WO2002004997A1 - Phase difference plate constituted of one sheet of polymer film - Google Patents

Phase difference plate constituted of one sheet of polymer film Download PDF

Info

Publication number
WO2002004997A1
WO2002004997A1 PCT/JP2001/005935 JP0105935W WO0204997A1 WO 2002004997 A1 WO2002004997 A1 WO 2002004997A1 JP 0105935 W JP0105935 W JP 0105935W WO 0204997 A1 WO0204997 A1 WO 0204997A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
wavelength
measured
retardation
plate
Prior art date
Application number
PCT/JP2001/005935
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Sata
Hiroyuki Mori
Takamichi Fujii
Original Assignee
Fuji Photo Film Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000206695A external-priority patent/JP2002022946A/en
Priority claimed from JP2001071846A external-priority patent/JP2002099388A/en
Application filed by Fuji Photo Film Co., Ltd. filed Critical Fuji Photo Film Co., Ltd.
Priority to KR1020037000100A priority Critical patent/KR100810484B1/en
Priority to AU2001269485A priority patent/AU2001269485A1/en
Publication of WO2002004997A1 publication Critical patent/WO2002004997A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133637Birefringent elements, e.g. for optical compensation characterised by the wavelength dispersion

Definitions

  • Retardation plate consisting of one polymer film [Technical field]
  • the present invention relates to a retardation plate made of one polymer film. Further, the present invention also relates to a reflection type liquid crystal display device including a circularly polarizing plate, a touch panel, and a guest-host type using a retardation plate made of one polymer film.
  • the ⁇ / 4 plate has many applications related to antireflection films, touch panels, and liquid crystal displays, and is already in practical use. However, even though they were called LZ4 plates, most of them achieved ⁇ 4 at a certain specific wavelength. In a ⁇ 4 plate used for an image display device, if the wavelength region in which ⁇ 4 can be achieved is narrow, there is a problem that the contrast of a displayed image is reduced.
  • JP-A-5-27118 and JP-A-5-27119 each disclose a birefringent film having a large retardation and a birefringent film having a small retardation so that their optical axes are orthogonal to each other.
  • a phase difference plate laminated as described above is disclosed. If the difference in retardation of the two films is ⁇ 4 over the entire visible light range, then the retarder theoretically functions as an L / 4 plate over the entire visible light range.
  • Japanese Patent Application Laid-Open No. 10-68816 discloses that a polymer film having a thickness of 4 at a specific wavelength and a polymer film of the same material and having the same wavelength; A phase difference plate that can obtain ⁇ / 4 is disclosed.
  • Japanese Patent Application Laid-Open No. H10-90521 also discloses a retardation plate capable of achieving 1/4 in a wide wavelength range by laminating two polymer films.
  • ⁇ / 4 By laminating two polymer films, ⁇ / 4 can be achieved in a wide wavelength range. For that purpose, it is necessary to laminate the two polymer films while strictly adjusting the angle.
  • the present inventor has found that the wavelength dispersion of the polymer film depends on the measurement angle. That is, compare the chromatic dispersion measured from the normal direction of the film with the value of 550 nm and the chromatic dispersion measured from the direction different from the normal direction of the film and the chromatic dispersion similarly normalized. Then they found that they did not match. This phenomenon is the same even when a plasticizer used for improving the processability of the polymer is added. It was manufactured using such a material; when an L / 4 plate is used for a liquid crystal display device, there is a problem that the viewing angle characteristics are deteriorated.
  • a stretched film of a synthetic polymer is used as a conventional LZ 4 plate.
  • variation in the slow axis direction (axis shift) due to stretching unevenness is likely to occur. If the axis misalignment is large, light leaks and the contrast is reduced.
  • a liquid crystal display device using a retardation plate made of a polymer film has a problem that picture frame-like “unevenness” occurs at the time of energization and visual characteristics are deteriorated.
  • this light leakage is caused by the fact that the expansion or contraction of the polymer film due to the change of the wet heat condition is suppressed as a whole retardation plate, and the optical characteristics of the polymer film are changed. It was revealed. In particular, it was found that the influence of humidity was great for polymers having hydroxyl groups such as cellulose esters. It is an object of the present invention to provide a retardation plate that achieves ⁇ or ⁇ ⁇ over a wide wavelength region using a single polymer film and has no angle dependence in wavelength dispersion. .
  • Another object of the present invention is to provide a retardation plate ( ⁇ 4 plate) or a circularly polarizing plate capable of improving the viewing angle and display quality of a reflection type liquid crystal display device.
  • Still another object of the present invention is to apply a single polymer film that realizes LZ4 over the entire visible light range to a touch panel.
  • Still another object of the present invention is to provide a reflective liquid crystal display device with a touch panel or a guest-host type liquid crystal display device with a touch panel, which has improved display quality such as contrast and color.
  • the retardation value (R e (450)) measured at a wavelength of 450 nm is from 100 to 125 nm
  • the retardation value (R e (5 90)) is from 120 to 160 nm, and is composed of one polymer film satisfying a relationship of R e (5 0 0) -R e (4 5 0) ⁇ 4 nm, DR20 (1)-DR0 ( ⁇ )
  • R e ( ⁇ ) is the retardation value measured in the normal direction of the film surface
  • R e 20 ( ⁇ ) is the normal of the film surface. It is a retardation value measured at an angle of 20 ° from the direction.
  • the retardation value (Re (450)) measured at a wavelength of 450 nm is from 100 to 125 nm
  • the retardation value measured at a wavelength of 590 nm ( R e (5 90)) is from 120 to 160 nm, and is composed of one polymer film satisfying a relationship of H e (5 90) — Re (4 5 0) ⁇ 2 nm, DR 0 and DR 20 defined by the above formulas (I) and (II) are 1 DR20 ( ⁇ ) and 1 DR0 ( ⁇ )
  • the retardation plate that satisfies the relationship 2 above, the polarizing film and the force
  • the slow axis in the plane of the retardation plate and the polarization axis also provided is a circularly polarizing plate laminated so that the angle between the polarizers is substantially 45 °.
  • the retardation value (R e (450)) measured at a wavelength of 450 nm is from 200 to 250 nm
  • the retardation value (R e) measured at a wavelength of 590 nm is (R e (450)).
  • e (590)) is 240 to 320 nm, and is composed of one polymer film satisfying the relationship of Re (590)-Re (450) ⁇ 2 nm.
  • DR 0 and DR 20 defined by the above formulas (I) and (II).
  • ⁇ 0. A retardation plate satisfying the relationship of 02 is also provided.
  • two transparent conductive substrates provided with a transparent conductive film on at least one side are arranged so that the transparent conductive films face each other, and at least one of the transparent conductive substrates is an LZ 4 plate.
  • the touch panel is also characterized in that 20 satisfies the relationship of I DR 20 (1) -DR 0 ( ⁇ ) ⁇ ⁇ 0.02 at a wavelength of 450
  • the present invention relates to a reflection type liquid crystal display device comprising a polarizing film, a plate, a touch panel and a reflection type liquid crystal cell, wherein the ⁇ / 4 plate has a letter value (R) measured at a wavelength of 450 nm. e (450)) is from 100 to 125 nm, and the retardation value (R e (590)) measured at a wavelength of 590 nm is from 120 to 160 nm. , Re (590) —Re (450) ⁇ 2 nm, consisting of one polymer film, and DR0 and DR defined by the above formulas (I) and (II). 20 is a reflective liquid crystal display device characterized by satisfying a relationship of 1 DR 20 (1) DR 0 ( ⁇ ) I ⁇ 0.02 at a wavelength of 450 nm and a wavelength of 750 nm. Also provide.
  • the present invention relates to a four-panel, a touch panel and a guest-host type liquid crystal cell.
  • a ⁇ / 4 plate having a retardation value (R e (450)) of 100 to 125 nm measured at a wavelength of 450 nm and a wavelength of 590 nm measured at a wavelength of 590 nm.
  • the film has a retardation value (Re (590)) of 120 to 160 nm, and a polymer film satisfying the relationship of Re (590) -Re (450) ⁇ 2 nm.
  • DR0 and DR20 defined by I) and (II) satisfy the relationship of 1 DR20 (1) -DR0 (1) I ⁇ 0.02 at 450 nm wavelength and 750 nm wavelength.
  • a guest-host type liquid crystal display device is also provided.
  • the present inventor found that by adjusting the material, additives, and manufacturing method of the polymer film, it was possible to produce a transparent retardation plate achieving LZ 4 or LZ 2 in a wide wavelength range. Successful. Further, when this retardation plate was used by attaching it to a reflection type liquid crystal display device, the viewing angle and the contrast were remarkably improved. A phase difference plate that can achieve ⁇ 4 or ⁇ / 2 in a wide wavelength range using a single polymer film has been obtained.Laminating two conventional polymer films while strictly adjusting the angle The process is no longer needed. Further, when the retardation plate according to the present invention is attached to a reflection type liquid crystal display device, a wide viewing angle can be achieved.
  • the thickness is small and light attenuation is small.
  • a liquid crystal display device having high reflection luminance can be obtained.
  • the touch panel according to the present invention using the four plates (retardation plate) works well.
  • display quality such as contrast and color of the reflective liquid crystal display device is improved, and visibility is improved.
  • FIG. 1 is a schematic diagram showing a basic configuration of a reflective liquid crystal display device.
  • FIG. 2 is a schematic diagram illustrating a basic configuration of a reflective liquid crystal display device using a touch panel.
  • FIG. 3 is a schematic cross-sectional view showing a typical embodiment of a guest-host reflection type liquid crystal display device.
  • FIG. 4 is a schematic sectional view showing another typical embodiment of the guest-host reflection type liquid crystal display device.
  • the retardation value (Re (450)) measured at a wavelength of 45 O nm is 1 ⁇ 0 to 125 nm, and the retardation value measured at a wavelength of 590 nm
  • the value (Re (590)) is from 120 to 160 nm, and the relationship of Re (590) -Re (450) ⁇ 2 nm is satisfied. More preferably, Re (590) -Re (450) ⁇ 5 nm, most preferably Re (590) -Re (450) ⁇ 10 nm.
  • the retardation value (Re (450)) measured at a wavelength of 450 nm is from 108 to 12 O nm, and the retardation value (Re (550)) measured at a wavelength of 550 nm is from 125 to 142. nm, the retardation value (Re (590)) measured at a wavelength of 590 nm is 130 to 152 nm, and the relationship of Re (590) —Re (550) ⁇ 2 nm is satisfied.
  • Re (590) -Re (550) ⁇ 5 nm most preferably Re (590) -Re (550) ⁇ 10 nm. It is also preferable that Re (550) -Re (450) ⁇ 10 nm.
  • the retardation value (Re (450)) measured at a wavelength of 45 O nm is 200 to 250 nm
  • the retardation value (Re (450) measured at a wavelength of 590 nm is used.
  • 590)) is 240 to 320 ⁇ m, and satisfies the relationship of Re (590) -Re (450) ⁇ 4 nm. More preferably, Re (590) -Re (450) ⁇ 10 nm, most preferably Re (590) -Re (450) ⁇ 20 nm
  • the retardation value (Re (450)) measured at a wavelength of 450 nm is from 2 16 to 24 O nm, and the retardation value (Re (550)) measured at a wavelength of 550 nm is 25 ° to 284.
  • R e (5 0 0) —R e (5 0) ⁇ 10 nm is more preferable, and R e (5 0 0) -R e (5 0) ⁇ 20 nm is most preferable. preferable. It is also preferable that R e (550) -R e (450) ⁇ 20 nm.
  • the retardation value (R e ) is calculated according to the following equation.
  • nx is the refractive index in the in-plane slow axis direction of the retardation plate (maximum in-plane refractive index); ny is the refraction in the direction perpendicular to the in-plane slow axis of the retardation plate And d is the thickness of the retarder (nm).
  • the phase difference plate according to the present invention has a DR 0 and a DR 20 force defined by the following formulas (I) and ( ⁇ ): 1 DR 2 0 ( ⁇ ) at a wavelength of 450 nm and a wavelength of 7500 nm. ) -DR 0 (1) Satisfies the relationship of I ⁇ 0.02.
  • is the measured wavelength
  • R e ( ⁇ ) is the retardation value measured in the normal direction of the film surface
  • R e 20 ( ⁇ ) is the method of the film surface. This is the retardation value measured at an angle of 20 ° from the line direction.
  • DR40 defined by the following formula (III) is:
  • DRa defined by the following formula (IV) is such that, at a wavelength of 45 ° nm and a wavelength of 750 nm, ⁇ a ( ⁇ )-DR 0 ( ⁇ )
  • DR a defined by the equation (IV) is, in the wavelength 4 5 0 nm and the wavelength 7 5 0 nm, alpha is at all angles of 6 0 ° or less, I It is preferable to satisfy the relationship of DRa (1) —DRO ( ⁇ )
  • DRa defined by the above formula (IV) is such that, at a wavelength of 45 O nm and a wavelength of 700 nm, at all angles at which ⁇ can be measured, 1 DR and ( ⁇ ) 1 It is preferable that the relationship of DR O (E) I ⁇ 0.02 be satisfied, and it is more preferable that the relationship of i DRa ( ⁇ ) -DRO ( ⁇ ) I ⁇ 0.01 be satisfied.
  • the retardation plate according to the present invention has a DRO and a DR20 force defined by the above formulas (I) and (II) in all wavelength ranges from 380 nm to 780 nm. It is preferable to satisfy the relationship of ( ⁇ ) —DRO ( ⁇ ) I ⁇ 0.02, and it is even more preferable that the relationship of
  • the retardation plate according to the present invention has the following characteristics: DR40 ( ⁇ ) —DR0 ( ⁇ ) in all wavelength ranges from the DR400 force of 380 nm to 780 nm defined by the above formula (III). ) It is preferable to satisfy the relationship of I ⁇ 0.02, and it is still more preferable that the relationship of 1 DR40 (1) —D R0 ( ⁇ ) I ⁇ 0.01 is satisfied.
  • the DRa defined by the above formula (IV) is less than 60 ° in all wavelength regions from 380 nm to 780 nm. At all angles, it is preferable to satisfy the relationship of
  • the DRa defined by the above formula (IV) is such that
  • the retardation plate according to the present invention is preferably made of one polymer film satisfying the following expression.
  • nx is the in-plane retardation index in the plane of the retarder measured at 550 nm
  • ny is the direction perpendicular to the in-plane retardation axis of the retarder measured at 550 nm
  • nz is the refractive index in the thickness direction measured at 550 nm.
  • the thickness of one polymer film constituting the retardation plate is preferably 5 to 1000 / m, more preferably 10 to 50 ⁇ , further preferably 40 to 200 ⁇ , and 70 Most preferably, it is from 120 ⁇ to 120 ⁇ .
  • Hygroscopic expansion coefficient of the retardation plate is preferably not more than 30 X 10- 5 / cm 2 / % RH.
  • the coefficient of hygroscopic expansion is indicated by the amount of change in sample length when the relative humidity is changed at a constant temperature.
  • the hygroscopic expansion coefficient is 20 more preferably X 10- 5 ZCM is 2 /% RH or less, 15 X 10 - is preferably a further at 5 / cm 2 /% RH or less.
  • the direction of the slow axis in the plane of the film is indicated by the angle formed with the stretching direction.
  • the angle between the average direction of the slow axis and the stretching direction is an angle equal to the average value of the angle between the slow axis direction and the stretching direction at any ten locations in the film.
  • the average direction of the slow axis is preferably within ⁇ 5 °, more preferably ⁇ 2 °, and most preferably ⁇ 1 ° from the stretching direction.
  • the standard deviation is preferably within 2.0, more preferably within 1.5, more preferably within 0.8, and most preferably 5.
  • the retardation plate having the above optical properties can be manufactured by the following materials and methods.
  • the retardation plate according to the present invention is composed of one polymer film.
  • a cellulose ester is preferable, and a lower fatty acid ester of cellulose is more preferable.
  • Lower fatty acids refer to fatty acids having 6 or less carbon atoms. The number of carbon atoms is preferably 2 (cellulose acetate), 3 (cellulose propionate) or 4 (cellulose butyrate). Cellulose acetate is particularly preferred. Cellulose acetate propionate ⁇ Mixed fatty acid esters such as cellulose acetate butylate may be used.
  • the average degree of acetylation (acetylation degree) of cellulose acetate is preferably 45.0 to 62.5%, more preferably 55.0 to 61.0%, and 56.0 to 60%. More preferably, it is 5%.
  • Two or more cellulose acetates may be used for adjusting the average degree of acetylation.
  • the difference in the degree of acetylation of each cellulose acetate is preferably from 2.0 to 6.0%, more preferably from 2.0 to 4.0%.
  • the ratio (P 2 / P 1) of the largest viscosity average degree of polymerization (P 1) and the smallest degree of viscosity polymerization (P 2) is preferably 1 to 3, More preferably, it is 1 or 2.
  • the hydroxyl groups at the 2-, 3-, and 6-positions of the cellulose ester are not evenly distributed to 1/3 of the total degree of substitution, and the degree of substitution of the 6-position hydroxyl group tends to decrease.
  • the degree of substitution of the hydroxyl group at the 6-position of the cellulose ester is preferably higher than that at the 2- and 3-positions.
  • the hydroxyl group at the 6-position is substituted with an acyl group in an amount of 30% or more and 40% or less with respect to the total degree of substitution, more preferably 31% or more, particularly preferably 32% or more. Good.
  • the substitution degree of the 6-position acyl group of the cellulose ester is preferably 0.88 or more.
  • the 6-position hydroxyl group may be substituted with an acetyl group such as a propionyl group, a propyloyl group, a valeroyl group, a benzoyl group, an atalyloyl group, etc. other than the acetyl group.
  • the degree of substitution at each position can be measured by NMR.
  • Examples of the cellulose ester include Synthesis Example 1 described in Paragraph Nos. ⁇ ⁇ 43 to 0044 of JP-A-11-58151, Synthesis Example 2 described in Paragraph Nos. 0048 to 0049, and Paragraph Nos. 0051 to 0052 described in Paragraphs 0051 to 0052. Cell acetate obtained by the method of Synthesis Example 3 can be used.
  • a retardation increasing agent can be added to the cellulose acetate film to adjust the retardation value at each wavelength, and to adjust the value of i DRo; (2) one DR0 (1) I.
  • the retardation raising agent is preferably used in the range of 0.05 to 20 parts by mass, more preferably in the range of 0.1 to 10 parts by mass, based on 100 parts by mass of the polymer. It is more preferably used in the range of 5 to 10 parts by mass, and most preferably used in the range of 0.5 to 3 parts by mass. Two or more letter risers may be used in combination.
  • the retardation enhancer preferably has a maximum absorption wavelength in the wavelength region of 230 to 360 nm. Further, it is preferable that the retardation raising agent has substantially no absorption in the visible region.
  • a compound having at least two aromatic rings is preferably used.
  • aromatic ring includes an aromatic hetero ring in addition to an aromatic hydrocarbon ring.
  • the aromatic hydrocarbon ring is a six-membered ring (ie, a benzene ring).
  • Aromatic heterocycles are generally unsaturated heterocycles.
  • the aromatic heterocyclic ring is 5 It is preferably a membered ring, a six-membered ring or a seven-membered ring, and more preferably a five-membered ring or a six-membered ring.
  • Aromatic heterocycles generally have the most double bonds.
  • a nitrogen atom, an oxygen atom and a sulfur atom are preferable, and a nitrogen atom is particularly preferable.
  • aromatic hetero ring examples include a furan ring, a thiophene ring, a pyrrole ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, an imidazole ring, a pyrazole ring, a furazane ring, a triazole ring, a pyran ring, and a pyridin ring. Ring, pyridazine ring, pyrimidine ring, pyrazine ring and 1,3,5-triazine ring.
  • aromatic ring examples include a benzene ring, a furan ring, a thiophene ring, a pyrrole ring, an oxazole ring, a thiazole ring, an imidazole ring, a triazole ring, a pyridine ring, a pyrimidine ring, a pyrazine ring, and a 1,3,5-triazine ring. Is preferred.
  • the number of aromatic rings contained in the retardation raising agent is preferably from 2 to 20, more preferably from 2 to 12, and even more preferably from 2 to 8. Most preferably, it is from 6 to 6.
  • the bonding relationship between two aromatic rings can be classified into (a) when forming a condensed ring, (b) when directly connected by a single bond, and (c) when connecting via a linking group. A spiro bond cannot be formed).
  • the associative relationship may be any of (a) to (c).
  • Examples of the condensed ring of (a) include an indene ring, a naphthalene ring, an azulene ring, a fluorene ring, a phenanthrene ring, an anthracene ring, an asenafthylene ring, and a biphenylene ring , Naphthacene ring, pyrene ring, indole ring, isoindole ring, benzofuran ring, benzothiophene ring, indolizine ring, benzoxazole ring, benzothiazole ring, benzoimidazole ring, benzotriazole ring, purine ring, indazole ring, Chromene ring, quinoline ring, isoquinoline ring, quinolidine ring, quinazoline ring, cinnoline ring, quinoxaline ring, phthal
  • the single bond in (b) is preferably a bond between carbon atoms of two aromatic rings.
  • Two aromatic rings may be linked by two or more single bonds to form an aliphatic ring or a non-aromatic heterocyclic ring between the two aromatic rings.
  • the linking group (c) is also preferably bonded to carbon atoms of two aromatic rings.
  • the linking group is preferably an alkylene group, alkenylene group, alkynylene group, one CO—, one O—, one NH—, one S— or a combination thereof. Examples of the linking group consisting of the combinations are shown below. Note that the left and right relationships in the following examples of linking groups may be reversed.
  • the aromatic ring and the linking group may have a substituent.
  • substituents examples include a halogen atom (F, Cl, Br, I), hydroxyl, carboxylone, cyano, amino, nitro, sulfo, carbamoinole, sulfamoinole, ureido, alkyl, alkenyl, alkynyl.
  • halogen atom F, Cl, Br, I
  • hydroxyl carboxylone
  • cyano amino, nitro, sulfo, carbamoinole, sulfamoinole, ureido, alkyl, alkenyl, alkynyl.
  • the alkyl group preferably has 1 to 8 carbon atoms.
  • a chain alkyl group is preferable to a cyclic alkyl group, and a linear alkyl group is particularly preferable.
  • the alkyl group may further have a substituent (eg, hydroxy, carboxy, alkoxy group, alkyl-substituted amino group).
  • Examples of alkyl groups (including substituted alkyl groups) include: methyl, ethynole, n-ptynole, n-hexynole, 2-hydroxyethynole, 4-carboxybutyl, 2-methoxyl, and 2-methynoleamino Includes Echinore.
  • the alkenyl group preferably has 2 to 8 carbon atoms.
  • a chain alkenyl group is preferable to a cyclic alkenyl group, and a linear alkenyl group is particularly preferable.
  • the alkenyl group may further have a substituent. Examples of alkenyl groups include butyl, aryl and 11-hexenyl.
  • the alkynyl group preferably has 2 to 8 carbon atoms.
  • a chain alkynyl group is preferable to a cyclic alkynyl group, and a linear alkynyl group is particularly preferable.
  • the alkynyl group may further have a substituent. Examples of alkynyl groups include ethur, 1-butynyl and 1-hexyl.
  • the number of carbon atoms of the aliphatic acyl group is preferably 1 to 10.
  • Examples of the aliphatic acyl group include acetyl, propanoyl, and butanoyl.
  • the aliphatic acyloxy group preferably has 1 to 10 carbon atoms.
  • Examples of the aliphatic acyloxy group include acetoxy.
  • the alkoxy group preferably has 1 to 8 carbon atoms.
  • the alkoxy group may further have a substituent (eg, an alkoxy group).
  • alkoxy groups include methoxy, ethoxy, butoxy and methoxyshethoxy.
  • the alkoxycarbonyl group preferably has 2 to 10 carbon atoms.
  • alkoxycarbonyl groups include methoxycarbonyl and ethoxycarbonyl Included.
  • the alkoxycarbonylamino group preferably has 2 to 10 carbon atoms.
  • Examples of the alkoxycarbonylamino group include methoxycarbonylamino and ethoxycarbonylamino.
  • the alkylthio group preferably has 1 to 12 carbon atoms.
  • Examples of the alkylthio group include methylthio, ethylthio and octylthio.
  • the alkylsulfonyl group preferably has 1 to 8 carbon atoms.
  • Examples of the alkylsulfonyl group include methanesulfonyl and ethanesulfonyl.
  • the aliphatic amide group preferably has 1 to 10 carbon atoms.
  • Examples of the aliphatic amide group include acetoamide.
  • the aliphatic sulfone amide group preferably has 1 to 8 carbon atoms.
  • Examples of the aliphatic sulfonamide group include methanesulfonamide, butanesulfonamide and n-octanesulfonamide.
  • the aliphatic substituted amino group preferably has 1 to 10 carbon atoms.
  • Examples of the aliphatic substituted amino group include dimethylamino, getylamino and 2-carboxyshetylamino.
  • the number of carbon atoms of the aliphatic substitution power rubamoyl group is preferably 2 to 10.
  • Examples of the aliphatic-substituting rubamoyl group include methylcarbamoyl and getylcarbamoyl.
  • the number of carbon atoms of the aliphatic substituted sulfamoyl group is preferably 1 to 8.
  • Examples of the aliphatic-substituted sulfamoyl group include methylsulfamoyl and getyl sulfamoyl.
  • the aliphatic substituted ureido group preferably has 2 to 10 carbon atoms.
  • Examples of the aliphatic-substituted ureido group include methinourelide.
  • non-aromatic heterocyclic group examples include piperidino and morpholino.
  • Retardation Chillon molecular weight of raising agent specific examples of preferably from 300 to 800 Retardation Chillon increasing agent, JP 2 000 1 1914 JP, the
  • an infrared absorbing agent can be added to the polymer film.
  • the infrared absorber is preferably used in a range of 0.01 to 5 parts by mass, more preferably in a range of 0.02 to 2 parts by mass, based on 100 parts by mass of the polymer. It is more preferably used in the range of 0.05 to 1 part by mass, and most preferably used in the range of 0.1 to ⁇ 5 parts by mass. Two or more infrared absorbers may be used in combination.
  • the infrared absorber preferably has a maximum absorption in a wavelength range of 750 to 100 nm, and more preferably has a maximum absorption in a wavelength range of 800 to 1,000 nm. Preferably, the infrared absorber has substantially no absorption in the visible region.
  • infrared absorbing dye or an infrared absorbing pigment as the infrared absorbing agent, and it is particularly preferable to use an infrared absorbing dye.
  • Infrared absorbing dyes include organic compounds and inorganic compounds. It is preferable to use an infrared absorbing dye which is an organic compound.
  • Organic infrared absorbing dyes include cyanine compounds, metal chelate compounds, aluminum compounds, dimonium compounds, quinone compounds, squarium compounds, and methine compounds. Infrared absorbing dyes are described in Coloring Materials, 61 [4] 215-226 (1988), and Chemical Industry, 43-53 (1986, May).
  • Infrared absorbing dyes developed in the technical field of silver halide photographic materials include dihydroperimidine squaridum dyes (US Pat. No. 5,380,635 and Japanese Patent Application No. 8-189817). ), Cyanine dyes (JP-A-62-123454, JP-A-3-138640, JP-A-3-221542, JP-A-226736, JP-A-5-313305, JP-A-6-43583) Publications, Japanese Patent Application No. 7-26 909 7 Specification and European Patent No.
  • a film is produced using a solution (dope) of a polymer dissolved in an organic solvent.
  • the organic solvent is selected from ethers having 3 to 12 carbon atoms, ketones having 3 to 12 carbon atoms, esters having 3 to 12 carbon atoms, and halogenated hydrocarbons having 1 to 6 carbon atoms. It is preferable to include a solvent.
  • Ethers, ketones and esters may have a cyclic structure.
  • Compounds having two or more functional groups of ether or ketone ester that is, —O—, —CO— and —CO ⁇
  • the organic solvent may have another functional group such as an alcoholic hydroxyl group.
  • the number of carbon atoms may be within the specified range of the compound having any one of the functional groups.
  • ethers having 3 to 12 carbon atoms include diisopropyl ether, dimethoxymethane, dimethoxetane, 1,4-dioxane, 1,3-dioxolan, tetrahydrofuran, azole and phenetole Is included.
  • ketones having 3 to 12 carbon atoms include acetone, methylethyl ketone, getyl ketone, diisobutyl ketone, hexahexanone, and methylcyclohexyl. Hexanone is included.
  • esters having 3 to 12 carbon atoms examples include ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate and pentyl acetate.
  • organic solvent having two or more kinds of functional groups examples include 2-ethoxyshetyl acetate, 2-methoxyethanol and 2-butoxyethanol.
  • the number of carbon atoms in the halogenated hydrocarbon is preferably 1 or 2, and most preferably 1.
  • the halogen of the halogenated hydrocarbon is preferably chlorine.
  • the proportion of halogen atoms substituted by halogen atoms in the halogenated hydrocarbon is preferably 25 to 75 mol%, more preferably 30 to 70 mol%, and more preferably 35 to 65 mol%. More preferably, it is 40 to 60 mol%, most preferably 40 to 60 mol%.
  • Methylene chloride is a typical halogenated hydrocarbon. Two or more organic solvents may be used as a mixture.
  • the polymer solution can be prepared by a general method.
  • the general method means treating at a temperature of 0 ° C or higher (normal temperature or high temperature).
  • the solution can be prepared using a dope preparation method and apparatus in a usual solvent casting method.
  • the amount of the polymer is adjusted so that the obtained solution contains 10 to 40% by mass. More preferably, the amount of polymer is from 10 to 30% by weight. Any additives described below may be added to the organic solvent (main solvent).
  • the solution can be prepared by stirring the polymer and the organic solvent at room temperature (0 to 40 ° C). Highly concentrated solutions may be stirred under pressure and heating conditions. Specifically, the polymer and the organic solvent are put in a pressurized container, sealed, and stirred while heating under pressure to a temperature not lower than the boiling point of the solvent at normal temperature and in a range where the solvent does not boil.
  • the heating temperature is usually 40 ° C. or higher, preferably 60 to 200 ° C., and more preferably 80 to 110 ° C.
  • Each component may be roughly mixed in advance and then placed in a container. Alternatively, they may be sequentially charged into a container.
  • the container must be configured to be able to stir. Inactivation of nitrogen gas, etc.
  • the container can be pressurized by injecting a neutral gas. Further, an increase in the vapor pressure of the solvent due to heating may be used. Alternatively, the components may be added under pressure after the container is sealed.
  • a jacket type heating device can be used.
  • a plate heater may be provided outside the container, and the entire container may be heated by circulating the liquid through piping.
  • a stirring blade inside the container and stir using the stirring blade is preferably long enough to reach near the container wall. It is preferable to provide a collecting blade at the end of the stirring blade in order to renew the liquid film on the container wall.
  • Instruments such as a pressure gauge and a thermometer may be installed in the container. Dissolve each component in the solvent in a container. The prepared dope is taken out of the container after cooling, or a certain dope is taken out and then cooled using a heat exchanger or the like.
  • the solution can be prepared by the cooling dissolution method.
  • the cooling dissolution method the polymer can be dissolved even in an organic solvent that is difficult to dissolve by a normal dissolution method. Even if the solvent can dissolve the polymer by the usual dissolution method, the cooling dissolution method has an effect that a uniform solution can be obtained quickly.
  • a polymer is gradually added to an organic solvent at room temperature with stirring.
  • the amount of the polymer is preferably adjusted so as to be contained in the mixture at 10 to 40% by mass. More preferably, the amount of polymer is from 10 to 30% by weight. Further, an optional additive described later may be added to the mixture.
  • the mixture is then brought to a temperature of between 10 ° C and 110 ° C (preferably between 180 ° C and 110 ° C, more preferably between 150 ° C and 120 ° C, most preferably between 150 ° C and 110 ° C. Cool to 30 ° C). The cooling can be performed, for example, in a dry ice-methanol bath ( ⁇ 75 ° C.) or a cooled diethylene glycol solution (130 ° C. to 120 ° C.). Upon cooling, the mixture of the cellulose ester and the organic solvent solidifies.
  • the cooling rate is preferably at least 4 ° C / min, more preferably at least 8 ° CZ, most preferably at least 12 ° CZ. Cooling rate is fast
  • the preferred upper limit is 100,000 ° C / sec
  • the upper limit is 100,000 o ° cz seconds is the technical upper limit
  • the upper limit is 100,000 ° C / sec. It is.
  • the cooling rate is a value obtained by dividing the difference between the temperature at the start of cooling and the final cooling temperature by the time from the start of cooling to the final cooling temperature.
  • the organic solvent The polymer dissolves in it.
  • the temperature may be raised simply by leaving it at room temperature or may be heated in a warm bath.
  • the heating rate is preferably at least 4 ° C / min, more preferably at least 8 ° C / min, most preferably at least 12 ° CZ.
  • the heating rate is preferably as fast as possible, but 100 ° C osec. Is the theoretical upper limit, 100 ° C ° Cz is the technical upper limit, and 100 ° C / sec. Is a practical upper limit.
  • the heating rate is a value obtained by dividing the difference between the temperature at which heating is started and the final heating temperature by the time from when heating is started until the final heating temperature is reached. is there.
  • the dissolution As described above, a uniform solution is obtained. If the dissolution is insufficient, the cooling and heating operations may be repeated. Whether or not the dissolution is sufficient can be determined only by visually observing the appearance of the solution.
  • the cooling dissolution method it is desirable to use a closed container to avoid water contamination due to condensation during cooling. Further, in the cooling and heating operation, if the pressure is increased during cooling and the pressure is reduced during heating, the dissolution time can be shortened. In order to carry out pressurization and decompression, it is desirable to use a pressure-resistant container.
  • the dope is cast on a drum or band and the solvent is evaporated to form a film.
  • concentration of the dope before casting is preferably adjusted so that the solid content is 18 to 35%. It is preferred that the surface of the drum or band be finished to a mirror surface.
  • the casting and drying methods in the solvent casting method see U.S. Patent Nos. 2336310, And JP-B-736892, JP-B-45-4554, JP-B-49-15614, JP-A-60-176834, JP-B-60-203430, and JP-B-62-115035. is there.
  • the dope is preferably cast on a drum or band having a surface temperature of 10 ° C or less. It is preferable to dry it by blowing it for 2 seconds or more.
  • the resulting film can be peeled off from the drum or band and dried with high-temperature air with successively varying temperatures from 100 to 160 ° C to evaporate residual solvent.
  • the above method is described in Japanese Patent Publication No. 5-17844. According to this method, the time from casting to stripping can be shortened. In order to carry out this method, the dope needs to gel at the surface temperature of the drum or band during casting.
  • the solution (dope) prepared as described above satisfies this condition.
  • the thickness of the film to be produced is preferably from 40 to 140 / m, more preferably from 70 to 120 / m, even more preferably from 70 to 100 ⁇ .
  • a plasticizer can be added to the polymer film to improve mechanical properties or to increase the drying speed.
  • a plasticizer a phosphoric acid ester or a carboxylic acid ester is used.
  • phosphate esters include triphenyl phosphate ( ⁇ ) and tricresyl phosphate (TCP).
  • Representative carboxylic esters are phthalic esters and citrates.
  • phthalates include dimethyl phthalate (DMP), Includes ethyl phthalate (DEP), dibutyl phthalate (DBP), octyl phthalate (DOP), diphenyl phthalate (DPP) and getylhexyl phthalate (DEHP).
  • citrate esters examples include triethyl O-acetyl citrate (OACTE) and tributyl O-acetyl citrate (OA CTB).
  • carboxylic esters examples include butyl oleate, methyl acetyl ricinoleate, dibutyl sebacate, and various trimellitate esters.
  • Phthalate plasticizers DMP, DEP, DBP, DOP, DPP, DEHP
  • DEP and DPP are particularly preferred.
  • the addition amount of the plasticizer may affect the chromatic dispersion, so it is necessary to adjust the addition amount together with the addition amount of the retardation increasing agent.
  • the amount is preferably from 0.1 to 25% by mass, more preferably from 1 to 20% by mass, most preferably from 3 to 15% by mass of the amount of the polymer.
  • Degradation inhibitors eg, antioxidants, peroxide decomposers, radical inhibitors, metal deactivators, acid scavengers, amines
  • the deterioration inhibitor is described in JP-A-3-199201, JP-A-5-1907073, JP-A-5-194789, JP-A-5-271471, and JP-A-6-107854.
  • the amount of the deterioration inhibitor added is 0.01 to 1 mass of the prepared solution (dope). / 0 , more preferably 0.01 to 0.2% by mass. If the amount is less than 0.01% by mass, the effect of the deterioration inhibitor is hardly recognized.
  • the addition amount exceeds 1% by mass, pre-adhesion (bleeding) of the deterioration inhibitor to the film surface may be observed.
  • the deterioration inhibitor include butylated hydroxytoluene (BHT) and tribenzylamine (TBA).
  • polymer films have hydrophobic compounds.
  • a substance may be added.
  • the material having hydrophobicity is not particularly limited as long as the material has a hydrophobic group such as an alkyl group or a phenyl group in the molecule. It is preferably used.
  • Addition amount is preferably 0.01 to 10 wt% of the solvent liquid for adjusting (dope), 0.1 preferably to 1 to 5 wt 0/0 Gasara, 1 to 3 wt. / 0 is most preferred.
  • the polymer film may be provided with a matting layer containing a matting agent and a polymer on one or both sides to improve the handleability during production.
  • a matting agent and a polymer the materials described in JP-A-10-44327 can be suitably used.
  • the polymer film can be further subjected to a stretching treatment (preferably 1.1 to 2 times, more preferably 1.1 to 1.5 times) by a refractive index (refractive index nx in the in-plane slow axis direction, in-plane It is preferable to adjust the refractive index ny in the direction perpendicular to the slow axis and the refractive index nz) in the thickness direction.
  • the refractive index increases in the direction in which the polymer chains are oriented.
  • the refractive index usually becomes nx> 117 112. This is because in the polymer chains oriented in the in-plane direction, the X component increases by stretching and the z component becomes the smallest.
  • the stretching ratio is a relative value when the length before stretching is set to 1. SB may be less than 1 (in other words, shrink). If the relationship of the above expression is satisfied, SB may be a value less than 1.
  • the stretching ratio can also be adjusted so that the front retardation is L / 4.
  • the stretching temperature is preferably at least 10 ° C higher than the glass transition temperature of the polymer, preferably at least 20 ° C lower than the crystallization temperature, more than 10 ° C higher than the glass transition temperature, and at least 40 ° C higher than the crystallization temperature. Lower temperatures are more preferred.
  • the glass transition temperature and the crystallization temperature are values measured using a differential scanning calorimeter (DSC) at a heating rate of 10 ° CZ.
  • the stretching method is not particularly limited, but a roll stretching method is preferred.
  • the stretching treatment may be performed a plurality of times, and may be simultaneous treatment or sequential treatment.
  • the stretched film may be heat-treated.
  • the heat treatment is preferably performed at a temperature 20 ° C lower than the glass transition temperature of the polymer film to 10 ° C higher.
  • the heat treatment time is preferably from 1 second to 3 minutes, more preferably from 1 second to 2 minutes, and most preferably from 1 second to 1 minute.
  • the heating method may be zone heating or partial heating using a heat source such as an infrared heater.
  • a polarizing plate is one in which a polarizing film is sandwiched between transparent protective films. Substantially 45 ° means 40 to 50 °.
  • the angle between the average direction of the slow axis in the plane of the ⁇ / 4 plate and the polarization axis of the polarizing film is preferably 41 to 49 °, and more preferably 42 to 48 °. More preferably, it is 43 to 47 °, even more preferably, 44 to 46 °. Is most preferred.
  • a circular polarizing plate can also be obtained by laminating a ⁇ / 4 plate and a polarizing film such that the angle between the slow axis in the plane of the ⁇ / plate and the polarizing axis of the polarizing film is substantially 45 °. Is obtained.
  • the polarizing film includes an iodine-based polarizing film, a dye-based polarizing film using a dichroic dye, and a polyene-based polarizing film.
  • the iodine-based polarizing film and the dye-based polarizing film are generally produced using a polyvinyl alcohol-based film.
  • the polarization axis of the polarizing film corresponds to a direction perpendicular to the stretching direction of the film.
  • a transparent protective film on the surface of the polarizing film opposite to the quarter plate. It is preferable to provide a hard coat layer on the transparent protective film. It is preferable to provide an antireflection layer as the outermost layer.
  • the touch panel is composed of a fixed substrate near the display element and a movable substrate facing the fixed substrate.
  • a transparent electrode is provided on each of the opposing surfaces of the fixed substrate and the movable substrate.
  • the fixed substrate and the movable substrate are preferably formed of a transparent optical material in order to improve display quality. Examples of the material used for the fixed substrate and the movable substrate include glass, an amorphous film, polyether sulfone, polycarbonate, polyarylate, polyethylene terephthalate, and polymer finolem such as senorellose estenolle.
  • the Z4 plate is composed of a polymer film (preferably a cellulose ester film); the Z4 plate may be provided separately from the touch panel, or may be used for one or both of a fixed substrate and a movable substrate. It is particularly preferable to use a quarter plate composed of a polymer film as a movable substrate.
  • a gap is formed between the two transparent electrodes. There is usually an air layer between the gaps, but a liquid with a refractive index close to that of the transparent electrode can be filled for optical matching. Further, an undercoat layer may be provided on the substrate side of the transparent electrode film, or an overcoat layer may be provided on the side opposite to the substrate to reduce light reflection. The surface of the transparent electrode film may be roughened to eliminate sticking and improve the keying life.
  • a spacer can be provided between the gaps. As the spacer, a dot-shaped spacer or a bonding material provided around a fixed substrate and a movable substrate is used.
  • Touch panels are used in both digital and analog types.
  • the digital method it is possible to detect the contact between the transparent electrodes by pressing and the data position corresponding to the contact position.
  • electrodes are formed at both ends in the X-axis direction of the fixed substrate and both ends in the Y-axis direction of the movable substrate, and the transparent electrodes come into contact with each other by pressing, and the X and Y directions generated by the contact position
  • the data input position can be detected by detecting the resistance value in the direction.
  • the touch panel is preferably used with a display element.
  • Touch panel part The display unit may be separate from the display unit, or both may be integrated.
  • the polarizing plate may be provided between the touch panel and the display element, or the polarizing plate may be an inner type provided outside the touch panel (on the observer side). It is preferable to use a touch panel that has reduced anti-reflection of external light and excellent anti-glare properties as an inner type.
  • the transparent conductive film used as Tatsuchipaneru, surface resistivity, 1 0 is preferably 4 Omega / D or less, 1 0 0 0 Omega / more preferably mouth or less, below 5 0 0 Omega Zeta port Most preferably.
  • a transparent conductive film is provided on at least one surface of the IZ4 plate to be used as an inner type touch panel.
  • the transparent conductive film In order to set the surface resistivity of the transparent conductive film to the above value, it may be provided by applying a conductive fine particle dispersion or the like, or may be provided by co-casting at the time of film casting. . Further, the transparent conductive film may be formed by a vacuum film forming method such as sputtering, vacuum evaporation, or ion plating. A transparent conductive film may be provided on one side of the film, or may be provided on both sides. Also, these methods can be used in combination.
  • the method for applying the conductive fine particle dispersion basically includes a layer containing fine particles composed of at least one or more metals and / or metal oxides and metal nitrides.
  • the fine particles composed of one or more metals include metals such as gold, silver, copper, aluminum, iron, nickel, palladium, and platinum, and alloys thereof.
  • silver is preferable, and an alloy of palladium and silver is more preferable from the viewpoint of weather resistance.
  • the content of palladium is preferably 5 to 3 wt%. If the amount of palladium is small, the weather resistance is poor, and if the amount of palladium is large, the conductivity is reduced.
  • Methods for preparing metal fine particles include a method for preparing fine particles by a low-vacuum evaporation method and a method for reducing an aqueous solution of a metal salt with a reducing agent such as an amine such as iron (II), hydrazine, boron hydride, or hydroxyxylamine.
  • a reducing agent such as an amine such as iron (II), hydrazine, boron hydride, or hydroxyxylamine.
  • the metal oxide I us ⁇ 3 system (including doped products such as S n), S N_ ⁇ 2 system (F Includes such doped article S b), including doped products such as Z n O system (A 1, G a), T i O 2, A 12 ⁇ 3, S i O 2, MgO , B aO, Mo O s, V 2 O s or a composite of these.
  • the metal nitride include TiN.
  • the average particle size of these conductive fine particles is preferably from 1.0 to 700 nm, more preferably from 2.0 to 300 nm, most preferably from 5.0 to 100 nm.
  • the conductive fine particle layer can be formed by applying a paint in which conductive fine particles are dispersed in a solution mainly composed of water or an organic solvent. Before application, a surface treatment or undercoating can be applied.
  • Examples of the surface treatment include corona discharge treatment, glow discharge treatment, chromic acid treatment (wet process), flame treatment, hot air treatment, and ozone / ultraviolet irradiation treatment.
  • Examples of the material of the undercoat layer include copolymers such as vinyl chloride, vinylidene chloride, butadiene, (meth) acrylate and vinyl ester, or latex, and water-soluble polymers such as gelatin, but are not particularly limited.
  • a solution mainly composed of water is preferable for stabilizing the dispersion of the conductive fine particles.
  • Examples of the solvent that can be mixed with water include ethyl alcohol, n-propyl alcohol, i-propyl alcohol, butyl alcohol, methylcellosolve, and ptinoresel.
  • the coating amount of the conductive fine particles is preferably 10 to 1000 mg / m 2, more preferably 20 to 5 00111 8/131 2, and most preferably 5 0 to 1 50 mg / m 2. If the coating amount is small, the conductivity cannot be obtained, and if the coating amount is large, the permeability is poor.
  • the transparent conductive layer may contain a binder, may contain no binder, and may be formed substantially only of conductive fine particles.
  • a binder When a binder is used, a hydrophilic binder, a hydrophobic binder, or latex can be used.
  • hydrophilic binders include gelatin, gelatin derivatives, agar, sodium alginate, starch, polybutyl alcohol, polyacrylic acid copolymer, water-free maleic acid copolymer, carboxymethylcellulose, and carboxymethyl cellulose. Includes glucose, hydroxymethinorese / rerose, and hydroxyxetinoresenorelose.
  • hydrophobic binder examples include cellulose esters (eg, cellulose nitrate, senorelose diacetate, senorelostriacetate), senorelose acetate (eg, methylcellulose), vinyl polymers (eg, butyl chloride, vinylidene chloride, vinyl) Atalylate '), polyamides and polyesters.
  • cellulose esters eg, cellulose nitrate, senorelose diacetate, senorelostriacetate
  • senorelose acetate eg, methylcellulose
  • vinyl polymers eg, butyl chloride, vinylidene chloride, vinyl
  • Heat treatment or water treatment can be performed to improve the conductivity and transparency of the transparent conductive layer.
  • the heat treatment depends on the heat resistance of the polymer film, but is preferably 150 ° C. or lower.
  • the temperature is preferably from 100 ° C to 150 ° C. Above 150 ° C, the polymer film is likely to be deformed by heat, and below 100 ° C, the effect of the heat treatment is difficult to achieve, and a long processing time is required.
  • the heat treatment method it is preferable to perform the treatment while passing through a heating zone in a web state, since uniform treatment can be performed.
  • the stay time can be adjusted by the length of the heating zone and the transport speed. It is also possible to heat the rolled film in a thermostat, but it is necessary to set the time in consideration of the variation in heat conduction.
  • the transparent conductive layer is subjected to water treatment such as washing with water, so that the heat treatment can be further efficiently performed.
  • Water treatment such as water washing includes application of only water using a normal application method, specifically, dip coating, application of water using a wire bar, etc.
  • water is sprayed or showered using a transparent conductive material. After applying water to the transparent conductive layer, excess water can be removed with a wire bar or rod bar or with an air knife as needed.
  • These water treatments can further reduce the surface resistance of the transparent conductive tank after the heat treatment, increase the transmittance, flatten the transmission spectrum, and reflectivity after the anti-reflection layer is deposited. The effect on the reduction of the amount becomes significant.
  • Film metal oxides I n 2 O a system as (S n such doped products, including ITO), (including F, doped products such as S b) S n 0 2 system, Z N_ ⁇ system (A 1, G a, etc.), or a composite of these, In 2 ⁇ 3 — Z ⁇ ⁇ system.
  • S n such doped products, including ITO
  • F doped products
  • S b S n 0 2 system
  • Z N_ ⁇ system Z N_ ⁇ system
  • the metal nitride include TiN.
  • a film may be formed together with silver or the like.
  • Sputtering such as a polymer film fluoric the its surface when forming on the resin, acrylic resin, silicone resin, propylene resin, and a high molecule such as vinyl resin, S I_ ⁇ 2, T I_ ⁇ 2 , Z R_ ⁇ 2, and an inorganic substance on the court child such as S N_ ⁇ 2 is preferred.
  • the coating thickness is preferably from 10 nm to 100, more preferably from 10 nm to 50 ⁇ m, and particularly preferably from 10 nm to 10 ⁇ .
  • the temperature is preferably from -30 ° C to 30 ° C, more preferably from 130 ° C to 20 ° C, particularly preferably from 130 ° C to 10 ° C.
  • reactive sputtering using a metal target containing indium as a main component or a target which is a sintered body mainly containing syndium oxide is used.
  • an inert gas such as argon is used as a sputtering gas, and oxygen is used as a reactive gas.
  • DC magnetron sputtering, RF magnetron sputtering, etc. can be used as a discharge type.
  • a method for controlling the flow rate of oxygen it is preferable to use a plasma emission monitor method.
  • the light transmittance of the polymer film provided with the transparent conductive layer is preferably at least 50%, more preferably at least 60%, particularly preferably at least 70%, and preferably at least 80%. Is most preferred.
  • the touch panel can be used in combination with various display devices. Examples include force sword-ray tubes (CRTs), plasma displays (PDPs), fino-red 'emission' displays (FEDs), inorganic EL devices, organic EL devices, and liquid crystal displays.
  • CTRs force sword-ray tubes
  • PDPs plasma displays
  • FEDs fino-red 'emission' displays
  • inorganic EL devices organic EL devices
  • liquid crystal displays liquid crystal displays.
  • FIG. 1 is a schematic diagram showing a basic configuration of a reflective liquid crystal display device.
  • the reflective liquid crystal display device shown in FIG. 1 includes, in order from the bottom, a lower substrate (a), a reflective electrode (b), a lower alignment film (c), a liquid crystal layer (d), an upper alignment film (e), and a transparent electrode ( f), upper substrate
  • the lower substrate (a) and the reflective electrode (b) constitute a reflector.
  • the lower alignment film (c) to the upper alignment film (e) constitute a liquid crystal cell.
  • the L / 4 plate (h) can be arranged at any position between the reflector and the polarizing film (i).
  • one color filter is further provided.
  • One color filter is preferably provided between the reflective electrode (b) and the lower alignment film (c) or between the upper alignment film (e) and the transparent electrode ( ⁇ ).
  • a transparent electrode may be used instead of the reflective electrode (b) shown in Fig. 1, and a separate reflector may be attached.
  • a metal plate is preferable. If the surface of the reflector is smooth, only the specular reflection component is reflected and the viewing angle may be narrowed. Therefore, it is preferable to introduce an uneven structure (described in Japanese Patent No. 275620) on the surface of the reflector. If the surface of the reflector is flat (instead of introducing an uneven structure on the surface), a light diffusion film may be attached to one side (cell side or outside) of the polarizing film.
  • FIG. 2 is a schematic diagram illustrating a basic configuration of a reflective liquid crystal display device using a touch panel.
  • the reflection type liquid crystal display device using the touch panel shown in FIG. 2 includes, in order from the bottom, a lower substrate (a), a reflective electrode (b), a lower alignment film (c), a liquid crystal layer (d), and an upper alignment film (e). , Transparent electrode (f), upper substrate (g), transparent conductive film ( ⁇ ), transparent conductive film (k), ⁇ 4 plate
  • a gap is formed between the transparent conductive film (j) and the transparent conductive film (k), and functions as a touch panel.
  • the liquid crystal mode used is not particularly limited, but the TN (twisted nematic) type, It is preferably of STN (Supper Twisted Nematic) type, HAN (Hybrid Aligned Nematic) type, or GH (Guest Host) type.
  • the twist angle of the TN type liquid crystal cell is preferably from 40 to 100 °, more preferably from 50 to 90 °, and most preferably from 60 to 80 °.
  • the value of the product (An d) of the refractive index anisotropy ( ⁇ ) of the liquid crystal layer and the thickness (d) of the liquid crystal layer is preferably 0.1 to 0.5 im, and 0.2 to 0.5 im. More preferably, it is 4 ⁇ m.
  • the twist angle of the STN type liquid crystal cell is preferably from 180 to 360 °, more preferably from 220 to 270 °.
  • the value of the product (An d) of the refractive index anisotropy ( ⁇ n) of the liquid crystal layer and the thickness (d) of the liquid crystal layer is preferably from 0.3 to 1.2 ⁇ , and from 0.5 to 1.2 ⁇ . 1. ⁇ / zm is more preferable.
  • the liquid crystal is substantially vertically aligned on one substrate and the pretilt angle on the other substrate is 0 to 45 °.
  • the value of the product (An d) of the refractive index anisotropy ( ⁇ ) of the liquid crystal layer and the thickness (d) of the liquid crystal layer is preferably 0.1 to 1.0 ⁇ , and 0.3 to 0 ⁇ . More preferably, it is 8 ⁇ .
  • the substrate on the side where the liquid crystal is vertically aligned may be a substrate on the reflector side or a substrate on the transparent electrode side.
  • the liquid crystal layer is composed of a mixture of liquid crystal and a dichroic dye.
  • the director of the liquid crystal and the long axis direction of the dichroic dye are parallel.
  • the dichroic dye also changes in the long-axis direction like the liquid crystal.
  • a Heil meir type, a White-Tay 1 or type using a cholesteric liquid crystal, a two-layer type, and a type using a ⁇ / 4 plate are known. In the present invention, it is preferable to use a method using a ⁇ / 4 plate.
  • JP-A-6-222350, JP-A-8-36174, JP-A-10-268300, JP-A-10-292175, JP-A-10-293301, and JP-A-10-294, JP-A-6-222350, JP-A-8-36174, JP-A-6-222350 It is described in the respective publications of 31 1 976, 10-31 9442, 10-325953, 10-331 3338, and 11-38410.
  • the four plates are provided between the liquid crystal layer and the reflector.
  • the liquid crystal layer can use either horizontal or vertical alignment Preferably, a vertical orientation is used. It is preferable that the dielectric anisotropy of the liquid crystal is negative.
  • the polarizing film includes an iodine-based polarizing film, a dye-based polarizing film using a dichroic dye, and a polyene-based polarizing film.
  • the iodine-based polarizing film and the dye-based polarizing film are generally produced using a polyvinyl alcohol-based film.
  • the polarization axis of the polarizing film corresponds to a direction perpendicular to the stretching direction of the film.
  • the reflective liquid crystal display device should be used in the normally white mode, in which the display is bright when the applied voltage is low, and dark when the applied voltage is high, or in the normally black mode in which the display is dark when the applied voltage is low and bright when the applied voltage is high. Can be. Normally white mode is preferred.
  • FIG. 3 is a schematic cross-sectional view showing a typical embodiment of a guest-host reflection type liquid crystal display device.
  • the guest-host reflective liquid crystal display device shown in Fig. 3 consists of a lower substrate (1), an organic interlayer insulating film (2), a metal reflector (3), a ⁇ / 4 plate (4), a lower transparent electrode (5), and a lower transparent electrode (5).
  • the lower substrate (1) and the upper substrate (2) having a different structure are made of a glass plate or a plastic film.
  • the TFT (13) is mounted between the lower substrate (1) and the organic interlayer insulating film (2).
  • the liquid crystal layer (7) is composed of a mixture of liquid crystal and dichroic dye.
  • the liquid crystal layer is obtained by injecting a mixture of liquid crystal and a dichroic dye into the cell gap formed by the spacer (14).
  • the metal reflection plate (3) may have a light diffusion function by making the surface of the metal reflection plate (3) uneven.
  • the antireflection layer (12) preferably has an antiglare function in addition to the antireflection function.
  • FIG. 4 is a schematic sectional view showing another typical embodiment of the guest-host reflection type liquid crystal display device.
  • the guest-host reflective liquid crystal display device shown in Fig. 4 consists of a lower substrate (1) ', an organic interlayer insulating film (2), a cholesteric color reflector (3), a ⁇ 4 plate (4), a lower transparent electrode (5), and a lower transparent electrode (5).
  • the lower substrate (1) and the upper substrate (2) are made of a glass plate or a plastic film.
  • the TFT (13) is mounted between the lower substrate (1) and the organic interlayer insulating film (2).
  • the Z4 plate (4) may function as a light diffusion plate.
  • the liquid crystal layer (7) is composed of a mixture of liquid crystal and dichroic dye.
  • the liquid crystal layer is obtained by injecting a mixture of liquid crystal and a dichroic dye into the cell gap formed by the spacer (14).
  • a black matrix (15) is attached between the upper transparent electrode (9) and the upper substrate (11).
  • the antireflection layer (12) preferably has an antiglare function in addition to the antireflection function.
  • the ⁇ / 4 plate according to the present invention can be used as the LZ4 plate (4) of the guest-host reflection type liquid crystal display device described with reference to FIGS.
  • the quarter-plate according to the present invention can also be used for the guest-host reflection type liquid crystal display device described in each of the above publications.
  • the refractive index ⁇ ⁇ in the in-plane slow axis direction at a wavelength of 550 nm, the direction perpendicular to the in-plane slow axis And the refractive index ⁇ ⁇ in the thickness direction were calculated, and the value of ( ⁇ ⁇ — ⁇ ⁇ ) / (n x ny) was calculated.
  • the angle between the direction of the slow axis and the stretching direction of the polymer film (retardation film) was measured with an automatic birefringence meter (KOBRA-21 ADH, Oji Scientific Instruments). Each measurement was performed at an arbitrary point in the film, and the average direction was determined. The standard deviation was also calculated for the angle between the direction of the slow axis at 10 points and the average slow axis direction.
  • a sample of 5 mm width and 2 Omm length was cut out from the prepared polymer film (retardation plate), and one end was fixed and hung under an atmosphere of 25 ° C and 20% RH. A 0.5 g weight was hung on the other end and left for a certain period of time. Next, while keeping the temperature constant, the humidity was set to 80% RH, and the length deformation was measured. The measurement was performed on 10 samples of the same sample, and the average value was adopted.
  • a solution (dope) was prepared by mixing 1.20 parts by mass, 704 parts by mass of methylene chloride and 61.2 parts by mass of methanol. (Lettering agent)
  • the obtained dope was cast on a glass plate, dried at room temperature for 1 minute, and dried at 45 ° C for 5 minutes.
  • the residual amount of the solvent after drying was 30% by mass.
  • the cellulose acetate film was peeled off from the glass plate and dried at 100 ° C for 20 minutes and at 130 ° C for 10 minutes. After the film was cut into a suitable size, it was stretched at 130 ° C. in a direction parallel to the casting direction. The direction perpendicular to the stretching direction was allowed to shrink freely. After stretching and cooling to room temperature, the stretched film was taken out.
  • the residual solvent amount after stretching was ⁇ .2% by mass.
  • the thickness of the obtained film was 103 ⁇ .
  • the stretching ratio was 1.42 times.
  • a retardation plate was produced in the same manner as in Example 1 except that the obtained dope was used.
  • the thickness of the obtained film was ⁇ ⁇ ⁇ ⁇ .
  • the stretching ratio was 1.41.
  • cellulose acetate having an average degree of acetylation of 59.4% 1 17.87 parts by mass, the retardation increasing agent used in Example 1 1.16 parts by mass, trifeninole phosphate 9.10 parts by mass, bihue A solution (dope) was prepared by mixing 4.50 parts by mass of dirdiphenyl phosphate, 2.36 parts by mass of tribenzylamine, 609.37 parts by mass of methylene chloride, and 53.0 parts by mass of methanol.
  • the obtained dope was cast on a glass plate, dried at room temperature for 1 minute, and then dried at 45 ° C for 5 minutes.
  • the cellulose acetate film was peeled off from the glass plate, dried at 100 ° C for 10 minutes, and then dried at 120 ° C for 2 minutes.
  • the amount of residual solvent after drying is 2. It was 1%.
  • the dried film was cut into an appropriate size, it was stretched at 130 ° C. in a direction parallel to the casting direction. The direction perpendicular to the stretching direction was allowed to shrink freely. After stretching, the film was taken out under an atmosphere at room temperature and cooled.
  • the thickness of the obtained film was 102 ⁇ .
  • the residual amount of the solvent was 0.1% by mass.
  • Example 1 In another mixing tank, the retardation raising agent used in Example 1 1.18 parts by mass, tribenzylamine 2.36 parts by mass, methylene chloride 16.0 parts by mass methanol 1. 39 parts by mass were charged and stirred while heating to prepare a retardation increasing agent solution.
  • the entire retardation raising agent solution was charged into the cellulose acetate solution, and the mixture was sufficiently stirred to prepare a dope.
  • the obtained dope was cast and uniaxially stretched using a dope casting machine provided with a multi-stage roll stretching zone in a drying zone after casting.
  • the residual solvent content of the film immediately before the stretching zone was 2.0%.
  • the stretching zone was covered with a casing to keep the temperature uniform, and the temperature was set to 130 ° C on the membrane surface.
  • the stretching temperature of the film was adjusted by the temperature of the roll and an infrared heater provided between the rolls.
  • the stretching ratio was adjusted to 1.42 times by adjusting the rotation speed of the roll.
  • the stretched film was gradually cooled to room temperature and wound up.
  • the film thickness of the obtained film was 101 / m.
  • the residual solvent content was 0.2%.
  • 1.18 parts by mass, triphenyl phosphate 9.19 parts by mass, biphenyldiph 4.60 parts by mass of enyl phosphate, 2.36 parts by mass of tribenzylamine, 529.90 parts by mass of methyl acetate, 99.4 parts by mass of ethanol, and 33.1 parts by mass of butanol were mixed with stirring.
  • the mixed solution was cooled in a freezer at 170 ° C, and the temperature was raised to 40 ° C again to dissolve the cellulose acetate.
  • a stretched film was produced in the same manner as in Example 1.
  • the stretching ratio was 1.41 times.
  • the thickness of the obtained film was 100 ⁇ .
  • the residual solvent content of the film was 0 : 4%.
  • the obtained solution (dope) was cast on a glass plate, dried at room temperature for 1 minute, and then dried at 45 ° C for 5 minutes.
  • the cellulose acetate film was peeled off from the glass plate, dried at 100 ° C for 20 minutes, and then dried at 130 ° C for 10 minutes.
  • Example 1 450 nrn DD 0 nm 590 nm (nx—ny)
  • Example 1 1 16.8 nm 1 375 nm 143.3 nm 1 53
  • Example 2 1 1 5.7 nm 1 365 5 nm 142.3 nm 1 53
  • Example 3 1 16.3 nm 1 36 9 nm 142.5 nm 1 52
  • Example 4 1 1 7.1 nm 1 37 9 nm 143.3 nm 1 48
  • Example 5 1 1 6.4 nm 1 37 0 nm 142.5 nm 1 52 Comparative Example 2 147.8 nm 1 37 5 nm 1 34.9 nm 1 1 2
  • Example 4 ⁇ 0.9 '0.9
  • the transparent protective film, the polarizing film and the retardation film produced in Example 2 were laminated in this order to obtain a circularly polarizing plate.
  • the angle between the slow axis of the retardation plate and the polarization axis of the polarizing film was adjusted to 45 °.
  • the transparent protective film, the polarizing film and the retardation film produced in Example 4 were laminated in this order to obtain a circularly polarizing plate.
  • the angle between the slow axis of the retardation plate and the polarization axis of the polarizing film was adjusted to 45 °.
  • the transparent protective film, the polarizing film and the retardation film produced in Comparative Example 2 were laminated in this order to obtain a circularly polarizing plate.
  • the angle between the slow axis of the retardation plate and the polarization axis of the polarizing film was adjusted to 45 °.
  • the circularly polarizing plates prepared in Examples 6, 7 and Comparative Example 3 were mounted on a reflective liquid crystal panel, and the viewing angle characteristics were measured using a measuring device (EZ Contrast 160D, manufactured by ELDIM). Table 3 shows the results. Using the circularly polarizing plates prepared in Examples 6 and 7, a wide field of view Table 3 viewing angle t the corner is obtained (contrast 3)
  • a glass substrate provided with an ITO transparent electrode and a glass substrate provided with an aluminum reflective electrode having fine irregularities were prepared.
  • Polyimide alignment films SE-7992, manufactured by Nissan Chemical Co., Ltd.
  • Two substrates were stacked via a 2.5 / zm spacer so that the alignment films faced each other.
  • the directions of the substrates were adjusted so that the rubbing directions of the two alignment films intersect at an angle of 117 °.
  • Liquid crystal (MLC-6252, manufactured by Merck) was injected into the gap between the substrates to form a liquid crystal layer.
  • a TN type liquid crystal cell having a twist angle of 63 ° and a value of ⁇ d of 198 nm was produced.
  • the ⁇ 4 plate prepared in Example 3 was attached to the side of the glass substrate provided with the ITO transparent electrode via an adhesive. On top of that, a polarizing plate (a polarizing film in which a protective film whose surface is AR-treated was laminated) was further adhered.
  • a polarizing plate a polarizing film in which a protective film whose surface is AR-treated was laminated
  • a 1 kHz rectangular wave voltage was applied to the manufactured reflection type liquid crystal display device. Visual evaluation was performed with a white display of 1.5 V and a black display of 4.5 V. As a result, it was confirmed that neutral gray was displayed without coloration in both white display and black display.
  • the contrast ratio of the reflected luminance was measured using a measuring instrument (E Zcontrastl60D, manufactured by E1dim), the contrast ratio from the front was 23, and the viewing angle at which the contrast ratio was 3 was up and down. It was 120 ° or more, and left and right 120 ° or more.
  • a glass substrate provided with an ITO transparent electrode and a glass substrate provided with an aluminum reflective electrode having fine irregularities were prepared.
  • Polyimide alignment films SE-7992, manufactured by Nissan Chemical Co., Ltd.
  • Two substrates were stacked via a spacer of 4 jum so that the alignment films faced each other.
  • the directions of the substrates were adjusted so that the rubbing directions of the two alignment films intersect at an angle of 110 °.
  • a liquid crystal (MLC-6252, manufactured by Merck) was injected into the gap between the substrates to form a liquid crystal layer.
  • a TN type liquid crystal cell having a twist angle of 70 ° and a value of ⁇ d of 269 nm was produced.
  • the ⁇ / 4 plate produced in Example 3 was attached to the side of the glass substrate provided with the ITO transparent electrode via an adhesive. On top of that, a polarizing plate (a polarizing film in which a protective film whose surface is AR-treated was laminated) was further adhered.
  • a polarizing plate a polarizing film in which a protective film whose surface is AR-treated was laminated
  • a 1 kHz rectangular wave voltage was applied to the manufactured reflection type liquid crystal display device. Visual evaluation was performed with white display at 1.5 V and black display at 4.5 V. Neither white display nor black display was colorless and neutral gray was displayed. .
  • the contrast ratio of the reflected luminance was measured using a measuring instrument (E Zcontrastl60D, manufactured by Eldim), the contrast ratio from the front was 25, and the viewing angle at which the contrast ratio was 3 was 120 ° or more, and left and right 120 ° or more.
  • the circularly polarizing plate prepared in Example 7 was adhered to a glass substrate, and left for 100 hours in an environment of 60 ° C. and 90% RH. Using this sample on the front of the reflective liquid crystal cell, A reflective liquid crystal display device was manufactured. As a result of making the front of the display screen of the display device a black display and visually observing, almost no unevenness due to light leakage was observed.
  • a solution of a polymer for forming a vertical alignment film (LQ-1800, manufactured by Hitachi Chemical Dubon Microphone Systems Co., Ltd.) was applied onto a glass substrate provided with an ITO transparent electrode, dried, and rubbed.
  • the ⁇ / 4 plate (retardation plate) produced in Example 3 was adhered with an adhesive on a glass substrate on which aluminum was deposited as a reflection plate.
  • An SI layer was provided on the ⁇ S4 plate by sputtering, and an ITO transparent electrode was provided thereon.
  • a solution of a polymer for forming a vertical alignment film (LQ-1800, manufactured by Hitachi Chemical DuPont Microsystems) is applied on the transparent electrode, dried, and then rubbed in the direction of 45 ° from the slow axis direction of the ⁇ 4 plate. was performed.
  • a rectangular wave voltage of 1 kHz was applied between the IT ⁇ electrodes of the fabricated guest-host reflection type liquid crystal display device.
  • the transmittances at white display IV and black display 10V were 65% and 6%, respectively.
  • the transmittance ratio (contrast ratio) between the white display and the black display was 11: 1.
  • the angle at which a contrast ratio of 2: 1 was obtained in the upper, lower, left, and right directions was measured, the angle was 120 ° or more in both the upper, lower, left, and right directions.
  • the transmittance was measured while increasing and decreasing the voltage, but no hysteresis was observed in the transmittance-voltage curve.
  • a cellulose acetate film was produced in the same manner as in Example 1 except that the amount of the dope was changed so that the dry film thickness of the whole film was 200 ⁇ m.
  • the obtained cellulose acetate film (retardation plate) was analyzed using an ellipsometer (M-150, manufactured by JASCO Corporation) at a wavelength of 450 nm, at a wavelength of 550 nm and at a wavelength of 590 nm. Re) was 225.6 nm and 275.111111 ⁇ 290.2 nm, respectively.
  • this cellulose acetate film achieved L / 2 in a wide wavelength range;
  • Lb was measured from the refractive index by Abbe refractometer and the angle dependence of the retardation.
  • the refractive index nx in the direction of the slow axis in the plane, the refractive index ny in the direction perpendicular to the slow axis in the plane, and the refractive index nz in the thickness direction are calculated, and the value of (nx—nz) / (n xny) is calculated.
  • the calculated value was 1.60.
  • Example 2 At room temperature, 120 parts by mass of cellulose acetate having an average degree of acetylation of 59.7%, 9.36 parts by mass of trifeninolephosphate, 4.68 parts by mass of bifeninolethiopheninolephosphate, and the retardation used in Example 1.
  • a solution (dope) was prepared by mixing 1.00 parts by mass of the raising agent, 543.14 parts by mass of methylene chloride, 99.35 parts by mass of methanol and 19.87 parts by mass of n-butanol.
  • the obtained dope was cast on a glass plate, dried at room temperature for 1 minute, and then dried at 45 ° C for 5 minutes. The residual solvent amount after drying was 30% by mass.
  • the thickness of the obtained film was 102 ⁇ .
  • the stretching ratio was 1.41 times.
  • a retardation plate was produced in the same manner as in Example 13 except that the obtained dope was used.
  • the thickness of the obtained film was ⁇ ⁇ ⁇ .
  • the stretching ratio was 1.41.
  • the dried film was cut into an appropriate size, it was stretched 1.4 times in a direction parallel to the casting direction at 130 ° C.
  • the direction perpendicular to the stretching direction can be freely contracted.
  • the film was taken out under an atmosphere at room temperature and cooled.
  • the thickness of the obtained film was 102 ⁇ .
  • the residual amount of the solvent was 0.1% by mass.
  • Example 1 In another mixing tank, the retardation raising agent used in Example 1 1.18 parts by mass, tribenzi ⁇ / amine 2.36 parts by mass, methylene chloride 16.0 parts by mass methanol 1.39 A part by mass was charged and stirred while heating to prepare a retardation increasing agent solution.
  • the entire retardation raising agent solution was charged into the cellulose acetate solution, and the mixture was sufficiently stirred to prepare a dope.
  • the obtained dope was cast and uniaxially stretched using a band casting machine provided with a multistage roll stretching zone in a drying zone after casting.
  • the residual solvent amount of the film immediately before the stretching zone was 1.0%.
  • the stretching zone was covered with a casing to keep the temperature uniform, and the temperature was set to 135 ° C.
  • the stretching temperature of the film was adjusted to 130 ° C using a roll temperature and an infrared heater provided between the rolls.
  • the stretching ratio was 1.4 times depending on the rotation speed of the roll.
  • the stretched film was gradually cooled to room temperature and wound up.
  • the film thickness of the obtained film was 101 ⁇ .
  • the residual solvent content was 0.2%.
  • Example 15 The dope obtained in Example 15 was cast on a glass plate, dried at room temperature for 1 minute, and then dried at 45 ° C for 5 minutes. The amount of residual solvent after drying was 25% by mass. The produced film was peeled off from the glass plate and dried at 100 ° C for 2 minutes and at 120 ° C for 10 minutes. The residual solvent content after drying was 2.5%.
  • the film was stretched 1.30 times at 130 ° C. in a direction parallel to the casting direction.
  • the direction perpendicular to the stretching direction can be freely contracted.
  • heat treatment was performed at 110 ° C for 5 seconds using an infrared heater. After heat treatment, the sample was cooled and removed.
  • Polycarbonate having a weight average molecular weight of 100,000 was dissolved in methylene chloride to obtain a 7% by mass solution. This solution was cast on a glass plate so as to have a dry film thickness of 80 ⁇ m, dried at room temperature for 30 minutes, and then dried at 70 ° C. for 30 minutes. The polycarbonate film was peeled from the glass plate and stretched 4% at 158 ° C to obtain a stretched birefringent film of polycarbonate.
  • Example 13 1 16.8 nm 1 37.8 nm 1 43.3 nm 1.60
  • Example 14 1 15.8 nm 1 36.7 nm 1 4 2.2 nm 1.55
  • Example 15 1 1 6.3 nm 1 3 6.9 nm 1 4 2.5 nm 1.52
  • Example 16 1 1 6.3 nm 1 36.9 nm 1 4 2.6 nm 1.53
  • Example 17 1 1 6.4 nm 1 37.0 nm 1 42.5 nm 1.52 Comparative example 4 1 4 7.8 nm 1 37.5 nm 1 34.9 nm 1. 1 2
  • the transparent protective film, the polarizing film and the retardation plate produced in Example 14 were laminated in this order to obtain a circularly polarizing plate.
  • the angle between the slow axis of the retarder and the polarizing axis of the polarizing film is adjusted to 45 °. It was adjusted.
  • the transparent protective film, the polarizing film and the retardation film produced in Example 16 were laminated in this order to obtain a circularly polarizing plate. 45.
  • the angle between the slow axis of the phase difference plate and the polarization axis of the polarizing film is 45. Was adjusted.
  • the transparent protective film, the polarizing film, and the retardation plate produced in Comparative Example 4 were laminated in this order to obtain a circularly polarizing plate.
  • the angle between the slow axis of the retardation plate and the polarization axis of the polarizing film was adjusted to 45 °.
  • the circularly polarizing plates produced in Examples 18 and 19 and Comparative Example 5 were mounted on a reflective liquid crystal panel, and the viewing angle characteristics were measured using a measuring device (EZ Contrast 160D, manufactured by ELDIM). The results are shown in Table 6. When the circularly polarizing plates produced in Examples 18 and 19 are used, a wide viewing angle can be obtained. Table 6 Viewing angle (Contrast 3)
  • a glass substrate provided with an ITO transparent electrode and a glass substrate provided with an aluminum reflective electrode having fine irregularities were prepared.
  • Polyimide alignment films SE-7992, manufactured by Nissan Chemical Co., Ltd.
  • Two substrates were stacked through a 5 / m spacer so that the alignment films faced each other.
  • the orientation of the substrate was adjusted so that the rubbing directions of the two alignment films intersect at an angle of 117 °.
  • Liquid crystal (MLC-6252, manufactured by Merck) was injected into the gap between the substrates to form a liquid crystal layer.
  • a TN type liquid crystal cell having a twist angle of 63 ° and a value of ⁇ nd of 198 nm was produced.
  • the ⁇ 4 plate prepared in Example 15 was attached to the side of the glass substrate provided with the ITO transparent electrode via an adhesive. On top of that, a polarizing plate (a polarizing film with a protective film laminated on the surface of which was subjected to AR treatment) was further adhered.
  • a polarizing plate a polarizing film with a protective film laminated on the surface of which was subjected to AR treatment
  • a 1 kHz rectangular wave voltage was applied to the manufactured reflection type liquid crystal display device. Visual evaluation was performed with white display at 1.5 V and black display at 4.5 V. Neither white display nor black display was colorless and neutral gray was displayed. .
  • a glass substrate provided with an ITO transparent electrode and a glass substrate provided with an aluminum reflective electrode having fine irregularities were prepared.
  • a polyimide alignment film (SE_7992, manufactured by Nissan Chemical Industries, Ltd.) was formed on each electrode side of the two glass substrates, and a rubbing treatment was performed.
  • the two substrates were stacked so that the alignment films faced each other via the spacer described in 3.4.
  • the directions of the substrates were adjusted so that the rubbing directions of the two alignment films intersect at an angle of 110 °.
  • Liquid crystal (MLC-6252, manufactured by Merck) was injected into the gap between the substrates to form a liquid crystal layer. In this way, a TN type liquid crystal cell having a twist angle of 70 ° and a value of nd of 269 nm was produced.
  • the quarter plate prepared in Example 15 was attached via an adhesive. On top of that, a polarizing plate (a polarizing film with a protective film laminated on the surface of which was subjected to AR treatment) was further adhered.
  • a rectangular wave voltage of 1 k ⁇ was applied to the manufactured reflective liquid crystal display device. Visual evaluation was performed with a white display of 1.5 V and a black display of 4.5 V. As a result, it was confirmed that neutral gray was displayed without coloration in both white display and black display.
  • the contrast ratio of the reflected luminance was measured using a measuring instrument (E Zcontrastl60D, manufactured by Eldim), the contrast ratio from the front was 25, and the viewing angle at which the contrast ratio was 3 was 120 ° or more, left or right 120 ° or more.
  • the circularly polarizing plate prepared in Example 19 was attached to a glass substrate, and left for 100 hours in an environment of 60 ° C. and 90% RH. Using this sample on the front surface of a reflective liquid crystal cell, a reflective liquid crystal display device was manufactured. As a result of making the front of the display screen of the display device a black display and visually observing, unevenness due to light leakage was hardly observed. [Example 23]
  • a solution of a polymer for forming a vertical alignment film (LQ-1800, manufactured by Hitachi Chemical DuPont Microsystems) was applied onto a glass substrate provided with an ITO transparent electrode, dried, and rubbed.
  • Example 15 An L / 4 plate (retardation plate) prepared in Example 15 was adhered with an adhesive on a glass substrate on which aluminum was deposited as a reflection plate. On the No. 4 plate, an SI layer was provided by sputtering, and an ITO transparent electrode was provided thereon. A solution of a polymer for vertical alignment film (LQ_1800, manufactured by Hitachi Chemical DuPont Microsystems) is applied on the transparent electrode, dried, and rubbed in the direction of 45 ° from the slow axis direction of the ⁇ 4 plate. went.
  • LQ_1800 manufactured by Hitachi Chemical DuPont Microsystems
  • a rectangular wave voltage of 1 kHz was applied between the ITO electrodes of the fabricated guest-host reflection type liquid crystal display device.
  • the transmittances at white display IV and black display 10V were 65% and 6%, respectively.
  • the transmittance ratio (contrast ratio) between the white display and the black display was 11: 1.
  • the angle at which a contrast ratio of 2: 1 was obtained in the upper, lower, left, and right directions was measured, the angle was 120 ° or more in both the upper, lower, left, and right directions.
  • the transmittance was measured while increasing and decreasing the voltage, but no hysteresis was observed in the transmittance-voltage curve.
  • a cellulose acetate film was produced in the same manner as in Example 13, except that the amount of the dope was changed so that the thickness of the obtained film was 200 ⁇ .
  • the obtained cellulose acetate film (retardation film) was analyzed using an ellipsometer (M-150, manufactured by JASCO Corporation) at a wavelength of 450 nm, 550 nm and 590 nm to determine the letter value (Re ) Was 233.6 nm, 275.6 nm and 286.6 nm, respectively. Therefore, this cellulose acetate film achieved 1/2 in a wide wavelength range.
  • the in-plane at a wavelength of 550 nm was obtained.
  • measurement of the moisture Rise expansion coefficient was 1 2. 0 X 1 0- 5 Zcm 2 /% RH.
  • cellulose acetate having an average acetylation degree of 59.7% 120 parts by mass, the retardation enhancer used in Example 1 1.2 parts by mass, triphenylene phosphate 9.36 parts by mass, biphenyldiphenyl A solution (dope) was prepared by mixing 4.68 parts by mass of phosphate, 2.0 parts by mass of tribenzylamine, 538.2 parts by mass of methylene chloride, and 46.8 parts by mass of methanol.
  • the obtained dope was cast on a stainless steel band, and the film was dried until it had self-supporting properties, and then was peeled off from the band.
  • the remaining volatile matter at that time was 30 mass. / 0 .
  • the film was dried at 120 ° C for 15 minutes to reduce the residual volatile content to 2% by mass or less, and then stretched at 130 ° C in a direction parallel to the casting direction.
  • the direction perpendicular to the stretching direction The direction can be freely contracted.
  • the film was dried at 120 ° C. for 30 minutes as it was, and the stretched film was taken out.
  • the residual amount of the solvent after stretching was 0.1% by mass.
  • the thickness of the film thus obtained was 108 ⁇ .
  • the obtained cellulose acetate film ( ⁇ / 4 plate) was analyzed using an ellipsometer ( ⁇ -150, manufactured by JASCO Corporation) at wavelengths of 450 nm, 55500 nm, and 59 °.
  • the retardation values (Re) at nm were measured, they were 121.2 nm, 137.5 nm, and 142.7 nm, respectively. Therefore, this cellulose acetate film achieved L / 4 in a wide wavelength range; L550 was obtained from the refractive index measurement by Abbe refractometer and the measurement of the angle dependence of the retardation.
  • the refractive index nx in the direction of the in-plane slow axis, the refractive index ny in the direction perpendicular to the slow axis in the plane, and the refractive index nz in the thickness direction at nm are calculated as (nx—nz) / (n xny). The calculated value was 1.5.
  • the polarizer and the retarder provided on the reflective liquid crystal display device with a touch panel using a TN type liquid crystal cell were peeled off, and the example was replaced.
  • the IZ 4 plate and the polarizing plate were attached to the liquid crystal cell using an adhesive in this order.
  • the angle between the stretching direction of ⁇ / 4 (parallel to the slow axis direction) and the transmission axis direction of the polarizing plate was 45 °.
  • the contrast ratio of the manufactured liquid crystal display device was measured with a measuring device ( ⁇ -Contrast 160D, manufactured by ELDIM), and was found to be 10: 1 at the front. Also, when the viewing angle at which a contrast ratio of 2: 1 was obtained at the top, bottom, left and right was measured, The angle was more than 120 ° both vertically and horizontally.
  • Tatsuchipaneru Reflective type liquid crystal display device (Zaurus Color Pocket ML- 3 10, manufactured by Sharp Corp.) for, using a measuring machine (manufactured by EZ- Co ntrastl 60D N ELDIM Inc.), contrast When the ratio was measured, it was 10: 1 at the front.
  • the viewing angle at which a contrast ratio of 2: 1 was obtained in the upper, lower, left, and right directions was 100 ° in the vertical direction and 90 ° in the horizontal direction.
  • a solution of a polymer for forming a vertical alignment film (LQ-1800, manufactured by Hitachi Chemical DuPont Microphone Systems) was applied onto a glass substrate provided with an ITO transparent electrode, dried, and rubbed.
  • Example 25 It was produced in Example 25 on a glass substrate on which aluminum was vapor-deposited as a reflection plate; an IZ4 plate was adhered with an adhesive. On the / 4 plate, a SiO layer was provided by sputtering, and an ITO transparent electrode was provided thereon. A solution of vertical alignment film forming polymer (LQ-1800, manufactured by Hitachi Chemical DuPont Microsystems) is applied on the transparent electrode, dried, and then set at 45 ° from the slow axis direction of the ⁇ / 4 plate. A rubbing treatment was performed.
  • LQ-1800 vertical alignment film forming polymer
  • Two glass substrates were stacked via a spacer of 7.6 zm such that the alignment films faced each other.
  • the orientation of the substrate was adjusted so that the rubbing direction of the alignment film was antiparallel.
  • a mixture of 2.5% by mass of dichroic dye (NKX-1366, manufactured by Nippon Kogaku Dyeing Co., Ltd.) and 97.5% by mass of liquid crystal (ZLI-28'06, manufactured by Merck) was added.
  • the liquid crystal layer was formed by injection using a vacuum injection method.
  • the touch panel used in Example 25 was provided on the observer side of the manufactured guest-host reflective liquid crystal display device.
  • a rectangular wave voltage of 1 kHz was applied between the ITO electrodes of the fabricated guest-host reflection type liquid crystal display device.
  • the reflectance at white display IV and black display 10 V is 65%, 6%.
  • the ratio of the reflectance between the white display and the black display was 11: 1.
  • the viewing angle at which a contrast ratio of 2: 1 was obtained in the upper, lower, left, and right directions was measured, the angle was 120 ° or more in both the upper, lower, left and right directions.
  • the reflectance was measured while increasing and decreasing the voltage, but no hysteresis was observed in the reflectance-voltage curve.
  • a stretched film was prepared in the same manner as in Example 25, and a transparent conductive film was applied as follows.
  • I-Propyl alcohol was added to 100 g of the silver colloid dispersion liquid, and the mixture was ultrasonically dispersed and filtered through a polypropylene filter having a pore size of 1 ⁇ m to prepare a coating liquid.
  • the above-mentioned silver colloid coating solution was applied using a wire bar so that the coating amount became 70 mg / m 2 , and dried at 40 ° C. Water fed by a pump was sprayed on the silver-coated surface, and excess water was removed with an air knife. Then, treatment was performed for 5 minutes while transporting in a heating zone at 120 ° C. Next, a coating solution L-1 for overcoat was applied to a film thickness of 80 nm, dried, heat-treated at 120 ° C. for 2 hours, and then irradiated with ultraviolet rays to cure the coating film. The thickness of the film thus obtained was 1 ⁇ 2 ⁇ . Further, the surface resistivity of the transparent conductive film side was measured by a four-terminal method, and as a result, it was 400 ⁇ / port, and the light transmittance was 71%.
  • the wavelength of the obtained senorelose acetate ( ⁇ / 4) was determined to be 450 nm, 550 nm, and 590 nm.
  • the retardation values (R e) at 0 nm were measured, they were 1 1 .4 nm, 1 32 .O nm, and 13.7 O nm, respectively. Therefore, this cellulose acetate film achieved ⁇ / 4 in a wide wavelength range.
  • the refractive index ⁇ ⁇ in the in-plane slow axis direction at a wavelength of 550 nm, perpendicular to the in-plane slow axis was obtained, and the value of ( ⁇ ⁇ - ⁇ ⁇ ) / ( ⁇ ⁇ -ny) was calculated to be 1.52.
  • a 0.7 mm thick glass plate with a transparent conductive film (IT ⁇ ) with a surface resistivity of 5 ⁇ / port on one side and a surface resistivity of 400 ⁇ / port on the other side was prepared.
  • Surface resistivity 5 ⁇ A polyimide alignment film (SE-7992, manufactured by Nissan Chemical Industries, Ltd.) was formed on the surface of the Z port and rubbed.
  • surface resistivity 400 ⁇ / port On the other side (surface resistivity 400 ⁇ / port), a dot spacer of 1 mm pitch and silver electrodes were printed on both ends.
  • Silver electrodes were printed on both ends of the obtained LZ4 plate with a transparent conductive film, and bonded to the transparent conductive glass plate so that the transparent conductive films faced each other.
  • a glass substrate provided with an aluminum reflective electrode having fine irregularities was prepared.
  • a polyimide alignment film (SE-7992, manufactured by Nissan Chemical Co., Ltd.) was formed on the electrode side of this glass substrate, and rubbing treatment was performed.
  • the above touch panel and a glass substrate provided with a reflective electrode were overlapped via a spacer of 3.4 / m such that the alignment films faced each other.
  • the orientation of the substrate was adjusted so that the rubbing directions of the two alignment films intersect at an angle of 110 °.
  • Liquid crystal (MLC-6252, manufactured by Merck) was injected into the gap between the substrates to form a liquid crystal layer.
  • a TN type liquid crystal cell having a twist angle of 70 ° and an value of And of 269 nm was produced.
  • a reflective liquid crystal display using the touch panel was manufactured.
  • a rectangular wave voltage of 1 kHz was applied to the manufactured reflective liquid crystal display device.
  • Visual evaluation was performed with white display at 1.5 V and black display at 4.5 V. In both white display and black display, the reflective liquid crystal display had no color and neutral gray was displayed.
  • the contrast ratio of the reflected luminance was measured using a measuring instrument (E Zcontrastl60D, manufactured by E1dim), the contrast ratio from the front was 25, and the viewing angle at which the contrast ratio was 2 was up and down. 120 ° or more, left and right 120. That was all.
  • a stretched film was prepared in the same manner as in Example 25, and a transparent conductive film was applied as follows.
  • a UV-curable polyfunctional methacrylate resin (Z 7503, manufactured by JSR) was applied on the stretched film so as to have a thickness of 3 m.
  • a film of IT was formed to a thickness of 15 nm by DC magnetron sputtering.
  • the thickness of the film thus obtained was 103 ⁇ . Further, the surface resistivity of the transparent conductive film side was measured by a four-terminal method, and as a result, it was 230 ⁇ square, and the light transmittance was 89%.
  • the obtained cellulose acetate film ( ⁇ / 4 plate) was analyzed using an ellipsometer ( ⁇ -150, manufactured by JASCO Corporation) at a wavelength of 450 nm, 550 nm, and 590 nm for a retardation value (Re). ) was 119.0 nm, 135. lnm, and 140. lnm, respectively. Therefore, this cellulose acetate film achieved ⁇ 4 in a wide wavelength range.Furthermore, from the measurement of the refractive index by Abbe refractometer and the measurement of the angle dependence of the retardation, the in-plane wavelength at 550 nm was determined.
  • the refractive index ⁇ ⁇ in the slow axis direction, the refractive index ny in the direction perpendicular to the in-plane slow axis, and the refractive index ⁇ ⁇ ⁇ in the thickness direction are obtained, and the value of ( ⁇ ⁇ — ⁇ z) / (n xn y) is obtained.
  • a reflective liquid crystal display device with a touch panel was produced in exactly the same manner as in Example 27 except that an L / 4 plate was used.
  • the contrast ratio of the reflected luminance was measured using a measuring device (E Zcon rastl60D, manufactured by Eldim), the contrast ratio from the front was 28, and the viewing angle at which the contrast ratio was 2 was up and down. It was 120 ° or more, and left and right 120 ° or more.
  • the following composition was put into a mixing tank, cooled and melted (at 70 ° C) to prepare a cell acetate solution (dope).
  • the method of casting on a stainless steel band was the same as in Example 25.
  • the cellulose triacetate used here had a degree of acetylation of 60.9%, a degree of substitution of 2.82, a viscosity average degree of polymerization of 320, a water content of 0.4 % by mass, and 6% in a methylene chloride solution of 0/0.
  • the powder has a viscosity of 305 mPa ⁇ s, an average particle size of 1.5 mm and a standard deviation of 0.5 mm, the residual acetic acid content is 0.01% by mass or less, the Was 0.007% by mass, and Fe was 5 ppm.
  • the acetyl group at the 6-position was 0.95, which was 32.2% of the total acetyl.
  • the acetone extractables were 11% by mass, and the ratio between the weight average molecular weight and the number average molecular weight was 0.5, indicating a uniform distribution.
  • the yellowness index is 0.3, the haze is 0.08%, the transparency is 93.5%, the T g is 160 ° C, and the crystallization
  • the calorific value was 6.2 jZg c
  • the thickness of the film thus obtained was 103 ⁇ .
  • the surface resistivity of the transparent conductive film side was measured by a four-terminal method, and as a result, it was 406 ⁇ square, and the light transmittance was 88. /. Met.
  • Retardation values (Re) at wavelengths of 450 nm, 550 nm, and 590 nm of the obtained film with a transparent conductive film were measured using an ellipsometer (M-150, manufactured by JASCO Corporation). However, they were 118.0 nm, 134. O nm, and 136. O nm, respectively. Therefore, this cellulose acetate film achieved / 4 in a wide wavelength range.
  • the refractive index nx in the in-plane slow axis direction at the wavelength of 550 nm and the in-plane perpendicular direction to the slow axis were measured.
  • the refractive index ny and the refractive index nz in the thickness direction were obtained, and the value of (nx—nz) / (nxny) was calculated to be 1.53.
  • a touch panel-reflective liquid crystal display device was produced in exactly the same manner as in Example 27 except that a 1/4 plate was used.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

A phase difference plate which is constituted of one sheet of a polymer film having a retardation value measured at a wave length of 450 nm (Re(450)) of 100 to 125 nm and a retardation value measured at a wave length of 590 nm (Re(590)) of 120 to 160 nm, wherein the relationship of Re(590) - Re(450) = 2 nm is satisfied, and has DR0 and DR20 satisfying the relationship of |DR20(?) DR0(?) | = 0.02 at wave lengths of 450 nm and 750 nm. One sheet of a polymer film is used as a phase difference plate.

Description

一枚のポリマーフィルムからなる位相差板 [技術分野]  Retardation plate consisting of one polymer film [Technical field]
本発明は、 一枚のポリマーフィルムからなる位相差板に関する。 さらに本発明 は、 一枚のポリマーフィルムからなる位相差板を用いた円偏光板、 タツチパネル およぴゲストホスト型を含む反射型液晶表示装置にも関する。  The present invention relates to a retardation plate made of one polymer film. Further, the present invention also relates to a reflection type liquid crystal display device including a circularly polarizing plate, a touch panel, and a guest-host type using a retardation plate made of one polymer film.
[従来技術] [Prior art]
λ/4板は、 反射防止膜、 タツチパネル、 そして液晶表示装置に関連する多く の用途を有しており、 既に実際に使用されている。 しかし、 LZ4板と称してい ても、 ある特定波長で; ΙΖ4を達成しているものが大部分であった。 画像表示装 置に使用する λΖ4板では、 λΖ4を達成できる波長領域が狭いと、 表示画像の コントラス トが低下するという問題が生じる。  The λ / 4 plate has many applications related to antireflection films, touch panels, and liquid crystal displays, and is already in practical use. However, even though they were called LZ4 plates, most of them achieved を 4 at a certain specific wavelength. In a λ 4 plate used for an image display device, if the wavelength region in which λΖ4 can be achieved is narrow, there is a problem that the contrast of a displayed image is reduced.
特開平 5— 27118号おょぴ同 5— 27119号の各公報には、 レターデー ションが大きい複屈折性フィルムと、 レターデーシヨンが小さい複屈折率フィル ムとを、 それらの光軸が直交するように積層させた位相差板が開示されている。 二枚のフィルムのレターデーシヨンの差が可視光域の全体にわたり λΖ4であれ ば、 位相差板は理論的には、 可視光域の全体にわたり; L/4板として機能する。 特開平 10— 68816号公報に、 特定波長においてえ Ζ4となっているポリ マーフィルムと、 それと同一材料からなり同じ波長において; LZ 2となっている ポリマーフィルムとを積層させて、 広い波長領域で λ/4が得られる位相差板が 開示されている。  JP-A-5-27118 and JP-A-5-27119 each disclose a birefringent film having a large retardation and a birefringent film having a small retardation so that their optical axes are orthogonal to each other. A phase difference plate laminated as described above is disclosed. If the difference in retardation of the two films is λΖ4 over the entire visible light range, then the retarder theoretically functions as an L / 4 plate over the entire visible light range. Japanese Patent Application Laid-Open No. 10-68816 discloses that a polymer film having a thickness of 4 at a specific wavelength and a polymer film of the same material and having the same wavelength; A phase difference plate that can obtain λ / 4 is disclosed.
特開平 10— 90521号公報にも、 二枚のポリマーフィルムを積層すること により広い波長領域で; 1/ 4を達成できる位相差板が開示されている。  Japanese Patent Application Laid-Open No. H10-90521 also discloses a retardation plate capable of achieving 1/4 in a wide wavelength range by laminating two polymer films.
以上のポリマーフィルムとしては、 ポリカーボネートのような合成ポリマーの 延伸フィルムが使用されていた。 し力 しながら、 このような二枚型の; L/4板は 積層する際の角度を厳密に調整しなければならない。 また λΖ4板の厚みが厚く なりやすい。 [発明の要旨] As the above polymer film, a stretched film of a synthetic polymer such as polycarbonate has been used. However, such a two-piece L / 4 board must be strictly adjusted for the stacking angle. Also, the thickness of λΖ4 plate is large Prone. [Summary of the Invention]
二枚のポリマーフィルムを積層することにより、 広レ、波長領域で λ / 4を達成 することができる。 し力 し、 そのためには、 二枚のポリマーフィルムの角度を厳 密に調整しながら積層する必要がある。  By laminating two polymer films, λ / 4 can be achieved in a wide wavelength range. For that purpose, it is necessary to laminate the two polymer films while strictly adjusting the angle.
二枚のポリマーフィルムを用いず、 一枚のポリマーフィルムで; / 4を実現す る方法として、 透明で短波長側の複屈折が小さい波長分散を有するポリマーフィ ルムを用いることが考えられる。 このような素材としてセルロースァセテ一トが あることが知られており、 L / 4板やえ Ζ 2板の素材として用いられている。 し かしながら、 広い波長域で; 1 / 4を実現していないため、 光漏れが起こり、 コン トラストが低下する問題があった。  As a method of realizing / 4 with one polymer film without using two polymer films, it is conceivable to use a polymer film that is transparent and has wavelength dispersion with small birefringence on the short wavelength side. It is known that there is a cellulose acetate as such a material, and it is used as a material for L / 4 board and / or 2 boards. However, since 1/4 was not realized in a wide wavelength range, there was a problem that light leakage occurred and contrast was reduced.
また、 本発明者は、 ポリマーフィルムの波長分散は測定角度の依存性があるこ とを見出した。 即ち、 フィルムの法線方向から測定した波長分散を 5 5 0 n mの 値で規格化した波長分散とフィルムの法線方向とは異なる方向から測定した波長 分散を同様に規格化した波長分散を比較すると一致しないことを見出した。 この 現象は、 ポリマーの加工性改善のために用いられる可塑剤が添加されている場合 であっても同様である。 このような素材を用いて作製した; L / 4板を液晶表示装 置に用いると視野角特性が低下してしまう問題がある。  In addition, the present inventor has found that the wavelength dispersion of the polymer film depends on the measurement angle. That is, compare the chromatic dispersion measured from the normal direction of the film with the value of 550 nm and the chromatic dispersion measured from the direction different from the normal direction of the film and the chromatic dispersion similarly normalized. Then they found that they did not match. This phenomenon is the same even when a plasticizer used for improving the processability of the polymer is added. It was manufactured using such a material; when an L / 4 plate is used for a liquid crystal display device, there is a problem that the viewing angle characteristics are deteriorated.
さらに、 従来の; L Z 4板としては、 合成ポリマーの延伸フィルムが用いられて いる。 しかし、 延伸フィルムでは延伸むらによる遅相軸方向のばらつき (軸ずれ ) が発生しやすい。 軸ずれが大きいと、 光漏れが発生し、 コントラス トが低下す る。 ポリマーフィルムからなる位相差板を用いた液晶表示装置では、 通電時に額 縁状の 「むら」 が発生し、 視覚特性が低下する問題が起こりやすいことが知られ ている。 本研究者の研究から、 この光漏れは湿熱条件の変化によるポリマーフィ ルムの膨張あるいは収縮が位相差板全体として抑制され、 ポリマーフィルムの光 学特性が変化していることが原因であることが明らかになった。 特にセルロース エステルのような水酸基を有するポリマーでは湿度の影響が大きいことが判明し た。 本発明の目的は、 一枚のポリマーフィルムを用いて、 広い波長領域で /4ま たは; 1/ 2を達成し、 かつ波長分散に角度依存性がない位相差板を提供すること である。 Further, as a conventional LZ 4 plate, a stretched film of a synthetic polymer is used. However, in a stretched film, variation in the slow axis direction (axis shift) due to stretching unevenness is likely to occur. If the axis misalignment is large, light leaks and the contrast is reduced. It is known that a liquid crystal display device using a retardation plate made of a polymer film has a problem that picture frame-like “unevenness” occurs at the time of energization and visual characteristics are deteriorated. According to the research of this researcher, this light leakage is caused by the fact that the expansion or contraction of the polymer film due to the change of the wet heat condition is suppressed as a whole retardation plate, and the optical characteristics of the polymer film are changed. It was revealed. In particular, it was found that the influence of humidity was great for polymers having hydroxyl groups such as cellulose esters. It is an object of the present invention to provide a retardation plate that achieves ま or 広 い over a wide wavelength region using a single polymer film and has no angle dependence in wavelength dispersion. .
別の本発明の目的は、 反射型液晶表示装置の視野角と表示品位を改善できる位 相差板 (λΖ4板) または円偏光板を提供することである。  Another object of the present invention is to provide a retardation plate (λΖ4 plate) or a circularly polarizing plate capable of improving the viewing angle and display quality of a reflection type liquid crystal display device.
さらに別の本発明の目的は、 可視光域の全体にわたり LZ4を実現した一枚の ポリマーフィルムをタツチパネルに適用することである。  Still another object of the present invention is to apply a single polymer film that realizes LZ4 over the entire visible light range to a touch panel.
さらにまた別の本発明の目的は、 コントラストゃ色味などの表示品位が改善さ れたタツチパネル付き反射型液晶表示装置またはタツチパネル付きゲストホスト 型液晶表示装置を提供することである。  Still another object of the present invention is to provide a reflective liquid crystal display device with a touch panel or a guest-host type liquid crystal display device with a touch panel, which has improved display quality such as contrast and color.
本発明は、 波長 4 5 0 nmで測定したレターデーシヨン値 (R e (4 5 0) ) が 1 0 0乃至 1 2 5 nmであり、 波長 5 9 0 n mで測定したレターデーション値 (R e (5 9 0) ) が 1 2 0乃至 1 6 0 nmであり、 R e (5 9 0) 一 R e (4 5 0) ≥ 4 nmの関係を満足する一枚のポリマーフィルムからなり、 下記式 (I ) および (II) で定義される DR0および DR 2 0力 波長 4 5 0 nmと波長 7 5 0 nmとにおいて、 | DR20 (1) -DR0 (λ) | ≤ 0. 0 2の関係を満 足する位相差板を提供する。  In the present invention, the retardation value (R e (450)) measured at a wavelength of 450 nm is from 100 to 125 nm, and the retardation value (R e (5 90)) is from 120 to 160 nm, and is composed of one polymer film satisfying a relationship of R e (5 0 0) -R e (4 5 0) ≥ 4 nm, DR20 (1)-DR0 (λ) | ≤ 0.02 at DR0 and DR20 defined by the following formulas (I) and (II): Provide a retardation plate that satisfies the relationship.
(I ) DR 0 (え) =R e (λ) /R e (5 5 0)  (I) DR 0 (E) = R e (λ) / R e (5 5 0)
(II) DR 20 (λ) =R e 2 0. (X) /R e 2 0 (5 5 0)  (II) DR 20 (λ) = R e 2 0. (X) / R e 2 0 (5 5 0)
[式中、 Lは、 測定波長であり ; R e (λ) は、 フィルム表面の法線方向で測定 したレターデーシヨン値であり ;そして、 R e 20 (λ) は、 フィルム表面の法 線方向から 2 0 ° の角度で測定したレターデーション値である。 ]  [Where L is the measured wavelength; R e (λ) is the retardation value measured in the normal direction of the film surface; and R e 20 (λ) is the normal of the film surface. It is a retardation value measured at an angle of 20 ° from the direction. ]
また本発明は、 波長 4 5 0 nmで測定したレターデーシヨン値 (R e (4 5 0 ) ) が 1 0 0乃至 1 2 5 nmであり、 波長 5 9 0 n mで測定したレターデーショ ン値 (R e (5 9 0) ) が 1 20乃至 1 6 0 nmであり、 H e (5 9 0) — R e (4 5 0) ≥ 2 nmの関係を満足する一枚のポリマーフィルムからなり、 上記式 (I ) および (II) で定義される DR 0および DR 20が、 波長 4 5 0 nmと波 長 7 5 0 nmとにおいて、 1 DR20 (λ) 一 DR0 (λ) | ≤ 0. 0 2の関係 を満足する位相差板と、 偏光膜と力 位相差板の面内の遅相軸と偏光膜の偏光軸 との角度が実質的に 4 5° になるように積層されている円偏光板も提供する。 さらに本発明は、 波長 4 5 0 nmで測定したレターデーション値 (R e (4 5 0) ) が 20 0乃至 2 5 0 nmであり、 かつ波長 5 9 0 n mで測定したレターデ ーシヨン値 (R e (5 9 0) ) が 240乃至 3 2 0 nmであり、 そして、 R e ( 5 9 0) -R e (4 5 0) ≥ 2 n mの関係を満足する一枚のポリマーフィルムか らなり、 上記式 (I ) および (II) で定義される DR 0および DR2 0力 波長 4 5 0 nmと波長 7 5 0 nmとにおいて、 | DR 2 0 (λ) -DR0 (λ) | ≤ 0. 0 2の関係を満足する位相差板も提供する。 Further, in the present invention, the retardation value (Re (450)) measured at a wavelength of 450 nm is from 100 to 125 nm, and the retardation value measured at a wavelength of 590 nm ( R e (5 90)) is from 120 to 160 nm, and is composed of one polymer film satisfying a relationship of H e (5 90) — Re (4 5 0) ≥ 2 nm, DR 0 and DR 20 defined by the above formulas (I) and (II) are 1 DR20 (λ) and 1 DR0 (λ) | ≤ 0.0 at a wavelength of 450 nm and a wavelength of 750 nm. The retardation plate that satisfies the relationship 2 above, the polarizing film and the force The slow axis in the plane of the retardation plate and the polarization axis Also provided is a circularly polarizing plate laminated so that the angle between the polarizers is substantially 45 °. Further, in the present invention, the retardation value (R e (450)) measured at a wavelength of 450 nm is from 200 to 250 nm, and the retardation value (R e) measured at a wavelength of 590 nm is (R e (450)). e (590)) is 240 to 320 nm, and is composed of one polymer film satisfying the relationship of Re (590)-Re (450) ≥ 2 nm. DR 0 and DR 20 defined by the above formulas (I) and (II). At a wavelength of 450 nm and a wavelength of 750 nm, | DR 2 0 (λ)-DR 0 (λ) | ≤ 0. A retardation plate satisfying the relationship of 02 is also provided.
さらにまた本発明は、 少なくとも片面に透明導電膜が設けられた二枚の透明導 電性基板が、 透明導電膜同士が対向するように配置され、 少なくとも一方の透明 導電性基板が; LZ 4板であるか、 あるいは少なくとも一方の透明導電性基板の表 面にぇ 4板が積層されているタツチパネルであって、 λΖ4板が、 波長 4 5 0 nmで測定したレターデーシヨン値 (R e (4 5 0) ) が 1 0 0乃至 1 2 5 n m であり、 かつ波長 5 9 ◦ nmで測定したレターデーシヨン値 (R e (5 9 0) ) が 1 2◦乃至 1 6 0 nmであり、 R e (5 9 0) —R e (4 5 0) ≥ 2 nmの関 係を満足する一枚のポリマーフィルムからなり、 上記式 (I ) および (II) で定 義される DR 0および DR 20が、 波長 4 5 0 nmと波長 7 5 0 nmとにおいて 、 I DR 2 0 (1) 一 DR0 (λ) \ ≤ 0. 0 2の関係を満足することを特徴と するタツチパネルも提供する。  Still further, in the present invention, two transparent conductive substrates provided with a transparent conductive film on at least one side are arranged so that the transparent conductive films face each other, and at least one of the transparent conductive substrates is an LZ 4 plate. Or a touch panel in which a ぇ 4 plate is laminated on the surface of at least one transparent conductive substrate, and the λΖ4 plate has a retardation value (R e (4 50)) is from 100 to 125 nm, and the retardation value (Re (590)) measured at a wavelength of 59 ° nm is from 12 ° to 160 nm, R e (5 90) — Consists of a single polymer film satisfying the relationship of R e (4 5 0) ≥ 2 nm, and DR 0 and DR defined by the above formulas (I) and (II) The touch panel is also characterized in that 20 satisfies the relationship of I DR 20 (1) -DR 0 (λ) \ ≤ 0.02 at a wavelength of 450 nm and a wavelength of 750 nm. Offer.
そして本発明は、 偏光膜、 板、 タツチパネルおょぴ反射型液晶セルを備 えた反射型液晶表示装置であって、 ぇ/4板が、 波長 4 5 0 nmで測定したレタ 一デーシヨン値 (R e (4 5 0) ) が 1 0 0乃至 1 2 5 nmであり、 かつ波長 5 9 0 nmで測定したレターデーション値 (R e (5 9 0) ) が 1 20乃至 1 6 0 nmであり、 R e (5 9 0) —R e (45 0) ≥ 2 n mの関係を満足する一枚の ポリマーフィルムからなり、 上記式 (I ) および (II) で定義される DR 0およ び DR 2 0が、 波長 4 5 0 nmと波長 75 0 nmとにおいて、 1 DR 2 0 {1) 一 DR0 {λ) I ≤ 0. 0 2の関係を満足することを特徴とする反射型液晶表示 装置も提供する。  The present invention relates to a reflection type liquid crystal display device comprising a polarizing film, a plate, a touch panel and a reflection type liquid crystal cell, wherein the ぇ / 4 plate has a letter value (R) measured at a wavelength of 450 nm. e (450)) is from 100 to 125 nm, and the retardation value (R e (590)) measured at a wavelength of 590 nm is from 120 to 160 nm. , Re (590) —Re (450) ≥ 2 nm, consisting of one polymer film, and DR0 and DR defined by the above formulas (I) and (II). 20 is a reflective liquid crystal display device characterized by satisfying a relationship of 1 DR 20 (1) DR 0 (λ) I ≤ 0.02 at a wavelength of 450 nm and a wavelength of 750 nm. Also provide.
そしてまた本発明は、 ノ 4板、 タッチパネルおよぴゲストホスト型液晶セル を備えたゲストホスト型液晶表示装置であって、 λ/4板が、 波長 450 nmで 測定したレターデーシヨン値 (R e (450) ) が 100乃至 125 nmであり 、 かつ波長 590 nmで測定したレターデーシヨン値 (Re (590) ) が 1 2 0乃至 160 nmであり、 Re (590) 一 Re (450) ≥2 nmの関係を満 足する一枚のポリマーフィルムからなり、 上記式 (I) および (II) で定義され る DR0および DR20が、 波長 450 nmと波長 750 nmとにおいて、 1 D R20 (1) -DR0 (1) I≤0. 02の関係を満足するることを特徴とする ゲストホスト型液晶表示装置も提供する。 Further, the present invention relates to a four-panel, a touch panel and a guest-host type liquid crystal cell. A λ / 4 plate having a retardation value (R e (450)) of 100 to 125 nm measured at a wavelength of 450 nm and a wavelength of 590 nm measured at a wavelength of 590 nm. The film has a retardation value (Re (590)) of 120 to 160 nm, and a polymer film satisfying the relationship of Re (590) -Re (450) ≥2 nm. DR0 and DR20 defined by I) and (II) satisfy the relationship of 1 DR20 (1) -DR0 (1) I≤0.02 at 450 nm wavelength and 750 nm wavelength. A guest-host type liquid crystal display device is also provided.
本発明者は、 研究の結果、 ポリマーフィルムの素材、 添加剤、 そして製造方法 を調節することにより、 広い波長領域で; LZ 4または; LZ 2を達成する透明な位 相差板を製造することに成功した。 さらに、 この位相差板を反射型液晶表示装置 に取り付けて使用したところ、 視野角とコントラストが著しく改善された。 一枚のポリマーフィルムを用いて広レ、波長領域で λΖ4または λ/2を達成で きる位相差板が得られたことで、 従来の二枚のポリマーフィルムの角度を厳密に 調整しながら積層する工程が不要になった。 また、 本発明に従う位相差板を反射 型液晶表示装置に取り付けると、 広い視野角が達成できる。 さらに、 本発明では λ/4または; Ζ2を一枚のポリマーフィルムで実現しているため、 厚みが薄く 、 光の減衰が少ない。 その結果、 反射輝度が高い液晶表示装置が得られる。 一枚のポリマーフィルムからなる; Ζ4板 (位相差板) を利用した本発明に従 ぅタツチパネルは良好に動作する。 また、 本発明に従うタツチパネルを用いるこ とで、 反射型液晶表示装置のコントラストや色味などの表示品位が改善され、 視 認性が改善される。  As a result of the research, the present inventor found that by adjusting the material, additives, and manufacturing method of the polymer film, it was possible to produce a transparent retardation plate achieving LZ 4 or LZ 2 in a wide wavelength range. Successful. Further, when this retardation plate was used by attaching it to a reflection type liquid crystal display device, the viewing angle and the contrast were remarkably improved. A phase difference plate that can achieve λΖ4 or λ / 2 in a wide wavelength range using a single polymer film has been obtained.Laminating two conventional polymer films while strictly adjusting the angle The process is no longer needed. Further, when the retardation plate according to the present invention is attached to a reflection type liquid crystal display device, a wide viewing angle can be achieved. Further, in the present invention, since λ / 4 or Ζ2 is realized by one polymer film, the thickness is small and light attenuation is small. As a result, a liquid crystal display device having high reflection luminance can be obtained. The touch panel according to the present invention using the four plates (retardation plate) works well. In addition, by using the touch panel according to the present invention, display quality such as contrast and color of the reflective liquid crystal display device is improved, and visibility is improved.
[図面の簡単な説明] [Brief description of drawings]
図 1は、 反射型液晶表示装置の基本的な構成を示す模式図である。  FIG. 1 is a schematic diagram showing a basic configuration of a reflective liquid crystal display device.
図 2は、 タツチパネルを用いた反射型液晶表示装置の基本的な構成を示す模式 図である。  FIG. 2 is a schematic diagram illustrating a basic configuration of a reflective liquid crystal display device using a touch panel.
図 3は、 ゲストホスト反射型液晶表示素子の代表的な態様を示す断面模式図で ある。 図 4は、 ゲストホスト反射型液晶表示素子の別の代表的な態様を示す断面模式 図である。 FIG. 3 is a schematic cross-sectional view showing a typical embodiment of a guest-host reflection type liquid crystal display device. FIG. 4 is a schematic sectional view showing another typical embodiment of the guest-host reflection type liquid crystal display device.
[発明の詳細な説明] [Detailed description of the invention]
(位相差板)  (Phase plate)
位相差板を λΖ4板として使用する場合は、 波長 45 O nmで測定したレター デーシヨン値 (Re (450) ) が 1 ◦ 0乃至 1 25 nmであり、 かつ波長 59 0 nmで測定したレターデーシヨン値 (Re (590) ) が 1 20乃至 1 60 n mであり、 そして、 Re (590) 一 Re (450) ≥ 2 nmの関係を満足する 。 Re (590) -Re (450) ≥ 5 n mであることがさらに好ましく、 Re (590) 一 R e (450) ≥ 1 0 n mであることが最も好ましい。  When a retardation plate is used as a λΖ4 plate, the retardation value (Re (450)) measured at a wavelength of 45 O nm is 1◦0 to 125 nm, and the retardation value measured at a wavelength of 590 nm The value (Re (590)) is from 120 to 160 nm, and the relationship of Re (590) -Re (450) ≥2 nm is satisfied. More preferably, Re (590) -Re (450) ≥5 nm, most preferably Re (590) -Re (450) ≥10 nm.
波長 450 nmで測定したレターデーシヨン値 (Re (450) ) が 1 08乃 至 1 2 O nmであり、 波長 550 n mで測定したレターデーシヨン値 (Re (5 50) ) が 1 25乃至 142 nmであり、 波長 590 n mで測定したレターデー シヨン値 (Re (590) ) が 1 30乃至 1 52 nmであり、 そして、 R e (5 90) — Re (550) ≥ 2 n mの関係を満足することが好ましい。 R e (59 0) -Re (5 50) ≥ 5 nmであることがさらに好ましく、 Re (5 90) — Re (550) ≥ 1 0 nmであることが最も好ましい。 また、 Re (5 50) 一 Re (450) ≥ 1 0 nmであることも好ましい。  The retardation value (Re (450)) measured at a wavelength of 450 nm is from 108 to 12 O nm, and the retardation value (Re (550)) measured at a wavelength of 550 nm is from 125 to 142. nm, the retardation value (Re (590)) measured at a wavelength of 590 nm is 130 to 152 nm, and the relationship of Re (590) —Re (550) ≥2 nm is satisfied. Is preferred. More preferably, Re (590) -Re (550) ≥5 nm, most preferably Re (590) -Re (550) ≥10 nm. It is also preferable that Re (550) -Re (450) ≥10 nm.
位相差板を LZ2板として使用する場合は、 波長 45 O nmで測定したレター デーシヨン値 (Re (450) ) が 200乃至 250 nmであり、 かつ波長 59 0 n mで測定したレターデーション値 (Re (590) ) が 240乃至 320 η mであり、 そして、 R e (590) -Re (450) ≥ 4 n mの関係を満足する 。 Re (590) 一 Re (450) ≥ 1 0 n mであることがさらに好ましく、 R e (5 90) 一 Re (450) ≥ 20 n mであることが最も好ましい  When a retardation plate is used as an LZ2 plate, the retardation value (Re (450)) measured at a wavelength of 45 O nm is 200 to 250 nm, and the retardation value (Re (450) measured at a wavelength of 590 nm is used. 590)) is 240 to 320 η m, and satisfies the relationship of Re (590) -Re (450) ≥4 nm. More preferably, Re (590) -Re (450) ≥10 nm, most preferably Re (590) -Re (450) ≥20 nm
波長 450 n mで測定したレターデーション値 (R e (450) ) が 2 1 6乃 至 24 O nmであり、 波長 550 n mで測定したレターデーシヨン値 (Re (5 50) ) が 25◦乃至 284 nmであり、 波長 590 n mで測定したレターデー シヨン値 (Re (590) ) が 260乃至 304 nmであり、 そして、 Re (5 9 0) — R e (5 5 0) ≥ 4 n mの関係を満足することが好ましい。 R e (5 9 0) —R e ( 5 5 0) ≥ 1 0 nmであることがさらに好ましく、 R e ( 5 9 0) 一 R e ( 5 5 0) ≥ 2 0 nmであることが最も好ましい。 また、 R e (5 5 0) 一 R e (4 5 0) ≥ 2 0 nmであることも好ましい。 The retardation value (Re (450)) measured at a wavelength of 450 nm is from 2 16 to 24 O nm, and the retardation value (Re (550)) measured at a wavelength of 550 nm is 25 ° to 284. a retardation value (Re (590)) measured at a wavelength of 590 nm of 260 to 304 nm, and Re (5 It is preferable to satisfy the relationship of 9 0) — Re (550) ≥ 4 nm. R e (5 0 0) —R e (5 0) ≥10 nm is more preferable, and R e (5 0 0) -R e (5 0) ≥20 nm is most preferable. preferable. It is also preferable that R e (550) -R e (450) ≥ 20 nm.
レターデーシヨン値 (R e) は、 下記式に従って算出する。 The retardation value (R e ) is calculated according to the following equation.
レターテーシヨン値 (R e) = (n — n y ) X d  Letter retention value (R e) = (n — n y) X d
式中、 n xは、 位相差板の面内の遅相軸方向の屈折率 (面内の最大屈折率) で あり ; n yは、 位相差板の面内の遅相軸に垂直な方向の屈折率であり ;そして、 dは、 位相差板の厚さ (nm) である。  Where nx is the refractive index in the in-plane slow axis direction of the retardation plate (maximum in-plane refractive index); ny is the refraction in the direction perpendicular to the in-plane slow axis of the retardation plate And d is the thickness of the retarder (nm).
本発明に従う位相差板は、 下記式 (I ) および (Π) で定義される DR 0およ ぴ DR 2 0力 波長 4 5 0 nmと波長 7 5 0 nmとにおいて、 1 DR 2 0 (λ) -DR 0 (1) I≤ 0. 0 2の関係を満足する。 | DR 2 0 (λ) -DR 0 (2 The phase difference plate according to the present invention has a DR 0 and a DR 20 force defined by the following formulas (I) and (Π): 1 DR 2 0 (λ) at a wavelength of 450 nm and a wavelength of 7500 nm. ) -DR 0 (1) Satisfies the relationship of I≤0.02. | DR 2 0 (λ) -DR 0 (2
) I≤ 0. 0 1の関係を満足することがさらに好ましい。 It is more preferable that the relationship of I≤0.01 be satisfied.
( I ) DR 0 (1) =R e (1) /R e (5 5 0)  (I) DR 0 (1) = R e (1) / R e (5 5 0)
(II) DR 2 0 (1) =R e 2 0 (1) /R e 2 0 (5 5 0)  (II) DR 2 0 (1) = R e 2 0 (1) / R e 2 0 (5 5 0)
[式中、 λは、 測定波長であり ; R e (λ) は、 フィルム表面の法線方向で測定 したレターデーシヨン値であり ;そして、 R e 2 0 (λ) は、 フィルム表面の法 線方向から 2 0° の角度で測定したレターデーション値である]  Where λ is the measured wavelength; R e (λ) is the retardation value measured in the normal direction of the film surface; and R e 20 (λ) is the method of the film surface. This is the retardation value measured at an angle of 20 ° from the line direction.]
また、 本発明に従う位相差板は、 下記式 (III)で定義される DR4 0が、 波長 4 5 0 nmおよび波長 7 5 0 nmにおいて、 | DR 4 0 (λ) 一 DR 0 (λ) | ≤ 0. 0 2の関係を満足することが好ましく、 | DR4 0 (λ) -DR 0 (λ) I≤ 0. 0 1の関係を満足することがさらに好ましい。  Further, in the retardation plate according to the present invention, DR40 defined by the following formula (III) is: | DR40 (λ) -DR0 (λ) | ≤ 0.02, and more preferably | DR4 0 (λ)-DR 0 (λ) I ≤ 0.01.
(III) DR4 0 (1) =R e 4 0 {1) /R e 4 0 (5 5 0)  (III) DR4 0 (1) = R e 4 0 (1) / R e 4 0 (5 5 0)
[式中、 λは、 測定波長であり ;そして、 R e 4 0 (λ) は、 フィルム表面の法 線方向から 4 0° の角度で測定したレターデーシヨン値である]  [Where λ is the measured wavelength; and Re 40 (λ) is the retardation value measured at an angle of 40 ° from the normal to the film surface]
さらに、 本発明に従う位相差板は、 下記式 (IV) で定義される DR aが、 波長 4 5 ◦ nmおよび波長 7 5 0 nmにおいて、 αが 4 0 ° 以下の全ての角度で、 | DR a (λ) 一 DR 0 (λ) | ≤ 0. 0 2の関係を満足することが好ましく、 | DR a (λ) 一 D R O (λ) | ≤ 0. 0 1の関係を満足することがさらに好まし レ、。 Further, in the retardation plate according to the present invention, DRa defined by the following formula (IV) is such that, at a wavelength of 45 ° nm and a wavelength of 750 nm, α a (λ)-DR 0 (λ) | ≤ 0.02 is preferably satisfied, and | DR a (λ)-DRO (λ) | ≤ 0.01 is more preferably satisfied. Preferred Les ,.
(IV) OR a (λ) =R e a (λ) /R e a (5 5 0)  (IV) OR a (λ) = R e a (λ) / R e a (5 5 0)
[式中、 λは、 測定波長であり ;そして、 R e ひ (λ) は、 フィルム表面の法線 方向から αの角度で測定したレターデーシヨン値である]  [Where λ is the measurement wavelength; and R e (λ) is the retardation value measured at an angle α from the normal to the film surface]
さらにまた、 本発明に従う位相差板は、 上記式 (IV) で定義される DRaが、 波長 4 5 0 nmおよび波長 7 5 0 nmにおいて、 αが 6 0° 以下の全ての角度で 、 I DRa (1) —DRO (λ) | ≤ 0. 0 2の関係を満足することが好ましく 、 I DRa (1) —DRO (λ) | ≤ 0. 0 1の関係を満足することがさらに好 ましい。 Furthermore, a retardation plate according to the present invention, DR a defined by the equation (IV) is, in the wavelength 4 5 0 nm and the wavelength 7 5 0 nm, alpha is at all angles of 6 0 ° or less, I It is preferable to satisfy the relationship of DRa (1) —DRO (λ) | ≤ 0.02, and it is even more preferable to satisfy the relationship of I DRa (1) —DRO (λ) | ≤ 0.01. No.
本発明に従う位相差板は、 上記式 (IV) で定義される DRaが、 波長 4 5 O n mおよび波長 7 5 0 nmにおいて、 αが測定可能な全ての角度で、 1 D Rひ (λ ) 一 DR O (え) I≤ 0. 0 2の関係を満足することが好ましく、 i DRa (λ ) 一 DR O (λ) I≤ 0. 0 1の関係を満足することがさらに好ましい。  In the retardation plate according to the present invention, DRa defined by the above formula (IV) is such that, at a wavelength of 45 O nm and a wavelength of 700 nm, at all angles at which α can be measured, 1 DR and (λ) 1 It is preferable that the relationship of DR O (E) I ≦ 0.02 be satisfied, and it is more preferable that the relationship of i DRa (λ) -DRO (λ) I ≦ 0.01 be satisfied.
本発明に従う位相差板は、 前記式 (I ) および (II) で定義される DROおよ び DR 2 0力 3 8 0 nmから 7 8 0 nmまでの全ての波長領域において、 | D R 2 0 (λ) —DRO (λ) I≤ 0. 0 2の関係を満足することが好ましく、 | DR 2 0 (λ) —DRO (λ) I≤ 0. ◦ 1の関係を満足することがさらに好ま しい。  The retardation plate according to the present invention has a DRO and a DR20 force defined by the above formulas (I) and (II) in all wavelength ranges from 380 nm to 780 nm. It is preferable to satisfy the relationship of (λ) —DRO (λ) I≤0.02, and it is even more preferable that the relationship of | DR 2 0 (λ) —DRO (λ) I≤0.◦1 is satisfied. New
また、 本発明に従う位相差板は、 前記式 (III)で定義される DR4 0力 3 8 0 nmから 7 8 0 nmまでの全ての波長領域において、 | DR4 0 (λ) — DR 0 (λ) I≤ 0. 0 2の関係を満足することが好ましく、 1 DR40 (1) — D R0 (λ) I≤ 0. 0 1の関係を満足することがさらに好ましい。  Further, the retardation plate according to the present invention has the following characteristics: DR40 (λ) —DR0 (λ) in all wavelength ranges from the DR400 force of 380 nm to 780 nm defined by the above formula (III). ) It is preferable to satisfy the relationship of I ≦ 0.02, and it is still more preferable that the relationship of 1 DR40 (1) —D R0 (λ) I ≦ 0.01 is satisfied.
さらに、 本発明に従う位相差板は、 前記式 (IV) で定義される DRo;力 3 8 0 nmから 7 8 0 nmまでの全ての波長領域において、 ο;が 4 0 ° 以下の全ての 角度で、 | DRa {λ) -DRO (λ) | ≤ 0. 0 2の関係を満足することが好 ましく、 i DRo; {1) -DR 0 {λ) I≤ 0. 0 1の関係を満足することがさ らに好ましい。  Further, in the retardation plate according to the present invention, the DRo defined by the above-mentioned formula (IV); in all the wavelength ranges from 380 nm to 780 nm, ο; It is preferable to satisfy the relationship of | DRa (λ) -DRO (λ) | ≤ 0.02, i DRo; (1) -DR 0 (λ) I ≤ 0.01 Satisfaction is more preferred.
さらにまた、 本発明に従う位相差板は、 前記式 (IV) で定義される DR aが、 3 8 0 nmから 7 8 0 nmまでの全ての波長領域において、 ひが 6 0° 以下の全 ての角度で、 | DRa (λ) -DRO (1) I≤0. 02の関係を満足すること が好ましく、 | DRa (1) 一 DRO (λ) | ≤ 0. 01の関係を満足すること がさらに好ましい。 Furthermore, in the retardation plate according to the present invention, the DRa defined by the above formula (IV) is less than 60 ° in all wavelength regions from 380 nm to 780 nm. At all angles, it is preferable to satisfy the relationship of | DR a (λ) -DRO (1) I≤0.02, and | DRa (1)-DRO (λ) | ≤ 0.01. It is even more preferred.
本発明に従う位相差板は、 前記式 (IV) で定義される DRaが、 380 nmか ら 780 nmまでの全ての波長領域において、 ひが測定可能な全ての角度で、 | DRa (λ) 一 DRO (1) | ≤ 0. 02の関係を満足することが好ましく、 | DRa ) 一 DRO (1) | ≤ 0. 01の関係を満足することがさらに好まし い。  In the retardation plate according to the present invention, the DRa defined by the above formula (IV) is such that | DRa (λ) is equal to | DRa (λ) at all angles at which the strain can be measured in all wavelength ranges from 380 nm to 780 nm. It is preferable to satisfy the relationship of DRO (1) | ≤ 0.02, and it is even more preferable that the relationship of DRO (1) | ≤ 0.01 is satisfied.
さらに、 本発明に従う位相差板は、 下記式を満足する一枚のポリマーフィルム からなることが好ましい。  Further, the retardation plate according to the present invention is preferably made of one polymer film satisfying the following expression.
1 ^ n X— n z ) / (n x— n y ) ≥ 2  1 ^ n X—n z) / (n x—n y) ≥ 2
式中、 n xは、 550 nmで測定した位相差板の面内の遅相軸方向の屈折率で あり ; n yは、 550 n mで測定した位相差板の面内の遅相軸に垂直な方向の屈 折率であり ;そして、 n zは、 550 nmで測定した厚み方向の屈折率である。 位相差板を構成する一枚のポリマーフィルムの厚さは、 5乃至 1000 / mで あることが好ましく、 10乃至 50 Ομπιであることがより好ましく、 40乃至 200 μιηであることがさらに好ましく、 70乃至 120 μπιであることが最も 好ましい。  Where nx is the in-plane retardation index in the plane of the retarder measured at 550 nm; ny is the direction perpendicular to the in-plane retardation axis of the retarder measured at 550 nm And nz is the refractive index in the thickness direction measured at 550 nm. The thickness of one polymer film constituting the retardation plate is preferably 5 to 1000 / m, more preferably 10 to 50 μμπι, further preferably 40 to 200 μιη, and 70 Most preferably, it is from 120 μπι to 120 μπι.
位相差板の吸湿膨張係数は、 30 X 10— 5/ cm2 /% RH以下であることが 好ましい。 吸湿膨張係数は、 一定温度下において相対湿度を変化させた時の試料 の長さの変化量で示す。 吸湿膨張係数は、 20 X 10— 5Zcm2 /%RH以下で あることがより好ましく、 15 X 10 -5/ cm2 /%RH以下であることがさら に好ましい。 Hygroscopic expansion coefficient of the retardation plate is preferably not more than 30 X 10- 5 / cm 2 / % RH. The coefficient of hygroscopic expansion is indicated by the amount of change in sample length when the relative humidity is changed at a constant temperature. The hygroscopic expansion coefficient is 20 more preferably X 10- 5 ZCM is 2 /% RH or less, 15 X 10 - is preferably a further at 5 / cm 2 /% RH or less.
フィルム面内の遅相軸の方向は、 延伸方向となす角度を用いて示す。 遅相軸の 平均的な方向とは延伸方向との間になす角度が、 フィルム内における任意の十ケ 所の遅相軸の方向と延伸方向の間になす角度の平均値と等しい角度となる方向で ある。 遅相軸の平均的な方向は延伸方向から ± 5° 以内であることが好ましく、 ±2° 以内であることがさらに好ましく、 ±1° 以内であることが最も好ましい 標準偏差は 2. 0以内であることが好ましく、 1. 5位以内であることがより 好ましく、 0. 8以内であることがさらに好ましく、 ◦. 5であることが最も好 ましい。 The direction of the slow axis in the plane of the film is indicated by the angle formed with the stretching direction. The angle between the average direction of the slow axis and the stretching direction is an angle equal to the average value of the angle between the slow axis direction and the stretching direction at any ten locations in the film. Direction. The average direction of the slow axis is preferably within ± 5 °, more preferably ± 2 °, and most preferably ± 1 ° from the stretching direction. The standard deviation is preferably within 2.0, more preferably within 1.5, more preferably within 0.8, and most preferably 5.
以上のような光学的性質を有する位相差板は、 以下に述べる材料と方法により 製造することができる。  The retardation plate having the above optical properties can be manufactured by the following materials and methods.
(ポリマー) (Polymer)
本発明に従う位相差板は、 一枚のポリマーフィルムからなる。 ポリマーフィル ムを構成するポリマーとしては、 セルロースエステルが好ましく、 セルロースの 低級脂肪酸エステルがさらに好ましい。 低級脂肪酸とは、 炭素原子数が 6以下の 脂肪酸を意味する。 炭素原子数は、 2 (セルロースアセテート) 、 3 (セルロー スプロピオネート) または 4 (セルロースブチレート) であることが好ましい。 セルロースアセテートが特に好ましい。 セルロースアセテートプロピオネートゃ セルロースアセテートプチレートのような混合脂肪酸エステルを用いてもよレ、。 セルロースアセテートの平均酢化度 (ァセチル化度) は、 45. 0乃至6 2. 5%であることが好ましく、 55. 0乃至 6 1. 0%であることがより好ましく 、 56. 0乃至 60. 5%であることがさらに好ましい。  The retardation plate according to the present invention is composed of one polymer film. As the polymer constituting the polymer film, a cellulose ester is preferable, and a lower fatty acid ester of cellulose is more preferable. Lower fatty acids refer to fatty acids having 6 or less carbon atoms. The number of carbon atoms is preferably 2 (cellulose acetate), 3 (cellulose propionate) or 4 (cellulose butyrate). Cellulose acetate is particularly preferred. Cellulose acetate propionate ゃ Mixed fatty acid esters such as cellulose acetate butylate may be used. The average degree of acetylation (acetylation degree) of cellulose acetate is preferably 45.0 to 62.5%, more preferably 55.0 to 61.0%, and 56.0 to 60%. More preferably, it is 5%.
平均酢化度の調整のために 2種類以上のセルロースアセテートを用いてもよい 。 各々のセルロースアセテートの酢化度の差は 2. 0乃至 6. 0%であることが 好ましく、 2. 0乃至 4. 0%であることがさらに好ましい。 また、 混合するセ ルロースアセテートのうち、 最も大きい粘度平均重合度 (P 1) と最も小さい粘 度重合度 (P 2) の比 (P 2/P 1) は 1乃至 3であることが好ましく、 1乃至 2であることがさらに好ましい。  Two or more cellulose acetates may be used for adjusting the average degree of acetylation. The difference in the degree of acetylation of each cellulose acetate is preferably from 2.0 to 6.0%, more preferably from 2.0 to 4.0%. Further, among the cellulose acetates to be mixed, the ratio (P 2 / P 1) of the largest viscosity average degree of polymerization (P 1) and the smallest degree of viscosity polymerization (P 2) is preferably 1 to 3, More preferably, it is 1 or 2.
一般に、 セルロースエステルの 2位、 3位、 6位の水酸基は全体の置換度の 1 /3づっに均等に分配されるわけではなく、 6位水酸基の置換度が小さくなる傾 向がある。 セルロースエステルの 6位水酸基の置換度は、 2位と 3位に比べて多 いほうが好ましレ、。  In general, the hydroxyl groups at the 2-, 3-, and 6-positions of the cellulose ester are not evenly distributed to 1/3 of the total degree of substitution, and the degree of substitution of the 6-position hydroxyl group tends to decrease. The degree of substitution of the hydroxyl group at the 6-position of the cellulose ester is preferably higher than that at the 2- and 3-positions.
全体の置換度に対して 6位の水酸基が 30%以上 40%以下でァシル基で置換 されていることが好ましく、 更には 31%以上、 特に 32%以上であることが好 ましい。 さらにセルロースエステルの 6位ァシル基の置換度が 0. 88以上であ ることが好ましい。 Preferably, the hydroxyl group at the 6-position is substituted with an acyl group in an amount of 30% or more and 40% or less with respect to the total degree of substitution, more preferably 31% or more, particularly preferably 32% or more. Good. Further, the substitution degree of the 6-position acyl group of the cellulose ester is preferably 0.88 or more.
6位水酸基は、 ァセチル基以外に炭素数 3以上のァシル基であるプロピオニル 基、 プチロイル基、 バレロィル基、 ベンゾィル基、 アタリロイル基などで置換さ れていてもよい。 各位置の置換度の測定は、 NMRによって求める事ができる。 セルロースエステルとしては、 特開平 1 1一 5851号公報の段落番号◦◦ 4 3〜 0044に記載の合成例 1、 段落番号 0048〜 0049に記載の合成例 2 、 そして段落番号 0051〜 0052に記載の合成例 3の方法で得られたセル口 ースアセテートを用いることができる。  The 6-position hydroxyl group may be substituted with an acetyl group such as a propionyl group, a propyloyl group, a valeroyl group, a benzoyl group, an atalyloyl group, etc. other than the acetyl group. The degree of substitution at each position can be measured by NMR. Examples of the cellulose ester include Synthesis Example 1 described in Paragraph Nos. ◦ ◦ 43 to 0044 of JP-A-11-58151, Synthesis Example 2 described in Paragraph Nos. 0048 to 0049, and Paragraph Nos. 0051 to 0052 described in Paragraphs 0051 to 0052. Cell acetate obtained by the method of Synthesis Example 3 can be used.
(レターデーション上昇剤) (Retardation enhancer)
各波長におけるレターデーシヨン値を調整するため、 また、 i DRo; (2) 一 DR0 (1) Iの値を調節するため、 レターデーシヨン上昇剤をセルロースァセ テートフィルムに添加することができる。  A retardation increasing agent can be added to the cellulose acetate film to adjust the retardation value at each wavelength, and to adjust the value of i DRo; (2) one DR0 (1) I.
レターデーシヨン上昇剤は、 ポリマー 100質量部に対して、 0. 05乃至 2 0質量部の範囲で使用することが好ましく、 0. 1乃至 10質量部の範囲で使用 することがより好ましく、 0. 5乃至 10質量部の範囲で使用することがさらに 好ましく、 0. 5乃至 3質量部の範囲で使用することが最も好ましい。 二種類以 上のレターデーシヨン上昇剤を併用してもよレ、。  The retardation raising agent is preferably used in the range of 0.05 to 20 parts by mass, more preferably in the range of 0.1 to 10 parts by mass, based on 100 parts by mass of the polymer. It is more preferably used in the range of 5 to 10 parts by mass, and most preferably used in the range of 0.5 to 3 parts by mass. Two or more letter risers may be used in combination.
レターデーション上昇剤は、 230乃至 360 nmの波長領域に最大吸収波長 を有することが好ましい。 また、 レターデーシヨン上昇剤は、 可視領域に実質的 に吸収を有していないことが好ましい。  The retardation enhancer preferably has a maximum absorption wavelength in the wavelength region of 230 to 360 nm. Further, it is preferable that the retardation raising agent has substantially no absorption in the visible region.
レターデーシヨン上昇剤としては、 少なくとも二つの芳香族環を有する化合物 を用いることが好ましい。  As the retardation increasing agent, a compound having at least two aromatic rings is preferably used.
本明細書において、 「芳香族環」 は、 芳香族炭化水素環に加えて、 芳香族性へ テロ環を含む。  In the present specification, the “aromatic ring” includes an aromatic hetero ring in addition to an aromatic hydrocarbon ring.
芳香族炭化水素環は、 6員環 (すなわち、 ベンゼン環) であることが特に好ま しい。  It is particularly preferred that the aromatic hydrocarbon ring is a six-membered ring (ie, a benzene ring).
芳香族性へテロ環は一般に、 不飽和へテロ環である。 芳香族性へテロ環は、 5 員環、 6員環または 7員環であることが好ましく、 5員環または 6員環であるこ とがさらに好ましい。 芳香族性へテロ環は一般に、 最多の二重結合を有する。 へ テロ原子としては、 窒素原子、 酸素原子および硫黄原子が好ましく、 窒素原子が 特に好ましい。 芳香族性へテロ環の例には、 フラン環、 チォフェン環、 ピロール 環、 ォキサゾール環、 イソォキサゾール環、 チアゾール環、 イソチアゾール環、 イミダゾール環、 ピラゾール環、 フラザン環、 トリァゾール環、 ピラン環、 ピリ ジン環、 ピリダジン環、 ピリミジン環、 ピラジン環おょぴ 1, 3, 5—トリアジ ン環が含まれる。 Aromatic heterocycles are generally unsaturated heterocycles. The aromatic heterocyclic ring is 5 It is preferably a membered ring, a six-membered ring or a seven-membered ring, and more preferably a five-membered ring or a six-membered ring. Aromatic heterocycles generally have the most double bonds. As the hetero atom, a nitrogen atom, an oxygen atom and a sulfur atom are preferable, and a nitrogen atom is particularly preferable. Examples of the aromatic hetero ring include a furan ring, a thiophene ring, a pyrrole ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, an imidazole ring, a pyrazole ring, a furazane ring, a triazole ring, a pyran ring, and a pyridin ring. Ring, pyridazine ring, pyrimidine ring, pyrazine ring and 1,3,5-triazine ring.
芳香族環としては、 ベンゼン環、 フラン環、 チォフェン環、 ピロール環、 ォキ サゾール環、 チアゾール環、 イミダゾール環、 トリァゾール環、 ピリジン環、 ピ リミジン環、 ピラジン環および 1, 3, 5—トリアジン環が好ましい。  Examples of the aromatic ring include a benzene ring, a furan ring, a thiophene ring, a pyrrole ring, an oxazole ring, a thiazole ring, an imidazole ring, a triazole ring, a pyridine ring, a pyrimidine ring, a pyrazine ring, and a 1,3,5-triazine ring. Is preferred.
レターデーシヨン上昇剤が有する芳香族環の数は、 2乃至 2 0であることが好 ましく、 2乃至 1 2であることがより好ましく、 2乃至 8であることがさらに好 ましく、 2乃至 6であることが最も好ましい。  The number of aromatic rings contained in the retardation raising agent is preferably from 2 to 20, more preferably from 2 to 12, and even more preferably from 2 to 8. Most preferably, it is from 6 to 6.
二つの芳香族環の結合関係は、 (a ) 縮合環を形成する場合、 (b ) 単結合で 直結する場合および (c ) 連結基を介して結合する場合に分類できる (芳香族環 のため、 スピロ結合は形成できない) 。 結合関係は、 (a ) 〜 (c ) のいずれで ちょい。  The bonding relationship between two aromatic rings can be classified into (a) when forming a condensed ring, (b) when directly connected by a single bond, and (c) when connecting via a linking group. A spiro bond cannot be formed). The associative relationship may be any of (a) to (c).
( a ) の縮合環 (二つ以上の芳香族環の縮合環) の例には、 インデン環、 ナフ タレン環、 ァズレン環、 フルオレン環、 フエナントレン環、 アントラセン環、 ァ セナフチレン環、 ビフエ二レン環、 ナフタセン環、 ピレン環、 インドール環、 ィ ソインドール環、 ベンゾフラン環、 ベンゾチオフ ン環、 インドリジン環、 ベン ゾォキサゾール環、 ベンゾチアゾール環、 ベンゾィミダゾール環、 ベンゾトリア ゾール環、 プリン環、 ィンダゾール環、 クロメン環、 キノリン環、 イソキノリン 環、 キノリジン環、 キナゾリン環、 シンノリン環、 キノキサリン環、 フタラジン 環、 プテリジン環、 力ルバゾール環、.アタリジン環、 フエナントリジン環、 キサ ンテン環、 フエナジン環、 フエノチアジン環、 フエノキサチイン環、 フエノキサ ジン環おょぴチアントレン環が含まれる。 ナフタレン環、 ァズレン環、 インドー ル環、 ベンゾォキサゾール環、 ベンゾチアゾール環、 ベンゾイミダゾール環、 ベ ンゾトリアゾール環およびキノリン環が好ましい。 Examples of the condensed ring of (a) (condensed ring of two or more aromatic rings) include an indene ring, a naphthalene ring, an azulene ring, a fluorene ring, a phenanthrene ring, an anthracene ring, an asenafthylene ring, and a biphenylene ring , Naphthacene ring, pyrene ring, indole ring, isoindole ring, benzofuran ring, benzothiophene ring, indolizine ring, benzoxazole ring, benzothiazole ring, benzoimidazole ring, benzotriazole ring, purine ring, indazole ring, Chromene ring, quinoline ring, isoquinoline ring, quinolidine ring, quinazoline ring, cinnoline ring, quinoxaline ring, phthalazine ring, pteridine ring, carbazole ring, ataridine ring, phenanthridine ring, xanthene ring, phenazine ring, phenothiazine ring, Phenoxathiin ring, Includes enoxazine ring and thianthrene ring. Naphthalene ring, azulene ring, indole ring, benzoxazole ring, benzothiazole ring, benzimidazole ring, Nzotriazole rings and quinoline rings are preferred.
(b) の単結合は、 二つの芳香族環の炭素原子間の結合であることが好ましい 。 二以上の単結合で二つの芳香族環を結合して、 二つの芳香族環の間に脂肪族環 または非芳香族性複素環を形成してもよい。  The single bond in (b) is preferably a bond between carbon atoms of two aromatic rings. Two aromatic rings may be linked by two or more single bonds to form an aliphatic ring or a non-aromatic heterocyclic ring between the two aromatic rings.
(c) の連結基も、 二つの芳香族環の炭素原子と結合することが好ましい。 連 結基は、 アルキレン基、 アルケニレン基、 アルキニレン基、 一 CO—、 一 O—、 一 NH—、 一 S—またはそれらの組み合わせであることが好ましい。 組み合わせ からなる連結基の例を以下に示す。 なお、 以下の連結基の例の左右の関係は、 逆 になってもよレ、。  The linking group (c) is also preferably bonded to carbon atoms of two aromatic rings. The linking group is preferably an alkylene group, alkenylene group, alkynylene group, one CO—, one O—, one NH—, one S— or a combination thereof. Examples of the linking group consisting of the combinations are shown below. Note that the left and right relationships in the following examples of linking groups may be reversed.
c 1 : -co一 o—  c 1: -co-1 o—
c 2 : -co -NH- c 2: -co -NH-
C 0 : 一アルキレン _o_ C 0: one alkylene _o_
c 4 : -NH -CO-NH- c 5 : -NH一 CO— O—  c 4: -NH -CO-NH- c 5: -NH-CO— O—
c 6 : 一 O— CO—〇一  c 6: one O—CO—〇 one
c 7 : -0-アルキレン _o_  c 7: -0-alkylene _o_
c 8 : 一 COーァノレケニレン一  c8: One CO-anore Kenylene
c 9 : 一 CO —ァルケ二レン一NH—  c 9: One CO—Alkenylene-NH—
c 10: 一 COーァノレケニレン一 o—  c 10: One CO-anorekenylene o-
c 11: —アルキレン一 CO—〇ーァノレ  c 11: —Alkylene-CO—Pianole
c 12: -0-ァノレキレン一CO—〇一  c 12: -0-Anorecylene-CO-1
c 13 一 o— CO—アルキレン一 c〇  c 13 one o— CO—alkylene one c〇
c 14 · -NH —CO—アルケニレン一  c 14 · -NH -CO-alkenylene
c 15 一 o— CO—アルケニレン一  c 15 o-CO-alkenylene
芳香族環および連結基は、 置換基を有していてもよい。  The aromatic ring and the linking group may have a substituent.
置換基の例には、 ハロゲン原子 (F、 C l、 B r、 I) 、 ヒドロキシル、 カル' ボキシノレ、 シァノ、 ァミノ、 ニトロ、 スルホ、 力ルバモイノレ、 スルファモイノレ、 ウレイド、 アルキル基、 アルケニル基、 アルキニル基、 脂肪族ァシル基、 脂肪族 アシノレオキシ基、 ァノレコキシ基、 アルコキシカルボニル基、 アルコキシカルボ二 ルァミノ基、 アルキルチオ基、 アルキルスルホニル基、 脂肪族アミ ド基、 脂肪族 ミ ド基、 脂肪族置換アミノ基、 脂肪族置換力ルバモイル基、 脂肪族置 '基、 脂肪族置換ウレィド基および非芳香族性複素環基が含まれ る。 Examples of the substituent include a halogen atom (F, Cl, Br, I), hydroxyl, carboxylone, cyano, amino, nitro, sulfo, carbamoinole, sulfamoinole, ureido, alkyl, alkenyl, alkynyl. , Aliphatic acetyl group, aliphatic asinoleoxy group, anorecoxy group, alkoxycarbonyl group, alkoxycarbonyl Lumino group, alkylthio group, alkylsulfonyl group, aliphatic amide group, aliphatic mid group, aliphatic substituted amino group, aliphatic substitution force rubamoyl group, aliphatic substitution group, aliphatic substitution ureido group and non-aromatic And a heterocyclic group.
アルキル基の炭素原子数は、 1乃至 8であることが好ましい。 環状アルキル基 よりも鎖状アルキル基の方が好ましく、 直鎖状アルキル基が特に好ましい。 アル キル基は、 さらに置換基 (例、 ヒドロキシ、 カルボキシ、 アルコキシ基、 アルキ ル置換アミノ基) を有していてもよい。 アルキル基の (置換アルキル基を含む) 例には、 メチル、 ェチノレ、 n—プチノレ、 n—へキシノレ、 2—ヒドロキシェチノレ、 4一カルボキシブチル、 2—メ トキシェチルおよび 2—ジェチノレアミノェチノレが 含まれる。  The alkyl group preferably has 1 to 8 carbon atoms. A chain alkyl group is preferable to a cyclic alkyl group, and a linear alkyl group is particularly preferable. The alkyl group may further have a substituent (eg, hydroxy, carboxy, alkoxy group, alkyl-substituted amino group). Examples of alkyl groups (including substituted alkyl groups) include: methyl, ethynole, n-ptynole, n-hexynole, 2-hydroxyethynole, 4-carboxybutyl, 2-methoxyl, and 2-methynoleamino Includes Echinore.
アルケニル基の炭素原子数は、 2乃至 8であることが好ましい。 環状アルケニ ル基よりも鎖状アルケニル基の方が好ましく、 直鎖状アルケニル基が特に好まし い。 アルケニル基は、 さらに置換基を有していてもよい。 アルケニル基の例には 、 ビュル、 ァリルおよび 1 一へキセニルが含まれる。  The alkenyl group preferably has 2 to 8 carbon atoms. A chain alkenyl group is preferable to a cyclic alkenyl group, and a linear alkenyl group is particularly preferable. The alkenyl group may further have a substituent. Examples of alkenyl groups include butyl, aryl and 11-hexenyl.
アルキニル基の炭素原子数は、 2乃至 8であることが好ましい。 環状アルキケ ニル基よりも鎖状アルキニル基の方が好ましく、 直鎖状アルキニル基が特に好ま しい。 アルキニル基は、 さらに置換基を有していてもよい。 アルキニル基の例に は、 ェチュル、 1—ブチニルおよび 1—へキシュルが含まれる。  The alkynyl group preferably has 2 to 8 carbon atoms. A chain alkynyl group is preferable to a cyclic alkynyl group, and a linear alkynyl group is particularly preferable. The alkynyl group may further have a substituent. Examples of alkynyl groups include ethur, 1-butynyl and 1-hexyl.
脂肪族ァシル基の炭素原子数は、 1乃至 1 0であることが好ましい。 脂肪族ァ シル基の例には、 ァセチル、 プロパノィルおよびブタノィルが含まれる。  The number of carbon atoms of the aliphatic acyl group is preferably 1 to 10. Examples of the aliphatic acyl group include acetyl, propanoyl, and butanoyl.
脂肪族ァシルォキシ基の炭素原子数は、 1乃至 1 0であることが好ましい。 脂 肪族ァシルォキシ基の例には、 ァセトキシが含まれる。  The aliphatic acyloxy group preferably has 1 to 10 carbon atoms. Examples of the aliphatic acyloxy group include acetoxy.
アルコキシ基の炭素原子数は、 1乃至 8であることが好ましい。 アルコキシ基 は、 さらに置換基 (例、 アルコキシ基) を有していてもよい。 アルコキシ基の ( 置換アルコキシ基を含む) 例には、 メ トキシ、 エトキシ、 ブトキシおよびメ トキ シェトキシが含まれる。  The alkoxy group preferably has 1 to 8 carbon atoms. The alkoxy group may further have a substituent (eg, an alkoxy group). Examples of alkoxy groups (including substituted alkoxy groups) include methoxy, ethoxy, butoxy and methoxyshethoxy.
アルコキシカルボニル基の炭素原子数は、 2乃至 1 0であることが好ましい。 アルコキシカルポニル基の例には、 メ トキシカルポニルおよびエトキシカルボ二 ルが含まれる。 The alkoxycarbonyl group preferably has 2 to 10 carbon atoms. Examples of alkoxycarbonyl groups include methoxycarbonyl and ethoxycarbonyl Included.
アルコキシカルボニルァミノ基の炭素原子数は、 2乃至 10であることが好ま しい。 アルコキシカルボニルアミノ基の例には、 メ トキシカルボニルァミノおよ ぴェトキシカルボニルァミノが含まれる。  The alkoxycarbonylamino group preferably has 2 to 10 carbon atoms. Examples of the alkoxycarbonylamino group include methoxycarbonylamino and ethoxycarbonylamino.
アルキルチオ基の炭素原子数は、 1乃至 12であることが好ましい。 アルキル チォ基の例には、 メチルチオ、 ェチルチオおょぴォクチルチオが含まれる。  The alkylthio group preferably has 1 to 12 carbon atoms. Examples of the alkylthio group include methylthio, ethylthio and octylthio.
アルキルスルホニル基の炭素原子数は、 1乃至 8であることが好ましい。 アル キルスルホニル基の例には、 メタンスルホニルおよぴェタンスルホニルが含まれ る。  The alkylsulfonyl group preferably has 1 to 8 carbon atoms. Examples of the alkylsulfonyl group include methanesulfonyl and ethanesulfonyl.
脂肪族アミ ド基の炭素原子数は、 1乃至 10であることが好ましい。 脂肪族ァ ミ ド基の例には、 ァセトアミ ドが含まれる。  The aliphatic amide group preferably has 1 to 10 carbon atoms. Examples of the aliphatic amide group include acetoamide.
脂肪族スルホンアミ ド基の炭素原子数は、 1乃至 8であることが好ましい。 脂 肪族スルホンアミ ド基の例には、 メタンスルホンアミ ド、 ブタンスルホンアミ ド および n—オクタンスルホンアミ ドが含まれる。  The aliphatic sulfone amide group preferably has 1 to 8 carbon atoms. Examples of the aliphatic sulfonamide group include methanesulfonamide, butanesulfonamide and n-octanesulfonamide.
脂肪族置換アミノ基の炭素原子数は、 1乃至 10であることが好ましい。 脂肪 族置換アミノ基の例には、 ジメチルァミノ、 ジェチルァミノおよび 2—カルボキ シェチルァミノが含まれる。  The aliphatic substituted amino group preferably has 1 to 10 carbon atoms. Examples of the aliphatic substituted amino group include dimethylamino, getylamino and 2-carboxyshetylamino.
脂肪族置換力ルバモイル基の炭素原子数は、 2乃至 10であることが好ましい The number of carbon atoms of the aliphatic substitution power rubamoyl group is preferably 2 to 10.
。 脂肪族置換力ルバモイル基の例には、 メチルカルバモイルおよびジェチルカル バモイルが含まれる。 . Examples of the aliphatic-substituting rubamoyl group include methylcarbamoyl and getylcarbamoyl.
脂肪族置換スルファモイル基の炭素原子数は、 1乃至 8であることが好ましい The number of carbon atoms of the aliphatic substituted sulfamoyl group is preferably 1 to 8.
。 脂肪族置換スルファモイル基の例には、 メチルスルファモイルおよびジェチル スルファモイルが含まれる。 . Examples of the aliphatic-substituted sulfamoyl group include methylsulfamoyl and getyl sulfamoyl.
脂肪族置換ウレイド基の炭素原子数は、 2乃至 10であることが好ましい。 脂 肪族置換ウレィド基の例には、 メチノレゥレイドが含まれる。  The aliphatic substituted ureido group preferably has 2 to 10 carbon atoms. Examples of the aliphatic-substituted ureido group include methinourelide.
非芳香族性複素環基の例には、 ピペリジノおよびモルホリノが含まれる。 レターデーシヨン上昇剤の分子量は、 300乃至 800であることが好ましい レターデーシヨン上昇剤の具体例は、 特開 2000-1 1 1914号公報、 同Examples of the non-aromatic heterocyclic group include piperidino and morpholino. Retardation Chillon molecular weight of raising agent, specific examples of preferably from 300 to 800 Retardation Chillon increasing agent, JP 2 000 1 1914 JP, the
2000-275434号公報、 P CT/ J P O O/0261 9号明細書に記載 されている。 (赤外線吸収剤) 2000-275434, PCT / JPOO / 0261 9 Have been. (Infrared absorber)
各波長におけるレターデーション値を調整するため、 赤外線吸収剤をポリマー フィルムに添加することができる。  In order to adjust the retardation value at each wavelength, an infrared absorbing agent can be added to the polymer film.
赤外線吸収剤は、 ポリマー 1 00質量部に対して、 0. 01乃至 5質量部の範 囲で使用することが好ましく、 0. 02乃至 2質量部の範囲で使用することがよ り好ましく、 0. 05乃至 1質量部の範囲で使用することがさらに好ましく、 0 . 1乃至◦. 5質量部の範囲で使用することが最も好ましい。 二種類以上の赤外 線吸収剤を併用してもよレ、。  The infrared absorber is preferably used in a range of 0.01 to 5 parts by mass, more preferably in a range of 0.02 to 2 parts by mass, based on 100 parts by mass of the polymer. It is more preferably used in the range of 0.05 to 1 part by mass, and most preferably used in the range of 0.1 to ◦5 parts by mass. Two or more infrared absorbers may be used in combination.
赤外線吸収剤は、 750乃至 1 1 00 nmの波長領域に最大吸収を有すること が好ましく、 800乃至 1 000 n mの波長領域に最大吸収を有することがさら に好ましい。 赤外線吸収剤は、 可視領域に実質的に吸収を有していないことが好 ましい。  The infrared absorber preferably has a maximum absorption in a wavelength range of 750 to 100 nm, and more preferably has a maximum absorption in a wavelength range of 800 to 1,000 nm. Preferably, the infrared absorber has substantially no absorption in the visible region.
赤外線吸収剤としては、 赤外線吸収染料または赤外線吸収顔料を用いることが 好ましく、 赤外線吸収染料を用いることが特に好ましい。  It is preferable to use an infrared absorbing dye or an infrared absorbing pigment as the infrared absorbing agent, and it is particularly preferable to use an infrared absorbing dye.
赤外線吸収染料には、 有機化合物と無機化合物が含まれる。 有機化合物である 赤外線吸収染料を用いることが好ましい。 有機赤外線吸収染料には、 シァニン化 合物、 金属キレート化合物、 アミニゥム化合物、 ジィモニゥム化合物、 キノン化 合物、 スクァリリゥム化合物おょぴメチン化合物が含まれる。 赤外線吸収染料に ついては、 色材、 6 1 〔4〕 21 5- 226 (1 988) 、 および化学工業、 4 3— 5 3 (1 986、 5月) に記載がある。  Infrared absorbing dyes include organic compounds and inorganic compounds. It is preferable to use an infrared absorbing dye which is an organic compound. Organic infrared absorbing dyes include cyanine compounds, metal chelate compounds, aluminum compounds, dimonium compounds, quinone compounds, squarium compounds, and methine compounds. Infrared absorbing dyes are described in Coloring Materials, 61 [4] 215-226 (1988), and Chemical Industry, 43-53 (1986, May).
赤外線吸収機能あるいは吸収スぺクトルの観点で染料の種類を検討すると、 ノ、 ロゲン化銀写真感光材料の技術分野で開発された赤外線吸収染料が優れている。 ハロゲン化銀写真感光材料の技術分野で開発された赤外線吸収染料には、 ジヒ ド 口ペリミジンスクァリリゥム染料 (米国特許 5380635号明細書および特願 平 8— 1 898 1 7号明細書記載) 、 シァニン染料 (特開昭 62— 1 23454 号、 同 3— 1 38640号、 同 3— 2 1 1 542号、 同 3— 226736号、 同 5— 3 1 3305号、 同 6— 43583号の各公報、 特願平 7— 26 909 7号 明細書および欧州特許 0430244号明細書記載) 、 ピリリゥム染料 (特開平 3 - 138640号、 同 3— 21 1542号の各公報記載) 、 ジィモニゥム染料 (特開平 3— 138640号、 同 3— 21 1542号の各公報記載) 、 ピラゾ口 ピリ ドン染料 (特開平 2— 282244号記載) 、 インドア二リン染料 (特開平 5— 323500号、 同 5— 323501号の各公報記載) 、 ポリメチン染料 ( 特開平 3— 26765号、 同 4一 190343号の各公報おょぴ欧州特許 377 961号明細書記載) 、 ォキソノール染料 (特開平 3— 9346号明細書記載) 、 アントラキノン染料 (特開平 4_ 1 3654号明細書記載) 、 ナフタロシア二 ン色素 (米国特許 5009989号明細書記載) およびナフトラクタム染料 (欧 州特許 568267号明細書記載) が含まれる。 When examining the type of dye from the viewpoint of the infrared absorption function or absorption spectrum, the infrared absorption dye developed in the technical field of silver halide photographic light-sensitive material is superior. Infrared absorbing dyes developed in the technical field of silver halide photographic materials include dihydroperimidine squaridum dyes (US Pat. No. 5,380,635 and Japanese Patent Application No. 8-189817). ), Cyanine dyes (JP-A-62-123454, JP-A-3-138640, JP-A-3-221542, JP-A-226736, JP-A-5-313305, JP-A-6-43583) Publications, Japanese Patent Application No. 7-26 909 7 Specification and European Patent No. 0430244), pyridium dyes (described in JP-A-3-138640 and JP-A-3-211542), dimonium dyes (JP-A-3-138640 and JP-A-3-211542) , Pyrazodone pyridone dyes (described in JP-A-2-282244), indolinine dyes (described in JP-A-5-323500 and JP-A-5-323501), polymethine dyes (described in JP-A-3-282501). — 26765, JP-A-4-1190343, European Patent 377 961), oxonol dyes (described in JP-A-3-9346), anthraquinone dyes (described in JP-A-4-13654) Described), naphthalocyanine dyes (described in U.S. Patent No. 5009989) and naphtholactam dyes (described in European Patent No. 568267).
(ポリマーフィルムの製造) (Manufacture of polymer film)
ソルベントキャスト法によりポリマーフィルムを製造することが好ましい。 ソ ルベントキャスト法では、 ポリマーを有機溶媒に溶解した溶液 (ドープ) を用い てフィルムを製造する。  It is preferable to produce a polymer film by a solvent casting method. In the solvent casting method, a film is produced using a solution (dope) of a polymer dissolved in an organic solvent.
有機溶媒は、 炭素原子数が 3乃至 12のエーテル、 炭素原子数が 3乃至 1 2の ケトン、 炭素原子数が 3乃至 12のエステルおよび炭素原子数が 1乃至 6のハロ ゲン化炭化水素から選ばれる溶媒を含むことが好ましい。  The organic solvent is selected from ethers having 3 to 12 carbon atoms, ketones having 3 to 12 carbon atoms, esters having 3 to 12 carbon atoms, and halogenated hydrocarbons having 1 to 6 carbon atoms. It is preferable to include a solvent.
エーテル、 ケトンおよびエステルは、 環状構造を有していてもよい。 エーテル 、 ケトンおょぴエステルの官能基 (すなわち、 — O—、 —CO—および _CO〇 一) のいずれかを二つ以上有する化合物も、 有機溶媒として用いることができる 。 有機溶媒は、 アルコール性水酸基のような他の官能基を有していてもよい。 二 種類以上の官能基を有する有機溶媒の場合、 その炭素原子数は、 いずれかの官能 基を有する化合物の規定範囲内であればよい。  Ethers, ketones and esters may have a cyclic structure. Compounds having two or more functional groups of ether or ketone ester (that is, —O—, —CO— and —CO〇) can also be used as the organic solvent. The organic solvent may have another functional group such as an alcoholic hydroxyl group. In the case of an organic solvent having two or more types of functional groups, the number of carbon atoms may be within the specified range of the compound having any one of the functional groups.
炭素原子数が 3乃至 12のエーテル類の例には、 ジィソプロピルエーテル、 ジ メ トキシメタン、 ジメ トキシェタン、 1, 4一ジォキサン、 1, 3—ジォキソラ ン、 テトラヒ ドロフラン、 ァ-ソールおよぴフエネトールが含まれる。  Examples of ethers having 3 to 12 carbon atoms include diisopropyl ether, dimethoxymethane, dimethoxetane, 1,4-dioxane, 1,3-dioxolan, tetrahydrofuran, azole and phenetole Is included.
炭素原子数が 3乃至 12のケトン類の例には、 アセトン、 メチルェチルケトン 、 ジェチルケトン、 ジィソブチルケトン、 シク口へキサノンおよびメチルシク口 へキサノンが含まれる。 Examples of ketones having 3 to 12 carbon atoms include acetone, methylethyl ketone, getyl ketone, diisobutyl ketone, hexahexanone, and methylcyclohexyl. Hexanone is included.
炭素原子数が 3乃至 1 2のエステル類の例には、 ェチルホルメート、 プロピル ホルメート、 ペンチルホルメート、 メチルアセテート、 ェチルアセテートおよぴ ペンチルァセテートが含まれる。  Examples of the esters having 3 to 12 carbon atoms include ethyl formate, propyl formate, pentyl formate, methyl acetate, ethyl acetate and pentyl acetate.
二種類以上の官能基を有する有機溶媒の例には、 2—エトキシェチルァセテー ト、 2—メ トキシエタノールおよび 2—ブトキシエタノールが含まれる。  Examples of the organic solvent having two or more kinds of functional groups include 2-ethoxyshetyl acetate, 2-methoxyethanol and 2-butoxyethanol.
ハロゲン化炭化水素の炭素原子数は、 1または 2であることが好ましく、 1で あることが最も好ましい。 ハロゲン化炭化水素のハロゲンは、 塩素であることが 好ましい。 ハロゲン化炭化水素の水素原子が、 ハロゲンに置換されている割合は 、 2 5乃至 7 5モル%であることが好ましく、 3 0乃至 7 0モル%であることが より好ましく、 3 5乃至 6 5モル%であることがさらに好ましく、 4 0乃至 6 0 モル%であることが最も好ましい。 メチレンクロリ ドが、 代表的なハロゲン化炭 化水素である。 二種類以上の有機溶媒を混合して用いてもよい。  The number of carbon atoms in the halogenated hydrocarbon is preferably 1 or 2, and most preferably 1. The halogen of the halogenated hydrocarbon is preferably chlorine. The proportion of halogen atoms substituted by halogen atoms in the halogenated hydrocarbon is preferably 25 to 75 mol%, more preferably 30 to 70 mol%, and more preferably 35 to 65 mol%. More preferably, it is 40 to 60 mol%, most preferably 40 to 60 mol%. Methylene chloride is a typical halogenated hydrocarbon. Two or more organic solvents may be used as a mixture.
一般的な方法でポリマー溶液を調製できる。 一般的な方法とは、 0 °C以上の温 度 (常温または高温) で、 処理することを意味する。 溶液の調製は、 通常のソル ベントキャスト法におけるドープの調製方法および装置を用いて実施することが できる。 なお、 一般的な方法の場合は、 有機溶媒としてハロゲン化炭化水素 (特 にメチレンクロリ ド) を用いることが好ましい。  The polymer solution can be prepared by a general method. The general method means treating at a temperature of 0 ° C or higher (normal temperature or high temperature). The solution can be prepared using a dope preparation method and apparatus in a usual solvent casting method. In the case of a general method, it is preferable to use a halogenated hydrocarbon (particularly, methylene chloride) as the organic solvent.
ポリマーの量は、 得られる溶液中に 1 0乃至 4 0質量%含まれるように調整す る。 ポリマーの量は、 1 0乃至 3 0質量%であることがさらに好ましい。 有機溶 媒 (主溶媒) 中には、 後述する任意の添加剤を添加しておいてもよい。  The amount of the polymer is adjusted so that the obtained solution contains 10 to 40% by mass. More preferably, the amount of polymer is from 10 to 30% by weight. Any additives described below may be added to the organic solvent (main solvent).
溶液は、 常温 (0乃至 4 0 °C) でポリマーと有機溶媒とを攪拌することにより 調製することができる。 高濃度の溶液は、 加圧および加熱条件下で攪拌してもよ レ、。 具体的には、 ポリマーと有機溶媒とを加圧容器に入れて密閉し、 加圧下で溶 媒の常温における沸点以上、 かつ溶媒が沸騰しない範囲の温度に加熱しながら攪 拌する。 加熱温度は、 通常は 4 0 °C以上であり、 好ましくは 6 0乃至 2 0 0 で あり、 さらに好ましくは 8 0乃至 1 1 0 °Cである。  The solution can be prepared by stirring the polymer and the organic solvent at room temperature (0 to 40 ° C). Highly concentrated solutions may be stirred under pressure and heating conditions. Specifically, the polymer and the organic solvent are put in a pressurized container, sealed, and stirred while heating under pressure to a temperature not lower than the boiling point of the solvent at normal temperature and in a range where the solvent does not boil. The heating temperature is usually 40 ° C. or higher, preferably 60 to 200 ° C., and more preferably 80 to 110 ° C.
各成分は予め粗混合してから容器に入れてもよい。 また、 順次容器に投入して もよい。 容器は攪拌できるように構成されている必要がある。 窒素ガス等の不活 性気体を注入して容器を加圧することができる。 また、 加熱による溶媒の蒸気圧 の上昇を利用してもよい。 あるいは、 容器を密閉後、 各成分を圧力下で添加して もよい。 Each component may be roughly mixed in advance and then placed in a container. Alternatively, they may be sequentially charged into a container. The container must be configured to be able to stir. Inactivation of nitrogen gas, etc. The container can be pressurized by injecting a neutral gas. Further, an increase in the vapor pressure of the solvent due to heating may be used. Alternatively, the components may be added under pressure after the container is sealed.
加熱する場合、 容器の外部より加熱することが好ましい。 例えば、 ジャケット タイプの加熱装置を用いることができる。 また、 容器の外部にプレートヒーター を設け、 配管して液体を循環させることにより容器全体を加熱することもできる 容器内部に攪拌翼を設けて、 これを用いて攪拌することが好ましい。 攙拌翼は 、 容器の壁付近に達する長さのものが好ましい。 攪拌翼の末端には、 容器の壁の 液膜を更新するため、 搔取翼を設けることが好ましい。  When heating, it is preferable to heat from outside the container. For example, a jacket type heating device can be used. Further, a plate heater may be provided outside the container, and the entire container may be heated by circulating the liquid through piping. It is preferable to provide a stirring blade inside the container and stir using the stirring blade. The stirring blade is preferably long enough to reach near the container wall. It is preferable to provide a collecting blade at the end of the stirring blade in order to renew the liquid film on the container wall.
容器には、 圧力計、 温度計等の計器類を設置してもよい。 容器内で各成分を溶 剤中に溶解する。 調製したドープは冷却後容器から取り出すか、 あるレ、は、 取り 出した後、 熱交換器等を用いて冷却する。  Instruments such as a pressure gauge and a thermometer may be installed in the container. Dissolve each component in the solvent in a container. The prepared dope is taken out of the container after cooling, or a certain dope is taken out and then cooled using a heat exchanger or the like.
冷却溶解法により、 溶液を調製することもできる。 冷却溶解法では、 通常の溶 解方法では溶解させることが困難な有機溶媒中にもポリマーを溶解させることが できる。 なお、 通常の溶解方法でポリマーを溶解できる溶媒であっても、 冷却溶 解法によると迅速に均一な溶液が得られるとの効果がある。  The solution can be prepared by the cooling dissolution method. In the cooling dissolution method, the polymer can be dissolved even in an organic solvent that is difficult to dissolve by a normal dissolution method. Even if the solvent can dissolve the polymer by the usual dissolution method, the cooling dissolution method has an effect that a uniform solution can be obtained quickly.
冷却溶解法では最初に、 室温で有機溶媒中にポリマーを撹拌しながら徐々に添 加する。  In the cooling dissolution method, first, a polymer is gradually added to an organic solvent at room temperature with stirring.
ポリマーの量は、 この混合物中に 1 0乃至 4 0質量%含まれるように調整する ことが好ましい。 ポリマーの量は、 1 0乃至 3 0質量%であることがさらに好ま しい。 さらに、 混合物中には後述する任意の添加剤を添カ卩しておいてもよい。 次に、 混合物を一 1 0◦乃至一 1 0 °C (好ましくは一 8 0乃至一 1 0 °C、 さら に好ましくは一 5 0乃至一 2 0 °C、 最も好ましくは一 5 0乃至一 3 0 °C) に冷却 する。 冷却は、 例えば、 ドライアイス 'メタノール浴 (- 7 5 °C) や冷却したジ エチレングリコーノレ溶液 (一 3 0乃至一 2 0 °C) 中で実施できる。 このように冷 却すると、 セルロースエステルと有機溶媒の混合物は固化する。  The amount of the polymer is preferably adjusted so as to be contained in the mixture at 10 to 40% by mass. More preferably, the amount of polymer is from 10 to 30% by weight. Further, an optional additive described later may be added to the mixture. The mixture is then brought to a temperature of between 10 ° C and 110 ° C (preferably between 180 ° C and 110 ° C, more preferably between 150 ° C and 120 ° C, most preferably between 150 ° C and 110 ° C. Cool to 30 ° C). The cooling can be performed, for example, in a dry ice-methanol bath (−75 ° C.) or a cooled diethylene glycol solution (130 ° C. to 120 ° C.). Upon cooling, the mixture of the cellulose ester and the organic solvent solidifies.
冷却速度は、 4 °C/分以上であることが好ましく、 8 °CZ分以上であることが さらに好ましく、 1 2 °CZ分以上であることが最も好ましい。 冷却速度は、 速い ほど好ましいが、 1 0 0 0 0 °C/秒が理論的な上限であり、 1 0 0 o°cz秒が技 術的な上限であり、 そして 1 0 o°c/秒が実用的な上限である。 なお、 冷却速度 は、 冷却を開始する時の温度と最終的な冷却温度との差を、 冷却を開始してから 最終的な冷却温度に達するまでの時間で割つた値である。 The cooling rate is preferably at least 4 ° C / min, more preferably at least 8 ° CZ, most preferably at least 12 ° CZ. Cooling rate is fast The preferred upper limit is 100,000 ° C / sec, the upper limit is 100,000 o ° cz seconds is the technical upper limit, and the upper limit is 100,000 ° C / sec. It is. The cooling rate is a value obtained by dividing the difference between the temperature at the start of cooling and the final cooling temperature by the time from the start of cooling to the final cooling temperature.
さらに、 これを 0乃至 2 0 0 °C (好ましくは 0乃至 1 5 0 °C、 さらに好ましく は 0乃至 1 2 0 °C、 最も好ましくは 0乃至 5 0 °C) に加温すると、 有機溶媒中に ポリマーが溶解する。 昇温は、 室温中に放置するだけでもよし、 温浴中で加温し てもよい。  Further, when this is heated to 0 to 200 ° C (preferably 0 to 150 ° C, more preferably 0 to 120 ° C, and most preferably 0 to 50 ° C), the organic solvent The polymer dissolves in it. The temperature may be raised simply by leaving it at room temperature or may be heated in a warm bath.
加温速度は、 4 °C/分以上であることが好ましく、 8 °C/分以上であることが さらに好ましく、 1 2 °CZ分以上であることが最も好ましい。 加温速度は、 速い ほど好ましいが、 1 0 0 0 o°cZ秒が理論的な上限であり、 1 0 0 0 °CZ秒が技 術的な上限であり、 そして 1 0 o °c/秒が実用的な上限である。 なお、 加温速度 は、 加温を開始する時の温度と最終的な加温温度との差を、 加温を開始してから 最終的な加温温度に達するまでの時間で割つた値である。  The heating rate is preferably at least 4 ° C / min, more preferably at least 8 ° C / min, most preferably at least 12 ° CZ. The heating rate is preferably as fast as possible, but 100 ° C osec. Is the theoretical upper limit, 100 ° C ° Cz is the technical upper limit, and 100 ° C / sec. Is a practical upper limit. The heating rate is a value obtained by dividing the difference between the temperature at which heating is started and the final heating temperature by the time from when heating is started until the final heating temperature is reached. is there.
以上のようにして、 均一な溶液が得られる。 なお、 溶解が不充分である場合は 冷却、 加温の操作を繰り返してもよい。 溶解が充分であるかどうかは、 目視によ り溶液の外観を観察するだけで判断することができる。  As described above, a uniform solution is obtained. If the dissolution is insufficient, the cooling and heating operations may be repeated. Whether or not the dissolution is sufficient can be determined only by visually observing the appearance of the solution.
冷却溶解法においては、 冷却時の結露による水分混入を避けるため、 密閉容器 を用いることが望ましい。 また、 冷却加温操作において、 冷却時に加圧し、 加温 時の減圧すると、 溶解時間を短縮することができる。 加圧および減圧を実施する ためには、 耐圧性容器を用いることが望ましい。  In the cooling dissolution method, it is desirable to use a closed container to avoid water contamination due to condensation during cooling. Further, in the cooling and heating operation, if the pressure is increased during cooling and the pressure is reduced during heating, the dissolution time can be shortened. In order to carry out pressurization and decompression, it is desirable to use a pressure-resistant container.
なお、 セルロースァセテ一ト (酢化度: 6 0 . 9 %、 粘度平均重合度: 2 9 9 ) を冷却溶解法によりメチルアセテート中に溶解した 2 0質量%の溶液は、 示差 走査熱量測定 (D S C) によると、 3 3 °C近傍にゾル状態とゲル状態との疑似相 転移点が存在し、 この温度以下では均一なゲル状態となる。 従って、 この溶液は 疑似相転移温度以上、 好ましくはゲル相転移温度プラス 1 0 °C程度の温度で保存 する必要がある。 ただし、 この疑似相転移温度は、 セルロースアセテートの平均 酢化度、 粘度平均重合度、 溶液濃度や使用する有機溶媒により異なる。  A 20% by mass solution of cellulose acetate (acetylation degree: 60.9%, viscosity average polymerization degree: 299) dissolved in methyl acetate by a cooling dissolution method was subjected to differential scanning calorimetry. According to (DSC), a pseudo phase transition point between the sol state and the gel state exists around 33 ° C, and below this temperature, the gel state becomes uniform. Therefore, this solution must be stored at a temperature equal to or higher than the quasi-phase transition temperature, preferably at a temperature approximately equal to the gel phase transition temperature plus 10 ° C. However, this pseudo phase transition temperature varies depending on the average acetylation degree of cellulose acetate, the average degree of viscosity polymerization, the solution concentration, and the organic solvent used.
調製したポリマー溶液 (ドープ) から、 ソルベントキャスト法によりポリマー ,を製造する。 From the prepared polymer solution (dope), polymer , Is manufactured.
ドープは、 ドラムまたはバンド上に流延し、 溶媒を蒸発させてフィルムを形成 する。 流延前のドープは、 固形分量が 18乃至 35 %となるように濃度を調整す ることが好ましい。 ドラムまたはバンドの表面は、 鏡面状態に仕上げておくこと が好ましい。 ソルベントキャスト法における流延および乾燥方法については、 米 国特許 2336310号、 同 2367603号、 同 2492078号、 同 249 2977号、 同 2492978号、 同 2607704号、 同 2739069号、 同 2739070号、 英国特許 640731号、 同 736892号の各明細書、 特公昭 45— 4554号、 同 49一 5614号、 特開昭 60— 1 76834号、 同 60— 203430号、 同 62— 1 15035号の各公報に記載がある。  The dope is cast on a drum or band and the solvent is evaporated to form a film. The concentration of the dope before casting is preferably adjusted so that the solid content is 18 to 35%. It is preferred that the surface of the drum or band be finished to a mirror surface. Regarding the casting and drying methods in the solvent casting method, see U.S. Patent Nos. 2336310, And JP-B-736892, JP-B-45-4554, JP-B-49-15614, JP-A-60-176834, JP-B-60-203430, and JP-B-62-115035. is there.
ドープは、 表面温度が 10°C以下のドラムまたはバンド上に流延することが好 ましい。 流延した 2秒以上風に当てて乾燥することが好ましい。 得られたフィル ムをドラムまたはバンドから剥ぎ取り、 さらに 100から 160°Cまで逐次温度 を変えた高温風で乾燥して残留溶剤を蒸発させることもできる。 以上の方法は、 特公平 5— 17844号公報に記載がある。 この方法によると、 流延から剥ぎ取 りまでの時間を短縮することが可能である。 この方法を実施するためには、 流延 時のドラムまたはバンドの表面温度においてドープがゲル化することが必要であ る。 以上のように調製した溶液 (ドープ) は、 この条件を満足する。  The dope is preferably cast on a drum or band having a surface temperature of 10 ° C or less. It is preferable to dry it by blowing it for 2 seconds or more. The resulting film can be peeled off from the drum or band and dried with high-temperature air with successively varying temperatures from 100 to 160 ° C to evaporate residual solvent. The above method is described in Japanese Patent Publication No. 5-17844. According to this method, the time from casting to stripping can be shortened. In order to carry out this method, the dope needs to gel at the surface temperature of the drum or band during casting. The solution (dope) prepared as described above satisfies this condition.
製造するフィルムの厚さは、 40乃至 140 / mであることが好ましく、 70 乃至 120 / mであることがより好ましく、 70乃至 100 μπιであることがさ らに好ましい。  The thickness of the film to be produced is preferably from 40 to 140 / m, more preferably from 70 to 120 / m, even more preferably from 70 to 100 μπι.
(可塑剤) (Plasticizer)
ポリマーフィルムには、 機械的物性を改良するため、 または乾燥速度を向上す るために、 可塑剤を添加することができる。 可塑剤としては、 リン酸エステルま たはカルボン酸エステルが用いられる。 リン酸エステルの例には、 トリフエニル フォスフェート (ΤΡΡ) およびトリクレジルホスフェート (TCP) が含まれ る。 カルボン酸エステルとしては、 フタル酸エステルおよびクェン酸エステルが 代表的である。 フタル酸エステルの例には、 ジメチルフタレート (DMP) 、 ジ ェチルフタレート (DEP) 、 ジブチルフタレート (DBP) 、 ジォクチルフタ レート (DOP) 、 ジフヱニルフタレート (DPP) およびジェチルへキシルフ タレート (DEHP) が含まれる。 クェン酸エステルの例には、 O—ァセチルク ェン酸トリェチル (OACTE) および O—ァセチルクェン酸トリブチル (OA CTB) が含まれる。 その他のカルボン酸エステルの例には、 ォレイン酸ブチル 、 リシノ一ル酸メチルァセチル、 セバシン酸ジブチル、 種々のトリメリツト酸ェ ステルが含まれる。 フタル酸エステル系可塑剤 (DMP、 DEP、 DBP、 DO P、 DPP, DEHP) が好ましく用いられる。 DEPおよび DPPが特に好ま しい。 A plasticizer can be added to the polymer film to improve mechanical properties or to increase the drying speed. As the plasticizer, a phosphoric acid ester or a carboxylic acid ester is used. Examples of phosphate esters include triphenyl phosphate (ΤΡΡ) and tricresyl phosphate (TCP). Representative carboxylic esters are phthalic esters and citrates. Examples of phthalates include dimethyl phthalate (DMP), Includes ethyl phthalate (DEP), dibutyl phthalate (DBP), octyl phthalate (DOP), diphenyl phthalate (DPP) and getylhexyl phthalate (DEHP). Examples of citrate esters include triethyl O-acetyl citrate (OACTE) and tributyl O-acetyl citrate (OA CTB). Examples of other carboxylic esters include butyl oleate, methyl acetyl ricinoleate, dibutyl sebacate, and various trimellitate esters. Phthalate plasticizers (DMP, DEP, DBP, DOP, DPP, DEHP) are preferably used. DEP and DPP are particularly preferred.
可塑剤の添加量は、 波長分散に影響を与える場合があるため、 レターデーショ ン上昇剤の添加量とともに調整する必要がある。 ポリマーの量の 0. 1乃至25 質量%であることが好ましく、 1乃至 20質量%であることがさらに好ましく、 3乃至 1 5質量%であることが最も好ましい。  The addition amount of the plasticizer may affect the chromatic dispersion, so it is necessary to adjust the addition amount together with the addition amount of the retardation increasing agent. The amount is preferably from 0.1 to 25% by mass, more preferably from 1 to 20% by mass, most preferably from 3 to 15% by mass of the amount of the polymer.
(劣化防止剤) (Deterioration inhibitor)
ポリマーフィルムには、 劣化防止剤 (例、 酸化防止剤、 過酸化物分解剤、 ラジ カル禁止剤、 金属不活性化剤、 酸捕獲剤、 ァミン) を添加してもよい。 劣化防止 剤については、 特開平 3— 199201号、 同 5— 1907073号、 同 5— 1 94789号、 同 5— 271471号、 同 6— 107854号の各公報に記載が ある。 劣化防止剤の添加量は、 調製する溶液 (ドープ) の 0. 01乃至 1質量。 /0 であることが好ましく、 0. 01乃至 0. 2質量%であることがさらに好ましい 。 添加量が 0. 01質量%未満であると、 劣化防止剤の効果がほとんど認められ ない。 添加量が 1質量%を越えると、 フィルム表面への劣化防止剤のプリ一ドア ゥト (滲み出し) が認められる場合がある。 特に好ましい劣化防止剤の例として は、 ブチル化ヒ ドロキシトルエン (BHT) 、 トリベンジルァミン (TBA) を 挙げることができる。 Degradation inhibitors (eg, antioxidants, peroxide decomposers, radical inhibitors, metal deactivators, acid scavengers, amines) may be added to the polymer film. The deterioration inhibitor is described in JP-A-3-199201, JP-A-5-1907073, JP-A-5-194789, JP-A-5-271471, and JP-A-6-107854. The amount of the deterioration inhibitor added is 0.01 to 1 mass of the prepared solution (dope). / 0 , more preferably 0.01 to 0.2% by mass. If the amount is less than 0.01% by mass, the effect of the deterioration inhibitor is hardly recognized. If the addition amount exceeds 1% by mass, pre-adhesion (bleeding) of the deterioration inhibitor to the film surface may be observed. Particularly preferred examples of the deterioration inhibitor include butylated hydroxytoluene (BHT) and tribenzylamine (TBA).
(吸湿膨張係数の調節) (Adjustment of the coefficient of hygroscopic expansion)
ポリマーフィルムには、 吸湿膨張係数を低くするために、 疎水性を有する化合 物を添加してもよい。 疎水性を有する素材としては、 分子中にアルキル基やフエ ニル基のような疎水基を有する素材であれば特に制限はないが、 上記の可塑剤や 劣化防止剤の中で該当する素材が特に好ましく用いられる。 添加量は調整する溶 液 (ドープ) の 0. 01乃至 10質量%が好ましく、 0. 1乃至 5質量0 /0がさら に好ましく、 1乃至 3質量。 /0が最も好ましい。 In order to reduce the coefficient of hygroscopic expansion, polymer films have hydrophobic compounds. A substance may be added. The material having hydrophobicity is not particularly limited as long as the material has a hydrophobic group such as an alkyl group or a phenyl group in the molecule. It is preferably used. Addition amount is preferably 0.01 to 10 wt% of the solvent liquid for adjusting (dope), 0.1 preferably to 1 to 5 wt 0/0 Gasara, 1 to 3 wt. / 0 is most preferred.
ポリマーフィルムには、 製造時のハンドリング性向上のために、 片面または両 面にマツト剤とポリマーを含有するマツト層を設けてもよい。 マツト剤およびポ リマーについては特開平 10— 44327号公報に記載されている素材を好適に 用いることができる。  The polymer film may be provided with a matting layer containing a matting agent and a polymer on one or both sides to improve the handleability during production. As the matting agent and the polymer, the materials described in JP-A-10-44327 can be suitably used.
(延伸処理) (Stretching process)
ポリマーフィルムは、 さらに延伸処理 (好ましくは 1. 1〜2倍、 より好まし くは 1. 1〜1. 5倍) により屈折率 (面内の遅相軸方向の屈折率 n x、 面内の 遅相軸に垂直な方向の屈折率 n yおよび厚み方向の屈折率 n z) を調整すること が好ましい。  The polymer film can be further subjected to a stretching treatment (preferably 1.1 to 2 times, more preferably 1.1 to 1.5 times) by a refractive index (refractive index nx in the in-plane slow axis direction, in-plane It is preferable to adjust the refractive index ny in the direction perpendicular to the slow axis and the refractive index nz) in the thickness direction.
固有複屈折率が正であると、 ポリマー鎖が配向した方向に屈折率が高くなる。 このような固有複屈折率が正のポリマーを延伸すると、 通常、 屈折率は、 n x> 117 112となる。 これは、 面内の方向に配向したポリマー鎖が、 延伸によって X成分が多くなり、 z成分が最も小さくなるためである。  If the intrinsic birefringence is positive, the refractive index increases in the direction in which the polymer chains are oriented. When a polymer having such a positive intrinsic birefringence is stretched, the refractive index usually becomes nx> 117 112. This is because in the polymer chains oriented in the in-plane direction, the X component increases by stretching and the z component becomes the smallest.
これにより、 1≤ (n x— n z) / (n x-n y) の関係を満足することがで きる。 さらに、 (n x— n z) / (n x-n y) ≤ 2の関係を満足するためには 、 一軸延伸の延伸倍率を制御するか、 あるいはアンバランスな二軸延伸を実施し て屈折率を調整すればよい。  This satisfies the relationship 1≤ (nx-nz) / (nx-ny). Furthermore, in order to satisfy the relationship of (nx—nz) / (n xn y) ≤2, it is necessary to control the stretching ratio of uniaxial stretching or adjust the refractive index by performing unbalanced biaxial stretching. I just need.
具体的には、 最大の延伸倍率 SAと、 その延伸方向に垂直な方向の延伸倍率 S Bとが、 1く SA/SB≤3の関係を満足するように、 一軸延伸またはアンバラ ンスニ軸延伸を実施すればよい。 延伸倍率は、 延伸する前の長さを 1とする場合 の相対的な値である。 SBは、 1未満の値となる (言い換えると収縮する) 場合 もある。 上記式の関係を満足すれば、 SBは 1未満の値であってもよい。 延伸倍 率は、 正面レターデーシヨンが; L / 4となるように調整することもできる。 延伸温度はポリマーのガラス転移温度より 1 0°C以上高く、 結晶化温度より 2 0°C以上低い温度が好ましく、 ガラス転移温度より 1 0°C以上高く、 結晶化温度 より 4 0°C以上低い温度がさらに好ましい。 ここで、 ガラス転移温度と結晶化温 度は示差走査熱量計 (D S C) を用い、 昇温速度 1 0°CZ分で測定したときの値 である。 Specifically, uniaxial stretching or unbalanced biaxial stretching is performed so that the maximum stretching ratio SA and the stretching ratio SB in the direction perpendicular to the stretching direction satisfy the relationship of SA / SB≤3. do it. The stretching ratio is a relative value when the length before stretching is set to 1. SB may be less than 1 (in other words, shrink). If the relationship of the above expression is satisfied, SB may be a value less than 1. The stretching ratio can also be adjusted so that the front retardation is L / 4. The stretching temperature is preferably at least 10 ° C higher than the glass transition temperature of the polymer, preferably at least 20 ° C lower than the crystallization temperature, more than 10 ° C higher than the glass transition temperature, and at least 40 ° C higher than the crystallization temperature. Lower temperatures are more preferred. Here, the glass transition temperature and the crystallization temperature are values measured using a differential scanning calorimeter (DSC) at a heating rate of 10 ° CZ.
延伸方法は特に制限しないが、 ロール延伸法が好ましい。 延伸処理は、 複数回 行われてもよく、 同時処理であっても、 逐次処理であってもよい。  The stretching method is not particularly limited, but a roll stretching method is preferred. The stretching treatment may be performed a plurality of times, and may be simultaneous treatment or sequential treatment.
延伸処理したフィルムを熱処理しても良い。 熱処理温度はポリマーフィルムの ガラス転移温度より 2 0°C低い値から 1 0°C高い温度で行うことが好ましい。 熱 処理時間は 1秒間乃至 3分間であることが好ましく、 1秒間乃至 2分間であるこ とがさらに好ましく、 1秒間乃至 1分間であることが最も好ましい。 加熱方法は ゾーン加熱であっても、 赤外線ヒータのような熱源を用レ、た部分加熱であっても よい。  The stretched film may be heat-treated. The heat treatment is preferably performed at a temperature 20 ° C lower than the glass transition temperature of the polymer film to 10 ° C higher. The heat treatment time is preferably from 1 second to 3 minutes, more preferably from 1 second to 2 minutes, and most preferably from 1 second to 1 minute. The heating method may be zone heating or partial heating using a heat source such as an infrared heater.
(円偏光板) (Circular polarizer)
λ / 4板と偏光板とを、 λ / 4板の面内の遅相軸と偏光板の偏光軸との角度が 実質的に 4 5° になるように貼り合わせると円偏光板が得られる。 偏光板とは偏 光膜を透明な保護フィルムで挟み込んだものを示す。 実質的に 4 5° とは、 4 0 乃至 5 0° であることを意味する。 λ/4板の面内の遅相軸の平均的な方向と偏 光膜の偏光軸との角度は、 4 1乃至 4 9° であることが好ましく、 4 2乃至 4 8 ° であることがより好ましく、 4 3乃至 4 7° であることがさらに好ましく、 4 4乃至 46。 であることが最も好ましい。  When a λ / 4 plate and a polarizing plate are bonded together such that the angle between the slow axis in the plane of the λ / 4 plate and the polarizing axis of the polarizing plate is substantially 45 °, a circularly polarizing plate is obtained. . A polarizing plate is one in which a polarizing film is sandwiched between transparent protective films. Substantially 45 ° means 40 to 50 °. The angle between the average direction of the slow axis in the plane of the λ / 4 plate and the polarization axis of the polarizing film is preferably 41 to 49 °, and more preferably 42 to 48 °. More preferably, it is 43 to 47 °, even more preferably, 44 to 46 °. Is most preferred.
λ/4板と偏光膜とを、 λ/ 板の面内の遅相軸と偏光膜の偏光軸との角度が 実質的に 4 5 ° になるように積層することによつても円偏光板が得られる。 偏光膜には、 ヨウ素系偏光膜、 二色性染料を用いる染料系偏光膜やポリェン系 偏光膜がある。 ヨウ素系偏光膜および染料系偏光膜は、 一般にポリビニルアルコ ール系フィルムを用いて製造する。 偏光膜の偏光軸は、 フィルムの延伸方向に垂 直な方向に相当する。  A circular polarizing plate can also be obtained by laminating a λ / 4 plate and a polarizing film such that the angle between the slow axis in the plane of the λ / plate and the polarizing axis of the polarizing film is substantially 45 °. Is obtained. The polarizing film includes an iodine-based polarizing film, a dye-based polarizing film using a dichroic dye, and a polyene-based polarizing film. The iodine-based polarizing film and the dye-based polarizing film are generally produced using a polyvinyl alcohol-based film. The polarization axis of the polarizing film corresponds to a direction perpendicular to the stretching direction of the film.
偏光膜の又 /4板とは反対側の面には、 透明保護膜を設けることが好ましい。 透明保護膜の上には、 ハードコート層を設けることが好ましい。 最外層には反射 防止層を設けることが好ましい。 It is preferable to provide a transparent protective film on the surface of the polarizing film opposite to the quarter plate. It is preferable to provide a hard coat layer on the transparent protective film. It is preferable to provide an antireflection layer as the outermost layer.
(タツチパネル) (Touch panel)
タツチパネルは、 表示素子に近い側の固定基板と、 対向する可動基板とからな る。 固定基板と可動基板の対向面に、 それぞれ透明電極を備えている。 固定基板 及ぴ可動基板は、 表示品質を高めるため、 透明な光学材料で形成されていること が好ましい。 固定基板と可動基板に用いられる材料としては、 例えば、 ガラス、 非晶性フィルム、 ポリエーテルサルフォン、 ポリカーボネート、 ポリアリレート 、 ポリエチレンテレフタレート、 セノレロースエステノレなどのポリマーフイノレムな どが挙げられる。 ポリマーフィルム (好ましくはセルロースエステルフィルム) からなる; Z 4板は、 タツチパネルとは別に設けても構わないし、 固定基板、 可 動基板のどちらか、 または、 両方に用いても構わない。 ポリマーフィルムからな る; / 4板は、 可動基板として用いることが特に好ましい。  The touch panel is composed of a fixed substrate near the display element and a movable substrate facing the fixed substrate. A transparent electrode is provided on each of the opposing surfaces of the fixed substrate and the movable substrate. The fixed substrate and the movable substrate are preferably formed of a transparent optical material in order to improve display quality. Examples of the material used for the fixed substrate and the movable substrate include glass, an amorphous film, polyether sulfone, polycarbonate, polyarylate, polyethylene terephthalate, and polymer finolem such as senorellose estenolle. It is composed of a polymer film (preferably a cellulose ester film); the Z4 plate may be provided separately from the touch panel, or may be used for one or both of a fixed substrate and a movable substrate. It is particularly preferable to use a quarter plate composed of a polymer film as a movable substrate.
二つの透明電極間にはギヤップが形成される。 ギヤップ間には通常空気層が存 在するが、 オプティカル ·マッチングを取るために透明電極と屈折率の近い液体 を充填させることもできる。 また、 透明電極膜の基板側にアンダーコート層、 ま たは、 基板と反対側にオーバーコート層を付与し、 光反射を低減させることもで きる。 スティッキング性をなくし、 打鍵寿命を改善するために、 透明電極膜表面 は粗面化されていても良い。 ギャップ間にはスぺーサを設けることができる。 ス ぺーサとしては、 ドット状スぺーサや、 固定基板と可動基板との周辺部に設けた 貼合せ材などが用いられる。  A gap is formed between the two transparent electrodes. There is usually an air layer between the gaps, but a liquid with a refractive index close to that of the transparent electrode can be filled for optical matching. Further, an undercoat layer may be provided on the substrate side of the transparent electrode film, or an overcoat layer may be provided on the side opposite to the substrate to reduce light reflection. The surface of the transparent electrode film may be roughened to eliminate sticking and improve the keying life. A spacer can be provided between the gaps. As the spacer, a dot-shaped spacer or a bonding material provided around a fixed substrate and a movable substrate is used.
タツチパネルは、 デジタル式、 アナログ式のどちらとしても用いられる。 デジ タル式では、 押圧による透明電極同士の接触と、 接触位置に対応してデータ位置 を検出することができる。 アナログ式では、 例えば、 固定基板の X軸方向の両端 部、 および、 可動基板の Y軸方向の両端部に電極を形成し、 押圧により透明電極 同士が接触し、 接触位置により生じる X方向、 Y方向の抵抗値を検出することに よって、 データ入力位置を検出することができる。  Touch panels are used in both digital and analog types. In the digital method, it is possible to detect the contact between the transparent electrodes by pressing and the data position corresponding to the contact position. In the analog type, for example, electrodes are formed at both ends in the X-axis direction of the fixed substrate and both ends in the Y-axis direction of the movable substrate, and the transparent electrodes come into contact with each other by pressing, and the X and Y directions generated by the contact position The data input position can be detected by detecting the resistance value in the direction.
タツチパネルは表示素子と共に用いられることが好ましい。 タツチパネル部が 表示部とは別々になっていても構わないし、 両者が一体となっていても構わない 。 タツチパネルを偏光板とともに用いた場合、 偏光板がタツチパネルと表示素子 との間にあっても構わないし、 偏光板がタツチパネルの外側 (観察者側) に設け られたィンナータイプであっても構わない。 外光の反射が低減でき防眩性に優れ るタツチパネ^レは、 インナータイプとして用いる方が好ましい。 The touch panel is preferably used with a display element. Touch panel part The display unit may be separate from the display unit, or both may be integrated. When the touch panel is used together with the polarizing plate, the polarizing plate may be provided between the touch panel and the display element, or the polarizing plate may be an inner type provided outside the touch panel (on the observer side). It is preferable to use a touch panel that has reduced anti-reflection of external light and excellent anti-glare properties as an inner type.
タツチパネルとして用いる透明導電膜としては、 表面抵抗率は、 1 0 4 Ω /D 以下であることが好ましく、 1 0 0 0 Ω /口以下であることがさらに好ましく、 5 0 0 Ω Ζ口以下であることが最も好ましい。 The transparent conductive film used as Tatsuchipaneru, surface resistivity, 1 0 is preferably 4 Omega / D or less, 1 0 0 0 Omega / more preferably mouth or less, below 5 0 0 Omega Zeta port Most preferably.
ポリマーフィルムからなる; I Z 4板の少なくとも一方の面に透明導電膜を設け 、 インナータイプのタツチパネルとして用いることが特に好ましい。  It is particularly preferable that a transparent conductive film is provided on at least one surface of the IZ4 plate to be used as an inner type touch panel.
透明導電膜の表面抵抗率を上記のような値にするためには、 導電性微粒子分散 物など塗布によって設けても構わないし、 フィルム流延時に共流延することによ つて設けても構わない。 また、 スパッタリング、 真空蒸着法、 イオンプレーティ ング法などの真空成膜法によって透明導電膜を成膜しても構わない。 フィルムの 片面に透明導電膜を設けても構わないし、 両面に設けても構わない。 また、 これ らの方法を併用することも可能である。  In order to set the surface resistivity of the transparent conductive film to the above value, it may be provided by applying a conductive fine particle dispersion or the like, or may be provided by co-casting at the time of film casting. . Further, the transparent conductive film may be formed by a vacuum film forming method such as sputtering, vacuum evaporation, or ion plating. A transparent conductive film may be provided on one side of the film, or may be provided on both sides. Also, these methods can be used in combination.
導電性微粒子分散物を塗布する方法としては、 基本的には少なくとも 1種以上 の金属および、 または金属酸化物、 金属窒化物からなる微粒子を含有する層から なる。 1種以上の金属からなる微粒子としては、 金、 銀、 銅、 アルミニウム、 鉄 、 ニッケル、 パラジウム、 プラチナ等の金属あるいはこれらの合金が挙げられる 。 特に銀が好ましく、 さらに耐候性の観点からパラジウムと銀の合金が好ましい 。 パラジウムの含有量としては 5〜3 O w t %が好ましく、 パラジウムが少ない と耐候性が悪く、 パラジウムが多くなると導電性が低下する。 金属微粒子の作製 方法としては、 低真空蒸発法による微粒子の作製方法や金属塩の水溶液を鉄 (II ) 、 ヒ ドラジン、 ボロンハイ ドライ ド、 ヒ ドロキシェチルァミン等のアミン等の 還元剤で還元する金属コロイド作製方法が挙げられる。  The method for applying the conductive fine particle dispersion basically includes a layer containing fine particles composed of at least one or more metals and / or metal oxides and metal nitrides. Examples of the fine particles composed of one or more metals include metals such as gold, silver, copper, aluminum, iron, nickel, palladium, and platinum, and alloys thereof. Particularly, silver is preferable, and an alloy of palladium and silver is more preferable from the viewpoint of weather resistance. The content of palladium is preferably 5 to 3 wt%. If the amount of palladium is small, the weather resistance is poor, and if the amount of palladium is large, the conductivity is reduced. Methods for preparing metal fine particles include a method for preparing fine particles by a low-vacuum evaporation method and a method for reducing an aqueous solution of a metal salt with a reducing agent such as an amine such as iron (II), hydrazine, boron hydride, or hydroxyxylamine. Metal colloid preparation method.
金属酸化物としては I u s 〇3 系 (S nなどドープ品含む) 、 S n〇2 系 (F 、 S bなどドープ品含む) 、 Z n O系 (A 1、 G aなどのドープ品含む) 、 T i O 2 、 A 12 〇3 、 S i O 2 、 MgO、 B aO、 Mo O s 、 V2 O s 、 またはこ れらの複合品などが挙げられる。 金属窒化物としては T i Nなどが挙げられる。 これら導電性微粒子の平均粒径は 1. 0〜700nmが好ましく、 2. 0〜 3 O O nmが更に好ましく、 5. 0〜 100 n mが最も好ましい。 粒径が大きすぎ ると、 導電性^:粒子による光の吸収が大きくなり、 このために粒子層の光透過率 が低下すると同時にヘイズが大きくなり、 また、 これら導電性微粒子の平均粒径 が l nm未満の場合には、 微粒子の分散が困難になり、 微粒子層の表面抵抗が急 激に大きくなるため、 目的とする低抵抗値を有する被膜を得ることができない。 導電性微粒子層の形成は、 導電性微粒子を水を主体とする溶液あるいは有機溶 剤等に分散した塗料を塗布して作製することができる。 塗布する前に、 表面処理 や下塗りを施すことができる。 表面処理としては、 例えばコロナ放電処理、 グロ 一放電処理、 クロム酸処理 (湿式) 、 火炎処理、 熱風処理、 オゾン ·紫外線照射 処理などが挙げられる。 下塗り層の素材としては塩化ビニル、 塩化ビニリデン、 ブタジエン、 (メタ) アクリル酸エステル、 ビニルエステル等の共重合体或いは ラテックス、 ゼラチン等の水溶性ポリマーなどが挙げられるが特に限定はされな レ、。 導電性微粒子の分散安定化のためには水を主体とする溶液が好ましく、 水と 混合出来る溶剤としてはエチルアルコール、 n—プロピルアルコール、 i—プロ ピルアルコーノレ、 ブチルアルコール、 メチルセルソルブ、 プチノレセルソルブ等の アルコールが好ましい。 導電性微粒子の塗布量としては、 10乃至 1000 m g /m2 が好ましく、 20乃至5 001118/1312 がさらに好ましく、 5 0〜1 50 mg/m2 が最も好ましい。 塗布量が少ないと導電性が取れず、 塗布量が多いと 透過性が劣る。 As the metal oxide I us 〇 3 system (including doped products such as S n), S N_〇 2 system (F Includes such doped article S b), including doped products such as Z n O system (A 1, G a), T i O 2, A 12 〇 3, S i O 2, MgO , B aO, Mo O s, V 2 O s or a composite of these. Examples of the metal nitride include TiN. The average particle size of these conductive fine particles is preferably from 1.0 to 700 nm, more preferably from 2.0 to 300 nm, most preferably from 5.0 to 100 nm. If the particle size is too large, the absorption of light by the conductive ^: particles will increase, which will lower the light transmittance of the particle layer and increase the haze, and also increase the average particle size of these conductive fine particles. If it is less than 1 nm, it becomes difficult to disperse the fine particles, and the surface resistance of the fine particle layer rapidly increases, so that it is not possible to obtain a film having the intended low resistance value. The conductive fine particle layer can be formed by applying a paint in which conductive fine particles are dispersed in a solution mainly composed of water or an organic solvent. Before application, a surface treatment or undercoating can be applied. Examples of the surface treatment include corona discharge treatment, glow discharge treatment, chromic acid treatment (wet process), flame treatment, hot air treatment, and ozone / ultraviolet irradiation treatment. Examples of the material of the undercoat layer include copolymers such as vinyl chloride, vinylidene chloride, butadiene, (meth) acrylate and vinyl ester, or latex, and water-soluble polymers such as gelatin, but are not particularly limited. A solution mainly composed of water is preferable for stabilizing the dispersion of the conductive fine particles. Examples of the solvent that can be mixed with water include ethyl alcohol, n-propyl alcohol, i-propyl alcohol, butyl alcohol, methylcellosolve, and ptinoresel. Alcohols such as Solve are preferred. The coating amount of the conductive fine particles is preferably 10 to 1000 mg / m 2, more preferably 20 to 5 00111 8/131 2, and most preferably 5 0 to 1 50 mg / m 2. If the coating amount is small, the conductivity cannot be obtained, and if the coating amount is large, the permeability is poor.
透明導電層はバインダーを含有していても、 バインダーを含有せず、 実質的に 導電性微粒子のみから形成されていてもどちらでも構わない。 バインダーを用い る場合、 親水十生バインダー、 疎水性バインダー、 あるいは、 ラテックスを用いる ことができる。 親水性バインダーには、 ゼラチン、 ゼラチン誘導体、 寒天、 アル ギン酸ソーダ、 でんぷん、 ポリビュルアルコール、 ポリアクリル酸共重合体、 無 水マレイン酸共重合体、 カルポキシメチルセルロース、 カルポキシェチルセル口 ース、 ヒ ドロキシメチノレセ/レロース、 ヒ ドロキシェチノレセノレロースが含まれる。 疎水性バインダーの例には、 セルロースエステル (例、 セルロースニトレート、 セノレロースジアセテート、 セノレローストリアセテート) 、 セノレロースエーテノレ ( 例、 メチルセルロース) 、 ビニル系ポリマー (例、 塩化ビュル、 塩化ビニリデン 、 ビニルアタリ レート') 、 ポリアミ ドおよびポリエステルが含まれるる。 The transparent conductive layer may contain a binder, may contain no binder, and may be formed substantially only of conductive fine particles. When a binder is used, a hydrophilic binder, a hydrophobic binder, or latex can be used. Examples of hydrophilic binders include gelatin, gelatin derivatives, agar, sodium alginate, starch, polybutyl alcohol, polyacrylic acid copolymer, water-free maleic acid copolymer, carboxymethylcellulose, and carboxymethyl cellulose. Includes glucose, hydroxymethinorese / rerose, and hydroxyxetinoresenorelose. Examples of the hydrophobic binder include cellulose esters (eg, cellulose nitrate, senorelose diacetate, senorelostriacetate), senorelose acetate (eg, methylcellulose), vinyl polymers (eg, butyl chloride, vinylidene chloride, vinyl) Atalylate '), polyamides and polyesters.
透明導電性層の導電性や透過性の向上のため、 熱処理や水処理することが出来 る。 熱処理は、 ポリマーフィルムの耐熱性によるが、 1 5 0 °C以下が好ましい 。 1 0 0 °Cから 1 5 0 °Cが好ましい。 1 5 0 °C以上ではポリマーフィルムの熱に よる変形が起こりやすく、 1 0 0 °C以下では熱処理の効果が出難く、 長時間の処 理時間が必要になってしまう。  Heat treatment or water treatment can be performed to improve the conductivity and transparency of the transparent conductive layer. The heat treatment depends on the heat resistance of the polymer film, but is preferably 150 ° C. or lower. The temperature is preferably from 100 ° C to 150 ° C. Above 150 ° C, the polymer film is likely to be deformed by heat, and below 100 ° C, the effect of the heat treatment is difficult to achieve, and a long processing time is required.
熱処理の方法は、 ウエッブ状態で加熱ゾーンを通しながら処理することが均一 な処理が出来て好ましい。 加熱ゾーンの長さと搬送速度で滞在時間を調節するこ. とが出来る。 またロール状のフィルムを恒温槽中で加熱することも可能であるが 、 熱伝導のバラツキを考慮した時間設定が必要になる。  As the heat treatment method, it is preferable to perform the treatment while passing through a heating zone in a web state, since uniform treatment can be performed. The stay time can be adjusted by the length of the heating zone and the transport speed. It is also possible to heat the rolled film in a thermostat, but it is necessary to set the time in consideration of the variation in heat conduction.
また、 熱処理に先立ち、 透明導電性層を水洗等の水処理をする事で熱処理をさ らに効率良くすることが出来る。 水洗等の水処理は、 通常の塗布方式による水だ けの塗布、 具体的にはディップコート塗布、 ワイヤーバ^"による水の塗布等があ り、 他にはスプレーやシャワーで水を透明導電性層に掛ける方法がある。 透明導 電性層に水をかけた後、 過剰の水は必要に応じて、 ワイヤーバー、 ロッドバーで 搔き取ったり、 エアーナイフで搔き取ることが出来る。  Further, prior to the heat treatment, the transparent conductive layer is subjected to water treatment such as washing with water, so that the heat treatment can be further efficiently performed. Water treatment such as water washing includes application of only water using a normal application method, specifically, dip coating, application of water using a wire bar, etc. In addition, water is sprayed or showered using a transparent conductive material. After applying water to the transparent conductive layer, excess water can be removed with a wire bar or rod bar or with an air knife as needed.
これらの水処理により、 熱処理後の透明導電性槽の表面抵抗をさらに低下させ ることが出来、 加えて透過率の増加、 透過スペク トルの平坦化、 反射防止層を積 層した後の反射率の低下に対する効果が顕著になる。  These water treatments can further reduce the surface resistance of the transparent conductive tank after the heat treatment, increase the transmittance, flatten the transmission spectrum, and reflectivity after the anti-reflection layer is deposited. The effect on the reduction of the amount becomes significant.
真空成膜法にとしては 「透明導電膜の新展開」 シーエムシー、 澤田 豊監修、 「月刊ディスプレイ」 1 9 9 9年 9月号に記載の方法を用いることができる。 製膜する金属酸化物としては I n 2 O a 系 (S nなどドープ品、 I T O含む) 、 S n 02 系 (F、 S bなどドープ品含む) 、 Z n〇系 ( A 1、 G aなどのドー プ品含む) またはこれらの複合品 I n 23 — Z η θ系などが挙げられる。 金属 窒化物としては T i Nなどが挙げられる。 また、 銀などと共に製膜しても良い。 As the vacuum film forming method, the method described in “New Development of Transparent Conductive Film”, supervised by CMC and Yutaka Sawada, “Monthly Display” September, 1999 issue can be used. Film metal oxides I n 2 O a system as (S n such doped products, including ITO), (including F, doped products such as S b) S n 0 2 system, Z N_〇 system (A 1, G a, etc.), or a composite of these, In 23 — Z η θ system. Examples of the metal nitride include TiN. Also, a film may be formed together with silver or the like.
スパッタなどでポリマーフィルム上に成膜する際にはその表面をフッ素系樹脂 、 アクリル系樹脂、 シリコン系樹脂、 プロピレン系樹脂、 ビニル系樹脂などの高 分子や、 S i〇2 , T i〇2, Z r〇2, S n〇2 などの無機物でコートするこ とが好ましい。 コートする膜厚としては 10 nm以上 100 以下が好ましく 、 さらに好ましくは 1 O n m以上 50 μ m以下であり、 特に好ましくは 1 0 n m 以上 10 μπι以下である。 Sputtering such as a polymer film fluoric the its surface when forming on the resin, acrylic resin, silicone resin, propylene resin, and a high molecule such as vinyl resin, S I_〇 2, T I_〇 2 , Z R_〇 2, and an inorganic substance on the court child such as S N_〇 2 is preferred. The coating thickness is preferably from 10 nm to 100, more preferably from 10 nm to 50 μm, and particularly preferably from 10 nm to 10 μπι.
スパッタなどの際には基板を冷却することが好ましい。 好ましくはー30°C以 上 30°C以下であり、 さらに好ましくは一 30°C以上 20°C以下であり、 特に好 ましくは一 30°C以上 10°C以下である。  It is preferable to cool the substrate during sputtering or the like. The temperature is preferably from -30 ° C to 30 ° C, more preferably from 130 ° C to 20 ° C, particularly preferably from 130 ° C to 10 ° C.
スパッタ法により酸化インジウムを主として含む膜を成膜する方法としては、 インジウムを主成分とする金属ターゲット、 または酸化シンジゥムを主成分とす る焼結体であるターゲットを用いた反応性スパッタリングを行うことができる。 反応の制御上、 後者が好ましい。 反応性スパッタリング法においてはスパッタリ ングガスとしては、 アルゴンなどの不活性ガスを用い、 反応性ガスとしては酸素 を用いる。 放電形式としては DCマグネトロンスパッタ、 RFマグネトロンスパ ッタなどが利用できる。  As a method for forming a film mainly containing indium oxide by a sputtering method, reactive sputtering using a metal target containing indium as a main component or a target which is a sintered body mainly containing syndium oxide is used. Can be. The latter is preferred for controlling the reaction. In the reactive sputtering method, an inert gas such as argon is used as a sputtering gas, and oxygen is used as a reactive gas. As a discharge type, DC magnetron sputtering, RF magnetron sputtering, etc. can be used.
また、 酸素の流量を制御する方法としてはプラズマエミッションモニター法で 行うことが好ましい。  Further, as a method for controlling the flow rate of oxygen, it is preferable to use a plasma emission monitor method.
透明導電層を付与したポリマーフィルムの光の透過率は、 50%以上であるこ とが好ましく、 60%以上であることがさらに好ましく、 70%以上であること が特に好ましく、 80%以上であることが最も好ましい。  The light transmittance of the polymer film provided with the transparent conductive layer is preferably at least 50%, more preferably at least 60%, particularly preferably at least 70%, and preferably at least 80%. Is most preferred.
(反射型液晶表示素子) (Reflective LCD device)
タツチパネノレは、 様々な表示装置と組合せて用いることができる。 例えば、 力 ソードレイチューブ (CRT) 、 プラズマディスプレイ (PDP) 、 フィーノレド 'ェミッション 'ディスプレイ (FED) 、 無機 ELデバイス、 有機 ELデバイ ス、 液晶表示装置などである。 本発明に従う位相差板、 円偏光板を用いることで 、 これらの表示装置の外光の反射を低減することができる。 この表示装置の中で は、 液晶表示装置と組合せて用いるのが好ましく、 特に反射型液晶表示装置に用 いるのが好ましい。 The touch panel can be used in combination with various display devices. Examples include force sword-ray tubes (CRTs), plasma displays (PDPs), fino-red 'emission' displays (FEDs), inorganic EL devices, organic EL devices, and liquid crystal displays. By using the retardation plate and the circularly polarizing plate according to the present invention, the reflection of external light from these display devices can be reduced. In this display device Is preferably used in combination with a liquid crystal display device, particularly preferably a reflection type liquid crystal display device.
図 1は、 反射型液晶表示装置の基本的な構成を示す模式図である。  FIG. 1 is a schematic diagram showing a basic configuration of a reflective liquid crystal display device.
図 1に示す反射型液晶表示装置は、 下から順に、 下基板 (a) 、 反射電極 (b ) 、 下配向膜 (c) 、 液晶層 (d) 、 上配向膜 (e) 、 透明電極 (f ) 、 上基板 The reflective liquid crystal display device shown in FIG. 1 includes, in order from the bottom, a lower substrate (a), a reflective electrode (b), a lower alignment film (c), a liquid crystal layer (d), an upper alignment film (e), and a transparent electrode ( f), upper substrate
(g) 、 λΖ4板 (h) 、 そして偏光膜 ( i) からなる。 (g), λΖ4 plate (h), and polarizing film (i).
下基板 (a) と反射電極 (b) が反射板を構成する。 下配向膜 (c) 〜上配向 膜 (e) が液晶セルを構成する。 ; L/4板 (h) は、 反射板と偏光膜 ( i ) との 間の任意の位置に配置することができる。  The lower substrate (a) and the reflective electrode (b) constitute a reflector. The lower alignment film (c) to the upper alignment film (e) constitute a liquid crystal cell. The L / 4 plate (h) can be arranged at any position between the reflector and the polarizing film (i).
カラー表示の場合には、 さらにカラーフィルタ一層を設ける。 カラーフィルタ 一層は、 反射電極 (b) と下配向膜 (c) との間、 または上配向膜 (e) と透明 電極 (ί) との間に設けることが好ましい。  In the case of color display, one color filter is further provided. One color filter is preferably provided between the reflective electrode (b) and the lower alignment film (c) or between the upper alignment film (e) and the transparent electrode (ί).
図 1に示す反射電極 (b) の代わりに透明電極を用いて、 別に反射板を取り付 けてもよレ、。 透明電極と組み合わせて用いる反射板としては、 金属板が好ましい 反射板の表面が平滑であると、 正反射成分のみが反射されて視野角が狭くなる 場合がある。 そのため、 反射板の表面に凹凸構造 (特許 275620号公報記載 ) を導入することが好ましい。 反射板の表面が平坦である場合は (表面に凹凸構 造を導入する代わりに) 、 偏光膜の片側 (セル側あるいは外側) に光拡散フィル ムを取り付けてもよい。  A transparent electrode may be used instead of the reflective electrode (b) shown in Fig. 1, and a separate reflector may be attached. As the reflector used in combination with the transparent electrode, a metal plate is preferable. If the surface of the reflector is smooth, only the specular reflection component is reflected and the viewing angle may be narrowed. Therefore, it is preferable to introduce an uneven structure (described in Japanese Patent No. 275620) on the surface of the reflector. If the surface of the reflector is flat (instead of introducing an uneven structure on the surface), a light diffusion film may be attached to one side (cell side or outside) of the polarizing film.
図 2は、 タツチパネルを用いた反射型液晶表示装置の基本的な構成を示す模式 図である。  FIG. 2 is a schematic diagram illustrating a basic configuration of a reflective liquid crystal display device using a touch panel.
図 2に示すタツチパネルを用いた反射型液晶表示装置は、 下から順に、 下基板 (a) 、 反射電極 (b) 、 下配向膜 (c) 、 液晶層 (d) 、 上配向膜 (e) 、 透 明電極 (f ) 、 上基板 (g) 、 透明導電膜 (〗) 、 透明導電膜 (k) 、 λΖ4板 The reflection type liquid crystal display device using the touch panel shown in FIG. 2 includes, in order from the bottom, a lower substrate (a), a reflective electrode (b), a lower alignment film (c), a liquid crystal layer (d), and an upper alignment film (e). , Transparent electrode (f), upper substrate (g), transparent conductive film (〗), transparent conductive film (k), λΖ4 plate
(h) 、 そして偏光膜 (i) からなる。 (h) and a polarizing film (i).
透明導電膜 (j ) と透明導電膜 (k) の間にはギャップが形成され、 タツチパ ネルとして機能する。  A gap is formed between the transparent conductive film (j) and the transparent conductive film (k), and functions as a touch panel.
用いられる液晶モードは特に限定されないが、 TN (twisted nematic ) 型、 STN (Supper Twisted Nematic) 型、 HAN (Hybrid Aligned Nematic) 型、 または、 GH (Guest Host) 型であることが好ましい。 The liquid crystal mode used is not particularly limited, but the TN (twisted nematic) type, It is preferably of STN (Supper Twisted Nematic) type, HAN (Hybrid Aligned Nematic) type, or GH (Guest Host) type.
TN型液晶セルのツイスト角は、 40乃至 100° である とが好ましく、 5 0乃至 90° であることがさらに好ましく、 60乃至 80° であることが最も好 ましい。 液晶層の屈折率異方性 (Δη) と液晶層の厚み (d) との積 (An d) の値は、 0. 1乃至 0. 5 imであることが好ましく、 0. 2乃至 0. 4 μ mで あることがさらに好ましい。  The twist angle of the TN type liquid crystal cell is preferably from 40 to 100 °, more preferably from 50 to 90 °, and most preferably from 60 to 80 °. The value of the product (An d) of the refractive index anisotropy (Δη) of the liquid crystal layer and the thickness (d) of the liquid crystal layer is preferably 0.1 to 0.5 im, and 0.2 to 0.5 im. More preferably, it is 4 μm.
STN型液晶セルのツイスト角は、 180乃至 360° であることが好ましく 、 220乃至 270° であることがさらに好ましい。 液晶層の屈折率異方性 (△ n) と液晶層の厚み (d) との積 (An d) の値は、 0. 3乃至 1. 2 μπιであ ることが好ましく、 0. 5乃至 1. ◦ /zmであることがさらに好ましい。  The twist angle of the STN type liquid crystal cell is preferably from 180 to 360 °, more preferably from 220 to 270 °. The value of the product (An d) of the refractive index anisotropy (△ n) of the liquid crystal layer and the thickness (d) of the liquid crystal layer is preferably from 0.3 to 1.2 μπι, and from 0.5 to 1.2 μπι. 1. ◦ / zm is more preferable.
H AN型液晶セルは、 片方の基板上では液晶が実質的に垂直に配向しており、 他方の基板上のプレチルト角が 0乃至 45° であることが好ましい。 液晶層の屈 折率異方性 (Δη) と液晶層の厚み (d) との積 (An d) の値は、 0. 1乃至 1. 0 μπιであることが好ましく、 0. 3乃至 0. 8 μπιであることがさらに好 ましい。 液晶を垂直配向させる側の基板は、 反射板側の基板であってもよいし、 透明電極側の基板であってもよい。  In the HAN type liquid crystal cell, it is preferable that the liquid crystal is substantially vertically aligned on one substrate and the pretilt angle on the other substrate is 0 to 45 °. The value of the product (An d) of the refractive index anisotropy (Δη) of the liquid crystal layer and the thickness (d) of the liquid crystal layer is preferably 0.1 to 1.0 μπι, and 0.3 to 0 μπι. More preferably, it is 8 μπι. The substrate on the side where the liquid crystal is vertically aligned may be a substrate on the reflector side or a substrate on the transparent electrode side.
GH型液晶セルは、 液晶層が液晶と二色性色素との混合物からなる。 液晶、 二 色性色素ともに棒状の化合物の場合、 液晶のディレクタと二色性色素の長軸方向 が平行となる。 電圧の印加によって液晶の配向状態が変化すると、 二色性色素も 液晶と同様に長軸方向が変化する。 GH型液晶セルには、 He i l me i r型や 、 コレステリック液晶を用いた Wh i t e—T a y 1 o r型、 二層型、 λ/4板 を用いた方式などが知られている。 本発明においては、 λ/4板を用いた方式を 用いるのが好ましい。 LZ4板を備えたゲストホスト反射型液晶表示素子につい ては、 特開平 6— 222350号、 同 8— 36174号、 同 10— 268300 号、 同 10— 292175号、 同 10— 293301号、 同 10— 31 1 976 号、 同 10— 31 9442号、 同 10— 325953号、 同 10— 3331 38 号、 同 1 1一 38410号の各公報に記載がある。 ノ 4板は、 液晶層と反射板 との間に設けられる。 液晶層は水平配向、 垂直配向のどちらを用いても構わない 力 垂直配向を用いるのが好ましい。 液晶の誘電率異方性は負であることが好ま しい。 In the GH type liquid crystal cell, the liquid crystal layer is composed of a mixture of liquid crystal and a dichroic dye. When both the liquid crystal and the dichroic dye are rod-shaped compounds, the director of the liquid crystal and the long axis direction of the dichroic dye are parallel. When the alignment state of the liquid crystal changes by applying a voltage, the dichroic dye also changes in the long-axis direction like the liquid crystal. As the GH type liquid crystal cell, a Heil meir type, a White-Tay 1 or type using a cholesteric liquid crystal, a two-layer type, and a type using a λ / 4 plate are known. In the present invention, it is preferable to use a method using a λ / 4 plate. JP-A-6-222350, JP-A-8-36174, JP-A-10-268300, JP-A-10-292175, JP-A-10-293301, and JP-A-10-294, JP-A-6-222350, JP-A-8-36174, JP-A-6-222350 It is described in the respective publications of 31 1 976, 10-31 9442, 10-325953, 10-331 3338, and 11-38410. The four plates are provided between the liquid crystal layer and the reflector. The liquid crystal layer can use either horizontal or vertical alignment Preferably, a vertical orientation is used. It is preferable that the dielectric anisotropy of the liquid crystal is negative.
偏光膜には、 ヨウ素系偏光膜、 二色性染料を用いる染料系偏光膜やポリェン系 偏光膜がある。 ヨウ素系偏光膜および染料系偏光膜は、 一般にポリビニルアルコ ール系フィルムを用いて製造する。 偏光膜の偏光軸は、 フィルムの延伸方向に垂 直な方向に相当する。  The polarizing film includes an iodine-based polarizing film, a dye-based polarizing film using a dichroic dye, and a polyene-based polarizing film. The iodine-based polarizing film and the dye-based polarizing film are generally produced using a polyvinyl alcohol-based film. The polarization axis of the polarizing film corresponds to a direction perpendicular to the stretching direction of the film.
反射型液晶表示装置は、 印加電圧が低い時に明表示、 高い時に暗表示であるノ 一マリーホワイ トモードでも、 印加電圧が低い時に暗表示、 高い時に明表示であ るノーマリーブラックモードでも用いることができる。 ノーマリーホワイトモ一 ドの方が好ましい。  The reflective liquid crystal display device should be used in the normally white mode, in which the display is bright when the applied voltage is low, and dark when the applied voltage is high, or in the normally black mode in which the display is dark when the applied voltage is low and bright when the applied voltage is high. Can be. Normally white mode is preferred.
(ゲストホスト反射型液晶表示素子) (Guest-host reflective LCD device)
図 3は、 ゲストホスト反射型液晶表示素子の代表的な態様を示す断面模式図で める。  FIG. 3 is a schematic cross-sectional view showing a typical embodiment of a guest-host reflection type liquid crystal display device.
図 3に示すゲストホスト反射型液晶表示素子は、 下基板 (1) 、 有機層間絶縁 膜 (2) 、 金属反射板 (3) 、 λ/4板 (4) 、 下透明電極 (5) 、 下配向膜 ( 6) 、 液晶層 (7) 、 上配向膜 (8) 、 上透明電極 (9) 、 光拡散板 (10) 、 上基板 (11) および反射防止層 (12) 力 この順に積層された構造を有する 下基板 (1) およぴ上基板 (2) は、 ガラス板またはプラスチックフィルムか らなる。 下基板 (1) と有機層間絶縁膜 (2) との間には、 TFT (1 3) が取 り付けられている。  The guest-host reflective liquid crystal display device shown in Fig. 3 consists of a lower substrate (1), an organic interlayer insulating film (2), a metal reflector (3), a λ / 4 plate (4), a lower transparent electrode (5), and a lower transparent electrode (5). Alignment film (6), liquid crystal layer (7), upper alignment film (8), upper transparent electrode (9), light diffusion plate (10), upper substrate (11) and antireflection layer (12) The lower substrate (1) and the upper substrate (2) having a different structure are made of a glass plate or a plastic film. The TFT (13) is mounted between the lower substrate (1) and the organic interlayer insulating film (2).
液晶層 (7) は、 液晶と二色性色素との混合物からなる。 液晶層は、 スぺーサ 一 (14) により形成されているセルギャップに液晶と二色性色素との混合物を 注入して得られる。  The liquid crystal layer (7) is composed of a mixture of liquid crystal and dichroic dye. The liquid crystal layer is obtained by injecting a mixture of liquid crystal and a dichroic dye into the cell gap formed by the spacer (14).
光拡散板 (10) を設ける代わりに、 金属反射板 (3) の表面に凹凸を付ける ことで、 金属反射板 (3) に光拡散機能を付与してもよい。  Instead of providing the light diffusion plate (10), the metal reflection plate (3) may have a light diffusion function by making the surface of the metal reflection plate (3) uneven.
反射防止層 (1 2) は、 反射防止機能に加えて、 防眩機能も有していることが 好ましい。 図 4は、 ゲストホスト反射型液晶表示素子の別の代表的な態様を示す断面模式 図である。 The antireflection layer (12) preferably has an antiglare function in addition to the antireflection function. FIG. 4 is a schematic sectional view showing another typical embodiment of the guest-host reflection type liquid crystal display device.
図 4に示すゲストホス ト反射型液晶表示素子は、 下基板 (1)' 、 有機層間絶縁 膜 (2) 、 コレステリックカラー反射板 (3) 、 λΖ4板 (4) 、 下透明電極 ( 5) 、 下配向膜 (6) 、 液晶層 (7) 、 上配向膜 (8) 、 上透明電極 (9) 、 上 基板 (1 1) および反射防止層 (12) 力 この順に積層された構造を有する。 下基板 (1) およぴ上基板 (2) は、 ガラス板またはプラスチックフィルムか らなる。 下基板 (1) と有機層間絶縁膜 (2) との間には、 TFT (1 3) が取 り付けられている。 The guest-host reflective liquid crystal display device shown in Fig. 4 consists of a lower substrate (1) ', an organic interlayer insulating film (2), a cholesteric color reflector (3), a λΖ4 plate (4), a lower transparent electrode (5), and a lower transparent electrode (5). Alignment film (6), liquid crystal layer (7), upper alignment film (8), upper transparent electrode (9), upper substrate (11), and antireflection layer (12). The lower substrate (1) and the upper substrate (2) are made of a glass plate or a plastic film. The TFT (13) is mounted between the lower substrate (1) and the organic interlayer insulating film (2).
Z4板 (4) は、 光拡散板としても機能させてもよい。  The Z4 plate (4) may function as a light diffusion plate.
液晶層 (7) は、 液晶と二色性色素との混合物からなる。 液晶層は、 スぺーサ 一 (14) により形成されているセルギャップに液晶と二色性色素との混合物を 注入して得られる。  The liquid crystal layer (7) is composed of a mixture of liquid crystal and dichroic dye. The liquid crystal layer is obtained by injecting a mixture of liquid crystal and a dichroic dye into the cell gap formed by the spacer (14).
上透明電極 (9) と上基板 (1 1) との間には、 ブラックマトリックス (1 5 ) が取り付けられている。  A black matrix (15) is attached between the upper transparent electrode (9) and the upper substrate (11).
反射防止層 (12) は、 反射防止機能に加えて、 防眩機能も有していることが 好ましい。  The antireflection layer (12) preferably has an antiglare function in addition to the antireflection function.
本発明に従う λ/4板は、 図 3および図 4で説明したゲストホスト反射型液晶 表示素子の; LZ4板 (4) として使用できる。 The λ / 4 plate according to the present invention can be used as the LZ4 plate (4) of the guest-host reflection type liquid crystal display device described with reference to FIGS.
/4板を備えたゲストホスト反射型液晶表示素子については、 特開平 6— 2 22350号、 同 8— 361 74号、 同 10— 268300号、 同 1 0— 292 1 75号、 同 10— 293301号、 同 10— 31 1 976号、 同 1 0— 319 442号、 同 10— 325953号、 同 10— 333138号、 同 1 1— 384 10号の各公報に記載がある。  Japanese Patent Application Laid-Open Nos. Hei 6-222350, Hei 8-36174, Hei 10-268300, Hei 10-292 175, Hei 10-292 175, Hei 10-293301 No. 10-31 1 976, No. 10-319 442, No. 10-325595, No. 10-333138, No. 11-38410.
本発明に従うぇ/4板は、 上記各公報記載のゲストホス ト反射型液晶表示素子 にも利用することができる。  The quarter-plate according to the present invention can also be used for the guest-host reflection type liquid crystal display device described in each of the above publications.
[実施例で作製した位相差板の評価方法] [Evaluation method of retardation plate manufactured in Example]
(レターデ一ションおよび屈折率の測定) 作製したポリマーフィルム (位相差板) について、 エリプソメーター (M— 1 50、 日本分光 (株) 製) を用いて、 波長 450 nm、 55〇 11111ぉょび590 nmにおけるレターデーシヨン (Re 0および Re α) 値を測定した。 は試料 台を α° 傾けることにより測定した。 (Measurement of retardation and refractive index) Using an ellipsometer (M-150, manufactured by JASCO Corporation), the prepared polymer film (retardation film) was subjected to a retardation (Re 0 and Ret. Re α) value was measured. Was measured by tilting the sample stage by α °.
また、 アッベ屈折率計による屈折率測定と、 レターデーシヨンの角度依存性の 測定から、 波長 550 nmにおける面内の遅相軸方向の屈折率 η χ、 面内の遅相 軸に垂直な方向の屈折率 n yおよび厚み方向の屈折率 η ζを求め、 (η χ— η ζ ) / (n x-n y) の値を計算した .  In addition, from the refractive index measurement by the Abbe refractometer and the measurement of the angle dependence of the retardation, the refractive index η の in the in-plane slow axis direction at a wavelength of 550 nm, the direction perpendicular to the in-plane slow axis And the refractive index η の in the thickness direction were calculated, and the value of (η χ — η ζ) / (n x ny) was calculated.
(軸ずれの測定) 。 (Measurement of axis deviation).
ポリマーフィルム (位相差板) の遅相軸の方向と延伸方向のなす角度は自動複 屈折計 (KOBRA— 21 ADH、 王子計測機器 (株) ) で測定した。 各々の測 定はフィルム内の任意の 1 0点で行い、 平均的な方向を求めた。 1 0点の遅相軸 の方向が平均的な遅相軸方向となす角度については標準偏差も求めた。  The angle between the direction of the slow axis and the stretching direction of the polymer film (retardation film) was measured with an automatic birefringence meter (KOBRA-21 ADH, Oji Scientific Instruments). Each measurement was performed at an arbitrary point in the film, and the average direction was determined. The standard deviation was also calculated for the angle between the direction of the slow axis at 10 points and the average slow axis direction.
(吸湿膨張係数の測定) (Measurement of hygroscopic expansion coefficient)
作製したポリマーフィルム (位相差板) から幅 5mm、 長さ 2 Ommの試料を 切り出し、 片方の端を固定して 25°C、 20%RHの雰囲気下にぶら下げた。 他方 の端に 0. 5 gの重りをぶら下げて、 一定時間放置した。 次に、 一定温度のまま 、 湿度を 80%RHにして、 長さの変形量を測定した。 測定は同一試料につき 1 0 サンプル行い、 平均値を採用した。  A sample of 5 mm width and 2 Omm length was cut out from the prepared polymer film (retardation plate), and one end was fixed and hung under an atmosphere of 25 ° C and 20% RH. A 0.5 g weight was hung on the other end and left for a certain period of time. Next, while keeping the temperature constant, the humidity was set to 80% RH, and the length deformation was measured. The measurement was performed on 10 samples of the same sample, and the average value was adopted.
[実施例 1 ] [Example 1]
(位相差板の作製)  (Production of retardation plate)
室温において、 平均酢化度 59. 7%のセルロースァセテ一ト 1 20質量部、 トリフエニルホスフェート 9. 36質量部、 ビフエ二ルジフエ-ルホスフェート 4. 68質量部、 下記のレターデーシヨン上昇剤 1. 20質量部、 メチレンク口 リ ド 704質量部、 およびメタノール 6 1. 2質量部を混合して、 溶液 (ドープ ) を調製した。 (レターデーシヨン上昇剤) At room temperature, 120 parts by mass of cellulose acetate having an average degree of acetylation of 59.7%, 9.36 parts by mass of triphenyl phosphate, 4.68 parts by mass of biphenyldiphenyl phosphate, the following retardation enhancer: A solution (dope) was prepared by mixing 1.20 parts by mass, 704 parts by mass of methylene chloride and 61.2 parts by mass of methanol. (Lettering agent)
Figure imgf000037_0001
得られたドープを、 ガラス板上に流延し、 室温で 1分間乾燥後、 4 5°Cで 5分 間乾燥させた。 乾燥後の溶剤残留量は 3 0質量%であった。 セルロースァセテ一 トフイルムをガラス板から剥離し、 1 00°Cで 2 0分間、 1 3 0°Cで 1 0分間乾 燥した。 フィルムを適当な大きさに切断した後、 1 3 0°Cで流延方向と平行な方 向に延伸した。 延伸方向と垂直な方向は、 自由に収縮できるようにした。 延伸後 、 室温まで冷却し後、 延伸フィルムを取り出した。 延伸後の溶剤残留量は◦. 2 質量%であった。
Figure imgf000037_0001
The obtained dope was cast on a glass plate, dried at room temperature for 1 minute, and dried at 45 ° C for 5 minutes. The residual amount of the solvent after drying was 30% by mass. The cellulose acetate film was peeled off from the glass plate and dried at 100 ° C for 20 minutes and at 130 ° C for 10 minutes. After the film was cut into a suitable size, it was stretched at 130 ° C. in a direction parallel to the casting direction. The direction perpendicular to the stretching direction was allowed to shrink freely. After stretching and cooling to room temperature, the stretched film was taken out. The residual solvent amount after stretching was ◦.2% by mass.
得られたフィルムの厚さは、 1 0 3 μπιであった。 また、 延伸倍率は 1. 4 2 倍であった。  The thickness of the obtained film was 103 μπι. The stretching ratio was 1.42 times.
得られたセルロースアセテートフィルム (位相差板) について、 リタ一デーシ ヨン、 (η X— η ζ) Ζ (η X— n y) および軸ずれを測定した。 結果は第 1表 および第 2表に示す。  With respect to the obtained cellulose acetate film (retardation plate), the retardation, (ηX-ηζ) ζ (ηX-ny), and axis shift were measured. The results are shown in Tables 1 and 2.
さらに、 | DR (λ) . -DR 0 (λ) Iの値を測定したところ、 以下の結果 が得られた。  Furthermore, when the value of | DR (λ) .- DR0 (λ) I was measured, the following results were obtained.
I DR 2 0 (4 5 0) -DR0 (4 5 0) | = 0. 0 0  I DR 2 0 (4 5 0) -DR 0 (4 5 0) | = 0. 0 0
I DR 2 0 (7 5 0) -DR0 (7 5 0) | = 0. 0 0  I DR 2 0 (7 5 0) -DR 0 (7 5 0) | = 0. 0 0
I DR4 0 (4 5 0) -DR 0 (4 5 0) | = 0. 0 1  I DR4 0 (4 5 0) -DR 0 (4 5 0) | = 0. 0 1
I DR 4 0 (7 5 0) -DR 0 (7 50) | = 0. 0 1  I DR 4 0 (7 5 0) -DR 0 (7 50) | = 0. 0 1
[実施例 2 ] (位相差板の作製) [Example 2] (Production of retardation plate)
室温において、 平均酢化度 59. 7%のセルロースァセテ一ト 120質量部、 実施例 1で用いたレターデーシヨン上昇剤 1. 20質量部、 トリフエニルホスフ エート 9. 36質量部、 ビフエ二ルジフエニルホスフェート 4. 68質量部、 ト リベンジルァミン 2. 40質量部、 メチレンクロリ ド 609. 37質量部、 およ ぴメタノール 53. 0質量部を混合して、 溶液 (ドープ) を調製した。  At room temperature, 120 parts by mass of cellulose acetate having an average acetylation degree of 59.7%, the retardation enhancer used in Example 1. 1.20 parts by mass, 9.36 parts by mass of triphenyl phosphate, bipheni A solution (dope) was prepared by mixing 4.68 parts by mass of ludiphenyl phosphate, 2.40 parts by mass of tribenzylamine, 609.37 parts by mass of methylene chloride, and 53.0 parts by mass of methanol.
得られたドープを用いた以外は、 実施例 1と同様に位相差板を作製した。  A retardation plate was produced in the same manner as in Example 1 except that the obtained dope was used.
得られたフィルムの厚さは、 Ι Ο Ο μηιであった。 また、 延伸倍率は、 1. 4 1であった。  The thickness of the obtained film was Ι Ο Ο μηι. The stretching ratio was 1.41.
得られたセルロースアセテートフィルム (位相差板) について、 Re、 (n x -n z) / (n x-n y) およぴ軸ずれを測定した。 結果は第 1表、 第 2表に示 す。  For the obtained cellulose acetate film (retardation plate), Re, (nx-nz) / (nx-ny) and axial misalignment were measured. The results are shown in Tables 1 and 2.
さらに、 | DRひ (2) -DR0 (1) ! の値を測定したところ、 以下の結果 が得られた。  In addition, DR Hi (2) -DR0 (1)! When the value of was measured, the following results were obtained.
I DR 20 (450) — DR0 (450) 1=0. 00  I DR 20 (450) — DR0 (450) 1 = 0.00
I DR 20 (750) 一 DR0 (750) 1=0. 00  I DR 20 (750) 1 DR0 (750) 1 = 0.00
I DR40 (450) -DR 0 (450) | = 0. 01  I DR40 (450) -DR 0 (450) | = 0.01
I DR40 (750) — DR0 (750) | = 0. 01  I DR40 (750) — DR0 (750) | = 0. 01
[実施例 3 ] [Example 3]
(位相差板の作製)  (Production of retardation plate)
室温において、 平均酢化度 59. 4%のセルロースアセテート 1 17. 87質 量部、 実施例 1で用いたレターデーション上昇剤 1. 16質量部、 トリフエ二ノレ ホスフェート 9. 1 0質量部、 ビフエ二ルジフエニルホスフェート 4. 50質量 部、 トリベンジルァミン 2. 36質量部、 メチレンクロリ ド 609. 37質量部 、 およびメタノール 53. 0質量部を混合して、 溶液 (ドープ) を調製した。 得られたドープを、 ガラス板上に流延し、 室温で 1分間乾燥後、 45°Cで 5分 間乾燥させた。 セルロースアセテートフィルムをガラス板から剥離し、 100°C で 10分間乾燥した後、 120°Cで 2◦分間乾燥させた。 乾燥後の残留溶剤量は 2. 1%であった。 At room temperature, cellulose acetate having an average degree of acetylation of 59.4% 1 17.87 parts by mass, the retardation increasing agent used in Example 1 1.16 parts by mass, trifeninole phosphate 9.10 parts by mass, bihue A solution (dope) was prepared by mixing 4.50 parts by mass of dirdiphenyl phosphate, 2.36 parts by mass of tribenzylamine, 609.37 parts by mass of methylene chloride, and 53.0 parts by mass of methanol. The obtained dope was cast on a glass plate, dried at room temperature for 1 minute, and then dried at 45 ° C for 5 minutes. The cellulose acetate film was peeled off from the glass plate, dried at 100 ° C for 10 minutes, and then dried at 120 ° C for 2 minutes. The amount of residual solvent after drying is 2. It was 1%.
乾燥させたフィルムを適当な大きさに切断した後、 1 30°Cで流延方向とは平 行な方向に延伸した。 延伸方向と垂直な方向は、 自由に収縮できるようにした。 延伸後、 そのままの状態で室温雰囲気下に取り出し冷却した。  After the dried film was cut into an appropriate size, it was stretched at 130 ° C. in a direction parallel to the casting direction. The direction perpendicular to the stretching direction was allowed to shrink freely. After stretching, the film was taken out under an atmosphere at room temperature and cooled.
得られたフィルムの膜厚は 1 02 μπιであった。 また、 溶剤残留量は 0. 1質量 %であった。 The thickness of the obtained film was 102 μπι. The residual amount of the solvent was 0.1% by mass.
得られたセルロースアセテートフィルム (位相差板) について、 Re、 (n x 一 ii z) / (n x-n y) および軸ずれを測定した。 結果は第 1表、 第 2表に示 す。  With respect to the obtained cellulose acetate film (retardation plate), Re, (nx × iiiz) / (nx−ny) and axis shift were measured. The results are shown in Tables 1 and 2.
さらに、 i DRa (λ) -DRO (λ) 1の値を測定したところ、 以下の結果 が得られた。  Further, when the value of i DRa (λ) -DRO (λ) 1 was measured, the following results were obtained.
I D R 20 (450) -DR0 (450) | =0. 0 1  IDR 20 (450) -DR0 (450) | = 0.01
I DR 20 (750) -DR 0 (750) | = 0. 00  I DR 20 (750) -DR 0 (750) | = 0.00
I DR40 (450) -DR 0 (450) | = 0. 01  I DR40 (450) -DR 0 (450) | = 0.01
I DR40 (750) -DR 0 (750) | = 0. 00  I DR40 (750) -DR 0 (750) | = 0.00
[実施例 4〕 [Example 4]
(位相差板の作製)  (Production of retardation plate)
平均酢化度 59. 7%のセルロースアセテート 1 1 7. 87質量部、 トリ 7ェ ニルホスフェート 9. 1 9質量部、 ビフエニルジフエニルホスフェート 4. 60 質量部、 メチレンクロリ ド 595. 60質量部、 およびメタノール 51. 8質量 部をミキシングタンクに投入し、 加熱しながら攪拌して、 各成分を溶解し、 セル ロースァセテ一ト溶液を調製した。  Cellulose acetate having an average degree of acetylation of 59.7% 1 1 7.87 parts by mass, triphenyl phosphate 9.19 parts by mass, biphenyl diphenyl phosphate 4.60 parts by mass, methylene chloride 595.60 parts by mass, Then, 51.8 parts by mass of methanol and 51.8 parts by mass were charged into a mixing tank, and stirred while heating to dissolve each component to prepare a cellulose acetate solution.
別のミキシングタンクに、 実施例 1で用いたレターデーシヨン上昇剤 1. 1 8 質量部、 トリベンジルァミン 2. 36質量部、 メチレンクロライ ド 1 6. 0質量 部おょぴメタノール 1. 39質量部を投入し、 加熱しながら攪拌して、 レターデ ーション上昇剤溶液を調製した。  In another mixing tank, the retardation raising agent used in Example 1 1.18 parts by mass, tribenzylamine 2.36 parts by mass, methylene chloride 16.0 parts by mass methanol 1. 39 parts by mass were charged and stirred while heating to prepare a retardation increasing agent solution.
セルロースァセテ一ト溶液にレターデーシヨン上昇剤溶液を全て投入し、 充分 に攪拌してドープを調製した。 得られたドープを、 流延後の乾燥ゾーンに多段ロール延伸ゾーンを設けた ド流延機を用いて流延 ·一軸延伸をおこなった。 延伸ゾーン直前のフィルムの残 留溶剤量は 2. 0%であった。 延伸ゾーンは温度を均一に保っためケーシングで 覆い、 膜面上で 130°Cになるようにした。 また、 フィルムの延伸温度はロール の温度、 ロール間に設けた赤外線ヒータで調節した。 延伸倍率はロールの回転速 度を調節することにより 1. 42倍とした。 延伸後のフィルムは室温まで徐冷し 、 巻き取った。 The entire retardation raising agent solution was charged into the cellulose acetate solution, and the mixture was sufficiently stirred to prepare a dope. The obtained dope was cast and uniaxially stretched using a dope casting machine provided with a multi-stage roll stretching zone in a drying zone after casting. The residual solvent content of the film immediately before the stretching zone was 2.0%. The stretching zone was covered with a casing to keep the temperature uniform, and the temperature was set to 130 ° C on the membrane surface. The stretching temperature of the film was adjusted by the temperature of the roll and an infrared heater provided between the rolls. The stretching ratio was adjusted to 1.42 times by adjusting the rotation speed of the roll. The stretched film was gradually cooled to room temperature and wound up.
得られたフィルムの膜厚は 101 / mであった。 また、 残留溶剤量は 0. 2% であった。  The film thickness of the obtained film was 101 / m. The residual solvent content was 0.2%.
得られたセルロースアセテートフィルム (位相差板) について、 Re、 (n x -n z) Z (n x-n y) およぴ軸ずれを測定した。 結果は第 1表、 第 2表に示 す。  For the obtained cellulose acetate film (retardation plate), Re, (nx-nz) Z (nx-ny) and axial misalignment were measured. The results are shown in Tables 1 and 2.
さらに、 | DR« (λ) — DR0 (λ) Iの値を測定したと ろ、 以下の結果 が得られた。  In addition, the following results were obtained by measuring the value of | DR «(λ) —DR0 (λ) I.
I DR 20 (450) -DR 0 (450) 1 =0. 00  I DR 20 (450) -DR 0 (450) 1 = 0.00
I DR 20 (750) -DR 0 (750) | =0. 00  I DR 20 (750) -DR 0 (750) | = 0.00
I DR40 (450) — DR0 (450) | = 0. 00  I DR40 (450) — DR0 (450) | = 0.00
I DR40 (750) 一 DR0 (750) 1 =0. 01  I DR40 (750) 1 DR0 (750) 1 = 0.01
[実施例 5] [Example 5]
室温において、 平均酢化度 59. 7%のセルロースアセテート 11 7. 87質 量部、 実施例 1で用いたレターデーシヨン上昇剤 1. 18質量部、 トリフエニル ホスフェート 9. 19質量部、 ビフエニルジフエニルホスフェート 4. 60質量 部、 トリベンジルァミン 2. 36質量部、 酢酸メチル 529. 90質量部、 エタ ノール 99. 4質量部、 ブタノール 33. 1質量部を攪拌して混合した。 混合溶 液を一 70°Cの冷凍庫に入れて冷却し、 再度 40°Cまで温度を上げてセルロース アセテートを溶解させた。  At room temperature, cellulose acetate having an average degree of acetylation of 59.7% 11 7.87 parts by mass, the retardation increasing agent used in Example 1. 1.18 parts by mass, triphenyl phosphate 9.19 parts by mass, biphenyldiph 4.60 parts by mass of enyl phosphate, 2.36 parts by mass of tribenzylamine, 529.90 parts by mass of methyl acetate, 99.4 parts by mass of ethanol, and 33.1 parts by mass of butanol were mixed with stirring. The mixed solution was cooled in a freezer at 170 ° C, and the temperature was raised to 40 ° C again to dissolve the cellulose acetate.
得られたドープを用いた以外は実施例 1と同様にして延伸フィルムを作製した 。 延伸倍率は 1. 41倍とした。 得られたフィルムの膜厚は 100 μπιであった 。 また、 フィルムの残留溶剤量は 0: 4%であった。 Except for using the obtained dope, a stretched film was produced in the same manner as in Example 1. The stretching ratio was 1.41 times. The thickness of the obtained film was 100 μπι . The residual solvent content of the film was 0 : 4%.
得られたセルロースアセテートフィルム (位相差板) について、 Re、 (n x 一 n z) / (n x-ny) および軸ずれを測定した。 結果は第 1表、 第 2表に示 す。  With respect to the obtained cellulose acetate film (retardation plate), Re, (nx × nz) / (nx−ny) and axis shift were measured. The results are shown in Tables 1 and 2.
さらに、 i DRct (λ) — DR0 (λ) Iの値を測定したところ、 以下の結果 が得られた。  Furthermore, when the value of i DRct (λ) — DR0 (λ) I was measured, the following results were obtained.
I DR 20 (450) -DR 0 (450) | = 0. 01  I DR 20 (450) -DR 0 (450) | = 0. 01
I DR 20 (750) -DR 0 (750) | = 0. 01  I DR 20 (750) -DR 0 (750) | = 0. 01
I DR40 (450) — DR0 (450) | = 0. 01  I DR40 (450) — DR0 (450) | = 0. 01
I DR40 (750) -DR 0 (750) | = 0. 02  I DR40 (750) -DR 0 (750) | = 0.02
[比較例 1 ] [Comparative Example 1]
(セルロースァセテ一  (Cellulose acetate
室温において、 平均酢化度 60. 9%のセルロースアセテート 10◦質量部、 トリフエ二ノレホスフェート 7. 80質量部、 ビフエニルジフエニルホスフェート 3. 90質量部、 メチレンクロリ ド 539. 5質量部およびメタノール 46. 9 質量部を混合して、 溶液 (ドープ) を調製した。  At room temperature, 10 酢 parts by mass of cellulose acetate having an average degree of acetylation of 60.9%, 7.80 parts by mass of triphenylenophosphate, 3.90 parts by mass of biphenyl diphenyl phosphate, 539.5 parts by mass of methylene chloride and methanol 46 .9 parts by mass were mixed to prepare a solution (dope).
得られた溶液 (ドープ) をガラス板上に流延し、 室温で 1分間乾燥後、 45°C で 5分間乾燥させた。 セルロースアセテートフィルムをガラス板から剥離し、 1 00°Cで 20分間乾燥した後、 130°Cで 10分間乾燥させた。  The obtained solution (dope) was cast on a glass plate, dried at room temperature for 1 minute, and then dried at 45 ° C for 5 minutes. The cellulose acetate film was peeled off from the glass plate, dried at 100 ° C for 20 minutes, and then dried at 130 ° C for 10 minutes.
得られたセルロースアセテートフィルムについて、 | DRa (λ) -DR 0 ( λ) Iの値を測定したところ、 以下の結果が得られた。  When the value of | DRa (λ) -DR0 (λ) I was measured for the obtained cellulose acetate film, the following results were obtained.
I DR 20 (450) 一 DR0 (450) | = 1. 49  I DR 20 (450) One DR0 (450) | = 1.49
I DR 20 (750) 一 DR0 (750) | = 1. 49  I DR 20 (750) one DR0 (750) | = 1.49
I DR40 (450) -DR0 (450) 1=2. 35  I DR40 (450) -DR0 (450) 1 = 2.35
I DR40 (750) -DR0 (750) | =2. 31  I DR40 (750) -DR0 (750) | = 2.31
[比較例 2] [Comparative Example 2]
(位相差板の作製) 質量平均分子量 1 0万のポリ力"ボネートを塩ィ匕メチレンに溶解して、 1 7質 量%溶液を得た。 この溶液をガラス板上に、 乾燥膜厚が 8 Ο μπιとなるように流 延し、 室温で 30分乾燥後、 70。じで 30分乾燥した。 ポリ力ーポネートフィル ムをガラス板から剥離し、 1 58°Cで 4%延伸し、 ポリカーボネートの延伸複屈 折フィルムを得た。 (Production of retardation plate) Polycarbonate having a weight average molecular weight of 100,000 was dissolved in methylene chloride to obtain a 17% by mass solution. This solution was placed on a glass plate so that the dry film thickness became 8 μμπι. Cast, dried at room temperature for 30 minutes, dried at 70 ° C for 30 minutes, peeled the poly-polynate film from the glass plate and stretched 4% at 158 ° C to obtain a stretched birefringent film of polycarbonate. Was.
得られたポリカーボネートフィルム (位相差板) について、 Re、 (n x-n z) / (n x-n y) を測定した。 結果は第 1表に示す。 1表 位相差板 R e 、 n x— n z )  Re, (nx-nz) / (nx-ny) of the obtained polycarbonate film (retardation plate) was measured. The results are shown in Table 1. Table 1 retardation plate R e, n x— n z)
450 nrn D D 0 n m 590 n m ( n x— n y ) 実施例 1 1 16. 8 nm 1 37 5 nm 143. 3 n m 1 53 実施例 2 1 1 5. 7 nm 1 36 5 nm 142. 3 n m 1 53 実施例 3 1 1 6. 3 nm 1 36 9 nm 142. 5 n m 1 52 実施例 4 1 1 7. 1 nm 1 37 9 nm 143. 3 n m 1 48 実施例 5 1 1 6. 4 nm 1 37 0 nm 142. 5 n m 1 52 比較例 2 147. 8 nm 1 37 5 n m 1 34. 9 n m 1 1 2  450 nrn DD 0 nm 590 nm (nx—ny) Example 1 1 16.8 nm 1 375 nm 143.3 nm 1 53 Example 2 1 1 5.7 nm 1 365 5 nm 142.3 nm 1 53 Example 3 1 16.3 nm 1 36 9 nm 142.5 nm 1 52 Example 4 1 1 7.1 nm 1 37 9 nm 143.3 nm 1 48 Example 5 1 1 6.4 nm 1 37 0 nm 142.5 nm 1 52 Comparative Example 2 147.8 nm 1 37 5 nm 1 34.9 nm 1 1 2
第 2表 位相差板 軸ずれ 軸ずれの標準偏差 実施例 1 土 1. 3' 0. 4 Table 2 Phase difference plate Axis deviation Standard deviation of axis deviation Example 1 Sat 1.3 '0.4
実施例 2 土 1. 2 0. 3  Example 2 Sat 1. 2 0.3
実施例 3 土 1. 3 0. 5  Example 3 Sat 1. 3 0.5
実施例 4 ± 0. 9' 0. 9 実施例 5 土 1 . 0 . 7 Example 4 ± 0.9 '0.9 Example 5 soil 1.0.7
[実施例 6 ] [Example 6]
(円偏光板の作製)  (Production of circular polarizer)
透明保護膜、 偏光膜および実施例 2で作製した位相差板を、 この順に積層して 円偏光板を得た。 位相差板の遅相軸と偏光膜の偏光軸との角度は、 4 5 ° に調整 した。  The transparent protective film, the polarizing film and the retardation film produced in Example 2 were laminated in this order to obtain a circularly polarizing plate. The angle between the slow axis of the retardation plate and the polarization axis of the polarizing film was adjusted to 45 °.
得られた円偏光板の光学的性質を調べたところ、 いずれも広い波長領域 (4 5 0〜5 9 0 n m) において、 ほぼ完全な円偏光が達成されていた。  When the optical properties of the obtained circularly polarizing plates were examined, almost perfect circularly polarized light was achieved in a wide wavelength range (450 to 590 nm).
[実施例 7 ] [Example 7]
(円偏光板の作製)  (Production of circular polarizer)
透明保護膜、 偏光膜および実施例 4で作製した位相差板を、 この順に積層して 円偏光板を得た。 位相差板の遅相軸と偏光膜の偏光軸との角度は、 4 5 ° に調整 した。  The transparent protective film, the polarizing film and the retardation film produced in Example 4 were laminated in this order to obtain a circularly polarizing plate. The angle between the slow axis of the retardation plate and the polarization axis of the polarizing film was adjusted to 45 °.
得られた円偏光板の光学的性質を調べたところ、 いずれも広い波長領域 (4 5 0〜5 9 0 n m) において、 ほぼ完全な円偏光が達成されていた。  When the optical properties of the obtained circularly polarizing plates were examined, almost perfect circularly polarized light was achieved in a wide wavelength range (450 to 590 nm).
[比較例 3 ] [Comparative Example 3]
(円偏光板の作製)  (Production of circular polarizer)
透明保護膜、 偏光膜および比較例 2で作製した位相差板を、 この順に積層して 円偏光板を得た。 位相差板の遅相軸と偏光膜の偏光軸との角度は、 4 5 ° に調整 した。  The transparent protective film, the polarizing film and the retardation film produced in Comparative Example 2 were laminated in this order to obtain a circularly polarizing plate. The angle between the slow axis of the retardation plate and the polarization axis of the polarizing film was adjusted to 45 °.
(円偏光板の評価) (Evaluation of circular polarizer)
実施例 6、 7およぴ比較例 3で作製した円偏光板を反射型液晶パネルに実装し 、 測定機 (EZ Contrast 160D、 E L D I M社製) を用いて視野角特性を測定した 。 結果を第 3表に示す。 実施例 6 , 7で作製した円偏光板を用いると、 広い視野 角が得られる t 第 3表 視野角 (コントラスト 3) The circularly polarizing plates prepared in Examples 6, 7 and Comparative Example 3 were mounted on a reflective liquid crystal panel, and the viewing angle characteristics were measured using a measuring device (EZ Contrast 160D, manufactured by ELDIM). Table 3 shows the results. Using the circularly polarizing plates prepared in Examples 6 and 7, a wide field of view Table 3 viewing angle t the corner is obtained (contrast 3)
円偏光板 上下 左右 実施例 6 129° 1 20  Circularly polarizing plate Top and bottom Left and right Example 6 129 ° 1 20
実施例 7 130° 121  Example 7 130 ° 121
比較例 3 58° 56  Comparative Example 3 58 ° 56
[実施例 8 ] [Example 8]
(反射型液晶表示素子の作製)  (Production of reflective liquid crystal display element)
I TO透明電極を設けたガラス基板と、 微細な凹凸が形成されたアルミニウム 反射電極を設けたガラス基板とを用意した。 二枚のガラス基板の電極側に、 それ ぞれポリイミ ド配向膜 (SE— 7992、 日産化学 (株) 製) を形成し、 ラビン グ処理を行った。 2. 5 /zmのスぺーサーを介して、 二枚の基板を配向膜が向か い合うように重ねた。 二つの配向膜のラビング方向は、 1 1 7° の角度で交差す るように、 基板の向きを調節した。 基板の間隙に、 液晶 (MLC—6252、 メ ルク社製) を注入し、 液晶層を形成した。 このようにして、 ツイスト角が 63° 、 Δη dの値が 198 n mの T N型液晶セルを作製した。  A glass substrate provided with an ITO transparent electrode and a glass substrate provided with an aluminum reflective electrode having fine irregularities were prepared. Polyimide alignment films (SE-7992, manufactured by Nissan Chemical Co., Ltd.) were formed on the electrode side of the two glass substrates, respectively, and rubbing was performed. Two substrates were stacked via a 2.5 / zm spacer so that the alignment films faced each other. The directions of the substrates were adjusted so that the rubbing directions of the two alignment films intersect at an angle of 117 °. Liquid crystal (MLC-6252, manufactured by Merck) was injected into the gap between the substrates to form a liquid crystal layer. Thus, a TN type liquid crystal cell having a twist angle of 63 ° and a value of Δη d of 198 nm was produced.
I TO透明電極を設けたガラス基板の側に、 実施例 3で作製した λΖ4板を粘 着剤を介して貼り付けた。 その上に、 さらに偏光板 (表面が AR処理された保護 膜を積層した偏光膜) を貼り付けた。  The λΖ4 plate prepared in Example 3 was attached to the side of the glass substrate provided with the ITO transparent electrode via an adhesive. On top of that, a polarizing plate (a polarizing film in which a protective film whose surface is AR-treated was laminated) was further adhered.
作製した反射型液晶表示装置に、 1 kHzの矩形波電圧を印加した。 白表示 1 . 5V、 黒表示 4. 5 Vとして目視で評価を行ったところ、 白表示においても、 黒表示においても、 色味がなく、 ニュートラルグレイが表示されていることが確 認できた。 次に、 測定機 (E Zcontrastl60D, E 1 d i m社製) を用いて反射輝度のコン トラスト比を測定したところ、 正面からのコントラスト比が 23であり、 コント ラスト比 3となる視野角は、 上下 120° 以上、 左右 120° 以上であった。 A 1 kHz rectangular wave voltage was applied to the manufactured reflection type liquid crystal display device. Visual evaluation was performed with a white display of 1.5 V and a black display of 4.5 V. As a result, it was confirmed that neutral gray was displayed without coloration in both white display and black display. Next, when the contrast ratio of the reflected luminance was measured using a measuring instrument (E Zcontrastl60D, manufactured by E1dim), the contrast ratio from the front was 23, and the viewing angle at which the contrast ratio was 3 was up and down. It was 120 ° or more, and left and right 120 ° or more.
[実施例 9] [Example 9]
(反射型液晶表示装置の作製)  (Production of reflective liquid crystal display device)
I TO透明電極を設けたガラス基板と、 微細な凹凸が形成されたアルミニウム 反射電極を設けたガラス基板とを用意した。 二枚のガラス基板の電極側に、 それ ぞれポリイミ ド配向膜 (SE— 7992、 日産化学 (株) 製) を形成し、 ラビン グ処理を行った。 3. 4 jumのスぺーサーを介して、 二枚の基板を配向膜が向か い合うように重ねた。 二つの配向膜のラビング方向は、 110° の角度で交差す るように、 基板の向きを調節した。 基板の間隙に、 液晶 (MLC-6252, メ ルク社製) を注入し、 液晶層を形成した。 このようにして、 ツイスト角が 70° 、 Δη dの値が 269 nmの TN型液晶セルを作製した。  A glass substrate provided with an ITO transparent electrode and a glass substrate provided with an aluminum reflective electrode having fine irregularities were prepared. Polyimide alignment films (SE-7992, manufactured by Nissan Chemical Co., Ltd.) were formed on the electrode side of the two glass substrates, respectively, and rubbing was performed. 3.4 Two substrates were stacked via a spacer of 4 jum so that the alignment films faced each other. The directions of the substrates were adjusted so that the rubbing directions of the two alignment films intersect at an angle of 110 °. A liquid crystal (MLC-6252, manufactured by Merck) was injected into the gap between the substrates to form a liquid crystal layer. Thus, a TN type liquid crystal cell having a twist angle of 70 ° and a value of Δη d of 269 nm was produced.
I TO透明電極を設けたガラス基板の側に、 実施例 3で作製した λ/ 4板を粘 着剤を介して貼り付けた。 その上に、 さらに偏光板 (表面が AR処理された保護 膜を積層した偏光膜) を貼り付けた。  The λ / 4 plate produced in Example 3 was attached to the side of the glass substrate provided with the ITO transparent electrode via an adhesive. On top of that, a polarizing plate (a polarizing film in which a protective film whose surface is AR-treated was laminated) was further adhered.
作製した反射型液晶表示装置に、 1 kHzの矩形波電圧を印加した。 白表示 1 . 5 V、 黒表示 4. 5 Vとして目視で評価を行ったところ、 白表示においても、 黒表示においても、 色味がなく、 ニュートラルグレイが表示されていることが確 認できた。  A 1 kHz rectangular wave voltage was applied to the manufactured reflection type liquid crystal display device. Visual evaluation was performed with white display at 1.5 V and black display at 4.5 V. Neither white display nor black display was colorless and neutral gray was displayed. .
次に、 測定機 (E Zcontrastl60D、 E l d i m社製) を用いて反射輝度のコン トラスト比を測定したところ、 正面からのコントラスト比が 25であり、 コント ラスト比 3となる視野角は、 上下 120° 以上、 左右 120° 以上であった。  Next, when the contrast ratio of the reflected luminance was measured using a measuring instrument (E Zcontrastl60D, manufactured by Eldim), the contrast ratio from the front was 25, and the viewing angle at which the contrast ratio was 3 was 120 ° or more, and left and right 120 ° or more.
[実施例 10] [Example 10]
(額縁状のむらの観察)  (Observation of frame-shaped unevenness)
実施例 7で作製した円偏光板をガラス基盤に貼り付け、 60°C、 90%RHの 環境下に 100時間放置した。 このサンプルを反射型液晶セルの前面に用いて、 反射型液晶表示装置を作製した。 表示装置の表示画面前面を黒表示にし、 目視で 観察した結果、 光漏れによるむらはほとんど見られなかった。 The circularly polarizing plate prepared in Example 7 was adhered to a glass substrate, and left for 100 hours in an environment of 60 ° C. and 90% RH. Using this sample on the front of the reflective liquid crystal cell, A reflective liquid crystal display device was manufactured. As a result of making the front of the display screen of the display device a black display and visually observing, almost no unevenness due to light leakage was observed.
[実施例 1 1 ] [Example 11]
(ゲストホスト反射型液晶表示素子の作製)  (Production of guest-host reflective liquid crystal display device)
I TO透明電極が設けられたガラス基板の上に、 垂直配向膜形成ポリマー (L Q— 1800、 日立化成デュボンマイク口システムズ社製) の溶液を塗布し、 乾 燥後、 ラビング処理を行った。  A solution of a polymer for forming a vertical alignment film (LQ-1800, manufactured by Hitachi Chemical Dubon Microphone Systems Co., Ltd.) was applied onto a glass substrate provided with an ITO transparent electrode, dried, and rubbed.
反射板としてアルミニウムを蒸着したガラス基板の上に、 実施例 3で作製した λ/4板 (位相差板) を粘着剤で貼り付けた。 λΖ4板の上に、 スパッタリング により S I Ο層を設け、 その上に I TO透明電極を設けた。 透明電極の上に、 垂 直配向膜形成ポリマー (LQ— 1800、 日立化成デュポンマイクロシステムズ 社製) の溶液を塗布し、 乾燥後、 ぇノ 4板の遅相軸方向から 45° の方向にラビ ング処理を行った。  The λ / 4 plate (retardation plate) produced in Example 3 was adhered with an adhesive on a glass substrate on which aluminum was deposited as a reflection plate. An SI layer was provided on the λ S4 plate by sputtering, and an ITO transparent electrode was provided thereon. A solution of a polymer for forming a vertical alignment film (LQ-1800, manufactured by Hitachi Chemical DuPont Microsystems) is applied on the transparent electrode, dried, and then rubbed in the direction of 45 ° from the slow axis direction of the ぇ 4 plate. Was performed.
7. 6 μπιのスペ^"サーを介して、 二枚のガラス基板を、 配向膜が向かい合う ように重ねた。 配向膜のラビング方向が反平行となるように、 基板の向きを調節 した。 基板の間隙に、 二色性色素 (NKX— 1366、 日本感光色素社製) 2. 0質量%と液晶 (ZL 1—2806、 メルク社製) 98. 0質量%との混合物を 、 真空注入法により注入し、 液晶層を形成した。  7. Two glass substrates were stacked via a 6 μπι spacer so that the alignment films faced each other. The orientation of the substrates was adjusted so that the rubbing directions of the alignment films were antiparallel. In the gap, a mixture of 2.0% by mass of a dichroic dye (NKX-1366, manufactured by Nippon Kogaku Dye Co., Ltd.) and 98.0% by mass of a liquid crystal (ZL 1-2806, manufactured by Merck) is vacuum-injected. Injection was performed to form a liquid crystal layer.
作製したゲストホスト反射型液晶表示素子の I T〇電極間に、 1 kH ζの矩形 波電圧を印加した。 白表示 IV、 黒表示 10Vでの透過率は、 それぞれ 65%、 6%であった。 白表示と黒表示との透過率の比 (コントラスト比) は、 1 1 : 1 であ όた。 また、 上下左右でコントラスト比 2 : 1が得られる視野角を測定した ところ、 上下、 左右ともに 120° 以上であった。 電圧を上昇、 下降させながら 透過率測定を行ったが、 透過率一電圧の曲線にヒステリシスは観察されなかった  A rectangular wave voltage of 1 kHz was applied between the IT〇 electrodes of the fabricated guest-host reflection type liquid crystal display device. The transmittances at white display IV and black display 10V were 65% and 6%, respectively. The transmittance ratio (contrast ratio) between the white display and the black display was 11: 1. When the viewing angle at which a contrast ratio of 2: 1 was obtained in the upper, lower, left, and right directions was measured, the angle was 120 ° or more in both the upper, lower, left, and right directions. The transmittance was measured while increasing and decreasing the voltage, but no hysteresis was observed in the transmittance-voltage curve.
[実施例 12 ] [Example 12]
(位相差板の作製) フィルム全体の乾燥膜厚が 200 μ mとなるように、 ドープの塗布量を変更し た以外は、 実施例 1と同様にしてセルロースアセテートフィルムを作製した。 得られたセルロースアセテートフィルム (位相差板) について、 エリプソメ一 ター (M- 1 50、 日本分光 (株) 製) を用いて、 波長 450 nm、 550 nmお ょぴ 590 nmにおけるレターデーシヨン値 (Re) を測定したところ、 それぞ れ、 225. 6 nm、 275. 1 11111ぉょぴ290. 2 nmであった。 したがつ て、 このセルロースアセテートフィルムは広い波長領域で; L/2を達成していた また、 アッベ屈折率計による屈折率測定と、 レターデーシヨンの角度依存性の 測定から、 波長 550 nmにおける面内の遅相軸方向の屈折率 n x、 面内の遅相 軸に垂直な方向の屈折率 n yおよび厚み方向の屈折率 n zを求め、 (n x— n z ) / (n x-n y) の値を計算したところ、 1. 60であった。 (Production of retardation plate) A cellulose acetate film was produced in the same manner as in Example 1 except that the amount of the dope was changed so that the dry film thickness of the whole film was 200 μm. The obtained cellulose acetate film (retardation plate) was analyzed using an ellipsometer (M-150, manufactured by JASCO Corporation) at a wavelength of 450 nm, at a wavelength of 550 nm and at a wavelength of 590 nm. Re) was 225.6 nm and 275.111111 ぉ 290.2 nm, respectively. Therefore, this cellulose acetate film achieved L / 2 in a wide wavelength range; Lb was measured from the refractive index by Abbe refractometer and the angle dependence of the retardation. The refractive index nx in the direction of the slow axis in the plane, the refractive index ny in the direction perpendicular to the slow axis in the plane, and the refractive index nz in the thickness direction are calculated, and the value of (nx—nz) / (n xny) is calculated. The calculated value was 1.60.
さらに、 | DRひ (λ) -DR0 (λ) Iの値を測定したところ、 以下の結果 が得られた。  Furthermore, when the value of | DR (λ) -DR0 (λ) I was measured, the following results were obtained.
I DR 20 (450) — DR0 (450) | = 0. 01  I DR 20 (450) — DR0 (450) | = 0. 01
I DR 20 (750) -DR 0 (750) | =0. 01  I DR 20 (750) -DR 0 (750) | = 0.01
I DR40 (450) -DR0 (450) | =0. 02  I DR40 (450) -DR0 (450) | = 0.02
I DR40 (750) -DR 0 (750) | =0. 01  I DR40 (750) -DR 0 (750) | = 0.01
[実施例 13 ] [Example 13]
(位相差板の作製)  (Production of retardation plate)
室温において、 平均酢化度 59. 7%のセルロースアセテート 120質量部、 トリフエ二ノレホスフェート 9. 36質量部、 ビフエニノレジフエ二ノレホスフェート 4. 68質量部、 実施例 1で用いたレターデーション上昇剤 1. 00質量部、 メ チレンクロリ ド 543. 14質量部、 メタノール 99. 35質量部および n—ブ タノール 19. 87質量部を混合して、 溶液 (ドープ) を調製した。  At room temperature, 120 parts by mass of cellulose acetate having an average degree of acetylation of 59.7%, 9.36 parts by mass of trifeninolephosphate, 4.68 parts by mass of bifeninolethiopheninolephosphate, and the retardation used in Example 1. A solution (dope) was prepared by mixing 1.00 parts by mass of the raising agent, 543.14 parts by mass of methylene chloride, 99.35 parts by mass of methanol and 19.87 parts by mass of n-butanol.
得られたドープを、 ガラス板上に流延し、 室温で 1分間乾燥後、 45°Cで 5分 間乾燥させた。 乾燥後の溶剤残留量は 30質量%であった。 セルロースァセテ一  The obtained dope was cast on a glass plate, dried at room temperature for 1 minute, and then dried at 45 ° C for 5 minutes. The residual solvent amount after drying was 30% by mass. Cellulose acetate
'ら剥離し、 100°Cで 20分間、 130°Cで 10分間乾 燥した。 フィルムを適当な大きさに切断した後、 1 30°Cで流延方向とは平行な 方向に延伸した。 延伸方向と垂直な方向は、 自由に収縮できるようにした。 延伸 後、 室温まで冷却し後、 延伸フィルムを取り出した。 延伸後の溶剤残留量は 0. 5質量%であった。 Peel off and dry at 100 ° C for 20 minutes and 130 ° C for 10 minutes Dried. After cutting the film to an appropriate size, the film was stretched at 130 ° C. in a direction parallel to the casting direction. The direction perpendicular to the stretching direction was allowed to shrink freely. After stretching, the film was cooled to room temperature, and then the stretched film was taken out. The residual amount of the solvent after stretching was 0.5% by mass.
得られたフィルムの厚さは、 102 μπιであった。 また、 延伸倍率は 1. 41 倍であった。  The thickness of the obtained film was 102 μπι. The stretching ratio was 1.41 times.
得られたポリマーフィルム (位相差板) について、 光学特性と吸湿膨張係数を 測定した。 結果は第 4表、 第 5表に示す。  The optical properties and the coefficient of hygroscopic expansion of the obtained polymer film (retardation plate) were measured. The results are shown in Tables 4 and 5.
さらに、 i DRo; (λ) 一 DR0 (λ) Iの値を測定したところ、 以下の結果 が得られた。  Furthermore, when the value of iDRo; (λ) -DR0 (λ) I was measured, the following results were obtained.
] DR 20 (450) -DR 0 (450) 卜 0. 00  ] DR 20 (450) -DR 0 (450)
I DR 20 (750) -DR0 (750) | =0. 00  I DR 20 (750) -DR0 (750) | = 0.00
I DR40 (450) - DR0 (450) | =0. 01  I DR40 (450)-DR0 (450) | = 0.01
I DR40 (750) -DR 0 (750) 1=0. 01  I DR40 (750) -DR 0 (750) 1 = 0.01
[実施例 14 ] [Example 14]
(位相差板の作製)  (Production of retardation plate)
室温において、 平均酢化度 59. 7%のセルロースァセテ一ト 120質量部、 実施例 1で用いたレターデーシヨン上昇剤 1. 20質量部、 トリフエニルホスフ エート 9. 36質量部、 ビフエニルジフエニルホスフェート 4. 68質量部、 メ チレンクロリ ド 609. 37質量部、 およびメタノール 53. 0質量部を混合し て、 溶液 (ドープ) を調製した。  At room temperature, 120 parts by mass of cellulose acetate having an average acetylation degree of 59.7%, the retardation enhancer used in Example 1. 1.20 parts by mass, 9.36 parts by mass of triphenyl phosphate, biphenyl A solution (dope) was prepared by mixing 4.68 parts by mass of diphenyl phosphate, 609.37 parts by mass of methylene chloride, and 53.0 parts by mass of methanol.
得られたドープを用いた以外は、 実施例 13と同様に位相差板を作製した。 得られたフィルムの厚さは、 Ι Ο Ο μπιであった。 また、 延伸倍率は、 1. 4 1であった。  A retardation plate was produced in the same manner as in Example 13 except that the obtained dope was used. The thickness of the obtained film was Ι Ο Ομπι. The stretching ratio was 1.41.
得られたポリマーフィルム (位相差板) について、 光学特性と吸湿膨張係数を 測定した。 結果は第 4表、 第 5表に示す。  The optical properties and the coefficient of hygroscopic expansion of the obtained polymer film (retardation plate) were measured. The results are shown in Tables 4 and 5.
さらに、 | DRひ (1) -DR0 (λ) Iの値を測定したところ、 以下の結果 が得られた。 DR 2 0 (4 5 0) DR 0 (4 5 0) | = 0. 00 In addition, when the value of | DR (1) -DR0 (λ) I was measured, the following results were obtained. DR 2 0 (4 5 0) DR 0 (4 5 0) | = 0.00
DR 2 0 (7 5 0) DR 0 (7 5 0) | = 0. 00  DR 2 0 (750) DR 0 (750) | = 0.00
DR40 (4 5 0) DR 0 (4 5 0) | = 0. 0 1  DR40 (4 5 0) DR 0 (4 5 0) | = 0. 0 1
DR4 0 (7 5 0) DR 0 (7 5 0) | = 0. 0 1  DR4 0 (7 5 0) DR 0 (7 5 0) | = 0. 0 1
[実施例 1 5] [Example 15]
(位相差板の作製)  (Production of retardation plate)
室温において、 平均酢化度 5 9. 7%のセルロースアセテート 1 1 7. 8 7質 量部、 実施例 1で用いたレターデーシヨン上昇剤 1. 1 8質量部、 トリフエニル ホスフェート 9. 1 9質量部、 ビフエ二ルジフエニルホスフェート 4. 6 0質量 部、 トリベンジルァミン 2. 3 6質量部、 メチレンクロリ ド 6 ◦ 9. 3 7質量部 、 およびメタノール 5 3. 0質量部を混合して、 溶液 (ドープ) を調製した。 得られたドープを、 ガラス板上に流延し、 室温で 1分間乾燥後、 4 5°Cで 5分 間乾燥させた。 乾燥後の溶剤残留量は 2 5質量。 /。であった。 セルロースァセテ一 トフイルムをガラス板から剥離し、 1 00°Cで 1 0分間乾燥した後、 1 2 0°Cで 2 0分間乾燥させた。 乾燥後の残留溶剤量は 2. 1 %であった。  At room temperature, cellulose acetate having an average degree of acetylation of 59.7% 11.17.87 parts by mass, the retardation enhancer used in Example 1 1.18 parts by mass, triphenyl phosphate 9.19 parts by mass Part, biphenyldiphenyl phosphate 4.60 parts by mass, tribenzylamine 2.36 parts by mass, methylene chloride 6◦9.37 parts by mass, and methanol 53.0 parts by mass, A solution (dope) was prepared. The obtained dope was cast on a glass plate, dried at room temperature for 1 minute, and dried at 45 ° C for 5 minutes. The residual solvent after drying is 25 mass. /. Met. The cellulose acetate film was peeled off from the glass plate, dried at 100 ° C for 10 minutes, and then dried at 120 ° C for 20 minutes. The residual solvent content after drying was 2.1%.
乾燥させたフィルムを適当な大きさに切断した後、 1 3 0°Cで流延方向とは平 行な方向に 1. 4倍に延伸した。 延伸方向と垂直な方向は、 自由に収縮できるよ うにした。 延伸後、 そのままの状態で室温雰囲気下に取り出し冷却した。  After the dried film was cut into an appropriate size, it was stretched 1.4 times in a direction parallel to the casting direction at 130 ° C. The direction perpendicular to the stretching direction can be freely contracted. After stretching, the film was taken out under an atmosphere at room temperature and cooled.
得られたフィルムの膜厚は 1 0 2 μηιであった。 また、 溶剤残留量は 0. 1質量 %であった。 The thickness of the obtained film was 102 μηι. The residual amount of the solvent was 0.1% by mass.
得られたポリマーフィルム (位相差板) について、 光学特性と吸湿膨張係数を 測定した。 結果は第 4表、 第 5表に示す。  The optical properties and the coefficient of hygroscopic expansion of the obtained polymer film (retardation plate) were measured. The results are shown in Tables 4 and 5.
さらに、 | DRひ (λ) 一 DR0 (1) Iの値を測定したところ、 以下の結果 が得られた。  Furthermore, when the value of | DR (λ) -DR0 (1) I was measured, the following results were obtained.
1 DR 2 0 (4 5 0) -DR0 (4 5 0) | = 0. 0 0  1 DR 2 0 (4 5 0) -DR 0 (4 5 0) | = 0. 0 0
I DR 2 0 (7 50) -DR0 (7 50) | = 0. 00  I DR 2 0 (7 50) -DR 0 (7 50) | = 0.00
I DR4 0 (4 5 0) -DR 0 (4 5 0) | = 0. 0 1  I DR4 0 (4 5 0) -DR 0 (4 5 0) | = 0. 0 1
I DR4 0 (7 5 0) -DR 0 (7 5 0) | = 0. 0 1 [実施例 16 ] I DR4 0 (7 5 0) -DR 0 (7 5 0) | = 0. 0 1 [Example 16]
(位相差板の作製)  (Production of retardation plate)
平均酢化度 59. 7%のセルロースアセテート 117. 87質量部、 トリフエ 二ノレホスフェート 9. 1 9質量部、 ビフエニノレジフエ二ノレホスフェート 4. 60 質量部、 メチレンクロリ ド 595. 60質量部、 およびメタノール 5 1. 8質量 部をミキシングタンクに投入し、 加熱しながら攪拌して、 各成分を溶解し、 セル ロースァセテ一ト溶液を調製した。  117.87 parts by mass of cellulose acetate having an average degree of acetylation of 59.7%, 9.19 parts by mass of triphenyl enolephosphate, 4.60 parts by mass of bifeninolediphenyl enolephosphate, 595.60 parts by mass of methylene chloride, Then, 51.8 parts by mass of methanol and 51.8 parts by mass were charged into a mixing tank and stirred while heating to dissolve each component to prepare a cellulose acetate solution.
別のミキシングタンクに、 実施例 1で用いたレターデーシヨン上昇剤 1. 18 質量部、 トリベンジ^/アミン 2. 36質量部、 メチレンクロライ ド 1 6. 0質量 部おょぴメタノール 1. 39質量部を投入し、 加熱しながら攪拌して、 レターデ ーション上昇剤溶液を調製した。  In another mixing tank, the retardation raising agent used in Example 1 1.18 parts by mass, tribenzi ^ / amine 2.36 parts by mass, methylene chloride 16.0 parts by mass methanol 1.39 A part by mass was charged and stirred while heating to prepare a retardation increasing agent solution.
セルロースァセテ一ト溶液にレターデーシヨン上昇剤溶液を全て投入し、 充分 に攪拌してドープを調製した。  The entire retardation raising agent solution was charged into the cellulose acetate solution, and the mixture was sufficiently stirred to prepare a dope.
得られたドープを、 流延後の乾燥ゾーンに多段ロール延伸ゾーンを設けたバン ド流延機を用いて流延 ·一軸延伸をおこなった。 延伸ゾーン直前のフィルムの残 留溶剤量は 1. 0%であった。 延伸ゾーンは温度を均一に保っためケーシングで 覆い、 1 35°Cにした。 また、 フィルムの延伸温度はロールの温度、 ロール間に 設けた赤外線ヒータで 130°Cに調節した。 延伸倍率はロールの回転速度により 1. 4倍とした。 延伸後のフィルムは室温まで徐冷し、 卷き取った。  The obtained dope was cast and uniaxially stretched using a band casting machine provided with a multistage roll stretching zone in a drying zone after casting. The residual solvent amount of the film immediately before the stretching zone was 1.0%. The stretching zone was covered with a casing to keep the temperature uniform, and the temperature was set to 135 ° C. The stretching temperature of the film was adjusted to 130 ° C using a roll temperature and an infrared heater provided between the rolls. The stretching ratio was 1.4 times depending on the rotation speed of the roll. The stretched film was gradually cooled to room temperature and wound up.
得られたフィルムの膜厚は 101 μπιであった。 また、 残留溶剤量は 0. 2% であった。  The film thickness of the obtained film was 101 μπι. The residual solvent content was 0.2%.
得られたポリマーフィルム (位相差板) について、 光学特性と吸湿膨張係数を 測定した。 結果は第 4表、 第 5表に示す。  The optical properties and the coefficient of hygroscopic expansion of the obtained polymer film (retardation plate) were measured. The results are shown in Tables 4 and 5.
さらに、 | DRひ (λ) 一 DR0 (λ) Iの値を測定したところ、 以下の結果 が得られた。  Further, when the value of DR (λ) -DR0 (λ) I was measured, the following results were obtained.
I DR 20 (450) 一 DR0 (450) | = 0. 00  I DR 20 (450) One DR0 (450) | = 0.00
I DR 20 (750) — DR0 (750) | = 0. 00  I DR 20 (750) — DR0 (750) | = 0.00
I DR40 (450) 一 DR0 (450) | =0. 01 I DR4 0 (7 5 0) 一 DR O (7 5 0) | = 0. 0 1 [実施例 1 7 ] I DR40 (450) One DR0 (450) | = 0.01 I DR4 0 (750) 1 DR O (750) | = 0.01 [Example 17]
実施例 1 5で得られたドープを、 ガラス板上に流延し、 室温で 1分間乾燥後、 4 5 °Cで 5分間乾燥させた。 乾燥後の残留溶剤量は 2 5質量%であった。 作製し たフィルムをガラス板から剥離し、 1 00°Cで 2◦分間、 1 20°Cで 1 0分間乾 燥させた。 乾燥後の残留溶剤量は 2. 5%であった。  The dope obtained in Example 15 was cast on a glass plate, dried at room temperature for 1 minute, and then dried at 45 ° C for 5 minutes. The amount of residual solvent after drying was 25% by mass. The produced film was peeled off from the glass plate and dried at 100 ° C for 2 minutes and at 120 ° C for 10 minutes. The residual solvent content after drying was 2.5%.
乾燥させたフィルムを適当な大きさに切断した後、 1 3 0°Cで流延方向とは平 行な方向に 1. 4 5倍に延伸した。 延伸方向と垂直な方向は自由に収縮できるよ 'うにした。 延伸後、 赤外線ヒータを用いて、 1 1 0°Cで 5秒間熱処理した。 熱処 理後、 試料を冷却して取り出した。  After the dried film was cut into an appropriate size, the film was stretched 1.30 times at 130 ° C. in a direction parallel to the casting direction. The direction perpendicular to the stretching direction can be freely contracted. After stretching, heat treatment was performed at 110 ° C for 5 seconds using an infrared heater. After heat treatment, the sample was cooled and removed.
得られたポリマーフィルム (位相差板) について、 光学特性と吸湿膨張係数を 測定した。 結果は第 4表、 第 5表に示す。  The optical properties and the coefficient of hygroscopic expansion of the obtained polymer film (retardation plate) were measured. The results are shown in Tables 4 and 5.
さらに、 | DRひ (λ) -DRO (λ) Iの値を測定したところ、 以下の結果 が得られた。  Further, when the value of | DR (λ) -DRO (λ) I was measured, the following results were obtained.
I DR 2 0 (4 5 0) — DRO (4 5 0) | = 0. 0 0  I DR 2 0 (4 5 0) — DRO (4 5 0) | = 0. 0 0
I D R 2 0 (7 5 0) — DR0 (7 5 0) 1= 0. 00  I D R 2 0 (750) — DR0 (750) 1 = 0.000
I DR4 0 (4 5 0) -DR 0 (4 5 0) | = 0. 0 1  I DR4 0 (4 5 0) -DR 0 (4 5 0) | = 0. 0 1
I DR4 0 (7 5 0) -DR 0 (7 50) | = 0. 0 1  I DR4 0 (7 5 0) -DR 0 (7 50) | = 0. 0 1
[比較例 4 ] [Comparative Example 4]
(位相差板の作製)  (Production of retardation plate)
質量平均分子量 1 0万のポリカーボネートを塩ィ匕メチレンに溶解して、 7質 量%溶液を得た。 この溶液をガラス板上に、 乾燥膜厚が 8 0 μ mになるように流 延し、 室温で 3 0分乾燥後、 7 0°Cで 3 0分乾燥した。 ポリカーボネートフィル ムをガラス板から剥離し、 1 5 8°Cで 4%延伸し、 ポリカーボネートの延伸複屈 折フィルムを得た。  Polycarbonate having a weight average molecular weight of 100,000 was dissolved in methylene chloride to obtain a 7% by mass solution. This solution was cast on a glass plate so as to have a dry film thickness of 80 μm, dried at room temperature for 30 minutes, and then dried at 70 ° C. for 30 minutes. The polycarbonate film was peeled from the glass plate and stretched 4% at 158 ° C to obtain a stretched birefringent film of polycarbonate.
得られたポリカーボネートフィルム (位相差板) について、 光学測定を行った 。 結果は表 4に示す。 第 4表 位相差板 R e (n x ~ n z ) Optical measurement was performed on the obtained polycarbonate film (retardation plate). The results are shown in Table 4. Table 4 Retarder Re (nx ~ nz)
4 5 0 n m 5 5 0 n m 5 9 0 n m (n x— n y ) 実施例 13 1 1 6. 8 nm 1 3 7. 8 n m 1 4 3. 3 n m 1. 6 0 実施例 14 1 1 5. 8 nm 1 3 6. 7 n m 1 4 2. 2 n m 1. 5 5 実施例 15 1 1 6. 3 nm 1 3 6. 9 n m 1 4 2. 5 n m 1. 5 2 実施例 16 1 1 6. 3 nm 1 3 6. 9 n m 1 4 2. 6 n m 1. 5 3 実施例 17 1 1 6. 4 nm 1 3 7. 0 n m 1 4 2. 5 n m 1. 5 2 比較例 4 1 4 7. 8 nm 1 3 7. 5 n m 1 34. 9 n m 1. 1 2  450 nm 550 nm 590 nm (nx—ny) Example 13 1 16.8 nm 1 37.8 nm 1 43.3 nm 1.60 Example 14 1 15.8 nm 1 36.7 nm 1 4 2.2 nm 1.55 Example 15 1 1 6.3 nm 1 3 6.9 nm 1 4 2.5 nm 1.52 Example 16 1 1 6.3 nm 1 36.9 nm 1 4 2.6 nm 1.53 Example 17 1 1 6.4 nm 1 37.0 nm 1 42.5 nm 1.52 Comparative example 4 1 4 7.8 nm 1 37.5 nm 1 34.9 nm 1. 1 2
第 5表 位相差板 軸ずれ 吸湿膨張係数 延伸方向からのずれ 標準偏差 c m20 /oRH) 実施例 13 土 1. 0. 3' 1 2. 0 X 1 0 実施例 14 士 1. 0. 3' 1 1. 9 X 1 0 実施例 15 土 1. 0. 4' 8. 7 X 1 0 実施例 16 ± 0. 0. 9 7. 6 X 1 0 実施例 17 + 1 0. 7 7. 2 X 1 0 Table 5 Retardation plate Axis deviation Hygroscopic expansion coefficient Deviation from stretching direction Standard deviation cm 2 0 / oRH) Example 13 Sat 1.0.3 '1 2.0 X 10 Example 14 X 1.0. 3 '1 1.9 X 10 Example 15 Sat 1.0.4' 8.7 X 10 Example 16 ± 0.0. 9 7.6 X 10 Example 17 + 1 0.7. 2 X 10
[実施例 1 8] [Example 18]
(円偏光板の作製)  (Production of circular polarizer)
透明保護膜、 偏光膜および実施例 1 4で作製した位相差板を、 この順に積層し て円偏光板を得た。 位相差板の遅相軸と偏光膜の偏光軸との角度は、 4 5° に調 整した。 The transparent protective film, the polarizing film and the retardation plate produced in Example 14 were laminated in this order to obtain a circularly polarizing plate. The angle between the slow axis of the retarder and the polarizing axis of the polarizing film is adjusted to 45 °. It was adjusted.
得られた円偏光板の光学的性質を調べたところ、 いずれも広い波長領域 (4 5 0〜5 9 0 n m) において、 ほぼ完全な円偏光が達成されていた。  When the optical properties of the obtained circularly polarizing plates were examined, almost perfect circularly polarized light was achieved in a wide wavelength range (450 to 590 nm).
[実施例 1 9 ] [Example 19]
(円偏光板の作製)  (Production of circular polarizer)
透明保護膜、 偏光膜および実施例 1 6で作製した位相差板を、 この順に積層し て円偏光板を得た。 位相差板の遅相軸と偏光膜の偏光軸との角度は、 4 5。 に調 整した。  The transparent protective film, the polarizing film and the retardation film produced in Example 16 were laminated in this order to obtain a circularly polarizing plate. 45. The angle between the slow axis of the phase difference plate and the polarization axis of the polarizing film is 45. Was adjusted.
得られた円偏光板の光学的性質を調べたところ、 いずれも広い波長領域 (4 5 0〜5 9 0 n m) において、 ほぼ完全な円偏光が達成されていた。  When the optical properties of the obtained circularly polarizing plates were examined, almost perfect circularly polarized light was achieved in a wide wavelength range (450 to 590 nm).
[比較例 5 ] [Comparative Example 5]
(円偏光板の作製)  (Production of circular polarizer)
透明保護膜、 偏光膜および比較例 4で作製した位相差板を、 この順に積層して 円偏光板を得た。 位相差板の遅相軸と偏光膜の偏光軸との角度は、 4 5 ° に調整 した。  The transparent protective film, the polarizing film, and the retardation plate produced in Comparative Example 4 were laminated in this order to obtain a circularly polarizing plate. The angle between the slow axis of the retardation plate and the polarization axis of the polarizing film was adjusted to 45 °.
(円偏光板の評価) (Evaluation of circular polarizer)
実施例 1 8、 1 9および比較例 5で作製した円偏光板を反射型液晶パネルに実 装し、 測定機 (EZ Contrast 160D、 E L D I M社製) を用いて視野角特性を測定 した。 結果を第 6表に示す。 実施例 1 8、 1 9で作製した円偏光板を用いると、 広い視野角が得られる。 第 6表 視野角 (コントラス ト 3) The circularly polarizing plates produced in Examples 18 and 19 and Comparative Example 5 were mounted on a reflective liquid crystal panel, and the viewing angle characteristics were measured using a measuring device (EZ Contrast 160D, manufactured by ELDIM). The results are shown in Table 6. When the circularly polarizing plates produced in Examples 18 and 19 are used, a wide viewing angle can be obtained. Table 6 Viewing angle (Contrast 3)
円偏光板 上下 左右 実施例 18 129' 120  Circular polarizer Up / Down Left / Right Example 18 129 '120
実施例 19 130' 121  Example 19 130 '121
比較例 5 58 56  Comparative Example 5 58 56
[実施例 20 ] [Example 20]
(反射型液晶表示素子の作製)  (Production of reflective liquid crystal display element)
I TO透明電極を設けたガラス基板と、 微細な凹凸が形成されたアルミニウム 反射電極を設けたガラス基板とを用意した。 二枚のガラス基板の電極側に、 それ ぞれポリイミ ド配向膜 (SE— 7992、 日産化学 (株) 製) を形成し、 ラビン グ処理を行った。 2. 5 / mのスぺーサーを介して、 二枚の基板を配向膜が向か い合うように重ねた。 二つの配向膜のラビング方向は、 1 17° の角度で交差す るように、 基板の向きを調節した。 基板の間隙に、 液晶 (MLC—6252、 メ ルク社製) を注入し、 液晶層を形成した。 このようにして、 ツイスト角が 63° 、 Δ n dの値が 198 nmの TN型液晶セルを作製した。  A glass substrate provided with an ITO transparent electrode and a glass substrate provided with an aluminum reflective electrode having fine irregularities were prepared. Polyimide alignment films (SE-7992, manufactured by Nissan Chemical Co., Ltd.) were formed on the electrode side of the two glass substrates, respectively, and rubbing was performed. 2. Two substrates were stacked through a 5 / m spacer so that the alignment films faced each other. The orientation of the substrate was adjusted so that the rubbing directions of the two alignment films intersect at an angle of 117 °. Liquid crystal (MLC-6252, manufactured by Merck) was injected into the gap between the substrates to form a liquid crystal layer. Thus, a TN type liquid crystal cell having a twist angle of 63 ° and a value of Δnd of 198 nm was produced.
I TO透明電極を設けたガラス基板の側に、 実施例 15で作製した λΖ4板を 粘着剤を介して貼り付けた。 その上に、 さらに偏光板 (表面が AR処理された保 護膜を積層した偏光膜) を貼り付けた。  The λΖ4 plate prepared in Example 15 was attached to the side of the glass substrate provided with the ITO transparent electrode via an adhesive. On top of that, a polarizing plate (a polarizing film with a protective film laminated on the surface of which was subjected to AR treatment) was further adhered.
作製した反射型液晶表示装置に、 1 kHzの矩形波電圧を印加した。 白表示 1 . 5 V、 黒表示 4. 5 Vとして目視で評価を行ったところ、 白表示においても、 黒表示においても、 色味がなく、 ニュートラルグレイが表示されていることが確 認できた。  A 1 kHz rectangular wave voltage was applied to the manufactured reflection type liquid crystal display device. Visual evaluation was performed with white display at 1.5 V and black display at 4.5 V. Neither white display nor black display was colorless and neutral gray was displayed. .
次に、 測定機 (E Zcontrastl60D、 E l d i m社製) を用いて反射輝度のコン トラスト比を測定したところ、 正面からのコントラスト比が 23であり、 コント ラスト比 3となる視野角は、 上下 120° 以上、 左右 120° 以上であった。 [実施例 21 ] Next, when the contrast ratio of the reflected luminance was measured using a measuring instrument (E Zcontrastl60D, manufactured by Eldim), the contrast ratio from the front was 23. The viewing angle at which the last ratio was 3 was 120 ° or more vertically and 120 ° or more horizontally. [Example 21]
(反射型液晶表示装置の作製)  (Production of reflective liquid crystal display device)
I TO透明電極を設けたガラス基板と、 微細な凹凸が形成されたアルミニウム 反射電極を設けたガラス基板とを用意した。 二枚のガラス基板の電極側に、 それ ぞれポリイミ ド配向膜 (SE_ 7992、 日産化学 (株) 製) を形成し、 ラビン グ処理を行った。 3. 4 のスぺーサーを介して、 二枚の基板を配向膜が向か い合うように重ねた。 二つの配向膜のラビング方向は、 1 1 0° の角度で交差す るように、 基板の向きを調節した。 基板の間隙に、 液晶 (MLC—6252、 メ ルク社製) を注入し、 液晶層を形成した。 このようにして、 ツイスト角が 70° 、 ト n dの値が 269 nmの TN型液晶セルを作製した。  A glass substrate provided with an ITO transparent electrode and a glass substrate provided with an aluminum reflective electrode having fine irregularities were prepared. A polyimide alignment film (SE_7992, manufactured by Nissan Chemical Industries, Ltd.) was formed on each electrode side of the two glass substrates, and a rubbing treatment was performed. The two substrates were stacked so that the alignment films faced each other via the spacer described in 3.4. The directions of the substrates were adjusted so that the rubbing directions of the two alignment films intersect at an angle of 110 °. Liquid crystal (MLC-6252, manufactured by Merck) was injected into the gap between the substrates to form a liquid crystal layer. In this way, a TN type liquid crystal cell having a twist angle of 70 ° and a value of nd of 269 nm was produced.
I T〇透明電極を設けたガラス基板の側に、 実施例 15で作製したえ /4板を 粘着剤を介して貼り付けた。 その上に、 さらに偏光板 (表面が AR処理された保 護膜を積層した偏光膜) を貼り付けた。  On the side of the glass substrate provided with the IT transparent electrode, the quarter plate prepared in Example 15 was attached via an adhesive. On top of that, a polarizing plate (a polarizing film with a protective film laminated on the surface of which was subjected to AR treatment) was further adhered.
作製した反射型液晶表示装置に、 1 k Η ζの矩形波電圧を印加した。 白表示 1 . 5V、 黒表示 4. 5 Vとして目視で評価を行ったところ、 白表示においても、 黒表示においても、 色味がなく、 ニュートラルグレイが表示されていることが確 認できた。  A rectangular wave voltage of 1 kΩ was applied to the manufactured reflective liquid crystal display device. Visual evaluation was performed with a white display of 1.5 V and a black display of 4.5 V. As a result, it was confirmed that neutral gray was displayed without coloration in both white display and black display.
次に、 測定機 (E Zcontrastl60D、 E l d i m社製) を用いて反射輝度のコン トラスト比を測定したところ、 正面からのコントラスト比が 25であり、 コント ラスト比 3となる視野角は、 上下 120° 以上、 左右 1 20° 以上であった。  Next, when the contrast ratio of the reflected luminance was measured using a measuring instrument (E Zcontrastl60D, manufactured by Eldim), the contrast ratio from the front was 25, and the viewing angle at which the contrast ratio was 3 was 120 ° or more, left or right 120 ° or more.
[実施例 22 ] [Example 22]
(額縁状のむらの観察)  (Observation of frame-shaped unevenness)
実施例 19で作製した円偏光板をガラス基盤に貼り付け、 60°C、 90%RH の環境下に 100時間放置した。 このサンプルを反射型液晶セルの前面に用いて 、 反射型液晶表示装置を作製した。 表示装置の表示画面前面を黒表示にし、 目視 で観察した結果、 光漏れによるむらはほとんど見られなかつた。 [実施例 23 ] The circularly polarizing plate prepared in Example 19 was attached to a glass substrate, and left for 100 hours in an environment of 60 ° C. and 90% RH. Using this sample on the front surface of a reflective liquid crystal cell, a reflective liquid crystal display device was manufactured. As a result of making the front of the display screen of the display device a black display and visually observing, unevenness due to light leakage was hardly observed. [Example 23]
(ゲストホスト反射型液晶表示素子の作製)  (Production of guest-host reflective liquid crystal display device)
I TO透明電極が設けられたガラス基板の上に、 垂直配向膜形成ポリマー (L Q— 1 800、 日立化成デュポンマイクロシステムズ社製) の溶液を塗布し、 乾 燥後、 ラビング処理を行った。  A solution of a polymer for forming a vertical alignment film (LQ-1800, manufactured by Hitachi Chemical DuPont Microsystems) was applied onto a glass substrate provided with an ITO transparent electrode, dried, and rubbed.
反射板としてアルミニウムを蒸着したガラス基板の上に、 実施例 15で作製し た; L/4板 (位相差板) を粘着剤で貼り付けた。 ノ4板の上に、 スパッタリン グにより S I〇層を設け、 その上に I TO透明電極を設けた。 透明電極の上に、 垂直配向膜形成ポリマー (LQ_ 1800、 日立化成デュポンマイクロシステム ズ社製) の溶液を塗布し、 乾燥後、 λΖ4板の遅相軸方向から 45° の方向にラ ビング処理を行った。  An L / 4 plate (retardation plate) prepared in Example 15 was adhered with an adhesive on a glass substrate on which aluminum was deposited as a reflection plate. On the No. 4 plate, an SI layer was provided by sputtering, and an ITO transparent electrode was provided thereon. A solution of a polymer for vertical alignment film (LQ_1800, manufactured by Hitachi Chemical DuPont Microsystems) is applied on the transparent electrode, dried, and rubbed in the direction of 45 ° from the slow axis direction of the λΖ4 plate. went.
7. 6 ^ mのスぺーサーを介して、 二枚のガラス基板を、 配向膜が向かい合う ように重ねた。 配向膜のラビング方向が反平行となるように、 基板の向きを調節 した。 基板の間隙に、 二色性色素 (NKX— 1366、 日本感光色素社製) 2. 0質量%と液晶 (ZL I— 2806、 メルク社製) 98. 0質量%との混合物を 、 真空注入法により注入し、 液晶層を形成した。  Two glass substrates were stacked via a 7.6 m spacer so that the alignment films faced each other. The orientation of the substrate was adjusted so that the rubbing direction of the alignment film was antiparallel. Vacuum injection of a mixture of 2.0% by mass of dichroic dye (NKX-1366, manufactured by Nippon Kogaku Dye Co., Ltd.) and 98.0% by mass of liquid crystal (ZLI-2806, manufactured by Merck) To form a liquid crystal layer.
作製したゲストホスト反射型液晶表示素子の I TO電極間に、 1 kH zの矩形 波電圧を印加した。 白表示 IV、 黒表示 10Vでの透過率は、 それぞれ 65%、 6%であった。 白表示と黒表示との透過率の比 (コントラスト比) は、 1 1 : 1 であった。 また、 上下左右でコントラス ト比 2 : 1が得られる視野角を測定した ところ、 上下、 左右ともに 120° 以上であった。 電圧を上昇、 下降させながら 透過率測定を行ったが、 透過率一電圧の曲線にヒステリシスは観察されなかった  A rectangular wave voltage of 1 kHz was applied between the ITO electrodes of the fabricated guest-host reflection type liquid crystal display device. The transmittances at white display IV and black display 10V were 65% and 6%, respectively. The transmittance ratio (contrast ratio) between the white display and the black display was 11: 1. When the viewing angle at which a contrast ratio of 2: 1 was obtained in the upper, lower, left, and right directions was measured, the angle was 120 ° or more in both the upper, lower, left, and right directions. The transmittance was measured while increasing and decreasing the voltage, but no hysteresis was observed in the transmittance-voltage curve.
[実施例 24 ] [Example 24]
(位相差板の作製)  (Production of retardation plate)
得られるフィルムの厚さが 200 μπιとなるように、 ドープの塗布量を変更し た以外は、 実施例 13と同様にしてセルロースアセテートフィルムを作製した。 得られたセルロースアセテートフィルム (位相差板) について、 エリプソメ一 ー (M- 1 50、 日本分光 (株) 製) を用いて、 波長 450 n m、 5 50 nm および 590 nmにおけるレターデーシヨン値 (Re) を測定したところ、 それ ぞれ、 233. 6 nm、 275. 6 nmおよび 286. 6 nmであった。 従って 、 このセルロースアセテートフィルムは、 広い波長領域で; 1/ 2を達成していた また、 アッベ屈折率計による屈折率測定と、 レターデーシヨンの角度依存性の 測定から、 波長 550 nmにおける面内の遅相軸方向の屈折率 n x、 面内の遅相 軸に垂直な方向の屈折率 n yおよび厚み方向の屈折率 n zを計算し、 (n x— n z) / (n x -n y) の値を求めたところ、 1. 60であった。 さらに、 吸湿膨 張係数を測定したところ、 1 2. 0 X 1 0— 5Zcm2 /%RHであった。 A cellulose acetate film was produced in the same manner as in Example 13, except that the amount of the dope was changed so that the thickness of the obtained film was 200 μπι. The obtained cellulose acetate film (retardation film) was analyzed using an ellipsometer (M-150, manufactured by JASCO Corporation) at a wavelength of 450 nm, 550 nm and 590 nm to determine the letter value (Re ) Was 233.6 nm, 275.6 nm and 286.6 nm, respectively. Therefore, this cellulose acetate film achieved 1/2 in a wide wavelength range. In addition, from the measurement of the refractive index by the Abbe refractometer and the measurement of the angle dependence of the retardation, the in-plane at a wavelength of 550 nm was obtained. The refractive index nx in the slow axis direction, the refractive index ny in the direction perpendicular to the in-plane slow axis, and the refractive index nz in the thickness direction, and obtain the value of (nx—nz) / (nx -ny) It was 1.60. Furthermore, measurement of the moisture Rise expansion coefficient was 1 2. 0 X 1 0- 5 Zcm 2 /% RH.
さらに、 | DRひ (1) -DR0 {1) Iの値を測定したところ、 以下の結果 が得られた。  Furthermore, when the value of | DR (1) -DR0 {1) I was measured, the following results were obtained.
I DR 20 (450) -DR0 (450) | =0. 00  I DR 20 (450) -DR0 (450) | = 0.00
I DR 20 (750) -DR0 (750) | =0. 00  I DR 20 (750) -DR0 (750) | = 0.00
I DR40 (450) 一 DR0 (450) | =0. 01  I DR40 (450) One DR0 (450) | = 0.01
I DR40 (7 50) -DR0 (750) | -0. 01  I DR40 (7 50) -DR0 (750) | -0. 01
[実施例 25 ] [Example 25]
(λΖ4板の作製)  (Preparation of λΖ4 plate)
室温において、 平均酢化度 59. 7%のセルロースアセテート 1 20質量部、 実施例 1で用いたレターデーシヨン上昇剤 1. 2質量部、 トリフエ二レンホスフ エート 9. 36質量部、 ビフエニルジフエニルホスフェート 4. 68質量部、 ト リベンジルァミン 2. 0質量部、 メチレンクロリ ド 538. 2質量部、 メタノー ル 46. 8質量部を混合して溶液 (ドープ) を調製した。  At room temperature, cellulose acetate having an average acetylation degree of 59.7% 120 parts by mass, the retardation enhancer used in Example 1 1.2 parts by mass, triphenylene phosphate 9.36 parts by mass, biphenyldiphenyl A solution (dope) was prepared by mixing 4.68 parts by mass of phosphate, 2.0 parts by mass of tribenzylamine, 538.2 parts by mass of methylene chloride, and 46.8 parts by mass of methanol.
得られたドープを、 ステンレス製バンド上に流延し、 自己支持性を持つまでフ イルムを乾燥した後バンドから剥ぎ取った。 その時の残留揮発分は 30質量。 /0で あった。 その後、 フィルムを 1 20°Cで 1 5分乾燥し、 残留揮発分を 2質量%以 下にした後、 1 30°Cで流延方向と平行な方向に延伸した。 延伸方向と垂直な方 向は、 自由に収縮できるようにした。 延伸後、 そのままの状態で 1 2 0°Cで 3 0 分間乾燥した後、 延伸フィルムを取り出した。 延伸後の溶剤残留量は 0. 1質量 %であった。 このようにして得られたフィルムの厚さは 1 0 8 μπιであった。 得られたセルロースアセテートフィルム (λ/4板) について、 エリプソメ一 ター (Μ— 1 5 0、 日本分光 (株) 製) を用いて、 波長 4 5 0 nm、 5 5 0 n m 、 および 5 9 ◦ nmにおけるレターデーシヨン値 (R e) を測定したところ、 そ れぞれ、 1 2 1. 2 nm、 1 3 7. 5 nm、 1 4 2. 7 nmであった。 したがつ て、 このセルロースアセテートフィルムは広い波長領域で; L/4を達成していた さらに、 アッベ屈折率計による屈折率測定と、 レターデーシヨンの角度依存性 の測定から、 波長 5 5 0 nmにおける面内の遅相軸方向の屈折率 n x、 面内の遅 相軸に垂直な方向の屈折率 n yおよび厚み方向の屈折率 n zを求め、 (n x— n z) / (n x-n y) の値を計算したところ、 1. 5 0であった。 The obtained dope was cast on a stainless steel band, and the film was dried until it had self-supporting properties, and then was peeled off from the band. The remaining volatile matter at that time was 30 mass. / 0 . Thereafter, the film was dried at 120 ° C for 15 minutes to reduce the residual volatile content to 2% by mass or less, and then stretched at 130 ° C in a direction parallel to the casting direction. The direction perpendicular to the stretching direction The direction can be freely contracted. After the stretching, the film was dried at 120 ° C. for 30 minutes as it was, and the stretched film was taken out. The residual amount of the solvent after stretching was 0.1% by mass. The thickness of the film thus obtained was 108 μπι. The obtained cellulose acetate film (λ / 4 plate) was analyzed using an ellipsometer (Μ-150, manufactured by JASCO Corporation) at wavelengths of 450 nm, 55500 nm, and 59 °. When the retardation values (Re) at nm were measured, they were 121.2 nm, 137.5 nm, and 142.7 nm, respectively. Therefore, this cellulose acetate film achieved L / 4 in a wide wavelength range; L550 was obtained from the refractive index measurement by Abbe refractometer and the measurement of the angle dependence of the retardation. The refractive index nx in the direction of the in-plane slow axis, the refractive index ny in the direction perpendicular to the slow axis in the plane, and the refractive index nz in the thickness direction at nm are calculated as (nx—nz) / (n xny). The calculated value was 1.5.
さらに、 I DRa (λ) — DR0 (λ) Iの値を測定したところ、 以下の結果 が得られた。  Further, when the value of I DRa (λ) —DR0 (λ) I was measured, the following results were obtained.
I DR 2 0 (4 5 0) — DR 0 (4 5 0) | = 0. 00  I DR 2 0 (4 5 0) — DR 0 (4 5 0) | = 0.00
I DR 2 0 (7 5 0) 一 DR 0 (7 5 0) | = 0. 00  I DR 2 0 (7 5 0) 1 DR 0 (7 5 0) | = 0.00
I DR4 0 (4 5 0) -DR 0 (4 5 0) | = 0. 0 1  I DR4 0 (4 5 0) -DR 0 (4 5 0) | = 0. 0 1
I DR4 0 (7 5 0) — DR 0 (7 5 0) | = 0. 0 1  I DR4 0 (7 5 0) — DR 0 (7 5 0) | = 0. 0 1
(タツチパネル付き反射型液晶表示装置の作製) (Production of reflective liquid crystal display device with touch panel)
TN型液晶セルを使用した、 タツチパネル付き反射型液晶表示装置 (ザウルス カラーポケット M l — 3 1 0、 シャープ (株) 製) に設けられている偏光板と位 相差板を剥がし、 代わりに実施例 2 5で作製した; I Z 4板と偏光板を、 この順番 で粘着剤を用いて液晶セルに貼り付けた。 λ/4の延伸方向 (遅相軸方向と平行 ) と偏光板の透過軸方向とのなす角は 4 5° とした。  The polarizer and the retarder provided on the reflective liquid crystal display device with a touch panel using a TN type liquid crystal cell (Saurus Color Pocket Ml-3110, manufactured by Sharp Corporation) were peeled off, and the example was replaced. The IZ 4 plate and the polarizing plate were attached to the liquid crystal cell using an adhesive in this order. The angle between the stretching direction of λ / 4 (parallel to the slow axis direction) and the transmission axis direction of the polarizing plate was 45 °.
作製した液晶表示装置について、 測定機 (Ε Ζ— Contrast 1 6 0D、 E LD I M社製) を用いて、 コントラスト比を測定したところ、 正面で 1 0 : 1であった 。 また、 上下左右でコントラスト比 2 : 1が得られる視野角を測定したところ、 上下、 左右ともに 1 20° 以上であった。 [比較例 6 ] The contrast ratio of the manufactured liquid crystal display device was measured with a measuring device (Ε-Contrast 160D, manufactured by ELDIM), and was found to be 10: 1 at the front. Also, when the viewing angle at which a contrast ratio of 2: 1 was obtained at the top, bottom, left and right was measured, The angle was more than 120 ° both vertically and horizontally. [Comparative Example 6]
TN型液晶セルを使用した、 タツチパネル付き反射型液晶表示装置 (ザウルス カラーポケット Ml— 3 10、 シャープ (株) 製) について、 測定機 (EZ— Co ntrastl 60DN E L D I M社製) を用いて、 コントラスト比を測定したところ 、 正面で 1 0 : 1であった。 また、 上下左右でコントラスト比 2 : 1が得られる 視野角を測定したところ、 上下 1 00° 、 左右 90° であった。 Using TN type liquid crystal cell, Tatsuchipaneru Reflective type liquid crystal display device (Zaurus Color Pocket ML- 3 10, manufactured by Sharp Corp.) for, using a measuring machine (manufactured by EZ- Co ntrastl 60D N ELDIM Inc.), contrast When the ratio was measured, it was 10: 1 at the front. The viewing angle at which a contrast ratio of 2: 1 was obtained in the upper, lower, left, and right directions was 100 ° in the vertical direction and 90 ° in the horizontal direction.
[実施例 26 ] [Example 26]
(タツチパネル付き反射型液晶表示装置の作製)  (Production of reflective liquid crystal display device with touch panel)
I TO透明電極が設けられたガラス基板の上に、 垂直配向膜形成ポリマー (L Q— 1 800、 日立化成デュポンマイク口システムズ社製) の溶液を塗布し、 乾 燥後、 ラビング処理を行った。  A solution of a polymer for forming a vertical alignment film (LQ-1800, manufactured by Hitachi Chemical DuPont Microphone Systems) was applied onto a glass substrate provided with an ITO transparent electrode, dried, and rubbed.
反射板としてアルミニウムを蒸着したガラス基板の上に、 実施例 25で作製し た; IZ 4板を粘着剤で貼り付けた。 え /4板の上に、 スパッタリングにより S i 〇層を設け、 その上に I TO透明電極を設けた。 透明電極の上に、 垂直配向膜形 成ポリマー (LQ— 1 800、 日立化成デュポンマイクロシステムズ社製) の溶 液を塗布し、 乾燥後、 λ/4板の遅相軸方向から 45° の方向にラビング処理を 行った。  It was produced in Example 25 on a glass substrate on which aluminum was vapor-deposited as a reflection plate; an IZ4 plate was adhered with an adhesive. On the / 4 plate, a SiO layer was provided by sputtering, and an ITO transparent electrode was provided thereon. A solution of vertical alignment film forming polymer (LQ-1800, manufactured by Hitachi Chemical DuPont Microsystems) is applied on the transparent electrode, dried, and then set at 45 ° from the slow axis direction of the λ / 4 plate. A rubbing treatment was performed.
7. 6 zmのスぺーサーを介して、 二枚のガラス基板を、 配向膜が向かい合う ように重ねた。 配向膜のラビング方向が反平行となるように、 基板の向きを調節 した。 基板の間隙に、 二色性色素 (NKX— 1 366、 日本感光色素社製) 2. 5質量%と液晶 (ZL I— 28' 06、 メルク社製) 97. 5質量%との混合物を 、 真空注入法により注入し、 液晶層を形成した。  Two glass substrates were stacked via a spacer of 7.6 zm such that the alignment films faced each other. The orientation of the substrate was adjusted so that the rubbing direction of the alignment film was antiparallel. In a gap between the substrates, a mixture of 2.5% by mass of dichroic dye (NKX-1366, manufactured by Nippon Kogaku Dyeing Co., Ltd.) and 97.5% by mass of liquid crystal (ZLI-28'06, manufactured by Merck) was added. The liquid crystal layer was formed by injection using a vacuum injection method.
作製したゲストホスト反射型液晶表示素子の観察者側に、 実施例 25で用いた タツチパネルを設けた。  The touch panel used in Example 25 was provided on the observer side of the manufactured guest-host reflective liquid crystal display device.
作製したゲストホスト反射型液晶表示素子の I TO電極間に、 1 kH zの矩形 波電圧を印加した。 白表示 IV、 黒表示 1 0Vでの反射率は、 それぞれ 6 5%、 6%であった。 白表示と黒表示との反射率の比 (コントラス ト比) は、 1 1 : 1 であった。 また、 上下左右でコントラス ト比 2 : 1が得られる視野角を測定した ところ、 上下、 左右ともに 120° 以上であった。 電圧を上昇、 下降させながら 反射率測定を行ったが、 反射率一電圧の曲線にヒステリシスは観察されなかった A rectangular wave voltage of 1 kHz was applied between the ITO electrodes of the fabricated guest-host reflection type liquid crystal display device. The reflectance at white display IV and black display 10 V is 65%, 6%. The ratio of the reflectance between the white display and the black display (contrast ratio) was 11: 1. When the viewing angle at which a contrast ratio of 2: 1 was obtained in the upper, lower, left, and right directions was measured, the angle was 120 ° or more in both the upper, lower, left and right directions. The reflectance was measured while increasing and decreasing the voltage, but no hysteresis was observed in the reflectance-voltage curve.
[実施例 27 ] [Example 27]
(λ/ 4板の作製)  (Preparation of λ / 4 plate)
実施例 25と同様にして延伸フィルムを作製し、 以下のようにして透明導電膜 を塗設した。  A stretched film was prepared in the same manner as in Example 25, and a transparent conductive film was applied as follows.
(透明導電膜の塗設) (Coating of transparent conductive film)
1) 銀パラジウムコロイド分散液の調製  1) Preparation of silver palladium colloidal dispersion
30%硫酸鉄 (I I) F e S〇4 · 7H2 0、 40%のクェン酸を調製、 混合 し、 20°Cに保持、 攪拌しながらこれに 10%の硝酸銀と硝酸パラジウム (モル 比 9 / 1に混合したもの) 溶液を 200 m 1 Zm i nの速度で添加混合し、 その 後生成した遠心分離により水洗を繰り返し、 最終的に 3質量%になるように純水 を加え、 銀パラジウムコロイド分散液を調製した。 得られた銀コロイド粒子の粒 径は T EM観察の結果、 粒径は約 9〜 12 nmであった。 I C Pによる測定の結 果、 銀とパラジウムの比は 9/1の仕込み比と同一であった。 30% iron sulfate (II) F e S_〇 4 · 7H 2 0, prepared 40% Kuen acid, mixed and held at 20 ° C, while stirring it at 10% of the silver nitrate and palladium nitrate (molar ratio 9 / 1) The solution was added and mixed at a speed of 200 m 1 Zmin, and then washed repeatedly by centrifugation. Pure water was added to a final concentration of 3% by mass. A dispersion was prepared. As a result of TEM observation, the obtained silver colloid particles had a particle size of about 9 to 12 nm. As a result of ICP measurement, the ratio of silver to palladium was the same as the charge ratio of 9/1.
2) 銀コロイド塗布液の調製  2) Preparation of silver colloid coating solution
前記銀コロイド分散液 100 gに i一プロピルアルコールを加え、 超音波分散 し孔径 1 μ mのポリプロピレン製フィルターで濾過して塗布液を調製した。  I-Propyl alcohol was added to 100 g of the silver colloid dispersion liquid, and the mixture was ultrasonically dispersed and filtered through a polypropylene filter having a pore size of 1 μm to prepare a coating liquid.
3) オーバーコート用塗布液 L—1の調製  3) Preparation of coating solution L-1 for overcoat
ジペンタエリスリ トーノレペンタァクリレートとジペンタエリスリ トールへキサ ァクリ レートの混合物 (DPHA、 日本化薬 (株) 製) 2 gと光重合開始剤 (ィ ルガキュア 907、 チバガイギ一社製) 80mgおよび光増感剤 (カャキュア一 DETX、 日本化薬 (株) 製) 3 Omgをメチルイソプロピルケトン 38 g、 2 ーブタノール 38 g、 メタノール 19 gの混合液に加えて溶解した。 混合物を 3 0分間撹拌した後、 孔径 1 mのポリプロピレン製フィルターで濾過してオーバ ーコート用塗布液を調製した 2 g of a mixture of dipentaerythritol tonolepentaacrylate and dipentaerythritol hexacrylate (DPHA, manufactured by Nippon Kayaku Co., Ltd.) and a photopolymerization initiator (IRGACURE 907, manufactured by Ciba Geigy Co., Ltd.) 80 mg and a photosensitizer (Kyakuaichi DETX, manufactured by Nippon Kayaku Co., Ltd.) 3 Omg was added to and dissolved in a mixture of 38 g of methyl isopropyl ketone, 38 g of 2-butanol, and 19 g of methanol. Mix 3 After stirring for 0 minutes, the mixture was filtered through a polypropylene filter with a pore size of 1 m to prepare a coating solution for overcoating.
4) 透明導電性積層の形成 4) Formation of transparent conductive laminate
延伸フィルムにコロナ処理を施した後、 上記銀コロイド塗布液をワイヤーバー で塗布量が 7 0 m g /m2 になるように塗布し、 40 °Cで乾燥した。 この銀コ口 イド塗布面に、 ポンプで送液した水をスプレーでかけ、 エアーナイフで過剰の水 を除去した後、 1 20°Cの加熱ゾーンで搬送しながら、 5分の処理を行った。 次 いで、 オーバーコート用塗布液 L— 1を膜厚 8 0 nmになるように塗布、 乾燥し 、 1 2 0°Cで 2時間熱処理した後、 紫外線を照射し、 塗布膜を硬化させた。 このようにして得られたフィルムの厚さは 1 ◦ 2 μπιであった。 また、 透明導 電膜側の表面抵抗率を、 4端子法にて測定した結果、 40 0 Ω /口であり、 光の 透過率は、 7 1 %であった。 After performing a corona treatment on the stretched film, the above-mentioned silver colloid coating solution was applied using a wire bar so that the coating amount became 70 mg / m 2 , and dried at 40 ° C. Water fed by a pump was sprayed on the silver-coated surface, and excess water was removed with an air knife. Then, treatment was performed for 5 minutes while transporting in a heating zone at 120 ° C. Next, a coating solution L-1 for overcoat was applied to a film thickness of 80 nm, dried, heat-treated at 120 ° C. for 2 hours, and then irradiated with ultraviolet rays to cure the coating film. The thickness of the film thus obtained was 1 ◦ 2 μπι. Further, the surface resistivity of the transparent conductive film side was measured by a four-terminal method, and as a result, it was 400 Ω / port, and the light transmittance was 71%.
得られたセノレロースァセテ一トフイノレム (λ/4) について、 エリプソメータ 一 (Μ— 1 5 0、 日本分光 (株) 製) を用いて、 波長 4 5 0 n m、 5 5 0 n m、 および 5 9 0 nmにおけるレターデーシヨン値 (R e) を測定したところ、 それ ぞれ、 1 1 6. 4 nm、 1 3 2. O nm、 1 3 7. O nmであった。 したがって 、 このセルロースアセテートフィルムは広い波長領域で λ/4を達成していた。 さらに、 アッベ屈折率計による屈折率測定と、 レターデーシヨンの角度依存性 の測定から、 波長 5 5 0 nmにおける面内の遅相軸方向の屈折率 η χ、 面内の遅 相軸に垂直な方向の屈折率 n yおよび厚み方向の屈折率 η ζを求め、 (η χ— η ζ) / ( η χ - n y ) の値を計算したところ、 1. 5 2であった。  Using the ellipsometer (Μ-150, manufactured by Nippon Bunko Co., Ltd.), the wavelength of the obtained senorelose acetate (λ / 4) was determined to be 450 nm, 550 nm, and 590 nm. When the retardation values (R e) at 0 nm were measured, they were 1 1 .4 nm, 1 32 .O nm, and 13.7 O nm, respectively. Therefore, this cellulose acetate film achieved λ / 4 in a wide wavelength range. Furthermore, from the refractive index measurement by the Abbe refractometer and the measurement of the angle dependence of the retardation, the refractive index η の in the in-plane slow axis direction at a wavelength of 550 nm, perpendicular to the in-plane slow axis The refractive index ny in the various directions and the refractive index η in the thickness direction were obtained, and the value of (η χ-η ζ) / (η χ -ny) was calculated to be 1.52.
さらに、 i DRひ (λ) — DRO (λ) i の値を測定したところ、 以下の結果 が得られた。  Furthermore, the following results were obtained when the value of i DR (λ) — DRO (λ) i was measured.
I DR 2 0 (4 5 0) -DR 0 (4 5 0) | = 0. 00  I DR 2 0 (4 5 0) -DR 0 (4 5 0) | = 0.00
I DR 2 0 (7 5 0) 一 DRO (7 5 0) | = 0. 00  I DR 2 0 (750) 1 DRO (750) | = 0.00
I DR40 (4 5 0) -DR 0 (4 5 0) 1 = 0. 0 1  I DR40 (4 5 0) -DR 0 (4 5 0) 1 = 0.01
I DR40 (7 5 0) -DR 0 (7 5 0) | = 0. 0 1 (タツチパネルの作製) I DR40 (7 5 0) -DR 0 (7 5 0) | = 0. 0 1 (Production of touch panel)
片面の表面抵抗率が 5 Ω /口、 もう片面の表面抵抗率が 400 ΩΖ口の透明導 電膜 (I T〇) が付いた 0. 7mm厚みのガラス板を用意した。 表面抵抗率 5 Ω Z口の面にポリイミ ド配向膜 (SE— 7992、 日産化学 (株) 製) を形成し、 ラビング処理を行った。 もう一方の面 (表面抵抗率 400 Ω /口) には、 1mm ピッチのドットスぺーサと両端部に銀電極を印刷した。 得られた透明導電膜付き LZ 4板の両端に銀電極を印刷し、 それぞれ、 上記透明導電ガラス板と、 透明導 電膜同士が対向するように接着した。 この際、 両基板の周囲に 100 μπι厚の絶 縁性貼り合せ剤を挟んだ。 このようにして作製したタッチパネルの; L / 4板の側 に、 AR処理された偏光板を貼り付けた。 λ/4の延伸方向 (遅相軸方向と平行 ) と偏光板の透過軸方向とのなす角は 45° とした。 このようにしてタツチパネ ノレを作製した。  A 0.7 mm thick glass plate with a transparent conductive film (IT〇) with a surface resistivity of 5 Ω / port on one side and a surface resistivity of 400 Ω / port on the other side was prepared. Surface resistivity 5 Ω A polyimide alignment film (SE-7992, manufactured by Nissan Chemical Industries, Ltd.) was formed on the surface of the Z port and rubbed. On the other side (surface resistivity 400 Ω / port), a dot spacer of 1 mm pitch and silver electrodes were printed on both ends. Silver electrodes were printed on both ends of the obtained LZ4 plate with a transparent conductive film, and bonded to the transparent conductive glass plate so that the transparent conductive films faced each other. At this time, an insulating adhesive having a thickness of 100 μπι was sandwiched around both substrates. An AR-treated polarizing plate was attached to the L / 4 plate side of the touch panel thus produced. The angle between the stretching direction of λ / 4 (parallel to the slow axis direction) and the transmission axis direction of the polarizing plate was 45 °. In this manner, a touch panel was prepared.
(反射型液晶表示装置の作製) (Production of reflective liquid crystal display device)
微細な凹凸が形成されたアルミニウム反射電極を設けたガラス基板を用意した 。 このガラス基板の電極側に、 ポリイミ ド配向膜 (SE— 7992、 日産化学 ( 株) 製) を形成し、 ラビング処理を行った。 3. 4 / mのスぺーサーを介して、 上記タツチパネルと、 反射電極を設けたガラス基板を、 配向膜が向かい合うよう に重ねた。 二つの配向膜のラビング方向は、 1 10° の角度で交差するように、 基板の向きを調節した。 基板の間隙に、 液晶 (MLC-6252, メルク社製) を注入し、 液晶層を形成した。 このようにして、 ツイス ト角が 70° 、 An dの 値が 269 nmの TN型液晶セルを作製した。 このようにして、 タツチパネルを 用いた反射型液晶表示装置を作製した。  A glass substrate provided with an aluminum reflective electrode having fine irregularities was prepared. A polyimide alignment film (SE-7992, manufactured by Nissan Chemical Co., Ltd.) was formed on the electrode side of this glass substrate, and rubbing treatment was performed. The above touch panel and a glass substrate provided with a reflective electrode were overlapped via a spacer of 3.4 / m such that the alignment films faced each other. The orientation of the substrate was adjusted so that the rubbing directions of the two alignment films intersect at an angle of 110 °. Liquid crystal (MLC-6252, manufactured by Merck) was injected into the gap between the substrates to form a liquid crystal layer. Thus, a TN type liquid crystal cell having a twist angle of 70 ° and an value of And of 269 nm was produced. Thus, a reflective liquid crystal display using the touch panel was manufactured.
作製したタツチパネルが、 良好に動作することを確認した。  It was confirmed that the fabricated touch panel worked well.
作製した反射型液晶表示装置に 1 k H zの矩形波電圧を印加した。 白表示 1. 5V、 黒表示 4. 5 Vとして目視で評価を行ったところ、 白表示においても、 黒 表示においても、 反射型液晶表示装置は、 色味がなく、 ニュートラルグレイが表 示されていることが確認できた。 次に、 測定機 (E Zcontrastl60D、 E 1 d i m社製) を用いて反射輝度のコン トラスト比を測定したところ、 正面からのコントラスト比が 25であり、 コント ラスト比 2となる視野角は、 上下 120° 以上、 左右 120。 以上であった。 A rectangular wave voltage of 1 kHz was applied to the manufactured reflective liquid crystal display device. Visual evaluation was performed with white display at 1.5 V and black display at 4.5 V. In both white display and black display, the reflective liquid crystal display had no color and neutral gray was displayed. Was confirmed. Next, when the contrast ratio of the reflected luminance was measured using a measuring instrument (E Zcontrastl60D, manufactured by E1dim), the contrast ratio from the front was 25, and the viewing angle at which the contrast ratio was 2 was up and down. 120 ° or more, left and right 120. That was all.
[実施例 28 ] [Example 28]
(λΖ4板の作製)  (Preparation of λΖ4 plate)
実施例 25と同様にして延伸フィルムを作製し、 以下のようにして透明導電膜 を塗設した。  A stretched film was prepared in the same manner as in Example 25, and a transparent conductive film was applied as follows.
(透明導電膜の付与) (Application of transparent conductive film)
1 ) セルロース トリァセテ一トフイノレム上への I TOスノ ッタリング  1) I TO snootering on cellulose triacetate
延伸フィルム上に UV硬化型多官能メタクリル酸樹脂 (J SR製 Z 7503) を 3; mの厚みとなるよう塗布した。 次に DCマグネトロンスパッタ法にて I T ◦を 1 5 nmの厚みで製膜した。  A UV-curable polyfunctional methacrylate resin (Z 7503, manufactured by JSR) was applied on the stretched film so as to have a thickness of 3 m. Next, a film of IT was formed to a thickness of 15 nm by DC magnetron sputtering.
このようにして得られたフィルムの厚さは 103 μηιであった。 また、 透明導 電膜側の表面抵抗率を、 4端子法にて測定した結果、 230 ΩΖ口であり、 光の 透過率は、 89%であった。  The thickness of the film thus obtained was 103 μηι. Further, the surface resistivity of the transparent conductive film side was measured by a four-terminal method, and as a result, it was 230 Ω square, and the light transmittance was 89%.
得られたセルロースアセテートフィルム ( λ / 4板) について、 エリプソメ一 ター (Μ— 150、 日本分光 (株) 製) を用いて、 波長 450 n m、 550 nm 、 および 590 nmにおけるレターデーシヨン値 (Re) を測定したところ、 そ れぞれ、 1 19. 0 nm, 135. l nm、 140. l nmであった。 したがつ て、 このセルロースアセテートフィルムは広い波長領域で λΖ4を達成していた さらに、 アッベ屈折率計による屈折率測定と、 レターデーシヨンの角度依存性 の測定から、 波長 550 nmにおける面内の遅相軸方向の屈折率 η χ、 面内の遅 相軸に垂直な方向の屈折率 n yおよび厚み方向の屈折率 η ζを求め、 (η χ— η z) / (n x-n y) の値を計算したところ、 1. 51であった。  The obtained cellulose acetate film (λ / 4 plate) was analyzed using an ellipsometer (Μ-150, manufactured by JASCO Corporation) at a wavelength of 450 nm, 550 nm, and 590 nm for a retardation value (Re). ) Was 119.0 nm, 135. lnm, and 140. lnm, respectively. Therefore, this cellulose acetate film achieved λΖ4 in a wide wavelength range.Furthermore, from the measurement of the refractive index by Abbe refractometer and the measurement of the angle dependence of the retardation, the in-plane wavelength at 550 nm was determined. The refractive index η の in the slow axis direction, the refractive index ny in the direction perpendicular to the in-plane slow axis, and the refractive index η 厚 み in the thickness direction are obtained, and the value of (η χ— η z) / (n xn y) is obtained. Was calculated to be 1.51.
さらに、 i DRa (λ) 一 DR0 ) Iの値を測定したところ、 以下の結果 が得られた。 I DR 20 (450) — DRO (450) | = 0. 00 Further, when the value of iDRa (λ) -DR0) I was measured, the following results were obtained. I DR 20 (450) — DRO (450) | = 0.00
I DR 20 (750) -DRO (750) 1=0. 00  I DR 20 (750) -DRO (750) 1 = 0.00
I DR40 (450) 一 DRO (450) | = 0. 01  I DR40 (450) One DRO (450) | = 0. 01
I DR40 (750) 一 DRO (750) | = 0. 01  I DR40 (750) One DRO (750) | = 0. 01
(タツチパネル付き反射型液晶表示装置の作製), (Production of reflective liquid crystal display device with touch panel),
このようにして得られた; L/4板を用いた以外は、 実施例 27と全く同様にし て、 タツチパネル付き反射型液晶表示装置を作製した。  A reflective liquid crystal display device with a touch panel was produced in exactly the same manner as in Example 27 except that an L / 4 plate was used.
作製したタツチパネルが、 良好に動作することを確認した。  It was confirmed that the fabricated touch panel worked well.
作製した反射型液晶表示装置に 1 k H Zの矩形波電圧を印加した。 白表示 1. 5V、 黒表示 4. 5 Vとして目視で評価を行ったところ、 白表示においても、 黒 表示においても、 反射型液晶表示装置は、 色味がなく、 ニュートラルグレイが表 示されていることが確認できた。 And applying a rectangular wave voltage of 1 k H Z in the reflection type liquid crystal display device manufactured. Visual evaluation was performed with white display at 1.5 V and black display at 4.5 V. In both white display and black display, the reflective liquid crystal display had no color and neutral gray was displayed. Was confirmed.
次に、 測定機 (E Zcon rastl60D、 E l d i m社製) を用いて反射輝度のコン トラスト比を測定したところ、 正面からのコントラスト比が 28であり、 コント ラスト比 2となる視野角は、 上下 120° 以上、 左右 120° 以上であった。  Next, when the contrast ratio of the reflected luminance was measured using a measuring device (E Zcon rastl60D, manufactured by Eldim), the contrast ratio from the front was 28, and the viewing angle at which the contrast ratio was 2 was up and down. It was 120 ° or more, and left and right 120 ° or more.
[実施例 29 ] [Example 29]
下記の組成物をミキシングタンクに投入し、 冷却溶解 (一 70°C) し、 セル口 ースアセテート溶液 (ドープ) を調整した。 ステンレス製バンド上への流延方法 は、 実施例 25と同じにした。 ここで用いたセルローストリアセテートは、 酢化 度 60. 9%、 置換度 2. 82、 粘度平均重合度 320、 含水率 0. 4質量%、 メチレンクロライド溶液中 6質量0 /。の粘度 305 m P a · s、 平均粒子径 1. 5 mm標準偏差 0. 5 mmである粉体であり、 残存酢酸量が 0. 01質量%以下、 じ &が0. 05質量%、 Mgは0. 007質量%、 さらに F eは 5 p p mであつ た。 また 6位ァセチル基は 0. 95であり全ァセチル中の 32. 2%であった。 また、 アセトン抽出分は 1 1質量%、 質量平均分子量と数平均分子量の比は 0. 5であり、 分布の均一なものであった。 また、 イェローネスインデックスは 0. 3、 ヘイズは 0. 08 %、 透明度は 93. 5 %であり、 T gは 1 60 °C、 結晶化 発熱量は 6. 2 jZgであった c The following composition was put into a mixing tank, cooled and melted (at 70 ° C) to prepare a cell acetate solution (dope). The method of casting on a stainless steel band was the same as in Example 25. The cellulose triacetate used here had a degree of acetylation of 60.9%, a degree of substitution of 2.82, a viscosity average degree of polymerization of 320, a water content of 0.4 % by mass, and 6% in a methylene chloride solution of 0/0. The powder has a viscosity of 305 mPa · s, an average particle size of 1.5 mm and a standard deviation of 0.5 mm, the residual acetic acid content is 0.01% by mass or less, the Was 0.007% by mass, and Fe was 5 ppm. The acetyl group at the 6-position was 0.95, which was 32.2% of the total acetyl. The acetone extractables were 11% by mass, and the ratio between the weight average molecular weight and the number average molecular weight was 0.5, indicating a uniform distribution. The yellowness index is 0.3, the haze is 0.08%, the transparency is 93.5%, the T g is 160 ° C, and the crystallization The calorific value was 6.2 jZg c
セルロースアセテート溶液 (ドープ) の組成 セノレロースァセテ一ト 20質量部 酢酸メチル 58質量部 アセトン 5質量部 メタノ一ノレ Composition of Cellulose Acetate Solution (Dope) Senorelose acetate 20 parts by mass Methyl acetate 58 parts by mass Acetone 5 parts by mass Methanol
エタノーノレ 5質量部 ブタノーノレ  Ethanore 5 parts by mass Butanol
ジトリメチローノレプロパンテトラァセテ一ト (可塑剤 A) 1. 2質量部 トリフエニルホスフェート (可塑剤 B) 1. 2質量部 2, 4一ビス一 (n—ォクチルチオ) 一 6一 (4ーヒ ドロキシー3, 5—ジー tert—ブチルァニリノ) 一1, 3, 5—ト アジン (UV剤 a) 0. 2質量部 2— (2, ーヒ ドロキシ一 3' , 5 ' ージ一 tert—ブチノレフエ二ノレ) 一5—ク ロロべンゾトリアゾール (11¥剤1 0. 2質量部 Ditrimethylonolepropane tetraacetate (Plasticizer A) 1.2 parts by mass Triphenyl phosphate (Plasticizer B) 1.2 parts by mass 2,4-bis-1 (n-octylthio) 1 61-1 (4- Hydroxy-3,5-ditert-butylanilino 1,1,3,5-toazine (UV agent a) 0.2 parts by mass 2- (2,2-hydroxy-1 3 ', 5'-tert-butynolefe 1-5-chlorobenzotriazole (11 ¥ 1 10 0.2 parts by mass)
2 - (2 ' —ヒ ドロキシー 3, , 5, —ジ一 tert—アミノレフエニル) 一 5—ク 口口べンゾトリァゾール (UV剤 c ) 0. 2質量部 Ci2H25OCH2 CH2 O-P (=0) — (OK) 2 (剥離剤) 2-(2'-Hydroxy-3,, 5, -di-tert-amino-lephenyl) 1-5-neck benzotriazole (UV agent c) 0.2 parts by mass Ci 2 H 25 OCH2 CH 2 OP (= 0) — (OK) 2 (Release agent)
0. 02質量部 クェン酸 (剥離剤) 0. 02質量部 粒径 20 n mのシリ力微粒子 (モース硬度:約 7 ) 0. 05質量部  0.02 parts by mass Cunic acid (stripping agent) 0.02 parts by mass Silicate fine particles with a particle diameter of 20 nm (Mohs hardness: approx. 7) 0.05 parts by mass
(透明導電膜の形成) (Formation of transparent conductive film)
実施例 29で作製した延伸フィルムをフィルム卷取り型のスパッタリング装置 にセットして、 真空槽を 1. 2mP aの圧力まで排気した後、 Ar +〇2 混合ガ ス (02 =1. 5%) を導入し、 圧力を 0. 25 P aに調整した後、 基板温度を 25°C、 投入電力密度 lWZcm2 にて、 DCスパッタリングを行ない、 厚み 2 1 nmの I n2 Os 系の透明導電膜を形成した。 By setting the stretched film produced in Example 29 into a film Certificates up type sputtering apparatus, the vacuum chamber 1. After evacuating to a pressure of 2 mP a, Ar + 〇 2 mixed gas (0 2 = 1.5% ), Adjust the pressure to 0.25 Pa, and then adjust the substrate temperature. DC sputtering was performed at 25 ° C. and an input power density of 1 WZcm 2 to form an In 2 Os-based transparent conductive film having a thickness of 21 nm.
このようにして得られたフィルムの厚みは 103 μπιであった。 また、 透明導 電膜側の表面抵抗率を、 4端子法にて測定した結果、 406 ΩΖ口であり、 光の 透過率は 88。/。であった。  The thickness of the film thus obtained was 103 μπι. The surface resistivity of the transparent conductive film side was measured by a four-terminal method, and as a result, it was 406 Ω square, and the light transmittance was 88. /. Met.
得られた透明導電膜付きフィルムについてエリプソメータ (M— 1 50、 日本 分光 (株) 製) を用いて、 波長 450 nm、 550 nm, および 590 nmにお けるレターデーシヨン値 (Re) を測定したところ、 それぞれ、 118. 0 nm 、 134. O nm、 1 36. O nmであった。 したがって、 このセルロースァセ テートフィルムは広い波長領域でえ / 4を達成していた。  Retardation values (Re) at wavelengths of 450 nm, 550 nm, and 590 nm of the obtained film with a transparent conductive film were measured using an ellipsometer (M-150, manufactured by JASCO Corporation). However, they were 118.0 nm, 134. O nm, and 136. O nm, respectively. Therefore, this cellulose acetate film achieved / 4 in a wide wavelength range.
さらに、 アッベ屈折率計による屈折率測定と、 レターデーシヨンの角度依存性 の測定から、 波長 550 nmにおける面内の遅相軸方向の屈折率 n x、 面内の遅 相軸に垂直な方向の屈折率 n yおよび厚み方向の屈折率 n zを求め、 (n x— n z) / (n x-n y) の値を計算したところ、 1. 53であった。  Furthermore, from the refractive index measurement by the Abbe refractometer and the measurement of the angle dependence of the retardation, the refractive index nx in the in-plane slow axis direction at the wavelength of 550 nm and the in-plane perpendicular direction to the slow axis were measured. The refractive index ny and the refractive index nz in the thickness direction were obtained, and the value of (nx—nz) / (nxny) was calculated to be 1.53.
さらに、 | DR« (λ) — DRO (λ) 1の値を測定したところ、 以下の結果 が得られた。  Furthermore, when the value of | DR «(λ) — DRO (λ) 1 was measured, the following results were obtained.
I DR 20 (450) -DR 0 (450) | = 0. 00  I DR 20 (450) -DR 0 (450) | = 0.00
I DR 20 (750) -DR 0 (750) | = 0. 00  I DR 20 (750) -DR 0 (750) | = 0.00
I DR40 (450) -DR 0 (450) 1=0. 01  I DR40 (450) -DR 0 (450) 1 = 0.01
I DR40 (750) -DR 0 (750) | =0. 01  I DR40 (750) -DR 0 (750) | = 0.01
(タツチパネルの作製、 反射型液晶表示装置の作製) (Production of touch panel, production of reflective liquid crystal display)
このようにして得られた; 1/4板を用いた以外は、 実施例 27と全く同様にし て、 タツチパネ Λ 反射型液晶表示装置を作製した。  A touch panel-reflective liquid crystal display device was produced in exactly the same manner as in Example 27 except that a 1/4 plate was used.
このようにして作製したタッチパネルが、 良好に動作することを確認した。 作製した反射型液晶表示装置に 1 kHzの矩形波電圧を印加した。 白表示 1. It was confirmed that the touch panel manufactured in this way operated well. A rectangular wave voltage of 1 kHz was applied to the manufactured reflective liquid crystal display device. White display 1.
5V、 黒表示 4. 5 Vとして目視で評価を行ったところ、 白表示においても、 黒 表示においても、 反射型液晶表示装置は、 色味がなく、 ニュートラルグレイが表 示されていることが確認できた。 次に、 測定機 (E Zcontrastl60D、 E 1 d i m社製) を用いて反射輝度のコン トラスト比を測定したところ、 正面からのコントラスト比が 26であり、 コント ラス ト比 2となる視野角は、 上下 1 20° 以上、 左右 1 20° 以上であった。 5 V, black display 4.5 Visually evaluated at 4.5 V, it was confirmed that the reflective liquid crystal display had no color and displayed neutral gray in both white display and black display. did it. Next, when the contrast ratio of the reflected luminance was measured using a measuring device (E Zcontrastl60D, manufactured by E1dim), the contrast ratio from the front was 26, and the viewing angle at which the contrast ratio was 2 was: It was more than 120 ° vertically and more than 120 ° left and right.

Claims

請求の範囲 The scope of the claims
1. 波長 4 5 0 nmで測定したレターデーシヨン値 (R e (4 5 0) ) が 1 0 0乃至 1 2 5 nmであり、 波長 5 9 0 n mで測定したレターデーシヨン値 (R e1. The retardation value (R e (450)) measured at a wavelength of 450 nm is from 100 to 125 nm, and the retardation value measured at a wavelength of 590 nm (R e
(5 9 0) ) が 1 20乃至 1 6 0 nmであり、 R e (5 9 0) —R e (4 5 0) ≥ 2 nmの関係を満足する一枚のポリマーフィルムからなり、 下記式 (I ) およ ぴ (II) で定義される DR0および DR2 0力 波長 4 5 0 nmと波長 7 5 0 η mとにおいて、 | DR 2 0 {1) -DR0 (λ) | ≤ 0. 0 2の関係を満足する 位相差板: (5 90)) is from 120 to 160 nm, and is composed of one polymer film satisfying the relationship of Re (5 90) —Re (450) ≥2 nm. DR0 and DR20 defined by (I) and ぴ (II) At the wavelength of 450 nm and at the wavelength of 750 m, | DR 2 0 (1) -DR0 (λ) | ≤ 0.0 Phase difference plate that satisfies the relationship of 2:
( I ) DRO (λ) =R e (λ) /R e (5 5 0)  (I) DRO (λ) = R e (λ) / R e (5 5 0)
(II) DR 2 0 (え) =R e 2 0 (λ) /R e 2 0 (5 5 0)  (II) DR 2 0 (E) = R e 2 0 (λ) / R e 2 0 (5 5 0)
[式中、 λは、 測定波長であり ; R e (λ) は、 フィルム表面の法線方向で測定 したレターデーシヨン値であり ;そして、 R e 2 0 (λ) は、 フィルム表面の法 線方向から 2 0° の角度で測定したレターデーシヨン値である] 。  Where λ is the measured wavelength; R e (λ) is the retardation value measured in the normal direction of the film surface; and R e 20 (λ) is the method of the film surface. It is the retardation value measured at an angle of 20 ° from the line direction.]
2. 下記式 (III)で定義される DR 40力 波長 4 5 0 nmと波長 7 5 ◦ nm とにおいて、 | DR4 0 (λ) -DR O (λ) I≤ 0. 0 2の関係を満足する請 求の範囲第 1項に記載の位相差板: 2. Satisfies the relationship of | DR40 (λ) -DRO (λ) I≤0.02 at the DR 40 force wavelength of 450 nm and the wavelength of 75 ° nm defined by the following formula (III). The phase difference plate described in paragraph 1 of the claim to be made:
(III) DR4 0 (λ) =R e 4 0 (λ) /R e 40 (5 5 0)  (III) DR4 0 (λ) = R e 4 0 (λ) / R e 40 (5 5 0)
[式中、 えは、 測定波長であり ;そして、 R e 40 (λ) は、 フィルム表面の法 線方向から 4 0° の角度で測定したレターデーシヨン値である] 。  [Where, e is the measured wavelength; and R e 40 (λ) is the retardation value measured at an angle of 40 ° from the normal to the film surface].
3. 波長 4 5 ◦ nmで測定したレターデーシヨン値 (R e (4 5 0) ) が 1 0 8乃至 1 2 0 nmであり、 波長 5 5 0 n mで測定したレターデーシヨン値 (R e3. The retardation value (R e (450)) measured at a wavelength of 45 ° nm is 108 to 120 nm, and the retardation value (R e (Me) measured at a wavelength of 550 nm
(5 5 0) ) が 1 2 5乃至 1 4 2 nmであり、 波長 5 9 0 nmで測定したレター デーシヨン値 (R e (5 9 0) ) が 1 3 0乃至 1 5 2 nmであり、 そして、 R e(550)) is from 125 to 142 nm, and the letter decision value (Re (590)) measured at a wavelength of 590 nm is from 130 to 152 nm; And R e
(5 9 0) — R e (5 5 0) ≥ 2 n mの関係を満足する請求の範囲第 1項に記載 の位相差板。 The retardation plate according to claim 1, wherein the retardation plate satisfies a relationship of (5 90)-Re (550) ≥ 2 nm.
4. ポリマーフイノレムが、 セルロースエステルフィルムである請求の範囲第 1 項に記載の位相差板。 4. The retardation plate according to claim 1, wherein the polymer finolem is a cellulose ester film.
5. ポリマーフイノレムが、 セルロースアセテートフィルムである請求の範囲第 4項に記載の位相差板。 5. The retardation plate according to claim 4, wherein the polymer finolem is a cellulose acetate film.
6. セルロースアセテートフィルムが、 酢化度が 55. 0乃至 61. 5%のセ ルロースアセテートからなる請求の範囲第 5項に記載の位相差板。 6. The retardation plate according to claim 5, wherein the cellulose acetate film comprises cellulose acetate having an acetylation degree of 55.0 to 61.5%.
7. セルロースアセテートフィルムが、 6位置換率が 30%以上 40%以下で あるセルロースアセテートからなる請求の範囲第 5項に記載の位相差板。 7. The retardation plate according to claim 5, wherein the cellulose acetate film is made of cellulose acetate having a 6-position substitution ratio of 30% or more and 40% or less.
8. ポリマーフィルムが、 芳香族環を少なくとも二つ有し、 二つの芳香族環の 立体配座を立体障害しない分子構造を有する化合物を含む請求の範囲第 1項に記 載の位相差板。 8. The retardation plate according to claim 1, wherein the polymer film contains a compound having a molecular structure having at least two aromatic rings and having no steric hindrance to the conformation of the two aromatic rings.
9. ポリマーフィルムの吸湿膨張係数が、 30 X 1 0— 5/cm2 Z%RH以下 である請求の範囲第 1項に記載の位相差板。 9. hygroscopic expansion coefficient of the polymer film, a phase difference plate of paragraph 1, wherein the range of 30 X 1 0- 5 / cm 2 Z% RH or less is claimed.
1 0. ポリマーフィルムが延伸処理されたフィルムであり、 フィルム面内の遅 相軸の平均的な方向が延伸方向から ± 5° 以内であり、 その標準偏差が 2. 0以 内である請求の範囲第 1項に記載の位相差板。 10. The claim that the polymer film is a stretched film, the average direction of the slow axis in the film plane is within ± 5 ° from the stretching direction, and the standard deviation is within 2.0. 2. The retardation plate according to item 1 of the range.
1 1. ポリマーフィルムが延伸処理されたフィルムであり、 フィルム面内の遅 相軸の平均的な方向が延伸方向から ± 1° 以内であり、 その標準偏差が 1. 0以 内である請求の範囲第 1項に記載の位相差板。 1 1. The polymer film is a stretched film, the average direction of the slow axis in the film plane is within ± 1 ° from the stretching direction, and the standard deviation is within 1.0. 2. The retardation plate according to item 1 of the range.
1 2. ポリマーフィルムが延伸処理されたフィルムであり、 面内の遅相軸方向 の屈折率 n x、 面内の遅相軸に垂直な方向の屈折率 n yおよび厚み方向の屈折率 n zが、 1≤ (n x— n z) / (n x— n y) ≤ 2の関係を満足する請求の範囲 第 1項に記載の位相差板。 1 2. A polymer film that has been stretched and has a refractive index nx in the in-plane slow axis direction, a refractive index ny in the direction perpendicular to the slow axis in the plane, and a refractive index in the thickness direction. 2. The retardation plate according to claim 1, wherein nz satisfies a relationship of 1 ≦ (nx—nz) / (nx—ny) ≦ 2.
1 3. 波長 4 5 0 nmで測定したレターデーシヨン値 (R e (4 5 0) ) が 1 0 0乃至 1 2 5 n mであり、 波長 5 9 0 n mで測定したレターデーシヨン値 (R e ( 5 9 0) ) が 1 2 0乃至 1 6 0 nmであり、 R e (5 9 0) 一 R e (4 5 0 ) ≥ 2 nmの関係を満足する一枚のポリマーフィルムからなり、 下記式 (I ) お ょぴ (Π) で定義される DR 0および DR 2 0が、 波長 4 5 0 nmと波長 7 5 0 nmとにおいて、 | DR 2 0 (λ) -DR 0 (λ) \ ≤ 0. 0 2の関係を満足す る位相差板と、 偏光膜とが、 位相差板の面内の遅相軸と偏光膜の偏光軸との角度 が実質的に 4 5° になるように積層されている円偏光板: 1 3. The retardation value (R e (450)) measured at a wavelength of 450 nm is 100 to 125 nm, and the retardation value (R e measured at a wavelength of 590 nm (R e (590)) is from 120 to 160 nm, and is composed of one polymer film satisfying a relationship of Re (590) -Re (450) ≥2 nm, DR 0 and DR 20 defined by the following formula (I) and (ぴ) are | DR 20 (λ) -DR 0 (λ) at the wavelength of 450 nm and the wavelength of 75 nm. The phase difference plate and the polarizing film satisfying the relationship of ≤ 0.02, and the angle between the in-plane slow axis of the phase difference plate and the polarizing axis of the polarizing film is substantially 45 °. Circular polarizers stacked as follows:
( I ) DR 0 {1) =R e (λ) /R e (5 5 0)  (I) DR 0 (1) = R e (λ) / R e (5 5 0)
(II) DR 2 0 (λ) =R e 2 0 (1) /R e 2 0 (5 5 0)  (II) DR 2 0 (λ) = R e 2 0 (1) / R e 2 0 (5 5 0)
[式中、 λは、 測定波長であり ; R e (λ) は、 フィルム表面の法線方向で測定 したレターデーシヨン値であり ;そして、 R e 2 0 (λ) は、 フィルム表面の法 線方向から 2 0° の角度で測定したレターデーシヨン値である] 。  Where λ is the measured wavelength; R e (λ) is the retardation value measured in the normal direction of the film surface; and R e 20 (λ) is the method of the film surface. It is the retardation value measured at an angle of 20 ° from the line direction.]
1 4. 波長 4 5 0 nmで測定したレターデーシヨン値 (R e (4 5 0) ) が 2 0 0乃至 2 5 0 nmであり、 かつ波長 5 9 0 n mで測定したレターデーション値1 4. The retardation value (R e (450)) measured at a wavelength of 450 nm is from 200 to 250 nm, and the retardation value measured at a wavelength of 590 nm
(R e (5 9 0) ) が 2 4 0乃至 3 2 0 nmであり、 そして、 R e (5 9 0) 一 R e (4 5 0) ≥ 4 nmの関係を満足する一枚のポリマーフィルムからなり、 下 記式 (I ) および (II) で定義される DR 0および DR 2 0力 波長 4 5 0 nm と波長 7 5 0 nmとにおいて、' | DR 2 0 (λ) 一 DR 0 (λ) | ≤ 0. 0 2の 関係を満足する位相差板: (R e (5 90)) is 240 to 320 nm, and one polymer that satisfies the relationship of R e (5 0 0) -R e (4 5 0) ≥ 4 nm DR 0 and DR 20 as defined by the following formulas (I) and (II): at a wavelength of 450 nm and a wavelength of 75 nm, '| DR 20 (λ) -DR 0 A retardation plate satisfying the relationship (λ) | ≤ 0.02:
( I ) DR 0 (え) =R e (λ) /R e (5 5 0)  (I) DR 0 (E) = R e (λ) / R e (5 5 0)
(II) DR 2 0 (λ) =R e 2 0 ) /R e 2 0 (5 5 0) '  (II) DR 2 0 (λ) = R e 2 0) / R e 2 0 (5 5 0) '
[式中、 λは、 測定波長であり ; R e (λ) は、 フィルム表面の法線方向で測定 したレターデーシヨン値であり ;そして、 R e 2 0 (λ) は、 フィルム表面の法 線方向から 2 0° の角度で測定したレターデーシヨン値である] ,。 Where λ is the measured wavelength; R e (λ) is the retardation value measured in the normal direction of the film surface; and R e 20 (λ) is the method of the film surface. This is the retardation value measured at an angle of 20 ° from the line direction.] ,.
1 5. 少なくとも片面に透明導電膜が設けられた二枚の透明導電性基板が、 透 明導電膜同士が対向するように配置され、 少なくとも一方の透明導電性基板が; L /4板であるか、 あるいは少なくとも一方の透明導電性基板の表面に; L/ 4板が 積層されているタツチパネルであって、 LZ4板が、 波長 4 5 0 nmで測定した レターデーション値 (R e (4 5 0) ) が 1 00乃至 1 2 5 nmであり、 かつ波 長 5 9 0 nmで測定したレターデーシヨン値 (R e (5 9 0) ) が 1 2 0乃至 1 6 0 nmであり、 R e (5 9 0) — R e (4 5 0) ≥ 2 n mの関係を満足する一 枚のポリマーフィルムからなり、 下記式 (I ) および (Π) で定義される DR 0 および DR2 0力 波長 4 5 0 nmと波長 7 5 0 nmとにおいて、 | DR 2 0 ( λ) 一 DRO (1) I≤ 0. 0 2の関係を満足することを特徴とするタツチパネ ル: 1 5. Two transparent conductive substrates provided with a transparent conductive film on at least one side are arranged so that the transparent conductive films face each other, and at least one of the transparent conductive substrates is an L / 4 plate. Or a touch panel on which at least one transparent conductive substrate is laminated with an L / 4 plate, wherein the LZ4 plate has a retardation value measured at a wavelength of 450 nm (R e (450 )) Is from 100 to 125 nm, and the retardation value (R e (590)) measured at a wavelength of 590 nm is from 120 to 160 nm; (5 90) — Re (4 5 0) ≥ 2 nm, consisting of a single polymer film, and the DR 0 and DR 2 0 wavelengths 4 defined by the following formulas (I) and (Π) A touch panel characterized by satisfying a relationship of | DR 20 (λ) -DRO (1) I≤0.02 at 50 nm and a wavelength of 750 nm:
( I ) DR 0 (え) =R e (え) /R e (5 5 0)  (I) DR 0 (E) = R e (E) / R e (5 5 0)
(II) DR 2 0 (λ) =R e 2 0 (1) /R e 20 (5 5 0)  (II) DR 2 0 (λ) = R e 2 0 (1) / R e 20 (5 5 0)
[式中、 λは、 測定波長であり ; R e (λ) は、 フィルム表面の法線方向で測定 したレターデーシヨン値であり ;そして、 R e 20 (λ) は、 フィルム表面の法 線方向から 2 0° の角度で測定したレターデーシヨン値である] 。  Where λ is the measured wavelength; Re (λ) is the retardation value measured in the direction normal to the film surface; and Re 20 (λ) is the normal to the film surface. It is the retardation value measured at an angle of 20 ° from the direction.]
1 6. ポリマーフィルム側にさらに偏光膜が積層されており、 ポリマーフィル ムの面内の遅相軸と偏光膜の偏光軸との角度が実質的に 4 5° になるように配置 されている請求の範囲第 1 5項に記載のタッチパネル。 1 6. A polarizing film is further laminated on the polymer film side, and arranged so that the angle between the slow axis in the plane of the polymer film and the polarizing axis of the polarizing film is substantially 45 °. The touch panel according to claim 15.
1 7. ポリマーフィルムの少なくとも一方の面に、 表面抵抗率が 1 04 Ω/Π 以下の透明導電膜が設けられている請求の範囲第 1 5項に記載のタツチパネル。 1 7. at least one surface of the polymer film, Tatsuchipaneru according to the first 5 wherein the claims surface resistivity 1 0 4 Ω / Π following transparent conductive film is provided.
1 8. 偏光膜、 え /4板、 タツチパネルおよび反射型液晶セルを備えた反射型 液晶表示装置であって、 λ/4板が、 波長 4 50 nmで測定したレターデーショ ン値 (R e (4 5 0) ) が 1 00乃至 1 2 5 nmであり、 かつ波長 5 9 0 nmで 測定したレターデーシヨン値 (R e (5 9 0) ) が 1 20乃至 1 6 0 nmであり 、 R e (5 9 0) -R e (4 5 0) ≥ 2 n mの関係を満足する一枚のポリマーフ イルムからなり、 下記式 (I ) および (II) で定義される DR 0および DR 2 0 力 波長 4 5 0 nmと波長 7 5 0 nmとにおいて、 | DR 2 0 (λ) -DR O ( λ) I≤ 0. 0 2の関係を満足することを特徴とする反射型液晶表示装置。 1 8. A reflective liquid crystal display device equipped with a polarizing film, an e / 4 plate, a touch panel, and a reflective liquid crystal cell, wherein the λ / 4 plate has a retardation value (R e (4 50)) is from 100 to 125 nm, and the retardation value (Re (590)) measured at a wavelength of 590 nm is from 120 to 160 nm. , Re (590) -Re (450) ≥ 2 nm, consisting of one polymer film, and DR0 and DR2 defined by the following formulas (I) and (II). 0 Reflection type liquid crystal display device characterized by satisfying the relationship of | DR 20 (λ) -DR O (λ) I≤0.02 at a wavelength of 450 nm and a wavelength of 75 nm. .
( I ) DR 0 {1) =R e (λ) /R e (5 5 0)  (I) DR 0 (1) = R e (λ) / R e (5 5 0)
(II) DR 2 0 (λ) =R e 2 0 (λ) /R e 2 0 (5 5 0)  (II) DR 2 0 (λ) = R e 2 0 (λ) / R e 2 0 (5 5 0)
[式中、 λは、 測定波長であり ; R e (λ) は、 フィルム表面の法線方向で測定 したレターデーシヨン値であり ;そして、 R e 2 0 (λ) は、 フィルム表面の法 線方向から 2 0° の角度で測定したレターデーシヨン値である] 。  Where λ is the measured wavelength; R e (λ) is the retardation value measured in the normal direction of the film surface; and R e 20 (λ) is the method of the film surface. It is the retardation value measured at an angle of 20 ° from the line direction.]
1 9. 偏光膜、 λΖ4板、 タツチパネル、 そして反射型液晶セルの順序で積層 されている請求の範囲第 1 8項記載の反射型液晶表示装置。 19. The reflective liquid crystal display device according to claim 18, wherein a polarizing film, a λΖ4 plate, a touch panel, and a reflective liquid crystal cell are stacked in this order.
2 0. タツチパネルと反射型液晶セルとがー枚の基板を共有しており、 共有す る基板の両面に透明電極層が設けられている請求の範囲第 1 8項に記載の反射型 20. The reflective liquid crystal display device according to claim 18, wherein the touch panel and the reflective liquid crystal cell share one substrate, and transparent electrode layers are provided on both surfaces of the shared substrate.
2 1. え/ 4板、 タツチパネルおよぴゲストホスト型液晶セルを備えたゲスト ホスト型液晶表示装置であって、 ぇ/4板が、 波長 4 5 0 nmで測定したレター デーション値 (R e (4 5 0) ) 力 乃至 1 2 5 n mであり、 かつ波長 5 9 0 nmで測定したレターデーシヨン値 (R e (5 9 0) ) が 1 2 0乃至 1 6 0 n mであり、 R e (5 9 0) 一 R e (4 5 0) ≥ 2 n mの関係を満足する一枚のポ リマーフィルムからなり、 下記式 (I ) および (II) で定義される DR 0および DR 2 0力 波長 4 5 0 nmと波長 7 5 0 nmとにおいて、 | DR 2 0 (λ) - DR O (λ) I≤ 0. 0 2の関係を満足することを特徴とするゲストホスト型液 2 1. A guest-host type liquid crystal display device including an // 4 plate, a touch panel and a guest host type liquid crystal cell, wherein the ぇ / 4 plate has a retardation value (R e) measured at a wavelength of 450 nm. (4 5 0)) force to 1 25 nm, and a retardation value (R e (5 0 0)) measured at a wavelength of 5900 nm is 1250 to 1650 nm, and R e (590) -R e (450) ≥ 2 nm, consisting of one polymer film, and DR0 and DR20 defined by the following formulas (I) and (II). A guest-host type liquid characterized by satisfying a relationship of | DR 20 (λ)-DR O (λ) I ≤ 0.02 at a wavelength of 450 nm and a wavelength of 700 nm.
( I ) DR 0 (λ) =R e (λ) /R e (5 5 0) (I) DR 0 (λ) = R e (λ) / R e (5 5 0)
(II) DR 2 0 (λ) =R e 2 0 (λ) /R e 2 0 (5 5 0)  (II) DR 2 0 (λ) = R e 2 0 (λ) / R e 2 0 (5 5 0)
[式中、 λは、 測定波長であり ; R e (λ) は、 フィルム表面の法線方向で測定 したレターデーシヨン値であり ;そして、 Re 20 (1) は、 フィルム表面の法 線方向から 20° の角度で測定したレターデーシヨン値である] 。 Where λ is the measurement wavelength; R e (λ) is measured in the direction normal to the film surface And Re 20 (1) is the retardation value measured at an angle of 20 ° from the normal to the film surface.]
22. λ/ 板、 タッチパネル、 そしてゲストホスト型液晶セルの順序で積層 されている請求の範囲第 2 1項に記載のゲストホスト型液晶表示装置。 22. The guest-host type liquid crystal display device according to claim 21, wherein the λ / plate, the touch panel, and the guest-host type liquid crystal cell are stacked in this order.
23. タツチパネルとゲストホスト型液晶セルとがー枚の基板を共有しており 、 共有する基板の両面に透明電極層が設けられている請求の範囲第 21項に記載 のゲス トホスト型液晶表示装置。 23. The guest-host type liquid crystal display device according to claim 21, wherein the touch panel and the guest-host type liquid crystal cell share one substrate, and transparent electrode layers are provided on both sides of the shared substrate. .
PCT/JP2001/005935 2000-07-07 2001-07-09 Phase difference plate constituted of one sheet of polymer film WO2002004997A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020037000100A KR100810484B1 (en) 2000-07-07 2001-07-09 Phase difference plate constituted of one sheet of polymer film
AU2001269485A AU2001269485A1 (en) 2000-07-07 2001-07-09 Phase difference plate constituted of one sheet of polymer film

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2000-206695 2000-07-07
JP2000206695A JP2002022946A (en) 2000-07-07 2000-07-07 Retardation plate and circularly polarizing plate
JP2000-219510 2000-07-19
JP2000-218383 2000-07-19
JP2000218383 2000-07-19
JP2000219510 2000-07-19
JP2001071846A JP2002099388A (en) 2000-07-19 2001-03-14 Touch panel, reflection type liquid crystal display device and guest host type liquid crystal display device
JP2001-71846 2001-03-14

Publications (1)

Publication Number Publication Date
WO2002004997A1 true WO2002004997A1 (en) 2002-01-17

Family

ID=27481430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005935 WO2002004997A1 (en) 2000-07-07 2001-07-09 Phase difference plate constituted of one sheet of polymer film

Country Status (4)

Country Link
KR (1) KR100810484B1 (en)
AU (1) AU2001269485A1 (en)
TW (1) TW565730B (en)
WO (1) WO2002004997A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7757781B2 (en) 2007-10-12 2010-07-20 Halliburton Energy Services, Inc. Downhole motor assembly and method for torque regulation
TWI554931B (en) * 2014-03-18 2016-10-21 Japan Display Inc A display device with a sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100704412B1 (en) * 2004-10-21 2007-04-05 옵티맥스 테크놀러지 코포레이션 Optical compensation film, and polarizing plate and liquid crystal display using the same
JP4055019B2 (en) 2005-05-26 2008-03-05 グンゼ株式会社 Transparent sheet and transparent touch switch

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160204A (en) * 1988-12-14 1990-06-20 Fuji Photo Film Co Ltd Phase difference film and production thereof
JPH06167612A (en) * 1992-11-30 1994-06-14 Fuji Photo Film Co Ltd Double refraction film and liquid crystal display device using this film
JPH10293301A (en) * 1997-04-18 1998-11-04 Sony Corp Reflection type guest host liquid crystal display
JP2000056301A (en) * 1998-08-04 2000-02-25 Kanegafuchi Chem Ind Co Ltd Optical device
JP2000112663A (en) * 1997-11-27 2000-04-21 Kanegafuchi Chem Ind Co Ltd Transparent touch panel and liquid crystal cell with transparent touch panel
JP2000111914A (en) * 1998-09-30 2000-04-21 Fuji Photo Film Co Ltd Retardation raising agent for low fatty acid cellulose ester film, optical compensation sheet and liquid crystal display device
WO2000026705A1 (en) * 1998-10-30 2000-05-11 Teijin Limited Phase difference film and optical device using it
JP2000137116A (en) * 1998-10-30 2000-05-16 Teijin Ltd Phase difference plate and liquid crystal display device using the same
JP2000154261A (en) * 1997-10-20 2000-06-06 Fuji Photo Film Co Ltd Cellulose acetate film, production thereof, optical compensation sheet, and liquid crystal display
JP2001091743A (en) * 1999-09-22 2001-04-06 Fuji Photo Film Co Ltd Phase difference plate and circularly polarizing plate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160204A (en) * 1988-12-14 1990-06-20 Fuji Photo Film Co Ltd Phase difference film and production thereof
JPH06167612A (en) * 1992-11-30 1994-06-14 Fuji Photo Film Co Ltd Double refraction film and liquid crystal display device using this film
JPH10293301A (en) * 1997-04-18 1998-11-04 Sony Corp Reflection type guest host liquid crystal display
JP2000154261A (en) * 1997-10-20 2000-06-06 Fuji Photo Film Co Ltd Cellulose acetate film, production thereof, optical compensation sheet, and liquid crystal display
JP2000112663A (en) * 1997-11-27 2000-04-21 Kanegafuchi Chem Ind Co Ltd Transparent touch panel and liquid crystal cell with transparent touch panel
JP2000056301A (en) * 1998-08-04 2000-02-25 Kanegafuchi Chem Ind Co Ltd Optical device
JP2000111914A (en) * 1998-09-30 2000-04-21 Fuji Photo Film Co Ltd Retardation raising agent for low fatty acid cellulose ester film, optical compensation sheet and liquid crystal display device
WO2000026705A1 (en) * 1998-10-30 2000-05-11 Teijin Limited Phase difference film and optical device using it
JP2000137116A (en) * 1998-10-30 2000-05-16 Teijin Ltd Phase difference plate and liquid crystal display device using the same
JP2001091743A (en) * 1999-09-22 2001-04-06 Fuji Photo Film Co Ltd Phase difference plate and circularly polarizing plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7757781B2 (en) 2007-10-12 2010-07-20 Halliburton Energy Services, Inc. Downhole motor assembly and method for torque regulation
TWI554931B (en) * 2014-03-18 2016-10-21 Japan Display Inc A display device with a sensor
US9791972B2 (en) 2014-03-18 2017-10-17 Japan Display Inc. Sensor-equipped display device

Also Published As

Publication number Publication date
KR20030014421A (en) 2003-02-17
AU2001269485A1 (en) 2002-01-21
KR100810484B1 (en) 2008-03-07
TW565730B (en) 2003-12-11

Similar Documents

Publication Publication Date Title
EP1369713B1 (en) Phase difference plate comprising polymer film containing compound having rod-shaped molecular structure
JP2002048913A (en) Retardation film, circularly polarizing plate and reflective liquid crystal display device
WO2016052360A1 (en) Circularly polarizing plate and display device
WO2000055657A1 (en) Elliptic polarizer formed of transparent protective layer, polarizer layer, transparent support and optical anisotropic layer of liquid-crystal molecules
JP2002099388A (en) Touch panel, reflection type liquid crystal display device and guest host type liquid crystal display device
JP4460792B2 (en) Optical compensation sheet for VA mode liquid crystal display device and VA mode liquid crystal display device
JP2002040243A (en) Circularly polarizing plate, touch panel and reflective liquid crystal display device
WO2002035263A1 (en) Polarizing plate comprising polymer film and polarizing membrane
JP2002082226A (en) Optical compensation sheet, polarizing plate and liquid crystal display device
JP2002071949A (en) Optical compensation sheet, polarizing plate and liquid crystal display device using the same
JP2001100039A (en) Cellulose ester film, optical compensation sheet and elliptically polarizing plate
WO2002004997A1 (en) Phase difference plate constituted of one sheet of polymer film
JP4199496B2 (en) Image display device with polarizing plate
JP2002127244A (en) Thermoplastic film, phase difference plate, circular polarization plate and liquid crystal display device
JP2002131540A (en) Thermoplastic film, phase contrast plate, circular polarizing plate and liquid crystal display
JP2002022959A (en) Retardation plate and circularly polarizing plate
JP4719402B2 (en) Image display device
JP2002062431A (en) Optical compensation sheet, polarizing plate and liquid crystal display device using the same
JP2002202411A (en) Retardation plate, polarizing plate and liquid crystal display element using the same
JP2002302561A (en) Method for producing optically compensating film and polarizing plate
JP2003058320A (en) Touch panel and reflective liquid crystal display device
JP2003262879A (en) Liquid crystal display device
JP2002131542A (en) Phase difference plate, circularly polarizing plate and method for manufacturing phase difference plate
JP4714389B2 (en) Method for producing optical compensation film
JP2002267846A (en) Cellulose ester film, phase difference plate, optical compensation sheet, polarizing plate and liquid crystal display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020037000100

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037000100

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase