WO2002006372A1 - Easily formable polyester film - Google Patents

Easily formable polyester film Download PDF

Info

Publication number
WO2002006372A1
WO2002006372A1 PCT/JP2001/006059 JP0106059W WO0206372A1 WO 2002006372 A1 WO2002006372 A1 WO 2002006372A1 JP 0106059 W JP0106059 W JP 0106059W WO 0206372 A1 WO0206372 A1 WO 0206372A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
film
acid
mol
temperature
Prior art date
Application number
PCT/JP2001/006059
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuhisa Yamane
Hiroshi Shinnumadate
Masahiro Kimura
Minoru Yoshida
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Publication of WO2002006372A1 publication Critical patent/WO2002006372A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids

Definitions

  • the present invention relates to a polyester film for molding, and can be used for various industrial materials, packaging materials, building materials, and the like. More specifically, the present invention relates to a polyester film for molding suitable for surface coating of metal, wood, paper, resin, and the like, laminating, molding and embossing of containers such as cups and packs. Also, the present invention relates to an unstretched or biaxially stretched polyester film for molding, which is suitable as a process film such as a transfer printing support film used for in-mold transfer molding or the like which is printed simultaneously with molding in injection molding or the like.
  • polyvinyl chloride film has been used as a typical decorative sheet used for covering the surface of metal, wood, paper, resin, and the like in terms of processability.
  • polyvinyl chloride contains a halogen element in the constituents of the polymer, it generates toxic components such as dioxin when incinerated or burns due to a fire, etc., and bleeds out the plasticizer. Because of these problems, there has been a growing demand for reducing environmental impact in recent years, and new materials have been required.
  • the support film used is formed into more complex three-dimensional shapes, folded after lamination, embossing, and deep drawing, due to the diversification of product life, handling, and design needs. There is a need for something that can withstand this.
  • Japanese Patent Laid-Open Publication No. Hei 3-667628 proposes a biaxially stretched polyester film for molding having improved workability at 150 ° C.
  • it has good heat resistance and solvent resistance it was not satisfactory in terms of thermal whitening during the molding process and solvent whitening during printing.
  • A-PET film amorphous polyethylene terephthalate film has high stress during molding and processing, and when molded at high temperature to further reduce stress, wrinkles of the film due to softening and whitening due to crystallization occur. There was a problem.
  • An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a polyester film for molding which is not only excellent in environmental properties but also excellent in processing characteristics such as moldability, printability and the like. is there. Disclosure of the invention
  • An object of the present invention described above is to provide a film which satisfies the following formula (1), comprising polyester A comprising at least two kinds of dalicol components selected from ethylene glycol, butanediol, and propanediol. Achieved by a polyester film characterized in that the crystal melting temperature curve of the film in the DSC heating measurement has a substantially single peak and the melting peak temperature is 230 ° C or higher. Is done. '
  • M in the formula represents the concentration of the catalytic metal element remaining in polyester A (milli mol%), and P represents the amount of phosphorus remaining in polyester A (milli mol%).
  • a glycol component is selected from ethylene glycol, butanediol, and propanediol in terms of improving moldability, processability, and printability. It is necessary that the polyester contains at least two kinds of components.
  • the polyester A Preferably, 40 to 90 mol% of the polyester component is ethylene glycol. From the viewpoint of improving the following moldability and processability by 100, it is more preferable that 50 to 90 mol% of the glycol component of the polyester A be ethylene glycol, and 60 to 85 mol%. Is particularly preferably ethylene glycol.
  • 100 to 60 mol% of the glycol component of polyester A is selected from butanediol and Z or propanediol. More preferably, the glycol is selected from butanediol and / or propanediol, and more preferably, 15 to 40 mol% is butanediol and / or propanediol. Alternatively, glycols selected from propanediol are particularly preferred. Butanediol and butanediol may be used in combination.
  • ⁇ + ⁇ -0 is 0 or more, where X, ⁇ , and ⁇ are the mole percentages of ethylene dalicol, butanediol, and propanediol, respectively.
  • glycol components include, for example, aliphatic glycols such as pentanediol, hexanediol, and neopentyl diol; alicyclic glycols such as cyclohexanedimethanol; bisphenols (bisphenol A, Bisphenol S), 1,3-bis (2-hydroxyethoxy), 1,2-bis (2-hydroxyethoxy) benzene, 1,4-bis (2-hydroxyethoxy) benzene, bis [ Aromatic glycols such as 4- (2-hydroxyphenyl) phenyl] sulfone, 2,2-bis (4-; 3—hydroxyethoxyphenyl) propane, hydroquinone and resorcin; diethylene glycol; Polyethylene glycol, polytrimethylene glycol, polytetramethylene glycol, etc.
  • aliphatic glycols such as pentanediol, hexanediol, and neopentyl diol
  • the amount of diethylene glycol contained is preferably from 0.1 to 10 mol% from the viewpoint of moldability, curability, and printability, and from 0.3 to 5 from the viewpoint that weather resistance is not deteriorated. Preferably it is mol%.
  • Examples of the acid component of the polyester A include terephthalic acid, isophthalic acid, Aromatic dicarboxylic acids such as phthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenoxyethanedicarboxylic acid, 5-sodium sulfoisophthalic acid, and phthalic acid, oxalic acid, succinic acid, and adipic acid And aliphatic dicarboxylic acids such as sebacic acid, dimer acid, maleic acid, and fumaric acid; alicyclic dicarboxylic acids such as cyclohexyne dicarboxylic acid; and oxycarboxylic acid such as P-oxybenzoic acid. Can be. Terephthalic acid, isophthalic acid, adipic acid, and the like can be suitably used in terms of heat resistance, moldability, processability, and printability.
  • the polyester A of the present invention is obtained by adding at least two kinds of glycol component units selected from ethylene glycol, butanediol, and propanediol in the polyester A in the course of polymerization to obtain a copolymerized polyester. And a method of blending a plurality of polyesters in an extruder. At this time, a film using a copolymer of polyester and polyester deteriorates in solvent resistance, printability, heat resistance, and the like. Therefore, a film formed by blending a plurality of polyesters is preferable.
  • PET, PPT, and PBT include those obtained by copolymerizing the above-mentioned acid component and / or glycol component at a low ratio of 20 mol% or less, more preferably 10 mol% or less, particularly preferably 5% or less.
  • a blend of PET and PPT is preferred in terms of moldability, whitening resistance, and the like, and particularly preferred is a PET to PPT content of 40 to 90 mol%, and a PPT of 10 to 60 mol%. It is a blended polyester.
  • the polyester film of the present invention it is necessary that the polyester satisfies the following formula (1) in order to reduce variations in heat resistance, solvent resistance, printability, and quality.
  • M in the formula represents the concentration of the catalytic metal element remaining in the polyester A (milli mol%)
  • P represents the concentration of the phosphorus element remaining in the polyester A (milli mol%).
  • MZP is at least 0.001 and less than 1, more preferably at least 0.001 and at most 0.8, particularly preferably at least 0.01 and at most 0.6.
  • the thermal stability is increased, transesterification of the blended polymer can be suppressed, and a decrease in melting point due to heat treatment can be suppressed. As a result, the characteristics listed above can be improved.
  • a conventional reaction catalyst and a coloring inhibitor when producing polyester A, can be used.
  • the reaction catalyst include an alkaline earth metal compound, a zinc compound, and a lead compound.
  • a compound, a manganese compound, a cobalt compound, an aluminum compound, an antimony compound, a titanium compound, and the like can be used.
  • the coloring inhibitor for example, a phosphorus compound can be used.
  • Examples of such a method include, for example, a method in which a germanium compound is added as it is, a method in which a germanium compound powder is added as it is, and a method in which polyester is used as described in Japanese Patent Publication No. 54-222324.
  • a method in which a germanium compound is dissolved and added to a glycol component as a starting material can be used.
  • germanium compound examples include germanium dioxide, germanium hydroxide containing crystal water, germanium tetramethoxide, germanium tetratraoxide, germanium, and germanium alkoxide compounds such as germanium tetrabutoxide, germanium ethylene dalioxide, and germanium. It is possible to use germanium phenoxide compounds such as phenolate and germanium ⁇ -naphthrate, and phosphorus-containing germanium compounds such as germanium phosphate and germanium phosphite, and germanium acetate. Among them, germanium dioxide is preferable.
  • the antimony compound is not particularly limited.
  • antimony oxides such as antimony trioxide, antimony acetate and the like can be used.
  • titanium compound examples include, but are not particularly limited to, alkyl titanate compounds such as tetraethyl titanate and tetrabutyl titanate, and titanium and silicon, and zirconium.
  • alkyl titanate compounds such as tetraethyl titanate and tetrabutyl titanate
  • titanium and silicon examples include, but are not particularly limited to, titanium and silicon, and zirconium.
  • Composite oxides with an element selected from the group consisting of conium and aluminum can be preferably used.
  • the phosphorus compound added as a heat stabilizer to the polyester in the present invention is not particularly limited, but is preferably phosphoric acid, phosphorous acid, phosphoric acid ester, or the like.
  • a phosphorus compound having a molecular weight of 300 or more, particularly preferably 400 or more is preferably used from the viewpoint of suppressing bleed out during film formation.
  • the phosphorus compound having a molecular weight of 300 or more include stearyl phosphoric acid, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, and cresyl diphenyl phosphate.
  • stearyl phosphoric acid is particularly preferred from the viewpoint of suppressing bleed out.
  • the content (addition amount) of the phosphorus compound to be added to the polyester A is from 20 to 100 millimol% based on the phosphorus compound in terms of thermal stability and color tone. It is preferably in the range of 90 to 900 millimol%, particularly preferably in the range of 120 to 800 millimol%.
  • a method of adding the phosphorus compound either a method of adding the compound at the time of polymerization or a method of supplying the compound together with the polymer to the extruder and adding the compound may be used.
  • a method of adding the compound at the time of polymerization either a method of adding the compound at the time of polymerization or a method of supplying the compound together with the polymer to the extruder and adding the compound may be used.
  • the melting curve of the film in the DSC temperature rise measurement shows a substantially single peak.
  • the crystal melting curve of the film has two or more peaks, the molecular structure of the copolymer or the mixture is not uniform, so that the variation in elongation is large, and the moldability, The whitening resistance may be poor.
  • the peak of the crystal melting curve in the present invention is a crystal melting peak caused by a polymer constituting the film, and the film (5 mg) is heated at a temperature of 20 ° C. under a nitrogen atmosphere in a DSC under DSC.
  • This is the minimum point of the endothermic curve obtained from the DSC curve measured at the temperature rate, that is, the point where the differential value becomes zero.
  • the shoulder peak (minimum point of the peak) with a heat of fusion of 2 J / g or more that partially overlaps with one endothermic curve shall be regarded as an independent crystal melting curve peak. That is, the substance referred to in the present invention
  • the term “single peak” means that there is only a single minimum point of the crystal melting peak having a heat of fusion of 2 J / g or more.
  • the peak point temperature of the crystal melting curve of the polyester film according to the present invention needs to be 230 ° C. or higher from the viewpoint of heat resistance. It is more preferably 235 to 260, and particularly preferably 244 to 255 ° C.
  • the intrinsic viscosity of the polyester A is preferably 0.5 to 1.5.
  • the intrinsic viscosity of the polyester A is 0.6 to 1.5. More preferably, it is 3, and particularly preferably, the intrinsic viscosity is 0.7 to 1.0.
  • the polyester film of the present invention preferably has an average elongation at break of 800% or more at 80 ° C. in order to improve various moldability and processability.
  • the average elongation at break of the film is defined as the elongation at break in the longitudinal and transverse directions when a film having a width of 10 mm and a length of 100 mm is stretched at 300 mm / min. It is the average value after measuring twice and excluding the maximum and minimum points in each direction.
  • the average elongation at break at 800C is more preferably 900% or more, and particularly preferably 1000% or more and 2000% or less.
  • the type of the plasticizer is not particularly limited, but is a compound having a molecular weight of 300 or less.
  • examples of the type include an adipic acid-based plasticizer, a phosphorus-based plasticizer, a polyether-based plasticizer, and a trimerizer.
  • a nitric acid plasticizer or a phthalic acid plasticizer can be used.
  • These plasticizers are preferably introduced with a functional group-blocking group for suppressing the reaction with polyester A.
  • an ester plasticizer is preferable, particularly from the viewpoint of heat resistance and moldability.
  • ester plasticizer those having a hydroxyl value of 0 to 20 (mg / g) are preferable from the viewpoint of heat resistance, and more preferably 0 to 15 (mg / g) is preferred.
  • the acid value is preferably from 0 to 5 (mg / g), and particularly preferably from 0 to 3 (mg / g).
  • Examples of the method of adding a plasticizer include a method of adding a patch before or after a polymerization reaction, a method of using a vent-type extruder, and a method of adding a plastic from a screw or a pipe wall using a liquid feed pump. .
  • the plasticizer when a polyester B layer is compounded on at least one side of the A layer containing the polyester A as a main component, the plasticizer has a bleed-out resistance, a handling property, a non-adhesive property during processing, or It is more preferable from the viewpoint of providing a new function such as thermal adhesion.
  • Layer A containing polyester A as a constituent and layer B containing polyester B as a constituent can be arbitrarily combined.
  • polyester A / polyester B polyester A
  • polyester B / polyester A / polyester B polyester B
  • polyester B was laminated on at least one side, especially from the viewpoint of improving the bleed-out resistance, handleability, non-sticking property during processing, and thermal adhesion properties of the plasticizers mentioned above.
  • Polyester AZ polyester B more preferably polyester B / polyester A / polyester B having polyester B laminated on both sides is preferred.
  • polyester B examples include terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl sulfone dicarbonic acid, diphenyl ethane dicarboxylic acid, and 5-sodium sulfoisophthalic acid.
  • Aliphatic dicarboxylic acids such as aromatic dicarboxylic acids such as phthalic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, dimer acid, maleic acid, fumaric acid, and cycloaliphatic dicarboxylic acids such as cyclohexin dicarboxylic acid Acids, oxysulfonic acids such as p-oxybenzoic acid and the like can be mentioned.
  • Terephthalic acid, isobutyric acid, adipic acid, and the like can be suitably used in terms of heat resistance, moldability, curability, and printability.
  • glycol component of the polyester B examples include aliphatic glycols such as ethylene glycol, propandiol, butanediol pentylenediol, hexanediol, and neopentyl alcohol; alicyclic glycols such as cyclohexanedimethanol.
  • the intrinsic viscosity of Polyester B is preferably from 0.5 to 1.5, and more preferably from 0.6 to 1.3. It is particularly preferable that the ratio be 0.7 to 1.0.
  • polyester B it is preferable that MP ⁇ 1 as in polyester A, and more preferably, the range of M / P is 0.0001 or more and less than 1, and more preferably 0.001. It is at least 0.8 and particularly preferably at least 0.1 and at most 0.6.
  • the thickness of the polyester B layer is preferably 0.1 m or more and 1 mm or less from the viewpoint of improving the resistance to pre-out of the plasticizer, the handling property of the film, and the non-adhesion property during processing. More preferably, it is 1 tfm or more and l mm or less.
  • particles may be added to each layer in order to improve the handling and processability of the film.
  • inorganic particles include wet and dry silica, colloidal silica, aluminum silicate, titanium oxide, calcium carbonate, calcium phosphate, barium sulfate, alumina, myriki, kaolin, clay, and titanium oxide. , Zirconia, and concealed xiapatite can be used.
  • organic particles various organic polymer particles can be used, and the type may be any type of particles as long as at least a part thereof is insoluble in polyester.
  • Materials for such particles include polyimide, polyamide imide, polymethyl methacrylate, formaldehyde resin, Various materials such as phenolic resin, crosslinked polystyrene, and silicone resin can be used, but vinyl'-based crosslinked polymer particles and crosslinked polystyrene particles that have high heat resistance and are easy to obtain particles with uniform particle size distribution Is particularly preferred.
  • the particles are added to polyester A and / or polyester B, and the average particle size of the particles is preferably from 0.01 to 10 m, and especially in applications where processability is important, the average particle size is 0.1. It is preferred to contain particles of up to 5 m. When the particles are added to each layer, the amount of the particles added is preferably from 0.01 to 70% by weight.
  • each layer may contain a component imparting low surface energy, such as wax or silicone, and the amount of addition is preferably 0.01 to 1% by weight in each layer.
  • a filter for cutting coarse particles and foreign substances of 30 ⁇ m or less when melt-extruding the thermoplastic composition. It is desirable to use a cutting filter.
  • the content of acetoaldehyde in the film is preferably 100 ppm or less, more preferably 5 ppm or less, in order to reduce the odor during molding and processing, and to reduce the odor as a product. It is particularly desirable that the content be 3 O ppm or less.
  • the method for lowering the content of case 1 and aldehyde in the film is not particularly limited, but, for example, acetate aldehyde generated by thermal decomposition when producing polyester by a polycondensation reaction or the like.
  • a method of heat treating the polyester at a temperature lower than the melting point of the polyester under reduced pressure or in an inert gas atmosphere preferably, by heating the polyester at a reduced pressure or in an inert gas atmosphere at a temperature of 150 or more.
  • Solid-state polymerization at a temperature below the melting point, melt-extrusion using a bent-type extruder, and extrusion in a short time by lowering the extrusion temperature as much as possible when melt-extruding a polymer. Can be used.
  • the method for producing the polyester film according to the present invention is not particularly limited.
  • polyester A containing particles of polyethylene terephthalate, polypropylene terephthalate, or polybutylene terephthalate is mixed, the polyester A After the ester mixture and, if necessary, the phosphorus compound are dried or dried, the mixture is fed to a single-screw or twin-screw melt extruder, extruded in a sheet form from a slit die, and placed between nip rolls. Drop it, bring it into close contact with the casting drum, cool and solidify to obtain an unstretched sheet.
  • the diameter of the nip roll and / or to increase the roll temperature in producing a film of 150 m or less is preferably 400 mm or less, and particularly preferably 300 mm or less.
  • the increase in the roll temperature is preferably from 40 ° C to 150 ° C, more preferably from 50 ° C to 140 ° C.
  • the resulting sheet may be roughened to make the film non-adhesive, and the obtained sheet is rolled into a roll sheet to obtain a product.
  • close contact with the casting drum by the electrostatic application method can be more preferably used in that the flatness during the heating process is maintained because cooling can be stably performed.
  • the unstretched sheet is stretched and heat-treated in the longitudinal direction and width or width direction of the film, as necessary, to obtain a film having a desired breaking elongation.
  • the tenter method is used in terms of film quality.Long; sequential biaxial stretching method in which the film is stretched in the hand direction and then stretched in the width direction. Simultaneously, the film is stretched almost simultaneously in the longitudinal and width directions.
  • a biaxial stretching method is desirable.
  • the stretching ratio is preferably 1.5 to 5.0 times, and more preferably 1.5 to 4.0 times in each direction. Either the stretching ratio in the longitudinal direction or the stretching direction in the width direction may be increased, or may be the same.
  • the stretching speed is preferably 100% / minute to 100% / minute, and in particular, the film can be formed at a longitudinal stretching speed of 300% / minute or less.
  • the stretching temperature can be any temperature as long as it is 100 ° C. or more and 150 ° C. or less, but is preferably glass transition temperature + 20 ° C. to 60 ° C.
  • the film is subjected to a heat treatment.
  • This heat treatment can be performed by any conventionally known method such as in an oven, on a heated roll, or the like.
  • the heat treatment temperature can be any temperature from 60 ° C. to 250 ° C., but is preferably from 150 ° C. to 240 ° C.
  • the heat treatment time can be arbitrarily set, but is 0.1 to 60 seconds. Preferably, it is between 1 and 20 seconds.
  • the heat treatment may be performed while relaxing the film in the longitudinal direction and the Z or width direction. Further, re-stretching may be performed once or more in each direction, and then heat treatment may be performed.
  • the thickness of the polyester film according to the present invention is preferably from 10 to 200 Om, more preferably from 20 to 100 ⁇ from the viewpoint of moldability and workability. You. '
  • the polyester film of the present invention may be subjected to a corona discharge treatment, a coating treatment, etc. before or after winding, if necessary, in order to improve processability and adhesiveness.
  • the surface energy is preferably 40 to 6 OmN / m, more preferably 4,5 to 6 OmN / m.
  • the polyester film according to the present invention is preferably used as an unstretched film when emphasis is placed on moldability and workability, but when uniaxially or biaxially stretched is used, the formability and processability are preferably used.
  • the plane orientation coefficient is preferably in the range of 0.03 to 0.14.
  • the plane orientation coefficient is preferably from 0.3 to 0.145, more preferably from 0.04 to 0.14, particularly preferably from 0.04 to 0.14. Preferably it is 0.05 to 0.13.
  • plane orientation coefficient fn (n MD + n TD) / 2 — expressed as n ZD .
  • the polyester film according to the present invention is used for molding, processing, and processing of a single material, a non-metallic material, or a laminated structure with a metal material because of its excellent moldability, processability, and printability.
  • the purpose of use is not particularly limited, but when used in a laminate, it is preferable that the nonmetallic material is paper, nonwoven fabric, glass, or a polymer material in terms of reducing the weight of the final product.
  • the strength of the material is required, it can be used in a configuration in which this film is laminated with a metal or glass-reinforced polymer.
  • the polyester film according to the present invention is partially melted by heat,
  • the film or other material of the present invention may be provided with an adhesive layer in advance. Further, an adhesive layer, a printing layer, and the like may be formed between the laminated structure and another material.
  • Forming and processing methods include laminating, vacuum forming, air pressure forming, vacuum air forming, drawing, bending, or a combination or combination of these and other processing methods.
  • the molding and processing methods are not particularly limited.
  • the polyester was dissolved in orthochlorophenol and measured at 25 ° C.
  • the amount of phosphorus was determined by fluorescent X-ray analysis.
  • the quantification was performed by preparing a sample containing a certain amount of each metal element and preparing a calibration curve.
  • 5 mg of a polyester film sample was measured using a differential scanning calorimeter RDC 220 manufactured by Seiko Denshi Kogyo Co., Ltd. in a nitrogen atmosphere at _30 for 5 minutes, and then at a heating rate of 20 minutes in 20 minutes.
  • the minimum point of the endothermic curve obtained from the DSC curve at that time ie, the point where the differential value becomes 0
  • the shoulder peak minimum point of the peak with a heat of fusion of 2 J / g or more that partially overlaps one endothermic curve is also regarded as an independent crystal melting curve peak.
  • 5 mg of polyester of each layer was sampled with one blade, and the measurement was performed in the same manner.
  • Average particle size Cut the cross section of the film into ultra-thin sections, photograph them with a transmission electron microscope at a magnification of about 500-2000, and disperse them in polyester A. The circular equivalent diameter of the particles was measured, and the average particle diameter was determined.
  • the measurement was performed at 80 ° C using a Tensilon (tensile tester).
  • the film was kept at the measurement temperature for 30 seconds, and the elongation at break (%) in the film longitudinal direction and the width direction was 1 for each of a tensile speed of 300 mmZmin, a width of 10 mm, and a sample length of 5 Omm. Zero points were measured and the average was determined.
  • the temperature was changed from 80 to 13 O :, and the moldability was judged with a compressed air molding machine.
  • the state at the time of molding under the best temperature conditions was determined as follows.
  • The corner was slightly rounded, and the thickness after molding was slightly uneven.
  • a solvent-based ink containing ethyl acetate and toluene was gravure coated, and the appearance after drying at 80 was confirmed.
  • A The uneven shape of the embossing roll is favorably formed on the film side, both large and small. Good beauty.
  • The part with large unevenness of the embossing roll is favorably formed on the film side. Almost no change in beauty.
  • The unevenness of the embossing roll is formed on the film side, but the unevenness is slightly shallow. A change in beauty is also observed.
  • the film was heat-treated in a hot-air oven at 110 ° C for 3 minutes to determine the whitening property.
  • the measurement is performed without separating each layer, and the melting point Tm1 measured by Ist Run and the melting point Tm2 measured by 2nd Run are substantially single peaks.
  • polyester ( ⁇ , ⁇ : pass, X: reject.) Details of polyester used in Examples are described below. Table 1 shows a list of these and the amounts of catalytic metal elements, phosphorus elements, and intrinsic viscosities.
  • PET polyethylene terephthalate with high phosphorus content
  • a manganese catalyst was added to dimethyl terephthalate and ethylene glycol to perform a transesterification reaction, followed by antimony trioxide as a polymerization catalyst and phosphoric acid as a heat stabilizer, followed by a polycondensation reaction for 6 hours.
  • a manganese catalyst was added to dimethyl terephthalate and ethylene glycol to perform a transesterification reaction, followed by antimony trioxide as a polymerization catalyst and phosphoric acid as a heat stabilizer, followed by a polycondensation reaction for 4 hours.
  • isophthalic acid copolymerization amount to obtain a 1 0 mole% copolymerized poly ester composition 'PPT / I 1 Q (catalytic amount of metal element: 1 3 Mi Rimoru%, Li emissions based elementary charge: 3 millimol%, intrinsic viscosity 0.85).
  • a transesterification reaction was performed by adding a titanium catalyst as a catalyst to dimethyl terephthalate and 1,4-butanediol, and then a polycondensation reaction was performed by adding phosphoric acid as a heat stabilizer to obtain a polyester composition PBT.
  • Amount of catalytic metal element 50 millimol%, amount of phosphorus element: 30 millimol%, intrinsic viscosity 1.0).
  • PET / CHDM 30 cyclohexanediethanol 30 mol% copolymerized PET
  • PE TZC HDM dimethyl terephthalate, ethylene glycol and cyclohexane dimethanol were used to obtain 3 ° of PE TZC HDM (catalyst metal element amount: 80 millimol%, phosphorus element element: 80 millimol) %, Intrinsic viscosity 0.75).
  • Polyester PIB (catalyst metal element content: 70 millimol%, phosphorus element content: 20 millimol%, intrinsic viscosity 0.8) was synthesized.
  • Crosslinked polystyrene particles (average particle diameter 6 ⁇ m), silicone particles (average particle diameter 5 m), and aggregated silica (average particle diameter 1.7 aim) were prepared.
  • the above-mentioned PET (1) and PET (2) were provided in two vacuum vents (5 Torr) in a twin-screw extruder and melted, and particle-containing PET added with 5% by weight of each was obtained.
  • the PPT, ⁇ ⁇ ⁇ and particle-containing PET obtained as described above were chip-blended so as to have the composition shown in Table 2. Then, it is vacuum-dried at 150 ° C, fed to an extruder (280 ° C) and melted, discharged from a die (270 ° C) by a conventional method. It was cooled and solidified on a drum (25 ° C) to obtain a 100 m unstretched film.
  • Table 2 shows the physical properties, moldability, printability, and processability of the obtained film. As can be seen from Table 2, the moldability, printability, and workability were excellent. [Example 2]
  • composition of the particles and the polyester were mixed as shown in Table 2, and during the melt extrusion, stearyl phosphoric acid (ADK STAB AX-71, manufactured by Asahi Denka Kogyo Co., Ltd., molecular weight 490) was weighed in an undried state with a feeder. Then, a certain amount of the polyester mixture is fed to a twin-screw extruder (having three vacuum vents (5 Torr) in the zone after melting the polyester) at a feeder, and melt extrusion is performed at 270 ° C. The polymer that came out of the slit from the base (270 ° C) was cast on a nip roll (diameter 250 mm) with a cooling drum at 50 ° C. Otherwise in the same manner as in Example 1, a 100 / zm unstretched film was obtained. Particularly, the thermal stability was improved.
  • stearyl phosphoric acid ADK STAB AX-71, manufactured by Asahi Denka Kogy
  • Polyester and stearyl phosphoric acid were mixed to obtain the composition shown in Table 2, and polyethylene glycol dibenzoate (molecular weight: 600) was added as a plasticizer in a 5% by weight liquid state, followed by cooling during casting.
  • a film was formed in the same manner as in Example 2 except that the drum temperature was changed to 10 ° C. In particular, the workability was improved.
  • Example 3 The addition amount of the plasticizer used in Example 3 was set to 10% by weight, and the mixing amount of polyester and stearyl phosphoric acid was changed so as to have the composition shown in Table 3. Further, the same as Example 3 except that the composite structure was B / AZB (composite ratio: 1: 10: 1) and the polyester of the B layer was composited with the polyester having the same composition as that used in Example 1. To give a film of 60 ⁇ m. The obtained film was flexible even at room temperature, and was particularly excellent in printability.
  • the addition amount of the plasticizer used in Example 3 was set to 5% by weight, the particles used for the layer B were changed to aggregated silica, and the composite structure was changed to BZA / B (composite ratio: 1: 10: 1).
  • the casting method was changed to a method of cooling and solidifying with a mirror cooling drum (10 ° C) while applying static electricity. Otherwise in the same manner as in Example 2, an unstretched film was obtained. Profit The obtained unstretched film is subjected to a longitudinal stretching temperature of 80 ° C, a longitudinal stretching ratio of 3.1 times, a transverse stretching temperature of 100, a transverse stretching ratio of 2.8 times, and a heat treatment temperature of 230 ° C. Obtained. Although the moldability of the film was lowered, the printability was excellent.
  • Polyester and stearyl phosphoric acid were mixed so as to have the composition shown in Table 3, and the casting method was changed to the electrostatic application method and cooled and solidified with a mirror cooling drum at 10 ° C. An unstretched film of 100 m was obtained in the same manner.
  • Example 1 except that the instead of PPT ⁇ ⁇ ⁇ ⁇ ⁇ 1 ⁇ is to obtain an unstretched film of 1 0 0 m in the same manner as in Example 1. In particular, the moldability was improved.
  • An unstretched film was obtained in the same manner as in Example 6 except that polyester and stearyl phosphoric acid were mixed so as to have the composition shown in Table 4, and that the plasticizer used in Example 3 was used at 10% by weight.
  • the obtained unstretched film was biaxially stretched at a longitudinal stretching temperature of 75 ° C, a longitudinal stretching ratio of 3.0 times, a transverse stretching temperature of 85 ° C, a transverse stretching ratio of 2.8 times, and a heat treatment temperature of 160 ° C. A stretched film was obtained. Regarding the properties of the obtained film, the printability was lower than that of the film obtained in Example 5, but the flexibility at room temperature became better.
  • the polyester was changed to have the composition shown in Table 4, the composite composition was changed to B / AZ B (composite ratio: 1: 10: 1), and the mirror cooling drum (10 ° C )), An unstretched film of 100 zm was obtained in the same manner as in Example 2 except that the system was cooled and solidified.
  • the characteristics of the film obtained by laminating polyester B were excellent in solvent resistance and excellent in printability.
  • Polyester and stearyl phosphoric acid are mixed so as to have the composition shown in Table 5, and the composite composition is B / A / B (composite ratio: 1: 10: 1).
  • An unstretched film of 100 m was obtained in the same manner as in Example 2 except that the system was cooled and solidified with a drum (100 ° C.). The printability was slightly inferior to Example 9, but the moldability and processability were equally good.
  • PET (1) and PET containing particles were blended so as to have the composition shown in Table 5, and a film was formed in the same manner as in Example 2. As a result, thermal workability such as embossability was greatly reduced.
  • a film was formed in the same manner as in Example 1 except that the polyester and stearyl phosphoric acid were mixed so as to have the composition shown in Table 6, and the extruder temperature was set at 270 ° C.
  • the melting points of PET and PBT appeared, that is, substantially no single peak was observed.
  • the properties of the obtained film were inferior to whitening resistance, pressure forming property, embossability, and the like.
  • Polyester was mixed so as to have the composition shown in Table 6, and the others were formed according to the method of Example 2. The obtained film was particularly poor in heat stability and printability. [Comparative Example 5]
  • Polyester was used as a blend of PPT and PBT according to the composition shown in Table 6, and a film was formed according to the method of Example 2 except for the above.
  • Polyester A had a melting point of 230 ° C or less, and was inferior in heat stability, whitening resistance, and printability.
  • Example 1 Example 2 Example 3 Polymer type PET (1), PPT PET (2), PPT PET (2), PPT acid component (mol%) TPA100 TPA100 TPA100
  • Glycol component (mol EG78, DEG2, PG20 EG58, DEG2, PG40 EG78, DEG2, PG20
  • Catalyst metal M (mmol%) Ti, Mn, Sb Z58 Ti, Mn, Sb Z48 Ti, Mn, Sb / 58
  • Laminated structure Single layer Single layer Single layer Average elongation at break (%) at 80 ° C 920 890 1100 Plane orientation coefficient (1) 0 0 0 Thermal stability ⁇ ⁇ ⁇
  • Example 6 Polymer type PET (2), PPT PET (2), PPT PET (2), PBT PO acid component (mol%) TPA100 TPA100 TPA100
  • Example 9 Polymer Type PET (1), PPT / I 10 PET (2), PBT PET (2), PPT Po acid component (mol%) TPA98, IPA2 TPA100 TPA100 ⁇ J glycol component (mol 0/0) EG78, DEG2, PG20 EG68, DEG2, BG30 EG78 DEG2 PG20
  • Example 1 0 Comparative example 1 Comparative example 2
  • Polymer type PET (2), PPT PET (1) PET / CHD 30 Acid component (mol%) TPA100 TPA100 TPA100 Glycol component (mol%) — EG78 DEG2 PG20 EG98 DEG2 EG70 CHDM30 Catalyst Metal ZM (mmol ⁇ ) Ti, Mn, Sb / 58 Mn, Sb 70 Mn, Co 80 P (mmol 0 / o) 580 100 80
  • Catalyst metal M (mmol%) Ti, Mn, Sb / 75
  • a Intrinsic viscosity 0.74 0.72 0.85 layer Particles Crosslinked polystyrene Crosslinked polyester Polystyrene Crosslinked polystyrene Average particle size (; Um) 6.0 6.0 6.0 Particle addition amount (% by weight) 0.4 0.5 0.5 0.5 Plasticizer addition amount (% by weight)
  • PET Polyethylene terephthalate with high phosphorus content
  • PET / C HDM 3 Cyclohexane dimethanol 30 mol copolymer
  • PETPIB Isophthalic acid copolymer polyester
  • the polyester film of the present invention has excellent moldability, processability, and printability. Can be suitably used as a process film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

A polyester film characterized in that it comprises as a component a polyester (A) obtained from monomers including at least two glycol ingredients selected among ethylene glycol, butanediol, and propanediol, and that the polyester (A), in temperature-rising DSC, gives a crystal fusion temperature curve having substantially one peak and has a fusion peak temperature of 230°C or higher and the polyester (A) satisfies the following relationship (1). The film is suitable for use in producing formed, processed, or printed products or as a material film therefor. M / P ≤ 1 (1) [In the relationship, M represents the concentration (mmol%) of a catalytic metal element remaining in the polyester (A) and P represents the amount (mmol%) of phosphorus remaining in the polyester (A).]

Description

明細書 易成形ポリエステルフィルム 技術分野  Description Easy-forming polyester film Technical field
本発明は、 成形用ポリエステルフィルムに関するものであり、 各種工業材料、 包装材料、 建築材料などに用いることのできるものである。 詳しくは金属、 木材、 紙、 樹脂などの表面被覆やラミネー ト成形、 カップ、 パックなどの容器への成形 加工やエンボス加工に好適な成形用ポリエステルフィルムに関するものである。 また、 射出成形等において、 成形と同時に印刷するイ ンモールド転写成形などに 用いられる転写印刷用支持フィルム等の工程フィルムとして好適な未延伸または 二軸延伸の成形用ポリエステルフィルムに関するものである。  TECHNICAL FIELD The present invention relates to a polyester film for molding, and can be used for various industrial materials, packaging materials, building materials, and the like. More specifically, the present invention relates to a polyester film for molding suitable for surface coating of metal, wood, paper, resin, and the like, laminating, molding and embossing of containers such as cups and packs. Also, the present invention relates to an unstretched or biaxially stretched polyester film for molding, which is suitable as a process film such as a transfer printing support film used for in-mold transfer molding or the like which is printed simultaneously with molding in injection molding or the like.
背景技術 Background art
従来、 金属、 木材、 紙、 樹脂などの表面を被覆して用いられる化粧シー トなど は、 加工性などの点から代表的なものとしてポリ塩化ビニルフィルムが使用され てきた。 しかしながら、 ポリ塩化ビニルには、 ポリマーの構成成分の中にハロゲ ン元素が含有されているため、 焼却時や火災などにより燃焼した際にダイォキシ ンなどの有毒成分の発生や可塑剤のブリー ドアゥ トなどの問題があるため、 近年 の環境負荷低減の声の高まり と共に新しい素材が求められてきている。  Conventionally, polyvinyl chloride film has been used as a typical decorative sheet used for covering the surface of metal, wood, paper, resin, and the like in terms of processability. However, since polyvinyl chloride contains a halogen element in the constituents of the polymer, it generates toxic components such as dioxin when incinerated or burns due to a fire, etc., and bleeds out the plasticizer. Because of these problems, there has been a growing demand for reducing environmental impact in recent years, and new materials have been required.
また、 家具、 建材、 電化製品、 自動車内装品、 容器などのプラスチック製品や 金属の表面を被覆して用いられる化粧シー トや、 表面へ成型時などに図柄を施す 転写印刷用フィルムあるいは転写印刷時に用いられる支持フィルムは、 製品の寿 命延長や取扱い性、 デザイ ン等へのニーズの多様化により、 さ らに複雑な立体形 状への成形やラミネート後の折り曲げ加工、 エンボス加工、 深絞り成形に耐えう るものが求められてきている。  Furniture, building materials, electrical appliances, automotive interior goods, containers and other plastic products and decorative sheets used to cover metal surfaces, and transfer printing films or transfer printing that apply patterns to the surface when molding. The support film used is formed into more complex three-dimensional shapes, folded after lamination, embossing, and deep drawing, due to the diversification of product life, handling, and design needs. There is a need for something that can withstand this.
これに対して、 特開平 3 — 6 7 6 2 8号公報では、 1 5 0 °Cでの加工性を改良 した成形用二軸延伸ポリエステルフィルムが提案されているが、 常温での成形性 の点で満足できるものではなく、 また、 特開平 3 — 2 3 1 9 2 9号公報、 特開平 3 - 2 3 1 9 3 0号公報などに記載される長鎖脂肪族ジカルボン酸を共重合され たポリエステルフィルムや脂環族グリ コールなどを共重合したポリエステルフィ ルムが提案されているが、 柔軟性は有するものの、 耐熱性、 耐溶剤性が低下する ため、 成形工程での熱白化や印刷時の溶剤白化の点で十分満足できるものではな かった。 また、 A— P E Tフィルムと呼ばれるアモルファスポリエチレンテレフ タレー トフィルムでは、 成形、 加工時に応力が高く、 さ らに応力を低下させるた めに高温で成形すると、 軟化によるフィルムのしわや結晶化による白化が生じる という問題があった。 On the other hand, Japanese Patent Laid-Open Publication No. Hei 3-667628 proposes a biaxially stretched polyester film for molding having improved workability at 150 ° C. In addition, it is not satisfactory in terms of A polyester film copolymerized with a long-chain aliphatic dicarboxylic acid and a polyester film copolymerized with an alicyclic glycol, which are described in Japanese Patent Application Publication No. Although it has good heat resistance and solvent resistance, it was not satisfactory in terms of thermal whitening during the molding process and solvent whitening during printing. In addition, amorphous polyethylene terephthalate film called A-PET film has high stress during molding and processing, and when molded at high temperature to further reduce stress, wrinkles of the film due to softening and whitening due to crystallization occur. There was a problem.
本発明の目的は、 上記した従来技術の問題点を解消することにあり、 環境性に 優れるだけでなく、 成形性、 印刷性、 などの加工特性に優れた成形用ポリエステ ルフィルムを提供することにある。 発明の開示  An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a polyester film for molding which is not only excellent in environmental properties but also excellent in processing characteristics such as moldability, printability and the like. is there. Disclosure of the invention
前述した本発明の目的は、 エチレングリ コール、 ブタンジオール、 およびプロ パンジオールから選ばれる少なく とも 2種のダリコール成分を用いて成るポリェ ステル Aを構成成分とし、 下記式 ( 1 ) を満足するフィルムであって、 D S C昇 温測定におけるフィルムの結晶 融解温度曲線が実質的に単一のピークを有し、 かつ融解ピーク温度が 2 3 0 °C以上であることを特徴とするポリエステルフィル ムにより達成される。 '  An object of the present invention described above is to provide a film which satisfies the following formula (1), comprising polyester A comprising at least two kinds of dalicol components selected from ethylene glycol, butanediol, and propanediol. Achieved by a polyester film characterized in that the crystal melting temperature curve of the film in the DSC heating measurement has a substantially single peak and the melting peak temperature is 230 ° C or higher. Is done. '
M / P≤ 1 ( 1 )  M / P≤1 (1)
(ただし、 式中の Mは、 ポリエステル A中に残存する触媒金属元素の濃度(ミ リ モル% )、 Pはポリエステル A中に残存する リ ン量(ミ リモル% )を示す。 ) 発明を実施するための最良の形態  (However, M in the formula represents the concentration of the catalytic metal element remaining in polyester A (milli mol%), and P represents the amount of phosphorus remaining in polyester A (milli mol%).) Best form to do
本発明におけるポリエステル Aは、 ポリエステルの構成単位としては、 成形性、 加工性、 印刷性を良好とする点で、 グリ コール成分がエチレングリ コール、 ブ夕 ンジオール、 およびプロパンジオールから選択されるグリ コール成分を少なく と も 2種以上使用したポリエステルであることが必要である。  In the polyester A of the present invention, as a structural unit of the polyester, a glycol component is selected from ethylene glycol, butanediol, and propanediol in terms of improving moldability, processability, and printability. It is necessary that the polyester contains at least two kinds of components.
特に成形性、 加工性、 印刷性が重視される用途では、 ポリエステル Aのグリ コ ール成分の 4 0 ~ 9 0モル%がエチレングリ コ一ルであることが好ましい。 1 0 0で以下の成形性、 加工性を良好にする点で、 ポリエステル Aのグリ コール成分 の 5 0〜 9 0モル%がエチレングリ コールであることがさらに好ましく、 6 0〜 8 5モル%がエチレングリ コールであることが特に好ましい。 Especially in applications where moldability, processability, and printability are important, the polyester A Preferably, 40 to 90 mol% of the polyester component is ethylene glycol. From the viewpoint of improving the following moldability and processability by 100, it is more preferable that 50 to 90 mol% of the glycol component of the polyester A be ethylene glycol, and 60 to 85 mol%. Is particularly preferably ethylene glycol.
1 0 0 °C以下の成形性、 加工性を良好にする点で、 ポリエステル Aのグリ コ一 ル成分の 1 0〜 6 0 モル%がブタンジオールおよび Zまたはプロパンジォールか ら選択されるダリ コールであることが好ましく、 1 0〜 5 0モル'%がブタンジォ ールおよび/またはプロパンジオールから選択されるグリコールであることがさ らに好ましく、 1 5〜 4 0モル%がブタンジオールおよび/またはプロパンジォ ールから選択されるグリ コールであることが特に好ましい。 ブタンジオール、 プ 口パンジオールは併用してもよい。  In order to improve moldability and workability at 100 ° C or less, 100 to 60 mol% of the glycol component of polyester A is selected from butanediol and Z or propanediol. More preferably, the glycol is selected from butanediol and / or propanediol, and more preferably, 15 to 40 mol% is butanediol and / or propanediol. Alternatively, glycols selected from propanediol are particularly preferred. Butanediol and butanediol may be used in combination.
特に、 成形性、 加ェ性、 印刷性を良好とする点では、 グリ コール成分として、 エチレングリ コール、 ブタンジオール、 プロパンジオールの全てを含有させるこ とが好ましい。 その場合、 エチレンダリ コール、 ブタンジオール、 プロパンジ才 ールのモル%をそれぞれ X、 Υ、 Ζ とした際に、 Χ + Ζ — Υが 0以上であること が好ましい。  In particular, from the viewpoint of improving moldability, additivity, and printability, it is preferable to include all of ethylene glycol, butanediol, and propanediol as a glycol component. In this case, it is preferable that Χ + Ζ-0 is 0 or more, where X, Υ, and を are the mole percentages of ethylene dalicol, butanediol, and propanediol, respectively.
さらに、 その他のグリ コール成分として、 例えばペンタンジオール、 へキサン ジオール、 ネオペンチルダリ コール等の脂肪族グリ コール ; シクロへキサンジ メタノ ―ル等の脂環族グリ コール ; ビスフエノール類 (ビスフエノール A、 ビス フエノール S等) 、 1 , 3 —ビス ( 2 —ヒ ドロキシエ トキシ) 、 1 , 2 -ビス ( 2 —ヒ ドロキシエ トキシ) ベンゼン、 1 , 4 一ビス ( 2 — ヒ ドロキシェ トキ シ) ベンゼン、 ビス [ 4 一 ( 2 —ヒ ドロキシェ卜キシ) フエニル] スルホン、 2, 2 —ビス ( 4— ;3 —ヒ ドロキシエトキシフエニル) プロパン、 ハイ ドロキノ ン、 レゾルシン等の芳香族グリ コール ; ジエチレングリ コール、 ポリエチレングリ コ ール、 ポリ トリ メチレングリ コール、 ポリテ トラメチレングリ コール等を挙げる ことができる。 含有されるジエチレングリ コール量は 0 . 1 〜 1 0モル%である ことが、 成形性、 加ェ性、 印刷性の点で好ましく、 さ らに耐侯性を悪化させない 点で 0 . 3 ~ 5モル%であることが好ましい。  Further, other glycol components include, for example, aliphatic glycols such as pentanediol, hexanediol, and neopentyl diol; alicyclic glycols such as cyclohexanedimethanol; bisphenols (bisphenol A, Bisphenol S), 1,3-bis (2-hydroxyethoxy), 1,2-bis (2-hydroxyethoxy) benzene, 1,4-bis (2-hydroxyethoxy) benzene, bis [ Aromatic glycols such as 4- (2-hydroxyphenyl) phenyl] sulfone, 2,2-bis (4-; 3—hydroxyethoxyphenyl) propane, hydroquinone and resorcin; diethylene glycol; Polyethylene glycol, polytrimethylene glycol, polytetramethylene glycol, etc. Can be done. The amount of diethylene glycol contained is preferably from 0.1 to 10 mol% from the viewpoint of moldability, curability, and printability, and from 0.3 to 5 from the viewpoint that weather resistance is not deteriorated. Preferably it is mol%.
ポリ.エステル Aの酸成分としては、 例えば、 テレフタル酸、 イソフタル酸、 ナ フタレンジカルボン酸、 ジフエニルジカルボン酸、 ジフエニルスルホンジカルボ ン酸、 ジフエノキシエタンジカルボン酸、 5 —ナトリ ウムスルホイソフタル酸、 フタル酸等の芳香族ジカルボン酸、 シユウ酸、 コハク酸、 アジピン酸、 セパシン 酸、 ダイマ—酸、 マレイン酸、 フマル酸等の脂肪族ジカルボン酸、 シクロへキシ ンジカルボン酸等の脂環族ジカルボン酸、 P —ォキシ安息香酸^のォキシ力ルポ ン酸等を挙げることができる。 耐熱性、 成形性、 加工性、 印刷性の点でテレフ夕 ル酸、 イソフタル酸、 アジピン酸などが好適に使用することができる。 Examples of the acid component of the polyester A include terephthalic acid, isophthalic acid, Aromatic dicarboxylic acids such as phthalenedicarboxylic acid, diphenyldicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenoxyethanedicarboxylic acid, 5-sodium sulfoisophthalic acid, and phthalic acid, oxalic acid, succinic acid, and adipic acid And aliphatic dicarboxylic acids such as sebacic acid, dimer acid, maleic acid, and fumaric acid; alicyclic dicarboxylic acids such as cyclohexyne dicarboxylic acid; and oxycarboxylic acid such as P-oxybenzoic acid. Can be. Terephthalic acid, isophthalic acid, adipic acid, and the like can be suitably used in terms of heat resistance, moldability, processability, and printability.
本発明のポリエステル A中にエチレングリ コール、 ブタンジオール、 プロパン ジオールから選択されるグリコール成分単位を少なく とも 2種含有させる手段と しては、 重合時にこれらのグリコールを添加して共重合ポリエステルを得る手法、 押出機に複数のポリエステルをブレンドして得る方法が挙げられる。 このとき、 , 共重合ポリエステルを用いたフィルムでは耐溶剤性、 印刷性、 耐熱性などの点が 悪化するので、 複数のポリエステルのブレン ドによるフィルムが好ましく、 さ ら 'に、 P E T (ポリ エチレンテレフ夕レー ト) 、 P .P T (ポリ プロ ピレンテレフタ レー ト) 、 P B T (ポリブチレンテレフ夕レー 卜) から選ばれる 2種類以上の樹 脂のブレンドによるものが好ましい。 ここで P E T、 P P T、 P B Tには上記酸 成分及び/またはグリ コール成分を 2 0モル%以下、 より好ましく は 1 0 モル% 以下、 特に好ましく は 5 %以下低率共重合したものも含まれる。 また、 特に成形 性、 耐白化などの点で好ましくは P E Tおよび P P Tのブレンドであることが好 ましく、 特に好ましくは、 P E T 4 0 〜 9 0モル%、 P P T 1 0 〜 6 0モル%よ り構成されるブレン ドポリエステルである。  The polyester A of the present invention is obtained by adding at least two kinds of glycol component units selected from ethylene glycol, butanediol, and propanediol in the polyester A in the course of polymerization to obtain a copolymerized polyester. And a method of blending a plurality of polyesters in an extruder. At this time, a film using a copolymer of polyester and polyester deteriorates in solvent resistance, printability, heat resistance, and the like. Therefore, a film formed by blending a plurality of polyesters is preferable. It is preferable to use a blend of two or more resins selected from the group consisting of polypropylene latex, P.PT (polypropylene terephthalate) and PBT (polybutylene terephthalate). Here, PET, PPT, and PBT include those obtained by copolymerizing the above-mentioned acid component and / or glycol component at a low ratio of 20 mol% or less, more preferably 10 mol% or less, particularly preferably 5% or less. In particular, a blend of PET and PPT is preferred in terms of moldability, whitening resistance, and the like, and particularly preferred is a PET to PPT content of 40 to 90 mol%, and a PPT of 10 to 60 mol%. It is a blended polyester.
本発明のポリエステルフィルムは、 ポリエステル Αが下記式 ( 1 ) を満足する ことが、 耐熱性、 耐溶剤性、 印刷性、 品質のバラツキを低減させる上で必要であ る。  In the polyester film of the present invention, it is necessary that the polyester satisfies the following formula (1) in order to reduce variations in heat resistance, solvent resistance, printability, and quality.
M / P≤ 1 ( 1 ) M / P≤1 (1)
(但し、 式中の Mはポリエステル A中に残存する触媒金属元素の濃度 (ミ リモル % ) 、 P はポ リ エステル A中に残存する リ ン元素の濃度 (ミ リ モル% ) を示 す。 ) (However, M in the formula represents the concentration of the catalytic metal element remaining in the polyester A (milli mol%), and P represents the concentration of the phosphorus element remaining in the polyester A (milli mol%). )
ここでこれらの金属元素濃度、 およびリ ン元素濃度はポリエステルの繰り返し 単位 1ユニッ ト (モル) あたりの濃度として表しているものである。 Here, these metal element and phosphorus element concentrations are It is expressed as the concentration per unit (mol).
好ましく は M Z Pが 0 . 0 0 0 1以上 1未満、 さ らに好ましく は 0 . 0 0 1 以 上 0 . 8以下、 特に好ましくは 0 . 0 1以上 0 . 6以下である。  Preferably, MZP is at least 0.001 and less than 1, more preferably at least 0.001 and at most 0.8, particularly preferably at least 0.01 and at most 0.6.
M / P≤ l の制御により、 熱安定性が増し、 ブレンドポリマーのエステル交換 を抑制でき、 熱処理による融点の低下を抑えることが可能である。 この結果、 上 に挙げた特性を向上させることができる。  By controlling M / P≤l, the thermal stability is increased, transesterification of the blended polymer can be suppressed, and a decrease in melting point due to heat treatment can be suppressed. As a result, the characteristics listed above can be improved.
本発明において、 ポリエステル Aを製造する際には、 従来から用いられている 反応触媒、 着色防止剤を使用することができ、 反応触媒としては、 例えばアル力 リ土類金属化合物、 亜鉛化合物、 鉛化合物、 マンガン化合物、 コバルト化合物、 アルミニウム化合物、 アンチモン化合物、 チタン化合物等を用いることができ、 着色防止剤としては、 例えばリ ン化合物等を用いることができる。 好ましく は、 通常、 ポリエステルの製造が完結する以前の任意の段階において、 重合触媒とし てアンチモン化合物またはゲルマニウム化合物、 チタン化合物を添加することが 好ましい。 このような方法としては、 例えば、 ゲルマニウム化合物を例にすると、 ゲルマニウム化合物粉体をそのまま添加する方法や、 あるいは特公昭 5 4 - 2 2 2 3 4号公報に記載されているように、 ポリエステルの出発原料であるグリ コー ル成分中にゲルマニウム化合物を溶解させて添加する方法等を用いることができ る。  In the present invention, when producing polyester A, a conventional reaction catalyst and a coloring inhibitor can be used. Examples of the reaction catalyst include an alkaline earth metal compound, a zinc compound, and a lead compound. A compound, a manganese compound, a cobalt compound, an aluminum compound, an antimony compound, a titanium compound, and the like can be used. As the coloring inhibitor, for example, a phosphorus compound can be used. Preferably, it is usually preferable to add an antimony compound, a germanium compound, or a titanium compound as a polymerization catalyst at any stage before the production of the polyester is completed. Examples of such a method include, for example, a method in which a germanium compound is added as it is, a method in which a germanium compound powder is added as it is, and a method in which polyester is used as described in Japanese Patent Publication No. 54-222324. A method in which a germanium compound is dissolved and added to a glycol component as a starting material can be used.
ゲルマニウム化合物としては、 例えば二酸化ゲルマニウム、 結晶水含有水酸化 ゲルマニウム、 あるいはゲルマニウムテ卜ラメ トキシド、 ゲルマニウムテ トラエ トキシ ド、 ゲルマ二.ゥムテトラブトキシド、 ゲルマニウムエチレンダリ コキシ ド 等のゲルマニウムアルコキシ ド化合物、 ゲルマニウムフエノ レー ト、 ゲルマニウ ム β —ナフ ト レ一 卜等のゲルマニウムフエノキシ ド化合物、 リ ン酸ゲルマニウム、 亜リ ン酸ゲルマニウム等のリ ン含有ゲルマニウム化合物、 酢酸ゲルマニウム等を 用いることができる。 中でも二酸化ゲルマニウムが好ましい。  Examples of the germanium compound include germanium dioxide, germanium hydroxide containing crystal water, germanium tetramethoxide, germanium tetratraoxide, germanium, and germanium alkoxide compounds such as germanium tetrabutoxide, germanium ethylene dalioxide, and germanium. It is possible to use germanium phenoxide compounds such as phenolate and germanium β-naphthrate, and phosphorus-containing germanium compounds such as germanium phosphate and germanium phosphite, and germanium acetate. Among them, germanium dioxide is preferable.
アンチモン化合物としては、 特に限定されないが、 例えば、 三酸化アンチモン などのアンチモン酸化物、 酢酸アンチモンなどを用いることができる。  The antimony compound is not particularly limited. For example, antimony oxides such as antimony trioxide, antimony acetate and the like can be used.
チタ ン化合物としては、 特に限定されないが、 テ トラェチルチタネー ト、 テト ラブチルチタネー トなどのアルキルチタネート化合物、 またチタンと珪素、 ジル コニゥム、 アルミニウム元素から選ばれる元素との複合酸化物などが好ましく使 用できる。 Examples of the titanium compound include, but are not particularly limited to, alkyl titanate compounds such as tetraethyl titanate and tetrabutyl titanate, and titanium and silicon, and zirconium. Composite oxides with an element selected from the group consisting of conium and aluminum can be preferably used.
本発明におけるポリエステルに熱安定剤として添加されるリ ン化合物は特に限 定されないが、 リ ン酸、 亜リ ン酸、 リ ン酸エステルなどが好ましい。  The phosphorus compound added as a heat stabilizer to the polyester in the present invention is not particularly limited, but is preferably phosphoric acid, phosphorous acid, phosphoric acid ester, or the like.
特に、 製膜中のブリードアウ トを抑制する点からは分子量 3 0 0以上、 特に好 ましくは 4 0 0以上のリ ン化合物が好ましく用いられる。 分子量 3 0 0以上のリ ン化合物としては、 たとえばステアリルリ ン酸、 ト リ フエニルホスフェー ト、 ト リ ク レジルフォスフェート、 ト リキシレニルフォスフェート、 ク レジル'ジフエ二 ルフォスフェー トなどが挙げられるが、 特にステアリルリ ン酸がブリードアウ ト 抑制の点からは好ましい。  In particular, a phosphorus compound having a molecular weight of 300 or more, particularly preferably 400 or more, is preferably used from the viewpoint of suppressing bleed out during film formation. Examples of the phosphorus compound having a molecular weight of 300 or more include stearyl phosphoric acid, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, and cresyl diphenyl phosphate. Among them, stearyl phosphoric acid is particularly preferred from the viewpoint of suppressing bleed out.
ポリエステル A中に添加するリ ン化合物の含有量 (添加量) は、 熱安定性、 色 調などの点からはリ ン化合物をリ ン元素量として 2 0 〜 1 0 0 0 ミ リモル%であ ることが好ましく、 より好ましく は 9 0 〜 9 0 0 ミ リモル%、 特に好ましく は 1 2 0 ~ 8 0 0 ミ リモル%の範囲である。  The content (addition amount) of the phosphorus compound to be added to the polyester A is from 20 to 100 millimol% based on the phosphorus compound in terms of thermal stability and color tone. It is preferably in the range of 90 to 900 millimol%, particularly preferably in the range of 120 to 800 millimol%.
さ らにリ ン化合物の添加方法としては、 重合時に添加する方法、 押出機にポリ マーと共に供給して添加する方法のいずれでも構わない。 一般に重合時に多量の リ ン化合物を添加すると重合反応を阻害することから、 通常の M Z P > 1 の範囲 のポリエステルと共に押 tti機に供給して添加する方法が好ましい。  Further, as a method of adding the phosphorus compound, either a method of adding the compound at the time of polymerization or a method of supplying the compound together with the polymer to the extruder and adding the compound may be used. In general, if a large amount of a phosphorus compound is added during the polymerization, the polymerization reaction will be inhibited. Therefore, it is preferable to supply the polyester with an ordinary polyester in the range of MZP> 1 by adding it to a press machine.
本発明のポリエステルフィルムは、 D S C昇温測定におけるフィルムの結 a融 解曲線が実質的に単一のピークを示すものであることが必要である。  In the polyester film of the present invention, it is necessary that the melting curve of the film in the DSC temperature rise measurement shows a substantially single peak.
フィルムの結晶融解曲線のピークが二つ以上を示すものである と、 共重合体あ るいは混合体における分子構造が均一となっていないため、 伸度のバラツキが大 きくなり、 また成形性、 耐白化性が不良となる場合がある。  If the crystal melting curve of the film has two or more peaks, the molecular structure of the copolymer or the mixture is not uniform, so that the variation in elongation is large, and the moldability, The whitening resistance may be poor.
ここで、 本発明における結晶融解曲線のピークとは、 フィルムを構成するポリ マーに起因する結晶融解ピークであり、 フィルム ( 5 m g ) を D S Cにおいて窒 素雰囲気下、 2 0 °Cノ分の昇温速度で測定したときの D S C曲線から求められる 吸熱曲線の極小点、 すなわち微分値が 0 となる点である。 また、 一つの吸熱曲線 に'部分的に重なる融解熱量が 2 J /g以上のショルダーピーク (ピークの極小点) についても独立した結晶融解曲線のピークとする。 すなわち、 本発明で言う実質 的に単一のピーク'を示すものとは、 融解熱量が 2 J/g以上の結晶融解ピークの極 小点が単一にしか存在しないことを意味する。 Here, the peak of the crystal melting curve in the present invention is a crystal melting peak caused by a polymer constituting the film, and the film (5 mg) is heated at a temperature of 20 ° C. under a nitrogen atmosphere in a DSC under DSC. This is the minimum point of the endothermic curve obtained from the DSC curve measured at the temperature rate, that is, the point where the differential value becomes zero. In addition, the shoulder peak (minimum point of the peak) with a heat of fusion of 2 J / g or more that partially overlaps with one endothermic curve shall be regarded as an independent crystal melting curve peak. That is, the substance referred to in the present invention The term “single peak” means that there is only a single minimum point of the crystal melting peak having a heat of fusion of 2 J / g or more.
本発明に係るポリエステルフィルムの結晶融解曲線のピーク点温度は、 耐熱性 の点から 2 3 0 °C以上であることが必要である。 さらに好ましく は 2 3 5 〜 2 6 0でであり、 特に好ましくは 2 4 4〜 2 5 5 °Cである。  The peak point temperature of the crystal melting curve of the polyester film according to the present invention needs to be 230 ° C. or higher from the viewpoint of heat resistance. It is more preferably 235 to 260, and particularly preferably 244 to 255 ° C.
ポリエステル Aの固有粘度は 0 . 5〜 1. 5であることが好ましく、 特に成形 性、 加工性において、 より薄膜フィ ルムが要求される用途では、 ポリエステル A の固有粘度が 0. 6〜 1 . 3であることがさ らに好ましく、 固有粘度が 0. 7〜 1 . 0であることが特に好ましい。  The intrinsic viscosity of the polyester A is preferably 0.5 to 1.5.In particular, in applications where a thin film is required in terms of moldability and processability, the intrinsic viscosity of the polyester A is 0.6 to 1.5. More preferably, it is 3, and particularly preferably, the intrinsic viscosity is 0.7 to 1.0.
本発明のポリエステルフィルムは、 8 0 °Cにおけるフィルムの平均破断伸度が 8 0 0 %以上であることが、 種々の成形、 加工性を良好にする上で好ましい。 こ こで、 フィルムの平均破断伸度とは、 1 0 mm幅、 1 0 O mm長さのフィルムを 3 0 0 mm/分で伸長した際の縦、 横方向の破断伸度を各 1 0回測定し、 各方向 の最大、 最小点を除き、 平均した値である。 8 0 °Cにおける平均破断伸度が 9 0 0 %以上であることがさ らに好ましく、 1 0 0 0 %以上 2 0 0 0 %以下であるこ とが特に好ましい。  The polyester film of the present invention preferably has an average elongation at break of 800% or more at 80 ° C. in order to improve various moldability and processability. Here, the average elongation at break of the film is defined as the elongation at break in the longitudinal and transverse directions when a film having a width of 10 mm and a length of 100 mm is stretched at 300 mm / min. It is the average value after measuring twice and excluding the maximum and minimum points in each direction. The average elongation at break at 800C is more preferably 900% or more, and particularly preferably 1000% or more and 2000% or less.
本発明に係るポリエステルフィルムは、 成形性、 加工性をさ らに良好とし、 フ イルムの柔軟性を向上させる点で、 分子量が 3 0 0 0以下の可塑剤を 1 〜 6 0重 量%含有する ζとが好ましい。 特に柔軟性を向上させる点では、 分子量が 3 0 0 0以下の可塑剤を 5〜 6 0重量%含有させることが好ましい。 また、 可塑剤とし ては凝固点が 3 0 °C以下であるものが好ましく 、 さ らに好ましく は 2 0 °C以下、 特に好ましくは 1 0 °C以下である。  The polyester film according to the present invention contains 1 to 60% by weight of a plasticizer having a molecular weight of 300 or less from the viewpoint of further improving the moldability and processability and improving the flexibility of the film. Is preferred. In particular, from the viewpoint of improving flexibility, it is preferable to include 5 to 60% by weight of a plasticizer having a molecular weight of 300 or less. As the plasticizer, those having a freezing point of 30 ° C. or lower are preferable, more preferably 20 ° C. or lower, and particularly preferably 10 ° C. or lower.
可塑剤の種類としては、 特に限定されないが、 分子量 3 0 0 0以下の化合物で あり、 その種類としてはアジピン酸系可塑剤、 リ ン系可塑剤、 ポリエーテル系可 塑剤、 ト リ メ リ ッ ト酸系可塑剤、 フタル酸系可塑剤などを用いることができる。 これらの可塑剤は、 ポリエステル Aとの反応を抑制させる官能基封鎖基が導入さ れることが好ましい。 本発明に使用する可塑剤としては、 特に耐熱性、 成形加工 性の点から、 エステル系可塑剤が好ましい。 エステル系可塑剤としては、 耐熱性 の点で水酸基価が 0 ~ 2 0 (m g / g ) であるものが好ましく、 さらに 0〜 1 5 ( m g / g ) であるものが好ましい。 酸価としては 0 〜 5 ( m g / g ) が好まし く、 特に 0〜 3 ( m g / g ) であることが好ましい。 The type of the plasticizer is not particularly limited, but is a compound having a molecular weight of 300 or less. Examples of the type include an adipic acid-based plasticizer, a phosphorus-based plasticizer, a polyether-based plasticizer, and a trimerizer. For example, a nitric acid plasticizer or a phthalic acid plasticizer can be used. These plasticizers are preferably introduced with a functional group-blocking group for suppressing the reaction with polyester A. As the plasticizer used in the present invention, an ester plasticizer is preferable, particularly from the viewpoint of heat resistance and moldability. As the ester plasticizer, those having a hydroxyl value of 0 to 20 (mg / g) are preferable from the viewpoint of heat resistance, and more preferably 0 to 15 (mg / g) is preferred. The acid value is preferably from 0 to 5 (mg / g), and particularly preferably from 0 to 3 (mg / g).
また、 可塑剤の添加方法としては、 重合反応前または後にパッチ添加する方法、 ベン ト式押出機を用いる方法、 スク リ ューまたは管壁から送液ポンプを用いて添 加する方法などが挙げられる。  Examples of the method of adding a plasticizer include a method of adding a patch before or after a polymerization reaction, a method of using a vent-type extruder, and a method of adding a plastic from a screw or a pipe wall using a liquid feed pump. .
本発明では、 上述したポリエステル Aを主たる成分とする A層の少なく とも片 面に、 ポリエステル B層を複合すると、 可塑剤の耐ブリードアウ ト、 ハン ドリ ン グ性、 加工時の非粘着性、 あるいは熱接着性など新たな機能を付与する点からは より好ましい。  In the present invention, when a polyester B layer is compounded on at least one side of the A layer containing the polyester A as a main component, the plasticizer has a bleed-out resistance, a handling property, a non-adhesive property during processing, or It is more preferable from the viewpoint of providing a new function such as thermal adhesion.
ポリエステル Aを構成成分とする A層とポリエステル Bを構成成分とする B層 は任意に複合することができる。 例えば、 ポリエステル A /ポリエステル B、 ポ リエステル A /ポリエステル B /ポリエステル A、 ポリエステル B /ポリエステ ル A /ポリエステル Bなどのよう に複合することが可能である。 このとき特に上 に挙げた可塑剤の耐ブリー ドアウ ト、 ハンドリ ング性、 加工時の非粘着性、 ある いは熱接着性の特性向上の点からは、 少なく とも片面にポリエステル Bを積層し たポリエステル A Zポリエステル B、 より好ましくは両面にポリエステル Bを積 層したポリエステル B /ポリエステル A /ポリエステル Bの構成が好ましい。 ポリエステル Bの酸成分としては、 例えば、 テレフタル酸、 イソフタル酸、 ナ フタレンジカルボン酸、 ジフエニルジカルボン酸、 ジフエニルスルホンジカルボ ン酸、 ジフエノキシエタンジカルボン酸、 5 —ナ 卜リウムスルホイソフタル酸、 フタル酸等の芳香族ジカルボン酸、 シユウ酸、 コハク酸、 アジピン酸、 セバシン 酸、 ダイマー酸、 マレイ ン酸、 フマル酸等の脂肪族ジカルボン酸、 シクロへキシ ンジカルボン酸等の脂環族ジカルボン酸、 p —ォキシ安息香酸等のォキシ力ルポ ン酸等を挙げることができる。 耐熱性、 成形性、 加ェ性、 印刷性の点でテレフ夕 ル酸、 イソブタル酸、 アジピン酸などが好適に使用することができる。  Layer A containing polyester A as a constituent and layer B containing polyester B as a constituent can be arbitrarily combined. For example, it is possible to composite such as polyester A / polyester B, polyester A / polyester B / polyester A, polyester B / polyester A / polyester B, and the like. At this time, polyester B was laminated on at least one side, especially from the viewpoint of improving the bleed-out resistance, handleability, non-sticking property during processing, and thermal adhesion properties of the plasticizers mentioned above. Polyester AZ polyester B, more preferably polyester B / polyester A / polyester B having polyester B laminated on both sides is preferred. Examples of the acid component of the polyester B include terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl sulfone dicarbonic acid, diphenyl ethane dicarboxylic acid, and 5-sodium sulfoisophthalic acid. Aliphatic dicarboxylic acids such as aromatic dicarboxylic acids such as phthalic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, dimer acid, maleic acid, fumaric acid, and cycloaliphatic dicarboxylic acids such as cyclohexin dicarboxylic acid Acids, oxysulfonic acids such as p-oxybenzoic acid and the like can be mentioned. Terephthalic acid, isobutyric acid, adipic acid, and the like can be suitably used in terms of heat resistance, moldability, curability, and printability.
ポリエステル Bのグリ コール成分としては、 例えばエチレングリ コール、 プロ. パンジオール、 ブタンジオールペン夕ンジオール、 へキサンジオール、 ネオペン チルダリ コール等の脂肪族グリ コール ; シクロへキサンジメタノール等の脂環 族グリ コール ; ビスフエノール類 (ビスフエノール A、 ビスフエノール S等) 、 1 , 3 —ビス ( 2 —ヒ ドロキシエトキシ) 、 1, 2 —ビス ( 2 —ヒ ドロキシエト キシ) ベンゼン、 1 , 4一ビス ( 2 —ヒ ドロキシエトキシ) ベンゼン、 ビス [ 4 一 ( 2 —ヒ ドロキシエトキシ) フエニル] スルホン、 2 , 2 —ビス ( 4— J3 —ヒ ド Dキシエトキシフエニル) プロパン、 ハイ'ドロキノン、 レゾルシン等の芳香族 グリ コ一ル ; ジエチレングリ コール、 ポリエチレングリ コール、 ポリ ト リ メチレ ングリ コール、 ポリテトラメチレングリ コール等を挙げることができる。 含有さ れるジエチレングリ コール量は 0. 1〜 1 0モル%であることが、 成形性、 加工 性、 印刷性の点で好ましく、 さ らに耐侯性を悪化させない点で 0. 3〜 5モル% であることが好ましい。 Examples of the glycol component of the polyester B include aliphatic glycols such as ethylene glycol, propandiol, butanediol pentylenediol, hexanediol, and neopentyl alcohol; alicyclic glycols such as cyclohexanedimethanol. Coal; bisphenols (bisphenol A, bisphenol S, etc.), 1,3-bis (2-hydroxyethoxy), 1,2-bis (2-hydroxyethoxy) benzene, 1,4-bis (2-hydroxyethoxy) benzene, bis [4- (2- (Hydroxyethoxy) phenyl] sulfone, 2,2-bis (4-J3—hydro-D-ethoxyethoxyphenyl), aromatic glycols such as propane, high'-droquinone, resorcinol; diethylene glycol, polyethylene glycol And polytrimethylene glycol, polytetramethylene glycol, and the like. The amount of diethylene glycol contained is preferably 0.1 to 10 mol% in terms of moldability, processability, and printability, and 0.3 to 5 mol% in that the weather resistance is not deteriorated. %.
特に成形性、 加工性の要求される用途向けには、 ポリ エステル Bの固有粘度は 0. 5〜 1 . 5であることが好ましく、 0. 6 ~ 1 . 3 であることがさ らに好ま しく、 0. 7〜 1 . 0であることが特に好ましい。  Particularly for applications requiring moldability and workability, the intrinsic viscosity of Polyester B is preferably from 0.5 to 1.5, and more preferably from 0.6 to 1.3. It is particularly preferable that the ratio be 0.7 to 1.0.
また、 ポリエステル Bについてもポリエステル Aと同様に M P≤ 1 であるこ とが好ましく、 よ り好ましくは M/Pの範囲が 0. 0 0 0 1以上 1未満、 さ らに 好ましくは 0 . 0 0 1以上 0. 8以下、 特に好ましく は 0. 0 1 以上 0. 6以下 である。  Also, as for polyester B, it is preferable that MP ≤ 1 as in polyester A, and more preferably, the range of M / P is 0.0001 or more and less than 1, and more preferably 0.001. It is at least 0.8 and particularly preferably at least 0.1 and at most 0.6.
特に可塑剤の耐プリ一ドアウ ト、 フィルムのハン ドリ ング性、 加工時の非粘着 性などを向上させる点で、 ポリエステル B層の厚みは 0 . 1 m以上 1 m m以下 とすることが好ましい。 さらに好ましくは 1 tf m以上 l mm以下である。  In particular, the thickness of the polyester B layer is preferably 0.1 m or more and 1 mm or less from the viewpoint of improving the resistance to pre-out of the plasticizer, the handling property of the film, and the non-adhesion property during processing. More preferably, it is 1 tfm or more and l mm or less.
さ らに、 本発明ではフィルムのハン ドリ ングと加工性を良好にするために各層 に粒子を添加してもよい。  Further, in the present invention, particles may be added to each layer in order to improve the handling and processability of the film.
具体的には、 無機粒子としては、 湿式および乾式シリカ、 コロイダルシリカ、 ケィ酸アルミニウム、 酸化チタン、 炭酸カルシウム、 リ ン酸カルシウム、 硫酸バ リウム、 アルミナ、 マイ力、 カオリ ン、 ク レー、 酸化チタン、 ジルコニァ、 ヒ ド 口キシァパタイ ト等を用いることができる。  Specifically, inorganic particles include wet and dry silica, colloidal silica, aluminum silicate, titanium oxide, calcium carbonate, calcium phosphate, barium sulfate, alumina, myriki, kaolin, clay, and titanium oxide. , Zirconia, and concealed xiapatite can be used.
また、 有機粒子としては、 さまざまな有機高分子粒子を用いることができるが、 その種類としては、 少なく とも一部がポリエステルに対し不溶の粒子であればい かなる組成の粒子でもかまわない。 また、 このような粒子の素材としては、 ポリ イミ ド、 ポリ アミ ドイミ ド、 ポリメチルメタクリ レー ト、 ホルムアルデヒ ド樹脂、 フエノール樹脂、 架橋ポリスチレン、 シリコーン樹脂などの種々のものを使用す ることができるが、 耐熱性が高く、 かつ粒度分布の均一な粒子が得られやすいビ ニル'系架橋高分子粒子、 架橋ポリスチレン粒子が特に好ましい。 As the organic particles, various organic polymer particles can be used, and the type may be any type of particles as long as at least a part thereof is insoluble in polyester. Materials for such particles include polyimide, polyamide imide, polymethyl methacrylate, formaldehyde resin, Various materials such as phenolic resin, crosslinked polystyrene, and silicone resin can be used, but vinyl'-based crosslinked polymer particles and crosslinked polystyrene particles that have high heat resistance and are easy to obtain particles with uniform particle size distribution Is particularly preferred.
粒子はポリエステル Aおよび/またはポリエステル Bに添加され、 粒子の平均 粒子径としては 0 . 0 1 ~ 1 0 mであることが好ましく、 特に加工性が重視さ れる用途では平均粒子径が 0. 1〜 5 mの粒子を含有させることが好ましい。 各層に粒子を添加する場合、 粒子の添加量としては 0. 0 1 〜 7 0重量%でぁ ることが好ましい。  The particles are added to polyester A and / or polyester B, and the average particle size of the particles is preferably from 0.01 to 10 m, and especially in applications where processability is important, the average particle size is 0.1. It is preferred to contain particles of up to 5 m. When the particles are added to each layer, the amount of the particles added is preferably from 0.01 to 70% by weight.
さ らに、 各層にワックスやシリ コーンなどの低表面エネルギー性を付与する成 分を含有させてもよく、 その添加量としては、 各層において 0. 0 1 〜 1重量% が好ましい。  Further, each layer may contain a component imparting low surface energy, such as wax or silicone, and the amount of addition is preferably 0.01 to 1% by weight in each layer.
美麗性を良好にする点では、 熱可塑性組成物を溶融押出する際に、 3 0 ^ m以 下の粗大粒子、 異物をカッ トするフィルターを用いることが好まし 、 特に 2 0 ^tim以下をカッ トするフィルタ一を用いることが望ましい。  From the viewpoint of improving beauty, it is preferable to use a filter for cutting coarse particles and foreign substances of 30 ^ m or less when melt-extruding the thermoplastic composition. It is desirable to use a cutting filter.
さ らに、 成形、 加工時の臭気を低減させたり、 製品としての臭気を低減させる 点で、 フィルム中のァセ トアルデヒ ドの含有量を好ましく は 1 O O p p m以下、 さらに好ましくは 5 O p p m以下、 特に好ましく は 3 O p p m以下とすることが 望ましい。  Furthermore, the content of acetoaldehyde in the film is preferably 100 ppm or less, more preferably 5 ppm or less, in order to reduce the odor during molding and processing, and to reduce the odor as a product. It is particularly desirable that the content be 3 O ppm or less.
フィルム中のァセ 1、アルデヒ ドの含有量を低下させる方法は、 特に限定される ものではないが、 例えばポリエステルを重縮反応等で製造する際の熱分解によつ て生じるァセ トアルデヒ ドを除去するため、 ポリエステルを減圧下あるいは不活 性ガス雰囲気下において、 ポリエステルの融点以下の温度で熱処理する方法、 好 ましく はポリエステルを減圧下あるいは不活性ガス雰囲気下において 1 5 0で以 上、 融点以下の温度で固相重合する方法、 ベン ト式押出機を使用して溶融押出す る方法、 ポリマを溶融押出する際に押出温度を可能な限り低下させ短時間で押出 す方法等を用いる ことができる。  The method for lowering the content of case 1 and aldehyde in the film is not particularly limited, but, for example, acetate aldehyde generated by thermal decomposition when producing polyester by a polycondensation reaction or the like. A method of heat treating the polyester at a temperature lower than the melting point of the polyester under reduced pressure or in an inert gas atmosphere, preferably, by heating the polyester at a reduced pressure or in an inert gas atmosphere at a temperature of 150 or more. , Solid-state polymerization at a temperature below the melting point, melt-extrusion using a bent-type extruder, and extrusion in a short time by lowering the extrusion temperature as much as possible when melt-extruding a polymer. Can be used.
本発明に係るポリエステルフィルムの製造方法としては、 特に限定されないが、 ポリエステル Aとして粒子入りポリエチレンテレフタレー ト、 ポリプロピレンテ レフ夕レー ト、 ポリ ブチレンテレフタレー トを混合する場合を例にすると、 ポリ エステルの混合物及び必要に応じてリ ン化合物を未乾燥または乾燥した後、 単軸 または二軸の溶融押出機に供給し、 スリ ッ ト状のダイからシー ト状に押出し、 二 ップロールの間に落下させ、 キャスティ ングドラムに密着させ冷却固化し未延伸 シートを得る。 この際、 ニップロールの小径化および/またはロール温度の高温 化をすることが 1 5 0 m以下のフィルムを製造する上で好ましい。 ニップロ一 ルの小径化では直径 4 0 0 m m以下が好ましく、 特に 3 0 0 m m以下が好ましレ 。 ロール温度の高温化としては 4 0 °C以上 1 5 0 °C以下が好ましく 、 5 0 °C以上 1 4 0 °C以下がさ らに好ましい。 フィルムの非粘着化のためにロール表面を粗面化 してもよい得られたシートをロールシー ト状に巻き取り製品を得る。 The method for producing the polyester film according to the present invention is not particularly limited. For example, when polyester A containing particles of polyethylene terephthalate, polypropylene terephthalate, or polybutylene terephthalate is mixed, the polyester A After the ester mixture and, if necessary, the phosphorus compound are dried or dried, the mixture is fed to a single-screw or twin-screw melt extruder, extruded in a sheet form from a slit die, and placed between nip rolls. Drop it, bring it into close contact with the casting drum, cool and solidify to obtain an unstretched sheet. At this time, it is preferable to reduce the diameter of the nip roll and / or to increase the roll temperature in producing a film of 150 m or less. For reducing the diameter of the nipple, the diameter is preferably 400 mm or less, and particularly preferably 300 mm or less. The increase in the roll temperature is preferably from 40 ° C to 150 ° C, more preferably from 50 ° C to 140 ° C. The resulting sheet may be roughened to make the film non-adhesive, and the obtained sheet is rolled into a roll sheet to obtain a product.
また、 静電印加方式によるキャスティ ングドラムへの密着は、 安定して冷却が 可能であるため、 加熱加工時の平面性を保持する点でよ り好ましく用いる ことが できる。  In addition, close contact with the casting drum by the electrostatic application method can be more preferably used in that the flatness during the heating process is maintained because cooling can be stably performed.
特に成形性、 加工性が重視される用途では、 上記のように未延伸フィルムを製 造することが好ましい。  In particular, in applications where emphasis is placed on moldability and processability, it is preferable to produce an unstretched film as described above.
一方、 耐熱性が重視される用途では、 必要に応じて、 該未延伸シートをフィル ムの長手方向及びノまたは幅方向に延伸、 熱処理し、 目的とする破断伸度を有す るフィルムを得る方法がある。 好ましく はフィルムの品質の点でテンター方式に よるものが好ましく、 長.手方向に延伸した後、 幅方向に延伸する逐次二軸延伸方 式、 長手方向、 幅方向をほぼ同時に延伸していく同時二軸延伸方式が望ましい。 延伸倍率としては、 それぞれの方向に好ましくは 1 . 5 〜 5 . 0倍、 よ り好まし くは 1 . 5 〜 4 . 0倍である。 長手方向、 幅方向の延伸倍率はどち らを大きく し てもよく、 同一としてもよい。 また、 延伸速度は 1 0 0 0 % /分〜 1 0 0 0 0 0 0 % /分であることが望ましく、 特に縦延伸速度を 3 0 0 0 0 0 % /分以下で製 膜することが好ましい。 延伸温度は 1 0 0 ¾以上 1 5 0 °C以下であれば任意の温 度とすることができるが、 ガラス転移温度 + 2 0 °C〜 6 0 °Cが好ましい。  On the other hand, in applications where heat resistance is important, the unstretched sheet is stretched and heat-treated in the longitudinal direction and width or width direction of the film, as necessary, to obtain a film having a desired breaking elongation. There is a way. Preferably, the tenter method is used in terms of film quality.Long; sequential biaxial stretching method in which the film is stretched in the hand direction and then stretched in the width direction. Simultaneously, the film is stretched almost simultaneously in the longitudinal and width directions. A biaxial stretching method is desirable. The stretching ratio is preferably 1.5 to 5.0 times, and more preferably 1.5 to 4.0 times in each direction. Either the stretching ratio in the longitudinal direction or the stretching direction in the width direction may be increased, or may be the same. The stretching speed is preferably 100% / minute to 100% / minute, and in particular, the film can be formed at a longitudinal stretching speed of 300% / minute or less. preferable. The stretching temperature can be any temperature as long as it is 100 ° C. or more and 150 ° C. or less, but is preferably glass transition temperature + 20 ° C. to 60 ° C.
更に、 この後にフィ ルムの熱処理を行うが、 この熱処理はオーブン中、 加熱さ れたロール上等、 従来公知の任意の方法で行なう ことができる。 熱処理温度は 6 0 °C以上 2 5 0 °C以下の任意の温度とすることができるが、 好ましくは 1 5 0 〜 2 4 0 °Cである。 また熱処理時間は任意とすることができ,,るが、 0 . 1 〜 6 0秒 間が好ましく、 さらに好まし は 1 〜 2 0秒間である。 Further, after this, the film is subjected to a heat treatment. This heat treatment can be performed by any conventionally known method such as in an oven, on a heated roll, or the like. The heat treatment temperature can be any temperature from 60 ° C. to 250 ° C., but is preferably from 150 ° C. to 240 ° C. The heat treatment time can be arbitrarily set, but is 0.1 to 60 seconds. Preferably, it is between 1 and 20 seconds.
熱処理は、 フィルムをその長手方向および Zまたは幅方向に弛緩させつつ行つ てもよい。 さ らに、 再延伸を各方向に対して 1 回以上行ってもよく、 その後熱処 理を行ってもよい。  The heat treatment may be performed while relaxing the film in the longitudinal direction and the Z or width direction. Further, re-stretching may be performed once or more in each direction, and then heat treatment may be performed.
本発明に係るポリエステルフィルムの厚さは、 成形性、 加工性の点で、 1 0 〜 2 0 0 O mであることが好ましく、 さ らに好ましく は 2 0〜 1 0 0 0 μ πιであ る。 '  The thickness of the polyester film according to the present invention is preferably from 10 to 200 Om, more preferably from 20 to 100 μπι from the viewpoint of moldability and workability. You. '
本発明のポリエステルフィルムには、 加工性、 接着性を向上させる点で、 必要 に応じて巻き取る前、 あるいは巻き取った後に再度巻きだしてコロナ放電処理や コーティ ング処理などを行ってもよい。 このとき、 表面エネルギーとして 4 0〜 6 O mN/mであることが好ましく、 さ らに 4 ,5 ~ 6 O mN/mであることが好 ましい。  The polyester film of the present invention may be subjected to a corona discharge treatment, a coating treatment, etc. before or after winding, if necessary, in order to improve processability and adhesiveness. At this time, the surface energy is preferably 40 to 6 OmN / m, more preferably 4,5 to 6 OmN / m.
本発明に係るポリエステルフィルムは、 成形性、 加工性を重視する場合は未延 伸フィルムで使用することが好ましいが、 一軸延伸または二軸延伸して使用する 際には、 成形性、 加工性の点で面配向係数が 0. 0 3〜 0. 1 4であることが好 ましい。 特に、 フィ ルムの成形性、 耐熱性が要求される用途では面配向係数が 0. 0 3〜 0. 1 4 5であることが好ましく、 さらに好ましくは 0. 0 4 ~ 0. 1 4、 特に好ましく は 0. 0 5〜 0. 1 3 である。 ここで、 面配向係数とは、 フィルム の長手方向屈折率を n MD、 フィルムの幅方向屈折率を n TD、 フィ ルムの厚さ方向 屈折率を n ZDとした際に、 面配向係数 f n = ( n MD+ n TD) / 2 — n ZDで表され る。 The polyester film according to the present invention is preferably used as an unstretched film when emphasis is placed on moldability and workability, but when uniaxially or biaxially stretched is used, the formability and processability are preferably used. In terms of point, the plane orientation coefficient is preferably in the range of 0.03 to 0.14. In particular, in applications where film formability and heat resistance are required, the plane orientation coefficient is preferably from 0.3 to 0.145, more preferably from 0.04 to 0.14, particularly preferably from 0.04 to 0.14. Preferably it is 0.05 to 0.13. Here, the plane orientation coefficient, the longitudinal refractive index of the film n MD, in the width direction refractive index n TD of the film, the thickness direction refractive index of Fi Lum upon the n ZD, plane orientation coefficient fn = (n MD + n TD) / 2 — expressed as n ZD .
本発明に係るポリエステルフィルムが使用される用途としては、 成形性、 加工 性、 印刷性に優れることから、 単体、 非金属あるいは金属素材との積層構成で成 形、 加工される用途に用いられるものであり、 使用目的は特に限定されないが、 積層して使用される場合、 非金属素材が紙、 不織布、 ガラス、 ポリマー素材であ ると最終製品を軽量化する点で好ましい。 一方、 材料の強度が要求される用途で は、 金属あるいはガラス強化ポリマーと本フィルムを積層する構成で使用するこ とができる。  The polyester film according to the present invention is used for molding, processing, and processing of a single material, a non-metallic material, or a laminated structure with a metal material because of its excellent moldability, processability, and printability. The purpose of use is not particularly limited, but when used in a laminate, it is preferable that the nonmetallic material is paper, nonwoven fabric, glass, or a polymer material in terms of reducing the weight of the final product. On the other hand, in applications where the strength of the material is required, it can be used in a configuration in which this film is laminated with a metal or glass-reinforced polymer.
本発明に係るポリエステルフィルムは、 熱により一部を融解させて、 他の素材 と接着させてもよいし、 あらかじめ本発明のフィルムまたは他の素材に接着層を 設けてもよい。 さ らに積層構成において他素材との間に接着層、 印刷層などが形 成されていてもよい。 The polyester film according to the present invention is partially melted by heat, The film or other material of the present invention may be provided with an adhesive layer in advance. Further, an adhesive layer, a printing layer, and the like may be formed between the laminated structure and another material.
成形,、 加工方法としては、 ラミネート成形、 真空成形、 圧空成形、 真空圧空成 形、 絞り成形、 折り曲げ成形、 あるいはこれらの成形や他の加工方法を組み合わ せた成形、 加工を単独または複数施されてもよく、 成形、 加工方法としては特に 限定されない。  Forming and processing methods include laminating, vacuum forming, air pressure forming, vacuum air forming, drawing, bending, or a combination or combination of these and other processing methods. The molding and processing methods are not particularly limited.
単体で使用される場合は、 真空成形、 圧空成形、 真空圧空成形、 絞り成形、 折 り曲げ成形、 張り 出し成形などの成形加工を一回または複数回施されてもよく、 成形加工方法としては特に限定されない。  When used alone, it may be subjected to one or more molding processes such as vacuum forming, air pressure forming, vacuum pressure forming, draw forming, bending forming, overhang forming, etc. There is no particular limitation.
【実施例】 【Example】
以下、 実施例によって本発明を詳細に説明する。 なお、 諸特性は以下の方法に より測定、 評価した。  Hereinafter, the present invention will be described in detail with reference to examples. Various properties were measured and evaluated by the following methods.
( 1 ) ポリエステルの固有粘度  (1) Intrinsic viscosity of polyester
ポリエステルをオルソクロロフエノールに溶解し、 2 5 °Cにおいて測定した。 The polyester was dissolved in orthochlorophenol and measured at 25 ° C.
( 2 ) ポリエステル中の触媒金属 (2) Catalyst metal in polyester
リ ン量蛍光 X線分析により求めた。 なお、 定量は、 各金属元素を一定量含有さ せたサンプルを作成し、 検量線を作成して行った。  The amount of phosphorus was determined by fluorescent X-ray analysis. The quantification was performed by preparing a sample containing a certain amount of each metal element and preparing a calibration curve.
( 3 ) ポリエステルフィルムの融点  (3) Melting point of polyester film
ポリエステルフィルム試料 5 m gを、 セイコー電子工業 (株) 製示差走査熱量 計 R D C 2 2 0型を用い、 窒素雰囲気下、 _ 3 0でで 5分間保持後 2 0で 分の 昇温速度で測定したときの D S C曲線から求められる吸熱曲線の極小点 (すなわ ち微分値が 0 となる点) を結晶融解ピーク温度とした。 また、 一つの吸熱曲線に 部分的に重なる融解熱量が 2 J /g以上のショルダーピーク (ピークの極小点) に ついても独立した結晶融解曲線のピークとした。 なお積層フィルムについては各 層のポリエステルを片刃で 5 m g採取し、 同様に測定を行った。  5 mg of a polyester film sample was measured using a differential scanning calorimeter RDC 220 manufactured by Seiko Denshi Kogyo Co., Ltd. in a nitrogen atmosphere at _30 for 5 minutes, and then at a heating rate of 20 minutes in 20 minutes. The minimum point of the endothermic curve obtained from the DSC curve at that time (ie, the point where the differential value becomes 0) was defined as the crystal melting peak temperature. In addition, the shoulder peak (minimum point of the peak) with a heat of fusion of 2 J / g or more that partially overlaps one endothermic curve is also regarded as an independent crystal melting curve peak. For the laminated film, 5 mg of polyester of each layer was sampled with one blade, and the measurement was performed in the same manner.
( 4 ) フィ ルムの屈折率  (4) Refractive index of film
ナ ト リ ウム D線 (波長 5 8 9 n m ) を光源として、 アッベ屈折計を用いて測定 した。 面配向係数は、 フィルムの長手方向屈折率を n MD、 フィ ルムの幅方向屈折 率を n TD、 フィルムの厚さ方向屈折率を n ZDとした際に、 面配向係数 f n = ( n MD+ n TD) / 2 — n ZDで表される。 Measured with Abbe refractometer using sodium D line (wavelength 589 nm) as light source did. Plane orientation coefficient is, the longitudinal refractive index n MD of the film, the width direction refractive index n TD of Fi Lum, when the thickness direction refractive index of the film was n ZD, plane orientation coefficient fn = (n MD + n TD) / 2 — expressed in nD .
( 5 ) 平均粒子径 . フィルム断面を切断し超薄切片を作成し、 透過型電子顕微鏡を用いて倍率 5 0 0 0 - 2 0 0 0 0程度で写真撮影し、 ポリエステル A中に分散した各粒子の円相 当径を測定し、 平均粒子径を求めた。  (5) Average particle size.Cut the cross section of the film into ultra-thin sections, photograph them with a transmission electron microscope at a magnification of about 500-2000, and disperse them in polyester A. The circular equivalent diameter of the particles was measured, and the average particle diameter was determined.
( 6 ) 平均破断伸度 .  (6) Average elongation at break.
テンシロン (引っ張り試験機) を用いて、 8 0 °Cにおいて測定した。 測定は、 フィルムを 3 0秒間測定温度で保温し、 引っ張り速度 3 0 0 mmZm i n、 幅 1 0 mm、 試料長 5 O mmとして、 フィルム長手方向、 幅方向の破断伸度 ( % ) を それぞれ 1 0点測定し平均値を求めた。  The measurement was performed at 80 ° C using a Tensilon (tensile tester). In the measurement, the film was kept at the measurement temperature for 30 seconds, and the elongation at break (%) in the film longitudinal direction and the width direction was 1 for each of a tensile speed of 300 mmZmin, a width of 10 mm, and a sample length of 5 Omm. Zero points were measured and the average was determined.
( 7 ) 圧空成形性  (7) Compressibility
温度を 8 0 ~ 1 3 O :まで変更し、 圧空成形機で成形性を判断した。 最も良好 な温度条件で成形した際の状態を下記のように判定した。  The temperature was changed from 80 to 13 O :, and the moldability was judged with a compressed air molding machine. The state at the time of molding under the best temperature conditions was determined as follows.
◎ : コーナーもシャープに成形され、 成形後の厚みも均一であった。  :: The corner was sharply formed, and the thickness after molding was uniform.
〇 : コーナ一にやや丸みがあるが、 成形後の厚みは均一であった。  :: The corners were slightly round, but the thickness after molding was uniform.
△ : コーナーにやや丸みがあり、 成形後の厚みがやや不均一であった。  Δ: The corner was slightly rounded, and the thickness after molding was slightly uneven.
X : 成形後の厚みが不均一であり、 しわが入ったり、 白化した。  X: The thickness after molding was uneven, wrinkled or whitened.
(◎、 〇、 △は合格、 Xは不合格。 ) '  (◎, 〇, △ passed, X failed)) '
( 8 ) 印刷性  (8) Printability
酢酸ェチル、 トルエンを含有する溶剤系インキをグラビアコー トし、 8 0 で 乾燥した後の外観を確認した。  A solvent-based ink containing ethyl acetate and toluene was gravure coated, and the appearance after drying at 80 was confirmed.
◎ : 白化もなく 、 美麗性良好  ◎: No whitening, good beauty
〇 : やや白化が見られるが美麗性問題なし  〇: Some whitening is observed, but there is no beauty problem
Δ : 白化が見られ、 美麗性が低下  Δ: Whitening is observed, and beauty is reduced
X : 大きく 白化し、 外観が大きく変化 · (◎、 〇、 △は合格、 Xは不合格。 )  X: Large whitening and large change in appearance · (◎, △, △ passed, X failed)
( 9 ) エンボス加,ェ性 本発明のポリエステルフィルムと、 印刷を施した市販の P E T二軸延伸フィル ム (東レ株式会社製 "ルミラー" 、 Sタイプ 7 5 M m) を酢酸ェチルを溶剤とす るウレタン系接着剤で接着し、 8 0でで乾燥した後、 ロール加熱 ( 1 0 0 °C ) と 集光型ラジェーシヨ ンによる直前加熱により本発明のポリエステルフィルム側を 加熱し、 エンボスロール ( 5 0 mの高さの凹凸) を通過させた後に、 冷却ロー ル ( 4 0 T ) で冷却した。 ラジェーシヨ ン加熱設定を変更し、 最もよい状態での 評価を行った。 得られたフィルムのエンボス性を下記の通り判定した。 なお、 美 麗性は、 色の変化がないこと、 しわ、 ぎらつきがないことにより判定した。 (9) Embossing The polyester film of the present invention and a commercially available biaxially-stretched PET film (“Lumirror” manufactured by Toray Industries, Inc., S type, 75 mm) are adhered with a urethane-based adhesive using ethyl acetate as a solvent. After drying at 80 ° C, the polyester film side of the present invention is heated by roll heating (100 ° C) and immediately before heating by a condensing type radiation jet, and embossed roll (50 m height unevenness) After passing through, the mixture was cooled with a cooling roll (40 T). The radiation heating setting was changed, and the evaluation was performed in the best condition. The embossability of the obtained film was determined as follows. The beauty was judged based on no color change, no wrinkles and no glare.
◎ : エンボスロールの凹凸形状を大小ともにフィルム側へ良好に形成。 美麗性 も良好。  A: The uneven shape of the embossing roll is favorably formed on the film side, both large and small. Good beauty.
〇 : エンボスロールの凹凸形状の大きい部分をフィルム側へ良好に形成。 美麗 性にほとんど変化なし。  〇: The part with large unevenness of the embossing roll is favorably formed on the film side. Almost no change in beauty.
Δ : エンボスロールの凹凸形状をフィルム側へ形成しているがやや凹凸が浅い。 美麗性の変化も認められる。  Δ: The unevenness of the embossing roll is formed on the film side, but the unevenness is slightly shallow. A change in beauty is also observed.
X : エンボスロールの凹 ώ形状をフィルム側へ形成しているが凹凸が浅く、 美 麗性の変化も大きい。  X: The concave shape of the embossing roll is formed on the film side, but the unevenness is shallow and the change in beauty is large.
(◎、 〇、 △は合格、 Xは不合格。 )  (◎, 〇, △ passed, X failed.)
( 1 0 ) 耐白化性  (10) Whitening resistance
フィルムを熱風オーブン中で 1 1 0 °Cで 3分間熱処理を行い、 白化性を判断し た。  The film was heat-treated in a hot-air oven at 110 ° C for 3 minutes to determine the whitening property.
◎ : 白化がなく、 透明性良好。  ◎: No whitening, good transparency.
〇 : やや白化が見られるが、 透明性良。  〇: Some whitening is observed, but transparency is good.
△ : 使用上問題はないが、 顕著に白化が見られる。  Δ: No problem in use, but noticeable whitening is observed.
X : 大きく 白化し不透明である。 ' . X: Large white and opaque. '.
(◎、 〇、 △は合格、 Xは不合格。 ) (◎, 〇, △ passed, X failed.)
( 1 1 ) 熱安定性  (1 1) Thermal stability
ポリエステルフィルム試料 5 m gを採取し、 セイコー電子工業 (株) 製示差走 査熱量計 R D C 2 2 0型を用い、 窒素雰囲気下、 _ 3 0 °(:~ 2 8 0 °〇まで 2 0 /分の昇温速度で測定し ( 1 s t R u n ) 、 そのまま 2 8 0 °Cで 2 0分間保持し、 その後液体窒素で一 3 0 °Cまで急冷を行い、 その後再び 2 8 0 °Cまで 2 0 °C Z分 の昇温速度で測定 ( 2 n d R u n ) を行った。 5 mg of a polyester film sample was collected, and using a differential scanning calorimeter RDC 220 manufactured by Seiko Denshi Kogyo Co., Ltd., under nitrogen atmosphere, _30 ° (: up to 280 ° 〇, 20 / min. (1st Run), hold at 280 ° C for 20 minutes, Thereafter, the mixture was rapidly cooled to 130 ° C with liquid nitrogen, and then measured again at a temperature rising rate of 20 ° CZ to 280 ° C (2nd Run).
積層フィルムについても、 各層分けることなくそのまま測定し、 I s t R u n で測定される融点 T m 1 、 2 n d R u nで測定される融点 T m 2 ともに実質的に 単一ピークであるものに対して、 その融点差 Δ Τπι (= Tm l _ Tm 2 ) を求め た。  For the laminated film, the measurement is performed without separating each layer, and the melting point Tm1 measured by Ist Run and the melting point Tm2 measured by 2nd Run are substantially single peaks. The melting point difference Δ Τπι (= Tm l _ Tm 2) was determined.
◎ : Δ T m≤ 7  ◎: ΔT m≤ 7
〇 : 7 < Δ T m≤ 1 5  〇: 7 <Δ T m ≤ 15
X : 1 5 < Δ T m  X: 15 <Δ T m
(◎、 〇は合格、 Xは不合格。 ) 実施例で使用するポリエステルの詳細について以下に述べる。 またこれらの一 覧と、 触媒金属元素量、 リ ン元素量、 固有粘度等について表 1 に示す。  (◎, 合格: pass, X: reject.) Details of polyester used in Examples are described below. Table 1 shows a list of these and the amounts of catalytic metal elements, phosphorus elements, and intrinsic viscosities.
[P E T ( 1 ) (リ ン多量添加ポリエチレンテレフタレー ト) ]  [PET (1) (polyethylene terephthalate with high phosphorus content)]
ジメチルテレフ夕 レート、 エチレングリ コールに、 触媒としてマンガン触媒を 加えてエステル交換反応を行った後、 重合触媒として三酸化アンチモンおよび熱 安定剤としてリ ン酸を加え重縮合反応を 6時間行い、 ポリエステル組成物 P E T A manganese catalyst was added to dimethyl terephthalate and ethylene glycol to perform a transesterification reaction, followed by antimony trioxide as a polymerization catalyst and phosphoric acid as a heat stabilizer, followed by a polycondensation reaction for 6 hours. Composition PET
( 1 ) を得た (触媒金属元素量 : 7 0ミ リモル%、 リ ン元素量 : 1 0 0 ミ リモル %、 固有粘度 0. 7 1 ) 。 (1) was obtained (catalyst metal element amount: 70 millimol%, phosphorus element amount: 100 millimol%, intrinsic viscosity 0.71).
[P E T ( 2 ) (通常ポリエチレンテレフ夕レート) ] [P E T (2) (usually polyethylene terephthalate)]
ジメチルテレフ夕レート、 エチレングリ コールに、 触媒としてマンガン触媒を 加えてエステル交換反応を行った後、 重合触媒として三酸化アンチモンおよび熱 安定剤としてリ ン酸を加え重縮合反応を 4時間行い、 ポリエステル組成物 P E T A manganese catalyst was added to dimethyl terephthalate and ethylene glycol to perform a transesterification reaction, followed by antimony trioxide as a polymerization catalyst and phosphoric acid as a heat stabilizer, followed by a polycondensation reaction for 4 hours. Composition PET
( 2 ) を得た (触媒金属元素量 : 7 0 ミ リモル%、 リ ン元素量 : 2 0 ミ リモル%、 固有粘度 0. 7 3 ) 。 (2) was obtained (catalyst metal element amount: 70 millimol%, phosphorus element amount: 20 millimol%, intrinsic viscosity 0.73).
[ P P T (ポリプロピレンテレフタレート) ] [P P T (Polypropylene terephthalate)]
ジメチルテレフ夕レー ト、 1 , 3 —プロピレングリ コールに、 触媒としてチタ ン触媒を加えてエステル交換反応を行った後、 熱安定剤としてリ ン酸を加え重縮 合反応を行い、 ポリエステル組成物 P P Tを得た (触媒金属元素量 : 1 3 ミ リモ ル%、 リ ン元素量 : 3 ミ リモル%、 固有粘度 0. 9 0 ) 。 Dimethyl terephthalate, 1,3-propylene glycol, titanium as catalyst After a transesterification reaction with the addition of a polyester catalyst, phosphoric acid was added as a thermal stabilizer and a polycondensation reaction was carried out to obtain a polyester composition PPT (catalytic metal element content: 13 mol%, Element amount: 3 millimol%, intrinsic viscosity 0.90).
[ P P TZ I 1 Q (イソフタル酸 1 0モル%共重合 P P T) ] [PP TZ I 1 Q (isophthalic acid 10 mol% copolymerized PPT)]
P P Tの合成手法に従い、 イソフタル酸共重合量が 1 0モル%共重合したポリ エステル組成物' P P T / I 1 Qを得た (触媒金属元素量 : 1 3 ミ リモル%、 リ ン元 素量 : 3 ミ リ モル%、 固有粘度 0. 8 5 ) 。 According to the synthetic method of PPT, isophthalic acid copolymerization amount to obtain a 1 0 mole% copolymerized poly ester composition 'PPT / I 1 Q (catalytic amount of metal element: 1 3 Mi Rimoru%, Li emissions based elementary charge: 3 millimol%, intrinsic viscosity 0.85).
[ P B T (ポリブチレンテレフタレー ト) ] [PBT (polybutylene terephthalate)]
ジメチルテレフタレー ト、 1、 4一ブタンジオールに、 触媒としてチタン触媒 を加えてエステル交換反応を行った後、 熱安定剤としてリ ン酸を加え重縮合反応 を行い、 ポリエステル組成物 P B Tを得た (触媒金属元素量 : 5 0 ミ リモル%、 リ ン元素量 : 3 0 ミ リモル%、 固有粘度 1 . 0 ) 。  A transesterification reaction was performed by adding a titanium catalyst as a catalyst to dimethyl terephthalate and 1,4-butanediol, and then a polycondensation reaction was performed by adding phosphoric acid as a heat stabilizer to obtain a polyester composition PBT. (Amount of catalytic metal element: 50 millimol%, amount of phosphorus element: 30 millimol%, intrinsic viscosity 1.0).
[ P E T / C H D M 30 (シク ロへキサンジメタ ノ ール 3 0 モル%共重合 P E T) ] [PET / CHDM 30 (cyclohexanediethanol 30 mol% copolymerized PET)]
ジメチルテレフタレート、 エチレングリ コール、 シク ロへキサンジメタノール によ り'、 P E TZ C HD M3°を得た (触媒金属元素量 : 8 0 ミ リモル%、 リ ン元 素量 : 8 0 ミ リモル%、 固有粘度 0. 7 5 ) 。 Dimethyl terephthalate, ethylene glycol and cyclohexane dimethanol were used to obtain 3 ° of PE TZC HDM (catalyst metal element amount: 80 millimol%, phosphorus element element: 80 millimol) %, Intrinsic viscosity 0.75).
[ P I B (イソフタル酸系共重合ポリエステル) ] [PIB (isophthalic acid copolymerized polyester)]
テレフタル酸 1 0 モル%、 イソフ夕ル酸 9 0モル%、 エチレングリ コール 9 0 モル%、 ジエチレングリ コール 2 モル%、 1 , 3 ビス ( 2 —ヒ ドロキシェ トキ シ) ベンゼン 8モル%の共重合ポリエステル P I B (触媒金属元素量 : 7 0 ミ リ モル%、 リ ン元素量 : 2 0 ミ リモル%、 固有粘度 0. 8 ) を合成した。 触媒金属量 リン元素量 Copolymerization of 10 mol% of terephthalic acid, 90 mol% of isophthalic acid, 90 mol% of ethylene glycol, 2 mol% of diethylene glycol, and 8 mol% of 1,3-bis (2-hydroxybenzene) benzene Polyester PIB (catalyst metal element content: 70 millimol%, phosphorus element content: 20 millimol%, intrinsic viscosity 0.8) was synthesized. Catalyst metal amount Phosphorous element amount
ポリエステル 触媒金属 M P 固有粘度  Polyester Catalyst metal M P Intrinsic viscosity
, oノヽ  , O ノ ヽ
(:;リモル%J (:;リ "6 レ%■)  (:; Remol% J (:; re "6 re% ■)
PET(1) Mn, Sb 70 100 0.71  PET (1) Mn, Sb 70 100 0.71
PET(2) Mn, Sb 70 20 0.73  PET (2) Mn, Sb 70 20 0.73
PPT Ti 13 3 0.90  PPT Ti 13 3 0.90
PPT/I10 Ti 13 3 0.85 PPT / I 10 Ti 13 3 0.85
PBT Ti 50 30 1.00  PBT Ti 50 30 1.00
PET/CHDM30 Mn, Co 80 80 0.75 PET / CHDM 30 Mn, Co 80 80 0.75
PIB Mn, Sb 40 20 0.80  PIB Mn, Sb 40 20 0.80
[粒子含有 P E Tの作成] [Preparation of particle-containing PET]
架橋ポリ スチレン粒子 (平均粒子径 6 ^ m) 、 シリ コーン粒子 (平均粒子径 5 m) 、 凝集シリカ (平均粒.子径 1 . 7 ai m) を準備した。 上記 P E T ( 1 ) 、 P E T ( 2 ) を二軸押出機で真空ベン ト ( 5 T o r r ) 2ケ所設けて溶融させ、 それぞれについて 5重量%添加した粒子含有 P E Tを得た。  Crosslinked polystyrene particles (average particle diameter 6 ^ m), silicone particles (average particle diameter 5 m), and aggregated silica (average particle diameter 1.7 aim) were prepared. The above-mentioned PET (1) and PET (2) were provided in two vacuum vents (5 Torr) in a twin-screw extruder and melted, and particle-containing PET added with 5% by weight of each was obtained.
以下、 本発明のフィルムのフィルムの製膜例とその特性について示す。 なお、 フ イルム組成や、 特性などの点で本文に記述されていない内容は、 表 2 〜 6 に示し た通りである。 ' ' Hereinafter, examples of film formation of the film of the present invention and characteristics thereof will be described. Contents not described in the text in terms of film composition, characteristics, etc. are as shown in Tables 2-6. ''
[実施例 1 ] [Example 1]
上記したようにして得られた P P T、 Ρ Ε Τ、 粒子含有 P E Tを表 2 に示す組 成,となるよう にチップブレン ドした。 その後、 1 5 0 °Cで真空乾燥し、 押出機 ( 2 8 0 °C ) に供給し溶融させ、 常法により 口金 ( 2 7 0 °C ) から吐出後、. 静電 印加しながら鏡面冷却ドラム ( 2 5 °C ) にて冷却固化して 1 0 0 mの未延伸フ イルムを得た。 得られたフィルムの物性、 成形性、 印刷性、 加工性を表 2 に示す。 表 2から分かるように成形性、 印刷性、 加工性に優れていることがわ.かつた。 [実施例 2 ] The PPT, Ρ Ε 粒子 and particle-containing PET obtained as described above were chip-blended so as to have the composition shown in Table 2. Then, it is vacuum-dried at 150 ° C, fed to an extruder (280 ° C) and melted, discharged from a die (270 ° C) by a conventional method. It was cooled and solidified on a drum (25 ° C) to obtain a 100 m unstretched film. Table 2 shows the physical properties, moldability, printability, and processability of the obtained film. As can be seen from Table 2, the moldability, printability, and workability were excellent. [Example 2]
粒子、 ポリエステルの組成を表 2 に示すように混合し、 溶融押出時にステアリ ルリ ン酸 (旭電化工業株式会社製アデカスタブ A X— 7 1 、 分子量 4 9 0 ) を未 乾燥状態でフィーダ一で計量して、 ポリエステルの混合物を一定量フィーダ一で 二軸押出機 (ポリエステル溶融後のゾーンに真空ベン ト ( 5 T o r r ) を 3箇所 有する) に供給し、 2 7 0 °Cで溶融押出を行い、 口金 ( 2 7 0 °C ) からスリ ッ ト 上に出てきたポリマ一を 5 0 °Cの冷却ドラムでニップロール (直径 2 5 0 mm) でキャス トした。 この他は、 実施例 1 と同様にして 1 0 0 /z mの未延伸フィルム を得た。 特に熱安定性が良好となった。  The composition of the particles and the polyester were mixed as shown in Table 2, and during the melt extrusion, stearyl phosphoric acid (ADK STAB AX-71, manufactured by Asahi Denka Kogyo Co., Ltd., molecular weight 490) was weighed in an undried state with a feeder. Then, a certain amount of the polyester mixture is fed to a twin-screw extruder (having three vacuum vents (5 Torr) in the zone after melting the polyester) at a feeder, and melt extrusion is performed at 270 ° C. The polymer that came out of the slit from the base (270 ° C) was cast on a nip roll (diameter 250 mm) with a cooling drum at 50 ° C. Otherwise in the same manner as in Example 1, a 100 / zm unstretched film was obtained. Particularly, the thermal stability was improved.
[実施例 3 ] [Example 3]
ポリエステル、 ステアリルリ ン酸の混合量を表 2に示す組成となるよう混合し、 可塑剤としてポリエチレングリ コールジ安息香酸エステル (分子量 6 0 0 ) を 5 重量%液状で添加し、 キャス ト時の冷却ドラム温度を 1 0 °Cとした以外は実施例 2 と同様に製膜を行った。 特に加工性が良好となった。  Polyester and stearyl phosphoric acid were mixed to obtain the composition shown in Table 2, and polyethylene glycol dibenzoate (molecular weight: 600) was added as a plasticizer in a 5% by weight liquid state, followed by cooling during casting. A film was formed in the same manner as in Example 2 except that the drum temperature was changed to 10 ° C. In particular, the workability was improved.
[実施例 4 ] [Example 4]
実施例 3で用いた可塑剤の添加量を 1 0重量%とし、 ポリエステル、 ステアリ ルリ ン酸の混合量を表 3 に示す組成となるよう変更した。 また、 複合構成を B / AZB (複合比 : 1 : 1 0 : 1 ) とし、 B層のポリエステルを実施例 1 で使用し たものと同じ組成のポリエステルを複合した以外は、 実施例 3 と同様にして 6 0 μ mのフィルムを得た。 得られたフィルムは室温においても柔軟であ り、 特に印 刷性に優れていた。  The addition amount of the plasticizer used in Example 3 was set to 10% by weight, and the mixing amount of polyester and stearyl phosphoric acid was changed so as to have the composition shown in Table 3. Further, the same as Example 3 except that the composite structure was B / AZB (composite ratio: 1: 10: 1) and the polyester of the B layer was composited with the polyester having the same composition as that used in Example 1. To give a film of 60 μm. The obtained film was flexible even at room temperature, and was particularly excellent in printability.
[実施例 5 ] [Example 5]
実施例 3で用いた可塑剤の添加量を 5重量%とし、 さ らに B層に用いる粒子を 凝集シリカに変更し、 複合構成を B ZA/B (複合比 : 1 : 1 0 : 1 ) とし、 ま たキャス ト方式を、 静電印加しながら鏡面冷却ドラム ( 1 0 °C) にて冷却固化す る方式に変更した。 これ以外は実施例 2 と同様にして未延伸フィルムを得た。 得 られた未延伸フィ ルムを縦延伸温度 8 0 °C、 縦延伸倍率 3 · 1倍、 横延伸温度 1 0 0 、 横延伸倍率 2 . 8倍、 熱処理温度 2 3 0 Όとして二軸延伸フィルムを得 た。 フィルムの成形性は低下したが印刷性に優れていた。 The addition amount of the plasticizer used in Example 3 was set to 5% by weight, the particles used for the layer B were changed to aggregated silica, and the composite structure was changed to BZA / B (composite ratio: 1: 10: 1). In addition, the casting method was changed to a method of cooling and solidifying with a mirror cooling drum (10 ° C) while applying static electricity. Otherwise in the same manner as in Example 2, an unstretched film was obtained. Profit The obtained unstretched film is subjected to a longitudinal stretching temperature of 80 ° C, a longitudinal stretching ratio of 3.1 times, a transverse stretching temperature of 100, a transverse stretching ratio of 2.8 times, and a heat treatment temperature of 230 ° C. Obtained. Although the moldability of the film was lowered, the printability was excellent.
[実施例 6 ] [Example 6]
ポリエステル、 ステアリルリ ン酸を表 3の組成となるよう混合し、 キャス ト方 式を静電印加方式とし、 1 0 °Cの鏡面冷却ドラムにて冷却固化させた以.外は実施 例 2 と同様にして 1 0 0 mの未延伸フィルムを得た。  Polyester and stearyl phosphoric acid were mixed so as to have the composition shown in Table 3, and the casting method was changed to the electrostatic application method and cooled and solidified with a mirror cooling drum at 10 ° C. An unstretched film of 100 m was obtained in the same manner.
[実施例 7 ] [Example 7]
実施例 1 において、 P P Tの代わり に Ρ Ρ Τ Ζ Ι 1 Πとした以外は、 実施例 1 と 同様の手法で 1 0 0 mの未延伸フィルムを得た。 特に成形性が良好となった。 In Example 1, except that the instead of PPT Ρ Ρ Τ Ζ Ι 1 Π is to obtain an unstretched film of 1 0 0 m in the same manner as in Example 1. In particular, the moldability was improved.
[実施例 8.] [Example 8]
ポリエステル、 ステアリルリ ン酸を表 4の組成となるよう混合し、 実施例 3で 用いた可塑剤を 1 0重量%用いた以外は実施例 6 と同様にして未延伸フィルムを 得た。 得られた未延伸フィルムを縦延伸温度 7 5 °C、 縦延伸倍率 3 . 0倍、 横延 伸温度 8 5 °C、 横延伸倍率 2 . 8倍、 熱処理温度 1 6 0 °Cとして二軸延伸フィル ムを得た。 得られたフィルムの特性は実施例 5で得られたフィルムと比較して印 刷性が低下したが、 室温での柔軟性が良好となった。  An unstretched film was obtained in the same manner as in Example 6 except that polyester and stearyl phosphoric acid were mixed so as to have the composition shown in Table 4, and that the plasticizer used in Example 3 was used at 10% by weight. The obtained unstretched film was biaxially stretched at a longitudinal stretching temperature of 75 ° C, a longitudinal stretching ratio of 3.0 times, a transverse stretching temperature of 85 ° C, a transverse stretching ratio of 2.8 times, and a heat treatment temperature of 160 ° C. A stretched film was obtained. Regarding the properties of the obtained film, the printability was lower than that of the film obtained in Example 5, but the flexibility at room temperature became better.
[実施例 9 ] [Example 9]
ポリエステルを表 4の組成となるように変更し、 複合構成を B /AZ B (複合 比 : 1 : 1 0 : 1 ) とし、 キャス ト方式を静電印加しながら鏡面冷却ドラム ( 1 0 °C ) にて冷却固化させる方式とした以外は実施例 2 と同様の手法により 1 0 0 z mの未延伸フィ ルムを得た。 ポリエステル Bの積層により得られたフィルムの 特性は耐溶剤性に優れ、 印刷性に優れるものであった。 ' [実施例 1 0 ] ' The polyester was changed to have the composition shown in Table 4, the composite composition was changed to B / AZ B (composite ratio: 1: 10: 1), and the mirror cooling drum (10 ° C )), An unstretched film of 100 zm was obtained in the same manner as in Example 2 except that the system was cooled and solidified. The characteristics of the film obtained by laminating polyester B were excellent in solvent resistance and excellent in printability. ' [Example 10] '
ポリエステル、 ステアリルリ ン酸を表 5の組成となるように混合し、 複合構成 を B /A/B (複合比 : 1 : 1 0 : 1 ) とし、 キャス ト方式を静電印加しながら 鏡面冷却ドラム ( 1 0 °C) にて冷却固化させる方式とした以外は実施例 2 と同様 の手法により 1 0 0 mの未延伸フィルムを得た。 実施例 9 と比較して印刷性に 若干劣るものの、 成形性、 加工性は同等に良好なものであった。  Polyester and stearyl phosphoric acid are mixed so as to have the composition shown in Table 5, and the composite composition is B / A / B (composite ratio: 1: 10: 1). An unstretched film of 100 m was obtained in the same manner as in Example 2 except that the system was cooled and solidified with a drum (100 ° C.). The printability was slightly inferior to Example 9, but the moldability and processability were equally good.
[比較例 1 ] [Comparative Example 1]
P E T ( 1 ) と粒子含有 P E Tとを表 5の組成となるようブレン ドし、 実施例 2 と同様にして製膜を行った。 その結果、 エンボス加工性などの熱加工性が大き く低下した。  PET (1) and PET containing particles were blended so as to have the composition shown in Table 5, and a film was formed in the same manner as in Example 2. As a result, thermal workability such as embossability was greatly reduced.
[比較例 2 ] [Comparative Example 2]
P E T/ C H D M3°を使用し、 (粒子添加 P E TZ C HD M3°も別途作成して 使用) 実施例 1 と同様の方法で厚さ 6 0 i mの未延伸フィルムを得た。 結晶融解 温度曲線において融解ピークを持たない非晶性ポリエステルフィルムであり、 耐 溶剤性に非常に劣るものであった。 その結果、 表 5 に示す通り、 印刷性が大きく 低下した。 Using the PET / CHDM 3 °, to obtain an unstretched film (particles added PE TZ C HD M 3 ° also be used to create separately) In a similar manner to Example 1 from a thickness of 6 0 im. It was an amorphous polyester film having no melting peak in the crystal melting temperature curve, and was very poor in solvent resistance. As a result, as shown in Table 5, the printability was greatly reduced.
[比較例 3 ] [Comparative Example 3]
ポリエステル、 ステアリルリ ン酸を表 6 の組成となるよう混合し押出機温度を 2 7 0 °Cとした以外は実施例 1 と同様の方式で製膜を行った。 得られたフィルム は P E Tと P B Tのそれぞれの融点ものが現れ、 すなわち実質的に単一のピーク とならなかった。 得られたフィルムの特性は、 耐白化性、 圧空成形性、 エンボス 加ェ性などに劣るものであった。  A film was formed in the same manner as in Example 1 except that the polyester and stearyl phosphoric acid were mixed so as to have the composition shown in Table 6, and the extruder temperature was set at 270 ° C. In the obtained film, the melting points of PET and PBT appeared, that is, substantially no single peak was observed. The properties of the obtained film were inferior to whitening resistance, pressure forming property, embossability, and the like.
[比較例 4 ] [Comparative Example 4]
ポリエステルを表 6 の組成となるよう混合し、 他は実施例 2の方式に従い製膜 を行った。 得られたフィルムは、 特に熱安定性、 印刷性に劣るものであった。 [比較例 5 ] Polyester was mixed so as to have the composition shown in Table 6, and the others were formed according to the method of Example 2. The obtained film was particularly poor in heat stability and printability. [Comparative Example 5]
ポリエステルを表 6の組成の通り、 P P Tと P B Tのブレンドとし、 他は実施 例 2の方法に従い製膜を行った。 ポリエステル Aの融点は 2 3 0 °C以下となり、 熱安定性、 耐白化性、 印刷性に劣るものであった。  Polyester was used as a blend of PPT and PBT according to the composition shown in Table 6, and a film was formed according to the method of Example 2 except for the above. Polyester A had a melting point of 230 ° C or less, and was inferior in heat stability, whitening resistance, and printability.
実施例 1 実施例 2 実施例 3 ポリマー種類 PET(1 )、PPT PET(2)、 PPT PET(2)、PPT ポ 酸成分(モル%) TPA100 TPA100 TPA100 Example 1 Example 2 Example 3 Polymer type PET (1), PPT PET (2), PPT PET (2), PPT acid component (mol%) TPA100 TPA100 TPA100
グリコ一ル成分(モル EG78, DEG2, PG20 EG58, DEG2, PG40 EG78, DEG2, PG20 ェ  Glycol component (mol EG78, DEG2, PG20 EG58, DEG2, PG40 EG78, DEG2, PG20
触媒金属 M (ミリモル%) Ti, Mn, Sb Z58 Ti, Mn, Sb Z48 Ti, Mn, Sb /58 ス  Catalyst metal M (mmol%) Ti, Mn, Sb Z58 Ti, Mn, Sb Z48 Ti, Mn, Sb / 58
丁 P (ミリモル0/ 0) 80 580 580 ル M/P (一) 0.74 0.08 0.10 Ding P (mmol 0/0) 80 580 580 Le M / P (I) 0.74 0.08 0.10
A  A
融解ピーク温度 (°c) 247 251 250  Melting peak temperature (° c) 247 251 250
A 固有粘度 0.74 0.76 0.71 層 粒子 架橋ホ'リスチレン シリコーン 架橋ホ 'リスチレン 平均粒子径 ( m) 6. 0 5. 0 6. 0 粒子添加量 (重量 0. 5 0. 3 0. 4 可塑剤添加量 (重量%) ― '― 5 ポリマ一種類 ― ― 一 ポ 一 ― 一  A Intrinsic viscosity 0.74 0.76 0.71 layer Particles Cross-linked polystyrene Silicone Cross-linked polystyrene Average particle size (m) 6.0 5.0 6.0 6.0 Particle addition amount (weight 0.5 0.3 0.4 0.4 Plasticizer addition amount (% By weight) ― '― 5 One polymer type ― ― One point ― One point
"J 酸  "J acid
X グリコール ― 一 一 ス 触媒金属 M (ミリモル%)  X Glycol — 11 Catalytic metal M (mmol%)
 亍
P (ミリモル0 /o) P (mmol 0 / o)
 Le
B M P (—)  B M P (—)
融解ピーク温度 (°c)  Melting peak temperature (° c)
B  B
固有粘度  Intrinsic viscosity
— ' 粒子  — 'Particles
平均粒子径 ( m)  Average particle size (m)
粒子添加量 (重量%)  Particle addition amount (% by weight)
積層構成 単層 単層 単層 平均破断伸度(%) at 80°C 920 890 1100 面配向係数 (一) 0 0 0 熱安定性 〇 ◎ ◎  Laminated structure Single layer Single layer Single layer Average elongation at break (%) at 80 ° C 920 890 1100 Plane orientation coefficient (1) 0 0 0 Thermal stability 〇 ◎ ◎
耐白化性 O 〇 o  Whitening resistance O 〇 o
圧空成形性 ◎ ◎ ◎  Compressed air formability ◎ ◎ ◎
印刷性 〇 〇 0  Printability 〇 〇 0
エンボス加工性 〇 〇 © 表 3 実施例 4 実施例 5 実施例 6 ポリマー種類 PET(2)、 PPT PET(2)、 PPT PET(2)、 PBT ポ 酸成分(モル%) TPA100 TPA100 TPA100Embossability 〇 〇 © Table 3 Example 4 Example 5 Example 6 Polymer type PET (2), PPT PET (2), PPT PET (2), PBT PO acid component (mol%) TPA100 TPA100 TPA100
■J グリコール成分(モル%) EG78, DEG2, PG20 EG78 DEG2 PG20 EG83, DEG2, BG15 ス 触媒金属 (ミリモル%) Ti Mn, Sb ノ 58 Ti, Mn, Sb /58 Ti, Mn, Sb /66 亍 P (ミリモル0 /o) 580 580 100 ル M/P 0.10 0.10 0.58■ J Glycol component (mol%) EG78, DEG2, PG20 EG78 DEG2 PG20 EG83, DEG2, BG15 Catalyst metal (millimol%) Ti Mn, Sb No 58 Ti, Mn, Sb / 58 Ti, Mn, Sb / 66 亍 P (mmol 0 / o) 580 580 100 Le M / P 0.10 0.10 0.58
A A
融解ピーク温度 (°C) 250 250 249 Melting peak temperature (° C) 250 250 249
A 固有粘度 0.71 0.72 0.72 A Intrinsic viscosity 0.71 0.72 0.72
粒子 一 架橋ホ°リスチレン 平均粒子径 (jU m) 一 ― 6. 0 粒子添加量 (重量%) 一 0. 5 可塑剤添加量 (重量%) 1 0 5 ― ポリマー種類 PET(1 )、 PPT PET(1 )、PPT u 酸 TPA100 TPA100 一 Particles-Crosslinked polystyrene Average particle size (jUm)--6.0 Particle addition amount (wt%)-0.5 Plasticizer addition amount (wt%) 105-Polymer type PET (1), PPT PET (1), PPT u acid TPA100 TPA100
X グリコール EG78 DEG2 PG20 EG78 DEG2 PG20 ― ス 触媒金属 (ミリモル%) Ti, Mn, Sb ノ 58 Ti, Mn, Sb ン 58 一 亍 X Glycol EG78 DEG2 PG20 EG78 DEG2 PG20 ― S catalytic metal (mmol%) Ti, Mn, Sb No 58 Ti, Mn, Sb No 58
P (ミリモル0/ 0) 80 80 P (mmol 0/0) 80 80
ル ―  Le-
B M/P (一) 0.73 0.73 ―  B M / P (one) 0.73 0.73 ―
融解ピーク温度 (°C) 247 247 一 Melting peak temperature (° C) 247 247
B B
固有粘度 0.74 0.74 一 層  Intrinsic viscosity 0.74 0.74 One layer
粒子 架橋ホ'リスチレン 凝集シリカ 一 平均粒子径 (〃m) 6. 0 1 . フ 一 粒子添加量 (重量%) 0. 5 0. 1 ― 積層構成 複合 (BZAZB) 複合(BZAZB) 単層 平均破断伸度(%) at 80°C 1200 410 900 面配向係数 (一) 0 0.09 0 熱安定性 〇 耐白化性 Δ ◎ Δ 圧空成形性 ◎ 〇 © 印刷性 ◎ . ◎ 〇 エンボス加工性 〇 ◎ 表 4 実施例 7 実施例 8 実施例 9 ポリマー種類 PET( 1 )、 PPT/I10 PET(2)、 PBT PET(2) , PPT ポ 酸成分(モル%) TPA98, IPA2 TPA100 TPA100 ■J グリコール成分(モル0 /0) EG78, DEG2, PG20 EG68, DEG2, BG30 EG78 DEG2 PG20Particles Cross-linked polystyrene Agglomerated silica 1 Average particle diameter () m) 6.0 1. Particle addition amount (% by weight) 0.5 0.1-Laminated structure Composite (BZAZB) Composite (BZAZB) Single layer Average breakage Elongation (%) at 80 ° C 1200 410 900 Plane orientation coefficient (1) 0 0.09 0 Thermal stability 白 Whitening resistance Δ ◎ Δ Compressed air formability 〇 〇 © Printability ◎. ◎ 〇 Embossability 〇 ◎ Table 4 Example 7 Example 8 Example 9 Polymer Type PET (1), PPT / I 10 PET (2), PBT PET (2), PPT Po acid component (mol%) TPA98, IPA2 TPA100 TPA100 ■ J glycol component (mol 0/0) EG78, DEG2, PG20 EG68, DEG2, BG30 EG78 DEG2 PG20
X X
■χ 触媒金属ノ M (ミリモル%) Ti, Mn, Sb ノ 58 Ti, Mn, Sb /62 Ti, Mn, Sb /58 テ P (ミリモル0 /o) 60 580 580 ル M/P (-) 0.92 0.11 0.10■ χ Catalyst metal M (mmol%) Ti, Mn, Sb No 58 Ti, Mn, Sb / 62 Ti, Mn, Sb / 58 Te P (mmol 0 / o) 60 580 580 m M / P (-) 0.92 0.11 0.10
A A
融解ピーク温度 (°C) 251 249 250 Melting peak temperature (° C) 251 249 250
A 固有粘度 0.68 0.72 0.72 層 粒子 •架橋ホ'リスチレン 凝集シリカ A Intrinsic viscosity 0.68 0.72 0.72 layer Particles • Crosslinked polystyrene Agglomerated silica
平均粒子径 ( i m) 6. 0 1 .フ  Average particle size (im) 6.0
粒子添加量 (重量%) 0. 5 0. 1 ― 可塑剤添加量 (重量%) 1 0  Particle addition amount (% by weight) 0.5 0.1-Plasticizer addition amount (% by weight) 10
ポリマー種類 PET(1 ) , PIB ポ ― ― IPA45 TPA55 'J 酸  Polymer type PET (1), PIB PO ― ― IPA45 TPA55 'J acid
X グリコール EG90, DEG2, BHEB8 ス 触媒金属 /M (ミリモル%) Ti, Mn, Sb Z55 亍  X Glycol EG90, DEG2, BHEB8 Catalyst metal / M (mmol%) Ti, Mn, Sb Z55 亍
P (ミリモル0 /o) 60 ル P (mmol 0 / o) 60 Le
B Mノ P (—) 0.92  B M P (—) 0.92
融解ピーク温度 (°C) 240 Melting peak temperature (° C) 240
B B
層 固有粘度 0.75  Layer Intrinsic viscosity 0.75
粒子 架橋ホ°リスチレン 平均粒子径 (jt/ m) 6. 0 粒子添加量 (重量%) 0. 5 積層構成 単層 単層 複合 (BZAZB) 平均破断伸度(%) at 80°C 1120 430 950 面配向係舉 (-) 0 0.09 0 熱安定性 〇 ©  Particles Crosslinked polystyrene Average particle size (jt / m) 6.0 Particle addition amount (% by weight) 0.5 Multilayer structure Single layer Single layer composite (BZAZB) Average elongation at break (%) at 80 ° C 1120 430 950 Plane Orientation Kagyu (-) 0 0.09 0 Thermal stability 〇 ©
耐白化性 ' ◎ ◎ ◎ 圧空成形性 © 〇 ◎ 印刷性 〇 O ◎ エンボス加工性 © 〇 ◎ 表 5 Whitening resistance '◎ ◎ ◎ Compressed air formability © 〇 ◎ Printability 〇 O ◎ Embossability © 〇 ◎ Table 5
ポテエスルポ亍 ( Hスルリ A B Bリ  Potesulpo (H Sulli A B B
実施例 1 0 比較例 1 比較例 2 ポリマー種類 PET(2)、PPT PET( 1 ) PET/CHD 30 酸成分(モル%) TPA100 TPA100 TPA100 グリコール成分(モル%)— EG78 DEG2 PG20 EG98 DEG2 EG70 CHDM30 触媒金属 ZM (ミリモル《½) Ti, Mn, Sb /58 Mn, Sbノ 70 Mn, Co 80 P (ミリモル0 /o) 580 100 80Example 1 0 Comparative example 1 Comparative example 2 Polymer type PET (2), PPT PET (1) PET / CHD 30 Acid component (mol%) TPA100 TPA100 TPA100 Glycol component (mol%) — EG78 DEG2 PG20 EG98 DEG2 EG70 CHDM30 Catalyst Metal ZM (mmol <<) Ti, Mn, Sb / 58 Mn, Sb 70 Mn, Co 80 P (mmol 0 / o) 580 100 80
Μ,Ρ (—) 一 0.10 0.70 1.00 融解ピーク温度 (°C〉 250 254 Μ, Ρ (—) 1 0.10 0.70 1.00 Melting peak temperature (° C) 250 254
A 固有粘度 0.72 0.69 0.72 粒子 凝集シリカ シリコーン 平均粒子径 (; W m) 1 . 7 5. 0 粒子添加量 (重量%) 0. 2 0. 25 可塑剤添加量 (重量 D/o) A Intrinsic viscosity 0.72 0.69 0.72 Particles Agglomerated silica Silicone Average particle size (; Wm) 1.7 5.0 Particle addition amount (wt%) 0.2 0.25 Plasticizer addition amount (weight D / o)
ポリマー種類 PETC 1 ) ,  Polymer type PETC 1),
PET/CHDM3 PET / CHDM 3
TPA100  TPA100
グリコール EG78 DEG2 CHDM15I  Glycol EG78 DEG2 CHDM15I
触媒金属ノ M (ミリモル%) Ti, Mn, Sb /75  Catalyst metal M (mmol%) Ti, Mn, Sb / 75
P (ミリモル0/ 0) 90 P (mmol 0/0) 90
M/P (一) 0.83  M / P (one) 0.83
融解ピーク温度 (°C) 247  Melting peak temperature (° C) 247
固有粘度 0.74  Intrinsic viscosity 0.74
粒子 架橋ホ 'リスチレン  Particles Cross-linked polystyrene
平均粒子径 ( m) 6. 0  Average particle size (m) 6.0
粒子添加量 (重量%) 0. 5  Particle addition amount (% by weight) 0.5
積層構成 複合(B AZB) 単層 Laminated structure Composite (B AZB) Single layer
平均破断伸度(%) at 80°C 1 100 840 930 面配向係数 ( -) 0 0 0 熱安定性 © Average elongation at break (%) at 80 ° C 1 100 840 930 Plane orientation coefficient (-) 0 0 0 Thermal stability ©
耐白化性 ◎ o ◎ 圧空成形性 ◎ Δ Δ 印刷性 〇 〇 X エンボス加工性 © X Δ 表 6 比較例 3 比較例 4 比較例 5 ポリマー 類 PET(2)、 PBT PET(2)、 PPT PPT、 PBT ポ 酸成分(モル%) TPA100 TPA100 TPA100Whitening resistance ◎ o ◎ Compressibility ◎ Δ Δ Printability 〇 〇 X Embossability © X Δ Table 6 Comparative Example 3 Comparative Example 4 Comparative Example 5 Polymers PET (2), PBT PET (2), PPT PPT, PBT PO acid component (mol%) TPA100 TPA100 TPA100
■J 'グリコール成分(モル%) EG48 DEG2 BG50 EG78 DEG2 PG20 BG80 PG20 触媒金属ノ M (ミリモル%) Ti, Mn, Sb /58 Ti, Mn, Sb 58 Ti /43 ス ■ J'Glycol component (mol%) EG48 DEG2 BG50 EG78 DEG2 PG20 BG80 PG20 Catalyst metal M (millimol%) Ti, Mn, Sb / 58 Ti, Mn, Sb 58 Ti / 43
テ P (ミリモル0 /o) 580 16 25 ル M/P (一) 0.10 3.63 1.72Te P (mmol 0 / o) 580 16 25 le M / P (I) 0.10 3.63 1.72
A A
融解ピーク温度 (¾) 226, 252 243 220 Melting peak temperature (¾) 226, 252 243 220
A 固有粘度 0.74 0.72 0.85 層 粒子 架橋ホ°リスチレン 架橋ホ。リスチレン 架橋ホ°リスチレン 平均粒子径 (; U m) 6. 0 6. 0 6. 0 粒子添加量 (重量%) 0. 4 0. 5 0. 5 可塑剤添加量 (重量%) 一 ― A Intrinsic viscosity 0.74 0.72 0.85 layer Particles Crosslinked polystyrene Crosslinked polyester. Polystyrene Crosslinked polystyrene Average particle size (; Um) 6.0 6.0 6.0 Particle addition amount (% by weight) 0.4 0.5 0.5 0.5 Plasticizer addition amount (% by weight)
ポリマー種類 不  Polymer type
酸 ― 一 ― u  Acid-one-u
X グリコール 一 一 一 ス 触媒金属 ZM (ミリモル%) ― ― ― 亍  X Glycol Catalyst metal ZM (mmol%) ― ― ― 亍
P (ミリモル%) ― ― ― ル  P (mmol%)
B M/P (一) ― ― 一 融解ピーク温度 (°C) ― 一 B M / P (I)--I Melting peak temperature (° C)-I
B B
固有粘度 一 一 一 層  Intrinsic viscosity
粒子 ― ― 一 平均粒子径 (j« m) 一 一 一 粒子添加量 (重量%) 一 1 ― ― 積層構成 単層 単層 単層 平均破断伸度(%) at 80°C 750 950 900 面配向係数 (一) 0 0 0 熱安定性 X X 耐白化性 X 〇 X 圧空成形性 X 〇 O 印刷性 〇 X X エンボス加工性 X 〇 〇 なお、 表中の略号は次の通りである Particles ― ― Average particle diameter (j «m) Amount of added particles (% by weight) 1 1 ― ― Laminated structure Single layer Single layer Single layer Average elongation at break (%) at 80 ° C 750 950 900 Plane orientation Coefficient (1) 0 0 0 Thermal stability XX Whitening resistance X 〇 X Compressed air formability X 〇 O Printability 〇 XX Embossability X 〇 〇 The abbreviations in the table are as follows
P E T ( 1 ) リ ン多量添加ポリエチレンテレフ夕レート  PET (1) Polyethylene terephthalate with high phosphorus content
P E T ( 2 ) 通常ポリエチレンテレフ夕レート P E T (2) Normal polyethylene terephthalate rate
P P T ポリ プロピレンテレフ夕レー卜 P P T Polypropylene terephthalate
P P T/ I 1 D : イソフ夕ル酸 1 0モル共重合 P P T PPT / I 1 D : Isofluoric acid 10 mol copolymer PPT
P B T ' : ポリブチレンテレフ夕レート P B T ': Polybutylene terefu rate
P E T/ C HDM3。 : シクロへキサンジメタノール 3 0モル共重合 P E T P I B : イ ソフタル酸系共重合ポリエステル PET / C HDM 3 . : Cyclohexane dimethanol 30 mol copolymer PETPIB: Isophthalic acid copolymer polyester
E G : エチレングリ コール  E G: Ethylene glycol
2  Two
P G : プロパンジオール ( 1 , 7 3 —プロパンジオール)  P G: Propanediol (1, 73-propanediol)
D E G : ジエチレングリ コール  D E G: Diethylene glycol
B G : ブタンジオール ( 1, 4—ブタンジオール) '  B G: Butanediol (1,4-butanediol) ''
産業上の利用可能性 Industrial applicability
本発明のポリエステルフィルムは、 成形性、 加工性、 印刷性に優れるため、 特 に、 工業材料用途、 包装材料用途、 建設材料用途において、 成形、 加工、 印刷製 品、 または成形、 加工、 印刷時の工程フィルムとして好適に用いることができる。  The polyester film of the present invention has excellent moldability, processability, and printability. Can be suitably used as a process film.

Claims

請求の範囲 The scope of the claims
1. エチレングリ コール、 ブタンジオール、 およびプロパンジオールから選ばれ る少なく とも 2種のグリ コール成分を用いて成るポリエステル Aを構成成分とし、 D S C昇温測定におけるポリエステル Aの結晶融解温度曲線が実質的に単一のピ ークを有し、 融解ピーク温度が 2 3 0 °C以上であり、 かつ下記式 ( 1 ) を満足す ることを特徴とするポリエステルフィルム。  1. Polyester A composed of at least two types of glycol components selected from ethylene glycol, butanediol, and propanediol is a component, and the crystal melting temperature curve of polyester A in DSC temperature measurement is substantially A polyester film having a single peak, a melting peak temperature of 230 ° C. or higher, and satisfying the following formula (1).
M/ P≤ 1 ( 1 )  M / P≤ 1 (1)
(ただし、 式中の Mは、 ポリエステル A中に残存する触媒金属元素の濃度(ミ リ モル% )、 Pはポ'リエステル A中に残存するリ ン量(ミ リモル% )を示す。 )  (However, M in the formula represents the concentration of the catalytic metal element remaining in polyester A (milli mol%), and P represents the amount of phosphorus remaining in polyester A (milli mol%).)
2. ポリエステル A中にリ ン化合物をリ ン元素量として 2 0〜 1 0 0 0 ミ リモル %含有する請求項 1 に記載のポリエステルフィルム。 2. The polyester film according to claim 1, wherein the polyester compound contains 20 to 100% by mole of a phosphorus compound in the polyester A.
3. リ ン化合物の分子量が 3 0 0以上である請求項 2 に記載のポリエステルフィ ルム。 3. The polyester film according to claim 2, wherein the molecular weight of the phosphorus compound is 300 or more.
4. ポリエステル Aがポリエチレンテレフタ レ一 ト 4 0〜 9 0モル%、 ポリ プロ ピレン.テレフタレー ト 1 0 ~ 6 0モル よ り構成される請求項 1 〜 3 に記載の ボリエステルフィルム。 ' 4. The polyester film according to claim 1, wherein the polyester A is composed of 40 to 90 mol% of polyethylene terephthalate, and 10 to 60 mol of polypropylene. '
5. ポリエステル A中に分子量が 3 0 0 0以下の可塑剤を 1 〜 6 0重量%含有す る請求項 1 ~ 4のいずれかに記載のポリエステルフィルム。 5. The polyester film according to claim 1, wherein the polyester A contains 1 to 60% by weight of a plasticizer having a molecular weight of 300 or less.
6. 請求項 1 ~ 5 のいずれかに記載のポリエステルフィルムの少なく とも片面に ポリエステル Bが積層されてなる積層ポリエステルフィルム。 6. A laminated polyester film obtained by laminating polyester B on at least one surface of the polyester film according to any one of claims 1 to 5.
PCT/JP2001/006059 2000-07-14 2001-07-12 Easily formable polyester film WO2002006372A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-213862 2000-07-14
JP2000213862 2000-07-14
JP2000216048 2000-07-17
JP2000-216048 2000-07-17

Publications (1)

Publication Number Publication Date
WO2002006372A1 true WO2002006372A1 (en) 2002-01-24

Family

ID=26596029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006059 WO2002006372A1 (en) 2000-07-14 2001-07-12 Easily formable polyester film

Country Status (2)

Country Link
KR (1) KR100748929B1 (en)
WO (1) WO2002006372A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000177001A (en) * 1998-10-05 2000-06-27 Toray Ind Inc Biaxially oriented polyester film for molding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000177001A (en) * 1998-10-05 2000-06-27 Toray Ind Inc Biaxially oriented polyester film for molding

Also Published As

Publication number Publication date
KR100748929B1 (en) 2007-08-13
KR20020029399A (en) 2002-04-18

Similar Documents

Publication Publication Date Title
JP4487228B2 (en) Polyester film for molding and molded member using the same
JP4573144B2 (en) Laminated polyester film for molding
KR20160002852A (en) Polyester film for sealant use, laminate, and packaging bag
JP5127296B2 (en) Polyester film for deep drawing molding simultaneous transfer foil
WO2020095725A1 (en) Biaxially oriented polyester film and method for producing same
KR100757771B1 (en) Polyester film for forming
JP2008030475A (en) Laminated polyester film for molding and its manufacturing process
KR20040091576A (en) Coextruded, Heatsealable and Peelable Polyester Film, Process for its Production and its Use
JP4815662B2 (en) Biaxially stretched polyester film for molding
JP2002337225A (en) Biaxially stretched polyester film for molding
JP5034145B2 (en) Polyester film
JP5127295B2 (en) Polyester film for molded simultaneous transfer foil
JP2002011788A (en) Polyester film for lamination
JP4660909B2 (en) Biaxially stretched polyester film for molding
JP4655409B2 (en) Laminated polyester film for molding
WO2002006372A1 (en) Easily formable polyester film
JP2002355888A (en) Biaxially stretched polyester film for molding
JP2002088143A (en) Polyester film for forming
JP2005146112A (en) Laminated film for paperboard
JP4885419B2 (en) Biaxially stretched polyester film
JP2006051747A (en) Polyester film for in-mold transfer
JP2004010711A (en) Biaxially oriented polyester film for molding container and method for producing the film
JP2004330476A (en) Biaxially stretched laminated polyester film
JP4739846B2 (en) Polyester film for automotive interior materials
JPH10120802A (en) Polyester sheet and packaging container produced by fabricating the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR

WWE Wipo information: entry into national phase

Ref document number: 1020027002924

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027002924

Country of ref document: KR