WO2002006546A1 - Piston ring excellent in resistance to scuffing, cracking and fatigue and method for producing the same, and combination of piston ring and cylinder block - Google Patents

Piston ring excellent in resistance to scuffing, cracking and fatigue and method for producing the same, and combination of piston ring and cylinder block Download PDF

Info

Publication number
WO2002006546A1
WO2002006546A1 PCT/JP2001/006127 JP0106127W WO0206546A1 WO 2002006546 A1 WO2002006546 A1 WO 2002006546A1 JP 0106127 W JP0106127 W JP 0106127W WO 0206546 A1 WO0206546 A1 WO 0206546A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
less
steel
stainless steel
resistance
Prior art date
Application number
PCT/JP2001/006127
Other languages
French (fr)
Japanese (ja)
Inventor
Junya Takahashi
Toru Onuki
Shigeo Inoue
Mitsutaka Sasakura
Original Assignee
Kabushiki Kaisha Riken
Tokusen Kogyo Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Riken, Tokusen Kogyo Company Limited filed Critical Kabushiki Kaisha Riken
Priority to DE60122164T priority Critical patent/DE60122164T2/en
Priority to US10/333,326 priority patent/US20040040631A1/en
Priority to EP01949987A priority patent/EP1304393B1/en
Priority to KR10-2003-7000751A priority patent/KR100507424B1/en
Priority to BRPI0112573-7A priority patent/BR0112573B1/en
Publication of WO2002006546A1 publication Critical patent/WO2002006546A1/en
Priority to US11/657,015 priority patent/US20070187002A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a bis-ring used in an internal combustion engine, and particularly to a scuffing resistance (seizure resistance), a cracking resistance (breakage resistance) and a fatigue resistance.
  • the present invention relates to an excellent high chrome martensitic stainless steel-made bis-nitride ring and a method for producing the same. Background art
  • steel materials for piston rings are broadly classified into carbon steel, silicon chrome steel, and martensitic stainless steel. Chromium is applied to steel and silicon chromium steel, while gas nitriding is applied to martensite stainless steel. In conventional steel piston rings, chrome plating was almost the only force applied.S, problems with scuffing of the plating layer under high load, and wastewater treatment Due to environmental issues, bis-nitride rings have become the mainstream in recent years.
  • JIS SUS440B equivalent material is the main steel type used for bis-nitride ring.
  • nitrogen atoms penetrate into the steel from the surface and diffuse to form a nitrided layer.
  • the nitride in the nitride layer is mainly a compound with Cr, V, and Mo, or a compound thereof with Fe as a solid solution.
  • Cr which is contained abundantly in steel, dissolves in the matrix and exists as Cr carbide.However, it has a greater affinity for nitrogen than carbon, so it can be used for nitriding. Nitrogen diffused from the surface and the Cr carbide react to form Cr nitride. Since SUS440B has a high Cr content of 17.0-18.0%, a relatively hard nitrided layer in which hard Cr nitrides are dispersed at an appropriate area ratio is obtained for the above-mentioned reasons, and excellent wear resistance is obtained. Shows resistance and anti-scratching properties.
  • Japanese Patent Application Laid-Open No. H11-80907 discloses that although Cr is slightly lower than 5.0 and less than 12.0%, Si: 0.25% and Mn: Excellent by containing 0.30% or less, one or more of Mo, W, V, Nb: 0.3-2.5%, or Cu: 4.0% or less, Ni: 2.0% or less, ⁇ : 1.5% or less and this the anti ska Zuph fin grayed resistance is obtained, by the this to the Japanese Patent Laid-Open No. 11-106874, to 4.0% and the content of M 7 C 3 type carbide that exists in the tissue area% It is disclosed that a bistable ring material having excellent workability in addition to squatting resistance can be obtained.
  • This scattering is often caused by the occurrence of a crack perpendicular to the sliding direction of the outer periphery of the piston ring. It is observed along a relatively coarse layered grain boundary compound (also referred to by those skilled in the art as a seagull phase) which is almost parallel to the surface formed at the crystal grain boundary of the nitride layer on the ring sliding surface. .
  • the purpose of the present invention is to use an internal combustion engine with a high rotation speed and a high combustion pressure and a high load, especially a diesel engine employing a lightweight steel monoblock that is expected to increase in the future.
  • Bi-stone ring made of high chrome martensitic stainless steel, which does not cause abrasion, scuffing, cracking, and fatigue breakage, and has excellent cost performance. Its purpose is to provide a manufacturing method thereof. Disclosure of the invention
  • the structure of the nitrided layer in the high chrome martensite stainless steel is generally tempered and has a form in which hard nitrides are mainly dispersed in the matrix of the martensite. Scuffing is based on its mechanical force, microscopic irregularities on the sliding surface, that is, the size of the hard particles dispersed in the relatively soft matrix. Strongly related to dispersion. When observing the cross section of the surface layer having such a structure, the convex hard particles come into contact with the sliding surface of the mating member, and the relatively soft matrix becomes relatively concave. I have.
  • the probability of the nitrided steel coming into direct contact with the counterpart material is reduced, and a lubricating oil film is formed in the recess, and pressure is generated in the oil film during sliding, thereby reducing the contact pressure.
  • the lubrication of the convex contact portion can be prevented to prevent the occurrence of scuffing.
  • a particle size of submicron to several micron size is required, and the dispersion amount is 5% in area ratio. % Is desirable. If the hard particles are extremely small or the amount of dispersion is small, the mechanism due to the effect of the convex hard particles cannot be expected.
  • This anti-scratch mechanism depends on the condition of the sliding surface of the mating material.
  • the surface roughness of the entire surface of the cylinder is likely to be roughened by grinding, and the plastic flow of the ferrite phase Is often blocked by graphite.
  • Such iron is also suitable for sliding It is also “familiar” among traders. )
  • hard particles composed of Cr nitride as the main part of the nitrided layer are dispersed in an appropriate size and uniformity, and a large number of particles are dispersed. This reduces the contact probability between the matrix and the cylinder, and in particular reduces the size of the grain boundary compounds generated by the nitriding treatment to reduce the
  • the present inventors have found that it is indispensable to suppress the generation of cracks and to prevent the spread of cracks even if they occur.
  • eutectic Cr carbide phase: (Cr, Fe) 7 C 3
  • ⁇ phase primary austenite
  • Cr carbides with a maximum diameter exceeding 20 ⁇ are observed.
  • the refinement of this coarse primary eutectic carbide is achieved by adding at least 0.25% of nitrogen (N) to iron and steel, Vol. 82, No. 4, pp. 309-314 (1996).
  • Japanese Patent Application Laid-Open Nos. 9-289053 and 9-287058 disclose rolling bearings utilizing the technique of refining Cr carbide by adding N.
  • the present inventors have considered the mechanism of the above-mentioned scuffing, and found that the crack formed on the surface formed at the crystal grain boundary of the nitrided layer on the piston ring sliding surface is observed.
  • microstructure such that the layered grain boundary compound in the inside becomes fine, high-speed, high-output, high-combustion-pressure internal combustion engines, especially recent lightweight steel monobloc diesel engines Even when used in such applications as high-chromium martensitic stainless steel bis-nitride rings, which are excellent in wear resistance, scuffing resistance, cracking resistance, and fatigue resistance. What you can get And found.
  • the nitrided piston ring made of high chrome martensitic stainless steel according to the present invention has a weight of 0 / chrome martensitic stainless steel.
  • C 0.3-1.0%, Cr: 14.0-21.0%, N: 0.05-0.50%, Mo-, V-, W-, Nb-0.03-3.0%, total of at least one or more types, Si: 0.1-1.0 %, Mn: 0.1-1.0%, P: 0.05% or less, S: 0.05% or less, with the balance Fe and Hard particles of nitrides, carbides, and carbonitrides mainly consisting of nitrides on the surface of the sliding nitride layer consist of unavoidable impurities and have an average diameter of 0.5-2 m and a maximum diameter of 7 mm.
  • the nitrided sliding surface having the above-mentioned structural characteristics is such that the Vickers hardness is in the range of 900-1400, and the depth of the nitrided layer is sufficient from the surface subjected to the nitriding treatment. It is characterized by having a thickness.
  • a steel having a predetermined composition is melted, nitrogen is added, and the ingot is manufactured. Then, hot rolling, annealing, cold drawing, and cold rolling are performed to approximate the predetermined cross section of the steel ring, and quenching and tempering are performed to obtain a wire.
  • the wire is bent into a ring shape and subjected to strain relief heat treatment, side surface rough grinding, nitriding, removal of the surface compound layer, grinding between the abutment, side finish grinding, outer wrapping, etc.
  • C forms a solid solution in Fe to increase the hardness of the matrix, It easily combines with Cr, Mo, V, W, and Nb to form carbides.
  • Carbides by connexion nitride layer during nitriding treatment changes to nitride as a main, improving the wear resistance and ska Tsu off I ring of the sliding surface of the bis tons Li in g c
  • the term “heat loss” refers to a phenomenon in which the sealing property deteriorates due to a decrease in tension due to the cleaving phenomenon during use of the biston ring at a high temperature.
  • it reacts with C in steel to form Cr carbide.
  • This Cr carbide easily reacts with N invading from the surface by nitriding, and becomes CrN in the nitrided layer and is dispersed as hard particles. These hard particles in the nitrided layer significantly improve the wear resistance and scuffing resistance of the piston ring sliding surface.
  • the Cr content is less than 14%, the formation of Oehic compounds is small, and if it exceeds 21%, the toughness is reduced due to the formation of ⁇ ferrite and the Cr concentration in the matrix becomes too high. Since the Ms (martensite transformation start temperature) may be lowered and sufficient quenching hardness may not be obtained, the Cr content should be in the range of 14-21%. Preferably it is in the range of 16-19%.
  • N forms an interstitial solid solution with Fe as does C. Due to the addition of N, for example, the C concentration at the left end of the eutectic line in the 17% Cr isoconcentration cross section of the Fe-Cr-C phase diagram changes the C concentration of the Shifting to a higher concentration side suppresses the eutectic reaction, thereby suppressing the crystallization of the ⁇ phase. C subsequent supersaturated during cooling, New precipitates around as a lame error like M 23 C 6 and Micromax 2 New precipitates primary crystal ⁇ grain boundaries.
  • New is out ⁇ phase crystallizes is less than 0.05%, and if it exceeds 0.50% increases the amount of precipitation of Micromax 2 New rod-shaped, since the toughness is lowered, New is in the range of 0.05-0.50%. It is preferably in the range of 0.10-0.30%. Further, the solid solution of ⁇ to Conclusions click scan during inhibit the diffusion of C in the Conclusions click scan, the grain boundary compounds (eventually changed to Fe 3 N Fe 3 C It also contributes to the miniaturization of). If the addition of N is 0.2% or less, it can be added at normal pressure, and if it exceeds 0.2%, melting in a pressurized] ⁇ 2 atmosphere is required. Yo Therefore, from the viewpoint of the N addition force Q, the range of 0.05 to 0.20% is preferable.
  • Mo, V, W, and Nb are all carbide-forming elements that improve wear resistance and anti-scratching properties.
  • Mo has an effect of preventing softening during tempering and nitriding, and plays an important role in the dimensional stability of the bis-ring.
  • V is an element that promotes nitriding and has the effect of increasing the hardness of the nitrided layer.
  • any of the elements is useful because it improves various performances required for piston ring, but if the total of at least one of Mo, V, W, and Nb is less than 0.03%, The effect is negligible, and if it exceeds 3%, the workability is significantly impaired and the toughness is reduced, so that the total of at least one of Mo, V, W and Nb is 0.03-3.0 % Range.
  • Si is added as a deoxidizing agent, and forms a solid solution in Fe to increase temper softening resistance and improve so-called heat resistance. If it is less than 0.1%, the effect is small. If it exceeds 1.0%, the toughness is reduced. Therefore, the Si content is in the range of 0.1 to 1.0%.
  • Mn is also added as a deoxidizing agent like Si. If the content is less than 0.1%, the effect is small, and if it exceeds 1.0%, the workability is reduced. Therefore, Mn is set in the range of 0.1 to 1.0%.
  • the content is set to 0.05% or less. Preferably, it is 0.03% or less.
  • the content is set to 0.05% or less. Preferably, it is 0.03% or less.
  • the nitride in the nitrided layer is fine and numerous.
  • the main surface of the sliding nitride layer is C r
  • Hard particles of nitrides, carbides and carbonitrides consisting of the following nitrides should be in the range of 0.2-2 // m in average diameter, 7 xm or less in maximum diameter, and 5-30% in area ratio.
  • the average particle size is less than 0.2 m, the effect as a convex hard particle for preventing scuffing cannot be expected, and when it exceeds 2 / _tm, the problem of scuffing when the load is high is high. Remains.
  • the maximum diameter exceeds 7 m, the uniformity of the tissue is poor, and in the case of a high load, the problem of scuffing remains.
  • the area ratio is less than 5%, there remains a problem in anti-scratching resistance, and if it exceeds 30%, it becomes difficult to process the wire after melting or to bend the wire into a ring shape.
  • it is 10-25%.
  • the nitrided layer cross-section in the longitudinal direction of the bis-ring which is substantially composed of matrix and hard particles.
  • the size (length) of the grain boundary compound to be used is 20 / m or less at maximum. Exceeding the maximum length of 20 causes problems with cracking under heavy loads.
  • the nitride layer structure of the present invention as described above is caused by the microstructure of stainless steel.
  • the ⁇ phase ((Cr, Fe) 7 C 3 ) does not exist. This can be achieved by adding nitrogen.
  • the second, secondary carbides (epsilon phase: (Fe, Cr) 23 C e) precipitated when kept at the quenching temperature prior to nitriding treatment there are many fine.
  • the quenching temperature As the temperature is lower, more carbides precipitate in an equilibrium manner, so the ( ⁇ + ⁇ ) region
  • quenching temperature As the temperature is lower, more carbides precipitate in an equilibrium manner, so the ( ⁇ + ⁇ ) region
  • quenching temperature As the temperature is lower, more carbides precipitate in an equilibrium manner, so the ( ⁇ + ⁇ ) region
  • quenching temperature As low as possible, it is possible to precipitate as many f carbides as possible.
  • quenching from a low temperature range makes the crystal grains fine in order to suppress the growth of ⁇ crystal grains, and thus makes it possible to make the grain boundary compound phase formed in the subsequent nitriding treatment also fine.
  • the preferred quenching temperature is in the range of 850-1000 ° C. Below 850 ° C, Prescribed hardness cannot be obtained due to lack of cracking and precipitation of ⁇ phase.At quenching temperatures exceeding 1000 ° C, coagulation of carbides and coarsening of ⁇ grains occur at the stage where quenching temperature is maintained. As a result, nitrides and grain boundary compound phases formed in the subsequent nitriding process are coarsened. The high hardness of 900-1400 can be obtained to a sufficient depth in a relatively short time in the nitrided layer.However, the relatively small quenching temperature allows relatively fine ⁇ grains to be obtained.
  • the reason for performing the nitriding treatment in the range of 450 to 600 ° C has been considered to be that the solubility of N in the -Fe lattice becomes maximum at about 590 ° C, It is not necessary to limit to this temperature if the grain boundary is the main diffusion path of N.
  • arbitrary processing at low as Ru can temperature preferred is 1 in a range of practical point of view from 450- 600 D C - it was 20 hours.
  • FIG. 1 is a backscattered electron image photograph of the sliding nitride layer surface by a scanning electron microscope.
  • FIG. 1 (a) corresponds to Example 1 and
  • FIG. 2 (b) corresponds to Comparative Example 1.
  • FIG. 2 is an optical micrograph of a cross section of the nitride layer.
  • FIG. 2 (a) corresponds to Example 1 and
  • FIG. 2 (b) corresponds to Comparative Example 1.
  • FIG. 3 is a diagram showing a test piece for a scuffing test.
  • FIG. 4 is a view showing an operation mechanism of the friction and wear tester.
  • Fig. 5 is a diagram showing the operation mechanism of the Biston ring fatigue tester.
  • Figure 6 is a graph of the fatigue limit diagram.
  • FIG. 7 is a photograph of a crack formed on the sliding surface of Comparative Example 13. BEST MODE FOR CARRYING OUT THE INVENTION
  • Example 1-11 Jl-Jll
  • Comparative Example 1-8 H1-H8
  • High chrome martensite stainless steel with the chemical composition shown in Table 1 was melted using a 10 kg vacuum induction melting furnace. However, steel with less than 0.2% N was added with nitrogen at normal pressure, and steel with 0.2% or more was melted in a pressure 2 atmosphere. Next, it is made into a linear material with a diameter of 12 mm through hot working, and after pickling, subjected to spheroidizing annealing at 750 ° C for 10 hours.After a predetermined process, a rectangular cross section of 3.5 mm X 5.0 mm is formed. It was processed into a wire rod.
  • quenching and tempering are performed in a quenching furnace (Ar atmosphere) at 930 ° C for about 10 minutes, and after air-cooled quenching, they pass through a tempering furnace (Ar atmosphere) at 620 ° C for about 25 minutes.
  • the test was performed in a continuous manner, and nitriding was performed on a test piece obtained by cutting a wire into a length of 50 mm, and gas nitriding was performed at 570 ° C for 4 hours.
  • the quenching temperature of Comparative Example 1 (HI) was performed at iioo ° c, which was conventionally performed conventionally. Other conditions are the same as those of the other examples and comparative examples.
  • FIG. 1 and Fig. 2 show the backscattered electron images (Figs. 1 (a) and (b)) of the sliding nitride layer surface of Example 1 (J1) and Comparative Example 1 (HI) by a scanning electron microscope.
  • Optical micrographs (FIGS. 2A and 2B) of the cross section of the layer are shown. The hard particles are black in the backscattered electron image and white in the light micrograph.
  • the size of the hard particles is small, and the size of the grain boundary compound in the cross section of the nitride layer is also extremely small.
  • Table 2 shows the results of quantification of the structures of Example 1-11 (J1-J11) and Comparative Example 1-8 (H1-H8). , The area ratio, the maximum length of the grain boundary compound in the cross section of the nitrided layer, and the hardness of the sliding surface of the nitrided layer are shown.
  • the scuffing test is a U-shaped 2-pin integrated test piece with a total length of 45 mm as shown in Fig. 3 made from a wire test piece.
  • the test was performed using a friction and wear tester (manufactured by RIKEN: trade name "Tribolic 1").
  • the sliding surface at the tip of the pin (Fig. 4, reference numeral 1) has a convex shape with a radius of 20mm and grinds a 5-20 ⁇ m thick compound layer (white layer) formed on the surface by gas nitriding. Removed and polished to a mirror finish.
  • the FC250 disk (Fig. 4, reference numeral 2) was prepared by adjusting the surface roughness (Rz) of the sliding surface to 1-2 m.
  • Fig. 4 shows the operating mechanism of the friction and wear tester, and the fuzzing test conditions are shown below.
  • Pressing load Increase from the initial l.OMPa every 0.2MPa, pressure increase until scatting occurs
  • Lubricating oil Motor oil (Product name, Nippon Oil Motor Oil P # 20) Lubricating oil temperature: 80 ° C (near the outlet)
  • the squashing surface pressure was calculated from the load applied when squashing occurred and the wear area of the sliding surface.
  • Table 3 shows the scuffing surface pressure of Example 1-11 (J1-J11) and Comparative Example 1-8 (H1-H8).
  • Example 1-11 J1-J11 according to the present invention was found to have improved anti-scuffing properties as compared with Comparative Examples 1, 3, and 5-7 (HI, H3, H5-H7). I understand.
  • Comparative Example 9 H9
  • the hardness of the nitrided layer was a low value of 860.
  • Example 1 In the material having the chemical composition of Example 1, a nitrided layer structure obtained by air-quenching quenching from the quenching temperature shown in Table 7 in the quenching process after wire rod processing and performing gas nitriding through the same predetermined process as in Example 1 Quantified. Table 5 shows the results.
  • a pressure ring with a rectangular cross section of nominal diameter (95.0 mm), thickness (a,) 3.35 mm, width (h,) 2.3 ram (implemented Example 15 and Comparative Example 12).
  • quenching and tempering are performed in a continuous manner by passing through a quenching furnace at 930 ° C for about 10 minutes, air-quenching and then passing through a tempering furnace at 620 ° C for about 25 minutes. , 570 ° C For 4 hours.
  • the quenching temperature of Comparative Example 12 was performed at 1100 ° C., which was conventionally performed conventionally. Other conditions are the same as in Example 15.
  • a fatigue test was carried out using the fabricated pressure ring with a piston ring fatigue tester having the operating mechanism shown in Fig. 5.
  • the product 3 with the free opening dimension expanded by cutting both ends of the opening is set on the testing machine with the ring closed to the nominal diameter, and the direction of further closing from this state
  • the eccentric cam 4 repeats the stroke corresponding to the applied stress at a cycle of 40 cycles / second, causing the ring to break.
  • the number of loads was determined. This test was repeated for samples of the same specifications while changing the load stress, so-called SN diagrams were created, and finally fatigue limit diagrams were obtained.
  • FIG. 6 shows a fatigue limit diagram. It can be seen that the fatigue limit is significantly improved in Example 15 of the present invention as compared with Comparative Example 12.
  • Example 1 From the steel materials of Example 1 (Examples 16 and 17), Example 7 (Examples 18 and 19), and Comparative Example 1 (Comparative Examples 13 and 14), through a predetermined process, a nominal diameter of 99.2 mm and a thickness of 99.2 mm (A,) 3.8mm, width (h,) 2.5mm rectangular section pressure ring (Examples 16, 18 and Comparative Example 13), nominal diameter (d,) 99.2mm, thickness (a,)
  • the two-piece oil bearing body with a saddle-shaped cross section of 2.5 mm and width (h,) 3.0 mm ('Examples 17, 19, Comparative Example 14) was machined.
  • the heat treatment of quenching and tempering and the gas nitriding were performed in the same manner as in Example 15 in Examples 16 to 19 and in Comparative Example 12 in Comparative Examples 13 to 14.
  • the manufactured pressure ring and oil ring were subjected to a 100-hour durability test under the following conditions using a 4-cylinder 3200 cc ferromagnetic monobloc nozzle diesel engine.
  • the bismuth ring made of high chromium martensite stainless steel according to the present invention is based on the technology of refining Cr carbide by adding nitrogen and the relatively low temperature. Due to the quenching, many nitrides in the nitrided layer are fine and numerous, and especially the layered grain boundary compounds in the nitrided layer have a fine microstructure, and are resistant to wear and scuffing. Because of its excellent resistance, cracking resistance and fatigue resistance, it can be used for high-speed, high-power, high-load internal combustion engines, especially recent lightweight rust-resistant monolithic diesel engines. Is possible. It can also be used effectively against fatigue of the bis-rings when using exhaust brakes on small trucks. Applicable screw rings can be conveniently used in pressure ring as well as 2-piece oil ring main bodies and 3-piece oil ring rails.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

A piston ring comprised of a high chromium martensitic stainless steel having a nitrided layer on the surface thereof, characterized in that the stainless steel has a chemical composition, in wt %: C: 0.3 to 1.0 %, Cr: 14.0 to 21.0, N: 0.05 to 0.50, the total of one or more of Mo, V, W and Nb: 0.03 to 3.0, Si: 0.1 to 1.0 %, Mn: 0.1 to 1.0 %, P: 0.05 % or less, S: 0.05 % or less, and balance: Fe and inevitable impurities, and the sliding nitrided layer has hard particles mainly comprising nitrides which have an average diameter of 0.2 to 2 µm and a maximum diameter of 7 µm or less and are dispersed on the surface thereof with an area percentage of 5 to 30 %. The high chromium martensitic stainless steel exhibits improved resistance to scuffing, cracking and fatigue.

Description

明細書 耐スカ ツ フ ィ ング性、 耐ク ラ ツ キング性及び耐疲労性に優れた ビス ト ン リ ング及びその製造方法、 並びに ビス ト ン リ ングと シ リ ンダ一ブロ ッ ク の,組合わせ  Description: A stainless steel ring having excellent anti-scratching, cracking and fatigue resistance and a method of manufacturing the same, and a combination of a steel ring and a cylinder block. Matching
技術分野 Technical field
本発明は、 内燃機関に使用 される ビス ト ン リ ングに関 し、 特に、 耐スカ ツ フ ィ ング性 (耐焼付性)、 耐ク ラ ツ キング性 (耐欠損性) 及び耐疲労性に優れた高ク ロ ムマルテ ンサイ ト系ステ ン レス鋼製 窒化ビス ト ン リ ン グ及びその製造方法に関する。 背景技術  The present invention relates to a bis-ring used in an internal combustion engine, and particularly to a scuffing resistance (seizure resistance), a cracking resistance (breakage resistance) and a fatigue resistance. The present invention relates to an excellent high chrome martensitic stainless steel-made bis-nitride ring and a method for producing the same. Background art
近年、 内燃機関の低燃費化、 軽量化、 高性能化が求め られ、 よ つて ビス ト ン リ ングにおいても、 軽量化及び高回転化に伴う ビス ト ン リ ン グの薄肉化のため、 耐摩耗性、 耐スカ ツ フ ィ ング性、 耐 疲労性等の特性向上が要求され、 特に耐疲労性や耐熱性の観点か ら、 従来の铸鉄製ビス トン リ ングが鋼製ビス ト ン リ ングに置換さ れてきた。 鋼製ピス ト ン リ ングは、 錶鉄製ピス ト ン リ ングに比べ 耐スカ ツ フ ィ ング性に劣るため、 通常、 摺動面に何らかの表面処 理が施されている。 ピス ト ン リ ング用鋼材は、 組み合わされる表 面処理の種類によ って、 炭素鋼、 シ リ コ ンク ロ ム鋼及びマルテン サイ ト系ステン レス鋼に大別され、 主と して、 炭素鋼と シリ コ ン ク ロ ム鋼ではク ロ ムめつ きが、 マルテンサイ ト系ステン レス鋼で はガス窒化が行われている。 従来の鋼製ピス ト ン リ ングでは、 ク ロ ムめつ き を施すものがほと ん どであった力. S、 高負荷でのめっ き 層のスカ ッ フ ィ ングの問題や廃液処理の環境問題等から、 近年で は窒化ビス ト ン リ ングが主流と な り つつある。 高 ク ロ ムマノレテ ンサイ ト系ス テ ン レ ス 鋼 で は 、 C: 0.80- 0.95%, Cr: 17.0-18.0%, Si: 0.25-0.50%, Mn: 0.25-0.40%, Mo: 0.70-1.25%, V: 0.07-0.15%, Fe: 残部 な る組成を も つ JIS SUS440B相当材が窒化ビス ト ン リ ングに用いられる主要鋼種 である。 この組成の鋼に窒化処理を行 う と 、 窒素原子が表面から 鋼中に侵入、 拡散 して窒化層を形成する。 窒化層中の窒化物は、 主に Cr, V, Moと の化合物又は Feを固溶 したそれらの化合物であ る。 特に鋼中に多く 含まれている Crは、 マ ト リ ッ ク ス中に固溶す る他、 Cr炭化物 と して存在するが、 炭素よ り も窒素と の親和力が 大き いため、 窒化処理によ り 表面から拡散 して く る窒素と Cr炭化 物が反応 して Cr窒化物が生成する。 SUS440B相 材は Crが 17.0- 18.0%と多いので、 上述の理由 によ り 硬い Crの窒化物が適当な面 積率で分散 した比較的高い硬さ の窒化層が得られ、 優れた耐摩耗 性、 耐スカ ツ フ ィ ング性を示す。 In recent years, internal combustion engines have been required to have low fuel consumption, light weight, and high performance. Therefore, even in the case of the bis-ring, it has been required to withstand the thinning of the bis-ring due to the weight reduction and high rotation. Improvements in properties such as abrasion resistance, scuffing resistance, and fatigue resistance are required.In particular, from the viewpoint of fatigue resistance and heat resistance, the conventional steel-made steel ring is replaced with a steel-made steel ring. Has been replaced by Since the steel piston ring is inferior to the anti-scratching property compared to the steel piston ring, the sliding surface is usually provided with some surface treatment. Depending on the type of surface treatment to be combined, steel materials for piston rings are broadly classified into carbon steel, silicon chrome steel, and martensitic stainless steel. Chromium is applied to steel and silicon chromium steel, while gas nitriding is applied to martensite stainless steel. In conventional steel piston rings, chrome plating was almost the only force applied.S, problems with scuffing of the plating layer under high load, and wastewater treatment Due to environmental issues, bis-nitride rings have become the mainstream in recent years. In high chromium manure stainless steel, C: 0.80-0.95%, Cr: 17.0-18.0%, Si: 0.25-0.50%, Mn: 0.25-0.40%, Mo: 0.70-1.25% , V: 0.07-0.15%, Fe: Remaining composition, JIS SUS440B equivalent material is the main steel type used for bis-nitride ring. When nitriding is performed on steel having this composition, nitrogen atoms penetrate into the steel from the surface and diffuse to form a nitrided layer. The nitride in the nitride layer is mainly a compound with Cr, V, and Mo, or a compound thereof with Fe as a solid solution. In particular, Cr, which is contained abundantly in steel, dissolves in the matrix and exists as Cr carbide.However, it has a greater affinity for nitrogen than carbon, so it can be used for nitriding. Nitrogen diffused from the surface and the Cr carbide react to form Cr nitride. Since SUS440B has a high Cr content of 17.0-18.0%, a relatively hard nitrided layer in which hard Cr nitrides are dispersed at an appropriate area ratio is obtained for the above-mentioned reasons, and excellent wear resistance is obtained. Shows resistance and anti-scratching properties.
最近では、 ピス ト ン リ ング用マルテンサイ ト系ステン レス窒化 鋼と して、 特開平 11-80907号に、 Crが 5.0以上 12.0%未満と若干低 く と も、 Si: 0.25%以下, Mn: 0.30%以下, Mo, W, V, Nbの一種 又は二種以上: 0.3-2.5%、 あるいは Cu: 4.0%以下, Ni: 2.0%以 下, ΑΙ: 1.5%以下を含有する こ と によって優れた耐スカ ツフ ィ ン グ性が得られる こ とが、 特開平 11-106874号には、 組織中に存在す る M7C3型炭化物の含有量を面積%で 4.0%以下とする こ と によって 耐スカ ツ フ ィ ング性に加えて優れた加工性を備え持った ビス ト ン リ ング材料の得られる こ と が開示されている。 Recently, as a martensitic stainless nitrided steel for piston rings, Japanese Patent Application Laid-Open No. H11-80907 discloses that although Cr is slightly lower than 5.0 and less than 12.0%, Si: 0.25% and Mn: Excellent by containing 0.30% or less, one or more of Mo, W, V, Nb: 0.3-2.5%, or Cu: 4.0% or less, Ni: 2.0% or less, ΑΙ: 1.5% or less and this the anti ska Zuph fin grayed resistance is obtained, by the this to the Japanese Patent Laid-Open No. 11-106874, to 4.0% and the content of M 7 C 3 type carbide that exists in the tissue area% It is disclosed that a bistable ring material having excellent workability in addition to squatting resistance can be obtained.
しかし、 こ の よ う に優れた耐摩耗性、 耐スカ ツ フ ィ ング性を示 す窒化ビス ト ン リ ングも、 高回転、 高出力の負荷の高い内燃機関 に用レ、られる と スカ ツ フ ィ ングを起こすと レヽ ぅ 問題が発生して く る。 特に、 近年のディ ーゼルエ ンジンにおいては、 軽量化と コ ス ト低減の観点から従来のライナをシ リ ンダブ口 ッ ク に圧入する方 式からポア間隔の狭い鎳鉄モ ノ ブロ ッ ク 方式に変更する方向に、 又排ガス浄化や高出力化の観点 から燃焼圧力 を増加する方向に ある。 铸鉄モ ノ ブ ロ ッ ク では ビス ト ン リ ン グ と の摺動面の顕微鏡 組織は、 冷却速度の不均一性から黒鉛の分散状態のばらつき が大 き く 、 かつスカ ツ フィ ングの原因 と なる軟らかいフェ ライ ト相が 偏在したも の と なる。 こ の よ う な顕微鏡組織を も ったシ リ ンダ一 面と マルテ ンサイ ト系ス テ ン レス鋼製窒化ビス ト ン リ ングと を組 み合わせた場合、 運転初期にスカ ッ フ ィ ングを起こ しゃすく なる。 その原因は次の と お り である。 即ち、 シ リ ンダー面をホーニング 加工する と 、 偏在する フ ェライ ト によって砥石の 目詰ま り が起き やすく ホーニング後のシ リ ンダー面粗さが粗く な り がちなこ と、 黒鉛が塑性流動 したフ ユ ライ ト に覆われ、 結果的に黒鉛の面積率 を下げ黒鉛によ る潤滑作用及び油溜め機能が低下する こ と 、 さ ら に燃焼圧力の高い場合にはビス ト ン リ ングにかかる背圧も増加す る こ と である。 こ のス カ ツ フ ィ ングは、 ピス ト ン リ ン グ外周面の 摺動方向に垂直なク ラ ッ ク の発生によ る も のが多 く 、 そ のク ラ ッ クはビス ト ン リ ング摺動面の窒化層の結晶粒界に形成される表面 にほぼ平行で比較的粗大な層状粒界化合物 (当業者ではカモ メ相 と も呼ぶ。) に沿って観察されている。 . However, bis-nitride rings exhibiting such excellent wear resistance and anti-scratching properties are also required for high-speed, high-output, high-load internal combustion engines. Raising is causing problems. In particular, in recent diesel engines, the conventional liner has been changed from the press-fitting method to the cylinder opening to the iron monoblock method with a narrow pore space from the viewpoint of weight reduction and cost reduction. In the direction There is also a trend to increase the combustion pressure from the viewpoint of exhaust gas purification and high output.で は In the iron monoblock, the microstructure of the sliding surface with the biston ring has a large variation in the dispersion state of graphite due to the non-uniform cooling rate, and causes the scattering. The soft ferrite phase is unevenly distributed. When one side of the cylinder having such a microstructure is combined with a martensite stainless steel bis-nitride ring, scuffing is performed at the beginning of operation. I get up. The cause is as follows. In other words, honing the cylinder surface tends to cause clogging of the grindstone due to unevenly distributed ferrite, which tends to increase the roughness of the cylinder surface after honing, and that the graphite plastically flows. As a result, the area ratio of graphite is reduced and the lubrication and oil reservoir functions of graphite are reduced, and when the combustion pressure is high, the back pressure applied to the bis-ring is reduced. Will also increase. This scattering is often caused by the occurrence of a crack perpendicular to the sliding direction of the outer periphery of the piston ring. It is observed along a relatively coarse layered grain boundary compound (also referred to by those skilled in the art as a seagull phase) which is almost parallel to the surface formed at the crystal grain boundary of the nitride layer on the ring sliding surface. .
これら の問題に対しては、 さ らに耐摩耗性、 耐スカ ツ フ ィ ング 性に優れたイ オンプレーティ ングによ る TiN, CrN等の表面処理で 対応 されているが、 窒化処理に比べ製造コ ス ト が高いため、 コ ス ト ノ、。フォ ーマンスの観点ではユーザーに満足されていないのが実 状である。  These problems have been addressed by surface treatment of TiN, CrN, etc. by ion plating, which is more excellent in abrasion resistance and scuffing resistance. The cost of production is higher than the cost. In fact, users are not satisfied with the performance.
従って、 本発明の 目 的は、 高回転、 高燃焼圧化で負荷の高い内 燃機関、 特に今後増加する と見込まれる軽量な錶鉄モ ノ ブロ ッ ク を採用 したディ ーゼルエンジンに用い られても摩耗、 スカ ツ フ ィ ング、 ク ラ ッ キング、 疲労折損の問題を起こ さず、 又コ ス トパフ オーマンス に も優れた高ク ロ ムマルテ ンサイ ト 系ステ ン レス鋼製 窒化ビス ト ン リ ング及びその製造方法を提供する こ と にある。 発明の開示 Therefore, the purpose of the present invention is to use an internal combustion engine with a high rotation speed and a high combustion pressure and a high load, especially a diesel engine employing a lightweight steel monoblock that is expected to increase in the future. Bi-stone ring made of high chrome martensitic stainless steel, which does not cause abrasion, scuffing, cracking, and fatigue breakage, and has excellent cost performance. Its purpose is to provide a manufacturing method thereof. Disclosure of the invention
「自動車用 ピス ト ン リ ング」 自動車用 ピス ト ン リ ング編集委員 会、 山海堂、 188頁、 1997年、 に よれば、 ピス ト ン リ ングのス カ ッフ イ ングは、 摺動面の ミ ク ロ的な凹凸の突起部 (特に軟質相の 突起部) に集中負荷が加わ り 、 摩擦熱によ り 温度が上昇し、 異常 な軟化溶融が起こ るため と説明 されている。  "Piston Rings for Automobiles" According to the Editorial Committee for Automobile Piston Rings, Sankaido, p. 188, 1997, the scuffing of piston rings is based on sliding surfaces. It is explained that concentrated loads are applied to the microscopic projections and projections (particularly the projections of the soft phase), and the temperature rises due to frictional heat, causing abnormal softening and melting.
高ク ロ ムマルテ ンサイ ト系ステ ン レス窒化鋼における窒化層 の組織は、 一般に焼戻 しマルテ ンサイ トのマ ト リ ッ ク ス中に主と して硬質の窒化物が分散 した形態と なる。 スカ ツ フ ィ ングは、 そ のメ カニズム力ゝら、 摺動面の ミ ク ロ的な凹凸、 つま り 相対的に軟 らかいマ ト リ ッ ク ス中に分散する硬質粒子の大き さ と分散状態に 強く 関係する。 こ のよ う な組織を持つ表面層は、 その断面を観察 する と 、 凸状の硬質粒子が相手の摺動面 と接触 し比較的軟らかい マ ト リ ッ ク ス が相対的に凹状と なっている。 よ って、 窒化鋼が相 手材と直接接触する確率は減少 し、 且つ凹部に潤滑油膜が形成さ れ、 摺動時にはその油膜に圧力が発生する こ と で接触圧力を軽減 する と と もに凸状接触部分への潤滑を行い、 スカ ッ フ ィ ングの発 生を防ぐこ と ができ る。 このよ う なメ カニズムで凸状硬質粒子と しての作用効果を果たすにはサブミ ク ロ ンから数ミ ク ロ ンサイ ズ の粒径が必要であ り 、 かつその分散量が面積率で 5 %以上である こ と が望ま しい。 硬質粒子が極度に小さい場合や分散量が少ない 場合には、 前記の凸状硬質粒子の作用効果によ る メ カニズムは期 待できない。  The structure of the nitrided layer in the high chrome martensite stainless steel is generally tempered and has a form in which hard nitrides are mainly dispersed in the matrix of the martensite. Scuffing is based on its mechanical force, microscopic irregularities on the sliding surface, that is, the size of the hard particles dispersed in the relatively soft matrix. Strongly related to dispersion. When observing the cross section of the surface layer having such a structure, the convex hard particles come into contact with the sliding surface of the mating member, and the relatively soft matrix becomes relatively concave. I have. Therefore, the probability of the nitrided steel coming into direct contact with the counterpart material is reduced, and a lubricating oil film is formed in the recess, and pressure is generated in the oil film during sliding, thereby reducing the contact pressure. The lubrication of the convex contact portion can be prevented to prevent the occurrence of scuffing. In order to achieve the effect as convex hard particles by such a mechanism, a particle size of submicron to several micron size is required, and the dispersion amount is 5% in area ratio. % Is desirable. If the hard particles are extremely small or the amount of dispersion is small, the mechanism due to the effect of the convex hard particles cannot be expected.
し力、し、 このよ う なスカ ツ フ ィ ング防止メ カニズムは相手材の 摺動面の状況によ っても左右される。 前述したよ う な不均質組織 を持つ铸鉄モノ ブ口 ッ ク では、 砥石加工によ り シ リ ンダ一面の面 粗さ が粗く な り やすい こ と 'や、 フ ェ ライ ト相の塑性流動によ り 黒 鉛が塞がれている場合が多い。 このよ う な铸鉄も、 適当な摺動 (当 業者間では 「な じみ」 と もい う 。) に よ り 、 次の現象が起こ る。 即 ち、 シ リ ンダ一内周面の粗い表面が平滑化 してゆき、 フェライ ト 相で塞がれていた黒鉛が開 口する。 な じみが完了するまでの期間 は、 摺動面の油膜が切れやすく 、 そのため大き な摩擦力がピス ト ン リ ングの外周面に繰 り 返し負荷される。 こ のた め、 ピス ト ン リ ングの外周面の窒化層には摩擦力によ る繰 り 返 し応力によって、 摺動方向に直角な方向にク ラ ッ ク が発生 し拡大する。 シリ ンダー 内周面のな じみの進行と と も に負荷される応力は軽減されてい く が、 ク ラ ッ ク は時間の経過と共に進展し局部的な表面剥離や欠け、 さ ら にはシ リ ンダー内周面を傷つけ、 これ らが原因 と なってスカ ッ フ イ ン グを引 き起こ しゃすい。 窒化層中に存在する粒界化合物 は非常に脆性であるためク ラ ッ ク の発生や進展を助長する。 従つ て、 このよ う な初期スカ ツ フ ィ ングを防止するためには、 窒化層 の主と して C r の窒化物からなる硬質粒子を適正な大き さで均一 . かつ数多 く 分散させる こ と でマ ト リ ッ ク ス と シ リ ンダの接触確率 を低減する と と もに、 特に窒化処理で生成する粒界化合物を微細 にする こ と で、 粒界化合物に関係する ク ラ ッ ク の発生を抑制 し、 またク ラ ッ ク が発生して もその伝播を細かく 分断して拡大を防ぐ こ と が必要不可欠である こ と を本発明者らは発見した。 This anti-scratch mechanism depends on the condition of the sliding surface of the mating material. In a steel iron monobloc with an inhomogeneous structure as described above, the surface roughness of the entire surface of the cylinder is likely to be roughened by grinding, and the plastic flow of the ferrite phase Is often blocked by graphite. Such iron is also suitable for sliding It is also “familiar” among traders. ) Causes the following phenomena. Immediately, the rough inner surface of the cylinder is smoothed and the graphite that has been blocked by the ferrite phase is opened. Until the break-in is completed, the oil film on the sliding surface tends to break, and a large frictional force is repeatedly applied to the outer peripheral surface of the piston ring. For this reason, cracks are generated in the nitride layer on the outer peripheral surface of the piston ring in the direction perpendicular to the sliding direction due to the repetitive stress caused by frictional force, and expand. The stress applied along with the progress of the inner circumferential surface of the cylinder is reduced, but the cracks develop over time and local surface peeling or chipping, and furthermore, The inner surface of the underlayer is damaged and causes scuffing. The grain boundary compounds present in the nitrided layer are very brittle and promote the generation and propagation of cracks. Therefore, in order to prevent such initial scattering, hard particles composed of Cr nitride as the main part of the nitrided layer are dispersed in an appropriate size and uniformity, and a large number of particles are dispersed. This reduces the contact probability between the matrix and the cylinder, and in particular reduces the size of the grain boundary compounds generated by the nitriding treatment to reduce the The present inventors have found that it is indispensable to suppress the generation of cracks and to prevent the spread of cracks even if they occur.
また、 高ク ロ ムマルテ ンサイ ト系ステ ン レス鋼においては、 溶 鋼が凝固する と き、 共晶 Cr炭化物 ( 相 : (Cr, Fe) 7C3) が初晶ォ ーステナイ ト ( γ 相) 粒界に晶出する。 熱間圧延や球状化熱処理、 最終の焼入れ焼戻し熱処理後において も最大径が 20 μ πιを超える Cr炭化物が観察される。 この粗大一次共晶炭化物の微細化に闋 し ては、 鉄と鋼, Vol. 82, No. 4, p .309- 314 ( 1996) に窒素 ( N) を 0.25%以上添加する こ と によ って微細な Cr炭化物組織の得られる こ と が報告されている。 その報告によ る と 、 初晶 y 粒界の共晶 Cr 炭化物が消失 し、 代わ り にラ メ ラー状の M23C6及び M2N(M: Cr, Fe)が初晶 γ 粒界の周囲に析出 し、 これらのラメ ラー状に析出 した M23C6及び M2Nは、 熱間圧延で微 細に分断され、 その後の球状化 焼鈍において微細な M23C6が M2Nと 異なるサイ ト に新たに析出す るため、全体と して微細な Cr炭化物組織になる と説明 されている。 熱処理, 36卷, 4号, p.234-238 (1996)に も 、 0·25%Νを添加 した 16.5%Cr-0.65%Cマルテ ンサイ ト 系ス テ ン レス鋼の機械的性質に ついて、 Nの添加量の増加に伴い最高焼入れ硬さ を示す温度が低 温側にシフ トする こ と 、 延性が増加する こ と が報告されてお り 、 その理由 と して、 焼入れ温度が高いほどオーステナイ ト相中に固 溶する N量が増加 し、 オー ステナィ ト相が安定化するため と説明 されている。 In high chrome martensitic stainless steel, eutectic Cr carbide (phase: (Cr, Fe) 7 C 3 ) becomes primary austenite (γ phase) when the molten steel solidifies. Crystallizes at grain boundaries. Even after hot rolling, spheroidizing heat treatment, and final quenching and tempering heat treatment, Cr carbides with a maximum diameter exceeding 20 μπι are observed. The refinement of this coarse primary eutectic carbide is achieved by adding at least 0.25% of nitrogen (N) to iron and steel, Vol. 82, No. 4, pp. 309-314 (1996). Thus, it has been reported that a fine Cr carbide structure can be obtained. According to the report, the eutectic Cr carbides at the primary y grain boundaries disappeared, and instead, lamellar M 23 C 6 and M 2 N (M: Cr, Fe) were replaced by primary γ grain boundaries. Around the surface and these lamellar forms M 23 C 6 and M 2 N is divided into fine fine hot rolling, order to newly deposited in different sites fine M 23 C 6 is an M 2 N in the subsequent spheroidizing annealing, and overall It is described that a fine Cr carbide structure results. Heat treatment, Vol. 36, No. 4, p. 234-238 (1996) also shows that the mechanical properties of 16.5% Cr-0.65% C martensitic stainless steel with 0.25% Ν added It has been reported that as the amount of N added increases, the temperature at which the maximum quench hardness increases shifts to the lower temperature side and the ductility increases.The reason is that the higher the quench temperature, the higher the quench temperature. It is explained that the amount of N dissolved in the austenite phase increases and the austenite phase stabilizes.
特開平 9- 289053号ゃ特開平 9-287058号には、 これらの N添加に よ る Cr炭化物の微細化技術を利用 した転が り軸受けについて開示 されている。  Japanese Patent Application Laid-Open Nos. 9-289053 and 9-287058 disclose rolling bearings utilizing the technique of refining Cr carbide by adding N.
本発明者達は、 上述 したスカ ツ フィ ングのメ カニズムについて 考察 し、 且つク ラ ッ ク が観察されている ピス ト ン リ ング摺動面の 窒化層の結晶粒界に形成される表面にほぼ平行で比較的粗大な層 状粒界化合物について、 N添加によ る Cr炭化物の微細化技術を背 景に鋭意研究した結果、 窒化層中の窒化物が微細で数多く 存在 し、 特に窒化層中の層状粒界化合物が微細と なる よ う な顕微鏡組織と する こ と によって、 高回転、 高出力で高燃焼圧の負荷の高い内燃 機関、 特に最近の軽量錶鉄モノ ブ口 ッ クディ ーゼルエ ンジン等に 用い られて も、 耐摩耗性、 耐スカ ツ フ ィ ング性、 耐ク ラ ッキング 性、 耐疲労性に優れた高ク ロ ムマルテ ンサイ ト系ステ ン レス鋼製 窒化ビス ト ン リ ングを得る こ と ができ る こ と を発見した。  The present inventors have considered the mechanism of the above-mentioned scuffing, and found that the crack formed on the surface formed at the crystal grain boundary of the nitrided layer on the piston ring sliding surface is observed. As a result of intensive research on the refinement technology of Cr carbide by adding N for the substantially parallel and relatively coarse layered grain boundary compound, there is a large number of fine nitrides in the nitride layer. By making the microstructure such that the layered grain boundary compound in the inside becomes fine, high-speed, high-output, high-combustion-pressure internal combustion engines, especially recent lightweight steel monobloc diesel engines Even when used in such applications as high-chromium martensitic stainless steel bis-nitride rings, which are excellent in wear resistance, scuffing resistance, cracking resistance, and fatigue resistance. What you can get And found.
即ち、 本発明の高ク ロ ムマルテ ンサイ ト系ステ ン レス鋼製窒化 ピス ト ン リ ングは、 髙 ク ロ ムマルテ ンサイ ト系ステ ン レス鋼が、 重量0/。で C: 0.3-1.0%, Cr: 14.0-21.0%, N: 0.05-0.50%, Mo, V, W, Nbの少な く と も 1種以上の合計を 0.03-3.0%, Si: 0.1-1.0%, Mn: 0.1-1.0%, P: 0.05%以下, S: 0.05%以下, 残部が Fe及び不 可避的不純物 よ り な り 、 その摺 動窒化層表面の主 と して窒化物 からなる窒化物、 炭化物、 炭窒化物の硬質粒子が平均直径で 0.5-2 mの範囲、 最大直径で 7 μ πι以下、 面積率で 5-30%の範囲である こ と を特徴とする。 また、 ピス ト ン リ ングの長手方向の窒化層断 面で観察される粒界化合物の大き さ (長さ) が最大 20 以下で ある こ と を特徴とする。 さ らに上記の組織的特徴を持つ摺動面窒 化層の硬度は、 ビッカース硬度が 900-1400の範囲 と する特性をも ち、 その窒化層深さは窒化処理を施した表面から十分な厚さ を も つこ と を特徴とする。 That is, the nitrided piston ring made of high chrome martensitic stainless steel according to the present invention has a weight of 0 / chrome martensitic stainless steel. C: 0.3-1.0%, Cr: 14.0-21.0%, N: 0.05-0.50%, Mo-, V-, W-, Nb-0.03-3.0%, total of at least one or more types, Si: 0.1-1.0 %, Mn: 0.1-1.0%, P: 0.05% or less, S: 0.05% or less, with the balance Fe and Hard particles of nitrides, carbides, and carbonitrides mainly consisting of nitrides on the surface of the sliding nitride layer consist of unavoidable impurities and have an average diameter of 0.5-2 m and a maximum diameter of 7 mm. It is characterized in that it is less than μπι and the area ratio is in the range of 5-30%. Further, the size (length) of the grain boundary compound observed at the cross section of the nitride layer in the longitudinal direction of the piston ring is at most 20 or less. Further, the hardness of the nitrided sliding surface having the above-mentioned structural characteristics is such that the Vickers hardness is in the range of 900-1400, and the depth of the nitrided layer is sufficient from the surface subjected to the nitriding treatment. It is characterized by having a thickness.
本発明の高ク ロ ムマルテ ンサイ ト系ステ ン レス鋼製窒化ビス ト ン リ ングの製造方法は、 まず、 所定の組成の鋼を溶解し、 窒素添 加を行い、 イ ン ゴ ッ ト に铸造後、 熱間圧延、 焼鈍、 冷間線引 き、 冷間圧延 して所定のビス ト ン リ ング断面形状に近づけ、 焼入れ、 焼戻 しを行って線材とする。 その線材を リ ング形状に曲げ加工し、 歪取 り 熱処理、 側面粗研削、 窒化、 表面化合物層の除去、 合口 隙 間の研削、 側面仕上研削、 外周ラ ッ ピング等の工程を経て ピス ト ンリ ングが製造されるが、 その中の ビス ト ンリ ングへの曲げ加工 前の焼入れ工程において、 850-1000°Cと い う 高ク ロ ムマルテ ンサ ィ ト系ステ ン レス鋼 と しては比較的低い温度から焼入れる こ と に よって、 微細で、 でき るだけ多 く の炭化物の分散 した材料組織を 得る。 又、 窒化はガス窒化、 イ オン窒化、 ラジカル窒化が利用で き、 いずれも 450-600°Cの範囲で 1-20時間の処理を行 う。  In the method for producing a high-chromium martensitic stainless steel-made bis-nitride ring according to the present invention, first, a steel having a predetermined composition is melted, nitrogen is added, and the ingot is manufactured. Then, hot rolling, annealing, cold drawing, and cold rolling are performed to approximate the predetermined cross section of the steel ring, and quenching and tempering are performed to obtain a wire. The wire is bent into a ring shape and subjected to strain relief heat treatment, side surface rough grinding, nitriding, removal of the surface compound layer, grinding between the abutment, side finish grinding, outer wrapping, etc. However, in the quenching process before bending the steel into the stainless steel ring, a relatively high chrome martensitic stainless steel temperature of 850-1000 ° C is relatively low. By quenching from a low temperature, a fine, microstructured material with as much carbide as possible is obtained. Gas nitriding, ion nitriding, or radical nitriding can be used for nitriding, and all are performed at 450-600 ° C for 1-20 hours.
以下、 本発明を詳しく 説明する。 本発明の高ク ロ.ムマルテ ンサ ィ ト系ス テ ン レス鋼の成分について説明する と 、 まず、 Cは Feに 侵入型に固溶 してマ ト リ ッ ク ス の硬度を上げる と 同時に、 Cr, Mo, V, W, Nbと容易に化合して炭化物を生成しやすい。 窒化処理によ つて窒化層中の炭化物は主と して窒化物に変わ り 、 ビス ト ン リ ン グの摺動面において耐摩耗性や耐スカ ッ フ ィ ング性を向上させる c Hereinafter, the present invention will be described in detail. To explain the components of the high-chrome martensitic stainless steel of the present invention, first, C forms a solid solution in Fe to increase the hardness of the matrix, It easily combines with Cr, Mo, V, W, and Nb to form carbides. Carbides by connexion nitride layer during nitriding treatment changes to nitride as a main, improving the wear resistance and ska Tsu off I ring of the sliding surface of the bis tons Li in g c
Cが 0,3%未満では硬度の上昇や炭化物の生成が少な く 、 1.0%を超 える と溶鋼の凝固時に粗大で多 量の共晶 Cr炭化物 ( η相 : M7C3) が晶出し、 後の線材製造において加工性が極度に低下するので、 C は 0.3-1.0%の範囲とする。 好ま しく は 0.4-0.9%の範囲とする。 When C is less than 0.3%, the increase in hardness and generation of carbides are small, and exceeds 1.0%. As a result, coarse and large amounts of eutectic Cr carbide (η phase: M 7 C 3 ) crystallize out during solidification of the molten steel, and workability in the subsequent wire rod production is extremely reduced. And It is preferably in the range of 0.4-0.9%.
Crは Feに置換型に固溶するため、 耐食性の向上の他に、 固溶強 化によって耐熱へた り性を向上させる。 こ こで、 熱へた り とは、 ビス トン リ ングの高温での使用中に、 ク リ ーブ現象に基づく 張力 低下によってシール特性が劣化する現象をいう 。 又、 鋼中の Cと反 応して Cr炭化物を形成する。 この C r 炭化物は窒化処理によ り 表 面から侵入する Nと容易に反応して、窒化層内では CrNとなり硬質 粒子と して分散する。 窒化層中のこ の硬質粒子,はピス ト ンリ ング 摺動面の耐摩耗性や耐スカ ッフィ ング性を著しく 向上させる。 Cr 量が 14%未満では Oィヒ合物の形成が少なく 、 21%を超える と δ フ ェライ トの生成による靱性の低下やマ ト リ ック ス中の Cr濃度が高 く な りすぎて Ms (マルテンサイ ト変態開始温度) を下げ十分な焼 入れ硬さが得られなく なるこ とがあるので、 Crの量は 14-21%の範 囲とする。 好ま しく は 16-19%の範囲とする。  Since Cr dissolves in Fe in a substitutional form, it improves not only corrosion resistance but also heat resistance by strengthening solid solution. Here, the term “heat loss” refers to a phenomenon in which the sealing property deteriorates due to a decrease in tension due to the cleaving phenomenon during use of the biston ring at a high temperature. In addition, it reacts with C in steel to form Cr carbide. This Cr carbide easily reacts with N invading from the surface by nitriding, and becomes CrN in the nitrided layer and is dispersed as hard particles. These hard particles in the nitrided layer significantly improve the wear resistance and scuffing resistance of the piston ring sliding surface. If the Cr content is less than 14%, the formation of Oehic compounds is small, and if it exceeds 21%, the toughness is reduced due to the formation of δ ferrite and the Cr concentration in the matrix becomes too high. Since the Ms (martensite transformation start temperature) may be lowered and sufficient quenching hardness may not be obtained, the Cr content should be in the range of 14-21%. Preferably it is in the range of 16-19%.
Nは Cと 同様に Feに侵入型に固溶する。 Nの添加によって、 例え ば、 Fe-Cr-C系状態図の 17%Cr等濃度断面における共晶線の左端の C濃度が、 凝固過程で初晶粒界に存在する濃化溶鋼の C濃度よ り も 高濃度側へシフ トするため、 共晶反応が抑制され、 よって η 相の 晶出が抑制される。 その後の冷却過程で過飽和の C, Νがラメ ラー 状の M23C6及び Μ2Ν析出物と して初晶 γ粒界の周囲に析出する。 Ν が 0.05%未満では η 相が晶出し、 又 0.50%を超える と棒状の Μ2Νの 析出量が増加 し、 靭性が低下する ので、 Νは 0.05-0.50%の範囲と する。 好ま しく は 0.10-0.30%の範囲とする。 また、 マ ト リ ッ ク ス 中への Νの固溶は、 マ ト リ ッ ク ス中の Cの拡散を阻害し、 粒界化合 物 (最終的には Fe3 Nに変化する Fe3 Cの形成において) の微細化に も貢献する。 Nの添加は 0.2%以下であれば常圧で添加するこ とが でき、 0.2%を超える と加圧 ]^2雰囲気中での溶製を必要とする。 よ つ て 、 N添力 Q の観点では 0.05 - 0.20%の範囲が好ま しい。 N forms an interstitial solid solution with Fe as does C. Due to the addition of N, for example, the C concentration at the left end of the eutectic line in the 17% Cr isoconcentration cross section of the Fe-Cr-C phase diagram changes the C concentration of the Shifting to a higher concentration side suppresses the eutectic reaction, thereby suppressing the crystallization of the η phase. C subsequent supersaturated during cooling, New precipitates around as a lame error like M 23 C 6 and Micromax 2 New precipitates primary crystal γ grain boundaries. New is out η phase crystallizes is less than 0.05%, and if it exceeds 0.50% increases the amount of precipitation of Micromax 2 New rod-shaped, since the toughness is lowered, New is in the range of 0.05-0.50%. It is preferably in the range of 0.10-0.30%. Further, the solid solution of Ν to Conclusions click scan during inhibit the diffusion of C in the Conclusions click scan, the grain boundary compounds (eventually changed to Fe 3 N Fe 3 C It also contributes to the miniaturization of). If the addition of N is 0.2% or less, it can be added at normal pressure, and if it exceeds 0.2%, melting in a pressurized] ^ 2 atmosphere is required. Yo Therefore, from the viewpoint of the N addition force Q, the range of 0.05 to 0.20% is preferable.
Mo, V, W, Nbはいずれも炭化物生成元素と して耐摩耗性ゃ耐ス カ ツフ ィ ング性を向上させる。 又、 Moは焼戻しゃ窒化処理におけ る軟化を防止する作用があ り 、 ビス ト ンリ ングの寸法安定性に重 要な役割を果たす。 Vは窒化促進元素と して、 窒化層の硬さを上げ る効果がある。 よって、 いずれの元素も ピス ト ンリ ングに要求さ れる諸性能を向上させるので有用であるが、 Mo, V, W, Nbの少な く と も 1種以上の合計が 0.03%未満である とその効果がほと んど なく 、 3 %を超える と加工性を著しく 害し、 又靭性を低下させてし ま う ので、 Mo, V, W, Nbの少なく と も 1種以上の合計は 0.03 - 3.0% の範囲とする。  Mo, V, W, and Nb are all carbide-forming elements that improve wear resistance and anti-scratching properties. In addition, Mo has an effect of preventing softening during tempering and nitriding, and plays an important role in the dimensional stability of the bis-ring. V is an element that promotes nitriding and has the effect of increasing the hardness of the nitrided layer. Therefore, any of the elements is useful because it improves various performances required for piston ring, but if the total of at least one of Mo, V, W, and Nb is less than 0.03%, The effect is negligible, and if it exceeds 3%, the workability is significantly impaired and the toughness is reduced, so that the total of at least one of Mo, V, W and Nb is 0.03-3.0 % Range.
Siは脱酸剤と して添加され、 又 Fe中に固溶して焼戻し軟化抵抗 性を高め所謂耐熱へた り性を改善する。 0. 1 %未満ではその効果が 少なく 1. 0%を超える と靭性を低下させるので、 Siは 0. 1 - 1.0%の範 囲とする。  Si is added as a deoxidizing agent, and forms a solid solution in Fe to increase temper softening resistance and improve so-called heat resistance. If it is less than 0.1%, the effect is small. If it exceeds 1.0%, the toughness is reduced. Therefore, the Si content is in the range of 0.1 to 1.0%.
Mnも Siと同様に脱酸剤と して添加される。 0. 1 %未満ではその効 果が少なく 1.0%を超える と加工性が低下するので、 Mnは 0. 1 - 1.0% の範囲とする。  Mn is also added as a deoxidizing agent like Si. If the content is less than 0.1%, the effect is small, and if it exceeds 1.0%, the workability is reduced. Therefore, Mn is set in the range of 0.1 to 1.0%.
Pは Mn等と介在物を形成して疲労強度を低下させ、 さ らには耐 食性を低下させるので、 鋼中不純物と してはなるべく 少ないほ う が良い。 したがって、 実用的な観点から 0.05%以下とする。 好ま し く は 0.03 %以下とする。  Since P forms inclusions with Mn and the like and lowers the fatigue strength and further lowers the corrosion resistance, it is desirable that the amount of impurities in steel be as low as possible. Therefore, from a practical viewpoint, the content is set to 0.05% or less. Preferably, it is 0.03% or less.
Sは Pと同様に疲労強度を低下させ、 さ らには耐食性を低下させ るので、 鋼中不純物と してはなるべく 少ないほ う が良い。 したが つて、 実用的な観点から 0.05%以下とする。 好ま しく は 0.03%以下 とする。  S reduces the fatigue strength like P, and further reduces the corrosion resistance. Therefore, it is better to minimize the impurities in steel as much as possible. Therefore, from a practical viewpoint, the content is set to 0.05% or less. Preferably, it is 0.03% or less.
上記範囲の組成からなる鋼を、 耐スカ ツ フィ ング性に優れた組 織とするためには、 窒化層中の窒化物が微細で数多く 存在するこ とが必要である。 すなわち、 摺動する窒化層表面の主と して C r の窒化物から なる窒化物、 炭化 物、 炭窒化物の硬質粒子が平均 直径で 0.2-2 // mの範囲、 最大直径で 7 x m以下、 面積率で 5-30% の範囲とする。 平均粒径が 0.2 m以下ではスカ ッ フィ ング防止の 凸状硬質粒子と しての作用効果が期待できず、 2/_t mを超える と負 荷の高い場合にスカ ツ フ ィ ングの問題が残る。 又最大直径が 7 m を超える と 、 組織の均一性に劣 り 、 やは り 負荷の高い場合にはス カ ツ フ イ ングの問題を残す。 面積率が 5%未満では耐スカ ツ フ ィ ン グに問題を残 し、 30%を超える と溶製後の線材加工や線材を リ ン グ形状に曲げ加工する こ とが困難と なる。 好ま し く は 10-25%とす る。 又、 本発明において耐ク ラ ッ キング性に優れた組織とするた めには、 マ ト リ ッ タ ス と硬質粒子から実質的になる ビス ト ン リ ン グ長手方向の窒化層断面で観察される粒界化合物の大き さ (長さ) が最大 20 / m以下とする。 最大長さが 20 を超える と、 負荷の 高い場合にク ラ ッ ク ッ キングに関連する問題が生 じる。 In order for a steel having a composition in the above range to have an excellent scuffing resistance, it is necessary for the nitride in the nitrided layer to be fine and numerous. In other words, the main surface of the sliding nitride layer is C r Hard particles of nitrides, carbides and carbonitrides consisting of the following nitrides should be in the range of 0.2-2 // m in average diameter, 7 xm or less in maximum diameter, and 5-30% in area ratio. When the average particle size is less than 0.2 m, the effect as a convex hard particle for preventing scuffing cannot be expected, and when it exceeds 2 / _tm, the problem of scuffing when the load is high is high. Remains. On the other hand, when the maximum diameter exceeds 7 m, the uniformity of the tissue is poor, and in the case of a high load, the problem of scuffing remains. If the area ratio is less than 5%, there remains a problem in anti-scratching resistance, and if it exceeds 30%, it becomes difficult to process the wire after melting or to bend the wire into a ring shape. Preferably it is 10-25%. Further, in order to obtain a structure having excellent cracking resistance in the present invention, it is necessary to observe the nitrided layer cross-section in the longitudinal direction of the bis-ring, which is substantially composed of matrix and hard particles. The size (length) of the grain boundary compound to be used is 20 / m or less at maximum. Exceeding the maximum length of 20 causes problems with cracking under heavy loads.
上記のよ う な本発明の窒化層組織はステンレス鋼の微細組織に 起因する。 この組織においては、 第 1に、 熱間圧延、 球状化熱処理. 冷間線引 き等の加工を経て、 焼入れ焼戻し した後、 粗大な共晶 Cr 炭化物の η 相 ((Cr, Fe)7C3) が存在 しない。 これは窒素の添加に よって実現でき る。 The nitride layer structure of the present invention as described above is caused by the microstructure of stainless steel. In this structure, firstly, after quenching and tempering through processing such as hot rolling, spheroidizing heat treatment, and cold drawing, the η phase ((Cr, Fe) 7 C 3 ) does not exist. This can be achieved by adding nitrogen.
又、 第 2に、 窒化処理前の焼入れ温度に保持した時に析出する二 次炭化物 ( ε 相 : (Fe, Cr)23Ce) が微細で数多く 存在する。 この点 を Fe-Cr-C系状態図に基づいて考察する と 、 その ( γ + ε ) 領域で は、 温度の低いほど平衡論的に多く の炭化物が析出するので、 ( γ + ε ) 領域のでき るだけ低温度域を焼入れ温度とする こ と に よ つ て、 微細で、 でき るだけ多く の f 炭化物を析出 させる こ とができ る。 又、 低温度域からの焼入れは γ 結晶粒の成長を抑えるため 結晶粒を微細に し、 よ って後の窒化処理において形成される粒界 化合物相 も微細にする こ とが可能と なる。 この様な面から、 好ま しい焼入れ温度は 850-1000°Cの範囲である。 850°C未満では、 焼 きの入らないこ とや α相の析出 によ り所定の硬度が得られない, 1000°Cを超えた焼入れ温度では、 焼入れ温度に保持した段階で炭 化物の凝集や γ結晶粒の粗大化が起こ り 、 その結果、 後の窒化処 理において形成される窒化物や粒界化合物相も粗大化する。 窒化 層において比較的短時間で十分な深さまで 900 - 1 400とい う高硬度 が得られるのも、 低い焼入れ温度によって比較的微細な γ結晶粒 が得られ、 窒化処理における Νの主要拡散経路と しての役割を果 たす結晶粒界が増加したこ とに起因している。 本発明において、 450- 600 °Cの範囲で窒化処理を行 う のは、 ひ -F e格子中への Nの溶 解度が約 590°Cで最大となるためと考えられてきたが、結晶粒界が Nの主要拡散経路とい う こ とであれば、 この温度に限定される必 要はない。 ビス ト ンリ ングの形状安定性と いう観点では、 でき る だけ低い温度での処理が好ま しいが、実用的な観点から 450- 600 DC の範囲で 1 - 20時間と した。 図面の簡単な説明 Further, the second, secondary carbides (epsilon phase: (Fe, Cr) 23 C e) precipitated when kept at the quenching temperature prior to nitriding treatment there are many fine. Considering this point based on the Fe-Cr-C phase diagram, in the (γ + ε ) region, as the temperature is lower, more carbides precipitate in an equilibrium manner, so the ( γ + ε) region By setting the quenching temperature as low as possible, it is possible to precipitate as many f carbides as possible. Further, quenching from a low temperature range makes the crystal grains fine in order to suppress the growth of γ crystal grains, and thus makes it possible to make the grain boundary compound phase formed in the subsequent nitriding treatment also fine. From these aspects, the preferred quenching temperature is in the range of 850-1000 ° C. Below 850 ° C, Prescribed hardness cannot be obtained due to lack of cracking and precipitation of α phase.At quenching temperatures exceeding 1000 ° C, coagulation of carbides and coarsening of γ grains occur at the stage where quenching temperature is maintained. As a result, nitrides and grain boundary compound phases formed in the subsequent nitriding process are coarsened. The high hardness of 900-1400 can be obtained to a sufficient depth in a relatively short time in the nitrided layer.However, the relatively small quenching temperature allows relatively fine γ grains to be obtained. This is attributable to an increase in grain boundaries that play a role of the other. In the present invention, the reason for performing the nitriding treatment in the range of 450 to 600 ° C has been considered to be that the solubility of N in the -Fe lattice becomes maximum at about 590 ° C, It is not necessary to limit to this temperature if the grain boundary is the main diffusion path of N. In the perspective of the shape stability of the bis bets Nri ring, arbitrary processing at low as Ru can temperature preferred is 1 in a range of practical point of view from 450- 600 D C - it was 20 hours. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は摺動窒化層表面の走査電子顕微鏡の反射電子像写真で あ り 、 第 1 図 ( a ) は実施例 1に相当 し、 第 2 図 ( b ) は比較例 1 に相当する。  FIG. 1 is a backscattered electron image photograph of the sliding nitride layer surface by a scanning electron microscope. FIG. 1 (a) corresponds to Example 1 and FIG. 2 (b) corresponds to Comparative Example 1.
第 2 図は窒化層断面の光学顕微鏡写真であ り 、 第 2 図 ( a ) は実施例 1に相当 し、 第 2図 ( b ) は比較例 1に相当する。  FIG. 2 is an optical micrograph of a cross section of the nitride layer. FIG. 2 (a) corresponds to Example 1 and FIG. 2 (b) corresponds to Comparative Example 1.
第 3図はスカ ッフィ ング試験の試験片を示す図である。  FIG. 3 is a diagram showing a test piece for a scuffing test.
第 4 図は摩擦摩耗試験機の動作機構を示す図である。  FIG. 4 is a view showing an operation mechanism of the friction and wear tester.
第 5 図はビス トン リ ング疲労試験機の動作機構を示す図であ る。  Fig. 5 is a diagram showing the operation mechanism of the Biston ring fatigue tester.
第 6 図は疲労限度線図のグラ フである。  Figure 6 is a graph of the fatigue limit diagram.
第 7 図は比較例 13の摺動面に生じたク ラ ッ ク の写真である。 発明を実施するための最良の形 態 FIG. 7 is a photograph of a crack formed on the sliding surface of Comparative Example 13. BEST MODE FOR CARRYING OUT THE INVENTION
以下の具体的実施例(こよ り 、 本発明を さ らに詳細に説明する。 実施例 1-11 ( Jl-Jll) 比較例 1-8 (H1-H8)  The following specific examples (which explain the present invention in further detail) Example 1-11 (Jl-Jll) Comparative Example 1-8 (H1-H8)
表 1に示す化学組成を有する高 ク ロ ムマルテ ンサイ ト 系 ステ ン レ ス鋼を 10kg真空誘導溶解炉を用いて溶製 した。 但 し、 0.2%N未 満の鋼は常圧で窒素添加 し、 0·2%Ν以上の鋼は加圧 Ν2雰囲気中で 溶製した。 次に熱間加工を経て直径 12m mの線状素材に し、 酸洗 後、 750°Cで 10時間の球状化焼鈍を施 し、 所定の工程を経て、 3.5 m m X 5.0m mの矩形断面を持つ線材に加工 した。 こ こ で、 焼入れ 焼戻 しは、 焼入れ炉 (Ar雰囲気) を 930°Cで約 10分間、 空冷焼入 れ後、 焼戻 し炉 (Ar雰囲気) を 620°Cで約 25分間、 通過する連続 式で行い、 又、 窒化は、 線材を 50m m長さ に切断した試験片 と し、 570°Cで 4時間のガス窒化を行った。 但し、 比較例 1 (HI) の焼入 れ温度については、 従来から通常行われていた iioo°cで行った。 その他の条件は他の実施例、 比較例 と 同様である。 High chrome martensite stainless steel with the chemical composition shown in Table 1 was melted using a 10 kg vacuum induction melting furnace. However, steel with less than 0.2% N was added with nitrogen at normal pressure, and steel with 0.2% or more was melted in a pressure 2 atmosphere. Next, it is made into a linear material with a diameter of 12 mm through hot working, and after pickling, subjected to spheroidizing annealing at 750 ° C for 10 hours.After a predetermined process, a rectangular cross section of 3.5 mm X 5.0 mm is formed. It was processed into a wire rod. Here, quenching and tempering are performed in a quenching furnace (Ar atmosphere) at 930 ° C for about 10 minutes, and after air-cooled quenching, they pass through a tempering furnace (Ar atmosphere) at 620 ° C for about 25 minutes. The test was performed in a continuous manner, and nitriding was performed on a test piece obtained by cutting a wire into a length of 50 mm, and gas nitriding was performed at 570 ° C for 4 hours. However, the quenching temperature of Comparative Example 1 (HI) was performed at iioo ° c, which was conventionally performed conventionally. Other conditions are the same as those of the other examples and comparative examples.
第 1 表  Table 1
C Cr N Mo V W Nb Si Mn P SC Cr N Mo V W Nb Si Mn P S
J1 0.65 17.5 0.13 1.5 0.25 0.35 0.02 0.01J1 0.65 17.5 0.13 1.5 0.25 0.35 0.02 0.01
J2 0.41 17.0 0.19 1.0 0.15 0.25 0.50 0.02 0.02J2 0.41 17.0 0.19 1.0 0.15 0.25 0.50 0.02 0.02
J3 0.83 17.8 0.23 0.20 0.20 0.30 0.02 0.02J3 0.83 17.8 0.23 0.20 0.20 0.30 0.02 0.02
J4 0.59 17.2 0.16 0.05 0.20 0.20 0.02 0.02J4 0.59 17.2 0.16 0.05 0.20 0.20 0.02 0.02
J5 0.62 17.5 0.15 0.3 0.20 0.30 0.02 0.02J5 0.62 17.5 0.15 0.3 0.20 0.30 0.02 0.02
J6 0.60 14.5 0.15 1.5 0.5 0.1 0.5 0.55 0.65 0.02 0.02J6 0.60 14.5 0.15 1.5 0.5 0.1 0.5 0.55 0.65 0.02 0.02
J7 0.60 19.5 0.25 1.0 0.1 0.20 0.30 0.02 0.02J7 0.60 19.5 0.25 1.0 0.1 0.20 0.30 0.02 0.02
J8 0.35 20.3 0.28 1.0 0.3 0.20 0.30 0.02 0.02J8 0.35 20.3 0.28 1.0 0.3 0.20 0.30 0.02 0.02
J9 0.95 14.9 0.25 0.5 0.1 0.20 0.30 0.02 0.02J9 0.95 14.9 0.25 0.5 0.1 0.20 0.30 0.02 0.02
J10 0.55 16.5 0.08 0.5 0.3 0.35 0.55 0.02 0.02J10 0.55 16.5 0.08 0.5 0.3 0.35 0.55 0.02 0.02
J11 0.48 18.2 0.42 0.1 0.3 0.20 0.20 0.02 0.02J11 0.48 18.2 0.42 0.1 0.3 0.20 0.20 0.02 0.02
HI 0.81 17.5 0.03 1.0 0.3 0.25 0.25 0.02 0.02HI 0.81 17.5 0.03 1.0 0.3 0.25 0.25 0.02 0.02
H2 0.45 18.0 0.58 1.5 0.5 0.20 0.20 0.02 0.02H2 0.45 18.0 0.58 1.5 0.5 0.20 0.20 0.02 0.02
H3 0.25 17.3 0.16 1.0 0.4 0.20 0.30 0.02 0.02H3 0.25 17.3 0.16 1.0 0.4 0.20 0.30 0.02 0.02
H4 1.12 17.8 0.15 1.2 0.6 0.20 0.30 0.02 0.02H4 1.12 17.8 0.15 1.2 0.6 0.20 0.30 0.02 0.02
H5 0.69 13.2 0.21 】.1 0.5 0.20 0.30 0.02 0.02H5 0.69 13.2 0.21) .1 0.5 0.20 0.30 0.02 0.02
H6 0.73 22.1 0.22 1.0 0.2 0.20 0.20 0.02 0.02H6 0.73 22.1 0.22 1.0 0.2 0.20 0.20 0.02 0.02
H7 0.65 17.8 0.16 0.20 0.20 0.02 0.02H7 0.65 17.8 0.16 0.20 0.20 0.02 0.02
H8 0.68 17.3 0.15 1.5 1.0 0.5 0.5 0.20 0.20 0.02 0.02 上記各線材試験片か ら さ ら に 顕微鏡組織観察用に 10m m長 さ に切断、 樹脂に埋め込み鏡面まで研磨 して組織観察と組織の定量 化を画像解析装置を用いて行った。 第 1 図及び第 2 図に、 実施例 1 ( J1) 及び比較例 1 (HI) の摺動窒化層表面の走査電子顕微鏡の 反射電子像写真 (図 1(a), (b)) と窒化層断面の光学顕微鏡写真 (図 2(a), (b)) と を示す。 硬質粒子は、 反射電子像写真では黒色、 光 学顕微鏡写真では白色の相である。 本発明においては、 硬質粒子 サイ ズが小さ く 、 又窒化層断面の粒界化合物のサイ ズも極めて小 さ く なつている こ と が分かる。 実施例 1-11 (J1-J11) 及び比較例 1-8 ( H1-H8) の組織の定量結果と して、 表 2に摺動面窒化層表面 の硬質粒子の平均粒径、 最大粒径、 面積率、 及び窒化層断面の粒 界化合物の最大長 さ、 さ らに摺動面窒化層表面の硬度について示 す。 H8 0.68 17.3 0.15 1.5 1.0 0.5 0.5 0.20 0.20 0.02 0.02 Each wire rod specimen was further cut to a length of 10 mm for microscopic structure observation, embedded in resin and polished to the mirror surface, and the structure observation and quantification of the structure were performed using an image analyzer. Fig. 1 and Fig. 2 show the backscattered electron images (Figs. 1 (a) and (b)) of the sliding nitride layer surface of Example 1 (J1) and Comparative Example 1 (HI) by a scanning electron microscope. Optical micrographs (FIGS. 2A and 2B) of the cross section of the layer are shown. The hard particles are black in the backscattered electron image and white in the light micrograph. It can be seen that in the present invention, the size of the hard particles is small, and the size of the grain boundary compound in the cross section of the nitride layer is also extremely small. Table 2 shows the results of quantification of the structures of Example 1-11 (J1-J11) and Comparative Example 1-8 (H1-H8). , The area ratio, the maximum length of the grain boundary compound in the cross section of the nitrided layer, and the hardness of the sliding surface of the nitrided layer are shown.
第 2表  Table 2
Figure imgf000015_0001
Figure imgf000015_0001
* 比較例 2, 4, 8 (H2, H4, H8) は難加工性のため線材化でき な かつた。  * Comparative Examples 2, 4, and 8 (H2, H4, H8) could not be made into wires due to the difficulty in processing.
** 比較例 7 (H7) は窒化後の寸法が不安定で歩留が低下 した。 スカ ツ フ ィ ング試験は、 線 材試験片から作製 した第 3 図に 示す全長 45 m mのコの字形状の 2ピ ン一体型試験片で、 FC250材 φ 60x 12 m mの円板を相手材 と して、 摩擦摩耗試験機 ( リ ケン製 : 商品名 「 ト ライ ボ リ ッ ク 1 」) を用いて行った。 ピ ン (第 4図、 参 照符号 1 ) の先端の摺動面は、 半径 20m mの凸形状で、 ガス窒化 で表面に生成 した厚さ 5-20μ mの化合物層 (白層) を研削除去 し、 研磨によ り 鏡面に仕上げてある。 一方、 FC250の円板 (第 4 図、 参照符号 2 ) は摺動面の表面粗さ ( Rz) を 1-2 mに調整 した もの を使用 した。 摩擦摩耗試験機の動作機構を図 4に、 フカ ツ フ ィ ング 試験条件を以下に示す。 ** In Comparative Example 7 (H7), the dimensions after nitriding were unstable and the yield decreased. The scuffing test is a U-shaped 2-pin integrated test piece with a total length of 45 mm as shown in Fig. 3 made from a wire test piece. The test was performed using a friction and wear tester (manufactured by RIKEN: trade name "Tribolic 1"). The sliding surface at the tip of the pin (Fig. 4, reference numeral 1) has a convex shape with a radius of 20mm and grinds a 5-20μm thick compound layer (white layer) formed on the surface by gas nitriding. Removed and polished to a mirror finish. On the other hand, the FC250 disk (Fig. 4, reference numeral 2) was prepared by adjusting the surface roughness (Rz) of the sliding surface to 1-2 m. Fig. 4 shows the operating mechanism of the friction and wear tester, and the fuzzing test conditions are shown below.
摺動速度 (円板) : 8 m/sec  Sliding speed (disk): 8 m / sec
押付加重 : 初期 l.OMPaから 0.2MPa毎増加、 スカ ツ フ ィ ング発 生まで昇圧  Pressing load: Increase from the initial l.OMPa every 0.2MPa, pressure increase until scatting occurs
潤滑油 : モーターオイ ル (商品名、 日 石モーターオイ ル P#20) 潤滑油温度 : 80°C (出 口付近) Lubricating oil: Motor oil (Product name, Nippon Oil Motor Oil P # 20) Lubricating oil temperature: 80 ° C (near the outlet)
Λ • 'ィ ノレ /く ス : 100°C  Λ • ィ レ / レ: 100 ° C
潤滑油供給量 : 40cc/min  Lubricating oil supply: 40cc / min
スカ ッ フ ィ ン グ面圧はスカ ツ フ イ ングが発生 した と きの押付加重 と摺動面の摩耗面積から計算した。 表 3に実施例 1-11 ( J1-J11) 及 び比較.例 1-8 (H1-H8) のスカ ッ フ ィ ング面圧を示す。 The squashing surface pressure was calculated from the load applied when squashing occurred and the wear area of the sliding surface. Table 3 shows the scuffing surface pressure of Example 1-11 (J1-J11) and Comparative Example 1-8 (H1-H8).
第 3表 Table 3
Figure imgf000017_0001
Figure imgf000017_0001
本発明によ る実施例 1-11 ( J1-J11) は、 比較例 1, 3, 5-7 (HI, H3, H5-H7) に比べ耐スカ ッ フ ィ ング性の向上 した こ と が分かる。 Example 1-11 (J1-J11) according to the present invention was found to have improved anti-scuffing properties as compared with Comparative Examples 1, 3, and 5-7 (HI, H3, H5-H7). I understand.
実施例 12-14 ( J12-14) 及び比較例 9-11 ( H9-H11)  Example 12-14 (J12-14) and Comparative Example 9-11 (H9-H11)
実施例 1の化学組成の材料において、線材加工後の焼入れェ程で 第 4表に示す焼入れ温度から空冷焼入れを し、 実施例 1と 同様な所 定の工程を経てガス窒化を行った窒化層組織について定量化 した ( その結果を第 4 表に示す。 第 4表 A nitride layer obtained by subjecting the material having the chemical composition of Example 1 to air quenching from the quenching temperature shown in Table 4 in the quenching process after wire processing, and performing gas nitriding through the same process as in Example 1 The tissue was quantified ( the results are shown in Table 4). Table 4
Figure imgf000018_0001
比較例 9 (H9) では、 窒化層の硬度が 860と低い値であった。 実施例 12-14 ( J12-14) 及び比較例 9-11 (H9-H11)
Figure imgf000018_0001
In Comparative Example 9 (H9), the hardness of the nitrided layer was a low value of 860. Example 12-14 (J12-14) and Comparative Example 9-11 (H9-H11)
実施例 1の化学組成の材料において; 線材加工後の焼入れ工程で 表 7に示す焼入れ温度から空冷焼入れを し、 実施例 1と 同様な所定 の工程を経てガ ス窒化を行った窒化層組織について定量化 した。 その結果を第 5 表に示す。  In the material having the chemical composition of Example 1, a nitrided layer structure obtained by air-quenching quenching from the quenching temperature shown in Table 7 in the quenching process after wire rod processing and performing gas nitriding through the same predetermined process as in Example 1 Quantified. Table 5 shows the results.
第 5 表  Table 5
Figure imgf000018_0002
比較例 9 ( H9) では、 窒化層の硬度が 860と低い値であった。
Figure imgf000018_0002
In Comparative Example 9 (H9), the hardness of the nitrided layer was a low value of 860.
実施例 15及び比較例 12  Example 15 and Comparative Example 12
実施例 1及び比較例 1の鋼材から所定の工程を経て、 呼び径 ( ) 95.0m m , 厚さ (a,) 3.35m m , 幅 (h,) 2.3ra mの矩形断面の圧 力 リ ング (実施例 15, 比較例 12) に加工 した。 こ こで、 焼入れ、 焼戻 しは、 焼入れ炉を 930°Cで約 10分間、 空冷焼入れ後、 焼戻 し炉 を 620°Cで約 25分間、 通過する連続式で行い、 又、 窒化は、 570°C で 4時間のガス窒化を行った。 但 し、 比較例 12の焼入れ温度につ いては、 従来から通常行われていた 1100°Cで行った。 その他の条 件は実施例 15と 同様である。 Through a predetermined process from the steel material of Example 1 and Comparative Example 1, a pressure ring with a rectangular cross section of nominal diameter (95.0 mm), thickness (a,) 3.35 mm, width (h,) 2.3 ram (implemented Example 15 and Comparative Example 12). Here, quenching and tempering are performed in a continuous manner by passing through a quenching furnace at 930 ° C for about 10 minutes, air-quenching and then passing through a tempering furnace at 620 ° C for about 25 minutes. , 570 ° C For 4 hours. However, the quenching temperature of Comparative Example 12 was performed at 1100 ° C., which was conventionally performed conventionally. Other conditions are the same as in Example 15.
作製 した圧カ リ ングを用いて、 図 5に示す動作機構を持つ ビス ト ン リ ン グ疲労試験機で疲労試験を行った。 すなわち、 合 口 両端を 切断 して 自 由合口寸法を広げた製品 3 を、 リ ン グ呼び径迄閉 じた 状態で試験機にセ ッ ト し 、 こ の状態から さ らに閉 じる方向に偏芯 カ ム 4 に よ っ て負荷応力分のス ト ロ ーク を 40サイ ク ル/秒の周期 で繰 り 返 し与える こ と によ っ て リ ングを折損させ、 折損時の応力 負荷回数を求めた。 こ の試験を、 同一仕様のサ ンプルに対 して負 荷応力を変化させなが ら繰 り 返 し、 いわゆる S-N線図を作成 し、 最 終的に疲労限度線図を求めた。  A fatigue test was carried out using the fabricated pressure ring with a piston ring fatigue tester having the operating mechanism shown in Fig. 5. In other words, the product 3 with the free opening dimension expanded by cutting both ends of the opening is set on the testing machine with the ring closed to the nominal diameter, and the direction of further closing from this state The eccentric cam 4 repeats the stroke corresponding to the applied stress at a cycle of 40 cycles / second, causing the ring to break. The number of loads was determined. This test was repeated for samples of the same specifications while changing the load stress, so-called SN diagrams were created, and finally fatigue limit diagrams were obtained.
第 6 図に疲労限度線図を示すが、 比較例 12に比べ、 本発明の実 施例 15においては大き く 改善されている こ とがわかる。  FIG. 6 shows a fatigue limit diagram. It can be seen that the fatigue limit is significantly improved in Example 15 of the present invention as compared with Comparative Example 12.
実施例 16-19及び比較例 13-14 Example 16-19 and Comparative Example 13-14
実施例 1 (実施例 16, 17) , 実施例 7 (実施例 18, 19) 及び比較例 1 (比較例 13, 14) の鋼材から所定の工程を経て、 呼び径 ( ) 99.2 m m、 厚さ ( a,) 3.8m m、 幅 (h,) 2.5m mの矩形断面の圧力 リ ン グ (実施例 16, 18, 比較例 13)、 及び呼び径 (d,) 99.2m m、 厚さ (a,) 2.5m m、 幅 (h,) 3.0m mの鞍形断面の 2ピー スオイ ノレ リ ン グの本体 ('実施例 17, 19, 比較例 14) に加工 した。 焼入れ焼戻 し の熱処理、 ガス窒化について も実施例 16- 19は実施例 15と 、 比較例 13 - 14は比較例 12と 同様な方法で行った。  From the steel materials of Example 1 (Examples 16 and 17), Example 7 (Examples 18 and 19), and Comparative Example 1 (Comparative Examples 13 and 14), through a predetermined process, a nominal diameter of 99.2 mm and a thickness of 99.2 mm (A,) 3.8mm, width (h,) 2.5mm rectangular section pressure ring (Examples 16, 18 and Comparative Example 13), nominal diameter (d,) 99.2mm, thickness (a,) The two-piece oil bearing body with a saddle-shaped cross section of 2.5 mm and width (h,) 3.0 mm ('Examples 17, 19, Comparative Example 14) was machined. The heat treatment of quenching and tempering and the gas nitriding were performed in the same manner as in Example 15 in Examples 16 to 19 and in Comparative Example 12 in Comparative Examples 13 to 14.
作製 した圧力 リ ング及びオイル リ ングを 4 気筒 3200ccの踌鉄モ ノ ブ口 ン ク ディ ーゼノレエンジンを用いて、以下の条件で 100時間の 耐久試験を行った。  The manufactured pressure ring and oil ring were subjected to a 100-hour durability test under the following conditions using a 4-cylinder 3200 cc ferromagnetic monobloc nozzle diesel engine.
回転数 : 3600rpm  Number of rotations: 3600rpm
出力 : 75kW  Output: 75kW
負荷 : 全負荷 水温 : 110°C Load: Full load Water temperature: 110 ° C
油温 : 130°C  Oil temperature: 130 ° C
比較例 13は試験開始後 2時間 10分で、 比較例 14は試験開始後 7時間 55分でスカ ッ フ ィ ングを起こ したのに対 し、実施例 16- 19では何ら 問題な く 試験を終了 した。 比較例 13の摺動面に生 じた ク ラ ッ ク の 写真を図 7に示す。 産業上の利用可能性 In Comparative Example 13, scuffing occurred 2 hours and 10 minutes after the start of the test and in Comparative Example 14 7 hours and 55 minutes after the start of the test, whereas in Examples 16 to 19, the test was performed without any problem. finished. Fig. 7 shows a photograph of the crack generated on the sliding surface of Comparative Example 13. Industrial applicability
以上説明 した と お り 、 本発明によ る高ク ロ ムマルテ ンサイ ト 系 ステ ン レ ス鋼製窒化ビス ト ン リ ングは、 窒素添加によ る Cr炭化物 の微細化技術と 比較的低い温度からの焼入れによ っ て、 窒化層中 の窒化物が微細で数多く 存在 し、 特に窒化層中の層状粒界化合物 が微細な顕微鏡組織と な り 、 耐摩耗性、 耐ス カ ツ フ ィ ン グ性、 耐 ク ラ ッ キング性、 耐疲労性に優れるため、— 高回転、 高出力の.負荷 の高い内燃機関、 特に最近の軽量銹鉄モ ノ ブ口 ッ ク ディ ーゼルェ ンジン等に用いる こ と が可能と なる。 また、 小型 ト ラ ッ ク におけ る排気ブ レーキ使用時の ビス ト ン リ ングの疲労に対 して も効果的 に使用でき る。 適用 ビス ト ン リ ングと しては、 圧力 リ ングの他、 2 ピー スオイ ノレ リ ン グの本体や 3ピー ス オイ ノレ リ ン グの レ 一ルにお いて都合良 く 利用でき る。  As described above, the bismuth ring made of high chromium martensite stainless steel according to the present invention is based on the technology of refining Cr carbide by adding nitrogen and the relatively low temperature. Due to the quenching, many nitrides in the nitrided layer are fine and numerous, and especially the layered grain boundary compounds in the nitrided layer have a fine microstructure, and are resistant to wear and scuffing. Because of its excellent resistance, cracking resistance and fatigue resistance, it can be used for high-speed, high-power, high-load internal combustion engines, especially recent lightweight rust-resistant monolithic diesel engines. Is possible. It can also be used effectively against fatigue of the bis-rings when using exhaust brakes on small trucks. Applicable screw rings can be conveniently used in pressure ring as well as 2-piece oil ring main bodies and 3-piece oil ring rails.

Claims

請求の範囲 The scope of the claims
1 . 表面窒化層を形成 した高ク ロ ムマルテ ンサイ ト系鋼よ り なる ピス ト ン リ ン グにおいて、 前記高ク ロ ムマルテ ンサイ ト 系 ス テ ン レ ス鋼力; 、 重量 0 /0 で.、 C: 0.3-1.0%, Cr: 14.0-21.0%, N: 0.05-0.50%, Mo, V, W, Nbの少な く と も 1種以上の合計: 0.03- 3.0%, Si: 0.1-1.0%, Mn: 0.1-1.0%, P: 0.05°/。以下, 8: 0.05% 以下, 残部が Fe及び不可避的不純物よ り な り 、 そ の摺動窒化層表 面の主と して窒化物か ら な る硬質粒子が平均直径で 0.2- 2 mの 範囲、 最大直径で 7 μ m以下、 面積率で 5-30%の範囲である こ と を 特徴とする耐スカ ツ フ ィ ング性、 耐ク ラ ッ キン グ性及び耐疲労性 に優れた ピス ト ン リ ング。 1 in the surface nitride layer was formed consisting Ri by high click b Mumarute Nsai preparative steels piston tons Li in g, the high click b Mumarute Nsai preparative system scan Te emission Les scan steel force;., A weight 0/0. , C: 0.3-1.0%, Cr: 14.0-21.0%, N: 0.05-0.50%, total of at least one of Mo, V, W, and Nb: 0.03-3.0%, Si: 0.1-1.0 %, Mn: 0.1-1.0%, P: 0.05 ° /. Below, 8: 0.05% or less, with the balance being Fe and unavoidable impurities, and the hard particles consisting mainly of nitride as the main surface of the sliding nitride layer have an average diameter of 0.2-2 m. Pis with excellent anti-scratching, anti-cracking and anti-fatigue properties, characterized by a range of 7 μm or less in maximum diameter and an area ratio of 5-30%. Tong ring.
2 . ピス ト ン リ ングの長手方向の窒化層断面において、 観察 される粒界化合物の大き さ (長さ) が最大 20 m以下である こ と を特徴と する請求の範囲第 1 項記載の ビス ト ン リ ン グ。  2. The method according to claim 1, wherein the size (length) of the observed grain boundary compound is at most 20 m or less in the longitudinal section of the piston ring in the nitrided layer. Boston ring.
3 .前記高 ク ロ ムマルテ ンサイ ト 系鋼の窒素含有量が、 重量% で N: 0.05-0.20%の範囲である こ と を特徴と する請求の範囲第 1 項又は第 2 記載の ビス ト ン リ ング。  3. The biston according to claim 1 or 2, wherein the nitrogen content of said high chrome martensite steel is in the range of 0.05 to 0.20% by weight N. Ring.
4 . 前記摺動面窒化層の ビッ カース硬度が 900- 1400の範囲に ある こ と を特徴と する請求の範囲第 1 項から第 3 項までのいずれ カゝ 1 項記載の ピス ト ン リ ング。  4. The piston ring according to any one of claims 1 to 3, wherein the nitrided layer on the sliding surface has a Vickers hardness in the range of 900 to 1400. .
5 . 高ク ロ ム マルテ ンサイ ト 系鋼の表面を窒化する ビス ト ン リ ン グを製造する 方法にぉレ、て、 重量 0 /。で、 C: 0.3-1.0%, Cr: 14.0-21.0%, N: 0.05-0.50%, Mo, V, W, Nbの少な く と も 1種以上 の合計: 0.03-3.0%, Si: 0.1-1.0%, Mn: 0.1-1.0%, P: 0.05%以 下, S: 0.05%以下, 残部が Fe及び不可避的不純物よ り なる高ク ロ ムマルテ ンサイ ト 系ス テ ン レス鋼を 、 ピス ト ン リ ン グ形状へ曲げ 加工する前の焼入れ工程において 850- 1000°Cの範囲の温度から焼 入れる こ と 特徴と する耐スカ ツ フ ィ ング性、 耐ク ラ ッ キング性及 び耐疲労性に優れた ビス ト ン リ ン グの製造方法。 5. The method of manufacturing a bis-ring that nitrides the surface of high chrome martensitic steel has a weight of 0 /. Where: C: 0.3-1.0%, Cr: 14.0-21.0%, N: 0.05-0.50%, Mo, V, W, Nb At least one or more: 0.03-3.0%, Si: 0.1- 1.0%, Mn: 0.1-1.0%, P: 0.05% or less, S: 0.05% or less, balance is Fe and unavoidable impurities, high chromium martensite stainless steel In the quenching process before bending into a ring shape, quenching is performed from a temperature in the range of 850 to 1000 ° C, which is characterized by its anti-scratching, cracking and fatigue resistance. An excellent method for manufacturing a rubber ring.
6 . 請求項の範囲第 1 項か ら第 3 項のいずれか 1 項記載の ビス ト ン リ ン グ と 铸鉄モ ノ ブ 口 ッ ク シ リ ン ダ と の組合わせ。 6. Combination of the stainless steel ring described in any one of claims 1 to 3 and a stainless steel monobloc mouth cylinder.
PCT/JP2001/006127 2000-07-17 2001-07-16 Piston ring excellent in resistance to scuffing, cracking and fatigue and method for producing the same, and combination of piston ring and cylinder block WO2002006546A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE60122164T DE60122164T2 (en) 2000-07-17 2001-07-16 PISTON RING WITH EXCELLENT RESISTANCE TO FRICTION, CRACKING AND TEMPERING AND MANUFACTURING METHOD AND COMBINATION OF PISTON RING AND CYLINDER BLOCK
US10/333,326 US20040040631A1 (en) 2000-07-17 2001-07-16 Piston ring excellent in resistance to scuffing, cracking and fatigue and method for producing the same, and combination of piston ring and cylinder block
EP01949987A EP1304393B1 (en) 2000-07-17 2001-07-16 Piston ring excellent in resistance to scuffing, cracking and fatigue and method for producing the same, and combination of piston ring and cylinder block
KR10-2003-7000751A KR100507424B1 (en) 2000-07-17 2001-07-16 Piston ring excellent in resistance to scuffing, cracking and fatigue and method for producing the same, and combination of piston ring and cylinder block
BRPI0112573-7A BR0112573B1 (en) 2000-07-17 2001-07-16 piston ring.
US11/657,015 US20070187002A1 (en) 2000-07-17 2007-01-24 Piston ring having improved scuffing, cracking and fatigue resistances, and its production method, as well as combination of piston ring and cylinder block

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-216255 2000-07-17
JP2000216255A JP4724275B2 (en) 2000-07-17 2000-07-17 Piston ring excellent in scuffing resistance, cracking resistance and fatigue resistance, and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/657,015 Continuation US20070187002A1 (en) 2000-07-17 2007-01-24 Piston ring having improved scuffing, cracking and fatigue resistances, and its production method, as well as combination of piston ring and cylinder block

Publications (1)

Publication Number Publication Date
WO2002006546A1 true WO2002006546A1 (en) 2002-01-24

Family

ID=18711547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006127 WO2002006546A1 (en) 2000-07-17 2001-07-16 Piston ring excellent in resistance to scuffing, cracking and fatigue and method for producing the same, and combination of piston ring and cylinder block

Country Status (10)

Country Link
US (2) US20040040631A1 (en)
EP (1) EP1304393B1 (en)
JP (1) JP4724275B2 (en)
KR (1) KR100507424B1 (en)
CN (1) CN1210427C (en)
AR (1) AR029730A1 (en)
BR (1) BR0112573B1 (en)
DE (1) DE60122164T2 (en)
TW (1) TW521093B (en)
WO (1) WO2002006546A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295777A1 (en) * 2003-03-31 2011-03-16 Hitachi Metals, Ltd. Internal engine piston and its production method
CN103866202A (en) * 2012-12-14 2014-06-18 钟庆辉 Method for manufacturing gas ring of piston ring of engine by using modified stainless steel material

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI258547B (en) * 2002-08-27 2006-07-21 Riken Co Ltd Side rails for combined oil control ring and their nitriding method
SE526805C8 (en) * 2004-03-26 2006-09-12 Sandvik Intellectual Property steel Alloy
CN100363524C (en) * 2005-03-17 2008-01-23 上海材料研究所 Anticorrosion and antiwear martensitic stainless steel and its production method and use
JP4648094B2 (en) * 2005-05-31 2011-03-09 株式会社神戸製鋼所 High Cr cast iron with excellent fatigue crack resistance and method for producing the same
EP2011892A1 (en) 2006-04-20 2009-01-07 Hitachi Metals, Limited Piston ring material for internal combustion engine
DE102006038669A1 (en) * 2006-08-17 2008-02-28 Federal-Mogul Burscheid Gmbh Steel material, in particular for the production of piston rings
JP4954644B2 (en) * 2006-08-31 2012-06-20 日本ピストンリング株式会社 Combination of cylinder liner and piston ring
DE102008032884B4 (en) * 2008-07-14 2018-09-20 Mahle International Gmbh Valve device, heat exchanger and charging system for charging an internal combustion engine with a charging fluid
JP5368887B2 (en) 2008-09-01 2013-12-18 ミネベア株式会社 Martensitic stainless steel and rolling bearings
BRPI0905228B1 (en) 2009-12-29 2017-01-24 Mahle Metal Leve Sa crack propagation resistant nitrided piston ring
JP5676146B2 (en) * 2010-05-25 2015-02-25 株式会社リケン Pressure ring and manufacturing method thereof
KR101239589B1 (en) 2010-12-27 2013-03-05 주식회사 포스코 High corrosion resistance martensite stainless steel and method of manufacturing the same
US10053763B2 (en) 2011-06-02 2018-08-21 Aktiebolaget Skf Carbo-nitriding process for martensitic stainless steel and stainless steel article having improved corrosion resistance
KR101268736B1 (en) 2011-06-24 2013-05-29 주식회사 포스코 martensitic stainless steel and method of manufacturing it
BR112014012557B1 (en) 2011-11-30 2019-03-19 Tenneco Inc. PISTON RING FORMED OF A CAST IRON, CAST IRON, METHOD FOR MANUFACTURING A PISTON RING FORMED CAST IRON AND METHOD FOR FORMING A CAST IRON
UA111115C2 (en) 2012-04-02 2016-03-25 Ейкей Стіл Пропертіс, Інк. cost effective ferritic stainless steel
KR102005580B1 (en) * 2012-12-17 2019-07-30 두산인프라코어 주식회사 Flange type sliding bearing, sliding bearing assembly and articulation assembly for construction machinery having the same
DE102013010807A1 (en) * 2013-06-27 2014-12-31 Liebherr-Aerospace Lindenberg Gmbh Component of an aircraft
JP6010508B2 (en) * 2013-07-03 2016-10-19 ボーグワーナー インコーポレーテッド Manufacturing method of sliding member, manufacturing method of chain link, and manufacturing method of chain provided with the link
WO2015073094A2 (en) * 2013-08-27 2015-05-21 University Of Virginia Patent Foundation Lattice materials and structures and related methods thereof
BR102013031497A2 (en) * 2013-12-06 2015-11-10 Mahle Int Gmbh process of coating a cylinder of an internal combustion engine and cylinder / engine liner
WO2015114822A1 (en) * 2014-01-31 2015-08-06 Tpr株式会社 Compression ring and base material for compression ring
WO2015124169A1 (en) * 2014-02-18 2015-08-27 Schmiedewerke Gröditz Gmbh Chromium steel for machine parts subject to strong wear, in particular pelletization matrices
JP5859048B2 (en) * 2014-03-20 2016-02-10 サンコール株式会社 Piston ring and metal rectangular wire for piston ring
CN104018083B (en) * 2014-06-20 2016-01-06 重庆材料研究院有限公司 Nitrogenous stainless bearing steel and preparation method
BR102014026128B8 (en) 2014-10-20 2021-08-17 Mahle Int Gmbh piston ring and internal combustion engine
US10196718B2 (en) * 2015-06-11 2019-02-05 Hitachi Metals, Ltd. Steel strip for cutlery
JP6139605B2 (en) * 2015-07-17 2017-05-31 株式会社リケン Piston ring and manufacturing method thereof
WO2017021330A1 (en) * 2015-08-03 2017-02-09 Mahle International Gmbh Piston rings of nitridable cast steels and process of production
BR102015027438B8 (en) 2015-10-29 2021-12-21 Inst De Pesquisas Tecnologicas Do Estado De Sao Paulo S/A Piston rings in cast tool steels and their manufacturing process
CN106053053B (en) * 2016-08-10 2018-08-03 三峡大学 A kind of piston ring fatigue tester and fatigue test method
CN106119729A (en) * 2016-08-18 2016-11-16 娄土岭 A kind of hot investment casting bearing steel
CN106619032A (en) * 2016-11-25 2017-05-10 天津文康科技有限公司 Mechanical and electrical integration medical care device
CN106555129A (en) * 2016-12-02 2017-04-05 机械科学研究总院青岛分院 A kind of nitrogenous stainless bearing steel and preparation method
CN107326272A (en) * 2017-05-27 2017-11-07 苏州铭晟通物资有限公司 A kind of steel
JP7404792B2 (en) 2018-12-04 2023-12-26 株式会社プロテリアル Martensitic stainless steel parts and their manufacturing method
KR20210104418A (en) * 2020-02-17 2021-08-25 현대자동차주식회사 A outer ring for variable oil pump and manufacturing method thereof
DE102020202259A1 (en) * 2020-02-21 2021-08-26 Federal-Mogul Burscheid Gmbh Sliding element, in particular piston ring, and method for producing the same
CN114962460A (en) 2021-02-25 2022-08-30 斯凯孚公司 Heat treated roller bearing ring
CN113528941A (en) * 2021-06-16 2021-10-22 中国兵器科学研究院宁波分院 Nitrogen-containing martensitic stainless bearing steel and preparation method thereof
CN114196875B (en) * 2021-09-25 2022-10-28 浙江吉森金属科技有限公司 Stainless steel for valve plate and heat treatment method thereof
CN115109891B (en) * 2022-07-14 2022-12-20 中北大学 High-carbon high-chromium nitrogen-containing martensitic stainless steel and carbide refining method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162346A (en) * 1983-02-25 1984-09-13 Hitachi Metals Ltd Pressure ring
JPS61144470A (en) * 1984-12-19 1986-07-02 Riken Corp Piston ring
JPH01205063A (en) * 1988-02-10 1989-08-17 Daido Steel Co Ltd Wear-resistant stainless steel parts
JPH05148593A (en) * 1991-11-27 1993-06-15 Kanai Hiroyuki Wire rod for piston ring
JPH07278758A (en) * 1994-04-13 1995-10-24 Nippon Steel Corp Stainless steel for engine gasket and its production
JPH08134596A (en) * 1994-11-02 1996-05-28 Nippon Steel Corp High strength stainless steel sheet excellent in stress corrosion cracking resistance
JPH11294584A (en) * 1998-02-10 1999-10-29 Riken Corp Piston ring for internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5154433A (en) * 1991-06-14 1992-10-13 Teikoku Piston Ring Co., Ltd. Piston ring
FR2708939B1 (en) * 1993-08-11 1995-11-03 Sima Sa Low carbon nitrogen martensitic steel and its manufacturing process.
JP3456028B2 (en) * 1994-10-13 2003-10-14 日立金属株式会社 Piston ring material with excellent workability
AT402224B (en) * 1994-11-04 1997-03-25 Boehler Edelstahl USE OF AN IRON BASED ALLOY AND PLUNGER PISTON AND PISTON RING
JP3452354B2 (en) * 2000-01-20 2003-09-29 日本高周波鋼業株式会社 Martensitic stainless steel for piston rings and deformed wires for piston rings

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162346A (en) * 1983-02-25 1984-09-13 Hitachi Metals Ltd Pressure ring
JPS61144470A (en) * 1984-12-19 1986-07-02 Riken Corp Piston ring
JPH01205063A (en) * 1988-02-10 1989-08-17 Daido Steel Co Ltd Wear-resistant stainless steel parts
JPH05148593A (en) * 1991-11-27 1993-06-15 Kanai Hiroyuki Wire rod for piston ring
JPH07278758A (en) * 1994-04-13 1995-10-24 Nippon Steel Corp Stainless steel for engine gasket and its production
JPH08134596A (en) * 1994-11-02 1996-05-28 Nippon Steel Corp High strength stainless steel sheet excellent in stress corrosion cracking resistance
JPH11294584A (en) * 1998-02-10 1999-10-29 Riken Corp Piston ring for internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1304393A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295777A1 (en) * 2003-03-31 2011-03-16 Hitachi Metals, Ltd. Internal engine piston and its production method
CN103866202A (en) * 2012-12-14 2014-06-18 钟庆辉 Method for manufacturing gas ring of piston ring of engine by using modified stainless steel material

Also Published As

Publication number Publication date
BR0112573B1 (en) 2009-01-13
JP2002030394A (en) 2002-01-31
JP4724275B2 (en) 2011-07-13
US20040040631A1 (en) 2004-03-04
CN1210427C (en) 2005-07-13
CN1458983A (en) 2003-11-26
BR0112573A (en) 2003-07-01
EP1304393B1 (en) 2006-08-09
KR20030025275A (en) 2003-03-28
AR029730A1 (en) 2003-07-10
DE60122164T2 (en) 2007-10-11
EP1304393A1 (en) 2003-04-23
DE60122164D1 (en) 2006-09-21
US20070187002A1 (en) 2007-08-16
TW521093B (en) 2003-02-21
KR100507424B1 (en) 2005-08-10
EP1304393A4 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
WO2002006546A1 (en) Piston ring excellent in resistance to scuffing, cracking and fatigue and method for producing the same, and combination of piston ring and cylinder block
KR101087562B1 (en) Piston for internal combustion engine and producing method thereof
JP4799006B2 (en) Fe-based seal sliding member and manufacturing method thereof
JP5650714B2 (en) Nitritable steel piston ring, steel cylinder liner and casting method for manufacturing the same
JP5094126B2 (en) Rolling and sliding parts and manufacturing method thereof
KR100701812B1 (en) Material for sliding parts having self-lubricity and wire material for piston ring
JP2005320621A (en) Ferrous abrasion resistant sliding material and sliding member
JP4923776B2 (en) Rolling and sliding parts and manufacturing method thereof
JP2002317225A (en) Piston ring
KR20010066864A (en) Self-lubricating piston ring material for internal combustion engine and piston ring
WO2013151059A1 (en) Hollow seamless pipe for high-strength spring
JP5090257B2 (en) Tool steel suitable for aluminum machining dies and aluminum machining dies
WO2020202406A1 (en) Carburized part and method for manufacturing same
JP2909456B2 (en) Piston ring with excellent scuffing resistance
JP4066307B2 (en) Piston ring material and piston ring for internal combustion engines having self-lubricating properties
JP3508943B2 (en) Aluminum forging die steel
JPH03122252A (en) Steel for metal mold and metal mold
JP2007321199A (en) Steel for piston ring excellent in seizure resistance, deformed wire for piston ring, and piston ring
CN115335544B (en) Steel material and carburized steel part
JP3952328B2 (en) Piston ring material with excellent scuffing resistance and workability
KR100499753B1 (en) Steel for nitriding and sliding member having improved wear resistance and fatigue strength
JPH03267347A (en) High speed rotating member
JP2005220377A (en) Steel wire rod or bar steel for case hardening having excellent cold forgeability after spheroidizing
JPH0559495A (en) Piston ring material
JPH11106874A (en) Piston ring material excellent in scuffing resistance and workability

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN ID IN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 44/DELNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2001949987

Country of ref document: EP

Ref document number: 1020037000751

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018157637

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037000751

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001949987

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10333326

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1020037000751

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2001949987

Country of ref document: EP