JP2004206741A - Glass substrate for magnetic disk, and magnetic disk using the same - Google Patents

Glass substrate for magnetic disk, and magnetic disk using the same Download PDF

Info

Publication number
JP2004206741A
JP2004206741A JP2002371271A JP2002371271A JP2004206741A JP 2004206741 A JP2004206741 A JP 2004206741A JP 2002371271 A JP2002371271 A JP 2002371271A JP 2002371271 A JP2002371271 A JP 2002371271A JP 2004206741 A JP2004206741 A JP 2004206741A
Authority
JP
Japan
Prior art keywords
magnetic disk
glass substrate
substrate
glass
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002371271A
Other languages
Japanese (ja)
Other versions
JP4193489B2 (en
Inventor
Motoyuki Miyata
素之 宮田
Takashi Naito
孝 内藤
Hirotaka Yamamoto
浩貴 山本
Hiroyuki Akata
広幸 赤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002371271A priority Critical patent/JP4193489B2/en
Publication of JP2004206741A publication Critical patent/JP2004206741A/en
Application granted granted Critical
Publication of JP4193489B2 publication Critical patent/JP4193489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass substrate for a magnetic disk adaptive to high density recording, appropriate in thermal expanding coefficient, high in mechanical strength and excellent in mass-producibility, and to provide a magnetic disk using the substrate. <P>SOLUTION: The glass substrate contains rare-earth oxides of Pr, Nd, Sm and Eu. The thermal expanding coefficient of the substrate in the temperature range of 30 to 100°C is equal to or greater than 65x10<SP>-7</SP>/°C and equal to or less than 90x10<SP>-7</SP>/°C. Transmissivity of the substrate having thickness of 0.635mm in visible light beams having wavelengths of 300nm to 700nm is equal to or greater than 50% and equal to or less than 90%. When 1kOe magnetic field is applied to the substrate, the magnetization is made equal to or less than 3x10<SP>-3</SP>emu/cc. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、磁気ディスク用ガラス基板に係わり、特に熱膨脹係数及び機械的特性が適正で、さらに、量産性が良好な高密度記録に適した磁気ディスク用ガラス基板及びそれを用いた磁気ディスクに関する。
【0002】
【従来の技術】
現在、汎用大型コンピューターやパーソナルコンピューター用の記録媒体として、さらにはデジタル信号で配信される映像を一時的に保管する家庭用のサーバーとして、磁気ディスク装置が用いられている。従来はこの磁気ディスク用の基板として汎用向けやデスクトップ型のパーソナルコンピューター用途には3.5″ サイズのアルミニウム基板が、また持ち運び可能なノート型のパーソナルコンピューター用には主に2.5″ のガラス基板が用いられてきた。
【0003】
このガラス基板はアルミニウム基板に比べ硬くて変形し難く、かつ、表面平滑度が優れているため、前記汎用型の3.5″ あるいは3″サイズの基板にも適用されるようになってきている。さらには1.8″ ,1″といった小型携帯端末用の記録装置にもこのガラス基板が適用されようとしている。
【0004】
こうした小型化の他、磁気ディスク装置に対する大容量化の要請が強まっており、近年では年率100%の割合でその記憶容量が増大している。これに対応するには記録部の磁気ヘッドの浮上量をより低減させる必要があるため、より平滑な記録面を持つ磁気ディスクの開発が必要である。
【0005】
現在では、化学強化ガラス基板や、結晶化ガラス基板を用いることにより、ガラス本来の持つ割れの問題を克服している。しかしながら、化学強化された非晶質のガラス基板では、化学強化の工程の際、アルカリイオンの置換によって強化するために表面が荒れ、将来のヘッド低浮上化に対応することが難しい。さらに上記のような使用環境下では、化学強化ガラスの表面は、置換されたイオン半径の大きいアルカリイオンが化学的に不安定であるため、生産工程中の洗浄工程や成膜工程における加熱過程の際、あるいは長期間の使用や高温多湿といった環境のもとでこのアルカリイオンが基板表面に移動,析出し、磁性膜の磁気特性の劣化,膜の剥がれや粘着などの不良を生ずることが懸念される。
【0006】
一方、結晶化ガラス基板は、非晶質なガラスの中に結晶質の微粒子が生成しているが、この非晶質部分と結晶部分の硬度差により研磨速度が異なり、磁気ディスクに求められている更なる高密度化に対応できる十分な平滑性を持った記録面が作り難いという問題があった。
【0007】
上記のような問題を克服するため、発明者らは、特開平10−083531号公報に記載のように、ガラス基板に希土類イオンを含有させることにより機械的強度を高め、この問題を解決している。
【0008】
【特許文献1】
特開平10−083531号公報
【0009】
【発明が解決しようとする課題】
上記特開平10−083531号公報では、基板の機械的強度は高いガラス基板は得られるものの、磁気ディスク用ガラス基板として必要な特性である熱膨張係数の適正化や量産性が十分に考慮されているとは言いがたかった。そのため、熱衝撃などの熱的環境試験においてガラス基板とそれを支持する磁気ディスクドライブ装置部材との熱膨張特性の不整合によるクラックの発生による上記ドライブ装置の高速回転時に生じるトラックずれが発生することが考えられる。これは、今後の大容量化に伴い、より厳しい課題となるものと思われる。
【0010】
そこで本発明では、特に熱膨張係数および機械的特性が適正で、さらに、量産性が良好な高密度記録に適した磁気ディスク用ガラス基板及びそれを用いた磁気ディスクを得ることを目的とした。
【0011】
【課題を解決するための手段】
上記課題を解決するため、本発明の磁気ディスク用ガラス基板は、重量百分率で
SiO2:55%〜70%、
Al23:10%〜20%、
23:0%〜8%、
2O:13%〜17%(Rはアルカリ金属元素を表す)、
ZnO:0%〜10%、
の酸化物換算で示される酸化物を含有し、さらに下記の酸化物換算の重量百分率でPr23またはNd23を1%〜7%、またはSm23を2.5% 〜9%、またはEu23を2.5% 〜8%を含有し、前記R2O (Rはアルカリ金属元素を表す)が、Li2O ,Na2O ,K2O からなり、かつLi2O とNa2O の割合がLi2O/Na2Oの比で0.61以上,6.00以下であり、30℃〜100℃の温度範囲における熱膨張係数が65×10-7/℃以上,90×10-7/℃以下である。
【0012】
さらに本発明の磁気ディスク用ガラス基板は、厚さ0.635mm において、波長300nm〜700nmの可視光における透過率が50%以上90%以下であり、かつ1kOeの磁界を印加したときの磁化が3×10-3emu/cc以下である。
【0013】
また本発明の磁気ディスクは、磁気ディスク用ガラス基板と、この基板上に直接又は他の層を介して形成された磁性層を有する磁気ディスクであって、上記ガラス基板は重量百分率で
SiO2:55%〜70%、
Al23:10%〜20%、
23:0%〜8%、
2O:13%〜17%(Rはアルカリ金属元素を表す)、
ZnO:0%〜10%
の酸化物換算で示される酸化物を含有し、さらに下記の酸化物換算の重量百分率でPr23またはNd23を1%〜7%、またはSm23を2.5% 〜9%、またはEu23を2.5% 〜8%を含有し、前記R2O (Rはアルカリ金属元素を表す)が、Li2O ,Na2O ,K2O からなり、かつLi2O とNa2O の割合がLi2O/Na2Oの比で0.61以上,6.00以下であり、30℃〜100℃の温度範囲における熱膨張係数が65×10-7/℃以上,90×10-7/℃以下である。
【0014】
また本発明の磁気ディスクは、少なくともガラス基板と、その表面上に直接または他の層を介して形成される磁性膜とを有する磁気ディスクであって、厚さ0.635mm のガラス基板の波長300nm〜700nmの可視光における透過率が50%以上90%以下であり、かつこのガラス基板に1kOeの磁界を印加したときの磁化が3×10-3emu/cc以下である。
【0015】
【発明の実施の形態】
次に、本発明の実施の形態を詳細に説明する。
【0016】
【実施例1】
図1に、本発明による磁気ディスク基板の平面図を示す。本発明では磁気ディスク用ガラス基板1として直径65mmφ,厚さ0.635mmの2.5″型ガラス基板を作製した。なお、この基板は内周チャックのための直径20mmφの丸穴2が形成されている。また、この内周,外周部は、チャンファー部3が形成されている。このチャンファーは、基板エッジ部に両面45°の面取りがなされている。
【0017】
この磁気ディスク用ガラス基板の作製は、以下のようにして行った。まず、目的のガラス組成になるように定められた量の原料粉末を秤量して混合し、白金製の坩堝に入れて、電気炉中で1600℃で溶解した。原料が十分に溶解した後、攪拌羽をガラス融液に挿入し、約4時間攪拌した。その後、攪拌羽を取り出し、30分間静置した後、鋳型に融液を流し込むことによって直径約70mmφ,厚さ約1mmのガラスブロックを得た。その後、このガラスのガラス転移点付近までガラスブロックを再加熱し、徐冷して歪み取りを行った。
【0018】
次いで、歪み取りされたガラスブロックを内周,外周を同心円としてコアドリルを用いて切り出した。さらに、内外周をダイヤモンド砥石を用いてチャンファー部の面取り加工を行った。その後、両面を粗研磨し、次いでポリッシングを行い、さらに洗浄剤,純水で基板を洗浄し、磁気ディスク用ガラス基板とした。以上のように本発明の磁気ディスク用ガラス基板では、化学強化処理のような特別な強化処理を施していない。
【0019】
本基板上に磁性膜を成膜し、磁気ディスクを作製した。図2に、本発明で作製した磁気記録媒体の断面構造の概略図を示す。図2において1は本発明で作製したガラス基板、4は磁性膜の粒径を制御するための粒径制御層、5は磁性膜の配向を制御するための配向制御層、6は磁性膜、7は保護膜、8は潤滑膜である。本発明では4の粒径制御層としてNiAl系の合金膜を20nm成膜した。また5の配向制御層としてCrMo系合金薄膜を10nm、さらに6の磁性膜としてCoCrPrB系磁性膜を20nm成膜した。また保護膜にはCを4nm成膜した。これらの薄膜はすべてスパッタリング法を用いて成膜した。また潤滑膜はスパッタ終了後、塗布法によって形成した。
【0020】
以上のようにして作製した磁気ディスク用ガラス基板、及びそれに磁性膜を形成した磁気ディスクの特性,量産性を評価し、ガラス組成の検討を行った。
【0021】
まず、添加する希土類元素の種類に着目し、色々な組成のガラスを作製した。表1に、本発明で作製したガラスの組成、及びそれらのガラス基板及び磁気ディスクの特性を示す。
【0022】
【表1】

