WO2002004371A1 - Glass composition, and substrate for information recording medium, magnetic disk, information recording/reproducing device and magnetic disk device using the same - Google Patents

Glass composition, and substrate for information recording medium, magnetic disk, information recording/reproducing device and magnetic disk device using the same Download PDF

Info

Publication number
WO2002004371A1
WO2002004371A1 PCT/JP2000/004614 JP0004614W WO0204371A1 WO 2002004371 A1 WO2002004371 A1 WO 2002004371A1 JP 0004614 W JP0004614 W JP 0004614W WO 0204371 A1 WO0204371 A1 WO 0204371A1
Authority
WO
WIPO (PCT)
Prior art keywords
terms
magnetic disk
glass
information recording
glass substrate
Prior art date
Application number
PCT/JP2000/004614
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Namekawa
Yukio Saito
Takashi Naito
Tetsuo Nakazawa
Hiroki Yamamoto
Tatsumi Hirano
Yuzo Kozono
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2000/004614 priority Critical patent/WO2002004371A1/en
Publication of WO2002004371A1 publication Critical patent/WO2002004371A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates

Definitions

  • the present invention relates to a novel glass composition, a substrate for an information recording medium, a magnetic disk, an information recording / reproducing device, and a magnetic disk device using the same.
  • Hei 7-300340 a crystallized glass substrate is used, which precipitates crystals by heat treatment to achieve high strength.
  • a high Young's modulus glass substrate described in Japanese Patent Application Laid-Open No. 11-116627, which is considered to be able to cope with high-speed rotation of a disk, has been proposed.
  • Japanese Patent Application Laid-Open Nos. Hei 9-17154 and Hei 10-83531 describe a gas composition having a specific composition. Vinegar has been disclosed.
  • the rotational speed of the magnetic disk has been increased from the current 400 rpm to the future for a glass substrate with an outer diameter of 2.5 inches and a thickness of 0.635 mm. Requires more than 600 rpm or more. As the rotation speed of the glass substrate is increased, the glass substrate is likely to warp or bend, which causes deterioration of the magnetic characteristics of the magnetic disk drive. Therefore, a glass substrate material with a high Young's modulus is required to reduce the amount of warpage and deflection of the glass substrate.
  • the Young's modulus of the glass substrate must be 90 GPa or more in order to minimize the amount of deflection at a high-speed rotation of 600 rpm or more.
  • the Young's modulus of the above-mentioned chemically strengthened glass is not enough at 70 to 85 GPa, and it is difficult to cope with a high-speed rotation of a magnetic disk exceeding 600 rpm.
  • crystallized glass satisfies 85 to 100 OGPa and Young's modulus to some extent, but the cracking rate under a 500 g load by a Pickers hardness meter is as high as 100% and the toughness is high. Due to its small size, there is a problem in impact resistance to a magnetic head.
  • Japanese Patent Application Laid-Open No. 9-71554 discloses a highly rigid substrate.
  • Japanese Patent Application Laid-Open No. 10-83531 and Japanese Patent Application Laid-Open No. 11-116267 have proposed a glass having a high Young's modulus which is considered to be able to cope with high recording density, that is, high-speed rotation for large capacity recording.
  • This substrate has a Young's modulus of 90 to: L 35 GPa, which is considerably higher than that of a conventional glass substrate, and seems to be satisfactory for high-speed rotation of a magnetic disk.
  • alkaline earth oxides of CaO and MgO are contained in a considerably large amount.
  • An object of the present invention is to provide a glass composition which can sufficiently cope with a high-speed rotation of a magnetic disk and which has excellent impact resistance to a magnetic head, a substrate for an information recording medium using the glass composition, a magnetic disk, An object of the present invention is to provide a recording / reproducing device and a magnetic disk device.
  • the present invention is, in molar ratio, from Sani ⁇ containing 0% 8 ⁇ L in terms of S i 0 2 in terms of 40-80%, 10-3 0% and Na 2 O in terms of becomes possible, 40% to 80% by translated into S i0 2, 10 to 30 percent in terms of Al 2 ⁇ 3, in terms of Na 2 ⁇ to in terms 8-20% and Y 2 0 3 2 it consists Sani ⁇ containing 30%, to contain 2-10% in terms of L i 2 0 in these compositions, further, 4 from 0 to 80% in terms of Si0 2, a 1 2 0 3 in terms of 5-30%, comprises 1-20% in terms of 8-20% ⁇ beauty Li 2 0 in terms of Na 2 0, Sn0 2, Z r 0 25 Ti0 2, ZnO there CaO, MgO, the glass composition characterized by comprising an oxide containing 20% or less in one or more of the total amount in terms of each of ⁇ 10 and 2 0 5.
  • the present invention is (M is the ⁇ group element) M 2 0 3 containing an oxide of one or more in terms of one to 30% in these compositions mentioned above, 20% in terms of Cs 2 ⁇ Below, K 2 2 In terms converted to 10% or less and B 2 03, characterized in that it comprises one or more 20% or less than 20% in a total metric.
  • the magnetic disk of the present invention is a magnetic disk comprising at least a glass substrate and an information recording thin film formed directly or via another layer on the surface of the substrate, wherein the glass substrate has a Young's modulus of 90 to 130 GP. a, the thermal expansion coefficient of 60 ⁇ ; 100x10- 7 / ° C, 500 g Kuradzu click incidence from indentation edge portion during Bidzukasu hardness measurement by load is equal to or less than 50%.
  • the water resistance of the glass measured by JIS-3502 on the glass substrate is 0 to 0.2 mg in terms of alkali elution amount.
  • the above-mentioned glass composition in a specific magnetic disk device or information recording / reproducing apparatus, as a substrate for an information recording medium having an information recording thin film, the above-mentioned glass composition or S in the molar ratio is used.
  • M 2 0 3 (M is ⁇ group element) is 0 30%
  • Ln 2 O 3 Ln is a rare earth element
  • M 2 O 3 (M is 111 eight group elements) is ⁇ 2 0 3 is 0-30%, and 2 0 3 preferably has a 0-30%, La 2 O 3 (Ln is a rare earth element ) Is preferably composed of at least one selected from rare earth oxides of Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. Furthermore, L i 2 ⁇ 0 to 20 mol%, K 2 0 is 0 ⁇ : L 0%, ⁇ 2 0 3 is good to contain 0-20%. Further, Sn0 2, Zr0 2, Ti0 2, ZnO, CaO, MgO, that one or more of NiO and V 2 0 5 is contained 0-20% preferred.
  • the glass substrate has an average particle size of:! ⁇ 3 onm of M 2 0 3 (M is 111 eight group elements) Oyobi 1 ⁇ 2 0 3 (Ln is a rare earth element) it is desirable that the fine particles made of is precipitated.
  • the recording surface roughness Ra of the glass is preferably not more than 2. Onm.
  • the present invention relates to a method of manufacturing a device comprising the steps of: It is preferable that the layer mainly composed of Connoxide has an average particle diameter of 5 to 12 nm and a dispersion (standard deviation / average particle diameter) of 25% or less. Preferably, NaCl-type precipitated crystals are present in this layer.
  • the present invention provides a magnetic disk comprising at least a glass substrate and an information recording thin film formed on the surface of the substrate by directly or via another layer mainly composed of conox oxide, and records or reproduces information.
  • the Young's modulus of the glass substrate is preferably 90 to 13 OGPa, and when measuring the Pickers hardness under a load of 500 g for 15 seconds, The crack occurrence rate from the indentation edge portion is 50% or less, and preferably, the coefficient of thermal expansion is 60 to 100 ⁇ 10 17 /.
  • C It is desirable that the water resistance of the glass measured by JIS-R3502 is from 0 to 0.2 mg in terms of alkali elution amount.
  • a magnetic disk having at least a glass substrate and a magnetic thin film formed on the surface opposite to the glass substrate, directly or via another layer, a layer mainly composed of cobalt oxide, and recording or reproducing information.
  • the glass substrate may be composed of the above-mentioned glass composition or a molar ratio of SiO 2 40-80% and Al 2 O 3 5-30.
  • % Na 2 from 08 to 2 0% Cs 2 0 is 0-20%, ⁇ 2 0 3 0 ⁇ is 111 eight group elements) is 0 to 30% Ln 2 0 3 (Ln is a rare earth element) is 0 Those having 10% are preferred.
  • the present invention resides in a glass substrate for a magnetic disk or an optical disk, wherein the Young's modulus is preferably in the range of 90 to 13 OGPa. If the Young's modulus is less than 9 OGPa, the magnetic disk is 2.5 inches in size and the thickness is 0.635 mm. When the disk is rotated at 600 Orpm, the glass bends and the recording / reproduction as a magnetic recording device becomes insufficient. When the magnetic disk is used, when the magnetic disk using the glass substrate rotates at a high speed exceeding 6000 rpm, minute cracks and the like tend to occur due to a decrease in toughness accompanying high rigidity of the glass substrate.
  • the reason the heat Rise expansion coefficient of the glass substrate in the range of 60 ⁇ 100 X 10- 7 / ° C is the three 2 from the magnetic disk This is to match the coefficient of thermal expansion of the stainless steel supporter that supports the magnetic disk in the magnetic disk drive made of magnetic disks. Furthermore, the reason why the crack occurrence rate from the wedge part of the indentation when measuring Vickers hardness under a load of 500 g was set to 50% or less is that when the crack occurrence rate exceeds 50%, the impact resistance of the magnetic head to the magnetic disk This is because it is difficult for the magnetic disk to be sufficiently satisfied, and furthermore, when the magnetic disk is rotated at 6000 rpm on a 2.5-inch size glass substrate, cracks and cracks tend to occur on the glass substrate.
  • the reason why the water resistance of the glass measured by JIS-R3502 on the above glass substrate is 0.2 mg or less for the glass elution amount is that when the glass elution amount exceeds 0.2 mg, the alkali component is reduced to the surface of the substrate. This has an adverse effect on the information recording thin film (magnetic film) formed directly on the substrate surface and reduces the adhesion with the magnetic film.
  • S i0 2 is a glass forming Sani ⁇ a component that contribute to the mechanical strength and I ⁇ stability, assistant engineer glass manufacturing to glass characteristic temperature increases when greater than 80% as glass components In addition, if it is less than 40%, the glass will be devitrified. For this reason, the content of glass S i0 2 is in the range of 40% to 80%. In particular, 45 to 70% is preferable.
  • a 1 2 0 3 is a component that contributes to mechanical properties and chemical stability such as high hardness and high rigidity, glass characteristic temperature becomes too high it becomes difficult to glass production exceeds 30% as glass components If it is less than 5%, the mechanical strength of the glass decreases. Therefore, the content of glass A 1 2 0 3 is in the range of 5-30%. In a specific glass composition, the content is 10 to 30%.
  • Na 20 is a component that can lower the characteristic temperature of glass. If the glass component exceeds 20%, the chemical stability of the glass deteriorates and the mechanical properties also decrease, and less than 8% In this case, the mechanical strength of the glass decreases. Therefore, the content of the glass N a 2 0 is in the range of 8-20%. Specific glass composition smell 8% to 10%.
  • Cs 2 0 is a component that can lower the characteristic temperature of the glass, the mechanical properties deteriorate with the chemical stability of the glass is deteriorated when it exceeds 20 mol%, the glass component, C s 2 0
  • the glass content is 20% or less, preferably 0.5 to 5%.
  • Y 2 0 3 and L a 2 0 3 is a highly rigid components of the glass, the mechanical properties deteriorate with exceeding 3 0% as a glass component chemical stability of the glass is deteriorated
  • Y 2 0 3 and La 2 0 content of the glass of 3 is preferably 30% or less.
  • the content is 2% or more, more preferably 5% or more, and preferably 20% or less.
  • L i 2 0 is a component that can lower the characteristic temperature of the glass, the mechanical properties deteriorate with the chemical stability of the glass is deteriorated when it exceeds 20 mol%, the glass component, L i 2
  • the glass content of 0 should be 20% or less. 2 to 10% or 1 to 20% for specific glass compositions
  • K 2 0 is a component that can lower the characteristic temperature of the glass, the mechanical properties deteriorate with the chemical stability of the glass is deteriorated when it exceeds 10% as a glass component, kappa 2 0 Glass
  • the content is preferably 10% or less, more preferably 0.5% or more.
  • the beta 2 0 3 is a component that can lower the characteristic temperature of the glass, the mechanical properties deteriorate with the chemical stability of the glass is deteriorated when it exceeds 20% as a glass component, a beta 2 0 3
  • the glass content is preferably at most 20%, more preferably at least 0.5%.
  • the S eta 0 2 contributes to the improvement of the glass solubility lowering the high temperature viscosity
  • Z r 0 2 contributes to the chemical stability of the glass
  • CaO and MgO are components that reduce high-temperature viscosity and improve the solubility of glass.
  • NiO is a component contributing to improving mechanical properties
  • V 2 0 5 is also to improve the solubility of the glass lowering the high temperature viscosity as well.
  • Sn0 2, Zr_ ⁇ 2, Ti_ ⁇ 2 ⁇ ZnO, CaO, Mg_ ⁇ , one or more of NiO and V 2 0 5 is preferably comprised more than 20%. Including N a 2 0 and L i 2 0 It is preferably 0.5 to 10%.
  • the glass of the present invention After mixing a predetermined amount of the glass raw material powder of the above-mentioned glass constituent acid oxide, the mixture was sufficiently stirred and mixed, and melted with stirring using a platinum stirring blade in the air for 10 minutes or more. Processing such as cutting, grinding, polishing, etc., is performed with a glass sprocket to obtain a disk-shaped glass substrate of a predetermined shape. In addition, the obtained plate-shaped glass plate was cut out into a disk shape, and from a semi-molten state, formed into a disk shape using a mold, and lapping and polishing were performed using cerium oxide or the like for precision processing of the surface. Is performed to reduce the surface roughness Ra to 2.0 nm or less.
  • the magnetic disk of the present invention comprises at least a glass substrate and an information recording thin film (magnetic film) formed directly or via another layer on the surface of the substrate.
  • Figure 1 shows a schematic diagram of the cross section. As shown in the figure, the magnetic disk of the present invention has a glass substrate 1, a seed film 2, an intermediate film 3, a magnetic film 4, a protective film 5, and a lubricating film 6 sequentially formed.
  • the seed film 2 is a C0-based metal film
  • the intermediate film 3 is a Cr—Ti-based alloy film
  • the magnetic film 4 is a Co—Cr—Pt-based alloy film.
  • the protective film 5 is a carbon film
  • the seed film 2 is an oxide film mainly composed of cobalt oxide as a film structure of the magnetic recording medium.
  • a magnetic recording medium to which an oxide film containing cobalt oxide as a main component is used as a seed film is an in-plane magnetic recording medium, and the Co alloy used for the magnetic film 4 has a hexagonal crystal structure. .
  • the C0 alloy film has uniaxial anisotropy in which the c-axis is the axis of easy magnetization, it is necessary to orient the c-axis in the plane of the magnetic film. Therefore, in order to orient the Co—Cr—Pt alloy of the magnetic film 4, the seed film 2 and the intermediate film 3 need to be oriented so as to be coaxial with the magnetic film 4.
  • the magnetic disk of the present invention it is preferable to use an oxide mainly composed of cobalt oxide, which is easily oriented, as the shield film 2 formed on the surface of the glass substrate 1 of the present invention.
  • the oxidizing film containing the oxidizing cobalt as a main component In order to sufficiently satisfy the magnetic properties of the conductive film, it is preferable that the average particle size is 5 to 12 nm and the dispersion (standard deviation Z average particle size) is 25% or less. It is preferred that C1-type precipitated crystals exist.
  • the Young's modulus is 90 to 130 GPa, and the crack occurrence rate from the indentation edge portion at the time of measuring the Pickers hardness under a 500 g load is 0 to 50%.
  • FIG. 1 is a schematic diagram of a cross section of a magnetic disk manufactured by the present invention
  • FIG. 2 is a schematic diagram of a magnetic disk device manufactured by the present invention.
  • Tables 1, 3 and 4 show the glass compositions of the present invention, and Table 2 shows the comparative examples (mol%).
  • 200 g of an oxide powder to be a constituent material of each glass shown in the table is blended at a predetermined amount of mol%, and is sufficiently mechanically mixed and put into a platinum crucible. After inserting the platinum crucible into the glass-making furnace, the mixture was heated and melted in air at 160 ° C for 1-2 hours while stirring, the platinum crucible was taken out, and the molten glass was sampled for each property evaluation. It is poured into a graphite 7 70 mm x 10 mm deep board for 20 mm wide x 20 mm deep x 60 mm long and 2.5 inch size substrates.
  • the glass is strained at a temperature higher than the glass transition temperature for about 1 hour, and gradually cooled to room temperature to obtain a glass block.
  • a sample for each property evaluation was processed into a shape required for each property evaluation using a slicing machine or the like.
  • the Young's modulus was measured at room temperature by the resonance method using a 55 x 2 x 10 glass sample.
  • the cracking rate was measured using a 15 x 4 x 4 glass sample, and after the glass sample surface was mirror-finished, using a micro Vickers hardness tester, immediately after applying a load of 500 g for 15 seconds. After a lapse of 20 minutes, the occurrence of cracks from the edge of the pits impression was observed.
  • the cracking rate is one of the evaluation methods to evaluate the impact resistance of a magnetic disk consisting of a glass substrate and a magnetic film when a magnetic head and a magnetic disk device fall.
  • the indentation of Beakers was assumed to be 20 RBIs. Each of the indentations had four wedges, and if cracks were observed from any one of them, the indentation was regarded as cracking.
  • a glass sample with a thermal expansion coefficient of 15x4x4 was used, and the measurement temperature range was 100 to 400 ° C.
  • the amount of alkali elution was measured by a method based on JIS-R3502.
  • the alkali elution test method using JIS-R3502 will be described.
  • the cracking rate from the edge of the indentation at a load of 500 g measured by a Micro Vickers hardness tester was 50% or less, which was significantly reduced as compared with the No. B1 to B5 glasses of the comparative example. This seems to be sufficient for the impact resistance of the magnetic head.
  • the coefficient of thermal expansion was in the range of 62 to 70 ⁇ 10 17 / ° C as in the comparative example, and it was confirmed that the thermal expansion coefficient was sufficiently matched with the stainless steel spacer.
  • the water resistance in JIS-R 3502 was 0.2 mg or less, indicating that the diffusion of alkali metal elements could be prevented.
  • Sn0 2 + Z 1> 0 2 +1 1;? [0 2 + 2110 + ⁇ & 0 + ⁇ 0 + ⁇ 2 0 5 + ⁇ content of 10 is good is 20 molar% or less.
  • No. A20 glass as well, excellent effects could be obtained.
  • a glass containing at least one of oxides of Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu of rare earth elements other than Gd Also obtained an excellent effect. Furthermore, it was found that the same effect was obtained in a glass containing both a Group IIIA element oxide and a rare earth element oxide in the periodic table.
  • G d 2 0 3 wherein the N o of Y 2 03 and a rare earth element oxide of III A group elements oxides of the Periodic Table.
  • Table 4 the glass of No. A22 to No.
  • FIG. 1 is a sectional view of a magnetic disk according to the present invention.
  • a glass substrate 1 On the magnetic disk, a glass substrate 1, a shield film 2, an intermediate film 3, a magnetic film 4, a protective film 5, and a lubricating film 6 are sequentially formed.
  • the surface of the glass substrate 1 of No. A6, No. Al 9s No. A22 described above was prepared by using a sputtering method, and the main component thereof was CoO, which is cobalt oxide.
  • the seed film 2 made of an object film is 15 nm
  • the intermediate film 3 made of a Cr—Ti alloy is 20 nm
  • the magnetic film 4 made of a Co—Cr—Pt alloy is 20 nm
  • the force-bonding protective film 5 is 10 nm was sequentially formed.
  • the film was formed at a glass substrate temperature of 250 to 300 ° C.
  • the sputter ring rate of each membrane was set in the range of 1 to 5 nm / 3 ⁇ 4>.
  • a perfluoropolyether-based lubricant 6 was applied by diving to produce magnetic disks No. AO 61, No. Al 91 and No. A221 in Table 5.
  • No. Bl and No. B2 glasses shown in Table 2 were processed into 2.5-inch magnetic disk substrates. After that, as described above, Magnetic disks No. BO 11 and No. BO 21 were manufactured. Here, a Cr-based metal film was used for the seed film 2 of No. BOil and No. BO21. These magnetic disks were mounted on a 2.5-inch magnetic disk drive. The number of magnetic disks produced was 100 each.
  • FIG. 2 is a schematic diagram of the magnetic disk drive manufactured in this embodiment.
  • the magnetic disk 7 is supported by a rotating shaft 8, and at the same time, the magnetic disk 7 is rotated by rotating a spindle motor 9. 12 is an output terminal of the electric system.
  • the magnetic head 10 is supported by a head rotation shaft 11, and the position of the disk in the radial direction is determined by the rotation of the head rotation shaft 11.
  • three magnetic disks are mounted via the spacer 13, and a total of four magnetic heads are arranged on both surfaces of each disk.
  • a spacer made of stainless steel, which is a metal, has been used.
  • the flying height of the magnetic head was controlled at 2 Onm by adjusting the shape of the magnetic head slider and the spring strength of the arm supporting the magnetic head.
  • the rotation speed of the magnetic disk was 6000 revolutions per minute.
  • No. AO 6 Is No. A191, No. A221, No. B011, No. B021
  • the system was operated for 100 hours, and the presence or absence of errors due to heat generation at the time of a magnetic head collision and deterioration of magnetic properties due to non-orientation of the magnetic film was examined. Furthermore, the magnetic disk was removed from the magnetic disk device, and the surface of the magnetic disk was observed in detail to determine whether there was damage such as film peeling and, if there was any damage, the state of the damage. As a result, all of the magnetic disks No. AO 61 No. A191 and No. A221 using the glass substrate of the present invention have few errors and damages such as scratches on the surface of the magnetic disk, and the magnetic characteristics such as recording / reproducing are low.
  • the magnetic disk Nos. B011 and B021 of the comparative example showed many errors in the high-speed rotation test, and the magnetic characteristic yield of the magnetic disk No. B011 and No. B021 of the comparative example such as recording / reproducing was 56%. It was below. Next, using each of the prepared 20 magnetic disks, a pair of magnetic disks was used.
  • the magnetic disk drive equipped with the magnetic disk using the glass substrate of the present invention can sufficiently increase the capacity of 6000 rotations per minute, thereby increasing the capacity.
  • a 2.5-inch size glass substrate, a magnetic disk, and a device therefor have been described using the embodiment, but the present invention is also applicable to 1-inch, 3-inch, 3.5-inch or other sizes. It is a technology that can be done.
  • This embodiment is an example of an optical disk using a glass composition and an apparatus therefor, as in the second embodiment.
  • the optical disc has a reflective film, a recording film, and a protective film sequentially provided on both sides of a glass substrate, and is further coated with a lubricant.
  • a glass substrate with a diameter of 120 mm and a thickness of 12 mm is used as the glass substrate.
  • a recording film (This C o-S i based oxide thin film, of 1 onm in Si_ ⁇ 2 thin film and lubricant 50nm the protective film
  • a housing of the information recording / reproducing apparatus on which the optical disk is mounted is provided with a spindle motor for rotating the optical disk and an actuator VCM coil for positioning the optical head.
  • the light head is embedded with a calcium titanate-based slider, and is attached to the tip of the actuator. I attached.
  • recording and reproduction on an optical disk are performed using an optical head that generates near-field light.
  • the near-field light is a laser beam having a wavelength of about 1Z10 that leaks out of the focal plane when a laser beam is irradiated onto the spherical surface of a hemispherical lens and the beam is focused.
  • a hemispherical lens was used as the light head, and a laser beam with a wavelength of 41 Onm was irradiated on the hemispherical lens to obtain near-field light with a diameter of 125 nm.
  • the flying distance of the optical head was set to 5 Onm from the surface of the optical disc, and the near-field light was applied to the optical disc to look at the recording film.
  • an optical head that rotates at high speed and generates near-field light is used for recording and reproduction on an optical disk, information can be recorded at a higher density and reproduction can be performed with higher accuracy.
  • a glass substrate characterized by having a Young's modulus of 90 to 90%; a crack occurrence rate from an indentation edge portion at the time of measuring a force of hardness under a load of 30 GPa and 50 Og of 0 to 50%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

A glass composition having a Yang's modulus of 90 to 130 Gpa and, in the measurement of Vickers hardness under a load of 500 g, shows the occurrence of a crack from the edge of a dent in a proportion of 50 % or less; a glass composition characterized as comprising an oxide containing, in a mole percentage, that of silicon in 40 to 80 % in terms of SiO2, that of aluminum in 5 to 30 % in terms of Al2O3, and that of sodium in 8 to 20 % in terms of Na2O; and a substrate for an information recording/reproducing medium, a magnetic disk, an information recording/reproducing device and a magnetic disk device using the glass composition. The glass composition can correspond satisfactorily to a high speed rotation of 6,000 rpm and has satisfactory resistance to an impact by a magnetic head.

Description

明 細 書 ガラス組成物、 それを用いた情報記録媒体用基板、 磁気ディスク、 情報記録 再生装置及び磁気デイスク装置 技術分野  Description Glass composition, substrate for information recording medium using the same, magnetic disk, information recording / reproducing device, and magnetic disk device
本発明は新規なガラス組成物、 それを用いた情報記録媒体用基板, 磁気ディス ク、 情報記録再生装置及び磁気ディスク装置に関する。  The present invention relates to a novel glass composition, a substrate for an information recording medium, a magnetic disk, an information recording / reproducing device, and a magnetic disk device using the same.
背景技術 Background art
従来, 磁気ディスク装置に搭載される磁気デイスクの *反としては表面に N i 一 Pをめつきした金属のアルミニウム基板が使用されていた。近年、 磁気ディス ク装置の大容量化とともに磁気デイスクの としてガラス基板が使用されるよ うになつてきた。 ガラス基板はアルミニゥム基板に比較して平滑性や平坦性に優 れ、 しかも硬いことから、 磁気ヘッドの低浮上化ゃ耐衝撃に関して有利である。 ノートプック型のパ一ソナルコンピュータに搭載されている小型の 2 . 5 "磁気デ イスク装置には全面的にガラス基板が適用されている。 このガラス基板としては 特開平 7— 2 2 3 8 4 5号、 特開平 9— 2 4 9 4 3 2号記載のようにガラス基板 表面をアル力リ金属イオン交換して高強度化を図った化学強化ガラス基板、 又は 特開平 7— 1 8 7 7 1 1号、 特開平 7— 3 0 0 3 4 0号記載のように熱処理によ り結晶を析出し高強度化を図った結晶化ガラス基板が使用されている。 さらに磁 気ディスク装置の高記録密度化すなわち大容量化に向けて、 ディスクの高速回転 に対応できると思われる特開平 1 1— 1 1 6 2 6 7号に記載してある高ヤング率 ガラス謝反が提案されている。 また、 その として特開平 9一 7 1 5 4号、 特 開平 1 0— 8 3 5 3 1号記載の特定の組成のガラスが開示されている。  In the past, a metal aluminum substrate with Ni-P on the surface was used as the counterpart of a magnetic disk mounted on a magnetic disk drive. In recent years, as the capacity of magnetic disk devices has increased, glass substrates have come to be used as magnetic disks. Glass substrates are superior to aluminum substrates in terms of smoothness and flatness, and are hard, which is advantageous in terms of lowering the flying height and impact resistance of the magnetic head. A glass substrate is entirely applied to a small 2.5 "magnetic disk device mounted on a notebook type personal computer. JP-A No. 9-244 9 4 32 Chemical strengthened glass substrate whose glass substrate surface is strengthened by metal ion exchange with Alkali metal as described in As described in No. 1 and Japanese Patent Application Laid-Open No. Hei 7-300340, a crystallized glass substrate is used, which precipitates crystals by heat treatment to achieve high strength. In order to increase the density, that is, to increase the capacity, a high Young's modulus glass substrate described in Japanese Patent Application Laid-Open No. 11-116627, which is considered to be able to cope with high-speed rotation of a disk, has been proposed. Japanese Patent Application Laid-Open Nos. Hei 9-17154 and Hei 10-83531 describe a gas composition having a specific composition. Vinegar has been disclosed.
近年、 ハードディスクドライブ装置は、 パソコンの高性能化に伴い、 磁気ディ スク装置の記録容量は増加の一途を迪り、 大容量化が要求されている。 また、 こ れらに伴い磁気ディスクの軽量化、 さらに、 磁気ディスクの回転数の高速化、 磁 気ヘッドの低浮上化が必要となる。 これらの要求を満足させるには、 磁気ディス クに使用されるガラス基板材料の高強度化が必要となる。特開平 7— 2 2 3 8 4 5号、 特開平 9— 2 4 9 4 3 2号に記載されるようなガラス謝反表面層をアル力 リ金属イオン交換させて高強度化した化学強化ガラス基板は温度が高くなるほど 表面のアルカリ金属イオンの移動が大きくなり、 2 0 0〜3 0 0 °Cの温度におけ るスパッタリング法による磁性膜形成が難しくなるため、 アル力リ金属イオンの 移動を抑制する必要がある。 また特開平 7— 1 8 7 7 1 1号、 特開平 7— 3 0 0 3 4 0号記載のように熱処理により結晶を析出させて高強度化を図った結晶化ガ ラス基板は多数の結晶粒子を含有することから磁気デイスク基板に必要なガラス 基板表面の平滑性が十分でなく、 また非晶質部と結晶粒子が混在しているためガ ラスの靭性が不十分となり、磁気へヅドとの耐衝撃性が不十分となる問題がある。 また、 磁気ディスクの大容量ィ匕に伴って磁気ディスクの回転数も外径が 2 . 5 ィンチで板厚が 0 . 6 3 5 mmのガラス基板においては現在の 4 0 0 0 r p mか ら将来は 6 0 0 0 r p mあるいは、 それ以上の回転数が要求されるようになる。 ガラス基板の高速回転化が進むことによりガラス基板の反りやたわみが生じやす くなり、 磁気ディスク装置の磁気特性が劣化する原因となる。 したがって、 ガラ ス基板の反りやたわみ量を低減させるにはヤング率の高いガラス基板材料が必要 となる。 In recent years, as the performance of personal computers has become higher, the recording capacity of magnetic disk drives has been increasing steadily, and large-capacity hard disk drives have been required. Also, this As a result, it is necessary to reduce the weight of the magnetic disk, increase the rotational speed of the magnetic disk, and lower the flying height of the magnetic head. In order to satisfy these requirements, it is necessary to increase the strength of glass substrate materials used for magnetic disks. Chemically strengthened glass in which the glass surface layer has been strengthened by metal ion exchange with the metal as described in JP-A-7-224384 and JP-A-9-244934. As the temperature of the substrate increases, the movement of alkali metal ions on the surface increases, making it difficult to form a magnetic film by sputtering at a temperature of 200 to 300 ° C. It needs to be suppressed. Further, as described in JP-A-7-18771 and JP-A-7-300340, a crystallized glass substrate in which a crystal is precipitated by heat treatment to increase the strength is a large number of crystals. Due to the inclusion of particles, the smoothness of the glass substrate surface required for the magnetic disk substrate is not sufficient, and the toughness of the glass becomes insufficient due to the mixture of amorphous parts and crystal particles, resulting in a magnetic head. There is a problem that the impact resistance becomes insufficient. In addition, with the large capacity of the magnetic disk, the rotational speed of the magnetic disk has been increased from the current 400 rpm to the future for a glass substrate with an outer diameter of 2.5 inches and a thickness of 0.635 mm. Requires more than 600 rpm or more. As the rotation speed of the glass substrate is increased, the glass substrate is likely to warp or bend, which causes deterioration of the magnetic characteristics of the magnetic disk drive. Therefore, a glass substrate material with a high Young's modulus is required to reduce the amount of warpage and deflection of the glass substrate.
そこで、 2 . 5インチサイズのガラス基板では 6 0 0 0 r p m以上の高速回転 に対してたわみ量を極力小さくするにはガラス基板のヤング率を 9 0 GP a以上 にする必要がある。 前記した化学強化ガラスのヤング率は 7 0〜8 5 G P aと十 分でなく、 磁気ディスクの 6 0 0 0 r p mを超える高速回転に対応するのが困難 である。 一方、 結晶化ガラスは 8 5 ~ 1 0 O G P aとヤング率はある程度満足す るが、 ピツカ一ス硬度計による 5 0 0 g荷重でのクラック発生率が 1 0 0 %と高 く、 靭性が小さいため磁気へッドに対する耐衝撃性について問題がある。  Therefore, in the case of a 2.5-inch glass substrate, the Young's modulus of the glass substrate must be 90 GPa or more in order to minimize the amount of deflection at a high-speed rotation of 600 rpm or more. The Young's modulus of the above-mentioned chemically strengthened glass is not enough at 70 to 85 GPa, and it is difficult to cope with a high-speed rotation of a magnetic disk exceeding 600 rpm. On the other hand, crystallized glass satisfies 85 to 100 OGPa and Young's modulus to some extent, but the cracking rate under a 500 g load by a Pickers hardness meter is as high as 100% and the toughness is high. Due to its small size, there is a problem in impact resistance to a magnetic head.
そこで、これらのガラス 反にかわり高剛性基板として特開平 9— 7 1 5 4号、 特開平 10— 83531号、 特開平 11— 116267号に記載してある高記録 密度化すなわち大容量ィ匕に向けた高速回転に対応できると思われる高ヤング率ガ ラス が提案された。 この基板はヤング率が 90〜: L 35 GPaと、 従来のガ ラス基板に比べてかなり高くなつており、 磁気デイスクの高速回転に対して十分 満足するものと思われる。 しかしながら、 これらの高ヤング率ガラス基板を構成 している酸化物の中で CaO, MgOのアルカリ土類酸化物が、 かなり多く含有 されている。一般的に、 MgOは A 1203とともに高ヤング率ィ匕成分として知ら れており、 微量添加においては特に問題がないが、 含有量が増加するとピツカ一 ス硬度計による 500 g荷重でのクラック発生率は 100%となり、 これらのガ ラス基板を用いた磁気ディスクに対する磁気ヘッドの耐衝撃性が低下し、 また、 磁気デイスクの高速回転に対して十分満足させるのが困難になるものと思われる。 本発明の目的は、 磁気ディスクの高速回転に十分に対応ができ、 さらに、 磁気 へヅドに対する耐衝撃性に優れたガラス組成物、 それを用いた情報記録媒体用基 板、 磁気ディスク、 情報記録再生装置及び磁気ディスク装置を提供することにあ る。 Therefore, instead of these glass substrates, Japanese Patent Application Laid-Open No. 9-71554 discloses a highly rigid substrate. Japanese Patent Application Laid-Open No. 10-83531 and Japanese Patent Application Laid-Open No. 11-116267 have proposed a glass having a high Young's modulus which is considered to be able to cope with high recording density, that is, high-speed rotation for large capacity recording. This substrate has a Young's modulus of 90 to: L 35 GPa, which is considerably higher than that of a conventional glass substrate, and seems to be satisfactory for high-speed rotation of a magnetic disk. However, among the oxides constituting these high Young's modulus glass substrates, alkaline earth oxides of CaO and MgO are contained in a considerably large amount. Generally, MgO is known as a high Young's Ritsui匕成min with A 1 2 0 3, but there is no particular problem in slight amount, at 500 g load by the content increases Pitsuka one scan hardness meter The crack occurrence rate becomes 100%, which reduces the impact resistance of the magnetic head to the magnetic disk using these glass substrates, and also makes it difficult to sufficiently satisfy the high-speed rotation of the magnetic disk. It is. An object of the present invention is to provide a glass composition which can sufficiently cope with a high-speed rotation of a magnetic disk and which has excellent impact resistance to a magnetic head, a substrate for an information recording medium using the glass composition, a magnetic disk, An object of the present invention is to provide a recording / reproducing device and a magnetic disk device.
発明の開示 Disclosure of the invention
本発明は、 モル比で、 S i 02に換算して 40~80%、 に換算して 10〜3 0%及びNa2Oに換算して8〜l 0%を含む酸ィ匕物からなること、 S i02に換 算して 40〜80%、 Al23に換算して 10〜30%、 Na2〇に換算して 8 〜20%及び Y203に換算して 2〜30%を含む酸ィ匕物からなること、 これらの 組成物に L i20に換算して 2〜10%を含むこと、 更に、 Si02に換算して 4 0〜80%、 A 1203に換算して 5~30%、 Na20に換算して 8〜20%及 び Li20に換算して 1〜20%を含み、 Sn02, Z r 025 Ti02, ZnO, CaO, MgO、 ^10及び 205の各々に換算して1種又は2種以上の合計量 で 20 %以下を含む酸化物からなることを特徴とするガラス組成物にある。 The present invention is, in molar ratio, from Sani匕物containing 0% 8~L in terms of S i 0 2 in terms of 40-80%, 10-3 0% and Na 2 O in terms of becomes possible, 40% to 80% by translated into S i0 2, 10 to 30 percent in terms of Al 23, in terms of Na 2 〇 to in terms 8-20% and Y 2 0 3 2 it consists Sani匕物containing 30%, to contain 2-10% in terms of L i 2 0 in these compositions, further, 4 from 0 to 80% in terms of Si0 2, a 1 2 0 3 in terms of 5-30%, comprises 1-20% in terms of 8-20%及beauty Li 2 0 in terms of Na 2 0, Sn0 2, Z r 0 25 Ti0 2, ZnO there CaO, MgO, the glass composition characterized by comprising an oxide containing 20% or less in one or more of the total amount in terms of each of ^ 10 and 2 0 5.
本発明は、上述のこれらの組成物に M203 (Mは ίΠΑ族元素)に換算して 1〜 30%の 1種以上の酸化物を含むこと、 Cs2〇に換算して 20%以下、 K2〇に 換算して 10 %以下及び B 203に換算して 20 %以下の 1種又は 2種以上を合 計量で 20%以下含むことを特徴とする。 The present invention is (M is the ίΠΑ group element) M 2 0 3 containing an oxide of one or more in terms of one to 30% in these compositions mentioned above, 20% in terms of Cs 2 〇 Below, K 2 2 In terms converted to 10% or less and B 2 03, characterized in that it comprises one or more 20% or less than 20% in a total metric.
本発明の磁気ディスクは少なくともガラス基板と、 この基板表面上に直接又は 他の層を介して形成された情報記録薄膜とからなる磁気ディスクであって、 前記 ガラス基板のヤング率が 90〜 130 GP a、熱膨張係数が 60〜; 100x10— 7/°C、 500 g荷重によるビヅカース硬度測定時の圧痕エッジ部からのクラヅ ク発生率が 50%以下であることを特徴とする。 The magnetic disk of the present invention is a magnetic disk comprising at least a glass substrate and an information recording thin film formed directly or via another layer on the surface of the substrate, wherein the glass substrate has a Young's modulus of 90 to 130 GP. a, the thermal expansion coefficient of 60~; 100x10- 7 / ° C, 500 g Kuradzu click incidence from indentation edge portion during Bidzukasu hardness measurement by load is equal to or less than 50%.
また、 前記ガラス基板において J I S- 3502で測定されるガラスの耐水 性が、 アルカリ溶出量で 0〜0. 2 mgであることが好ましい。  Further, it is preferable that the water resistance of the glass measured by JIS-3502 on the glass substrate is 0 to 0.2 mg in terms of alkali elution amount.
また、 前記ガラス基板として前述のガラス組成物からなるもののほか、 特定の 磁気ディスク装置又は情報記録再生装置においては、 情報記録薄膜を有する情報 記録媒体用基板として前述のガラス組成物又はモル比で S i 02が 40〜80%、 八1203が5 30%、 Na20が 8〜20%、 Cs20が 0〜20%、 M203(M は ΠΙΑ族元素)が 0〜30%、 Ln2O3 (Lnは希土類元素)は 0〜: L0%から構 成される特定の組み合わせが望ましい。 ここで、 M2O3(Mは 111八族元素)は¥2 03が 0〜30%、 &203が0〜30%であるものが好ましく、 La2O3 (Ln は希土類元素) は Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 D y、 Ho、 E r、 T m、 Yb、 Luの希土類酸化物の中から選ばれた少なくとも一種以上からなるこ とが好ましい。 さらに、 L i2〇が 0〜20モル%、 K20が 0〜: L 0%、 Β203 が 0〜20%含まれるのがよい。 また、 Sn02、 Zr02、 Ti02、 ZnO、 CaO、 MgO、 NiO及び V205の 1種又は 2種以上が 0〜20%含まれるの が好ましい。 In addition to the above-mentioned glass composition as the glass substrate, in a specific magnetic disk device or information recording / reproducing apparatus, as a substrate for an information recording medium having an information recording thin film, the above-mentioned glass composition or S in the molar ratio is used. i 0 2 40 to 80% eight 1 2 0 3 5 30% Na 2 0 is 8 to 20% Cs 2 0 is 0 to 20% M 2 0 3 (M is ΠΙΑ group element) is 0 30%, Ln 2 O 3 (Ln is a rare earth element) 0 to: A specific combination composed of L0% is desirable. Here, M 2 O 3 (M is 111 eight group elements) is ¥ 2 0 3 is 0-30%, and 2 0 3 preferably has a 0-30%, La 2 O 3 (Ln is a rare earth element ) Is preferably composed of at least one selected from rare earth oxides of Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. Furthermore, L i 2 〇 0 to 20 mol%, K 2 0 is 0~: L 0%, Β 2 0 3 is good to contain 0-20%. Further, Sn0 2, Zr0 2, Ti0 2, ZnO, CaO, MgO, that one or more of NiO and V 2 0 5 is contained 0-20% preferred.
また、 本発明は前記ガラス基板において平均粒径が:!〜 3 Onmの M203(M は 111八族元素)ぉょび1^203 (Lnは希土類元素)からなる微細粒子が析出して いることが望ましい。 また、 前記ガラス »反の記録面粗さ R aは 2. Onm以下 が好ましい。 In the present invention, the glass substrate has an average particle size of:! ~ 3 onm of M 2 0 3 (M is 111 eight group elements) Oyobi 1 ^ 2 0 3 (Ln is a rare earth element) it is desirable that the fine particles made of is precipitated. The recording surface roughness Ra of the glass is preferably not more than 2. Onm.
さらに、 本発明はガラス基板と情報記録薄膜との間に少なくとも酸ィ匕コバルト を主成分とした層を形成していることが好ましく、 この酸化コノルトを主成分と した層において、平均粒径が 5〜 12 nm、分散(標準偏差/平均粒径)が 25 % 以下であることが望ましく、 さらに、 この層において、 NaCl型の析出結晶が 存在することが好ましい。 Further, the present invention relates to a method of manufacturing a device comprising the steps of: It is preferable that the layer mainly composed of Connoxide has an average particle diameter of 5 to 12 nm and a dispersion (standard deviation / average particle diameter) of 25% or less. Preferably, NaCl-type precipitated crystals are present in this layer.
また、 本発明は少なくともガラス基板とこの基板表面上に酸化コノルトを主成 分とした層を直接又は他の層を介して形成された情報記録薄膜とからなる磁気デ イスク、 情報を記録又は再生する磁気ヘッド、 磁気ディスクを回転させるスピン ドルモータを備えた磁気ディスク装置において、 前記ガラス基板のヤング率が 9 0~ 13 OGP a及びで 15秒間の 500 g荷重によるピツカ一ス硬度測定時の 好ましくは圧痕エッジ部からのクラック発生率が 50%以下、 好ましくは熱膨張 係数が 60〜100x 10一7/。 C;、 J I S-R3502で測定されるガラスの耐 水性がアルカリ溶出量で 0〜0. 2 mgであることが望ましい。 Further, the present invention provides a magnetic disk comprising at least a glass substrate and an information recording thin film formed on the surface of the substrate by directly or via another layer mainly composed of conox oxide, and records or reproduces information. In a magnetic disk drive provided with a spinning motor for rotating a magnetic disk, the Young's modulus of the glass substrate is preferably 90 to 13 OGPa, and when measuring the Pickers hardness under a load of 500 g for 15 seconds, The crack occurrence rate from the indentation edge portion is 50% or less, and preferably, the coefficient of thermal expansion is 60 to 100 × 10 17 /. C: It is desirable that the water resistance of the glass measured by JIS-R3502 is from 0 to 0.2 mg in terms of alkali elution amount.
さらに、 本発明では少なくともガラス基板とこの ¾f反表面上に酸ィ匕コバルトを 主成分とした層を直接又は他の層を介して形成された磁性薄膜を有する磁気ディ スク、 情報を記録又は再生する磁気ヘッド、 磁気ディスクを回転させるスピンド ルモ一夕を備えた磁気ディスク装置において、 前記ガラス基板が前述のガラス組 成物又はモル比で S iO240〜80%、 Al2O35〜30%、 Na208〜2 0%、 Cs20が 0〜20%、 ^ 2030^は111八族元素)が0〜30%、 Ln203 (Lnは希土類元素) は 0〜10%を有するものが好ましい。 Further, in the present invention, a magnetic disk having at least a glass substrate and a magnetic thin film formed on the surface opposite to the glass substrate, directly or via another layer, a layer mainly composed of cobalt oxide, and recording or reproducing information. In a magnetic disk drive provided with a magnetic head for rotating a magnetic disk and a spinning drum for rotating a magnetic disk, the glass substrate may be composed of the above-mentioned glass composition or a molar ratio of SiO 2 40-80% and Al 2 O 3 5-30. % Na 2 from 08 to 2 0% Cs 2 0 is 0-20%, ^ 2 0 3 0 ^ is 111 eight group elements) is 0 to 30% Ln 2 0 3 (Ln is a rare earth element) is 0 Those having 10% are preferred.
本発明はヤング率が好ましくは 90〜13 OGPaの範囲とすることを特徴と する磁気ディスク又は光ディスク用ガラス基板にある。ヤング率が 9 OGPa未満 では磁気ディスクが 2. 5インチサイズで板厚が 0. 635mmでは 600 Or pmで回転した時にガラス にたわみが生じて磁気記録装置としての記録再生 が不十分となり、 13 OGPaを越えると、 このガラス基板を用いた磁気ディス クが 6000 rpmを越える高速回転した時にガラス 反の高剛性ィ匕に伴なぅ靭 性の低下によって、 微少クラックなどが生じ易くなる。 また、 ガラス基板の熱膨 張係数を 60〜100 X 10— 7/°Cの範囲としたのは、 2から 3枚の磁気ディス クからなる磁気ディスク装置において磁気ディスクを支持するステンレス製のス ぺ一ザの熱膨張係数とマッチさせるためである。 さらに、 500 g荷重によるビ ッカース硬度測定時の圧痕のェッジ部からのクラック発生率を 50 %以下とした のは、 クラック発生率が 50%を越えると磁気ディスクに対する磁気へッドの耐 衝撃性に対して十分に満足することが困難となり、 さらに磁気ディスクが 2. 5 ィンチサイズのガラス基板において、 6000 r pm回転した時にガラス基板に クラックや割れが生じ易くなるからである。 The present invention resides in a glass substrate for a magnetic disk or an optical disk, wherein the Young's modulus is preferably in the range of 90 to 13 OGPa. If the Young's modulus is less than 9 OGPa, the magnetic disk is 2.5 inches in size and the thickness is 0.635 mm.When the disk is rotated at 600 Orpm, the glass bends and the recording / reproduction as a magnetic recording device becomes insufficient. When the magnetic disk is used, when the magnetic disk using the glass substrate rotates at a high speed exceeding 6000 rpm, minute cracks and the like tend to occur due to a decrease in toughness accompanying high rigidity of the glass substrate. Also, the reason the heat Rise expansion coefficient of the glass substrate in the range of 60~100 X 10- 7 / ° C is the three 2 from the magnetic disk This is to match the coefficient of thermal expansion of the stainless steel supporter that supports the magnetic disk in the magnetic disk drive made of magnetic disks. Furthermore, the reason why the crack occurrence rate from the wedge part of the indentation when measuring Vickers hardness under a load of 500 g was set to 50% or less is that when the crack occurrence rate exceeds 50%, the impact resistance of the magnetic head to the magnetic disk This is because it is difficult for the magnetic disk to be sufficiently satisfied, and furthermore, when the magnetic disk is rotated at 6000 rpm on a 2.5-inch size glass substrate, cracks and cracks tend to occur on the glass substrate.
また、 前記ガラス基板において J I S-R3502で測定されるガラスの耐水 性がガラスの溶出量を 0. 2 mg以下としたのは、 ガラスの溶出量が 0. 2mg を越えるとアルカリ成分が基板表面に拡散し、 基板表面上に直接形成される情報 記録薄膜 (磁性膜)などに悪影響を及ぼすとともに磁性膜との密着性などが低下す るためである。  In addition, the reason why the water resistance of the glass measured by JIS-R3502 on the above glass substrate is 0.2 mg or less for the glass elution amount is that when the glass elution amount exceeds 0.2 mg, the alkali component is reduced to the surface of the substrate. This has an adverse effect on the information recording thin film (magnetic film) formed directly on the substrate surface and reduces the adhesion with the magnetic film.
次に、 ガラス基板構成成分 (モル比) について説明する。  Next, the components (molar ratio) of the glass substrate will be described.
S i02はガラス形成酸ィ匕物であり、 機械的強度およびィ匕学的安定性に寄与す る成分であり、 ガラス成分として 80%を超えるとガラス特性温度が高くなりす ぎてガラス製造が困難になり、 また、 40%未満ではガラスの失透が生じる。 こ のため、 S i02のガラスの含有量は 40〜80%の範囲とする。 特に、 45〜 70%が好ましい。 S i0 2 is a glass forming Sani匕物a component that contribute to the mechanical strength and I匕学stability, assistant engineer glass manufacturing to glass characteristic temperature increases when greater than 80% as glass components In addition, if it is less than 40%, the glass will be devitrified. For this reason, the content of glass S i0 2 is in the range of 40% to 80%. In particular, 45 to 70% is preferable.
A 1203は高硬度および高剛性化など機械的特性および化学的安定性に寄与 する成分であり、 ガラス成分として 30%を超えるとガラス特性温度が高くなり すぎてガラス製造が困難になり、 また、 5%未満ではガラスの機械的強度が低下 してしまう。 このため、 A 1203のガラスの含有量は 5〜30%の範囲とする。 特定のガラス組成物においては 10~30%とする。 A 1 2 0 3 is a component that contributes to mechanical properties and chemical stability such as high hardness and high rigidity, glass characteristic temperature becomes too high it becomes difficult to glass production exceeds 30% as glass components If it is less than 5%, the mechanical strength of the glass decreases. Therefore, the content of glass A 1 2 0 3 is in the range of 5-30%. In a specific glass composition, the content is 10 to 30%.
Na20はガラスの特性温度を下げることができる成分であり、 ガラス成分と して 20%を超えるとガラスの化学的安定性が悪くなるとともに機械的特性も低 下し、 また、 8%未満ではガラスの機械的強度が低下してしまう。 このため、 N a 20のガラスの含有量は 8〜 20%の範囲とする。 特定のガラス組成物におい ては 8〜10%とする。 Na 20 is a component that can lower the characteristic temperature of glass.If the glass component exceeds 20%, the chemical stability of the glass deteriorates and the mechanical properties also decrease, and less than 8% In this case, the mechanical strength of the glass decreases. Therefore, the content of the glass N a 2 0 is in the range of 8-20%. Specific glass composition smell 8% to 10%.
Cs20はガラスの特性温度を下げることができる成分であり、 ガラス成分と して 20モル%を超えるとガラスの化学的安定性が悪くなるとともに機械的特性 が低下するため、 C s20のガラスの含有量は 20%以下であり、 0. 5〜5% が好ましい。 Cs 2 0 is a component that can lower the characteristic temperature of the glass, the mechanical properties deteriorate with the chemical stability of the glass is deteriorated when it exceeds 20 mol%, the glass component, C s 2 0 The glass content is 20% or less, preferably 0.5 to 5%.
Y 203および L a 203はガラスの高剛性化成分であり、 ガラス成分として 3 0 %を超えるとガラスの化学的安定性が悪くなるとともに機械的特性が低下する ため、 Y203および La203のガラスの含有量は 30%以下が好ましい。特定の 組成においては 2%以上、 より好ましくは 5%以上、 好ましくは 20%以下であ る。 Y 2 0 3 and L a 2 0 3 is a highly rigid components of the glass, the mechanical properties deteriorate with exceeding 3 0% as a glass component chemical stability of the glass is deteriorated, Y 2 0 3 and La 2 0 content of the glass of 3 is preferably 30% or less. In a specific composition, the content is 2% or more, more preferably 5% or more, and preferably 20% or less.
L i20はガラスの特性温度を下げることができる成分であり、 ガラス成分と して 20モル%を超えるとガラスの化学的安定性が悪くなるとともに機械的特性 が低下するため、 L i20のガラスの含有量は 20%以下とする。 特定のガラス 組成物においては 2〜10%又は 1〜20%とする L i 2 0 is a component that can lower the characteristic temperature of the glass, the mechanical properties deteriorate with the chemical stability of the glass is deteriorated when it exceeds 20 mol%, the glass component, L i 2 The glass content of 0 should be 20% or less. 2 to 10% or 1 to 20% for specific glass compositions
K20はガラスの特性温度を下げることができる成分であり、 ガラス成分とし て 10%を超えるとガラスの化学的安定性が悪くなるとともに機械的特性が低下 するため、 Κ20のガラスの含有量は 10%以下、 0. 5%以上が好ましい。 K 2 0 is a component that can lower the characteristic temperature of the glass, the mechanical properties deteriorate with the chemical stability of the glass is deteriorated when it exceeds 10% as a glass component, kappa 2 0 Glass The content is preferably 10% or less, more preferably 0.5% or more.
Β 203はガラスの特性温度を下げることができる成分であり、 ガラス成分とし て 20 %を超えるとガラスの化学的安定性が悪くなるとともに機械的特性が低下 するため、 Β203のガラスの含有量は 20%以下、 0. 5%以上が好ましい。 The beta 2 0 3 is a component that can lower the characteristic temperature of the glass, the mechanical properties deteriorate with the chemical stability of the glass is deteriorated when it exceeds 20% as a glass component, a beta 2 0 3 The glass content is preferably at most 20%, more preferably at least 0.5%.
S η 02は高温の粘度をさげガラス溶解性の向上に寄与し、 Z r 02はガラスの 化学的安定性に寄与し、 T i 02は高温の粘度をさげガラス溶解性の向上に寄与 し、 ZnOは化学的に安定ィ匕させ、 CaOと MgOは高温の粘度をさげガラスの 溶解性を向上させる成分である。 また、 NiOは機械的特性向上に寄与し、 V2 05も同様に高温の粘度をさげガラスの溶解性を向上させる成分である。そこで、 Sn02、 Zr〇2、 Ti〇2ヽ ZnO, CaO、 Mg〇、 NiO及び V205の 1 種又は 2種以上が 20 %以下含まれるのが好ましい。 N a 20及び L i 20を含む ものでは 0 . 5〜 1 0 %が好ましい。 The S eta 0 2 contributes to the improvement of the glass solubility lowering the high temperature viscosity, Z r 0 2 contributes to the chemical stability of the glass, T i 0 2 in improving glass solubility lowering the high temperature viscosity Contributing, ZnO chemically stabilizes, and CaO and MgO are components that reduce high-temperature viscosity and improve the solubility of glass. Also, NiO is a component contributing to improving mechanical properties, V 2 0 5 is also to improve the solubility of the glass lowering the high temperature viscosity as well. Therefore, Sn0 2, Zr_〇 2, Ti_〇 2ヽZnO, CaO, Mg_〇, one or more of NiO and V 2 0 5 is preferably comprised more than 20%. Including N a 2 0 and L i 2 0 It is preferably 0.5 to 10%.
次に、 本発明のガラスの製造方法 ついて説明する。 まず、 前記したガラス構 成 成分の酸ィ匕物のガラス原料粉末を所定量配合したのち十分な攪拌混合行い、 大気中で 1 0分間以上白金攪拌羽根を用いて攪拌しながら溶融し、 得られたガラ スプロックにより切り出し、 研削、 研磨などの加工を行い、 円盤状の所定の形状 のガラス基板などを得る。 また、 得られた板状のガラス板よりくり貫いて円盤状 とし、又半溶融状態から金型にて円盤状に形成し、表面の精密加工として酸化セリ ゥムなどを用いてラヅピング及びポリッシング研磨を行うことにより、 表面粗さ R aが 2 . 0 nm以下にするものである。  Next, a method for producing the glass of the present invention will be described. First, after mixing a predetermined amount of the glass raw material powder of the above-mentioned glass constituent acid oxide, the mixture was sufficiently stirred and mixed, and melted with stirring using a platinum stirring blade in the air for 10 minutes or more. Processing such as cutting, grinding, polishing, etc., is performed with a glass sprocket to obtain a disk-shaped glass substrate of a predetermined shape. In addition, the obtained plate-shaped glass plate was cut out into a disk shape, and from a semi-molten state, formed into a disk shape using a mold, and lapping and polishing were performed using cerium oxide or the like for precision processing of the surface. Is performed to reduce the surface roughness Ra to 2.0 nm or less.
本発明の磁気ディスクは少なくともガラス基板と、 この基板表面上に直接又は 他の層を介して形成された情報記録薄膜(磁性膜) からなることを特徴としてい 本発明の対象となる磁気ディスクの断面の概略図を図 1に示す。 図に示すよう に、 本発明の磁気ディスクはガラス基板 1、 シード膜 2、 中間膜 3、 磁性膜 4、 保護膜 5、 潤滑膜 6が順次形成されている。  The magnetic disk of the present invention comprises at least a glass substrate and an information recording thin film (magnetic film) formed directly or via another layer on the surface of the substrate. Figure 1 shows a schematic diagram of the cross section. As shown in the figure, the magnetic disk of the present invention has a glass substrate 1, a seed film 2, an intermediate film 3, a magnetic film 4, a protective film 5, and a lubricating film 6 sequentially formed.
本発明の磁気記録媒体の膜構成としてはシード膜 2には C 0系金属膜、 中間膜 3は C r— T i系合金膜、 磁性膜 4は C o— C r— P t系合金膜、 保護膜 5は力 —ボン膜、 又は磁気記録媒体の膜構成としてシード膜 2には酸ィ匕コバルトを主成 分とした酸ィ匕物膜が用いられる。 シード膜として酸ィ匕コバルトを主成分とした酸 化物膜を適用した磁気記録媒体は面内磁気記録媒体とし、 磁性膜 4に用いられて いる C o合金は六方晶最蜜構造をとつている。 C 0合金膜は c軸を磁ィ匕容易軸と する一軸異方性を有するため c軸を磁性膜面内に配向させる必要がある。そこで、 磁性膜 4の C o— C r— P t系合金を配向させるためにシード膜 2および中間膜 3を磁性膜 4と同軸となるように配向させる必要がある。  As the film configuration of the magnetic recording medium of the present invention, the seed film 2 is a C0-based metal film, the intermediate film 3 is a Cr—Ti-based alloy film, and the magnetic film 4 is a Co—Cr—Pt-based alloy film. The protective film 5 is a carbon film, or the seed film 2 is an oxide film mainly composed of cobalt oxide as a film structure of the magnetic recording medium. A magnetic recording medium to which an oxide film containing cobalt oxide as a main component is used as a seed film is an in-plane magnetic recording medium, and the Co alloy used for the magnetic film 4 has a hexagonal crystal structure. . Since the C0 alloy film has uniaxial anisotropy in which the c-axis is the axis of easy magnetization, it is necessary to orient the c-axis in the plane of the magnetic film. Therefore, in order to orient the Co—Cr—Pt alloy of the magnetic film 4, the seed film 2 and the intermediate film 3 need to be oriented so as to be coaxial with the magnetic film 4.
本発明の磁気ディスクとして、 本発明のガラス »反 1の表面上に形成するシ一 ド膜 2には配向が容易な酸化コバルトを主成分とした酸化物を用いることが好ま しい。 また、 本発明ではこの酸ィ匕コバルトを主成分とした酸ィ匕物膜において、 磁 性膜の磁気特性を十分に満足させるために平均粒径を 5〜 1 2 nm、 分散 (標準 偏差 Z平均粒径) が 2 5 %以下であることが望ましく、 更に、 この層において、 N a C 1型の析出結晶が存在することがよい。 As the magnetic disk of the present invention, it is preferable to use an oxide mainly composed of cobalt oxide, which is easily oriented, as the shield film 2 formed on the surface of the glass substrate 1 of the present invention. Further, in the present invention, in the oxidizing film containing the oxidizing cobalt as a main component, In order to sufficiently satisfy the magnetic properties of the conductive film, it is preferable that the average particle size is 5 to 12 nm and the dispersion (standard deviation Z average particle size) is 25% or less. It is preferred that C1-type precipitated crystals exist.
本発明によればヤング率が 9 0〜 1 3 0 G P a、 5 0 0 g荷重によるピッカー ス硬度測定時の圧痕ェッジ部からのクラック発生率が 0〜 5 0 %であることを特 徴とするガラス基板を磁気ディスクに用いることによって、 磁気ディスクの高速 回転に十分対応でき、 また磁気ヘッドによる耐衝撃性を十分に満足できる。 これ らの磁気デイスクを用いることにより大容量化及び耐衝撃性に優れる磁気ディス ク装置を提供することができる。  According to the present invention, the Young's modulus is 90 to 130 GPa, and the crack occurrence rate from the indentation edge portion at the time of measuring the Pickers hardness under a 500 g load is 0 to 50%. By using a glass substrate for the magnetic disk, it is possible to sufficiently cope with high-speed rotation of the magnetic disk and to sufficiently satisfy the impact resistance of the magnetic head. By using these magnetic disks, it is possible to provide a magnetic disk device having a large capacity and excellent shock resistance.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明で作製した磁気ディスクの断面の概略図及び第 2 図は本発明 で作製した磁気ディスク装置の概略図である。  FIG. 1 is a schematic diagram of a cross section of a magnetic disk manufactured by the present invention, and FIG. 2 is a schematic diagram of a magnetic disk device manufactured by the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
(実施例 1 )  (Example 1)
【第 1表】 第 1,表  [Table 1] Table 1, Table
組成 (モル%) ヤング率 クラック発 熟膨張係数 酎水性 実施例  Composition (mol%) Young's modulus Cracking Ripe expansion coefficient Shochu aqueous solution
Si02 Λ1203 Y203 La203 Na20 Li20 Cs20 20 B203 Gd203 (GPa) 生率 (%) (X 10 ) (mg) Si02 Λ1203 Y203 La203 Na20 Li20 Cs20 20 B203 Gd203 (GPa) Production rate (%) (X 10) (mg)
A1 60 18 14 8 1 15 50 64 0.15A1 60 18 14 8 1 15 50 64 0.15
A2 56 24 10 10 105 40 62 0.2A2 56 24 10 10 105 40 62 0.2
A3 58 15 15 12 1 10 35 70 0.1A3 58 15 15 12 1 10 35 70 0.1
A4 56 22 10 10 2 100 40 83 0.2A4 56 22 10 10 2 100 40 83 0.2
A5 52 24 10 9 5 102 50 75 0.16A5 52 24 10 9 5 102 50 75 0.16
A6 50 24 10 8 8 113 10 69 0.08A6 50 24 10 8 8 113 10 69 0.08
A7 48 24 10 S 6 4 115 20 72 0.13A7 48 24 10 S 6 4 115 20 72 0.13
AS 58 24 10 δ 98 40 65 0.15AS 58 24 10 δ 98 40 65 0.15
A9 60 24 5 9 2 92 35 70 Ο.ίδA9 60 24 5 9 2 92 35 70 Ο.ίδ
A10 70 10 9 9 1 1 108 30 75 0.18 【第 2表】 A10 70 10 9 9 1 1 108 30 75 0.18 [Table 2]
第 2表 Table 2
Figure imgf000012_0001
第 1表、 第 3表及び第 4表に本発明のガラス組成物、 第 2表に比較例を示した (モル%)。 表に示した各ガラス構成原料となる酸化物粉末 2 0 0 gを所定量モ ル%で配合し、 十分に機械的に混合して白金るつぼに入れる。 その白金るつぼを ガラス作製炉に挿入後、 大気中において 1 6 0 0 °Cで 1〜2時間攪拌しながら加 熱溶融した後、 白金るっぽを取り出して、 溶融ガラスを各特性評価用サンプル用 の幅 2 0 mm X深さ 2 0 mmx長さ 6 0 mmおよび 2 . 5インチサイズの基板用 とした ø 7 0 X深さ 1 0 mmの黒鉛錡型に流し込む。 その後、 ガラス転移温度以 上の温度で約 1時間ガラス歪み取りを行い、 室温まで徐冷しガラスプロヅクを得 る。得られた幅 2 0 mmx高さ 2 0 mmx長さ 6 0 mmガラスブロックより各特 性評価に必要なそれぞれの形状にスライシングマシーンなどを用いて各特性評価 用サンプルを加工した。
Figure imgf000012_0001
Tables 1, 3 and 4 show the glass compositions of the present invention, and Table 2 shows the comparative examples (mol%). 200 g of an oxide powder to be a constituent material of each glass shown in the table is blended at a predetermined amount of mol%, and is sufficiently mechanically mixed and put into a platinum crucible. After inserting the platinum crucible into the glass-making furnace, the mixture was heated and melted in air at 160 ° C for 1-2 hours while stirring, the platinum crucible was taken out, and the molten glass was sampled for each property evaluation. It is poured into a graphite 7 70 mm x 10 mm deep board for 20 mm wide x 20 mm deep x 60 mm long and 2.5 inch size substrates. Thereafter, the glass is strained at a temperature higher than the glass transition temperature for about 1 hour, and gradually cooled to room temperature to obtain a glass block. From the obtained glass block having a width of 20 mm x a height of 20 mm x a length of 60 mm, a sample for each property evaluation was processed into a shape required for each property evaluation using a slicing machine or the like.
ヤング率の測定は 5 5 x 2 x 1 0のガラスサンプルを甩 て, 共振法により室 温で測定した。  The Young's modulus was measured at room temperature by the resonance method using a 55 x 2 x 10 glass sample.
クラック発生率は 1 5 x 4 X 4のガラスサンプルを 用し、 ガラスサンプル表 面を鏡面仕上げした後、 マイクロビッカース硬度計を用い、 5 0 0 g荷重で 1 5 秒の負荷をかけた直後から 2 0分経過した後ピツカ一ス圧痕のエッジ部からのク ラック発生状況を観察した。 クラック発生率はガラス基板と磁性膜からなる磁 気ディスクに対する磁気へッドおよび磁気デイスク装置が落下したときの耐衝撃 性をみる評価方法の一つである。 なお、 ビヅカースの圧痕は 2 0打点として、 一 つの圧痕には四箇所のェッジ部があり、 その内の一箇所からでもクラックが観察 された場合、 その圧痕はクラック発生と見なした。 The cracking rate was measured using a 15 x 4 x 4 glass sample, and after the glass sample surface was mirror-finished, using a micro Vickers hardness tester, immediately after applying a load of 500 g for 15 seconds. After a lapse of 20 minutes, the occurrence of cracks from the edge of the pits impression was observed. The cracking rate is one of the evaluation methods to evaluate the impact resistance of a magnetic disk consisting of a glass substrate and a magnetic film when a magnetic head and a magnetic disk device fall. In addition, the indentation of Beakers was assumed to be 20 RBIs. Each of the indentations had four wedges, and if cracks were observed from any one of them, the indentation was regarded as cracking.
熱膨張係数は 15x4x4のガラスサンプルを使用し、 測定温度範囲は 100 〜400°Cの範囲とした。  A glass sample with a thermal expansion coefficient of 15x4x4 was used, and the measurement temperature range was 100 to 400 ° C.
耐水性は、 J I S—R3502に基づく方法でアルカリ溶出量を測定した。 J I S—R3502によるアルカリ溶出試験法について説明する。 まず、 以下の手 順に従って試料の調整を行う。供試ガラスを良く洗浄し、 乾燥した後、 メノウ乳 鉢で粉砕する。 次に、 標準篩 420 /mを通過し、 標準篩 250 zmにとどまる 大きさの粉末を 5 g取り、エチルアルコールであらって微粉を除去後、約 125°C の大気中で乾燥し、 デシケ一夕で保存する。 このように調整された試料から、 供 試ガラスの比重と同じグラム数を正確に秤量する。 また、 丸底フラスコ中に予め For water resistance, the amount of alkali elution was measured by a method based on JIS-R3502. The alkali elution test method using JIS-R3502 will be described. First, adjust the sample according to the following procedure. Wash the test glass thoroughly, dry it and grind it in an agate mortar. Next, 5 g of a powder passing through a standard sieve of 420 / m and remaining at a standard sieve of 250 zm is taken out, fine powder is removed with ethyl alcohol, dried in an atmosphere at about 125 ° C, and desiccated. Save in the evening. From the sample thus adjusted, weigh exactly the same number of grams as the specific gravity of the test glass. Also, put it in a round bottom flask beforehand.
40 ccの蒸留水をいれ、 10分間以上の沸騰水中に保持した後、 試料をフラス コに投入し、 さらに、 10 c cの蒸留水で器壁の内面に付着した試料を洗い落と し、 緩く揺り動かして試料集積物の上部が一様な平面を保つように安定させる。 次に冷却器を取り付け、 沸騰水中で 60分間加熱する。 次に、 フラスコを水中か ら取り出し、 直ちに流水で冷却し、 内容液を硬質ガラス製にビーカ一に移し、 メ タルレッド指示薬 3滴を加え、 NZ10 Q硫酸で滴定する。 また、 同様な方法で 空試験を行い、 結果を比較する。 また、 得られた結果は、 原則として空試験結果 を差し引いた NZ100硫酸の消費 c c数に 0. 31を乗じ、 Na20mg数に 換算して示す。 Add 40 cc of distilled water, keep it in boiling water for 10 minutes or more, put the sample in a flask, wash off the sample attached to the inner surface of the instrument wall with 10 cc of distilled water, and gently rock it. To stabilize the top of the sample stack to maintain a uniform plane. Next, attach a cooler and heat in boiling water for 60 minutes. Next, remove the flask from the water, immediately cool it with running water, transfer the contents to a hard glass beaker, add 3 drops of metal red indicator, and titrate with NZ10 Q sulfuric acid. Perform a blank test in the same way and compare the results. In addition, the obtained results are calculated by multiplying the cc number of NZ100 sulfuric acid consumed c c by subtracting the blank test result by 0.31 and converting it to 20 mg Na.
第 2表に示した比較例の N o . B 1〜: B 5ガラスはヤング率が 90 GP a以上を 示し、 また、 熱膨張係数も 60〜100x10— 7/°Cの範囲を示し、 これらの特 性に関しては磁気ディスク用ガラス基板として満足することが確認される。 しか しながら、 J I S— R3502における耐水性においては、 0. 3〜0. 5mg を示し、 わずかではあるがガラス基板表面のアルカリ及びアルカリ土類元素の拡 散が起こりやすくなり、 磁性膜などとの密着性低下が懸念される。 さらに、 マイ クロピツカ一ス硬度計を用い、 500 g荷重で 15秒の負荷をかけた直後から 2 0分経過した後、 ビヅカース圧痕を観察した。 その結果、 すべての圧痕のエッジ 部からクラックの発生が確認され、クラック発生率はいずれも 100%となった。 このことから比較例の No. B 1〜: B 5ガラスを用いた磁気ディスクは磁気へヅ ドによる耐衝撃性を十分に満足できず、 磁気ディスク表面が磁気へッドにより傷 つきが起こりやすくなる。比較例の No. B 1〜; B 5ガラスは A 1203とアル力 リ土類酸化物 M g 0および C a 0で高ヤング率ィ匕を図ったものであり、 アルカリ 土類酸ィ匕物である MgOおよび C a 0が多く含有されていることからクラック発 生率が高くなつたものと推察される。 これらの比較例の結果から、 アルカリ土類 酸ィ匕物の含有量を極力少なくして高ヤング率を維持しながらクラック発生率を低 減できるガラス基板を開発していく必要があつた。 . N o B. 1 to the comparative example shown in Table 2: B 5 Glass Young's modulus indicates a more 90 GP a, The thermal expansion coefficient indicates the range of 60~100x10- 7 / ° C, these It was confirmed that the characteristics described above were satisfied as a glass substrate for a magnetic disk. However, the water resistance of JIS-R3502 is 0.3-0.5mg, and although a little, alkali and alkaline earth elements on the glass substrate surface are liable to be diffused. There is a concern that the adhesion may decrease. In addition, immediately after applying a load of 15 seconds with a load of 500 g using a micro- After 0 minute, Beakers indentation was observed. As a result, the occurrence of cracks was confirmed from the edges of all the indentations, and the crack occurrence rate was 100% in all cases. Therefore, the magnetic disks using the glass Nos. B1 to B5 of the comparative examples cannot sufficiently satisfy the impact resistance due to the magnetic head, and the magnetic disk surface is easily damaged by the magnetic head. Become. No. B. 1 to the Comparative Example; B 5 glass are those which attained high Young Ritsui匕in A 1 2 0 3 and Al force re-earth oxides M g 0 and C a 0, alkali Doruisan It is inferred that the crack generation rate was increased because of the high content of MgO and Ca0, which are the stilts. From the results of these comparative examples, it was necessary to develop a glass substrate capable of reducing the crack occurrence rate while maintaining a high Young's modulus by minimizing the content of the alkaline earth oxide.
そこで、 第 1表、 第 3表及び第 4表に示す No. A1〜A24ガラスを見出し た。本発明のガラスは A 1203と M203(Mは ΙΠ A族元素)である Y203および L a23の含有により高ヤング率化、 さらに、 アルカリ酸ィ匕物である Na2〇を 8 モル%以上含有させることによりクラック発生率を低減できた。 No. A1〜A 3の S i 02_A 1203— Y23— Na20からなるガラスはヤング率が 105 GPa以上を示し、 2. 5インチサイズ、 板厚 0. 635mmのガラス基板にお いて将来の 6000 rpmの高速回転に対して十分満足できる。 また、 マイクロ ビヅカース硬度計による 500 g負荷における圧痕のェヅジ部からのクラック発 生率は 50 %以下となり、 比較例の N o. B 1〜B 5ガラスに比べて大幅に低減 できた。 これは、 磁気へッドによる耐衝撃性についても十分に満足できるものと 思われる。 さらに、 熱膨張係数は比較例と同様に 62〜70 X 10一7 /°Cの範囲 を示し、 ステンレス金属スぺーサと十分にマッチングされることを確認した。 ま た、 J I S— R 3502における耐水性は 0. 2 mg以下となり、 アルカリ金属 元素の拡散を防止できることがわかった。 Therefore, No. A1 to A24 glasses shown in Tables 1, 3 and 4 were found. The glass of the present invention A 1 2 0 3 and M 2 0 3 (M is Iotapai A group elements) a high Young's modulus by the inclusion of Y 2 0 3 and L a 23 is a further alkali Sani匕物The crack generation rate could be reduced by containing Na 2あ る of 8 mol% or more. No. A1 to A3 S i 0 2 _A 1 2 0 3 — Y 23 — Na 2 0 glass with a Young's modulus of 105 GPa or more, 2.5 inch size, thickness of 0.635 mm Satisfactory for future high-speed rotation of 6000 rpm on glass substrates. In addition, the cracking rate from the edge of the indentation at a load of 500 g measured by a Micro Vickers hardness tester was 50% or less, which was significantly reduced as compared with the No. B1 to B5 glasses of the comparative example. This seems to be sufficient for the impact resistance of the magnetic head. In addition, the coefficient of thermal expansion was in the range of 62 to 70 × 10 17 / ° C as in the comparative example, and it was confirmed that the thermal expansion coefficient was sufficiently matched with the stainless steel spacer. In addition, the water resistance in JIS-R 3502 was 0.2 mg or less, indicating that the diffusion of alkali metal elements could be prevented.
次に、アル力リ金属酸化物である C s 20及び L i 20と B 203を含有させた N 0. A4〜A7ガラスは前記したようにヤング率、 クラック発生率、 熱膨張係数 及び J I S-R 3502における耐水性において満足できることを確認した。 Y203を周期律で同族の La203と置換した。 No. A8〜A9ガラスも同様 にヤング率、 クラック発生率、 熱膨張係数及び J I S-R3502における耐水 性において満足できることを確認した。 Then, C s 2 0 and L i 2 0 and B 2 0 3 Young's modulus as N 0. A4-A7 glass containing was said is Al force Li metal oxides, cracking, thermal expansion It was confirmed that the coefficient and the water resistance in JI SR 3502 were satisfactory. Was replaced with La 2 0 3 cognate the periodic the Y 2 0 3. Similarly, it was confirmed that the No. A8 to A9 glasses were also satisfactory in Young's modulus, crack generation rate, coefficient of thermal expansion, and water resistance in JIS-R3502.
次に、周期律表の III A族元素酸化物である Y 203及び L a 203の代わりに希土 類元素酸化物の Gd203とアル力リ金属酸化物 K 20を含有させた No · A 10 ガラスにおいても前記した各特性を十分に満足することがわかった。 Next, containing Y 2 0 3 and L a 2 0 3 Gd 2 0 3 of rare-earth element oxide in place of the Al force Li metal oxide K 20 is a III A group elements oxides of the periodic table It was found that each of the properties described above was sufficiently satisfied even in the No. A10 glass.
【第 3表】 第 3表  [Table 3] Table 3
Figure imgf000015_0001
さらに、 第 3表に示す Sn02、 Zr022、 Ti02、 ZnO、 CaO、 Mg 0、をそれそれ含有させた No. A 1 l〜No. A 18ガラスについてヤング率、 クラック発生率、 熱膨張係数及び J I S-R3502における耐水性を測定した 結果、前記したようにそれぞれの特性において十分に満足できることがわかった。 また、 V205及び NiOを含有しても同様の結果を得た。 ここで、 Sn02 + Z 1>02 +11;[02 + 2110 +〇&0+^ 0+¥205 + ?^10の含有量は20モ ル%以下が良い。
Figure imgf000015_0001
Furthermore, Sn0 2 shown in Table 3, Zr0 2 2, Ti02, ZnO , CaO, Mg 0, it it contains is not the No. A 1 l~No. A 18 Young's modulus for the glass, the crack generation rate of thermal expansion As a result of measuring the coefficient and the water resistance in JIS-R3502, it was found that the respective characteristics were sufficiently satisfied as described above. Also, similar results were obtained also contain V 2 0 5 and NiO. Here, Sn0 2 + Z 1> 0 2 +1 1;? [0 2 + 2110 + 〇 & 0 + ^ 0 + ¥ 2 0 5 + ^ content of 10 is good is 20 molar% or less.
S iひ 2、 A 1203と希土類元素酸化物の G d 23とアル力リ金属酸化物 N a 2 0と L i20およびアルカリ土類酸化物 MgOと CaOからなる No. Al 9〜 No. A20ガラスにおいても同様に優れた効果を得ることができた。 ここで、 Gd以外の希土類元素の Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 D y、 Ho、 E r、 Tm、 Yb、 Luの酸化物の中から少なくとも 1種類以上含有したガラスに おいても同様に優れた効果を得た。 さらに、 周期律表の III A族元素酸化物と希土 類元素酸化物を同時に含有されたガラスにおいても同様の効果を得ることがわか つた。 Consists S i monument 2, A 1 2 0 3 and G d 23 and Al force Li metal oxide of a rare earth element oxide N a 2 0 and L i 2 0 and alkaline earth oxides MgO and CaO No. Al 9 ~ In the case of No. A20 glass as well, excellent effects could be obtained. Here, in a glass containing at least one of oxides of Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu of rare earth elements other than Gd Also obtained an excellent effect. Furthermore, it was found that the same effect was obtained in a glass containing both a Group IIIA element oxide and a rare earth element oxide in the periodic table.
【第 4表】  [Table 4]
第 4表  Table 4
Figure imgf000016_0001
次に、 周期律表の III A族元素酸化物の Y 203と希土類元素酸化物の G d 203 前記した N o . A 1〜N o . A 20に比べて多量に含有させ、 ガヺス形成酸化物 の S i 02の含有量を少なめにした No. A22〜No. A24ガラスを作製し た。 このガラスを 100, 000倍の TEM観察した結果、 均一に分散した平均 粒径が 1〜3 Onmの微細粒子が観察された。 この微細粒子を分析した結果、 Y 23及び G d 203を含む微細結晶であることが確認された。この表 4に示される ように微細粒子を析出した No. A22〜No. A 24のガラスは微細粒子を析 出しない No. A21ガラスに比べて高ヤング率化されている。 これは、 微細粒 子の析出によるものである。 また、 その他の特性であるクラック発生率、 熱膨張 係数及び J I S-R3502における耐水性においても十分に満足することがわ かった。 ここで、 本発明の実施例である No. A l~No. A 20ガラスについ て微細粒子の析出は観察されなかった。
Figure imgf000016_0001
Next, G d 2 0 3 wherein the N o of Y 2 03 and a rare earth element oxide of III A group elements oxides of the Periodic Table. A 1 to N o. Is contained in a large amount compared to A 20, Gavosu No. A22 to No. A24 glasses were prepared in which the content of SiO 2 in the formed oxide was small. As a result of TEM observation of this glass at a magnification of 100,000, fine particles with an average particle diameter of 1 to 3 Onm uniformly dispersed were observed. Analysis of the fine particles, it was confirmed that the fine crystals containing Y 23 and G d 2 0 3. As shown in Table 4, the glass of No. A22 to No. A24 in which the fine particles were precipitated had a higher Young's modulus than the glass A21 in which the fine particles were not precipitated. This is due to the precipitation of fine particles. It was also found that other properties such as crack generation rate, thermal expansion coefficient and water resistance in JIS-R3502 were sufficiently satisfied. Here, no precipitation of fine particles was observed with respect to No. Al to No. A20 glasses which are examples of the present invention.
以上本発明のガラスは磁気ディスク用基板として十分に適用できることを確認 した。 (実施例 2) As described above, it has been confirmed that the glass of the present invention can be sufficiently applied as a substrate for a magnetic disk. (Example 2)
【第 5表】 第 5表  [Table 5] Table 5
Figure imgf000017_0001
本発明の実施例である No. A 6、 No. A19、 No. A22ガラスについ て 2. 5インチサイズである外径 65 mm、 内径 20mm、 厚さを 0. 635m mに加工した磁気ディスク用ガラス基板を作製した。 この時のガラス基板の表面 粗さ R aは 2 nm以下とし、 このガラス ¾|反を用いて磁気ディスクを作製した。 次に、 本発明の磁気ディスクの作製方法について概略を説明する。 本発明の対 象となる磁気ディスクの断面図を第 1図に示す。 磁気ディスクはガラス基板 1、 シ一ド膜 2、中間膜 3、磁性膜 4、保護膜 5及び潤滑膜 6が順次形成されている。 本発明の実施例として、 前記した No. A 6、 No. Al 9s No. A22の ガラス基板 1の表面にスパヅ夕リング法を用いて酸化コバルトである C o 0を主 成分とした酸ィ匕物膜からなるシード膜 2を 15nm、 Cr— T i系合金からなる 中間膜 3を 20nm、 C o— C r— P t系合金からなる磁性膜 4を 20 nm、 力 —ボン保護膜 5を 10 nmと順次形成した。 この際、 ガラス基板温度を 250〜 300 °Cで成膜した。 各膜のスパヅ夕リングレートは 1〜 5 nm/¾>の範囲とし た。 さらに、 パ一フルォロポリエーテル系潤滑剤 6をディヅビングにより塗布し 第 5表の磁気ディスク No. AO 61、 No. Al 91、 No. A221を作製 した。
Figure imgf000017_0001
No. A6, No. A19, and No. A22 glass, which are examples of the present invention, are used for magnetic disks processed to 2.5-inch size having an outer diameter of 65 mm, an inner diameter of 20 mm, and a thickness of 0.635 mm. A glass substrate was manufactured. At this time, the surface roughness Ra of the glass substrate was set to 2 nm or less, and a magnetic disk was manufactured using this glass substrate. Next, an outline of a method for manufacturing a magnetic disk of the present invention will be described. FIG. 1 is a sectional view of a magnetic disk according to the present invention. On the magnetic disk, a glass substrate 1, a shield film 2, an intermediate film 3, a magnetic film 4, a protective film 5, and a lubricating film 6 are sequentially formed. As an example of the present invention, the surface of the glass substrate 1 of No. A6, No. Al 9s No. A22 described above was prepared by using a sputtering method, and the main component thereof was CoO, which is cobalt oxide. The seed film 2 made of an object film is 15 nm, the intermediate film 3 made of a Cr—Ti alloy is 20 nm, the magnetic film 4 made of a Co—Cr—Pt alloy is 20 nm, and the force-bonding protective film 5 is 10 nm was sequentially formed. At this time, the film was formed at a glass substrate temperature of 250 to 300 ° C. The sputter ring rate of each membrane was set in the range of 1 to 5 nm / ¾>. Furthermore, a perfluoropolyether-based lubricant 6 was applied by diving to produce magnetic disks No. AO 61, No. Al 91 and No. A221 in Table 5.
比較例として、 第 2表の No. Bl、 No. B 2ガラスを 2. 5インチサイズ の磁気ディスク用基板に加工した。 その後、 前記したように磁気記録媒体からな る磁気ディスク No. BO 11と No. BO 21を作製した。 ここで、 No. B O i lと No. BO 21のシード膜 2には Cr系金属膜を用いた。 これらの磁気 ディスクを 2. 5インチ磁気ディスク装置に搭載した。 なお、 磁気ディスクの作 製枚数は各々 100枚とした。 As a comparative example, No. Bl and No. B2 glasses shown in Table 2 were processed into 2.5-inch magnetic disk substrates. After that, as described above, Magnetic disks No. BO 11 and No. BO 21 were manufactured. Here, a Cr-based metal film was used for the seed film 2 of No. BOil and No. BO21. These magnetic disks were mounted on a 2.5-inch magnetic disk drive. The number of magnetic disks produced was 100 each.
第 2図に本実施例で作製した磁気ディスク装置の概略図を示す。磁気ディスク 7は回転軸 8によって支持され、 同時にスピンドルモ一夕 9が回転することによ つて磁気ディスク 7を回転させる。 12は電気系の出力端子である。 また、 磁気 へッド 10はへッド回転軸 11によって支持されており、 へヅド回転軸 11が回 転することによりディスクの半径方向の位置を決定している。 本実施例ではスぺ —サ 13を介して磁気ディスクを 3枚搭載し、 各ディスクの両面に計 4個の磁気 へヅドを配置させた。 スぺーサとしては従来から金属であるステンレス製のもの を使用した。磁気へッドの浮上量は磁気へッドスライダーの形状と磁気へヅドを 支えるアームのばね強度を調整し 2 Onmに制御した。 磁気ディスクの回転速度 は毎分 6000回転とした。  FIG. 2 is a schematic diagram of the magnetic disk drive manufactured in this embodiment. The magnetic disk 7 is supported by a rotating shaft 8, and at the same time, the magnetic disk 7 is rotated by rotating a spindle motor 9. 12 is an output terminal of the electric system. The magnetic head 10 is supported by a head rotation shaft 11, and the position of the disk in the radial direction is determined by the rotation of the head rotation shaft 11. In this embodiment, three magnetic disks are mounted via the spacer 13, and a total of four magnetic heads are arranged on both surfaces of each disk. A spacer made of stainless steel, which is a metal, has been used. The flying height of the magnetic head was controlled at 2 Onm by adjusting the shape of the magnetic head slider and the spring strength of the arm supporting the magnetic head. The rotation speed of the magnetic disk was 6000 revolutions per minute.
作製した 100枚の 5種類の磁気ディスク N o. AO 6 Is No. A191、 No. A221、 No. B011、 No. B 021を搭載した磁気ディスク装置 の回転速度を毎分 6000回転とし、 連続的に 100時間運転させ、 磁気へッド 衝突時の発熱、 磁性膜の無配向による磁気特性劣化などによるエラーの有無を調 ベた。 さらに磁気ディスク装置から磁気ディスクを取り外し、 磁気ディスクの表 面部を詳細に観察することによって、 膜剥離等の損傷の有無および損傷箇所があ る場合はその状態を調べた。 その結果、 本発明のガラス基板を用いた磁気ディス ク No. AO 61 No. A191、 No. A221はすべてにおいてエラーの 発生や磁気ディスク表面の傷などの損傷は少なく、 記録再生などの磁気特性は 9 0%以上の歩留りを得ることができた。 一方、 比較例の磁気ディスク No. B0 11、 No. B021は高速回転試験でのエラーが多数認められ、 比較例の磁気 ディスク No. B011、 No. B021の記録再生などの磁気特性歩留まりは 56%以下であった。 次に、 作製した各々 20枚の磁気ディスクを用い、 2枚一組で磁気 ΐ No. AO 6 Is No. A191, No. A221, No. B011, No. B021 The system was operated for 100 hours, and the presence or absence of errors due to heat generation at the time of a magnetic head collision and deterioration of magnetic properties due to non-orientation of the magnetic film was examined. Furthermore, the magnetic disk was removed from the magnetic disk device, and the surface of the magnetic disk was observed in detail to determine whether there was damage such as film peeling and, if there was any damage, the state of the damage. As a result, all of the magnetic disks No. AO 61 No. A191 and No. A221 using the glass substrate of the present invention have few errors and damages such as scratches on the surface of the magnetic disk, and the magnetic characteristics such as recording / reproducing are low. A yield of more than 90% was obtained. On the other hand, the magnetic disk Nos. B011 and B021 of the comparative example showed many errors in the high-speed rotation test, and the magnetic characteristic yield of the magnetic disk No. B011 and No. B021 of the comparative example such as recording / reproducing was 56%. It was below. Next, using each of the prepared 20 magnetic disks, a pair of magnetic disks was used.
置に搭載し、 回転速度を毎分 6000回転させながら、 lmの高さから、 磁気デ ィスク装置を落下させた時の、磁気デイスクの損傷などによる磁気特性の劣化程 度を確認する耐衝撃性試験をした。 その結果、 本発明のガラス基板を用いた磁気 ディスク No. A061、 No. A191、 No. A 221はすべてにおいて耐 衝撃によるエラ一の発生や磁気ディスク表面の傷などの損傷は少なく、 90%以 上の歩留りを得ることができた。 一方、 比較例の磁気ディスク No. BO 11、 No. BO 21は磁気ディスク装置が落下した時に磁気へッドの衝撃によると思 われる磁気特性のエラーが多数認められ、比較例の磁気ディスク No. BO 11、 No. BO 21の歩留まりは 45%以下であった。 これらによって、 本発明のガ ラス基板を用いた磁気デイスクは耐衝撃性に優れることを確認した。 Impact resistance to check the degree of deterioration of magnetic characteristics due to damage to the magnetic disk when the magnetic disk device is dropped from the height of lm while rotating the disk at 6000 rpm Tested. As a result, magnetic disks No. A061, No. A191, and No. A221 using the glass substrate of the present invention all suffered little damage such as generation of errors due to impact resistance and scratches on the surface of the magnetic disk, and 90% or less. The above yield was able to be obtained. On the other hand, in the magnetic disks No. BO 11 and No. 21 of the comparative examples, many errors in the magnetic characteristics considered to be caused by the impact of the magnetic head when the magnetic disk device was dropped were recognized. The yield of BO 11, No. BO 21 was less than 45%. From these, it was confirmed that the magnetic disk using the glass substrate of the present invention had excellent impact resistance.
以上、 本発明のガラス基板を用いた磁気ディスクを搭載した磁気ディスク装置 · は毎分 6000回転の高速回転に十分対応できることにより大容量化が可能とな つた。  As described above, the magnetic disk drive equipped with the magnetic disk using the glass substrate of the present invention can sufficiently increase the capacity of 6000 rotations per minute, thereby increasing the capacity.
本発明の実施の形態では 2. 5インチサイズのガラス基板、 磁気ディスク及び その装置について実施例を用いて説明したが、 1インチ、 3インチ、 3. 5イン チまたはそれ以外のサイズにも適用できる技術である。  In the embodiment of the present invention, a 2.5-inch size glass substrate, a magnetic disk, and a device therefor have been described using the embodiment, but the present invention is also applicable to 1-inch, 3-inch, 3.5-inch or other sizes. It is a technology that can be done.
(実施例 3)  (Example 3)
本実施例は実施例 2と同様にガラス組成物を用いた光ディスクとその装置の例 である。 光ディスクはガラス基板を中心に両面に反射膜、 記録膜及び保護膜が順 次設けられ、 更に潤滑材が塗布されている。 ガラス基板には、 直径 120mm、 厚さ 12 mmノガラス基板が用いられる。 反射膜には 100]1111の 1ー3%丁 i合金薄膜,記録膜 (こは C o— S i系酸化物薄膜、 保護膜には 50nmの Si〇2 薄膜及び潤滑材には 1 Onmの厚さが設けられている。 光ディスクを搭載した情 報記録再生装置の筐体内には光ディスクを回転させるスピンドルモー夕、 光へヅ ドの位置決めをするァクチユエ一夕一 VCMコイルが設けられている。 光へヅド はチタン酸カルシュゥム系のスライダー埋め込み、 ァクチエイ夕一の先端に取り 付けた。 This embodiment is an example of an optical disk using a glass composition and an apparatus therefor, as in the second embodiment. The optical disc has a reflective film, a recording film, and a protective film sequentially provided on both sides of a glass substrate, and is further coated with a lubricant. A glass substrate with a diameter of 120 mm and a thickness of 12 mm is used as the glass substrate. 1 over 3% Ding i alloy thin reflective film 100 'in 1111, a recording film (This C o-S i based oxide thin film, of 1 onm in Si_〇 2 thin film and lubricant 50nm the protective film A housing of the information recording / reproducing apparatus on which the optical disk is mounted is provided with a spindle motor for rotating the optical disk and an actuator VCM coil for positioning the optical head. The light head is embedded with a calcium titanate-based slider, and is attached to the tip of the actuator. I attached.
本実施例では、 近接場光を発生する光ヘッドを用いて、 光ディスクへの記録及 び再生を行う。 近接場光は半円球状のレンズの円球面上にレーザー光を照射し、 焦点を結ばせたときに焦点面から漏れ出すレーザー光波長の 1Z10程度の光で ある。  In the present embodiment, recording and reproduction on an optical disk are performed using an optical head that generates near-field light. The near-field light is a laser beam having a wavelength of about 1Z10 that leaks out of the focal plane when a laser beam is irradiated onto the spherical surface of a hemispherical lens and the beam is focused.
光へヅドには半球面レンズを用い、 この半球面レンズ上に波長 41 Onmのレ —ザ一光を照射して直径 125 nmの近接場光を得た。 光へヅ ドの浮上距離を光 ディスク表面から 5 Onmにして、 この近接場光を光ディスクに照射し、 記録膜 に目己 を行っ 。  A hemispherical lens was used as the light head, and a laser beam with a wavelength of 41 Onm was irradiated on the hemispherical lens to obtain near-field light with a diameter of 125 nm. The flying distance of the optical head was set to 5 Onm from the surface of the optical disc, and the near-field light was applied to the optical disc to look at the recording film.
従って、 光ディスク記録及び再生に、 高速での回転と、 近接場光を発生する光 ヘッドを用いれば、 より高密度に情報を記録することができ、 かつ、 より精度よ く再生することができる。  Therefore, if an optical head that rotates at high speed and generates near-field light is used for recording and reproduction on an optical disk, information can be recorded at a higher density and reproduction can be performed with higher accuracy.
産業上の利用可能性 Industrial applicability
本発明によればヤング率が 90〜; L 30GPa、 50 Og荷重によるビヅ力一 ス硬度測定時の圧痕ェッジ部からのクラック発生率が 0〜 50%であることを特 徴とするガラス基板を磁気ディスクに用いることによって、 磁気ディスクの高速 回転に十分対応でき、 また磁気へヅドによる耐衝撃性を十分に満足できる。 これ らの磁気デイスクを用いることにより大容量化及び耐衝撃性に優れる磁気ディス ク装置を提供することができる。  According to the present invention, a glass substrate characterized by having a Young's modulus of 90 to 90%; a crack occurrence rate from an indentation edge portion at the time of measuring a force of hardness under a load of 30 GPa and 50 Og of 0 to 50%. By using this for a magnetic disk, it is possible to sufficiently cope with high-speed rotation of the magnetic disk and to sufficiently satisfy the impact resistance due to the magnetic head. By using these magnetic disks, it is possible to provide a magnetic disk device having a large capacity and excellent shock resistance.

Claims

請 求 の 範 囲 The scope of the claims
1. モル比で、 S i〇2に換算して 40〜80%、 A 1203に換算して 10〜 30%及び Na20に換算して 8〜10 %を含む酸化物からなることを特徴とす るガラス組成物。 1. molar ratio, consisting of S I_〇 40% to 80% in terms of 2, A 1 2 0 3 in terms of 10 to 30% and Na 2 0 in terms of oxide containing 8% to 10% A glass composition characterized by the following.
2. モル比で、 S i02に換算して 40〜80%、 A 1203に換算して 10〜 30%、 Na20に換算して 8〜10 %及び L i 20に換算して 2〜 10%を含む 酸化物からなることを特徴とするガラス組成物。 2. at a molar ratio of 40% to 80% in terms of S i0 2,. 10 to 30 percent in terms of A 1 2 0 3, in terms of 8 to 10% and L i 2 0 in terms of Na 2 0 A glass composition comprising an oxide containing 2 to 10% by weight.
3. モル比で、 S i02に換算して 40〜80%、 A 1203に換算して 10〜 30%、 Na2◦に換算して8〜10%及びM2O3 (Mは III A族元素) に換算し て 1〜30%を含む酸化物からなることを特徴とするガラス組成物。 3. molar ratio, 40% to 80% in terms of S i0 2, A 1 2 0 3 in terms of 10~ 30%, Na 2 8~10% in terms of ◦ and M 2 O 3 (M A glass composition comprising an oxide containing 1 to 30% in terms of IIIA element).
4. モル比で、 S i02に換算して 40〜80%、 A 1203に換算して 10〜 30%、 Na20に換算して 8~20 %及び Y203に換算して 2〜 30 %を含む 酸化物からなることを特徴とするガラス組成物。 4. molar ratio, 40% to 80% in terms of S i0 2, A 1 2 0 3 in terms of 10 to 30% 8 to 20% in terms of Na 2 0 and converted to Y 2 0 3 A glass composition comprising an oxide containing 2 to 30% by weight.
5. 請求項 1〜4のいずれかにおいて、 モル比で、 〇320に換算して20%以 下、 Κ20に換算して 10%以下及び8203に換算して20%以下の1種又は2 種以上を合計量で 20 %以下含む酸化物からなることを特徴とするガラス組成物。5. In claim 1, a molar ratio, Rei_3 2 20% hereinafter in terms of 0, 10% or less in terms of kappa 2 0 and 8 2 0 3 in terms of 20% A glass composition comprising an oxide containing 20% or less in total of one or more of the following.
6. 請求項;!〜 5のいずれかにおいて、 Sn02, Z r 02, T i 02, ZnO, CaO, MgO、 NiO及び V205の各々に換算して 1種又は 2種以上の合計量 で 20モル%以下を含む酸化物からなることを特徴とするガラス組成物。 6. Claims! In any of ~ 5, Sn0 2, Z r 0 2, T i 0 2, ZnO, CaO, MgO, in each one or more of the total amount in terms of the NiO and V 2 0 5 20 moles %, Which is made of an oxide containing not more than 10% by weight.
7.モル比で、 S i〇2に換算して 40〜80%、 A 1203に換算して 5〜30% Na20に換算して 8〜20%及び 120に換算して 1〜20%を含み、 Sn7. molar ratio, 40% to 80% in terms of S I_〇 2, in terms of 5 to 30% Na 2 0 in terms of A 1 2 0 3 in terms 8 to 20% and 1 2 0 Containing 1-20%, Sn
02, Z r 023 T i〇2, ZnO, CaO, MgO、 N i 0及び V205の各々に 換算して 1種又は 2種以上の合計量で 20%以下を含む酸化物からなることを特 徵とするガラス組成物。 0 2, Z r 0 23 T I_〇 2, ZnO, CaO, MgO, from in terms of each of the N i 0 and V 2 0 5 oxide containing 20% or less in one or more of the total amount A glass composition characterized in that:
8. 請求項 7において、 M23 (Mは III A族元素) に換算して 1〜30モル%を 含む酸化物からなることを特徴とするガラス組成物。 8. In claim 7, M 23 (M is III A group elements) glass composition characterized by comprising an oxide containing 1 to 30 mol% in terms of.
9. 請求項 1〜 8のいずれかに記載のガラス組成物よりなるガラス ¾反表面上に 情報記録薄膜を有することを特徴とする情報記録媒体用基板。 9. A substrate for an information recording medium, comprising: a glass comprising the glass composition according to any one of claims 1 to 8; and an information recording thin film on the surface.
10. ガラス基板表面上に形成された情報記録薄膜を有する情報記録媒体用基板 において、 前記ガラス基板のヤング率が 90〜 13 OGP a、 熱膨張係数が 60 〜100 X 10— 7/°C、 500 g荷重によるビッカース硬度測定時のクラック発 生率が 50 %以下であることを特徴とする情報記録媒体用基板。 10. In the substrate for information recording medium having an information recording thin film formed on a glass substrate surface, the Young's modulus is 90 to 13 OGP a of the glass substrate, the thermal expansion coefficient of 60 ~100 X 10- 7 / ° C , A substrate for an information recording medium, wherein a crack occurrence rate when measuring Vickers hardness under a load of 500 g is 50% or less.
11. 前記ガラス基板において J I S-R3502で測定されるガラスの耐水性 が、 アルカリ溶出量で 0〜0. 2mgであることを特徴とする請求項 10に記載 の情報記録媒体用基板。  11. The information recording medium substrate according to claim 10, wherein the water resistance of the glass measured by JIS-R3502 in the glass substrate is from 0.2 to 0.2 mg as an alkali elution amount.
12. ガラス基板表面上に酸化コバルトを主成分とする層を介して形成された情 報記録薄膜を有する情報記録媒体用基板を有する磁気ディスクにおいて、 前記ガ ラス基板はモル比で S i02に算換して 40〜80%、 A 1203に換算して 5〜 30%、 Na20に換算して 8〜20 %、 Cs20に換算して 0〜20 %、 M203 (Mは ΙΠΑ族元素)に換算して 0〜30%及び Ln203 (Lnは希土類元素) に換 算して 0〜10%を含む酸化物から構成されることを特徴とする磁気ディスク。 .12. In a magnetic disk having an information recording medium substrate having an information recording thin film formed on a glass substrate surface via a layer containing cobalt oxide as a main component, the glass substrate has a molar ratio of SiO 2 . San換to 40% to 80%, 5 to 30% in terms of a 1 2 0 3, 8~20% in terms of Na 2 0, 0 to 20% in terms to the Cs 2 0, M 2 0 3 (M is ΙΠΑ group elements) magnetic, characterized in that they are composed of oxides (the Ln rare earth element) 0-30% and Ln 2 0 3 in terms of containing 0-10% by translated into disk. .
13. 前記ガラス基板は、 モル比で、 L i20に換算して 0〜20%、 K20に 換算して 0 ~ 10 %及び Β 203に換算して 0〜 20 %の 1種以上の酸化物を含 むことを特徴とする請求項 12に記載の磁気ディスク。 13. The glass substrate, the molar ratio, L i 2 0 in terms of 0-20%, in terms of K 2 0 0 ~ 10% and beta 2 03 in terms of 0 to 20% of one or 13. The magnetic disk according to claim 12, comprising the above oxide.
14. 前記ガラス基板は、 Sn02、 Zr02、 Ti02、 ZnO、 Ca〇、 Mg ◦、 N i 0及び V205の各々の酸ィ匕物に換算して 1種又は 2種以上を合計で 20 モル%以下含む酸ィ匕物からなることを特徴とする請求項 12又は 13に記載の磁 気ディスク。 14. The glass substrate, Sn0 2, Zr0 2, Ti0 2, ZnO, Ca_〇, Mg ◦, 1 or in terms of each of the Sani匕物of N i 0 and V 2 0 5 or two or more 14. The magnetic disk according to claim 12, wherein the magnetic disk is composed of an oxidized product containing 20 mol% or less in total.
15. ガラス基板表面上に酸ィ匕コバルトを主成分とする層を介して形成された情 報記録薄膜を有する情報記録媒体用基板を有する磁気ディスクにおいて、 前記情 報記録媒体用基板は請求項 9〜: 11のいずれかに記載の情報記録媒体用基板より 成ることを特徴とする磁気ディスク。  15. A magnetic disk having an information recording medium substrate having an information recording thin film formed on a glass substrate surface via a layer containing cobalt oxide as a main component, wherein the information recording medium substrate is formed as described in claims. 9 to: A magnetic disk comprising the information recording medium substrate according to any one of 11 to 11.
16. ガラス基板表面上に形成された情報記録薄膜を備えたディスク、 前記情報 を記録又は再生する記録再生へヅド及び前記ディスクを回転させるスピンドルモ 一夕を有する情報記録再生装置において、 前記ガラス基板はそのヤング率が 9 0 〜1 3 O GP a及び 5 0 0 gで 1 5秒間の荷重によるピツカ一ス硬度測定時のク ラック発生率が 5 0 %以下であることを特徴とする情報記録再生装置。 16. A disc having an information recording thin film formed on a glass substrate surface, the information An information recording / reproducing apparatus having a recording / reproducing head for recording or reproducing data and a spindle motor for rotating the disk, wherein the glass substrate has a Young's modulus of 90 to 13 OGPa and 500 g. An information recording / reproducing apparatus characterized in that a crack occurrence rate at the time of measuring the hardness of a picker under a load of 15 seconds is 50% or less.
1 7 . ガラス基板表面上に形成された情報記録薄膜を備えたディスク、 前記情報 を記録又は再生する記録再生へヅド及び前記ディスクを回転させるスピンドルモ —夕を有する情報記録再生装置において、 前記ディスクは請求項 9〜1 1のいず れかに記載の情報記録媒体用基板よりなることを特徴とする情報記録再生装置。  17. A disc provided with an information recording thin film formed on a surface of a glass substrate, a recording / reproducing head for recording or reproducing the information, and a spindle motor for rotating the disc, the information recording / reproducing apparatus comprising: An information recording / reproducing apparatus, wherein the disc comprises the information recording medium substrate according to any one of claims 9 to 11.
1 8 . ガラス基板表面上に酸化コバルトを主成分とした層を介して形成された磁 性薄膜を備えた磁気ディスク、 情報を記録又は再生する磁気へッド及び前記磁気 ディスクを回転させるスピンドルモー夕を備えた磁気ディスク装置において、 前 記ガラス基板はそのヤング率が 9 0〜 1 3 O GP a及び 5 0 0 gで 1 5秒間の荷 重によるビヅカース硬度測定時のクラック発生率が 5 0 %以下であることを特徴 とする磁気ディスク装置。 18. A magnetic disk provided with a magnetic thin film formed on a glass substrate surface via a layer mainly composed of cobalt oxide, a magnetic head for recording or reproducing information, and a spindle motor for rotating the magnetic disk In a magnetic disk drive equipped with a glass substrate, the glass substrate has a Young's modulus of 90 to 13 OGPa and a crack generation rate of 500 g under a load of 150 seconds when measuring Beakers hardness by 50 seconds. % Or less.
1 9 . ガラス基板表面上に酸ィ匕コバルトを主成分とした層を介して形成された磁 性薄膜を備えた磁気ディスク、 情報を記録又は再生する磁気へッド及び前記磁気 デイスクを回転させるスピンドルモー夕を備えた磁気ディスク装置において、 前 記ガラス基板はモル比で、 S i〇2に換算して 4 0〜8 0 %、 A 1 203に換算し て 5〜3 0 %、 N a 20に換算して 8〜2 0 %及び C s 2 0に換算して 0〜2 0 %、 M2O3(Mは ΙΠΑ族元素)に換算して 0〜3 0 %を含む酸ィ匕物からなることを特徴 とする磁気ディスク装置。 19. A magnetic disk provided with a magnetic thin film formed on a glass substrate surface via a layer mainly composed of cobalt oxide, a magnetic head for recording or reproducing information, and rotating the magnetic disk in a magnetic disk apparatus having a spindle motor evening, before Symbol glass substrate molar ratio, in terms of S I_〇 2 4 0-8 0%, in terms of a 1 2 0 3 5 to 3 0%, in terms of N a 2 0 8 to 2 0% and C s 2 0 to 2 0% in terms of 0, M 2 O 3 (M is ΙΠΑ group element) containing 0-3 0% in terms of A magnetic disk drive comprising an acid ridden object.
2 0 . ガラス基板表面上に酸ィ匕コバルトを主成分とした層を介して形成された磁 性薄膜を備えた磁気ディスク、 情報を記録又は再生する磁気へッド及び前記磁気 ディスクを回転させるスピンドルモー夕を備えた磁気ディスク装置において、 前 記ディスクは請求項 9〜1 1のいずれかに記載の情報記録媒体用基板よりなるこ とを特徴とする磁気ディスク装置。  20. A magnetic disk provided with a magnetic thin film formed on a glass substrate surface via a layer mainly composed of cobalt oxide, a magnetic head for recording or reproducing information, and rotating the magnetic disk A magnetic disk drive provided with a spindle motor, wherein the disk comprises the information recording medium substrate according to any one of claims 9 to 11.
2 1 . 直径 2、 5インチのガラス 表面上に酸ィ匕コバルトを主成分とした層を 介して形成された情報記録薄膜とからなる磁気ディスク、 情報を記録又は再生す る磁気へッド及び前記磁気ディスクを 6 0 0 0 r p m以上回転させるスピンドル モ一夕を備えた磁気ディスク装置であって、 前記ガラス基板はそのヤング率が 9 0〜1 3 0 GP a及び 5 0 0 で1 5秒間の荷重によるビヅカース硬度測定時の クラック発生率が 5 0 %以下であることを特徴とする磁気ディスク装置。 2 1. A layer mainly composed of cobalt oxide is placed on a glass surface with a diameter of 2 or 5 inches. A magnetic disk comprising an information recording thin film formed through the magnetic disk, a magnetic head for recording or reproducing information, and a spindle motor for rotating the magnetic disk at 600 rpm or more. Wherein the glass substrate has a Young's modulus of 90 to 130 GPa and a crack generation rate of 50% or less when measuring Beakers hardness under a load of 150 seconds with a load of 50,000. Disk device.
PCT/JP2000/004614 2000-07-10 2000-07-10 Glass composition, and substrate for information recording medium, magnetic disk, information recording/reproducing device and magnetic disk device using the same WO2002004371A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/004614 WO2002004371A1 (en) 2000-07-10 2000-07-10 Glass composition, and substrate for information recording medium, magnetic disk, information recording/reproducing device and magnetic disk device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/004614 WO2002004371A1 (en) 2000-07-10 2000-07-10 Glass composition, and substrate for information recording medium, magnetic disk, information recording/reproducing device and magnetic disk device using the same

Publications (1)

Publication Number Publication Date
WO2002004371A1 true WO2002004371A1 (en) 2002-01-17

Family

ID=11736251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004614 WO2002004371A1 (en) 2000-07-10 2000-07-10 Glass composition, and substrate for information recording medium, magnetic disk, information recording/reproducing device and magnetic disk device using the same

Country Status (1)

Country Link
WO (1) WO2002004371A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102927A1 (en) * 2002-06-03 2003-12-11 Hoya Corporation Glass substrate for information recording media and information recording medium
JP2006290704A (en) * 2005-04-14 2006-10-26 Hitachi Ltd Glass
JP2006327935A (en) * 2006-08-25 2006-12-07 Konica Minolta Opto Inc Glass substrate
JP2010184862A (en) * 2010-03-23 2010-08-26 Konica Minolta Opto Inc Glass substrate
US20140141226A1 (en) * 2012-11-21 2014-05-22 Corning Incorporated Ion exchangeable glasses having high hardness and high modulus
JP2016155750A (en) * 2006-06-08 2016-09-01 Hoya株式会社 Glass for use in substrate for information recording medium, substrate for information recording medium and information recording medium and their production methods
JP2019519452A (en) * 2016-05-06 2019-07-11 コーニング インコーポレイテッド Glass composition maintaining high compressive stress after heat treatment after ion exchange
CN113474308A (en) * 2019-02-25 2021-10-01 日本板硝子株式会社 Glass composition, glass plate and method for producing same, and substrate for information recording medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714143A (en) * 1993-06-28 1995-01-17 Hitachi Ltd Magnetic recording medium and its production
JPH09249431A (en) * 1997-03-10 1997-09-22 Hoya Corp Glass substrate for recording medium, recording medium and its production
JPH10231134A (en) * 1997-02-24 1998-09-02 Nagaoka Sangyo:Kk Cutting device
JPH1111974A (en) * 1997-06-20 1999-01-19 Nippon Sheet Glass Co Ltd Glass substrate for magnetic recording medium
JPH1160205A (en) * 1997-08-04 1999-03-02 Yaskawa Electric Corp Ozonizer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714143A (en) * 1993-06-28 1995-01-17 Hitachi Ltd Magnetic recording medium and its production
JPH10231134A (en) * 1997-02-24 1998-09-02 Nagaoka Sangyo:Kk Cutting device
JPH09249431A (en) * 1997-03-10 1997-09-22 Hoya Corp Glass substrate for recording medium, recording medium and its production
JPH1111974A (en) * 1997-06-20 1999-01-19 Nippon Sheet Glass Co Ltd Glass substrate for magnetic recording medium
JPH1160205A (en) * 1997-08-04 1999-03-02 Yaskawa Electric Corp Ozonizer

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102927A1 (en) * 2002-06-03 2003-12-11 Hoya Corporation Glass substrate for information recording media and information recording medium
JPWO2003102927A1 (en) * 2002-06-03 2005-09-29 Hoya株式会社 Glass substrate for information recording medium and information recording medium
JP4619115B2 (en) * 2002-06-03 2011-01-26 Hoya株式会社 Glass substrate for information recording medium and information recording medium
JP2006290704A (en) * 2005-04-14 2006-10-26 Hitachi Ltd Glass
JP2016155750A (en) * 2006-06-08 2016-09-01 Hoya株式会社 Glass for use in substrate for information recording medium, substrate for information recording medium and information recording medium and their production methods
JP2006327935A (en) * 2006-08-25 2006-12-07 Konica Minolta Opto Inc Glass substrate
JP2010184862A (en) * 2010-03-23 2010-08-26 Konica Minolta Opto Inc Glass substrate
KR20150126816A (en) * 2012-11-21 2015-11-13 코닝 인코포레이티드 Ion exchangeable glasses having high hardness and high modulus
CN104936911A (en) * 2012-11-21 2015-09-23 康宁股份有限公司 Ion exchangeable glasses having high hardness and high modulus
JP2015535521A (en) * 2012-11-21 2015-12-14 コーニング インコーポレイテッド Ion-exchangeable glass with high hardness and high elastic modulus
US20140141226A1 (en) * 2012-11-21 2014-05-22 Corning Incorporated Ion exchangeable glasses having high hardness and high modulus
US10501364B2 (en) 2012-11-21 2019-12-10 Corning Incorporated Ion exchangeable glasses having high hardness and high modulus
KR102256457B1 (en) * 2012-11-21 2021-05-27 코닝 인코포레이티드 Ion exchangeable glasses having high hardness and high modulus
JP2019519452A (en) * 2016-05-06 2019-07-11 コーニング インコーポレイテッド Glass composition maintaining high compressive stress after heat treatment after ion exchange
CN113474308A (en) * 2019-02-25 2021-10-01 日本板硝子株式会社 Glass composition, glass plate and method for producing same, and substrate for information recording medium
EP3932881A4 (en) * 2019-02-25 2022-11-23 Nippon Sheet Glass Company, Limited Glass composition, glass plate and method for producing same, and substrate for information recording medium
CN113474308B (en) * 2019-02-25 2023-08-22 日本板硝子株式会社 Glass composition, glass plate, method for producing same, and substrate for information recording medium

Similar Documents

Publication Publication Date Title
US8603653B2 (en) Glass for magnetic recording medium substrate, magnetic recording medium substrate and method of manufacturing the same, and magnetic recording medium
US7015161B2 (en) Substrate for information recording medium and magnetic recording medium composed of crystallized glass
WO2015037609A1 (en) Glass for magnetic recording medium substrate, and magnetic recording medium substrate
WO2012057338A1 (en) Glass substrate for use in magnetic storage medium, magnetic storage medium, and glass substrate blank for use in magnetic storage medium
JP3211683B2 (en) Glass substrate for information recording disk
JP5993306B2 (en) Glass substrate for magnetic recording medium and use thereof
JP7165655B2 (en) Glass for information recording medium substrate, information recording medium substrate, information recording medium and glass spacer for recording/reproducing device
JP3950203B2 (en) Glass with high specific modulus
WO2002004371A1 (en) Glass composition, and substrate for information recording medium, magnetic disk, information recording/reproducing device and magnetic disk device using the same
JP6042875B2 (en) Glass for magnetic recording medium substrate, glass substrate for magnetic recording medium and use thereof
JP3793401B2 (en) Substrate for information recording medium made of crystallized glass and information recording medium
JP2004206741A (en) Glass substrate for magnetic disk, and magnetic disk using the same
JP4619115B2 (en) Glass substrate for information recording medium and information recording medium
JP4323598B2 (en) Crystallized glass for information recording disks
JP4045076B2 (en) Glass substrate for information recording disk
JP7488416B2 (en) Glass for a magnetic recording medium substrate or a glass spacer for a magnetic recording/reproducing device, a magnetic recording medium substrate, a magnetic recording medium, a glass spacer for a magnetic recording/reproducing device, and a magnetic recording/reproducing device
JP4043171B2 (en) Method for producing crystallized glass for information recording disk
JP3793003B2 (en) Crystallized glass substrate for information recording media
JP2004220719A (en) Substrate for information recording medium, information recording medium and its manufacturing method, and information recording device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)