WO2002014773A1 - Heat reservoir - Google Patents

Heat reservoir Download PDF

Info

Publication number
WO2002014773A1
WO2002014773A1 PCT/JP2001/006985 JP0106985W WO0214773A1 WO 2002014773 A1 WO2002014773 A1 WO 2002014773A1 JP 0106985 W JP0106985 W JP 0106985W WO 0214773 A1 WO0214773 A1 WO 0214773A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb
temperature
gas
honeycomb structure
heat storage
Prior art date
Application number
PCT/JP2001/006985
Other languages
French (fr)
Japanese (ja)
Inventor
Yutaka Suzukawa
Isao Mori
Hirokazu Katsushima
Yoshiyuki Kasai
Original Assignee
Nkk Corporation
Nippon Furnace Kogyo Kaisha, Ltd.
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nkk Corporation, Nippon Furnace Kogyo Kaisha, Ltd., Ngk Insulators, Ltd. filed Critical Nkk Corporation
Priority to AU2001278719A priority Critical patent/AU2001278719A1/en
Publication of WO2002014773A1 publication Critical patent/WO2002014773A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/02Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using rigid bodies, e.g. of porous material

Definitions

  • the present invention relates to a heat storage element, and more particularly to a heat storage element that can be prevented from cracking due to thermal stress and can be used stably for a long period of time.
  • regenerator for a regenerative type burner which is one of the purposes of using the regenerator according to the present invention.
  • the regenerative burner is equipped with a heat storage unit attached to each burner, and exchanges heat between the combustion exhaust gas and the combustion air, thereby obtaining high-temperature preheated air and performing highly efficient combustion. It is Pana.
  • FIG. 4 is a schematic sectional view showing a heating furnace in which a regenerative parner is installed.
  • 1 is a heating furnace
  • 2a 2b is a pair of regenerative parners installed facing the furnace wall of heating furnace
  • 3a 3b is a regenerative parner 2a 2b
  • the heat storage bodies 3a and 3b preferably have a large specific surface area, and are composed of a plurality of honeycomb structures as disclosed in Japanese Patent Application Laid-Open No. Hei 4-251190.
  • 4a and 4b are fuel shut-off valves, and while this valve is open, pressurized fuel is supplied from a fuel supply source (not shown) to the parner 2a 2b at a predetermined flow rate. .
  • 5a and 5b are combustion air valves, and while this valve is open, pressurized air is supplied to the parner 2a2b at a predetermined flow rate from an air supply source (not shown). .
  • Numerals 6a and 6b denote flue gas valves. While these valves are open, flue gas that has passed through the regenerators 3a and 3b by an exhaust blower (not shown in the figure) Is aspirated at a predetermined flow rate and released to the atmosphere.
  • Reference numeral 7 denotes an object to be heated such as a steel slab in the heating furnace 1.
  • D1 and D2 are thermometers, T1 is a high temperature (combustion side) thermometer, and T2 is a low temperature (anti-combustion side) thermometer.
  • the fuel cutoff valve 4a is opened to supply fuel. Further, the combustion air valve 5a opens, the combustion exhaust gas valve 6a closes, and air is pushed into one of the heat storage bodies 3a. The air that has passed through the heat storage body 3a deprives the heat storage body 3a of heat and is supplied to the burner 2a as high-temperature preheated air.
  • both the fuel cutoff valve 4 b and the combustion air valve 5 are closed, and the combustion exhaust gas valve 6 b is open, and the gas in the furnace is sucked from the parner 2 b and the regenerator 3 b After heating this through b, it is exhausted by an exhaust blower.
  • alternating combustion is performed in which the combustion between the panners 2a and 2b is alternately performed at regular intervals.
  • the switching time is generally short, about 30 seconds to 2 minutes.
  • both the fuel cutoff valve 4a and the combustion air valve 5a are closed, and the combustion exhaust gas valve 6a is open, and the gas in the furnace is sucked from the parner 2a and the regenerator After heating through 3a, it is exhausted by an exhaust blower.
  • a heating furnace using such a regenerative burner when the regenerative burner is in a thermal storage state, the furnace gas is sucked into the burner, so that the high temperature side of the regenerator is generally The furnace is heated to the gas temperature.
  • the gas in the furnace that has passed through the regenerator heats the regenerator to a low temperature. If the suction of the furnace gas is continued, it is possible to heat the inside of the regenerator to the furnace gas temperature, but if the suction of the furnace gas is continued, it will pass through the regenerator
  • the gas temperature on the low temperature side of the regenerator from which the in-furnace gas flows out rises.
  • the gas temperature on the low temperature side of the regenerator can be obtained at the heat-resistant temperature of the flue gas valve, for example, at an economical price.
  • the gas temperature in the furnace on the low temperature side of the heat storage body is too low. That is, if the combustion exhaust gas contains sulfur, etc. in the fuel component in addition to water, a part of the combustion exhaust gas may condense at a temperature of about 150 ° C or less and generate combustion water. is there. Since the combustion water corrodes the piping and the flue gas valve, the gas temperature in the furnace on the low temperature side of the regenerator may be maintained at a maximum of 350 ° C or less, and an average of about 180 ° C. preferable.
  • the regenerative burner when the regenerative burner is in the combustion state, normal-temperature combustion air is supplied to the low-temperature side of the regenerator, and while passing through the regenerator, the high-temperature regenerator removes heat and is preheated. Supplied to PANA.
  • the heat storage parner it is preferable to operate so that preheated air with the highest possible temperature can be obtained.
  • the maximum temperature of the preheated air obtained by the regenerative burner is the furnace gas temperature. In practice, it is sufficient that a preheated air temperature lower by about 50 to 100 ° C. than the gas temperature in the furnace is obtained.
  • the temperature of the gas passing through the heat storage element on the high-temperature side of the heat storage element is 100 ° from the furnace gas temperature and the furnace gas temperature.
  • the temperature changes within the range of the preheated air temperature which is lower by about C.
  • the combustion state starts from about 350 ° C which is the maximum temperature of the outflow temperature of the furnace gas when the heat storage state is completed.
  • the temperature changes within a temperature range of about 30 ° C, which is the temperature of room temperature air.
  • the size of the regenerator 3 is such that the gas cross section is 40 It is 400 mm wide and the height of the heat storage body is about 400 mm.
  • honeycomb structure Six were arranged, and four layers were stacked in the height direction.
  • the cross-sectional area of the gas passage (thin tube) of the honeycomb structure constituting the heat storage body was the same in any of the honeycomb structures.
  • FIG. 6 is a schematic perspective view showing one honeycomb structure 8 constituting the heat storage body.
  • the length, width, and height dimensions of the honeycomb structure are denoted by symbols d, w, and h, respectively.
  • FIG. 7 is an enlarged view of the gas passage of the honeycomb structure 8.
  • the wall thickness of the honeycomb structure 8 is indicated by a symbol t, and the distance between the walls (pitch) is indicated by a symbol P.
  • the specific surface area of the heat storage body is 60 ⁇ 2 / ! ! 3 or more
  • the heat exchange performance is good, and if the wall thickness t is about 1.5 mm, it takes only about 1 s for the heat to be transmitted to the center of the wall by heat conduction and equalize.
  • a heat storage element is formed by combining a rectangular parallelepiped honeycomb structure having a length of about 100 mm, a width of about 100 mm and a height of about 100 mm.
  • this method has a problem that the honeycomb structure on the high-temperature side, into which the furnace gas flows, is cracked by thermal stress at the time of heating, the exchange cycle of the heat storage material is short, and the maintenance cost is increased. Stopping the equipment for replacement caused an increase in production machine losses.
  • the inventors of the present application have proposed a heat storage body disclosed in Japanese Patent Application Laid-Open No. H8-2476771 did.
  • the heat storage body has a plurality of stacked honeycomb structures in a direction in which the combustion air is fed, and also has a plurality of honeycomb structures divided in a cross section orthogonal to the flow of air.
  • the gas passage on the high temperature side (combustion side) of the body has a larger area than the low temperature side (anti-combustion side).
  • the cracks in the honeycomb structure occur when the thermal stress generated due to the temperature deviation in the height direction of the heat storage body-(in the axial direction of the thin tube) exceeds the material strength limit. Therefore, taking into account that the strength of the honeycomb structure decreases at high temperatures, g
  • an object of the present invention is to further improve the above-described prior invention, to prevent the cracks due to thermal stress, to use a honeycomb structure for obtaining a heat storage element that can be used stably for a long period of time, and to improve the honeycomb structure.
  • a heat storage body that quantitatively defines the relationship with the shape of the body. Disclosure of the invention
  • a honeycomb structure including a porous honeycomb structure, wherein the honeycomb structure is heated by passing a high-temperature gas through the honeycomb structure for a certain period of time and heated to a high temperature for the next predetermined period of time.
  • the plurality of honeycomb structures are stacked in the direction of the gas flow, and are orthogonal to the gas flow. Also, the honeycomb structure is divided into a plurality of sections in the same cross section as described above.
  • FIG. 1 is a graph showing the experimental results of the durability of the honeycomb structure.
  • FIG. 2 is a schematic perspective view showing the heat storage body used in the embodiment of the present invention.
  • FIG. 3 is a schematic perspective view showing a honeycomb structure of a hexagonal gas passage.
  • FIG. 4 is a schematic sectional view showing a regenerative burner heating furnace.
  • FIG. 5 is a schematic perspective view showing a heat storage body composed of a honeycomb structure having the same gas passage channel area.
  • FIG. 6 is a schematic perspective view showing a honeycomb structure of a test piece.
  • FIG. 7 is an enlarged view showing a gas passage.
  • FIG. 8 is a schematic perspective view showing the heat storage body of the prior invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the inventors of the present application have found that the use temperature of the honeycomb structure in the heat storage and the shape of the honeycomb structure, that is, the height of the honeycomb structure (h) can prevent cracking due to thermal stress and can be used stably for a long period of time. , Width (w;), depth (d), projected area of gas passage cross-section (cross-sectional area of thin tube) (wXd) and volume (wXdXh) was performed.
  • thermometer T1 The average value of the furnace gas temperature measured by the thermometer T1 is changed from 1300 ° C to 400 ° C by changing the combustion load of the regenerative burner, and at the same time, the temperature is measured by the thermometer T2.
  • the long-term durability test of the heat storage material was performed by adjusting the furnace gas flow rate so that the average value of the furnace gas temperature was constant at approximately 200 ° C.
  • the test piece was made of ceramics containing 90% or more of alumina.
  • the horizontal axis shows the average temperature of the gas in the furnace measured by the thermometer T1
  • the vertical axis shows the dimensions, w, d, and h of the honeycomb test piece.
  • the solid line in the figure indicates the temperature range in which the honeycomb structure did not crack.
  • the present invention further specifically relates to the use temperature of the honeycomb structure, the height (h), the width (w), the depth (d), and the projected area of the gas passage cross section (cross sectional area of the thin tube) of the honeycomb structure.
  • Table 2 The relationship between (wXd) and volume (wXdXh) is defined as shown in Table 2, and a heat storage material that can prevent cracking due to thermal stress and can be used stably for ft period is obtained.
  • Table 2 shows the operating temperature in the high-temperature area (1 100 ° C ⁇ T ⁇ 1200 ° C, 1200 ° C ⁇ T) where cracks are most likely to occur, and the height (h) and width (w) of the honeycomb structure. ), Depth (d), projection area of gas passage cross section (cross-sectional area of thin tube) (wX d) and volume (wX d X h).
  • honeycomb structure having a hexagonal gas passage channel shown in FIG. Experimented. As a result, they found that if the dimension X in Fig. 3 was read as w and y was read as d, the results in Table 3 above would apply.
  • the thermal stress is reduced. Cracks can be prevented, and a heat storage element that can be used stably for a long period of time can be obtained.
  • maintenance costs can be reduced by extending the replacement cycle of the honeycomb structure, and production can be stopped by replacing equipment for replacement. Useful effects such as the effect of reducing mechanical loss can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Supply (AREA)

Abstract

A heat reservoir of regenerative burner, comprising a plurality of honeycomb structural bodies stacked in a gas flowing direction and divided into a plurality of parts also in a cross section orthogonal to the gas flowing direction, wherein the honeycomb structural bodies have a relation specified in Table 9 below, whereby the cracking of the heat reservoir by a thermal stress can be prevented to use stably over a long period. In Table 6, (T) is the temperature of honeycomb in use, (h) is the height of honeycomb, (W) is the width of honeycomb, (d) is the depth of honeycomb, (w x d) is the projected area of the gas passage cross section of honeycomb, and (w x d x h) is the volume of honeycomb. Table 6 Temperature range Where, T: Temperature of honeycomb in use h: Height of honeycomb w: Width of honeycomb d: Depth of honeycomb w x d: Projected area of gas passage cross section of honeycomb w x d x h: Volume of honeycomb

Description

技術分野  Technical field
この発明は、 蓄熱体、 特に、 熱応力による割れが防止でき、 長期間安定して使用 できる蓄熱体に関するものである。  The present invention relates to a heat storage element, and more particularly to a heat storage element that can be prevented from cracking due to thermal stress and can be used stably for a long period of time.
明 背景技術 食  Light background technology food
ここでは、 この発明に係わる蓄熱体の使用目的の一つである蓄熱式パーナ用蓄熱 体を例にあげて、 従来技術を説明する。  Here, the prior art will be described by taking as an example a regenerator for a regenerative type burner, which is one of the purposes of using the regenerator according to the present invention.
蓄熱式パーナは、 個々のパーナに付随して蓄熱体を取り付け、 燃焼排気ガスと燃 焼空気との間で熱交換を行ない、 これにより高温予熱空気を得て熱効率の高い燃焼 を行なうことのできるパーナである。  The regenerative burner is equipped with a heat storage unit attached to each burner, and exchanges heat between the combustion exhaust gas and the combustion air, thereby obtaining high-temperature preheated air and performing highly efficient combustion. It is Pana.
以下に、 この蓄熱式パーナについて、 これを加熱炉に設置した態様を例をあげて 、 図面を参照しながら説明する。  Hereinafter, the regenerative parner will be described with reference to the drawings, taking an example in which it is installed in a heating furnace.
図 4は、 蓄熱式パーナが設置された加熱炉を示す概略断面図である。  FIG. 4 is a schematic sectional view showing a heating furnace in which a regenerative parner is installed.
. 図 4において、 1は、 加熱炉、 2 a 2 bは、 加熱炉 1の炉壁に対向して設置さ れた一対の蓄熱式パーナ、 3 a 3 bは、 蓄熱式パーナ 2 a 2 b内に設けられた 蓄熱体である。 蓄熱体 3 a 3 bは、 比表面積の大きなものが良く、 特開平 4一 2 5 1 1 9 0号公報に開示されるように、 複数個のハニカム構造体によって構成され ている。 4 a 4 bは、 燃料遮断弁であり、 この弁が開いている間は、 図には示さ れていない燃料供給源より加圧された燃料が所定流量でパーナ 2 a 2 bに供給さ れる。 In Fig. 4, 1 is a heating furnace, 2a 2b is a pair of regenerative parners installed facing the furnace wall of heating furnace 1, 3a 3b is a regenerative parner 2a 2b It is a heat storage body provided inside. The heat storage bodies 3a and 3b preferably have a large specific surface area, and are composed of a plurality of honeycomb structures as disclosed in Japanese Patent Application Laid-Open No. Hei 4-251190. 4a and 4b are fuel shut-off valves, and while this valve is open, pressurized fuel is supplied from a fuel supply source (not shown) to the parner 2a 2b at a predetermined flow rate. .
5 a 5 bは、 燃焼空気弁であり、 この弁が開いている間は、 図には示されてい ない空気供給源より加圧された空気が所定流量でパーナ 2 a 2 bに供給される。 6 a、 6 bは、 燃焼排ガス弁であり、 こ の弁が開いている間は、 図には示されて いない排気ブロワにより蓄熱体 3 a、 3 bを通過した燃焼排ガス (以下、 炉内ガス という) が所定流量で吸引され、 大気に放出される。 7は、 加熱炉 1内の鋼スラブ 等の被加熱物である。 丁1ぉょび丁2は、 それぞれ温度計であり、 T 1は、 高温側 (燃焼側) 温度計、 T 2は、 低温側 (反燃焼側) 温度計である。 5a and 5b are combustion air valves, and while this valve is open, pressurized air is supplied to the parner 2a2b at a predetermined flow rate from an air supply source (not shown). . Numerals 6a and 6b denote flue gas valves. While these valves are open, flue gas that has passed through the regenerators 3a and 3b by an exhaust blower (not shown in the figure) Is aspirated at a predetermined flow rate and released to the atmosphere. Reference numeral 7 denotes an object to be heated such as a steel slab in the heating furnace 1. D1 and D2 are thermometers, T1 is a high temperature (combustion side) thermometer, and T2 is a low temperature (anti-combustion side) thermometer.
図 4において、 例えば、 一方のパーナ 2 aが燃焼状態にある場合には、 燃料遮断 弁 4 aが開いて燃料が供給される。 また、 燃焼空気弁 5 aが開き、 燃焼排ガス弁 6 aが閉じて一方の蓄熱体 3 aに空気が押し込まれる。 蓄熱体 3 aを通過した空気は 、 蓄熱体 3 aより熱を奪って高温の予熱空気となってバ一ナ 2 aに供給される。 一方、 このとき他方のパーナ 2 bでは、 燃料遮断弁 4 bおよび燃焼空気弁 5 が 共に閉じ、 燃焼排ガス弁 6 bが開いており、 炉内ガスは、 パーナ 2 bより吸引され 、 蓄熱体 3 bを経てこれを加熱した後、 排気ブロワにより排気される。  In FIG. 4, for example, when one of the burners 2a is in a combustion state, the fuel cutoff valve 4a is opened to supply fuel. Further, the combustion air valve 5a opens, the combustion exhaust gas valve 6a closes, and air is pushed into one of the heat storage bodies 3a. The air that has passed through the heat storage body 3a deprives the heat storage body 3a of heat and is supplied to the burner 2a as high-temperature preheated air. On the other hand, at this time, in the other parner 2 b, both the fuel cutoff valve 4 b and the combustion air valve 5 are closed, and the combustion exhaust gas valve 6 b is open, and the gas in the furnace is sucked from the parner 2 b and the regenerator 3 b After heating this through b, it is exhausted by an exhaust blower.
上記蓄熱式パーナ 2 a、 2 bを用いた加熱炉 1において蓄熱燃焼を行う場合には 、 一定時間毎にパーナ 2 aと 2 bとの燃焼を交互に切り替える交番燃焼が行われる 。 切り替え時間は、 概略 3 0秒〜 2分間と短いのが普通である。  When performing thermal storage combustion in the heating furnace 1 using the thermal storage type parners 2a and 2b, alternating combustion is performed in which the combustion between the panners 2a and 2b is alternately performed at regular intervals. The switching time is generally short, about 30 seconds to 2 minutes.
そして、 燃焼が切り替わり、 他方のパーナ 2 bが燃焼状態になった場合には、 燃 料遮断弁 4 bおよび燃焼空気弁 5 bが共に開き、 燃焼排ガス弁 6 bが閉じて他方の 蓄熱体 3 bに空気が供給される。 高温の蓄熱体 3 bを通過した空気は、 蓄熱体 3 b より熱を奪って高温の予熱空気となってパーナ 2 bに供給される。  Then, when the combustion is switched and the other parner 2b is in a combustion state, the fuel cutoff valve 4b and the combustion air valve 5b are both opened, the combustion exhaust gas valve 6b is closed, and the other heat storage element 3b is closed. Air is supplied to b. The air that has passed through the high-temperature heat storage unit 3 b deprives the heat storage unit 3 b of heat and becomes high-temperature preheated air to be supplied to the parner 2 b.
一方、 このとき一方のパーナ 2 aでは、 燃料遮断弁 4 aおよび燃焼空気弁 5 aが 共に閉じ、 燃焼排ガス弁 6 aが開いており、 炉内ガスは、 パーナ 2 aより吸引され 、 蓄熱体 3 aを経てこれを加熱した後、 排気ブロワにより排気される。  On the other hand, at this time, in one parner 2a, both the fuel cutoff valve 4a and the combustion air valve 5a are closed, and the combustion exhaust gas valve 6a is open, and the gas in the furnace is sucked from the parner 2a and the regenerator After heating through 3a, it is exhausted by an exhaust blower.
このような蓄熱式バーナを用いた加熱炉においては、 蓄熱パーナが蓄熱状態にあ る場合には、 パーナに炉内ガスが吸引されるので、 蓄熱体の高温側は、 短時間で概 略、 炉内ガス温度まで加熱される。 蓄熱体を通過した炉内ガスは、 蓄熱体に熱を与 えて低温となる。 炉内ガスの吸引を継続すれば、 蓄熱体の内部まで炉內ガス温度に 加熱することが可能であるが、 炉内ガスの吸引を継続すると、 やがて蓄熱体を通過 した炉内ガスが流出する蓄熱体の低温側 でのガス温度が上昇する。 蓄熱体を通過 した炉内ガスは、 燃焼排ガス弁を経て系外に排出されるので、 蓄熱体の低温側での ガス温度は、 燃焼排ガス弁の耐熱温度、 例えば、 経済的な値段で入手できる弁ではIn a heating furnace using such a regenerative burner, when the regenerative burner is in a thermal storage state, the furnace gas is sucked into the burner, so that the high temperature side of the regenerator is generally The furnace is heated to the gas temperature. The gas in the furnace that has passed through the regenerator heats the regenerator to a low temperature. If the suction of the furnace gas is continued, it is possible to heat the inside of the regenerator to the furnace gas temperature, but if the suction of the furnace gas is continued, it will pass through the regenerator The gas temperature on the low temperature side of the regenerator from which the in-furnace gas flows out rises. Since the gas inside the furnace that has passed through the regenerator is discharged outside the system via the flue gas valve, the gas temperature on the low temperature side of the regenerator can be obtained at the heat-resistant temperature of the flue gas valve, for example, at an economical price. In the valve
3 5 0 °C程度を越えることはできない。 It cannot exceed 350 ° C.
なお、 蓄熱体の低温側での炉内ガス温度は、 低すぎても問題がある。 即ち、 燃焼 排気ガス中には、 水分の他、 燃料成分中に硫黄分等が含まれると、 1 5 0 °C程度の 温度以下で燃焼排ガスの一部が凝縮して燃焼水が生じることがある。 燃焼水は、 配 管や燃焼排ガス弁を腐蝕させるために、 蓄熱体の低温側での炉内ガス温度は、 最高 3 5 0 °C以下、 平均 1 8 0 °C程度に維持されることが好ましい。  There is a problem if the gas temperature in the furnace on the low temperature side of the heat storage body is too low. That is, if the combustion exhaust gas contains sulfur, etc. in the fuel component in addition to water, a part of the combustion exhaust gas may condense at a temperature of about 150 ° C or less and generate combustion water. is there. Since the combustion water corrodes the piping and the flue gas valve, the gas temperature in the furnace on the low temperature side of the regenerator may be maintained at a maximum of 350 ° C or less, and an average of about 180 ° C. preferable.
—方、 蓄熱式パーナが燃焼状態にある場合には、 蓄熱体の低温側に常温の燃焼空 気が供給され、 これが蓄熱体を通過する間に高温の蓄熱体がら熱を奪い予熱されて 、 パーナに供給される。 蓄熱パーナの運転にあたっては、 できるだけ高温の予熱空 気を得ることのできる運転をすることが好ましい。 蓄熱式パーナでは、 得られる予 熱空気の温度は、 炉内ガス温度が上限である。 現実的には、 炉内ガス温度より 5 0 〜1 0 0 °C程度低い予熱空気温度が得られれば良い。  On the other hand, when the regenerative burner is in the combustion state, normal-temperature combustion air is supplied to the low-temperature side of the regenerator, and while passing through the regenerator, the high-temperature regenerator removes heat and is preheated. Supplied to PANA. When operating the heat storage parner, it is preferable to operate so that preheated air with the highest possible temperature can be obtained. The maximum temperature of the preheated air obtained by the regenerative burner is the furnace gas temperature. In practice, it is sufficient that a preheated air temperature lower by about 50 to 100 ° C. than the gas temperature in the furnace is obtained.
即ち、 適切に設計され、 操業している蓄熱式パーナの蓄熱体にあっては、 蓄熱体 の高温側における蓄熱体通過ガスの温度は、 炉内ガス温度と炉内ガス温度より 1 0 0 °C程度低い予熱空気温度との範囲内で変化し、 一方、 その低温側にあっては、 蓄 熱状態完了時において炉内ガスの流出温度の最高温度である 3 5 0 °C程度から燃焼 状態完了時において常温空気の温度である 3 0 °C程度の温度範囲内で変化する。 さて、 従来の蓄熱式バーナ用蓄熱体にあっては、 上述したように、 蓄熱体は、 比 表面積の大きなものが良いことは経験的に知られており、 比表面積の大きなハニカ ム構造体が用いられる。  That is, in a heat storage element of a regeneratively-operated parner that is properly designed and operated, the temperature of the gas passing through the heat storage element on the high-temperature side of the heat storage element is 100 ° from the furnace gas temperature and the furnace gas temperature. The temperature changes within the range of the preheated air temperature which is lower by about C. On the other hand, on the low temperature side, the combustion state starts from about 350 ° C which is the maximum temperature of the outflow temperature of the furnace gas when the heat storage state is completed. At the time of completion, the temperature changes within a temperature range of about 30 ° C, which is the temperature of room temperature air. As described above, it has been empirically known that a conventional heat storage element for a regenerative burner has a large specific surface area, and a honeycomb structure having a large specific surface area is known. Used.
例えば、 燃焼容量が 1 0 0万 k c a 1 ZHの蓄熱式パーナにあっては、 図 5に示 すように、 蓄熱体 3の大きさは、 ガスの通過断面の寸法が縦 4 0 O mni X横 4 0 0 mmで、 蓄熱体の高さが 4 0 O mm程度である。 従来は、 縦 1 0 0 mm X横 1 0 0 mm X高さ 1 0 O mmの直方体ハニカム構造体をガスの通過断面には、 4 X 4 = 1 Λ For example, in a regenerative burner with a combustion capacity of 100,000 kca 1 ZH, as shown in Fig. 5, the size of the regenerator 3 is such that the gas cross section is 40 It is 400 mm wide and the height of the heat storage body is about 400 mm. Conventionally, a rectangular parallelepiped honeycomb structure with a length of 100 mm, a width of 100 mm, and a height of 100 mm has a cross section of 4 x 4 = 1 Λ
4  Four
6個配列し、 高さ方向には 4段積み重ね ていた。 そして、 蓄熱体を構成するハニ カム構造体のガス通過流路 (細管) の断面積は、 何れのハニカム構造体おいても同 一であった。  Six were arranged, and four layers were stacked in the height direction. The cross-sectional area of the gas passage (thin tube) of the honeycomb structure constituting the heat storage body was the same in any of the honeycomb structures.
図 6は、 蓄熱体を構成する一個のハ-カム構造体 8を示す概略斜視図であり、 こ こでは、 ハニカム構造体の縦、 横、 高さ方向寸法をそれぞれ、 記号 d、 w、 hで示 す。 また、 図 7は、 ハニカム構造体 8のガス通過流路を拡大して示したもので、 ノヽ 二カム構造体 8の壁厚を記号 t、 壁間距離 (ピッチ) を記号 Pで示す。  FIG. 6 is a schematic perspective view showing one honeycomb structure 8 constituting the heat storage body. Here, the length, width, and height dimensions of the honeycomb structure are denoted by symbols d, w, and h, respectively. Indicated by FIG. 7 is an enlarged view of the gas passage of the honeycomb structure 8. The wall thickness of the honeycomb structure 8 is indicated by a symbol t, and the distance between the walls (pitch) is indicated by a symbol P.
本願発明者等の研究によれば、 例えば、 壁厚 t = 1 . 5 mm以下、 ピッチ P = 5 mm以下のハニカム構造体であれば、 蓄熱体の比表面積が 6 0 Ο πι 2/ !!! 3以上とな り、 熱交換性能が良く、 また、 壁厚 tが 1 . 5 mm程度であれば、 壁中心部まで熱 伝導で熱が伝わり均熱化するのに 1 s程度しかかからないので、 温度変化に対する 応答性に優れていることが分かつた。 According to the study of the present inventors, for example, in the case of a honeycomb structure having a wall thickness t of 1.5 mm or less and a pitch P of 5 mm or less, the specific surface area of the heat storage body is 60 Οπι 2 / !! ! 3 or more, the heat exchange performance is good, and if the wall thickness t is about 1.5 mm, it takes only about 1 s for the heat to be transmitted to the center of the wall by heat conduction and equalize. However, it has been found that it has excellent responsiveness to temperature changes.
従来の蓄熱式バーナ用蓄熱体にあっては、 上述したように、 縦 l O O mm X横 1 0 0 mm X高さ 1 0 0 mm程度の直方体ハニカム構造体を組み合わせて蓄熱体を形 成していたが、 この形成方法では、 特に、 炉内ガスの流入する高温側のハニカム構 造体が加熱時の熱応力によって割れる問題があり、 蓄熱体の交換周期が短く、 保全 費用の増大と、 交換のために設備を止めることによる生産機械損失の増大を招レ、て いた。  As described above, in the conventional heat storage element for a heat storage type burner, a heat storage element is formed by combining a rectangular parallelepiped honeycomb structure having a length of about 100 mm, a width of about 100 mm and a height of about 100 mm. However, this method has a problem that the honeycomb structure on the high-temperature side, into which the furnace gas flows, is cracked by thermal stress at the time of heating, the exchange cycle of the heat storage material is short, and the maintenance cost is increased. Stopping the equipment for replacement caused an increase in production machine losses.
本願発明者等は、 上述した目的を達成するために、 特開平 8— 2 4 7 6 7 1号公 報おょぴ特開平 9一 3 3 0 3 4号公報に開示される蓄熱体を提案した。 この蓄熱体 は、 図 8に示すように、 燃焼空気が送り込まれる方向にハニカム構造体を複数層積 層すると共に、 空気の流れに直交する断面においても複数個に分割し、 且つ、 ハニ カム構造体の高温側 (燃焼側) のガス通過流路の面積を、 低温側 (反燃焼側) に比 ベて広く形成したものである。 このように構成した理由は、 下記の通りである。 ハニカム構造体の割れは、 蓄熱体の高さ方向-(細管の軸線方向) 温度偏差に起困 して発生する熱応力が材料強度限界を超えると発生するものである。 従って、 高温 ではハニカム構造体の強度が低下することを勘案し、 その大きさに制約を与えて、 g In order to achieve the above-mentioned object, the inventors of the present application have proposed a heat storage body disclosed in Japanese Patent Application Laid-Open No. H8-2476771 did. As shown in FIG. 8, the heat storage body has a plurality of stacked honeycomb structures in a direction in which the combustion air is fed, and also has a plurality of honeycomb structures divided in a cross section orthogonal to the flow of air. The gas passage on the high temperature side (combustion side) of the body has a larger area than the low temperature side (anti-combustion side). The reason for such a configuration is as follows. The cracks in the honeycomb structure occur when the thermal stress generated due to the temperature deviation in the height direction of the heat storage body-(in the axial direction of the thin tube) exceeds the material strength limit. Therefore, taking into account that the strength of the honeycomb structure decreases at high temperatures, g
ハニカム構造体に発生する温度偏差を小 さくすれば、 割れを防止することができ る。  If the temperature deviation generated in the honeycomb structure is reduced, cracking can be prevented.
上述した先行発明によれば、 熱応力による割れが防止でき、 長期間安定して使用 できる蓄熱体を得ることができるが、 ハニカム構造体の使用温度とハニカム構造体 の形状、 即ち、 ハニカム構造体の高さ (h ) 、 幅 (w) 、 奥行き (d ) 、 ガス通過 断面の投影面積 (細管の断面積) (w X d ) および体積 (w X d X h ) との関係を 定量的に規定するには至っていなかった。  According to the above-mentioned prior invention, cracks due to thermal stress can be prevented, and a heat storage element that can be used stably for a long period of time can be obtained. However, the operating temperature of the honeycomb structure and the shape of the honeycomb structure, that is, the honeycomb structure, The relationship between the height (h), width (w), depth (d), projected area (cross-sectional area of thin tube) (wXd) and volume (wXdXh) of the gas passage It had not yet been specified.
従って、 この発明の目的は、 上記先行発明に更に改良を加えて、 熱応力による割 れが防止でき、 長期間安定して使用できる蓄熱体を得るためのハニカム構造体の使 用温度とハニカム構造体の形状との関係を定量的に規定した蓄熱体を提供すること κ あ 。 発明の開示  Accordingly, an object of the present invention is to further improve the above-described prior invention, to prevent the cracks due to thermal stress, to use a honeycomb structure for obtaining a heat storage element that can be used stably for a long period of time, and to improve the honeycomb structure. To provide a heat storage body that quantitatively defines the relationship with the shape of the body. Disclosure of the invention
第 1の発明は、 多孔性ハニカム構造体からなり、 前記ハニカム構造体内に一定時 間、 高温ガスを通過させて前記ハニカム構造体を加熱し、 次の一定時間、 高温に加 熱された前記ハニカム構造体内に低温ガスを通過させて前記低温ガスを加熱するこ とを繰り返し行う蓄熱体において、 前記ハニカム構造体は、 前記ガスの流れの方向 に複数個積層されると共に、 前記ガスの流れに直交する断面においても複数個に分 割され、 且つ、 前記ハニカム構造体は、 下記表 1 According to a first aspect of the present invention, there is provided a honeycomb structure including a porous honeycomb structure, wherein the honeycomb structure is heated by passing a high-temperature gas through the honeycomb structure for a certain period of time and heated to a high temperature for the next predetermined period of time. In the heat storage body that repeatedly heats the low-temperature gas by passing the low-temperature gas through the structure, the plurality of honeycomb structures are stacked in the direction of the gas flow, and are orthogonal to the gas flow. Also, the honeycomb structure is divided into a plurality of sections in the same cross section as described above.
Figure imgf000007_0001
伹し τ ハニカムの使用温度
Figure imgf000007_0001
Τ Honeycomb operating temperature
h /、二カムの高さ  h /, two cam height
/、二カムの幅  /, Width of two cams
d ハニカムの奥行き  d Honeycomb depth
w X d ハニカムのガス通路断面の投影面積  w X d Projected area of gas passage cross section of honeycomb
x d X h ハニカムの体積 で規定される関係を有していることに特徴を有するものである。 図面の簡単な説明  x d X h is characterized by having a relationship defined by the volume of the honeycomb. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 ハニカム構造体の耐久性の実験結果を示すグラフである。  FIG. 1 is a graph showing the experimental results of the durability of the honeycomb structure.
図 2は、 この発明の実施例に使用した蓄熱体を示す概略斜視図である。  FIG. 2 is a schematic perspective view showing the heat storage body used in the embodiment of the present invention.
図 3は、 六角形状ガス通過流路のハ-カム構造体を示す概略斜視図である。  FIG. 3 is a schematic perspective view showing a honeycomb structure of a hexagonal gas passage.
図 4は、 蓄熱式バーナー加熱炉を示す概略断面図である。  FIG. 4 is a schematic sectional view showing a regenerative burner heating furnace.
図 5は、 ガス通過流路面積が同一のハニカム構造体からなる蓄熱体を示す概略斜 視図である。  FIG. 5 is a schematic perspective view showing a heat storage body composed of a honeycomb structure having the same gas passage channel area.
図 6は、 テストピースのハニカム構造体を示す概略斜視図である。  FIG. 6 is a schematic perspective view showing a honeycomb structure of a test piece.
図 7は、 ガス通過流路を示す拡大図である。  FIG. 7 is an enlarged view showing a gas passage.
図 8は、 先行発明の蓄熱体を示す概略斜視図である。 発明を実施するための最良の形態  FIG. 8 is a schematic perspective view showing the heat storage body of the prior invention. BEST MODE FOR CARRYING OUT THE INVENTION
本願発明者等は、 熱応力による割れが防止でき、 長期間安定して使用できる、 蓄 熱体におけるハニカム構造体の使用温度とハニカム構造体の形状、 即ち、 ハニカム 構造体の高さ (h ) 、 幅 (w;) 、 奥行き (d ) 、 ガス通過断面の投影面積 (細管の 断面積) (w X d ) および体積 (w X d X h ) との関係を定量的に規定すべく下記 試験を行なった。  The inventors of the present application have found that the use temperature of the honeycomb structure in the heat storage and the shape of the honeycomb structure, that is, the height of the honeycomb structure (h) can prevent cracking due to thermal stress and can be used stably for a long period of time. , Width (w;), depth (d), projected area of gas passage cross-section (cross-sectional area of thin tube) (wXd) and volume (wXdXh) Was performed.
即ち、 図 4に示すような蓄熱式パーナを設置した加熱炉において、 図 8に示す蓄 熱体の高温側に、 寸法 w、 d、 hの異なるセラミック製ハニカム構造体をテストピ ースとして組み込み、 蓄熱式パーナの燃焼負荷を変えて温度計 T 1で測定される 炉内ガス温度の平均値を 1300°Cから 400°Cまで変化させ、 同時に、 温度計 T 2で測定される炉內ガス温度の平均値がほぼ 200°Cで一定になるように炉內ガス 流量を調節して、 蓄熱体の長期耐久性試験を行なった。 テス トピースの材質は、 ァ ルミナを 90%以上含むセラミックスであった。 That is, in a heating furnace equipped with a regenerative parner as shown in Fig. 4, ceramic honeycomb structures with different dimensions w, d, and h were tested on the high temperature side of the regenerator shown in Fig. 8. The average value of the furnace gas temperature measured by the thermometer T1 is changed from 1300 ° C to 400 ° C by changing the combustion load of the regenerative burner, and at the same time, the temperature is measured by the thermometer T2. The long-term durability test of the heat storage material was performed by adjusting the furnace gas flow rate so that the average value of the furnace gas temperature was constant at approximately 200 ° C. The test piece was made of ceramics containing 90% or more of alumina.
この結果、 図 1に示すような結果を得た。 図 1において、 横軸は、 温度計 T 1で 測定した炉内ガスの平均温度、 縦軸は、 ハニカムテストピースの寸法、 w、 d、 h を示す。 また、 図中の実線は、 ハニカム構造体が割れなかった温度範囲を示す。  As a result, the result as shown in FIG. 1 was obtained. In FIG. 1, the horizontal axis shows the average temperature of the gas in the furnace measured by the thermometer T1, and the vertical axis shows the dimensions, w, d, and h of the honeycomb test piece. The solid line in the figure indicates the temperature range in which the honeycomb structure did not crack.
図 1から明らかなように、 ハニカム構造体のガス通過断面積 (wX d) およぴハ 二カムの高さ (h) が小さいほうが割れにくいことが判明した。 また、 使用温度が 低いほど、 (wX d) および (h) はより大きくて良いことが判明した。 なお、 こ こまでは、 先行発明に開示されている。  As is evident from Fig. 1, it was found that the smaller the gas passage cross-sectional area (wX d) and the height of the honeycomb (h) of the honeycomb structure, the smaller the cracks were. It was also found that (wX d) and (h) can be larger as the operating temperature is lower. The above is disclosed in the preceding invention.
この発明は、 更に、 具体的に、 ハニカム構造体の使用温度と、 ハニカム構造体の 高さ (h) 、 幅 (w) 、 奥行き (d) 、 ガス通過断面の投影面積 (細管の断面積) The present invention further specifically relates to the use temperature of the honeycomb structure, the height (h), the width (w), the depth (d), and the projected area of the gas passage cross section (cross sectional area of the thin tube) of the honeycomb structure.
(wX d) および体積 (wX d X h) との関係を、 表 2に示すように規定して、 熱 応力による割れが防止でき、 ft期間安定して使用できる蓄熱体を得るものである。 表 2は、 最も割れが発生しやすい高温側領域 (1 100°C<T≤ 1200°C、 1 200°C<T) の使用温度と、 ハニカム構造体の高さ (h) 、 幅 (w) 、 奥行き ( d) 、 ガス通過断面の投影面積 (細管の断面積) (wX d) および体積 (wX d X h) との関係を規定したものである。 The relationship between (wXd) and volume (wXdXh) is defined as shown in Table 2, and a heat storage material that can prevent cracking due to thermal stress and can be used stably for ft period is obtained. Table 2 shows the operating temperature in the high-temperature area (1 100 ° C <T≤1200 ° C, 1200 ° C <T) where cracks are most likely to occur, and the height (h) and width (w) of the honeycomb structure. ), Depth (d), projection area of gas passage cross section (cross-sectional area of thin tube) (wX d) and volume (wX d X h).
表 2  Table 2
Figure imgf000009_0001
但し T ハニカムの使用温度
Figure imgf000009_0001
However, the operating temperature of T honeycomb
h /、二カムの高さ .  h /, two cam height.
w /、二カムの幅  w /, two cam width
d ハニカムの奥行き  d Honeycomb depth
w X d ハニカムのガス通路断面の投影面積  w X d Projected area of gas passage cross section of honeycomb
w X d X h ハニカムの体積 なお、 本発明者等は、 ガス通過流路が上述した四角形状のハニカム構造体以外に 、 図 3に示す六角形状ガス通過流路のハ二カム構造体についても実験した。 その結 果、 図 3の寸法 Xを wと読み替え、 yを dと読み替えれば、 上記表 3の結果があて はまることを見出した。  w X d X h Volume of honeycomb In addition to the above-mentioned rectangular honeycomb structure having a gas passage channel, the present inventors have also considered a honeycomb structure having a hexagonal gas passage channel shown in FIG. Experimented. As a result, they found that if the dimension X in Fig. 3 was read as w and y was read as d, the results in Table 3 above would apply.
次に、 この発明を実施例によって更に説明する。  Next, the present invention will be further described with reference to examples.
(実施例 1 )  (Example 1)
炉内最高温度が 1 2 5 0 °Cの線材用連続式ビレツト加熱炉に、 表 3に示す組み合 わせで、 図 2に示すような、 縦 4 5 O mm X横 4 5 O mm X高さ 4 0 0 mmの蓄熱 体を有する蓄熱式パーナを設置して 2年間使用した。 こめ結果、 ハニカム構造体の 割れ等による不具合は顕在化しなかった。  Combination shown in Table 3 in a continuous billet heating furnace for wire rods with a maximum furnace temperature of 125 ° C, as shown in Fig. 2, length 45 O mm x width 45 O mm X height A regenerative parner with a thermal storage of 400 mm was installed and used for two years. As a result, problems such as cracks in the honeycomb structure did not become apparent.
表 3  Table 3
Figure imgf000010_0001
Figure imgf000010_0001
(実施例 2 ) (Example 2)
炉内最高温度が 1 3 5 0 °Cの熱延用連続式スラブ加熱炉に、 表 4に示す組み合わ g The continuous slab heating furnace for hot rolling with a maximum furnace temperature of 135 ° C was combined with the combination shown in Table 4. g
せで、 実施例 1と同様な寸法の蓄熱体を 有する蓄熱式バーナを設置して 2年間使 用した。 この結果、 ハニカム構造体の割れ等による不具合は顕在化しなかった。 表 4  Therefore, a regenerative burner having a regenerator of the same dimensions as in Example 1 was installed and used for two years. As a result, defects such as cracks in the honeycomb structure did not appear. Table 4
Figure imgf000011_0001
以上説明したように、 この発明によれば、 先行発明に更に改良を加えて、 ハニカ ム構造体の使用温度とハニカム構造体の形状との関係を定量的に規定することによ つて、 熱応力による割れが防止できることから、 長期間安定して使用できる蓄熱体 を得ることができ、 しかも、 ハニカム構造体の交換周期の延長により、 保全費用の 低減と、 交換のために設備を止めることによる生産機械損失の低滅効果が得られる といった有用な効果がもたらされる。
Figure imgf000011_0001
As described above, according to the present invention, by further improving the prior invention, by quantitatively defining the relationship between the operating temperature of the honeycomb structure and the shape of the honeycomb structure, the thermal stress is reduced. Cracks can be prevented, and a heat storage element that can be used stably for a long period of time can be obtained.In addition, maintenance costs can be reduced by extending the replacement cycle of the honeycomb structure, and production can be stopped by replacing equipment for replacement. Useful effects such as the effect of reducing mechanical loss can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . 多孔性ハニカム構造体からなり、 前記ハニカム構造体内に一定時間、 高温ガ スを通過させて前記ハニカム構造体を加熱し、 次の一定時間、 高温に加熱された前 記ハニカム構造体内に低温ガスを通過させて前記低温ガスを加熱することを繰り返 し行う蓄熱体において、 1. The honeycomb structure is made of a porous honeycomb structure. The honeycomb structure is heated by passing high-temperature gas through the honeycomb structure for a certain period of time, and then heated to a high temperature for the next predetermined period. In a heat storage body that repeatedly heats the low-temperature gas by passing gas,
前記ハニカム構造体は、 前記ガスの流れの方向に複数個積層されると共に、 前記 ガスの流れに直交する断面においても複数個に分割され、 且つ、 前記ハニカム構造 体は、 下記表 5  A plurality of the honeycomb structures are stacked in the direction of the gas flow, and are divided into a plurality of sections also in a cross section orthogonal to the flow of the gas.
表 5  Table 5
Figure imgf000012_0001
但し T ハニカムの使用温度
Figure imgf000012_0001
However, the operating temperature of T honeycomb
h ハニカムの高さ  h Honeycomb height
w ノヽニカムの幅  w The width of the honeycomb
d ハニカムの奥行き  d Honeycomb depth
w X d ハニカムのガス通路断面の投影面積  w X d Projected area of gas passage cross section of honeycomb
w X d X h ハニカムの体積 で規定される関係を有していることを特徴とする蓄熱体。  w X d X h A regenerator characterized by having a relationship defined by the volume of a honeycomb.
PCT/JP2001/006985 2000-08-14 2001-08-13 Heat reservoir WO2002014773A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001278719A AU2001278719A1 (en) 2000-08-14 2001-08-13 Heat reservoir

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000245672A JP2004286232A (en) 2000-08-14 2000-08-14 Thermal storage body
JP2000-245672 2000-08-14

Publications (1)

Publication Number Publication Date
WO2002014773A1 true WO2002014773A1 (en) 2002-02-21

Family

ID=18736149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006985 WO2002014773A1 (en) 2000-08-14 2001-08-13 Heat reservoir

Country Status (3)

Country Link
JP (1) JP2004286232A (en)
AU (1) AU2001278719A1 (en)
WO (1) WO2002014773A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210064A (en) * 2014-04-30 2015-11-24 東京窯業株式会社 Heat storage body
JP6532180B1 (en) * 2018-08-06 2019-06-19 株式会社ソディック Metal three-dimensional structure and method of manufacturing metal three-dimensional structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114391A (en) * 1994-10-18 1996-05-07 Ngk Insulators Ltd Honeycomb heat storage unit
JPH11211370A (en) * 1998-01-27 1999-08-06 Nippon Furnace Kogyo Kaisha Ltd Thermal storage substance, thermal storage block piece used therein, and adhesion method for thermal storage substance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114391A (en) * 1994-10-18 1996-05-07 Ngk Insulators Ltd Honeycomb heat storage unit
JPH11211370A (en) * 1998-01-27 1999-08-06 Nippon Furnace Kogyo Kaisha Ltd Thermal storage substance, thermal storage block piece used therein, and adhesion method for thermal storage substance

Also Published As

Publication number Publication date
JP2004286232A (en) 2004-10-14
AU2001278719A1 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
JP6686017B2 (en) Amorphous refractory crown and lidar arch for glass furnace heat exchanger and glass furnace heat exchanger including same
WO2017163624A1 (en) Industrial furnace and method of utilizing heat therefrom
US1940371A (en) Apparatus for heating gases
WO2002014773A1 (en) Heat reservoir
JP2598619Y2 (en) Thermal storage type alternating combustion device
KR20100124780A (en) Checker brick
US5127463A (en) Refractory brick segment for a heat regenerator
CN112629275A (en) Double-box heat accumulating type heat exchanger
CN207567264U (en) A kind of regenerative heat-exchange stove and heat regenerator
JPH08247671A (en) Heat accumulation body for regenerative burner
JP2011075191A (en) Regenerative burner
UA18014U (en) Recuperator for air heating
CN214582553U (en) Double-box heat accumulating type heat exchanger
JPS5937588Y2 (en) Gitter bricks in glass tank kiln
JP3106124B2 (en) Combustion air preheating method and honeycomb-shaped heat storage body
JP7361007B2 (en) radiant tube burner
JP2004131773A (en) Method for setting duplicate structural furnace body in hot air stove
CN209944996U (en) Novel fuel heat treatment furnace with efficient preheating and rapid cooling functions
JPS6284258A (en) Fluid heating device
EP3352982B1 (en) Regenerative burners having enhanced surface area media
JP4701255B2 (en) Industrial furnace
JP2639593B2 (en) Empty stack of refractories for heat storage
JPS6064188A (en) Heat exchanger
JP3459024B2 (en) Heat storage element for heat storage type burner and method of forming the same
RU2544917C1 (en) Nozzle for regenerative rotor air heater

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP