031853A (en) Fuel injection valve
US6971627B2 (en) Solenoid valve
JP3847564B2 (en) Fuel injection valve
WO2002018828A1 (en) Solenoid valve
JP2006022721A (en) Fuel injection valve
US20190024618A1 (en) Fuel injection device
JP5063789B2 (en) Electromagnetic fuel injection valve and method of assembling the same
JP5126603B2 (en) High pressure pump
US20010023930A1 (en) Electromagnetic valve
JP2005098310A (en) Linear solenoid and solenoid valve
US11300088B2 (en) Fuel injection valve
JP2003328891A (en) Fuel injection device
JP5839228B2 (en) Fuel injection valve
JP5126606B2 (en) High pressure pump
JP2009108805A (en) Fuel injection valve
JP2010156258A (en) High pressure pump
JP6032312B2 (en) High pressure pump
JP5929973B2 (en) High pressure pump
JP4741778B2 (en) Solenoid and solenoid valve
JP6988953B2 (en) High pressure pump
JP3962951B2 (en) Fuel injection device
JP6443412B2 (en) High pressure pump
JP6337874B2 (en) High pressure pump
JP5971361B2 (en) High pressure pump

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002523515

Country of ref document: JP

RET De translation (de og part 6b)

Ref document number: 10196576

Country of ref document: DE

Date of ref document: 20030710

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10196576

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 10362372

Country of ref document: US

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607