Figure 2004206741
【0023】
表1において、希土類元素以外の母ガラス組成は、同一組成のアルミノホウケイ酸ガラスとした。含有させる希土類酸化物の量はいずれも3重量%と一定にした。ガラス基板の特性として、マイクロビッカース硬さ,可視光の透過率、及び着色性及びガラス基板の歩留まりを評価した。マイクロビッカース硬さは荷重500g,荷重印加時間15秒の条件で荷重を印加し、10点の平均値として求めた。可視光の透過率は、分光光度計を用いて300nmから700nmまでの波長の分光透過率曲線より透過率スペクトルを測定し、この波長範囲の光の全透過率の積分値として求めた。着色性は目視により着色の程度を評価し、無色のものは×、着色しているものは○とした。歩留まりの評価は、ガラス基板をレーザー光照射による散乱光により異物数を検査する装置により評価し、気泡,研磨傷,かけ,表面異物等の不良がディスク片面当たり20個以上のものを不良としてカウントし、不良でないものの割合を評価した。
【0024】
また磁気ディスクの特性として磁化、及び磁化の標準偏差,記録再生特性及び磁気ディスクの歩留まりを評価した。また基板加工前のブロック作製から磁気ディスク作製にいたるまでの総合歩留まりを評価した。磁化及び磁化の標準偏差は、B−H曲線を振動試料型磁力計(VSM)によって測定し、磁性膜のヒステリシスループのバックグラウンド成分を基板からの磁性とし、そのバックグラウンド成分の大きさを評価した。表には磁界として1kOe印加したときのバックグラウンドの磁化の大きさを掲載した。
【0025】
またこの磁気ディスクの記録再生特性を評価した。図3に、本発明で作製した記録再生特性評価用の磁気ディスクドライブを示す。図3において、9は磁気ディスク、10はスピンドル、11は磁気ヘッド、12は磁気ヘッドのアーム、13はヘッドを駆動するためのボイスコイルモーター、14は全体を支える筐体である。なお、この図では記されていないが、磁気ディスク9の下部にはスピンドルモーターが設置されており、ディスク全体を回転させる。図3の磁気ディスクドライブに各磁気ディスクを搭載し、20Gb/in2 に相当する磁気信号を記録し、磁気記録再生特性を評価した。この評価を150枚のディスクに対して行い、十分な記録再生特性が得られたものの割合を磁気ディスク歩留まりとして表記した。
【0026】
さらに上記のガラス基板歩留まりと磁気ディスク歩留まりより総合歩留まりを評価した。総合での歩留まりが80%未満のものを×、80%以上90%未満のものを○、90%以上のものを◎とした。
【0027】
表1の基板特性のマイクロビッカース硬さはいずれの基板でも640以上が得られており、良好であることが分かった。また可視光の透過率は、いずれの基板でも80%以上であった。これらのうちNd,Pr,Sm,Eu,Ho,Erは可視光域に希土類のf−f遷移に起因するシャープな吸収が見られた。このため、他の元素に比べて透過率は若干低下しており、85%以下であった。しかしながらこの鋭い吸収のため、ガラス基板に明確な着色が見られた。白熱灯下での目視観察による評価では、Prは黄緑、Ndは紫色、Sm,Euは非常に淡いがそれぞれ黄色と桃色に着色しているのが見られた。また、Er,Hoも桃色に着色していた。
【0028】
そのほかの希土類元素を含有させた基板は無色であり、透過率はいずれも85%を超え、着色は見られなかった。
【0029】
これらの基板に対するガラス基板の歩留まりを評価すると、明瞭な着色の見られたPr,Nd,Sm,Eu,Ho,Erでは加工による不良、特に傷不良が着色していないものに比べて少なく、歩留まりが95%以上となった。これは、基板加工工程,洗浄工程において基板が可視であるため、取扱いが容易なことから歩留まりが向上したと考えられる。
【0030】
また比較例として酸化ニッケル(NiO)を含有する着色性の高いガラス基板について評価した。この基板は透過率が47%と低く、ガラス中に存在する気泡、あるいは熔融時のるつぼを構成する成分のガラス中への溶損を発見することが難しく、基板表面にこれらが残存することから歩留まりが低下していた。また若干NiO含有量を低下させ、透過率を50%以下としたガラス基板では、基板を光が透過して、基板内部を観察可能であることが分かった。このため、気泡などによる不良が減少し、歩留まりが向上した。
【0031】
以上のことから、透過率と磁気ディスクの歩留まりとの間に明瞭な相関関係が見られた。ガラス基板の透過率が50%以上90%以下のとき着色性が良好で、歩留まりが良好なガラス基板が得られた。透過率が50%未満となると基板中に残存する気泡,炉材混入が発見し難く、歩留まり低下の要因となった。また基板の透過率が90%をこえると、基板取扱いが難しくなり、傷などの加工不良が増加していたため、好ましいといえなかった。
【0032】
また上記の光学的な特性を達成するため、添加する元素はPr,Nd,Sm,Eu,Er又はHoが良好であることが分かった。このうち、Pr,Nd,Er又はHoであれば着色が顕著であり、より好ましかった。
【0033】
次に、磁気ディスクの磁気特性について評価した。Sc,Y,Laを含有した磁気ディスクでは、基板の磁化の大きさが10-4emu/ccのオーダーであり、きわめて小さい磁化量であった。Smを用いたときは、磁化は反磁性的な挙動を示しており、−4×10-4emu/ccとなった。またPr,Nd,Euでは1〜3×10-3emu/ccのオーダーであったが、Gd,Tb,Dy,Ho,Er,Tm,Ybでは5×10-3〜2×10-2emu/ccと、磁化の値が大きくなっていた。
【0034】
磁化の固体差を示す磁化の標準偏差を評価したところ、磁化の大きさの大きいものほど大きくなっており、基板によるばらつきが大きくなっていた。特に磁化の大きさが3×10-3を超えるGd,Tb,Dy,Ho,Er,Tm,Ybでは、磁化の標準偏差が1×10-3emu/cc以上となり、基板による磁気特性のばらつきが大きくなった。
【0035】
磁気記録再生特性による磁気ディスク歩留まりを見ると、磁化が3×10-3emu/cc以下で、磁化の標準偏差が1×10-3emu/cc未満の試料では、良好な磁気特性の得られる磁気ディスクが90%以上と良好であったが、磁化が3×10-3emu/ccを超え、かつ磁化の標準偏差が1×10-3emu/cc以上となる試料では、歩留まりが80%以下と急激に低下していることが分かった。これは、基板に含有される希土類元素の若干の固体差により基板の磁気特性が変化し、そのために標準偏差が大きくなるため、記録する際の磁界を一定にした場合の記録にばらつきが生じたためと考えられる。
【0036】
以上より、基板の磁化に与える影響が小さい希土類元素としてSc,Y,La,Pr,Nd,Sm,Euが良好であった。また、磁化の大きさが3×10-3emu/cc以下であれば磁気記録再生のばらつきが小さい磁気記録媒体が得られた。磁化の大きさが3×10-3emu/ccを超えると磁気記録再生特性に基板ごとのばらつきが大きくなるため、好ましいとはいえなかった。
【0037】
上記の光学的な特性が及ぼすガラス基板の歩留まりに与える影響、及び磁気的な特性が記録再生特性に及ぼす影響を考慮して総合歩留まりを評価した。その結果、両者とも良好なPr,Nd,Sm,Euを用いたガラス基板の場合、総合歩留まりが80%以上となり、良好であった。これに対してその他の希土類を添加した場合には、総合歩留まりが80%以下となるため、良好といえなかった。
【0038】
また、特に希土類元素としてPrを用いると、総合歩留まりが90%となり、さらに良好な結果が得られた。
【0039】
次に、希土類酸化物の種類と添加量の関係について詳細に調べた。着色については、表1で透明であったものについては含有量を増減させても透過率に変化は見られなかった。このため、着色した元素のうち、Pr,Er,Smについて、その含有量を変化させたガラス基板を作製し、表1と同様の検討を行った。表2に、検討した結果を示す。
【0040】
【表2】
Figure 2004206741
【0041】
Prの含有量を変化させていったところ、試料No.17のPr23を0.7 重量%含有するガラス基板では、マイクロビッカース硬さが低く、そのためガラスの機械的強度が低いためにガラス基板歩留まりが82%と低かった。1%の試料No.16、及び1.5% 〜7%の実施例18〜21では、マイクロビッカース硬さも高い値を示しており、着色,磁気特性とも良好であった。この事から総合歩留まりも80%を超えており、良好な結果となった。
【0042】
一方、試料No.22のようにPr23含有量が7%を超えるものでは着色に関しては問題無かったものの、磁気ディスクの磁化が3×10-3emu/ccを超える値となった。このため、磁化のばらつきが大きくなり、磁気ディスク歩留まりが80%を下回り、好ましい結果とは言えなかった。さらに実施例23のガラス基板ではガラス中の希土類元素が均一にガラス中に溶解せず、不良品数が多く、歩留まりが15%と低かった。このため、ガラス基板材料としては好ましくなかった。
【0043】
さらに希土類元素をErに変えた場合の実施例をみると、Er含有量が0.5%の試料No.25では含有量が少なく、マイクロビッカース硬さが小さいため、歩留まりが悪かった。またこのとき磁気ディスクの磁化の値が3.1 ×10-3emu/ccと高く、磁気ディスクとしての歩留まりも低下していた。またEr含有量が1%からEr含有量を増加させていくと、マイクロビッカース硬さも高くなり、透過率は低くなって基板歩留まりは上昇するものの、磁化が依然として3×10-3emu/ccを超えるため、基板としての歩留まりが低下していた。以上より、希土類元素としてErを用いた場合では、基板の硬さ,光学特性,磁気特性の両者を同時に満たす組成範囲が存在しないことが分かった。
【0044】
Smについてみると、光学的特性については2.5 重量%以上であると透過率が85%以下で適正な範囲となった。磁気特性は10重量%含有させても適正であったが、10重量%を超えるとPrの時と同様にガラス中に残存原料が残り、好ましくなかった。
【0045】
同様にNd,Eu,Hoについて検討を行ったところ、Nd,Euについては、8重量%を超える場合に磁気特性が良好でなかったものの、Smと同様の結果が得られた。HoについてはErと同じく、光学的特性と磁気特性の両者を同時に満たす組成範囲が存在しなかったたため、好ましい結果が得られなかった。
【0046】
以上より、光学的特性,磁気特性の双方で好ましい組成範囲をとる希土類元素としてPr,Nd,Sm,Euが良好であると判断できた。その中でもPr,
Ndを用いれば1重量%〜7重量%の組成範囲で良好な組成範囲をとることができた。またSmの場合では2.5 〜9重量%、Euの場合では2.5 〜8重量%で良好な特性を得ることができた。またPrを1.5重量%〜5.2重量%含有させた場合については、総合歩留まりが90%以上となり、非常に良好な結果が得られた。
【0047】
これらの希土類の含有量が少ないと、マイクロビッカース硬さなどの機械的強度が低かったり、透過率が高かったりし、ガラス基板の歩留まりが低下するため好ましくなかった。また希土類含有量が多いと、基板の磁化の値が大きくなるため、磁気特性が良好でなくなった。また、さらに多量に添加するとガラス中に原料が残存するため、好ましくなかった。
【0048】
【実施例2】
次に、磁気ディスク用ガラス基板として適切なガラス組成範囲について検討した。表3に、本発明で作製したガラス基板の実施例を示す。添加する希土類としては実施例1で良好な結果が得られたPrを用いた。表のガラス組成の中で、R2O とはLi2O ,Na2O ,K2O のトータルのアルカリ金属酸化物含有量を示す。
【0049】
【表3】
Figure 2004206741
【0050】
各試料について、磁気ディスク用ガラス基板作製の際のガラスの安定性,ガラス材の熱膨張係数,ガラス基板表面のマイクロビッカース硬さ,円環強度を示した。
【0051】
ここで、熱膨張係数は各ガラスのブロックを作製し、15mm×4mm×4mmの熱膨張測定用試験片を切り出し、熱膨張測定装置を用いて測定した。測定温度範囲は、30℃〜100℃とした。
【0052】
マイクロビッカース硬さは、ダイヤモンド圧子をガラス基板の表面に荷重500g,荷重印加時間15秒の条件で印加し、10点の平均値として求めた。
【0053】
また得られた基板より実施例1と同様に磁気ディスクを作製し、これを図3に示した磁気ディスクドライブに搭載してドライブの熱衝撃試験を実施した。熱衝撃試験によりガラスにクラックや割れ,トラックずれによる読み取りエラーなどの問題が生じなかった場合は○を、生じた場合を×とした。熱衝撃試験は−40℃で2時間保持後、80℃まで急速加熱させ、80℃で2時間保持後、−40℃まで急冷する。これを5回繰り返し、その間で上記した問題が生じるか否かを判定した。
【0054】
ガラスの安定性では、ガラス溶解後ガラス基板中に見られる気泡,脈理,異物などが顕著に見られたものは×とし、そのような物が見られず、清澄なガラスが得られた場合は○とした。
【0055】
また、円環強度は以下のようにして求めた。2.5″ 基板の内周部の上部に、外径22mmφの円環を載せ、また内径63mmφ,外径65mmφの円環の基板の下部に設置した後、円環に荷重をかけて破壊強度を測定した。
【0056】
まず、Li2O ,Na2O ,K2O のトータルのアルカリ酸化物量(表中のR2O )を変化させた試料を表3のNo.42〜49に示す。
【0057】
No.43,No.44のようにアルカリ金属酸化物含有量が13%未満のガラスを用いた場合、熱衝撃試験でガラスにクラックが生じた。また、逆にNo.49のようにアルカリ金属酸化物の含有量が17重量%を超えるような場合には、熱衝撃試験ではトラックずれによるエラーが生じ、また高速回転試験では回転歪が生じやすくなるため、トラックずれによるエラーが生じるため好ましくなかった。No.42,45〜48のガラスのようにアルカリ金属酸化物の合計の含有量が
13重量%〜17重量%の場合、熱衝撃試験で良好な結果が得られ、好ましい結果となった。
【0058】
これらのガラスの熱膨張係数に着目すると、表3よりNo.43,No.44のガラスはそれぞれ59×10-7/℃,61×10-7/℃とドライブ装置部材の熱膨張係数である70×10-7/℃〜80×10-7/℃よりもかなり小さくなっていた。これらのガラスでは、他の装置部材との熱膨張の差異により熱衝撃試験においてクラックが発生したりトラックずれが生じたりしたため、好ましいとは言えなかった。
【0059】
No.42,45〜48のガラスに示すように、熱膨張係数が65×10-7/℃以上,90×10-7/℃以下であれば熱衝撃試験で良好な結果が得られた。以上より、適正な熱膨張係数は65×10-7/℃以上,90×10-7/℃以下であった。
【0060】
つぎに、No.50〜55においてSiO2 含有量について検討した。SiO2 含有量が54重量%のNo.52のガラスでは、円環強度が十分でなく、磁気ディスク用ガラス基板として適切ではなかった。またNo.55のようにSiO2 量が70重量%を超えると、ガラス溶解時に気泡などの発生が顕著になり、好ましくなかった。以上より、SiO2 含有量は55重量%以上70重量%以下であると磁気ディスク用ガラス基板として良好な結果が得られた。
【0061】
次にAl23含有量について検討した。No.57のAl23含有量が21重量%であるガラスでは、ガラスの熔融温度が高くなりすぎ、1600℃の熔融ではガラスの原料が残存したため、好ましくなかった。Al23含有量が10重量%のNo.58に記載のガラスでは、安定したガラスが得られ、磁気ディスク用ガラス基板としても良好な結果が得られたが、Al23含有量が9.5重量%のNo.59ガラスでは、ガラス中に脈理等の不均一が生じた。以上より、Al23の含有量が10重量%以上,20重量%以下のとき良好なガラスが得られた。
【0062】
さらにB23含有量について検討した。B23含有量が増加するに伴い、円環強度は向上したが、No.60に示すように、9重量%であるガラスでは熱衝撃試験でガラスにクラックが生じた。以上より、B23含有量が8重量%以下であれば良好なガラスが得られた。
【0063】
ZnOに関しては、No.72に示すように、添加量が10重量%を超えるとガラス中に結晶の析出が著しくなり、安定なガラスを得ることが難しかった。10重量%ではこのような結晶の析出は認められなかった。従って、ZnO含有量は、10重量%以下であることが好ましかった。
【0064】
次に、アルカリ金属酸化物のうち、Li2O含有量とNa2O 含有量に着目して、組成比について検討した。Li2O/Na2O比が0.60 のNo.65のガラスおよび6.15 のNo.67のガラスでは熱衝撃試験においてガラスにクラックが発生し、また円環強度も低下しており、Li2O/Na2O 比としては、0.61以上,6.00以下であることが好ましかった。
【0065】
【発明の効果】
本発明の磁気ディスク用ガラス基板は、基板が着色しており、磁界印加時の磁化が小さいため、量産性に優れた磁気ディスク用ガラス基板、及びそれを用いた磁気ディスクが作製できる。さらに本発明の磁気ディスク用ガラス基板は熱膨張係数が65〜90×10-7/℃であるため磁気ディスクドライブ装置部材の熱膨張係数と整合性が良好なため、熱衝撃試験等によるガラスのクラック発生やトラックずれなどの問題が少ないため、高記録密度,高信頼性が要求される磁気ディスクの基板材料として最適である。
【図面の簡単な説明】
【図1】本発明の磁気ディスク用ガラス基板の平面図。
【図2】本発明の磁気ディスク用ガラス基板を用いた磁気ディスクの断面図。
【図3】本発明で作製した磁気ディスク装置の概略図。
【符号の説明】
1…磁気ディスク用ガラス基板、2…内周チャック用穴、3…チャンファー部、4…粒径制御層、5…配向制御層、6…磁性膜、7…保護膜、8…潤滑膜、9…磁気ディスク、10…スピンドル、11…磁気ヘッド、12…磁気ヘッドのアーム、13…ボイスコイルモーター、14…筐体。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a glass substrate for a magnetic disk, and more particularly to a glass substrate for a magnetic disk which has a proper thermal expansion coefficient and mechanical properties and is suitable for high-density recording with good mass productivity and a magnetic disk using the same.
[0002]
[Prior art]
At present, a magnetic disk device is used as a recording medium for a general-purpose large-sized computer or a personal computer, and also as a home server for temporarily storing video distributed by digital signals. Conventionally, a 3.5 "aluminum substrate has been used as a substrate for magnetic disks for general-purpose or desktop personal computers, and a 2.5" glass substrate has been mainly used for portable notebook personal computers. Has been used.
[0003]
Since this glass substrate is harder and harder to deform than an aluminum substrate, and has an excellent surface smoothness, it is also being applied to the general-purpose 3.5 "or 3" size substrate. . Furthermore, this glass substrate is about to be applied to recording devices for small portable terminals such as 1.8 "and 1".
[0004]
In addition to such miniaturization, there is an increasing demand for a magnetic disk device to have a large capacity, and in recent years, its storage capacity has been increasing at an annual rate of 100%. To cope with this, it is necessary to further reduce the flying height of the magnetic head of the recording unit, and therefore, it is necessary to develop a magnetic disk having a smoother recording surface.
[0005]
At present, the problem of cracks inherent in glass has been overcome by using a chemically strengthened glass substrate or a crystallized glass substrate. However, in the case of a chemically strengthened amorphous glass substrate, the surface is roughened due to replacement by alkali ions during the chemical strengthening process, and it is difficult to cope with a future low flying height of the head. Further, under the use environment as described above, the surface of the chemically strengthened glass is chemically unstable with the substituted alkali ions having a large ionic radius. It is feared that these alkali ions migrate and deposit on the substrate surface during use, or under long-term use or high-temperature, high-humidity environments, resulting in the deterioration of the magnetic properties of the magnetic film, and the occurrence of defects such as film peeling and adhesion. You.
[0006]
On the other hand, in the crystallized glass substrate, crystalline fine particles are generated in the amorphous glass, but the polishing rate is different due to the difference in hardness between the amorphous portion and the crystal portion, which is required for a magnetic disk. However, there is a problem that it is difficult to create a recording surface having sufficient smoothness to cope with further higher density.
[0007]
In order to overcome the above-described problems, the inventors have increased the mechanical strength by incorporating rare earth ions into a glass substrate as described in JP-A-10-083531, and solved this problem. I have.
[0008]
[Patent Document 1]
JP-A-10-083531
[0009]
[Problems to be solved by the invention]
In Japanese Patent Application Laid-Open No. 10-083531, although a glass substrate having a high mechanical strength can be obtained, optimization of the thermal expansion coefficient and mass productivity, which are characteristics required for a glass substrate for a magnetic disk, are sufficiently considered. It was hard to say that there was. Therefore, in a thermal environment test such as a thermal shock, a track shift occurs at the time of high-speed rotation of the drive device due to a crack due to a mismatch in thermal expansion characteristics between the glass substrate and a magnetic disk drive device member supporting the glass substrate. Can be considered. This seems to be a more severe issue as the capacity increases in the future.
[0010]
Therefore, an object of the present invention is to provide a glass substrate for a magnetic disk, which has a suitable thermal expansion coefficient and mechanical characteristics and is suitable for high-density recording with good mass productivity, and a magnetic disk using the same.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the glass substrate for a magnetic disk of the present invention has a weight percentage of
SiO Two : 55% to 70%,
Al Two O Three : 10% to 20%,
B Two O Three : 0% to 8%,
R Two O: 13% to 17% (R represents an alkali metal element),
ZnO: 0% to 10%,
Containing an oxide expressed in terms of oxide, and further containing Pr in the following weight percentage in terms of oxide: Two O Three Or Nd Two O Three From 1% to 7%, or Sm Two O Three From 2.5% to 9%, or Eu Two O Three From 2.5% to 8%, Two O (R represents an alkali metal element) is converted to Li Two O, Na Two O, K Two Consisting of O 2 and Li Two O and Na Two The proportion of O 2 is Li Two O / Na Two The ratio of O is 0.61 or more and 6.00 or less, and the coefficient of thermal expansion in the temperature range of 30 ° C. to 100 ° C. is 65 × 10 -7 / ℃ or more, 90 × 10 -7 / ° C or lower.
[0012]
Furthermore, the glass substrate for a magnetic disk of the present invention has a transmittance of 50% or more and 90% or less for visible light having a wavelength of 300 nm to 700 nm and a magnetization of 3 kPa when a magnetic field of 1 kOe is applied at a thickness of 0.635 mm. × 10 -3 emu / cc or less.
[0013]
Further, the magnetic disk of the present invention is a magnetic disk having a glass substrate for a magnetic disk and a magnetic layer formed directly or via another layer on the substrate, wherein the glass substrate is expressed in weight percentage.
SiO Two : 55% to 70%,
Al Two O Three : 10% to 20%,
B Two O Three : 0% to 8%,
R Two O: 13% to 17% (R represents an alkali metal element),
ZnO: 0% to 10%
Containing the oxide represented by the oxide conversion of Two O Three Or Nd Two O Three From 1% to 7%, or Sm Two O Three From 2.5% to 9%, or Eu Two O Three From 2.5% to 8%, Two O (R represents an alkali metal element) is converted to Li Two O, Na Two O, K Two Consisting of O 2 and Li Two O and Na Two The proportion of O 2 is Li Two O / Na Two The ratio of O is 0.61 or more and 6.00 or less, and the coefficient of thermal expansion in the temperature range of 30 ° C. to 100 ° C. is 65 × 10 -7 / ℃ or more, 90 × 10 -7 / ° C or lower.
[0014]
Further, the magnetic disk of the present invention is a magnetic disk having at least a glass substrate and a magnetic film formed directly or via another layer on the surface thereof, wherein the glass substrate having a thickness of 0.635 mm has a wavelength of 300 nm. Has a transmittance of 50% or more and 90% or less for visible light of up to 700 nm, and has a magnetization of 3 × 10 3 when a magnetic field of 1 kOe is applied to the glass substrate. -3 emu / cc or less.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described in detail.
[0016]
Embodiment 1
FIG. 1 shows a plan view of a magnetic disk substrate according to the present invention. In the present invention, a 2.5 ″ glass substrate having a diameter of 65 mm and a thickness of 0.635 mm was manufactured as a glass substrate 1 for a magnetic disk. In this substrate, a round hole 2 having a diameter of 20 mm for an inner peripheral chuck was formed. A chamfer portion 3 is formed on the inner and outer peripheries of the chamfer, and the chamfer is chamfered at 45 ° on both sides of a substrate edge portion.
[0017]
The production of the glass substrate for a magnetic disk was performed as follows. First, raw material powders in an amount determined to have a desired glass composition were weighed and mixed, put in a platinum crucible, and melted at 1600 ° C. in an electric furnace. After the raw materials were sufficiently dissolved, the stirring blade was inserted into the glass melt and stirred for about 4 hours. Thereafter, the stirring blade was taken out and allowed to stand for 30 minutes, and then a melt was poured into a mold to obtain a glass block having a diameter of about 70 mmφ and a thickness of about 1 mm. Thereafter, the glass block was reheated to near the glass transition point of the glass, and gradually cooled to remove strain.
[0018]
Next, the glass block from which the distortion was removed was cut out using a core drill with the inner circumference and the outer circumference being concentric circles. Furthermore, chamfering of the chamfer portion was performed on the inner and outer circumferences using a diamond grindstone. Thereafter, both surfaces were roughly polished, then polished, and the substrate was further washed with a detergent and pure water to obtain a glass substrate for a magnetic disk. As described above, the glass substrate for a magnetic disk of the present invention is not subjected to a special strengthening treatment such as a chemical strengthening treatment.
[0019]
A magnetic film was formed on this substrate to produce a magnetic disk. FIG. 2 shows a schematic diagram of a cross-sectional structure of a magnetic recording medium manufactured according to the present invention. In FIG. 2, 1 is a glass substrate produced by the present invention, 4 is a particle size control layer for controlling the particle size of the magnetic film, 5 is an orientation control layer for controlling the orientation of the magnetic film, 6 is a magnetic film, 7 is a protective film and 8 is a lubricating film. In the present invention, a NiAl-based alloy film having a thickness of 20 nm was formed as the grain size control layer 4. Further, a CrMo-based alloy thin film was formed as an orientation control layer of 5 nm by 10 nm, and a CoCrPrB-based magnetic film of 20 nm was formed as 6 magnetic films. C was deposited to a thickness of 4 nm on the protective film. All of these thin films were formed by a sputtering method. After the sputtering, the lubricating film was formed by a coating method.
[0020]
The characteristics and mass productivity of the magnetic disk glass substrate manufactured as described above and the magnetic disk on which the magnetic film was formed were evaluated, and the glass composition was examined.
[0021]
First, attention was paid to the types of rare earth elements to be added, and glasses having various compositions were produced. Table 1 shows the compositions of the glasses produced according to the present invention and the properties of the glass substrates and magnetic disks.
[0022]
[Table 1]
Figure 2004206741
[0023]
In Table 1, the mother glass composition other than the rare earth element was aluminoborosilicate glass having the same composition. The amount of the rare earth oxide to be contained was kept constant at 3% by weight. As characteristics of the glass substrate, micro Vickers hardness, transmittance of visible light, coloring property, and yield of the glass substrate were evaluated. The micro Vickers hardness was determined as an average value of 10 points by applying a load under the conditions of a load of 500 g and a load application time of 15 seconds. The transmittance of visible light was obtained by measuring a transmittance spectrum from a spectral transmittance curve of a wavelength from 300 nm to 700 nm using a spectrophotometer, and calculating the integrated value of the total transmittance of light in this wavelength range. The degree of coloring was visually evaluated to evaluate the degree of coloring. A colorless substance was evaluated as x, and a colored substance was evaluated as ○. Yield is evaluated by using a device that inspects the glass substrate for the number of foreign substances using scattered light from laser light irradiation, and counts defects with more than 20 defects on one side of the disc, such as bubbles, polishing scratches, chips, and surface foreign substances. Then, the ratio of non-defective products was evaluated.
[0024]
In addition, magnetization, standard deviation of magnetization, recording / reproduction characteristics, and yield of the magnetic disk were evaluated as characteristics of the magnetic disk. In addition, the overall yield from block fabrication before substrate processing to magnetic disk fabrication was evaluated. The magnetization and the standard deviation of the magnetization were measured by measuring the BH curve with a vibrating sample magnetometer (VSM), the background component of the hysteresis loop of the magnetic film was taken as the magnetism from the substrate, and the magnitude of the background component was evaluated. did. The table shows the magnitude of background magnetization when 1 kOe is applied as a magnetic field.
[0025]
The recording / reproducing characteristics of the magnetic disk were evaluated. FIG. 3 shows a magnetic disk drive for evaluation of recording and reproduction characteristics manufactured according to the present invention. In FIG. 3, 9 is a magnetic disk, 10 is a spindle, 11 is a magnetic head, 12 is an arm of the magnetic head, 13 is a voice coil motor for driving the head, and 14 is a housing for supporting the whole. Although not shown in this figure, a spindle motor is provided below the magnetic disk 9 to rotate the entire disk. Each magnetic disk is mounted on the magnetic disk drive of FIG. Two Was recorded, and the magnetic recording / reproducing characteristics were evaluated. This evaluation was performed for 150 disks, and the ratio of those having sufficient recording / reproducing characteristics was expressed as the magnetic disk yield.
[0026]
Further, the overall yield was evaluated from the above glass substrate yield and magnetic disk yield. When the overall yield was less than 80%, the result was x, when the yield was 80% or more and less than 90%, and the result was 90% or more.
[0027]
The micro Vickers hardness of the substrate characteristics shown in Table 1 was 640 or more for any of the substrates, which proved to be good. In addition, the transmittance of visible light was 80% or more for each of the substrates. Of these, Nd, Pr, Sm, Eu, Ho, and Er showed sharp absorption in the visible light region due to the ff transition of the rare earth. Therefore, the transmittance was slightly lower than that of the other elements, and was 85% or less. However, due to this sharp absorption, clear coloring was observed on the glass substrate. In the evaluation by visual observation under an incandescent lamp, it was found that Pr was yellowish-green, Nd was purple, and Sm and Eu were very pale but yellow and pink, respectively. Er and Ho were also colored pink.
[0028]
The substrates containing other rare earth elements were colorless, the transmittance exceeded 85%, and no coloring was observed.
[0029]
When the yield of the glass substrate with respect to these substrates was evaluated, Pr, Nd, Sm, Eu, Ho, and Er in which clear coloring was observed had fewer defects due to processing, particularly scratch defects, as compared with the non-colored substrate. Was 95% or more. It is considered that the yield was improved because the substrate was visible in the substrate processing step and the cleaning step, and the handling was easy.
[0030]
As a comparative example, a glass substrate containing nickel oxide (NiO) and having high coloring properties was evaluated. This substrate has a low transmittance of 47%, and it is difficult to find bubbles existing in the glass or erosion of the components constituting the crucible during melting in the glass, and these remain on the substrate surface. Yield was decreasing. In addition, it was found that in the case of a glass substrate having a slightly reduced NiO content and a transmittance of 50% or less, light was transmitted through the substrate and the inside of the substrate could be observed. For this reason, defects due to bubbles and the like were reduced, and the yield was improved.
[0031]
From the above, a clear correlation was found between the transmittance and the yield of the magnetic disk. When the transmittance of the glass substrate was 50% or more and 90% or less, a glass substrate having good colorability and a good yield was obtained. If the transmittance is less than 50%, bubbles remaining in the substrate and the mixture of furnace materials are hardly found, which causes a decrease in yield. On the other hand, if the transmittance of the substrate exceeds 90%, handling of the substrate becomes difficult and processing defects such as scratches increase, which is not preferable.
[0032]
In addition, it was found that Pr, Nd, Sm, Eu, Er or Ho was good as an element to be added in order to achieve the above optical characteristics. Among them, Pr, Nd, Er or Ho was more remarkable in coloring and was more preferable.
[0033]
Next, the magnetic characteristics of the magnetic disk were evaluated. In a magnetic disk containing Sc, Y, and La, the magnitude of magnetization of the substrate is 10 -Four It was of the order of emu / cc and had a very small magnetization. When Sm was used, the magnetization showed a diamagnetic behavior, and -4 × 10 -Four emu / cc. For Pr, Nd and Eu, 1-3 × 10 -3 The order of emu / cc was 5 × 10 for Gd, Tb, Dy, Ho, Er, Tm, and Yb. -3 ~ 2 × 10 -2 The value of magnetization was large, emu / cc.
[0034]
When the standard deviation of the magnetization indicating the individual difference of the magnetization was evaluated, the larger the magnitude of the magnetization, the larger the standard deviation and the larger the variation depending on the substrate. In particular, the magnitude of magnetization is 3 × 10 -3 For Gd, Tb, Dy, Ho, Er, Tm, and Yb, the standard deviation of magnetization is 1 × 10 -3 emu / cc or more, and variations in magnetic characteristics depending on the substrate increased.
[0035]
Looking at the magnetic disk yield due to the magnetic recording / reproducing characteristics, the magnetization is -3 At emu / cc or less, the standard deviation of magnetization is 1 × 10 -3 In the sample of less than emu / cc, the magnetic disk having good magnetic properties was as good as 90% or more, but the magnetization was 3 × 10 -3 emu / cc and the standard deviation of magnetization is 1 × 10 -3 It was found that in the sample having emu / cc or more, the yield sharply decreased to 80% or less. This is because the magnetic characteristics of the substrate change due to a slight difference in the solid content of the rare earth element contained in the substrate, and therefore the standard deviation increases. it is conceivable that.
[0036]
As described above, Sc, Y, La, Pr, Nd, Sm, and Eu were favorable as rare earth elements having a small effect on the magnetization of the substrate. In addition, the magnitude of magnetization is 3 × 10 -3 If it is less than emu / cc, a magnetic recording medium with small variations in magnetic recording and reproduction was obtained. Magnetization of 3 × 10 -3 If it exceeds emu / cc, the variation in magnetic recording / reproducing characteristics among the substrates increases, so that it is not preferable.
[0037]
The total yield was evaluated in consideration of the effects of the above optical characteristics on the yield of the glass substrate and the effects of the magnetic characteristics on the recording / reproducing characteristics. As a result, in the case of a glass substrate using Pr, Nd, Sm, and Eu, both of which were favorable, the total yield was 80% or more, which was favorable. On the other hand, when other rare earth elements were added, the total yield was not more than 80%, which was not good.
[0038]
In particular, when Pr was used as the rare earth element, the overall yield was 90%, and more favorable results were obtained.
[0039]
Next, the relationship between the type of rare earth oxide and the amount added was examined in detail. Regarding the coloring, those which were transparent in Table 1 showed no change in transmittance even when the content was increased or decreased. For this reason, among the colored elements, Pr, Er, and Sm were manufactured for glass substrates in which the contents were changed, and the same examination as in Table 1 was performed. Table 2 shows the results of the study.
[0040]
[Table 2]
Figure 2004206741
[0041]
When the content of Pr was changed, Pr of sample No. 17 was changed. Two O Three The glass substrate containing 0.7% by weight had a low micro Vickers hardness and a low mechanical strength of the glass, resulting in a low glass substrate yield of 82%. In the sample No. 16 of 1% and the examples 18 to 21 of 1.5% to 7%, the micro Vickers hardness also showed a high value, and both the coloring and the magnetic properties were good. As a result, the overall yield exceeded 80%, which was a good result.
[0042]
On the other hand, as shown in sample No. 22, Pr Two O Three When the content exceeded 7%, there was no problem with coloring, but the magnetization of the magnetic disk was 3 × 10 -3 The value exceeded emu / cc. For this reason, the variation in magnetization was large, and the yield of the magnetic disk was less than 80%, which was not a favorable result. Further, in the glass substrate of Example 23, the rare earth elements in the glass were not uniformly dissolved in the glass, the number of defective products was large, and the yield was as low as 15%. For this reason, it was not preferable as a glass substrate material.
[0043]
Further, in an example in which the rare earth element was changed to Er, the sample No. 25 having an Er content of 0.5% had a low content and a low micro Vickers hardness, so that the yield was poor. At this time, the value of the magnetization of the magnetic disk is 3.1 × 10 -3 It was as high as emu / cc, and the yield as a magnetic disk was also low. When the Er content is increased from 1% to 1%, the Vickers hardness increases, the transmittance decreases, and the substrate yield increases, but the magnetization is still 3 × 10 5 -3 Since it exceeds emu / cc, the yield as a substrate has been reduced. From the above, it has been found that when Er is used as the rare earth element, there is no composition range that simultaneously satisfies both the hardness, the optical characteristics, and the magnetic characteristics of the substrate.
[0044]
As for Sm, when the optical property was 2.5% by weight or more, the transmittance was in an appropriate range at 85% or less. The magnetic properties were appropriate even when the content was 10% by weight, but when the content exceeded 10% by weight, the remaining raw materials remained in the glass as in the case of Pr, which was not preferable.
[0045]
Similarly, when Nd, Eu, and Ho were examined, the same results as those of Sm were obtained for Nd and Eu although the magnetic properties were not good when the content exceeded 8% by weight. As for Ho, there was no composition range satisfying both the optical characteristics and the magnetic characteristics at the same time as Er, and therefore, a favorable result was not obtained.
[0046]
From the above, it was determined that Pr, Nd, Sm, and Eu were favorable as rare earth elements having a preferable composition range in both optical characteristics and magnetic characteristics. Among them, Pr,
When Nd was used, a favorable composition range could be obtained in the composition range of 1% by weight to 7% by weight. In the case of Sm, 2.5 to 9% by weight, and in the case of Eu, 2.5 to 8% by weight, good characteristics could be obtained. When Pr was contained in an amount of 1.5 wt% to 5.2 wt%, the overall yield was 90% or more, and very good results were obtained.
[0047]
If the content of these rare earths is small, the mechanical strength such as micro Vickers hardness is low, the transmittance is high, and the yield of the glass substrate is unfavorably reduced. Also, when the rare earth content is large, the value of the magnetization of the substrate becomes large, so that the magnetic properties are not good. Further, if added in a larger amount, the raw materials remain in the glass, which is not preferable.
[0048]
Embodiment 2
Next, a glass composition range suitable for a glass substrate for a magnetic disk was examined. Table 3 shows examples of the glass substrate manufactured according to the present invention. As the rare earth to be added, Pr which obtained a good result in Example 1 was used. Among the glass compositions in the table, R Two O is Li Two O, Na Two O, K Two Shows the total alkali metal oxide content of O 2.
[0049]
[Table 3]
Figure 2004206741
[0050]
For each sample, the stability of the glass when preparing the glass substrate for a magnetic disk, the coefficient of thermal expansion of the glass material, the micro-Vickers hardness of the glass substrate surface, and the ring strength were shown.
[0051]
Here, the coefficient of thermal expansion was measured by preparing a block of each glass, cutting out a test piece for measuring thermal expansion of 15 mm × 4 mm × 4 mm, and using a thermal expansion measuring device. The measurement temperature range was 30 ° C to 100 ° C.
[0052]
The micro Vickers hardness was determined as an average value of 10 points by applying a diamond indenter to the surface of the glass substrate under the conditions of a load of 500 g and a load application time of 15 seconds.
[0053]
Further, a magnetic disk was prepared from the obtained substrate in the same manner as in Example 1, and was mounted on the magnetic disk drive shown in FIG. 3, and a thermal shock test of the drive was performed. When no problem such as a crack, a crack, or a reading error due to track deviation occurred in the glass by the thermal shock test, ○ was given, and when it occurred, X was given. In the thermal shock test, after heating at −40 ° C. for 2 hours, the material is rapidly heated to 80 ° C., kept at 80 ° C. for 2 hours, and rapidly cooled to −40 ° C. This was repeated five times, during which time it was determined whether or not the above-described problem occurred.
[0054]
Regarding the stability of the glass, if the bubbles, striae, foreign matter, etc., which are seen in the glass substrate after melting the glass, are marked as ×, and no such things are seen, and clear glass is obtained Is ○.
[0055]
The ring strength was determined as follows. A ring with an outer diameter of 22 mmφ is placed on the upper part of the inner peripheral part of the 2.5 ″ substrate, and the ring is mounted on the lower part of the ring with an inner diameter of 63 mmφ and an outer diameter of 65 mmφ. Was measured.
[0056]
First, Li Two O, Na Two O, K Two O 2 total alkali oxide amount (R in the table Two Samples with different O 2) are shown in Table 3 Nos. 42 to 49.
[0057]
When a glass having an alkali metal oxide content of less than 13%, such as No. 43 and No. 44, was used, cracks occurred in the glass in the thermal shock test. Conversely, when the content of the alkali metal oxide exceeds 17% by weight as in No. 49, an error due to track deviation occurs in the thermal shock test, and rotational distortion easily occurs in the high-speed rotation test. Therefore, an error due to track deviation occurs, which is not preferable. No. 42, 45-48, the total content of alkali metal oxides
In the case of 13% by weight to 17% by weight, good results were obtained in the thermal shock test, and preferable results were obtained.
[0058]
Focusing on the thermal expansion coefficients of these glasses, Table 3 shows that the glasses of No. 43 and No. -7 / ° C, 61 × 10 -7 / ° C and the thermal expansion coefficient of the drive device member, 70 × 10 -7 / ℃ ~ 80 × 10 -7 / ° C. These glasses were not preferable because cracks and track deviations occurred in a thermal shock test due to differences in thermal expansion from other device members.
[0059]
No. 42, 45 to 48, the coefficient of thermal expansion is 65 × 10 -7 / ℃ or more, 90 × 10 -7 / ° C or lower, good results were obtained in the thermal shock test. From the above, the proper coefficient of thermal expansion is 65 × 10 -7 / ℃ or more, 90 × 10 -7 / ° C or lower.
[0060]
Next, in Nos. 50 to 55, SiO Two The content was examined. SiO Two The glass of No. 52 having a content of 54% by weight had insufficient ring strength and was not suitable as a glass substrate for magnetic disks. Also, as in No. 55, SiO Two If the amount exceeds 70% by weight, bubbles and the like are remarkably generated during melting of the glass, which is not preferable. From the above, SiO Two When the content was 55% by weight or more and 70% by weight or less, good results were obtained as a glass substrate for a magnetic disk.
[0061]
Next, Al Two O Three The content was examined. No.57 Al Two O Three In the case of glass having a content of 21% by weight, the melting temperature of the glass was too high, and melting at 1600 ° C. was not preferable because the glass raw material remained. Al Two O Three In the glass described in No. 58 having a content of 10% by weight, a stable glass was obtained and a good result was obtained as a glass substrate for a magnetic disk. Two O Three In the case of No. 59 glass having a content of 9.5% by weight, non-uniformity such as striae occurred in the glass. From the above, Al Two O Three When the content of is not less than 10% by weight and not more than 20% by weight, good glass was obtained.
[0062]
Further B Two O Three The content was examined. B Two O Three As the content increased, the ring strength was improved, but as shown in No. 60, cracks occurred in the glass of 9% by weight in the thermal shock test. From the above, B Two O Three When the content was 8% by weight or less, good glass was obtained.
[0063]
As for ZnO, as shown in No. 72, when the addition amount exceeds 10% by weight, precipitation of crystals becomes remarkable in the glass, and it is difficult to obtain a stable glass. At 10% by weight, no such crystals were precipitated. Therefore, the ZnO content was preferably 10% by weight or less.
[0064]
Next, among the alkali metal oxides, Li Two O content and Na Two Focusing on the O 2 content, the composition ratio was examined. Li Two O / Na Two In the case of glass No. 65 having an O ratio of 0.60 and glass having a No. 67 of 6.15, cracks were generated in the glass in the thermal shock test, and the ring strength was also reduced. Two O / Na Two The O 2 ratio was preferably 0.61 or more and 6.00 or less.
[0065]
【The invention's effect】
Since the glass substrate for a magnetic disk of the present invention is colored and has low magnetization when a magnetic field is applied, a glass substrate for a magnetic disk excellent in mass productivity and a magnetic disk using the same can be manufactured. Further, the glass substrate for a magnetic disk of the present invention has a coefficient of thermal expansion of 65 to 90 × 10 -7 / ° C, which has good matching with the coefficient of thermal expansion of the magnetic disk drive device members, and has few problems such as cracks in the glass and track deviation due to thermal shock tests. Therefore, high recording density and high reliability are required. It is most suitable as a substrate material of a magnetic disk to be used.
[Brief description of the drawings]
FIG. 1 is a plan view of a glass substrate for a magnetic disk of the present invention.
FIG. 2 is a sectional view of a magnetic disk using the magnetic disk glass substrate of the present invention.
FIG. 3 is a schematic diagram of a magnetic disk drive manufactured by the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Glass substrate for magnetic disks, 2 ... Hole for inner peripheral chuck, 3 ... Chamfer part, 4 ... Particle size control layer, 5 ... Orientation control layer, 6 ... Magnetic film, 7 ... Protective film, 8 ... Lubricating film, 9 magnetic disk, 10 spindle, 11 magnetic head, 12 arm of magnetic head, 13 voice coil motor, 14 housing.

Claims (4)

重量百分率で
SiO2:55%〜70%、
Al23:10〜20%、
23:0%〜8%、
2O:13%〜17%(Rはアルカリ金属元素を表す)、
ZnO:0%〜10%、
の酸化物換算で示される酸化物を含有し、さらに下記の酸化物換算の重量百分率でPr23またはNd23を1%〜7%、またはSm23を2.5%〜9%、またはEu23を2.5% 〜8%を含有し、前記R2O (Rはアルカリ金属元素を表す)が、Li2O ,Na2O ,K2O からなり、かつLi2O とNa2O の割合がLi2O/Na2Oの比で0.61以上,6.00以下であり、30℃〜100℃の温度範囲における熱膨張係数が65×10-7/℃以上,90×10-7/℃以下であることを特徴とする磁気ディスク用ガラス基板。
55% ~70%,: SiO 2 in% by weight
Al 2 O 3 : 10 to 20%,
B 2 O 3: 0% ~8 %,
R 2 O: 13% to 17% (R represents an alkali metal element),
ZnO: 0% to 10%,
By weight of oxide represented in terms of oxide, further Pr 2 O 3 or Nd 2 O 3 1% to 7% in weight percentage of oxides in terms of the following, or Sm 2 O 3 2.5% 9%, or Eu 2 O 3 and containing 2.5% to 8%, the R 2 O (R represents an alkali metal element) is composed of Li 2 O, Na 2 O, K 2 O, and Li 2 O and Na 2 O ratio of Li 2 O / Na 2 O ratio in the 0.61 or more and 6.00 or less, 30 ° C. to 100 ° C. thermal expansion coefficient of 65 × 10 -7 at a temperature range of A glass substrate for a magnetic disk, wherein the glass substrate has a temperature of not less than 90 ° C. and not more than 90 × 10 −7 / ° C.
厚さ0.635mm において、波長300nm〜700nmの可視光における透過率が50%以上90%以下であり、かつ1kOeの磁界を印加したときの磁化が3×10-3emu/cc以下であることを特徴とする磁気ディスク用ガラス基板。At a thickness of 0.635 mm, the transmittance for visible light with a wavelength of 300 nm to 700 nm is 50% or more and 90% or less, and the magnetization when a magnetic field of 1 kOe is applied is 3 × 10 −3 emu / cc or less. A glass substrate for a magnetic disk, comprising: 磁気ディスク用ガラス基板と、この基板上に直接又は他の層を介して形成された磁性層を有する磁気ディスクであって、上記ガラス基板は重量百分率で
SiO2:55%〜70%、
Al23:10%〜20%、
23:0%〜8%、
2O:13%〜17%(Rはアルカリ金属元素を表す)、
ZnO:0%〜10%、
の酸化物換算で示される酸化物を含有し、さらに下記の酸化物換算の重量百分率でPr23またはNd23を1%〜7%、またはSm23を2.5%〜9% 、またはEu23を2.5% 〜8%を含有し、前記R2O (Rはアルカリ金属元素を表す)が、Li2O ,Na2O ,K2O からなり、かつLi2O とNa2O の割合がLi2O/Na2Oの比で0.61以上,6.00以下であり、30℃〜100℃の温度範囲における熱膨張係数が65×10-7/℃以上,90×10-7/℃以下であることを特徴とする磁気ディスク。
What is claimed is: 1. A magnetic disk comprising: a glass substrate for a magnetic disk; and a magnetic layer formed directly or via another layer on the substrate, wherein the glass substrate has a weight percentage of SiO 2 : 55% to 70%;
Al 2 O 3 : 10% to 20%,
B 2 O 3: 0% ~8 %,
R 2 O: 13% to 17% (R represents an alkali metal element),
ZnO: 0% to 10%,
By weight of oxide represented in terms of oxide, further Pr 2 O 3 or Nd 2 O 3 1% to 7% in weight percentage of oxides in terms of the following, or Sm 2 O 3 2.5% 9%, or Eu 2 O 3 and containing 2.5% to 8%, the R 2 O (R represents an alkali metal element) is composed of Li 2 O, Na 2 O, K 2 O, and Li 2 O and Na 2 O ratio of Li 2 O / Na 2 O ratio in the 0.61 or more and 6.00 or less, 30 ° C. to 100 ° C. thermal expansion coefficient of 65 × 10 -7 at a temperature range of A magnetic disk characterized by being at least 90 ° C./° C. and at most 90 × 10 −7 / ° C.
少なくともガラス基板と、その表面上に直接または他の層を介して形成される磁性膜とを有する磁気ディスクであって、厚さ0.635mm のガラス基板の波長300nm〜700nmの可視光における透過率が50%以上90%以下であり、かつこのガラス基板に1kOeの磁界を印加したときの磁化が3×10-3emu/cc以下であることを特徴とする磁気ディスク。A magnetic disk having at least a glass substrate and a magnetic film formed directly or via another layer on the surface thereof, wherein the glass substrate having a thickness of 0.635 mm has a transmittance of visible light having a wavelength of 300 nm to 700 nm. Is 50% or more and 90% or less, and the magnetization when a magnetic field of 1 kOe is applied to the glass substrate is 3 × 10 −3 emu / cc or less.
JP2002371271A 2002-12-24 2002-12-24 Glass substrate for magnetic disk and magnetic disk using the same Expired - Fee Related JP4193489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002371271A JP4193489B2 (en) 2002-12-24 2002-12-24 Glass substrate for magnetic disk and magnetic disk using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002371271A JP4193489B2 (en) 2002-12-24 2002-12-24 Glass substrate for magnetic disk and magnetic disk using the same

Publications (2)

Publication Number Publication Date
JP2004206741A true JP2004206741A (en) 2004-07-22
JP4193489B2 JP4193489B2 (en) 2008-12-10

Family

ID=32810195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002371271A Expired - Fee Related JP4193489B2 (en) 2002-12-24 2002-12-24 Glass substrate for magnetic disk and magnetic disk using the same

Country Status (1)

Country Link
JP (1) JP4193489B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290704A (en) * 2005-04-14 2006-10-26 Hitachi Ltd Glass
JP2012141208A (en) * 2010-12-28 2012-07-26 Asahi Glass Co Ltd Method and device for testing quality of glass plate, and method of manufacturing glass plate
KR20140099932A (en) * 2011-11-30 2014-08-13 코닝 인코포레이티드 Colored alkali aluminosilicate glass articles
US20170362119A1 (en) * 2016-06-17 2017-12-21 Corning Incorporated Transparent, near infrared-shielding glass ceramic
US10131567B2 (en) 2016-01-08 2018-11-20 Corning Incorporated Chemically strengthenable lithium aluminosilicate glasses with inherent damage resistance
US10150691B2 (en) 2012-07-17 2018-12-11 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
US10807906B2 (en) 2017-12-13 2020-10-20 Corning Incorporated Articles including glass and/or glass-ceramics and methods of making the same
US11046609B2 (en) 2017-10-23 2021-06-29 Corning Incorporated Glass-ceramics and glasses

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290704A (en) * 2005-04-14 2006-10-26 Hitachi Ltd Glass
JP2012141208A (en) * 2010-12-28 2012-07-26 Asahi Glass Co Ltd Method and device for testing quality of glass plate, and method of manufacturing glass plate
JP2015505804A (en) * 2011-11-30 2015-02-26 コーニング インコーポレイテッド Colored alkali aluminosilicate glass article
US11912620B2 (en) 2011-11-30 2024-02-27 Corning Incorporated Colored alkali aluminosilicate glass articles
JP2018138514A (en) * 2011-11-30 2018-09-06 コーニング インコーポレイテッド Colored alkali aluminosilicate glass articles
KR20140099932A (en) * 2011-11-30 2014-08-13 코닝 인코포레이티드 Colored alkali aluminosilicate glass articles
US11851369B2 (en) 2011-11-30 2023-12-26 Corning Incorporated Colored alkali aluminosilicate glass articles
KR102147508B1 (en) 2011-11-30 2020-08-25 코닝 인코포레이티드 Colored alkali aluminosilicate glass articles
US11420899B2 (en) 2011-11-30 2022-08-23 Corning Incorporated Colored alkali aluminosilicate glass articles
US11124444B2 (en) 2012-07-17 2021-09-21 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
US10150691B2 (en) 2012-07-17 2018-12-11 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
US10183887B2 (en) 2012-07-17 2019-01-22 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
US11814316B2 (en) 2012-07-17 2023-11-14 Corning Incorporated Ion exchangeable Li-containing glass compositions for 3-D forming
US10131567B2 (en) 2016-01-08 2018-11-20 Corning Incorporated Chemically strengthenable lithium aluminosilicate glasses with inherent damage resistance
US11220452B2 (en) 2016-01-08 2022-01-11 Corning Incorporated Chemically strengthenable lithium aluminosilicate glasses with inherent damage resistance
US11718554B2 (en) 2016-01-08 2023-08-08 Corning Incorporated Chemically strengthenable lithium aluminosilicate glasses with inherent damage resistance
US11214511B2 (en) 2016-06-17 2022-01-04 Corning Incorporated Transparent, near infrared-shielding glass ceramic
CN109311730B (en) * 2016-06-17 2022-04-26 康宁股份有限公司 Near-infrared shielding transparent glass ceramic
US11629091B2 (en) 2016-06-17 2023-04-18 Corning Incorporated Transparent, near infrared-shielding glass ceramic
CN109311730A (en) * 2016-06-17 2019-02-05 康宁股份有限公司 Shield the transparent glass ceramics of near-infrared
US20170362119A1 (en) * 2016-06-17 2017-12-21 Corning Incorporated Transparent, near infrared-shielding glass ceramic
US11046609B2 (en) 2017-10-23 2021-06-29 Corning Incorporated Glass-ceramics and glasses
US11643359B2 (en) 2017-10-23 2023-05-09 Corning Incorporated Glass-ceramics and glasses
US11312653B2 (en) 2017-12-13 2022-04-26 Corning Incorporated Articles including glass and/or glass-ceramics and methods of making the same
US10807906B2 (en) 2017-12-13 2020-10-20 Corning Incorporated Articles including glass and/or glass-ceramics and methods of making the same
US11912609B2 (en) 2017-12-13 2024-02-27 Corning Incorporated Articles including glass and/or glass-ceramics and methods of making the same

Also Published As

Publication number Publication date
JP4193489B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
US8283060B2 (en) Crystallized glass substrate for information recording medium and method of producing the same
JP3512706B2 (en) Glass and glass ceramics with high specific modulus and their use
JP5734189B2 (en) Glass for magnetic recording medium substrate, magnetic recording medium substrate and manufacturing method thereof, and magnetic recording medium
JP4785274B2 (en) Glass article and glass substrate for magnetic recording medium using the same
US8916487B2 (en) Glass substrate for information recording medium
JP5375608B2 (en) Glass for data storage medium substrate, glass substrate for data storage medium and magnetic disk
JP3211683B2 (en) Glass substrate for information recording disk
JP2004161597A (en) Glass composition and glass substrate
JP2009114005A (en) Crystallized glass
JP2010198679A (en) Glass substrate for information recording medium, and method for producing the same
WO2012086664A1 (en) Glass substrate for magnetic recording medium, and use thereof
JPH0912333A (en) Glass substrate for magnetic disk and magnetic disk
JP2004352570A (en) Glass composition and glass substrate
JP4774466B1 (en) Crystallized glass substrate for information recording medium and manufacturing method thereof
JP4193489B2 (en) Glass substrate for magnetic disk and magnetic disk using the same
JP5788643B2 (en) Glass substrate
JP2001019466A (en) Glass substrate for magnetic disk
JP2002260216A (en) Glass substrate for information recording disk and information recording disk using the same
JP7165655B2 (en) Glass for information recording medium substrate, information recording medium substrate, information recording medium and glass spacer for recording/reproducing device
WO2013146256A1 (en) Glass for magnetic recording medium substrate, and glass substrate for magnetic recording medium and use thereof
JP3994371B2 (en) GLASS SUBSTRATE FOR INFORMATION RECORDING DISC AND INFORMATION RECORDING DISC USING THE GLASS SUBSTRATE
JP2002025040A (en) Glass substrate for magnetic disk and magnetic disk using the same
JP2003099913A (en) Glass base plate for magnetic disk and magnetic disk using it
WO2002004371A1 (en) Glass composition, and substrate for information recording medium, magnetic disk, information recording/reproducing device and magnetic disk device using the same
JP2015028828A (en) Alkali-free glass for magnetic recording medium, and glass substrate for magnetic recording medium using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees