WO2002004351A1 - Method for granulating calcium chloride hydrate and granulation apparatus - Google Patents

Method for granulating calcium chloride hydrate and granulation apparatus Download PDF

Info

Publication number
WO2002004351A1
WO2002004351A1 PCT/JP2000/004512 JP0004512W WO0204351A1 WO 2002004351 A1 WO2002004351 A1 WO 2002004351A1 JP 0004512 W JP0004512 W JP 0004512W WO 0204351 A1 WO0204351 A1 WO 0204351A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium chloride
fluidized bed
particles
aqueous solution
chloride hydrate
Prior art date
Application number
PCT/JP2000/004512
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuhiro Nishimoto
Kazuhito Nishimoto
Takashi Ichimura
Zenji Kato
Masayasu Ito
Satoshi Suwa
Nobuo Sekido
Original Assignee
Kaisei Kogyo Co., Ltd.
Aitech Co., Ltd.
Tsukishima Kikai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP00701099A priority Critical patent/JP4298032B2/en
Application filed by Kaisei Kogyo Co., Ltd., Aitech Co., Ltd., Tsukishima Kikai Co., Ltd. filed Critical Kaisei Kogyo Co., Ltd.
Priority to CNB008197253A priority patent/CN1297481C/en
Priority to PCT/JP2000/004512 priority patent/WO2002004351A1/en
Priority to AU2000258492A priority patent/AU2000258492A1/en
Publication of WO2002004351A1 publication Critical patent/WO2002004351A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/20Halides
    • C01F11/24Chlorides
    • C01F11/30Concentrating; Dehydrating; Preventing the adsorption of moisture or caking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/16Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by suspending the powder material in a gas, e.g. in fluidised beds or as a falling curtain
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/20Halides
    • C01F11/24Chlorides

Definitions

  • the present invention relates to a method and an apparatus for granulating calcium chloride hydrate, which form granules of calcium chloride hydrate by a fluidized bed.
  • a calcium chloride aqueous solution is introduced into a flake force to produce a flake-like granulated product, or a rotating disk or the like is used to generate granules in the air.
  • a method of generating granular granules by solidifying by scattering into particles has been used.
  • the shape of the granulated material is limited to a flake shape, whereas when the granulated material is scattered in the air, the granulated material is granulated.
  • the shape of the particles was greatly distorted and the particle size distribution was extremely large, and a large space was required to solidify the scattered calcium chloride aqueous solution.
  • the aqueous calcium chloride solution must be heated to about 180 ° C or higher in advance.
  • the present invention has been made under such a background, and it is not necessary to heat an aqueous solution of calcium chloride to a high concentration by heating it at a high temperature, and it is possible to produce granules having a predetermined number of water molecules. It is an object of the present invention to provide a method and an apparatus for granulating calcium hydrate. Disclosure of the invention
  • the inventors of the present invention indicate that the vapor pressure of these calcium chloride hydrates in the fluidized bed is determined based on a predetermined vapor pressure diagram corresponding to the number of water molecules.
  • the vapor pressure becomes a predetermined value with respect to the temperature.
  • the granulation method of the present invention has been made based on such knowledge, and thus a calcium chloride hydrate that forms granules by spraying an aqueous calcium chloride solution while fluidizing seed particles in a fluidized bed.
  • the sprayed calcium chloride aqueous solution adheres to the seed particles flowing in the fluidized bed and granulates, the dilute aqueous solution is formed. It is possible to produce a granulated product by using this method, and even if the temperature in the fluidized bed is relatively low, by adjusting the partial pressure of steam in the fluidized bed, this temperature can be adjusted to this temperature in the vapor pressure diagram.
  • the vapor pressure of calcium chloride can be set to a corresponding appropriate vapor pressure, and it is possible to granulate calcium chloride hydrate having a predetermined number of water molecules.
  • the above-mentioned seed particles are sprayed, such as particles of hydrated calcium chloride dihydrate, calcium chloride monohydrate, anhydrous calcium chloride, or a mixture thereof, in which the number of water molecules to be hydrated is 2 to 0.
  • Particles such as thorium and magnesium chloride may be used as seed particles.
  • the partial pressure of steam in the fluidized bed it is possible to adjust the moisture content of the fluidizing gas supplied to the fluidized bed.
  • at least the temperature in the fluidized bed and the exhaust humidity from the fluidized bed are measured. It is desirable to control the partial pressure.
  • the granulation method using the above-mentioned flaker and the method of scattering into the air can only produce granules having a specific shape, respectively.
  • calcium chloride is used.
  • the spray height at which the aqueous solution is sprayed it is possible to generate granules having a predetermined shape. That is, according to the results obtained from various experiments, the spray height is set relatively high (for example, 300 mm or more) with respect to the height of the fluidized bed in the stationary bed.
  • the aqueous calcium chloride solution becomes droplets and adheres to the surface of the seed particles, resulting in the formation of granules containing confetti-shaped particles.
  • the spray height is set to a relatively low value (for example, less than 300 MI, preferably less than 280 bandages), the aqueous solution of calcium chloride uniformly adheres to the surface of the seed particles, so that round particles are formed. Can be produced.
  • a granulated product having a predetermined shape can be generated in this manner.
  • the above water vapor partial pressure is made sufficiently lower than the calcium chloride vapor pressure, as in the case where the spray height is increased, the particles in the shape of confetti are increased, and conversely, the water vapor partial pressure is reduced to the calcium chloride vapor pressure. If it approaches, the number of round particles increases.
  • the calcium chloride aqueous solution produced in the fluidized bed is generally used. It is desirable that the granules of the Japanese product be separated into coarse particles having a particle size larger than the above range, medium particles having a particle size within the above range, and fine particles having a small particle size.In this case, the coarse particles crush the particles. And at least with fine particles It is efficient to circulate through the fluidized bed to make new seed particles.
  • the circulation ratio of the generated calcium chloride hydrate is 1.5. It is desirable to set the value in the range of ⁇ 10.If the circulation ratio exceeds the above range, the number of circulating particles increases and the number of medium particles separated as a product decreases, while the circulation ratio falls below the above range. This may lead to a shortage of seed particles supplied to the fluidized bed.
  • the present invention can be applied to shape spines, round particles, or the like without circulating the particles.
  • the granulation apparatus of calcium chloride hydrate of the present invention performs granulation of calcium chloride hydrate by the above granulation method more reliably, that is, while the seed particles are fluidized in the fluidized bed.
  • An apparatus for granulating calcium chloride hydrate for producing granulated material by spraying an aqueous solution of calcium chloride comprising: a temperature sensor for measuring a temperature in the fluidized bed; A humidity sensor for measuring the exhaust humidity of the gas, and by adjusting the partial pressure of water vapor in the fluidized bed by control based on at least the measurement results of the temperature sensor and the humidity sensor, the vapor pressure of calcium chloride in the fluidized bed. Is set to the vapor pressure of calcium chloride hydrate having a predetermined number of water molecules with respect to the temperature in the fluidized bed.
  • the moisture adjusting device when adjusting the partial pressure of water vapor in the fluidized bed in this way, one of the above-mentioned fluidized beds is provided with a moisture adjusting device for adjusting the moisture amount of the fluidizing gas supplied to the fluidized bed.
  • the moisture adjusting device includes a flow rate sensor for measuring the amount of moisture given to the fluidizing gas, a temperature sensor and a humidity sensor for measuring the temperature and humidity of the moisture-regulated flowing gas, It is possible to adjust the water content of the flowing gas by controlling at least based on the measurement results of the flow rate sensor, temperature sensor, and humidity sensor and the measurement results of the temperature sensor and humidity sensor provided in the fluidized bed. It is.
  • the fluidized bed is provided with a concentration adjusting device for adjusting the concentration of the calcium chloride aqueous solution supplied to the fluidized bed in accordance with this or alone, and the concentration adjusting device is provided with a concentration-adjusted device.
  • Calcium chloride aqueous solution A concentration sensor and a flow rate sensor for measuring the concentration and the flow rate of the liquid, and the control is performed based on at least the measurement results of the concentration sensor and the flow rate sensor and the measurement results of the temperature sensor and the humidity sensor provided in the fluidized bed. It is also possible to adjust the concentration of the calcium aqueous solution.
  • the aqueous solution of calcium chloride sprayed on the fluidized bed in this granulator depends on the concentration and temperature, and when the granulation in the fluidized bed is temporarily stopped or the granulation operation is completed, If it stays in the pipes inside it, it tends to be clogged and clogged easily, and when consolidation occurs, the portion clogged by this consolidation must be melted the next time granulation work is resumed. Therefore, it is desirable to provide a caking preventing means so that caking of the calcium chloride aqueous solution does not occur even when such granulation is stopped.
  • consolidation preventing means when the calcium chloride aqueous solution is adjusted to a predetermined concentration in a tank and supplied from the tank to the fluidized bed through a supply pipe and sprayed, consolidation occurs in the supply pipe.
  • a return pipe for returning the aqueous solution of calcium chloride in the supply pipe to the tank can be connected to this supply pipe, and granulation was stopped.
  • the calcium chloride aqueous solution in the supply pipe may be returned to the tank via the return pipe so that the calcium chloride aqueous solution does not remain in the supply pipe.
  • the calcium chloride aqueous solution may solidify in the above-mentioned tank, but after such a granulation operation is completed. It is not economical, for example, to keep the entire amount of the aqueous solution of calcium chloride held in this tank heated until the end of the granulation operation in order to prevent caking of the powder.
  • the granulating apparatus is usually provided with a scrubber for washing the exhaust gas discharged from the fluidized bed with washing water and recovering the calcium chloride component in the exhaust gas.
  • the above-mentioned tank can be connected to this scrubber as the above-mentioned caking prevention means. It is desirable that the aqueous solution of calcium chloride in the tank can be supplied to the scrubber so that it can be held.
  • the aqueous calcium chloride solution may be returned from the scrubber to the tank and sprayed on the fluidized bed.
  • a seed hopper for supplying seed particles to the fluidized bed is connected to the fluidized bed, and the seed particles are supplied from the seed hopper when granulation is performed for the first time such as when the granulation operation is restarted.
  • the seed hopper is selectively used. If it is possible to supply the granulated material to the seed hopper before the end of the granulation work, for example, the granulated material can be supplied and stored in the seed hopper, and then supplied to the fluidized bed as seed particles when the next granulation work is restarted.
  • a granulated product having a large particle size among the granulated calcium chloride hydrates may be required as a product, and thus the chloride formed in the fluidized bed may be added to the fluidized bed.
  • a vibrating sieve device that separates the granulated calcium hydrate into coarse, medium, and fine particles is connected, and at least a portion of the coarse particles can be selectively discharged as product granules. It is desirable to do so.
  • the washing water for cleaning the exhaust gas can be circulated to the scrubber, and at least a part thereof is supplied to the fluidized bed side. It is desirable that the scrubber can concentrate and supply the aqueous solution of calcium chloride to the fluidized bed side and spray it in the scrubber, so that it is easy to adjust the concentration in the above tank during the granulation operation. On the other hand, for example, even when the aqueous solution of calcium chloride is concentrated before resuming the granulation operation, the scrubber, instead of the above-mentioned tank, uses the high-temperature exhaust gas discharged by drying and raising the temperature of the fluidized bed.
  • the aqueous solution can be concentrated in advance, and the concentrated aqueous solution of calcium chloride can be stored in a tank or a moving bed. Since it is possible to directly supply, it is possible to shorten the concentration time.
  • the scrubber is a spray type scrubber in which exhaust gas discharged from the fluidized bed is introduced into a washing tower and washed with washing water sprayed into the washing tower, so that a gas flow rate to be treated is reduced. Exhaust blower with reduced pressure loss Power can be reduced.
  • FIG. 1 is a view showing a first embodiment of a granulator of calcium chloride hydrate of the present invention.
  • FIG. 2 is a vapor pressure diagram of calcium chloride hydrate.
  • FIG. 3 is a view showing a second embodiment of the granulation device for calcium chloride hydrate of the present invention.
  • FIG. 4 is a cross-sectional view of the first and second dampers 24 and 25 of the granulator of the second embodiment shown in FIG.
  • FIG. 5 is a cross-sectional view showing a reservoir 28 of the granulating apparatus according to the second embodiment shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a first embodiment of a granulation device for calcium chloride hydrate according to the present invention.
  • reference numeral 1 denotes a fluidized bed, at the bottom of which a pressurizing chamber 3 is formed via a dispersing plate 2, and a pressurizing blower 4 and an incineration
  • a spray nozzle 8 is suspended above the dispersion plate 2 in the fluidized bed 1 so as to be movable up and down.
  • the spray nozzle 8 is provided with a calcium chloride aqueous solution tank 10 having a concentration adjusting device 9. Connected via feed pump 11.
  • a seed hopper 12 is connected to the fluidized bed 1, and seed particles of calcium chloride hydrate can be supplied into the fluidized bed 1 from slightly above the dispersion plate 2.
  • the seed particles include particles of calcium chloride dihydrate, calcium chloride monohydrate, anhydrous calcium chloride, and mixtures thereof, as well as particles of sodium chloride and magnesium chloride. It may be.
  • the moisture adjusting device 7 radiates or sprays steam or water to the heated and dried fluidizing gas supplied from the hot blast stove 6 to the pressurized chamber 3 of the fluidized bed 1.
  • the moisture content of the flowing gas that is, the humidity is determined. It is configured to be adjustable to a fixed value.
  • the (flow rate) is measured by the flow rate sensor F, and the temperature and humidity of the flowing gas whose moisture has been adjusted by the moisture adjusting device 7 are measured by the temperature sensor 1 ⁇ and the humidity sensor H, respectively.
  • the concentration adjusting device 9 is configured such that a steam pipe through which high-temperature steam is supplied is arranged in the above-mentioned tank 10 where the raw material calcium chloride can be supplied.
  • the retained calcium chloride aqueous solution is heated to evaporate water, and the concentration is adjusted to a predetermined value.
  • concentration sensor D concentration sensor
  • concentration sensor Eta 2 concentration sensor in the fluidized layer 1
  • the humidity by the humidity sensor Eta 2 are respectively measured
  • the humidity of the exhaust gas discharged from the fluidized bed 1 is measured further by the humidity sensor Eta 3.
  • a vibrating sieve device 14 is connected to the outlet of the granulated material in the fluidized bed 1 via a packet elevator 13.
  • This vibrating sieve device 14 is provided with a plurality of sieve nets, each having a smaller mesh size from the upper stage to the lower stage, each of which is inclined with respect to a horizontal plane and is provided so as to be vibrated by a vibrating device.
  • the granulated product supplied from 3 can be separated into medium particles within a predetermined range of particle size distribution, which are regarded as products, coarse particles having a larger particle size and fine particles having a smaller particle size.
  • the number of sieves, the size of the mesh, the angle of inclination with respect to the horizontal plane, and the like are appropriately set according to the size and shape of the particles of the granulated material to be separated as a product.
  • a crusher 15 is connected to the upper stage of the vibrating sieve device 14 so that coarse particles larger than a predetermined particle size distribution, which are separated by being sieved through the upper sieving net, can be crushed.
  • the coarse particles pulverized in this manner are partially passed through the lower sieve screen of the vibrating sieve device 14 and separated into a part of the medium particles within a predetermined particle size distribution range, and the predetermined particles having passed through the upper and lower sieve screens.
  • the particles are returned through the supply path from the seed hopper 12 and can be circulated to the fluidized bed 1.
  • the remainder of the above-mentioned medium particles is supplied to the drying cooler 16 to be subjected to an anti-caking treatment, and is discharged as a product.
  • the humidity sensor H 3 is the outlet of the fluidized bed 1, which is provided, in the present embodiment is connected to the scrubber 1 7 Benchiyuri type as shown in FIG. 1, the exhaust gas discharged from the fluidized bed 1, After the scrubber 17 is washed with washing water to remove fine calcium chloride particles contained in the exhaust gas, the exhaust gas can be exhausted by an exhaust blower 18.
  • the scrubber 17, which has taken in the fine chlorinated calcium particles in the exhaust gas, is circulated as scrubber 17 by the scrubber pump 19, and part of the scrubber 17 is added with the raw material calcium chloride.
  • the aqueous solution can be circulated to the tank 10 as an aqueous solution of calcium chloride sprayed on the fluidized bed 1.
  • the air pushed into the hot blast stove 6 from the pushing blower 4 is heated to a predetermined temperature by the heat generated by burning the fuel with the air from the incineration blower 5, and dried in a dry state. It is sent to the adjusting device 7. After the dried air is adjusted to a predetermined moisture content by adding steam or water in a moisture adjusting device 7, the dried air is usually heated at a high temperature of about 120 to 180 ° C.
  • the pressurized chamber 3 of the fluidized bed 1 It is supplied to the pressurized chamber 3 of the fluidized bed 1 as a working gas and is ejected from the dispersion plate 2 to flow the calcium chloride seed particles held in the fluidized bed 1.
  • the seed particles those supplied from the seed hopper 12 are used in the early stage of the operation of the granulator or when there is a shortage of particles in the fluidized bed 1, and the granulator is usually used.
  • fine particles circulated from the vibrating sieve device # 4 some medium particles, and coarse particles crushed by the crusher 15 are used.
  • a spray nozzle 8 is appropriately moved up and down to be arranged at a predetermined spray height, and a calcium chloride aqueous solution whose concentration has been adjusted by the concentration adjusting device 9 is supplied to a tank 10. Is supplied by a supply pump 11 and sprayed from the spray nozzle 8.
  • the concentration of the aqueous solution of calcium chloride adjusted by the concentration adjusting device 9 is lower than that of the conventional molten salt state, and it is as low as about 5 wt% to as high as 60%. And usually about 37-53 wt%.
  • the calcium chloride sprayed in this way The aqueous solution adheres to the surface of the flowing seed particles and dries, and enlarges the seed particles to form granules.
  • the moisture of the fluidizing gas supplied to the fluidized bed 1 is adjusted by the moisture adjusting device 7
  • the moisture of the aqueous solution of calcium chloride sprayed into the fluidized bed 1 is adjusted by the concentration adjustment.
  • the concentration of the aqueous solution is adjusted by the device 9, that is, the amount of water supplied to the fluidized bed 1 is adjusted.
  • the partial pressure of water vapor in the fluidized bed 1 can be adjusted. Therefore, by adjusting the partial pressure of water vapor in the fluidized bed 1, the chloride pressure in the fluidized bed 1 is adjusted based on the vapor pressure diagram according to the number of water molecules of calcium chloride hydrate as shown in FIG.
  • the vapor pressure of calcium is set to the vapor pressure of calcium chloride hydrate having the number of water molecules to be granulated in accordance with the temperature in the fluidized bed 1.
  • the temperature of the fluidized bed 1 is 9 0 ° C
  • calcium chloride vapor pressure when generating the calcium chloride dihydrate (C a CI 2 ⁇ 2 H 2 0) is 5.3
  • the partial pressure of water vapor in the fluidized bed 1 is adjusted by the water adjusting device 7 and the concentration adjusting device 9 so as to be set at about kPa (40 band Hg).
  • the setting of the vapor pressure of calcium chloride in the fluidized bed 1 by adjusting the water vapor partial pressure is performed by the temperature sensor T 2 , the humidity sensor,, the flow rate sensor F, F 2 , and the like.
  • it is automatically controlled based on the measurement results obtained by the concentration sensor D.
  • the spray nozzle 8 for spraying the aqueous solution of calcium chloride on the seed particles flowing in the fluidized bed 1 can be moved up and down.
  • the spray height for spraying the aqueous solution of calcium chloride is adjustable.
  • the spray height is relatively high, the sprayed calcium chloride aqueous solution becomes fine droplets, adheres to the surface of the seed particles and dries, whereby the calcium chloride granulated is formed.
  • the hydrate has a spinous shape in which protrusions are formed on the surface of the round particles in some places.
  • the spray height is relatively low, the sprayed calcium chloride aqueous solution adheres entirely to the surface of the seed particles and dries, producing round particles having a smooth surface.
  • the Rukoto when the spray height is relatively low, the sprayed calcium chloride aqueous solution adheres entirely to the surface of the seed particles and dries, producing round particles having a smooth surface.
  • the granules thus generated in the fluidized bed 1 are transferred to the bucket conveyor 1. 3 into the vibrating sieve device 14 and sieved by a plurality of inclined vibrating sieves, coarse particles having a larger particle size than a predetermined particle size distribution range, and medium particles within a predetermined particle size distribution range. However, it is classified into fine particles having a smaller particle size than this range. Then, as described above, the coarse particles are pulverized by the pulverizer 15 and returned to the fluidized bed 1 together with the fine particles and some of the medium particles, while the remaining medium particles are consolidated by the drying cooler 16. Prevention treatment is applied and discharged as granulated calcium chloride hydrate as a product.
  • the exhaust gas discharged from the fluidized bed 1 is discharged after the fine calcium chloride particles are collected and removed by the scrubber 17, and the washing water of the scrubber 17 in which the fine chloride particles are dissolved. Some of the water is returned to tank 10 and circulated.
  • chlorides 2, 4, and 6 hydrates which are generally used as products, have the following characteristics. If the temperature of the fluidized bed 1 is relatively low, for example, about 60 to 150 ° C., granulation can be performed by appropriately setting the vapor pressure. By heating the flowing gas such as air, the temperature can be raised relatively easily or maintained stably.
  • the number of water molecules of a predetermined calcium chloride hydrate to be granulated is adjusted by adjusting the partial pressure of steam in the fluidized bed 1 according to the temperature in the fluidized bed 1.
  • the vapor pressure of the calcium chloride hydrate in the fluidized bed 1 can be set to the vapor pressure according to the above, whereby calcium chloride hydrate having a desired number of water molecules can be generated. Therefore, according to the method for granulating calcium chloride hydrate having the above structure, the granulated calcium chloride hydrate having an appropriate number of water molecules according to the use as a product is obtained. Can be reliably manufactured, and the subsequent processing can be performed efficiently and simply.
  • the moisture amount of the fluidizing gas supplied to the fluidized bed 1 by the moisture adjusting device 7, that is, The humidity is adjusted, and the concentration of the aqueous calcium chloride solution sprayed and supplied into the fluidized bed 1 is adjusted by the concentration adjusting device 9 described above. It is also possible to configure so that the partial pressure of water vapor is adjusted. However, especially if it is attempted to adjust the water vapor partial pressure only with the concentration adjusting device 9, the responsiveness to fluctuations in the temperature in the fluidized bed 1 may be insufficient, so the temperature in the fluidized bed 1 may be insufficient.
  • the water content of the flowing gas is adjusted by the moisture adjusting device 7 while maintaining the concentration of the aqueous solution of calcium chloride sprayed by the concentration adjusting device 9 at an appropriate concentration in accordance with the time. It is desirable to adjust the water vapor partial pressure in the fluidized bed 1 by using the adjusting device 7 and the concentration adjusting device 9 together.
  • the temperature and humidity (water content) of the flowing gas, the concentration and the flow rate of the calcium chloride aqueous solution, and the flow rate of the calcium chloride aqueous solution are automatically determined using a computer or the like based on the measurement results obtained by other sensors. By controlling the water vapor pressure, it becomes possible to adjust the water vapor partial pressure more accurately.
  • the spray nozzle 8 for spraying the aqueous solution of calcium chloride is capable of moving up and down as described above, and the spray height of this aqueous solution of chlorinated calcium is set to an appropriate height.
  • the predetermined shape according to the spray height Is produced.
  • the spray height is relatively low, the aqueous solution of chlorinated calcium is uniformly and uniformly adhered to the surface of the seed particles in a liquid state, so that the granules are formed into round particles.
  • the spray height is relatively high, the sprayed calcium chloride aqueous solution becomes droplets and adheres to the surface of the seed particles in a dotted manner.
  • the granules are formed into particles in the shape of confetti. Therefore, for example, when the formed granules of calcium chloride hydrate are used as a hygroscopic material, the latter, such as the confetti-shaped granules, secures a sufficient space around the particles and absorbs moisture.
  • the former round granulated material has a higher packing ratio per unit volume than the former, and can exhibit stable moisture absorption over a long period of time. That is, it is possible to obtain a granulated material having a shape suitable for the purpose.
  • the granulated particles have a spinous shape or a round shape depends on the concentration and supply amount of the aqueous solution of calcium chloride, the shape and size of the spray nozzle 8, and the seeds held in the fluidized bed 1. It is expected that it is affected by the amount of particles and the superficial velocity of the fluidizing gas, but as a result of experiments in which the spray height was varied under various conditions, When the spray height was set to 30 Omni or more, it was confirmed that spinous particles were remarkably generated. However, this does not mean that all particles will have a spinous shape when the spray height is set to the above range, and that the particles will have a spinous shape when the spray height falls below the above range by even 1 mm. This does not mean that no particles are produced at all, and that when the spray height is set within the above range, the proportion of particles in the shape of confetti in the produced granules has increased significantly; is there.
  • the partial pressure of steam in the fluidized bed 1 is adjusted by the moisture adjusting device 7 and the concentration adjusting device 9 to change the vapor pressure of chloridizing water. It is also possible to adjust the pressure to a predetermined value.
  • the proportion of confetti-shaped particles will increase as in the case where the spray height is increased.
  • the partial pressure of water vapor in the fluidized bed 1 approaches the vapor pressure of calcium chloride, the ratio of round particles increases.
  • the adjustment of the water vapor partial pressure and the adjustment of the spray height are performed together, the ratio of the particles of each shape becomes higher.
  • the granulated material discharged from the fluidized bed 1 is separated into coarse particles, medium particles, and fine particles by the vibrating sieve device 14, and among these, medium particles within a predetermined particle size distribution range. Only the product is subjected to anti-caking treatment by the drying cooler 16 to produce a product, and the coarse and fine particles and some medium particles pulverized by the pulverizer 15 are circulated to the fluidized bed 1 as seed particles. It has been made like that. Therefore, for example, when the amount of calcium chloride in the calcium chloride hydrate discharged as the above product and the aqueous solution of calcium chloride sprayed into the fluidized bed 1 is balanced, the seed particles from the seed hopper 12 are obtained only during the initial operation. Can be supplied to the fluidized bed 1 and, during normal operation, the seed particles can be covered by the circulating particles, so that efficient operation can be achieved.
  • the ratio of the total weight of the calcium chloride hydrate discharged from the fluidized bed 1 to the weight of the above-mentioned medium particles that are separated and formed into a product that is, the circulation ratio of the calcium chloride hydrate is 1.5 to 1 It is desirable to set in the range of 0.
  • part of the medium particles separated by the vibrating sieve device 14 is also circulated to the fluidized bed 1, but all of the medium particles are sent to the drying cooler 16. It may be sent to the product.
  • the vibrating sieve device 14 is particularly configured to vibrate the multi-stage sieve mesh inclined with respect to the horizontal plane by the vibrator to separate the granulated material.
  • the size of the particles to be separated can be increased with respect to the size of the particles to be separated, and together with vibrating the sieve screen, clogging can be prevented and efficient separation can be achieved. be able to.
  • a part of the washing water obtained by washing the exhaust gas discharged from the fluidized bed 1 with the scrubber 17 is circulated to the tank 10 of the aqueous calcium chloride solution sprayed on the fluidized bed 1.
  • the fine particles of chloride hydrate contained in the exhaust gas are dissolved and the raw material calcium chloride is added to the washing water having a certain concentration and sprayed into the fluidized bed 1, so that the same concentration is obtained.
  • the amount of the raw material calcium chloride to be supplied to the tank 10 can be reduced, and more economical granulation of calcium chloride hydrate can be promoted. .
  • FIG. 3 to FIG. 5 show a second embodiment of the granulating apparatus of the present invention.
  • the basic configuration is the same as that of the first embodiment described above. Since the configuration is the same as that of the granulating apparatus of the embodiment, the same reference numerals are assigned to the same components, and the description is omitted.
  • the second embodiment is characterized in that a means for preventing solidification of an aqueous solution of calcium chloride is provided first. That is, in the present embodiment, first, as a first solidification preventing means, the calcium chloride aqueous solution held in the tank 10 is supplied to the fluidized bed 1 through the supply pump 11 and sprayed from the spray nozzle 8.
  • One end of a return pipe 21 is connected to the supply pipe 11 A near the fluidized bed 1 side, and the other end of the return pipe 21 is connected to the tank 10.
  • a valve 11B is provided between the connection of the supply pipe 11A and the return pipe 21 to the spray nozzle 8 in the fluidized bed 1.
  • one end of the drainage pipe 22 is connected to the supply pump 11 side of the supply pipe 1 ⁇ A via a valve 22 A as a second solidification preventing means.
  • the other end of the drainage pipe 22 is connected to the scrubber 23.
  • a valve 11C is also provided on the fluidized bed 1 side of the supply pipe 11A slightly from the connection with the drainage pipe 22.
  • the scrubber 23 in the present embodiment is not of the bench lily type as in the first embodiment, but is an exhaust from the fluidized bed 1 introduced into the washing tower 23A. It is of a spray type in which air is washed by washing water sprayed from a spray nozzle 23B provided at an upper part in the washing tower 23A, and this exhaust gas is washed and contained in the exhaust gas.
  • the washing liquid having absorbed the calcium chloride component is held in the washing tower 23A bottom P, heated by steam, circulated as washing water by a scrubber pump 19 as in the first embodiment, and Part of the supply is also possible to be circulated to the above-mentioned tank 0.
  • coarse particles separated by the vibrating sieve device 14 are also separated through the first damper 24 in the present embodiment.
  • the supplied medium particles are supplied to a pulverizer 15 together with a part of the medium particles other than discharged as a product, pulverized, and further, together with fine particles, pass through a second damper 25 as seed particles to form a fluidized bed 1. It is possible to circulate.
  • the first and second dampers 24 and 25 supply the separated coarse particles, coarse particles and a part of the medium particles, and fine particles.
  • the feed pipe 26 to be fed is branched into two branches, and a shield plate 27 is swingably attached to a branch portion in the feed pipe 26. By closing one of the feed pipes 26, particles can be selectively fed to the other.
  • the branched feed pipe 26 is connected to the mill 15 and the drying cooler 16 respectively, and is connected to the second damper 25. In other words, the branched feed pipe 26 is connected to the fluidized bed 1 and the seed hopper 12.
  • the medium particles separated by the vibrating sieve device 14 are supplied to a storage device 28 as shown in FIG.
  • the storage device 28 includes a hopper 28A for storing the supplied medium particles, a vibrating conveyor 28B attached to a lower end of the hopper 28A, and a height direction of the hopper 28A. And a supply pipe 28 C connected to the crusher 15 at a middle position in the hopper 28 A, and the medium particles stored in the hopper 28 A are required by the vibrating conveyor 28 B.
  • the medium particles collected in the hopper 28A beyond the position of the supply pipe 28C are discharged from the supply pipe 28C, It is supplied to the crusher 15 and crushed together with the coarse particles as described above. Have been.
  • the same effects as those of the first embodiment can be obtained, as well as the first and second anti-consolidation means. Since the return pipe 21 and the drain pipe 22 are provided, the aqueous solution of calcium chloride stays when the re-granulation work in which the granulation of calcium chloride hydrate is temporarily stopped is completed. This can prevent a situation where re-consolidation occurs and hinders the subsequent restart of granulation. That is, for example, when the spraying of the aqueous solution of calcium chloride from the spray nozzle 8 into the fluidized bed 1 is interrupted and the granulation is stopped, the aqueous solution of calcium chloride is left in the supply pipe 11A and stays there.
  • the calcium chloride solution may not be able to be supplied to the supply pipe 1A even if the calcium chloride solution is sprayed from the spray nozzle 8.
  • the valve 11B by closing the valve 11B, the calcium chloride aqueous solution remaining in the supply pipe 11A is returned to the tank 10 via the return pipe 21.
  • the calcium chloride aqueous solution is circulated through the supply pipe 11A and the return pipe 21 so that the calcium chloride aqueous solution in the supply pipe 11A solidifies due to stagnation. It is possible to prevent.
  • the valve 11 C After returning to the tank 10, the valve 11 C is closed, the valve 22 A of the drain pipe 22 is opened, and the calcium chloride aqueous solution in the tank 10 is drained to the scrubber 23, and this evening.
  • the link 10 can be emptied to prevent consolidation. Therefore, in this case, together with the washing water in which the calcium chloride component, which is the same calcium chloride aqueous solution, is dissolved, Since the aqueous solution of calcium chloride in the tank 10 can be retained in the scrubber 23, it is sufficient to heat only the aqueous solution of calcium chloride in the scrubber 23 so as not to cause caking. However, tank 10 is more economical and efficient than preventing caking.
  • the aqueous solution of calcium chloride may be supplied from the scrubber 23 to the tank 10 by the scrubber pump 19 as described above.
  • the heated fluidizing gas is supplied from the hot blast stove 6 and the inside of the fluidized bed 1 is supplied.
  • the calcium chloride aqueous solution must be concentrated in the tank 10 to adjust the concentration.
  • the washing water can be circulated in the scrubber 23 as described above.
  • the concentration time of the aqueous calcium chloride solution before the restart of the granulation operation can be shortened.
  • an aqueous solution of calcium chloride having a concentration of, for example, about 35 to 37 wt% is supplied and circulated into the scrubber 23, and the fluidized bed 1 is added to the scrubber 23.
  • the chlorination aqueous solution supplied to the scrubber 23 together with the heat of the steam supplied to the scrubber 23 is quickly cooled. For example, it can be concentrated to a concentration of about 501%.
  • the scrubber 23 it is possible to shorten the preparation time required for resuming the granulation work, and, for example, at the beginning of the resumption of the granulation work, the scrubber 23 does not pass through the tank 10. It is also possible to supply and spray the calcium chloride aqueous solution whose concentration has been directly adjusted to the fluidized bed 1 or, in some cases, omit the tank 10 itself. The same applies to the venturi-type scrubber 17 of the first embodiment.
  • the scrubber 23 sprays the exhaust gas introduced into the washing tower 23A from the spray nozzle 23B instead of the venturi scrubber 17 as in the first embodiment. It is a spray type that is washed with washing water. However, such a spray-type scrubber 23 has a lower exhaust gas flow rate than the venturi-type scrubber 17. Since the pressure loss is reduced, the power of the exhaust blower 18 for discharging the exhaust gas washed from the washing tower 23A is also small, and therefore, according to the present embodiment, More economical granulation can be achieved.
  • the seed particles in the fluidized bed ⁇ are discharged in order to prevent solidification.
  • the particles must be supplied into the fluidized bed 1.However, at this time, if the granulated calcium chloride hydrate was supplied from outside the system as seed particles to the seed hopper 12 and charged into the fluidized bed 1, , Inefficient and uneconomical. However, in the present embodiment, on the other hand, during the normal granulation operation, coarse particles of calcium chloride hydrate granules directly supplied to the fluidized bed 1 as seed particles and pulverized particles of medium particles And fine particles can be selectively supplied to the seed hopper 12 by switching the second damper 25.
  • the second damper 25 is switched to supply the coarse and medium particles and the fine particles to the seed hopper 12 as seed particles.
  • the next time the granulation operation is resumed it is possible to supply the fluidized bed 1 without introducing seed particles from outside the system, and it is possible to achieve efficient granulation .
  • the fine particles are stored in the liquid hopper 12 circulated through the fluidized bed 1 and are used as seed particles, so that the particle diameter of the seed particles becomes larger than necessary. In other words, it is possible to prevent the ratio of granulated calcium chloride hydrate separated as coarse particles in the vibrating sieve device ⁇ 4 from increasing, and to promote more efficient granulation.
  • a coarse particle having a larger particle size may be used. Particles may be required as a product.
  • the coarse particles separated in the vibrating sieve device 14 are selectively supplied to the drying cooler 16 by switching the first damper 25 described above. It has the advantage that it can be discharged as a product and can easily respond to the demands described above. are doing.
  • Table 1 shows an example of the present invention, in which the concentration of the aqueous solution of calcium chloride sprayed into the fluidized bed 1 using the granulator of the first embodiment shown in FIG. Salting by changing the spraying rate, the spray gas temperature and the superficial velocity of the fluidizing bed supplied to the fluidized bed 1, the height of the spray nozzle 8 from the height of the fluidized bed 1 at the stationary bed, and the circulation ratio
  • the temperature, water vapor partial pressure, and vapor pressure of calcium chloride dihydrate in the fluidized bed 1 when granulated calcium dihydrate is formed, as well as the shape of the formed particles and salinity as product This study examined how the concentration of calcium dihydrate changed.
  • the average particle size of the produced calcium chloride hydrate particles was 275 m in Example 3, and the particle size distribution was 2 to 4 Ml.
  • the calcium chloride hydrate is comparatively diluted with a dilute calcium chloride aqueous solution.
  • Granules can be produced even at low temperatures, and the partial pressure of water vapor in the fluidized bed is adjusted by adjusting the amount of water in the fluidizing gas or the concentration of the aqueous calcium chloride solution sprayed.
  • the vapor pressure of calcium chloride hydrate in the fluidized bed is set to the vapor pressure of calcium chloride hydrate having a predetermined number of water molecules according to the temperature in the fluidized bed, and the chloride pressure of this number of water molecules is increased.
  • the spray height of the aqueous solution of calcium chloride with respect to the height of the stationary bed of the fluidized bed is set to 30 Oral or more to produce particles in the shape of confetti.
  • the spray height for example, by setting the spray height to less than 300 and generating round particles, a granulated product containing particles of a predetermined shape is generated. It is possible to provide granules having an appropriate shape according to the use of the product calcium chloride hydrate. Also, by adjusting the partial pressure of water vapor in the fluidized bed with respect to the vapor pressure of calcium oxide, a granulated product containing particles of a predetermined shape can be produced.
  • the granulated product of calcium chloride hydrate thus formed in the fluidized bed is separated into coarse particles, medium particles and fine particles, and the coarse particles are pulverized and desirably at least 1.5 to 10 together with the fine particles.
  • the granulation device is provided with a moisture control device by controlling based on the measurement result by a temperature sensor and a humidity sensor provided in the fluidized bed.
  • Measurement results by the flow rate sensor, temperature sensor, and humidity sensor, and by the concentration sensor and flow rate sensor provided in the concentration adjustment device By controlling the partial pressure of water vapor in the fluidized bed by control based on the measurement results, the vapor pressure of calcium chloride in the fluidized bed is more accurately set to a predetermined vapor pressure, and the desired water is surely supplied.
  • Calcium chloride hydrate having the number of molecules can be granulated, and the automation of the operation of the granulator can be promoted.
  • a return pipe returning to the tank can be connected to the supply pipe to the fluidized bed from the tank of the aqueous solution of calcium chloride, or this tank can be connected to a scrubber that processes the exhaust of the fluidized bed.
  • a scrubber that processes the exhaust of the fluidized bed.
  • the washing water obtained by washing the exhaust gas can be circulated to the scrubber, and at least a part thereof can be supplied to the fluidized bed side.
  • the calcium chloride aqueous solution is concentrated in a scrubber instead of such a tank. Then, it can be supplied to the fluidized bed side, that is, the tank or directly to the fluidized bed, and it is possible to shorten the concentration time and promote efficient granulation work. If the scrubber is of a spray type, the power of the exhaust blower of the scrubber can be reduced, which is more efficient and economical.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Glanulating (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

In a method for granulating a calcium chloride hydrate wherein seed particles are fluidized in a fluid bed (1) and an aqueous solution of calcium chloride is sprayed from a spray nozzle (8) to the fluidized particles to thereby form granules of calcium chloride hydrate, the partial pressure of water in the fluid bed (1) is adjusted, by controlling a moisture content adjusting device (7) for a fluidizing gas and a concentration adjusting device (9) for an aqueous solution of calcium chloride at least based on measured values from a temperatire sensor T1 for measuring a temperature in the fluid bed (1) and a humidity sensor H3 for measuring a humidity of the discharged gas from the fluid bed (1), so as for the vapor pressure of calcium chloride in the fluid bed (1)to have a value equal to that in the case of a calcium chloride hydrate containing a predetermined number of water molecule at a temperature in the fluid bed (1).

Description

明細書 塩化カルシウム水和物の造粒方法および造粒装置 技術分野  Description Granulation method and granulation device for calcium chloride hydrate
本発明は、 流動層によって塩化カルシウム水和物の造粒物を生成する塩化カル シゥ厶水和物の造粒方法および造粒装置に関するものである。 背景技術  The present invention relates to a method and an apparatus for granulating calcium chloride hydrate, which form granules of calcium chloride hydrate by a fluidized bed. Background art
従来より、塩化カルシウム水和物の造粒物を生成する方法および装置としては、 塩化カルシウム水溶液をフレー力一に導入してフレーク状の造粒物を生成したり, あるいは回転ディスクなどによって空気中に飛散させることにより固化して粒状 の造粒物を生成する方法などが用いられていた。  Conventionally, as a method and an apparatus for producing a granulated product of calcium chloride hydrate, a calcium chloride aqueous solution is introduced into a flake force to produce a flake-like granulated product, or a rotating disk or the like is used to generate granules in the air. There has been used a method of generating granular granules by solidifying by scattering into particles.
しかしながら、 このような造粒方法および造粒装置にあっては、 フレーカーを 用いる場合には造粒物の形状がフレーク状に限定されてしまう一方、 空気中に飛 散させる場合では造粒物の粒子の形状が大きく歪んでしまうとともに粒度分布が きわめて大きくなリ、 さらには飛散させた塩化カルシウム水溶液を固化させるた めに大きな空間を要するという問題があった。 また、 これらフレーカーを用いる 場合や塩化カルシウム水溶液を空気中に飛散させる場合に、 供給された塩化カル シゥ厶水溶液を確実に固化させるには、 塩化カルシウム水溶液を予め約 1 8 0 °C 以上に加熱して濃度約 7 0 wt %以上の溶融塩状態にまで濃縮しなければならない t 従って、 これらの方法では、 このように塩化カルシウム水溶液を高濃度に濃縮す るための高温加熱手段や熱源が必要となるのは勿論、 高温高濃度の塩化カルシゥ 厶水溶液を取り扱うため、 腐食などに対する対策も講じなければならない。 However, in such a granulating method and a granulating apparatus, when a breaker is used, the shape of the granulated material is limited to a flake shape, whereas when the granulated material is scattered in the air, the granulated material is granulated. There was a problem that the shape of the particles was greatly distorted and the particle size distribution was extremely large, and a large space was required to solidify the scattered calcium chloride aqueous solution. In addition, when using these flakers or when dispersing the aqueous calcium chloride solution into the air, to ensure that the supplied aqueous calcium chloride solution is solidified, the aqueous calcium chloride solution must be heated to about 180 ° C or higher in advance. and t must therefore be concentrated to the molten salt state of about 7 0 wt% or more concentration, in these methods, the need high-temperature heating means and heat source order to concentrate this way an aqueous solution of calcium chloride in a high concentration Of course, measures must be taken against corrosion, etc., because high-temperature and high-concentration calcium chloride aqueous solutions are handled.
その一方で、 例えば食品や医薬品などの製剤分野においては、 流動層を用いて 種粒子を流動させつつバインダー溶液等を噴霧して造粒物を生成する造粒方法や 装置が提案されている。 ところが、 塩化カルシウム水和物には水和する水分子数 が 1, 2 , 4 , 6のものがあり、 単に上記造粒方法や造粒装置を塩化カルシウム 水和物の造粒に適用して塩化カルシウム粒子を流動させつつ塩化カルシウム水溶 液を噴霧しただけでは、 所定の水分子数の塩化カルシウム水和物を得ることは不 可能である。 On the other hand, in the field of pharmaceuticals such as foods and pharmaceuticals, a granulation method and apparatus have been proposed in which a binder solution or the like is sprayed while fluidizing seed particles using a fluidized bed to produce granules. However, there are calcium chloride hydrates in which the number of water molecules to be hydrated is 1, 2, 4, or 6, and the above granulation method and granulation apparatus are simply applied to granulation of calcium chloride hydrate. Calcium chloride aqueous solution while flowing calcium chloride particles It is impossible to obtain calcium chloride hydrate with a predetermined number of water molecules only by spraying the liquid.
本発明は、 このような背景の下になされたもので、 塩化カルシウム水溶液を高 温加熱して高濃度に濃縮する必要がなく、 しかも所定の水分子数の造粒物を生成 することが可能な塩化カルシウム水和物の造粒方法および造粒装置を提供するこ とを目的としている。 発明の開示  The present invention has been made under such a background, and it is not necessary to heat an aqueous solution of calcium chloride to a high concentration by heating it at a high temperature, and it is possible to produce granules having a predetermined number of water molecules. It is an object of the present invention to provide a method and an apparatus for granulating calcium hydrate. Disclosure of the invention
ここで、 本発明の発明者らは、 これらの塩化カルシウム水和物の流動層内にお ける蒸気圧が、 それぞれその水分子数に応じた所定の蒸気圧線図に基づいて流動 層内の温度に対して所定の蒸気圧となることに着目した。 言い換えれば、 流動層 内の温度と塩化カルシウムの蒸気圧との関係を適当に設定することにより、 蒸気 圧線図に基づいて所定の水分子数の塩化カルシウム水和物を得ることができるの である。 しかして、 本発明の造粒方法は、 このような知見に基づいてなされたも ので、 流動層において種粒子を流動させつつ塩化カルシウム水溶液を噴霧して造 粒物を生成する塩化カルシウム水和物の造粒方法であって、 上述のように流動層 内の温度と塩化カルシウムの蒸気圧との関係を適当に設定するに際し、 上記流動 層内の水蒸気分圧を調整することにより、 流動層内の塩化カルシウムの蒸気圧を 該流動層内の温度に対する所定の水分子数の塩化カルシウム水和物の蒸気圧に設 定することを特徴とするものである。  Here, the inventors of the present invention indicate that the vapor pressure of these calcium chloride hydrates in the fluidized bed is determined based on a predetermined vapor pressure diagram corresponding to the number of water molecules. We focused on the fact that the vapor pressure becomes a predetermined value with respect to the temperature. In other words, by appropriately setting the relationship between the temperature in the fluidized bed and the vapor pressure of calcium chloride, calcium chloride hydrate having a predetermined number of water molecules can be obtained based on the vapor pressure diagram. is there. Thus, the granulation method of the present invention has been made based on such knowledge, and thus a calcium chloride hydrate that forms granules by spraying an aqueous calcium chloride solution while fluidizing seed particles in a fluidized bed. The method for granulation according to the above, wherein when the relationship between the temperature in the fluidized bed and the vapor pressure of calcium chloride is appropriately set as described above, the partial pressure of the steam in the fluidized bed is adjusted so that The vapor pressure of calcium chloride is set to the vapor pressure of calcium chloride hydrate having a predetermined number of water molecules with respect to the temperature in the fluidized bed.
従って、 このように構成された塩化カルシウム水和物の造粒方法によれば、 流 動層内で流動する種粒子に噴霧された塩化カルシウム水溶液が付着して造粒する ため、 希薄な水溶液を用いて造粒物を生成することが可能であり、 しかも流動層 内の温度が比較的低温であっても、流動層内の水蒸気分圧を調整することにより、 蒸気圧線図においてこの温度に対応する適当な蒸気圧に塩化カルシウムの蒸気圧 を設定することができ、 所定の水分子数の塩化カルシウム水和物を造粒すること が可能となる。 なお、 上記種粒子としては、 水和する水分子数が 2〜 0の塩化力 ルシゥ厶 2水和物、 塩化カルシウム 1水和物、 無水塩化カルシウムの粒子やこれ らの混合物など、 噴霧される水溶液と同じ塩化カルシウムの粒子の他に、 塩化ナ 卜リウムゃ塩化マグネシウムなどの粒子を種粒子としてもよい。 Therefore, according to the granulation method of calcium chloride hydrate configured as described above, since the sprayed calcium chloride aqueous solution adheres to the seed particles flowing in the fluidized bed and granulates, the dilute aqueous solution is formed. It is possible to produce a granulated product by using this method, and even if the temperature in the fluidized bed is relatively low, by adjusting the partial pressure of steam in the fluidized bed, this temperature can be adjusted to this temperature in the vapor pressure diagram. The vapor pressure of calcium chloride can be set to a corresponding appropriate vapor pressure, and it is possible to granulate calcium chloride hydrate having a predetermined number of water molecules. The above-mentioned seed particles are sprayed, such as particles of hydrated calcium chloride dihydrate, calcium chloride monohydrate, anhydrous calcium chloride, or a mixture thereof, in which the number of water molecules to be hydrated is 2 to 0. In addition to the same calcium chloride particles as the aqueous solution, Particles such as thorium and magnesium chloride may be used as seed particles.
ここで、 この流動層内の水蒸気分圧を調整するに際しては、 一つに、 上記流動 層に供給される流動用ガスの水分量の調整によることが可能である。 また、 これ と合わせて、 あるいは単独で、 上記流動層に供給される上記塩化カルシウム水溶 液の濃度を調整することにより、 上記流動層内の水蒸気分圧を調整することも可 能である。 さらに、 流動層内の水蒸気分圧をよリ正確に調整するには、 少なくと も上記流動層内における温度および該流動層からの排気湿度を測定することによ リ、 上記流動層内の水蒸気分圧を制御することが望ましい。  Here, when adjusting the partial pressure of steam in the fluidized bed, it is possible to adjust the moisture content of the fluidizing gas supplied to the fluidized bed. In addition, it is also possible to adjust the partial pressure of steam in the fluidized bed by adjusting the concentration of the aqueous calcium chloride solution supplied to the fluidized bed together or alone. Further, in order to more accurately adjust the partial pressure of water vapor in the fluidized bed, at least the temperature in the fluidized bed and the exhaust humidity from the fluidized bed are measured. It is desirable to control the partial pressure.
また、 上記フレーカーを用いた造粒方法や空気中に飛散させる方法では、 それ ぞれ特定の形状の造粒物を生成することしかできないが、 流動層を用いた上記造 粒方法では、 塩化カルシウム水溶液を噴霧する噴霧高さを調整することにより、 所定の形状の造粒物を生成することが可能となる。 すなわち、 種々の実験によつ て得られた結果によれば、 流動層の静止層高さに対する上記噴霧高さを比較的高 く (例えば、 3 0 0 mm以上) に設定することにより、 噴霧された塩化カルシウム 水溶液が飛沫となって種粒子の表面に点々と付着するため、 金平糖形状の粒子を 含んだ造粒物を生成することができるのに対し、 流動層の静止層高さに対する上 記噴霧高さを比較的低く (例えば、 3 0 0 MI未満。 好ましくは 2 8 0匪未満) に 設定した場合には、 塩化カルシウム水溶液が種粒子表面に均一に付着するため、 丸粒状の粒子を含んだ造粒物を生成することができる。  In addition, the granulation method using the above-mentioned flaker and the method of scattering into the air can only produce granules having a specific shape, respectively.However, in the above-described granulation method using a fluidized bed, calcium chloride is used. By adjusting the spray height at which the aqueous solution is sprayed, it is possible to generate granules having a predetermined shape. That is, according to the results obtained from various experiments, the spray height is set relatively high (for example, 300 mm or more) with respect to the height of the fluidized bed in the stationary bed. The aqueous calcium chloride solution becomes droplets and adheres to the surface of the seed particles, resulting in the formation of granules containing confetti-shaped particles. If the spray height is set to a relatively low value (for example, less than 300 MI, preferably less than 280 bandages), the aqueous solution of calcium chloride uniformly adheres to the surface of the seed particles, so that round particles are formed. Can be produced.
一方、 上記流動層内の水蒸気分圧を、 該流動層内の塩化カルシウムの蒸気圧に 対して調整することによつても、 このように所定の形状の造粒物を生成すること ができる。 例えば、 上記水蒸気分圧を塩化カルシウム蒸気圧に対して十分低くす れば、 噴霧高さを高くした場合と同様に金平糖形状の粒子が多くなリ、 逆に水蒸 気分圧を塩化カルシウム蒸気圧に近づければ、 丸粒状の粒子が多くなる。  On the other hand, by adjusting the partial pressure of water vapor in the fluidized bed with respect to the vapor pressure of calcium chloride in the fluidized bed, a granulated product having a predetermined shape can be generated in this manner. For example, if the above water vapor partial pressure is made sufficiently lower than the calcium chloride vapor pressure, as in the case where the spray height is increased, the particles in the shape of confetti are increased, and conversely, the water vapor partial pressure is reduced to the calcium chloride vapor pressure. If it approaches, the number of round particles increases.
さらに、 こうして生成された造粒物のうちそのまま製品として使用に供するこ とができるのは、 一般に所定の粒度分布の範囲内の粒子だけであるので、 上記流 動層において生成された塩化カルシウム水和物の造粒物は、 上記範囲よりも粒度 の大きい粗粒子と上記範囲内の粒度の中粒子と粒度の小さい細粒子とに分別する のが望ましく、 この場合、 上記粗粒子はこれを粉碎して少なくとも細粒子ととも に流動層に循環させ、 新たな種粒子とすることが効率的である。 ただし、 流動層 から排出される塩化カルシウム水和物の総重量と分別されて製品とされる上記中 粒子の重量との比、 すなわち生成された塩化カルシウム水和物の循環比は、 1 . 5〜 1 0の範囲に設定されるのが望ましく、 この循環比が上記範囲を上回ると循 環する粒子が増えて製品として分別される中粒子が少なくなる一方、 逆に循環比 が上記範囲を下回ると流動層に供給される種粒子の不足を招くおそれがある。 ま た、 こうして造粒物を分別するに際しては、 上記造粒物を、 傾斜した少なくとも 2段の振動篩によって分別するのが効率的である。 なお、 不規則な形状の粒を整 形する場合は、 循環させなくても、 本発明を適用することにより、 金平糖形状や 丸粒状等の整形が可能となる。 Further, since only particles within a predetermined particle size distribution range can be used as a product as they are among the granules thus produced, the calcium chloride aqueous solution produced in the fluidized bed is generally used. It is desirable that the granules of the Japanese product be separated into coarse particles having a particle size larger than the above range, medium particles having a particle size within the above range, and fine particles having a small particle size.In this case, the coarse particles crush the particles. And at least with fine particles It is efficient to circulate through the fluidized bed to make new seed particles. However, the ratio of the total weight of calcium chloride hydrate discharged from the fluidized bed to the weight of the above-mentioned medium particles that are separated into a product, that is, the circulation ratio of the generated calcium chloride hydrate is 1.5. It is desirable to set the value in the range of ~ 10.If the circulation ratio exceeds the above range, the number of circulating particles increases and the number of medium particles separated as a product decreases, while the circulation ratio falls below the above range. This may lead to a shortage of seed particles supplied to the fluidized bed. When separating the granules in this way, it is efficient to separate the granules using at least two inclined vibrating sieves. In the case of shaping irregularly shaped particles, the present invention can be applied to shape spines, round particles, or the like without circulating the particles.
一方、 本発明の塩化カルシウム水和物の造粒装置は、 上記造粒方法による塩化 カルシウム水和物の造粒をより確実に行わしめるものであり、 すなわち、 流動層 において種粒子を流動させつつ塩化カルシウム水溶液を噴霧して造粒物を生成す る塩化カルシウム水和物の造粒装置であって、 上記流動層に、 この流動層内にお ける温度を測定する温度センサと該流動層からの排気湿度を測定する湿度センサ とを備え、 少なくともこれらの温度センサおよび湿度センサの測定結果に基づく 制御によって上記流動層内の水蒸気分圧を調整することにより、 流動層内の塩化 カルシウムの蒸気圧を該流動層内の温度に対する所定の水分子数の塩化カルシゥ 厶水和物の蒸気圧に設定することを特徴とする。  On the other hand, the granulation apparatus of calcium chloride hydrate of the present invention performs granulation of calcium chloride hydrate by the above granulation method more reliably, that is, while the seed particles are fluidized in the fluidized bed. An apparatus for granulating calcium chloride hydrate for producing granulated material by spraying an aqueous solution of calcium chloride, comprising: a temperature sensor for measuring a temperature in the fluidized bed; A humidity sensor for measuring the exhaust humidity of the gas, and by adjusting the partial pressure of water vapor in the fluidized bed by control based on at least the measurement results of the temperature sensor and the humidity sensor, the vapor pressure of calcium chloride in the fluidized bed. Is set to the vapor pressure of calcium chloride hydrate having a predetermined number of water molecules with respect to the temperature in the fluidized bed.
ここで、 このように流動層内の水蒸気分圧を調整するに際しては、 一つに、 上 記流動層に、 該流動層に供給される流動用ガスの水分量を調整する水分調整装置 を備えるとともに、 この水分調整装置には、 上記流動用ガスに付与される水分量 を測定する流量センサと、 水分調整された流動用ガスの温度および湿度を測定す る温度センサおよび湿度センサとを備え、 少なくともこれら流量センサ、 温度セ ンサ、 および湿度センサの測定結果と流動層に備えられた上記温度センサおよび 湿度センサの測定結果とに基づく制御によって上記流動用ガスの水分量を調整す ることが可能である。 また、 これに合わせて、 あるいは単独で、 上記流動層に、 該流動層に供給される上記塩化カルシウム水溶液の濃度を調整する濃度調整装置 を備えるとともに、 この濃度調整装置には、 濃度調整された塩化カルシウム水溶 液の濃度および流量を測定する濃度センサおよび流量センサを備え、 少なくとも これらの濃度センサおよび流量センサの測定結果と流動層に備えられた上記温度 センサおよび湿度センサの測定結果とに基づく制御によって上記塩化 Λルシゥ厶 水溶液の濃度を調整することも可能である。 Here, when adjusting the partial pressure of water vapor in the fluidized bed in this way, one of the above-mentioned fluidized beds is provided with a moisture adjusting device for adjusting the moisture amount of the fluidizing gas supplied to the fluidized bed. In addition, the moisture adjusting device includes a flow rate sensor for measuring the amount of moisture given to the fluidizing gas, a temperature sensor and a humidity sensor for measuring the temperature and humidity of the moisture-regulated flowing gas, It is possible to adjust the water content of the flowing gas by controlling at least based on the measurement results of the flow rate sensor, temperature sensor, and humidity sensor and the measurement results of the temperature sensor and humidity sensor provided in the fluidized bed. It is. In addition, the fluidized bed is provided with a concentration adjusting device for adjusting the concentration of the calcium chloride aqueous solution supplied to the fluidized bed in accordance with this or alone, and the concentration adjusting device is provided with a concentration-adjusted device. Calcium chloride aqueous solution A concentration sensor and a flow rate sensor for measuring the concentration and the flow rate of the liquid, and the control is performed based on at least the measurement results of the concentration sensor and the flow rate sensor and the measurement results of the temperature sensor and the humidity sensor provided in the fluidized bed. It is also possible to adjust the concentration of the calcium aqueous solution.
ところで、この造粒装置において流動層に噴霧される塩化カルシウム水溶液は、 その濃度や温度にもよるが流動層における造粒を一旦停止したり造粒作業を終了 したりした際に当該造粒装置内の配管などにおいて滞留すると固結を生じて詰ま リ易く、 こうして固結が生じると次に造粒作業を再開する際にはこの固結によつ て詰まった部分を溶解させなければならなくなって作業効率の低下を招く結果と なるので、 このような造粒を停止した際でも塩化カルシウム水溶液の固結を生じ ないように固結防止手段を備えるのが望ましい。 ここで、 上記塩化カルシウム水 溶液をタンクにおいて所定の濃度に調整してこのタンクから供給管を介して上記 流動層に供給して噴霧するようにした場合には、 この供給管において固結が生じ 易いので、 上記固結防止手段としてはまず第 1 に、 この供給管に、 該供給管内の 塩化カルシウム水溶液を上記タンクに返送する返送管を接続可能とするのが望ま しく、 造粒を停止した際にはこの返送管を介して供給管内の塩化カルシウム水溶 液をタンクに返送し、 供給管内に塩化カルシウム水溶液が残留しないようにすれ ばよい。  By the way, the aqueous solution of calcium chloride sprayed on the fluidized bed in this granulator depends on the concentration and temperature, and when the granulation in the fluidized bed is temporarily stopped or the granulation operation is completed, If it stays in the pipes inside it, it tends to be clogged and clogged easily, and when consolidation occurs, the portion clogged by this consolidation must be melted the next time granulation work is resumed. Therefore, it is desirable to provide a caking preventing means so that caking of the calcium chloride aqueous solution does not occur even when such granulation is stopped. Here, when the calcium chloride aqueous solution is adjusted to a predetermined concentration in a tank and supplied from the tank to the fluidized bed through a supply pipe and sprayed, consolidation occurs in the supply pipe. First, as the above-mentioned consolidation preventing means, first, it is desirable that a return pipe for returning the aqueous solution of calcium chloride in the supply pipe to the tank can be connected to this supply pipe, and granulation was stopped. In this case, the calcium chloride aqueous solution in the supply pipe may be returned to the tank via the return pipe so that the calcium chloride aqueous solution does not remain in the supply pipe.
また、 例えば造粒作業を終了した後に次の造粒作業再開まで時間があくと、 上 記タンク内においても塩化カルシウム水溶液の固結が生じるおそれもあるが、 そ のような造粒作業終了後の固結を防止するために、 例えばこのタンク内に保持さ れた塩化カルシウム水溶液全量を造粒作業終了までの間加熱し続けたりするのは 経済的ではない。 その一方で、 当該造粒装置には、 上記流動層から排出される排 気を洗浄水によって洗浄して該排気中の塩化カルシウム成分を回収するスクラバ —が通常付設され、 このスクラバーにおいては洗浄水に排気中の塩化カルシウム 成分が溶解した塩化カルシウム水溶液が保持されることとなるので、 上記固結防 止手段として第 2に、 上記タンクをこのスクラバーに接続可能として、 造粒作業 終了時には該タンク内の塩化カルシウム水溶液を上記スクラバーに供給して保持 可能とするのが望ましく、 これにより、 これらタンクとスクラバーとの塩化カル 流 Also, for example, if there is a long time after the completion of the granulation operation until the next granulation operation is resumed, the calcium chloride aqueous solution may solidify in the above-mentioned tank, but after such a granulation operation is completed. It is not economical, for example, to keep the entire amount of the aqueous solution of calcium chloride held in this tank heated until the end of the granulation operation in order to prevent caking of the powder. On the other hand, the granulating apparatus is usually provided with a scrubber for washing the exhaust gas discharged from the fluidized bed with washing water and recovering the calcium chloride component in the exhaust gas. Since the calcium chloride solution in which the calcium chloride component in the exhaust gas is dissolved is retained, the above-mentioned tank can be connected to this scrubber as the above-mentioned caking prevention means. It is desirable that the aqueous solution of calcium chloride in the tank can be supplied to the scrubber so that it can be held. Flow
6  6
シゥ厶水溶液をまとめて加熱して保持することが可能となるので、経済的である。 なお、 造粒作業を再開するときには、 このスクラバーからタンクに塩化カルシゥ 厶水溶液を返送して流動層に噴霧すればよい。 It is economical because it is possible to collectively heat and hold the shim aqueous solution. When the granulation operation is restarted, the aqueous calcium chloride solution may be returned from the scrubber to the tank and sprayed on the fluidized bed.
さらに、 流動層には、 該流動層に種粒子を供給するシードホッパーが接続され て、 造粒作業再開時などに最初に造粒を行うときにはこのシードホッパーから種 粒子が供給されることとなるが、 この流動層において生成された塩化カルシウム 水和物の造粒物の少なくとも一部を、 上述のように流動層に直接的に循環させて 種粒子とする以外に、 選択的にこのシードホッパーに供給可能とすれば、 例えば 造粒作業の終了前にこのシ一ドホッパーに上記造粒物を供給して貯留しておき、 次の造粒作業再開時に種粒子として流動層に供給することができ、 改めて種粒子 を準備する必要がなくなって効率的である。 また、 場合によっては造粒された塩 化カルシゥ厶水和物のうち粒径の大きな造粒物が製品として必要とされることも あるので、 上記流動層に、 該流動層において生成された塩化カルシウム水和物の 造粒物を粗粒子と中粒子と細粒子とに分別する振動篩装置を接続し、 このうち上 記粗粒子の少なくとも一部を選択的に製品造粒物として排出可能とするのが望ま しい。  Further, a seed hopper for supplying seed particles to the fluidized bed is connected to the fluidized bed, and the seed particles are supplied from the seed hopper when granulation is performed for the first time such as when the granulation operation is restarted. However, in addition to directly circulating at least a portion of the granulated calcium chloride hydrate formed in the fluidized bed into the fluidized bed to form seed particles as described above, the seed hopper is selectively used. If it is possible to supply the granulated material to the seed hopper before the end of the granulation work, for example, the granulated material can be supplied and stored in the seed hopper, and then supplied to the fluidized bed as seed particles when the next granulation work is restarted. It is efficient because there is no need to prepare seed particles again. Further, in some cases, a granulated product having a large particle size among the granulated calcium chloride hydrates may be required as a product, and thus the chloride formed in the fluidized bed may be added to the fluidized bed. A vibrating sieve device that separates the granulated calcium hydrate into coarse, medium, and fine particles is connected, and at least a portion of the coarse particles can be selectively discharged as product granules. It is desirable to do so.
さらにまた、上述のように上記流動層にスクラバーを接続した場合においては、 この排気を洗浄した洗浄水を、 該スクラバーに循環可能とするとともに、 その少 なくとも一部を上記流動層側に供給可能とするのが望ましく、 これにより、 この スクラバーにおいて塩化カルシウム水溶液を濃縮して流動層側に供給、 噴霧する ことができるので、 造粒作業中にあっては上記タンクにおける濃度調整などを容 易にすることができる一方、 例えば造粒作業再開前に塩化カルシウム水溶液を濃 縮する場合でも、 上記タンクではなくこのスクラバーにおいて、 流動層の乾燥、 昇温により排出される高温の排気により、 塩化カルシウム水溶液を予め濃縮して おくことができ、 こうして濃縮された塩化カルシウム水溶液をタンクやあるいは 動層に直接的に供給することが可能となるので、 濃縮時間の短縮を図ることが できる。 また、 このスクラバーを、 流動層から排出される排気を洗浄塔に導入し て該洗浄塔内に噴霧される洗浄水により洗浄するスプレー式のスクラバーとする ことにより、 処理するガス流速が遅くなつて圧損が小さくなることで排気ブロア の動力を小さくすることができる。 図面の簡単な説明 Furthermore, in the case where a scrubber is connected to the fluidized bed as described above, the washing water for cleaning the exhaust gas can be circulated to the scrubber, and at least a part thereof is supplied to the fluidized bed side. It is desirable that the scrubber can concentrate and supply the aqueous solution of calcium chloride to the fluidized bed side and spray it in the scrubber, so that it is easy to adjust the concentration in the above tank during the granulation operation. On the other hand, for example, even when the aqueous solution of calcium chloride is concentrated before resuming the granulation operation, the scrubber, instead of the above-mentioned tank, uses the high-temperature exhaust gas discharged by drying and raising the temperature of the fluidized bed. The aqueous solution can be concentrated in advance, and the concentrated aqueous solution of calcium chloride can be stored in a tank or a moving bed. Since it is possible to directly supply, it is possible to shorten the concentration time. In addition, the scrubber is a spray type scrubber in which exhaust gas discharged from the fluidized bed is introduced into a washing tower and washed with washing water sprayed into the washing tower, so that a gas flow rate to be treated is reduced. Exhaust blower with reduced pressure loss Power can be reduced. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の塩化カルシウム水和物の造粒装置の第 1の実施形態を示す図 である。  FIG. 1 is a view showing a first embodiment of a granulator of calcium chloride hydrate of the present invention.
図 2は、 塩化カルシウム水和物の蒸気圧線図である。  FIG. 2 is a vapor pressure diagram of calcium chloride hydrate.
図 3は、 本発明の塩化カルシウム水和物の造粒装置の第 2の実施形態を示す図 である。  FIG. 3 is a view showing a second embodiment of the granulation device for calcium chloride hydrate of the present invention.
図 4は、 図 3に示す第 2の実施形態の造粒装置の第 1、 第 2のダンパー 2 4, 2 5の断面図である。  FIG. 4 is a cross-sectional view of the first and second dampers 24 and 25 of the granulator of the second embodiment shown in FIG.
図 5は、 図 3に示す第 2の実施形態の造粒装置の貯留器 2 8を示す断面図であ る。 発明を実施するための最良の形態  FIG. 5 is a cross-sectional view showing a reservoir 28 of the granulating apparatus according to the second embodiment shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
図 1 は、 本発明の塩化カルシウム水和物の造粒装置の第 1の実施形態を示すも のである。 この図において符号 1で示すのは流動層であって、 その底部には分散 板 2を介して加圧室 3が形成されており、 この加圧室 3には、 押込ブロア 4およ び焼却ブロア 5を備えて加熱された流動用ガスを供給する熱風炉 6が、 水分調整 装置 7を介して接続されている。 また、 流動層 1内の分散板 2よりも上部にはス プレーノズル 8が上下動可能に垂下されており、 このスプレーノズル 8には濃度 調整装置 9を備えた塩化カルシウム水溶液のタンク 1 0が供給ポンプ 1 1を介し て接続されている。さらに、流動層 1 にはシードホッパー 1 2が接続されていて、 上記分散板 2のやや上方から該流動層 1 内に塩化カルシゥ厶水和物の種粒子が供 給可能とされている。 なお、 この種粒子としては、 塩化カルシウム 2水和物、 塩 化カルシウム 1水和物、 無水塩化カルシウムの粒子やこれらの混合物などの他、 塩化ナ卜リウ厶ゃ塩化マグネシウムなどの粒子を種粒子としてもよい。  FIG. 1 shows a first embodiment of a granulation device for calcium chloride hydrate according to the present invention. In this figure, reference numeral 1 denotes a fluidized bed, at the bottom of which a pressurizing chamber 3 is formed via a dispersing plate 2, and a pressurizing blower 4 and an incineration A hot blast stove 6, which is provided with a blower 5 and supplies heated gas for flow, is connected via a moisture adjusting device 7. A spray nozzle 8 is suspended above the dispersion plate 2 in the fluidized bed 1 so as to be movable up and down. The spray nozzle 8 is provided with a calcium chloride aqueous solution tank 10 having a concentration adjusting device 9. Connected via feed pump 11. Further, a seed hopper 12 is connected to the fluidized bed 1, and seed particles of calcium chloride hydrate can be supplied into the fluidized bed 1 from slightly above the dispersion plate 2. The seed particles include particles of calcium chloride dihydrate, calcium chloride monohydrate, anhydrous calcium chloride, and mixtures thereof, as well as particles of sodium chloride and magnesium chloride. It may be.
ここで、 本実施形態において、 上記水分調整装置 7は、 上記熱風炉 6から流動 層 1の加圧室 3に供給される加熱されて乾燥した流動用ガスに蒸気または水を放 射あるいは噴霧することにより、 この流動用ガスの含有水分量すなわち湿度を所 定の値に調整可能な構成とされている。 なお、 供給される蒸気または水の供給量Here, in the present embodiment, the moisture adjusting device 7 radiates or sprays steam or water to the heated and dried fluidizing gas supplied from the hot blast stove 6 to the pressurized chamber 3 of the fluidized bed 1. Thus, the moisture content of the flowing gas, that is, the humidity is determined. It is configured to be adjustable to a fixed value. The amount of steam or water supplied
(流量) は流量センサ F,によって測定されるとともに、 この水分調整装置 7に よって水分調整された流動用ガスの温度および湿度は、 温度センサ 1^および湿 度センサ H,によってそれぞれ測定される。 The (flow rate) is measured by the flow rate sensor F, and the temperature and humidity of the flowing gas whose moisture has been adjusted by the moisture adjusting device 7 are measured by the temperature sensor 1 ^ and the humidity sensor H, respectively.
また、 上記濃度調整装置 9は: 原料塩化カルシウムが供給可能とされた上記夕 ンク 1 0内に高温の蒸気が供給される蒸気管が配設された構成とされており、 夕 ンク 1 0に保持された塩化カルシウム水溶液を加熱して水分を蒸発させ、 その濃 度を所定の値に調整するようになされている。 なお、 こうして調整されて供給ポ ンプ 1 1 によリスプレーノズル 8に供給される塩化カルシウム水溶液の濃度は濃 度センサ D,によリ、供給量は流量センサ F 2によリ、それぞれ測定される。また、 流動層 1 内における温度は温度センサ T 2により、 湿度は湿度センサ Η 2により、 それぞれ測定され、 さらに湿度センサ Η 3によって流動層 1から排出される排気 の湿度が測定される。 The concentration adjusting device 9 is configured such that a steam pipe through which high-temperature steam is supplied is arranged in the above-mentioned tank 10 where the raw material calcium chloride can be supplied. The retained calcium chloride aqueous solution is heated to evaporate water, and the concentration is adjusted to a predetermined value. Note that thus adjusted concentration of calcium chloride aqueous solution fed to the re-spray nozzle 8 by the feed pump 1 1 is concentration sensor D, by the re-supply amount Li by the flow sensor F 2, each measured You. Further, the temperature sensor T 2 temperature in the fluidized layer 1, the humidity by the humidity sensor Eta 2, are respectively measured, the humidity of the exhaust gas discharged from the fluidized bed 1 is measured further by the humidity sensor Eta 3.
—方、 流動層 1 の造粒物の排出口にはパケットエレベータ 1 3を介して振動篩 装置 1 4が接続されている。 この振動篩装置 1 4は、 上段から下段に向けて網目 が小さくなる複数の篩網が、 それぞれ水平面に対して傾斜して振動装置により振 動可能に設けられたものであって、 パケットエレベータ 1 3から供給された造粒 物を、 製品とされる所定の粒度分布の範囲内の中粒子と、 これよりも粒度の大き い粗粒子と粒度の小さい細粒子とに分別可能とされている。 なお、 上記篩網の段 数や網目の大きさ、 水平面に対する傾斜角等は、 製品として分別される造粒物の 粒子の大きさや形状に応じて適宜設定される。  On the other hand, a vibrating sieve device 14 is connected to the outlet of the granulated material in the fluidized bed 1 via a packet elevator 13. This vibrating sieve device 14 is provided with a plurality of sieve nets, each having a smaller mesh size from the upper stage to the lower stage, each of which is inclined with respect to a horizontal plane and is provided so as to be vibrated by a vibrating device. The granulated product supplied from 3 can be separated into medium particles within a predetermined range of particle size distribution, which are regarded as products, coarse particles having a larger particle size and fine particles having a smaller particle size. The number of sieves, the size of the mesh, the angle of inclination with respect to the horizontal plane, and the like are appropriately set according to the size and shape of the particles of the granulated material to be separated as a product.
そして、 振動篩装置 1 4の上段側には粉砕機 1 5が接続されていて、 この上段 側の篩網に掛かって分別された所定の粒度分布よりも大きい粗粒子を粉砕可能と されており、 こうして粉砕された粗粒子は、 振動篩装置 1 4の下段側の篩網に掛 かって分別された所定の粒度分布範囲内の中粒子の一部と、 上下段の篩網を通過 した所定の粒度分布よりも小さい細粒子とともに、 上記シードホッパー 1 2から の供給路を介して返送されて流動層 1 に循環可能とされている。 また、 上記中粒 子の残りは乾燥冷却機 1 6に供給されて固結防止処理が施され、 製品として排出 される。 さらに、 湿度センサ H 3が設けられた流動層 1の排気口は、 本実施形態では図 1 に示すようにベンチユリ式のスクラバー 1 7に接続されており、 流動層 1から 排出される排気を、 このスクラバー 1 7において洗浄水によって洗浄して該排気 中に含まれる微細な塩化カルシウム粒子を除去した後、 排気ブロア 1 8によって 排出可能とされている。 なお、 このスクラバー 1 7において排気中の微細塩化力 ルシゥ厶粒子を取り込んだ洗浄水は、 スクラバーポンプ 1 9によってスクラバ一 1 7に洗浄水として循環されるとともに、 その一部は原料塩化カルシウムが加え られるなどして、 流動層 1 に噴霧される塩化カルシウム水溶液として上記タンク 1 0に循環可能とされている。 A crusher 15 is connected to the upper stage of the vibrating sieve device 14 so that coarse particles larger than a predetermined particle size distribution, which are separated by being sieved through the upper sieving net, can be crushed. The coarse particles pulverized in this manner are partially passed through the lower sieve screen of the vibrating sieve device 14 and separated into a part of the medium particles within a predetermined particle size distribution range, and the predetermined particles having passed through the upper and lower sieve screens. Along with the fine particles smaller than the particle size distribution, the particles are returned through the supply path from the seed hopper 12 and can be circulated to the fluidized bed 1. The remainder of the above-mentioned medium particles is supplied to the drying cooler 16 to be subjected to an anti-caking treatment, and is discharged as a product. Further, the humidity sensor H 3 is the outlet of the fluidized bed 1, which is provided, in the present embodiment is connected to the scrubber 1 7 Benchiyuri type as shown in FIG. 1, the exhaust gas discharged from the fluidized bed 1, After the scrubber 17 is washed with washing water to remove fine calcium chloride particles contained in the exhaust gas, the exhaust gas can be exhausted by an exhaust blower 18. The scrubber 17, which has taken in the fine chlorinated calcium particles in the exhaust gas, is circulated as scrubber 17 by the scrubber pump 19, and part of the scrubber 17 is added with the raw material calcium chloride. As a result, the aqueous solution can be circulated to the tank 10 as an aqueous solution of calcium chloride sprayed on the fluidized bed 1.
次に、 このように構成された造粒装置を用いて塩化カルシウム水和物の造粒物 を生成する場合の、 本発明の造粒方法の一実施形態について説明する。 本実施形 態では、 まず押込ブロア 4から熱風炉 6に押し込まれた空気が、 焼却ブロア 5か らの空気で燃料を燃焼して生じた熱により所定の温度に加熱され、 乾燥した状態 で水分調整装置 7に送られる。 そして、 この乾燥した空気は、 水分調整装置 7に おいて蒸気または水が付与されて所定の水分量となるように調整された後、 通常 1 2 0〜 1 8 0 °C程度の高温の流動用ガスとして流動層 1の加圧室 3に供給され て分散板 2から噴出させられ、 流動層 1内に保持された塩化カルシウム種粒子を 流動させる。 なお、 この種粒子としては、 当該造粒装置の運転初期や流動層 1 内 の粒子に不足が生じたような場合にはシードホッパー 1 2から供給されたものが 用いられ、 造粒装置が通常運転している間は上記振動篩装置〗 4から循環させら れた細粒子、 一部の中粒子、 および粉砕機 1 5によって粉砕された粗粒子が用い られる。  Next, an embodiment of the granulation method of the present invention when a granulated product of calcium chloride hydrate is produced using the granulator configured as described above will be described. In the present embodiment, first, the air pushed into the hot blast stove 6 from the pushing blower 4 is heated to a predetermined temperature by the heat generated by burning the fuel with the air from the incineration blower 5, and dried in a dry state. It is sent to the adjusting device 7. After the dried air is adjusted to a predetermined moisture content by adding steam or water in a moisture adjusting device 7, the dried air is usually heated at a high temperature of about 120 to 180 ° C. It is supplied to the pressurized chamber 3 of the fluidized bed 1 as a working gas and is ejected from the dispersion plate 2 to flow the calcium chloride seed particles held in the fluidized bed 1. As the seed particles, those supplied from the seed hopper 12 are used in the early stage of the operation of the granulator or when there is a shortage of particles in the fluidized bed 1, and the granulator is usually used. During operation, fine particles circulated from the vibrating sieve device # 4, some medium particles, and coarse particles crushed by the crusher 15 are used.
一方、 この流動層 1 内ではスプレーノズル 8が適宜上下動させられて所定の噴 霧高さに配置されており, 上記濃度調整装置 9によって濃度調整された塩化カル シゥ厶水溶液が、 タンク 1 0から供給ポンプ 1 1 により供給されて、 このスプレ 一ノズル 8から噴霧される。 ただし、 この濃度調整装置 9によって調整される塩 化カルシウム水溶液の濃度は、 従来のような溶融塩の状態よりは低いものであつ て、 5 wt %程度の希薄なものから高くても 6 0 %程度までとされており、 通常 は 3 7〜 5 3 wt %程度とされている。 そして、 こうして噴霧された塩化カルシゥ 厶水溶液は、 流動する種粒子の表面に付着して乾燥し、 種粒子を肥大させて造粒 物を生成する。 On the other hand, in the fluidized bed 1, a spray nozzle 8 is appropriately moved up and down to be arranged at a predetermined spray height, and a calcium chloride aqueous solution whose concentration has been adjusted by the concentration adjusting device 9 is supplied to a tank 10. Is supplied by a supply pump 11 and sprayed from the spray nozzle 8. However, the concentration of the aqueous solution of calcium chloride adjusted by the concentration adjusting device 9 is lower than that of the conventional molten salt state, and it is as low as about 5 wt% to as high as 60%. And usually about 37-53 wt%. And the calcium chloride sprayed in this way The aqueous solution adheres to the surface of the flowing seed particles and dries, and enlarges the seed particles to form granules.
ここで、 本実施形態では、 流動層 1 に供給される流動用ガスの水分が上記水分 調整装置 7によって調整されるとともに、 流動層〗内に噴霧される塩化カルシゥ 厶水溶液の水分が上記濃度調整装置 9によって該水溶液の濃度が調整されること により調整され、 すなわち流動層 1 に供給される水分量が調整されるので、 これ らによって流動層 1 内における水蒸気分圧が調整可能となる。 そこで、 この流動 層 1内における水蒸気分圧を調整することにより、 図 2に示すような塩化カルシ ゥ厶水和物の水分子数に応じた蒸気圧線図に基づき、 流動層 1 内の塩化カルシゥ 厶の蒸気圧を、 該流動層 1 内の温度に合わせて、 造粒しょうとする水分子数の塩 化カルシウム水和物の蒸気圧に設定する。  Here, in the present embodiment, while the moisture of the fluidizing gas supplied to the fluidized bed 1 is adjusted by the moisture adjusting device 7, the moisture of the aqueous solution of calcium chloride sprayed into the fluidized bed 1 is adjusted by the concentration adjustment. The concentration of the aqueous solution is adjusted by the device 9, that is, the amount of water supplied to the fluidized bed 1 is adjusted. Thus, the partial pressure of water vapor in the fluidized bed 1 can be adjusted. Therefore, by adjusting the partial pressure of water vapor in the fluidized bed 1, the chloride pressure in the fluidized bed 1 is adjusted based on the vapor pressure diagram according to the number of water molecules of calcium chloride hydrate as shown in FIG. The vapor pressure of calcium is set to the vapor pressure of calcium chloride hydrate having the number of water molecules to be granulated in accordance with the temperature in the fluidized bed 1.
すなわち、 例えば流動層 1 内の温度が 9 0 °Cであるときに、 塩化カルシウム 2 水和物 (C a C I 2 · 2 H 2 0 ) を生成する場合には塩化カルシウム蒸気圧が 5 . 3 k P a ( 4 0匪 Hg) 程度に設定されるように、 上記水分調整装置 7および濃度 調整装置 9により流動層 1 内の水蒸気分圧をそれぞれ調整する。 なお、 この水蒸 気分圧の調整による流動層 1 内の塩化カルシウム蒸気圧の設定は、 本実施形態で は上記温度センサ丁ぃ T 2、 湿度センサ Η , Η 流量センサ F,、 F 2、 およ び濃度センサ D,による測定結果に基づき、 望ましくは自動的に制御される。 また、 上記造粒装置においては、 流動層 1 内で流動する種粒子に塩化カルシゥ 厶水溶液を噴霧するスプレーノズル 8が上下動可能とされていて、 このスプレー ノズル 8の上下動により本実施形態では塩化カルシウム水溶液を噴霧する噴霧高 さが調整可能とされている。 しかるに、 この噴霧高さが比較的高い場合には、 噴 霧された塩化カルシウム水溶液は細かな飛沫となって種粒子の表面に点々と付着 して乾燥し、 これにより、 造粒される塩化カルシウム水和物は丸粒状の粒子の表 面に所々突起が形成された金平糖形状を呈することとなる。 一方、 この噴霧高さ が比較的低い場合には、 噴霧された塩化カルシウム水溶液は種粒子の表面に全体 的に付着して乾燥することとなリ、 表面が滑らかな丸粒状の粒子が生成されるこ ととなる。 That is, for example, when the temperature of the fluidized bed 1 is 9 0 ° C, calcium chloride vapor pressure when generating the calcium chloride dihydrate (C a CI 2 · 2 H 2 0) is 5.3 The partial pressure of water vapor in the fluidized bed 1 is adjusted by the water adjusting device 7 and the concentration adjusting device 9 so as to be set at about kPa (40 band Hg). Note that, in this embodiment, the setting of the vapor pressure of calcium chloride in the fluidized bed 1 by adjusting the water vapor partial pressure is performed by the temperature sensor T 2 , the humidity sensor,, the flow rate sensor F, F 2 , and the like. Preferably, it is automatically controlled based on the measurement results obtained by the concentration sensor D. Further, in the above granulating apparatus, the spray nozzle 8 for spraying the aqueous solution of calcium chloride on the seed particles flowing in the fluidized bed 1 can be moved up and down. The spray height for spraying the aqueous solution of calcium chloride is adjustable. However, when the spray height is relatively high, the sprayed calcium chloride aqueous solution becomes fine droplets, adheres to the surface of the seed particles and dries, whereby the calcium chloride granulated is formed. The hydrate has a spinous shape in which protrusions are formed on the surface of the round particles in some places. On the other hand, when the spray height is relatively low, the sprayed calcium chloride aqueous solution adheres entirely to the surface of the seed particles and dries, producing round particles having a smooth surface. The Rukoto.
次いで、 こうして流動層 1 において生成された造粒物は、 バケツ卜コンベア 1 3によって上記振動篩装置 1 4に投入され、 傾斜した複数段の振動篩によって 篩分けられて、 所定の粒度分布の範囲よりも粒度の大きい粗粒子と、 所定の粒度 分布範囲内の中粒子と、 この範囲よりも粒度の小さい細粒子とに分別される。 そ して、 上述のように粗粒子は粉碎機 1 5により粉砕されて細粒子および一部の中 粒子とともに流動層 1 に返送される一方、 残りの中粒子は乾燥冷却機 1 6により 固結防止処理が施され、 製品としての塩化カルシウム水和物の造粒物として排出 される。 さらに、 流動層 1から排出された排気は、 スクラバー 1 7により微細な 塩化カルシウム粒子が捕集されて除去された後に排出され、 またこの微細塩化力 ルシゥ厶粒子が溶け込んだスクラバー 1 7の洗浄水の一部は、 タンク 1 0に返送 されて循環させられる。 Next, the granules thus generated in the fluidized bed 1 are transferred to the bucket conveyor 1. 3 into the vibrating sieve device 14 and sieved by a plurality of inclined vibrating sieves, coarse particles having a larger particle size than a predetermined particle size distribution range, and medium particles within a predetermined particle size distribution range. However, it is classified into fine particles having a smaller particle size than this range. Then, as described above, the coarse particles are pulverized by the pulverizer 15 and returned to the fluidized bed 1 together with the fine particles and some of the medium particles, while the remaining medium particles are consolidated by the drying cooler 16. Prevention treatment is applied and discharged as granulated calcium chloride hydrate as a product. Further, the exhaust gas discharged from the fluidized bed 1 is discharged after the fine calcium chloride particles are collected and removed by the scrubber 17, and the washing water of the scrubber 17 in which the fine chloride particles are dissolved. Some of the water is returned to tank 10 and circulated.
しかるに、 このような塩化カルシウム水和物の造粒方法においては、 まず、 流 動層 1 内で流動する種粒子に塩化カルシウム水溶液を噴霧してその表面に付着さ せ、 これを加熱された流動用ガスによって乾燥することによリ造粒物が生成され るので、 従来のフレーカーを用いた方法や空気中に飛散させる方法のように塩化 カルシウム水溶液を溶融塩状態にまで濃縮する必要がなく、 希薄な水溶液を用い て造粒が可能であって、 設備の腐食のおそれが少ないとともに、 この水溶液を高 濃度に濃縮するような加熱手段も必要としない。 また、 図 2に示した塩化カルシ ゥ厶水和物の蒸気圧線図によれば、 一般的に製品として使用される塩化力ルシゥ 厶 2、 4、 6水和物に関しては、 流動層 1 内の温度が例えば 6 0〜 1 5 0 °C程度 の比較的低い温度の場合でもその蒸気圧を適当に設定することによって造粒可能 であり、 しかもこの流動層 1 内の温度は、 熱風炉 6によって空気等の流動用ガス を加熱することにより、 比較的容易に昇温させたり安定的に維持したりすること が可能である。  However, in such a method of granulating calcium chloride hydrate, first, an aqueous solution of calcium chloride is sprayed on the seed particles flowing in the fluidized bed 1 and adhered to the surface thereof, and this is heated. Drying with an application gas produces re-granulated material, so there is no need to concentrate the aqueous calcium chloride solution to a molten salt state, unlike the conventional method using a flaker or the method of scattering in air. Granulation is possible using a dilute aqueous solution, and there is little danger of equipment corrosion, and there is no need for a heating means to concentrate this aqueous solution to a high concentration. In addition, according to the vapor pressure diagram of calcium chloride hydrate shown in FIG. 2, chlorides 2, 4, and 6 hydrates, which are generally used as products, have the following characteristics. If the temperature of the fluidized bed 1 is relatively low, for example, about 60 to 150 ° C., granulation can be performed by appropriately setting the vapor pressure. By heating the flowing gas such as air, the temperature can be raised relatively easily or maintained stably.
そして、 上記造粒方法では、 この流動層 1 内の温度に応じて該流動層 1 内にお ける水蒸気分圧を調整することにより、 造粒すべき所定の塩化カルシウム水和物 の水分子数に合わせた蒸気圧に流動層 1内の塩化カルシウム水和物の蒸気圧を設 定することができ、 これによつて所望の水分子数の塩化カルシウム水和物を生成 することができる。 従って、 上記構成の塩化カルシウム水和物の造粒方法によれ ば、 製品としての用途に応じた適当な水分子数の塩化カルシウム水和物の造粒物 を確実に製造することができ、 その後の処理を効率的かつ簡略に行うことが可能 となる。 In the above granulation method, the number of water molecules of a predetermined calcium chloride hydrate to be granulated is adjusted by adjusting the partial pressure of steam in the fluidized bed 1 according to the temperature in the fluidized bed 1. The vapor pressure of the calcium chloride hydrate in the fluidized bed 1 can be set to the vapor pressure according to the above, whereby calcium chloride hydrate having a desired number of water molecules can be generated. Therefore, according to the method for granulating calcium chloride hydrate having the above structure, the granulated calcium chloride hydrate having an appropriate number of water molecules according to the use as a product is obtained. Can be reliably manufactured, and the subsequent processing can be performed efficiently and simply.
ここで、 本実施形態では、 このように流動層 1内の水蒸気分圧を調整するに際 して、 上記水分調整装置 7により流動層 1 に供給される流動用ガスの水分量すな わち湿度を調整するとともに、 上記濃度調整装置 9により流動層 1内に噴霧され て供給される塩化カルシウム水溶液の濃度を調整するようにしているが、 例えば これらのうちの一方により単独で流動層 1 内の水蒸気分圧を調整するように構成 することも可能である。 しかしながら、 特に濃度調整装置 9だけで水蒸気分圧の 調整を図ろうとした場合には流動層 1 内の温度の変動などに対する即応性が不十 分となるおそれがあるので、 流動層 1 内の温度に合わせて濃度調整装置 9により 噴霧される塩化カルシウム水溶液の濃度を適当な濃度に保持しつつ水分調整装置 7によって流動ガスの水分を調整するようにし、 すなわち本実施形態のようにこ れら水分調整装置 7と濃度調整装置 9とを併用するようにして、 流動層 1内の水 蒸気分圧の調整を図るのが望ましい。  Here, in the present embodiment, in adjusting the water vapor partial pressure in the fluidized bed 1 in this manner, the moisture amount of the fluidizing gas supplied to the fluidized bed 1 by the moisture adjusting device 7, that is, The humidity is adjusted, and the concentration of the aqueous calcium chloride solution sprayed and supplied into the fluidized bed 1 is adjusted by the concentration adjusting device 9 described above. It is also possible to configure so that the partial pressure of water vapor is adjusted. However, especially if it is attempted to adjust the water vapor partial pressure only with the concentration adjusting device 9, the responsiveness to fluctuations in the temperature in the fluidized bed 1 may be insufficient, so the temperature in the fluidized bed 1 may be insufficient. The water content of the flowing gas is adjusted by the moisture adjusting device 7 while maintaining the concentration of the aqueous solution of calcium chloride sprayed by the concentration adjusting device 9 at an appropriate concentration in accordance with the time. It is desirable to adjust the water vapor partial pressure in the fluidized bed 1 by using the adjusting device 7 and the concentration adjusting device 9 together.
また、 本実施形態では、 上記水分調整装置 7に供給される蒸気または水の流量 や水分調整された流動用ガスの温度および湿度、 濃度調整装置 9によって調整さ れた塩化カルシウム水溶液の濃度および流量、 さらに流動層 1 内の温度および湿 度と流動層 1からの排気の湿度が、 それぞれ温度センサ 1^, T 2、 湿度センサ Η ,〜^! ^ 流量センサ F,, F 2、 および濃度センサ D,によって測定されている。 そして、 このうち少なくとも流動層 1 内の温度および流動層 1からの排気湿度の 測定結果により、 上述した塩化カルシウム水和物の蒸気圧線図に基づいて塩化力 ルシゥ厶水和物の蒸気圧が最適に設定されるように、 水蒸気分圧を確実に調整す ることが可能となる。 また、 これに加えて本実施形態では、 その他のセンサによ る測定結果に基づき、 流動用ガスの温度や湿度 (水分量) 、 塩化カルシウム水溶 液の濃度や流量をコンピュータ等を用いて自動的に制御することにより、 一層正 確な水蒸気分圧の調整を図ることが可能となる。 Further, in the present embodiment, the flow rate of steam or water supplied to the moisture adjusting device 7, the temperature and humidity of the flowing gas whose moisture has been adjusted, and the concentration and flow rate of the aqueous calcium chloride solution adjusted by the concentration adjusting device 9. further humidity of the exhaust gas from the fluidized bed 1 and the temperature and humidity in the fluidized bed 1, respectively the temperature sensor 1 ^, T 2, humidity sensors Eta, ~ ^! ^ Flow sensor F ,, F 2, and the density sensor D, and measured by. From the measurement results of at least the temperature in the fluidized bed 1 and the exhaust humidity from the fluidized bed 1, the vapor pressure of chloridized calcium hydrate is determined based on the vapor pressure diagram of calcium chloride hydrate described above. It is possible to reliably adjust the water vapor partial pressure so that it is optimally set. In addition, in the present embodiment, the temperature and humidity (water content) of the flowing gas, the concentration and the flow rate of the calcium chloride aqueous solution, and the flow rate of the calcium chloride aqueous solution are automatically determined using a computer or the like based on the measurement results obtained by other sensors. By controlling the water vapor pressure, it becomes possible to adjust the water vapor partial pressure more accurately.
—方、 上記造粒装置においては、 塩化カルシウム水溶液が噴霧されるスプレー ノズル 8が上述のように上下動可能とされており、 この塩化力ルシゥム水溶液の 噴霧高さを適当な高さに設定することにより、 この噴霧高さに応じた所定の形状 の造粒物が生成される。 すなわち、 この噴霧高さが比較的低い場合には、 塩化力 ルシゥ厶水溶液は種粒子の表面に液状のまま満遍なく均一に付着するため、 造粒 物は丸粒状の粒子に生成される。 また、 逆に噴霧高さが比較的高い場合には、 噴 霧された塩化カルシウム水溶液は飛沫となって種粒子の表面に点々と付着するた め、 この付着した部分が種粒子の表面に突起をなし、 造粒物は金平糖形状の粒子 に生成される。 従って、 例えば生成された塩化カルシウム水和物の造粒物を吸湿 材として使用する場合に、 後者のような金平糖形状の造粒物によれば粒子の周囲 に十分な空間を確保して吸湿性の向上を図ることができる一方、 前者の丸粒状の 造粒物では前者に比べて単位容積当たりの容器への充填率を高くして長期に渡つ て安定した吸湿性を発揮することができ、 すなわち目的に合わせた形状の造粒物 を得ることが可能となる。 On the other hand, in the above granulating apparatus, the spray nozzle 8 for spraying the aqueous solution of calcium chloride is capable of moving up and down as described above, and the spray height of this aqueous solution of chlorinated calcium is set to an appropriate height. By this, the predetermined shape according to the spray height Is produced. In other words, when the spray height is relatively low, the aqueous solution of chlorinated calcium is uniformly and uniformly adhered to the surface of the seed particles in a liquid state, so that the granules are formed into round particles. On the other hand, when the spray height is relatively high, the sprayed calcium chloride aqueous solution becomes droplets and adheres to the surface of the seed particles in a dotted manner. The granules are formed into particles in the shape of confetti. Therefore, for example, when the formed granules of calcium chloride hydrate are used as a hygroscopic material, the latter, such as the confetti-shaped granules, secures a sufficient space around the particles and absorbs moisture. On the other hand, the former round granulated material has a higher packing ratio per unit volume than the former, and can exhibit stable moisture absorption over a long period of time. That is, it is possible to obtain a granulated material having a shape suitable for the purpose.
なお、 この造粒された粒子が金平糖形状となるか丸粒状となるかは、 塩化カル シゥ厶水溶液の濃度や供給量、 スプレーノズル 8の形状や大きさ、 流動層 1 内に 保持される種粒子の量や流動用ガスの空塔速度などによっても影響を受けること が予想されるが、 種々の条件において上記噴霧高さを変化させた実験の結果、 流 動層 1の静止層高さに対する上記噴霧高さが 3 0 O mni以上に設定された場合に金 平糖形状の粒子が顕著に生成されることが確認された。 ただし、 これは、 噴霧高 さが上記範囲に設定された場合にすべての粒子が金平糖形状になるというわけで はなく、 また噴霧高さが上記範囲を 1 mmでも下回った場合に金平糖形状の粒子が 全く生成されないというわけでもなく、 噴霧高さが上記範囲に設定された場合に は、 生成された造粒物中の金平糖形状の粒子の割合が顕著に高くなつたという糸 ;;吉 果である。  Note that whether the granulated particles have a spinous shape or a round shape depends on the concentration and supply amount of the aqueous solution of calcium chloride, the shape and size of the spray nozzle 8, and the seeds held in the fluidized bed 1. It is expected that it is affected by the amount of particles and the superficial velocity of the fluidizing gas, but as a result of experiments in which the spray height was varied under various conditions, When the spray height was set to 30 Omni or more, it was confirmed that spinous particles were remarkably generated. However, this does not mean that all particles will have a spinous shape when the spray height is set to the above range, and that the particles will have a spinous shape when the spray height falls below the above range by even 1 mm. This does not mean that no particles are produced at all, and that when the spray height is set within the above range, the proportion of particles in the shape of confetti in the produced granules has increased significantly; is there.
一方、 このように所定の形状の粒子を含んだ造粒物を生成するには、 流動層 1 内における水蒸気分圧を、 上記水分調整装置 7や濃度調整装置 9により、 塩化力 ルシゥムの蒸気圧に対して所定の圧力に調整することによつても可能である。 す なわち、 流動層 1 内の水蒸気分圧を塩化カルシウムの蒸気圧に対して十分に低く 設定すれば、 上記噴霧高さを高くした場合と同様に金平糖形状の粒子の割合が高 くなリ、 これとは逆に流動層 1 内の水蒸気分圧を塩化カルシウムの蒸気圧に近づ けた場合には、 丸粒状の粒子の割合が高くなる。 勿論、 このように流動層 1 内の 水蒸気分圧の調整と上記噴霧高さの調整とを合わせて行えば、 それぞれの形状の 粒子の割合は一層高くなる。 On the other hand, in order to generate a granulated product containing particles of a predetermined shape in this way, the partial pressure of steam in the fluidized bed 1 is adjusted by the moisture adjusting device 7 and the concentration adjusting device 9 to change the vapor pressure of chloridizing water. It is also possible to adjust the pressure to a predetermined value. In other words, if the water vapor partial pressure in the fluidized bed 1 is set sufficiently low with respect to the vapor pressure of calcium chloride, the proportion of confetti-shaped particles will increase as in the case where the spray height is increased. Conversely, when the partial pressure of water vapor in the fluidized bed 1 approaches the vapor pressure of calcium chloride, the ratio of round particles increases. Of course, like this, If the adjustment of the water vapor partial pressure and the adjustment of the spray height are performed together, the ratio of the particles of each shape becomes higher.
また、 本実施形態では、 流動層 1から排出された造粒物は振動篩装置 1 4によ つて粗粒子と中粒子と細粒子とに分別され、 このうち所定の粒度分布範囲内の中 粒子だけが乾燥冷却器 1 6によって固結防止処理されて製品とされ、 粉砕機 1 5 によって粉砕された粗粒子および細粒子と一部の中粒子とが、 種粒子として流動 層 1 に循環させられるようになされている。 従って、 例えば上記製品として排出 される塩化カルシウム水和物と流動層 1 に噴霧される塩化カルシウム水溶液との 塩化カルシウム量をバランスさせた場合には、 シードホッパー 1 2からは運転初 期だけ種粒子を流動層 1 に供給すればよく、 通常の運転時には循環する上記粒子 によって種粒子をまかなうことが可能となるので、 効率的な運転を図ることがで きる。  Further, in this embodiment, the granulated material discharged from the fluidized bed 1 is separated into coarse particles, medium particles, and fine particles by the vibrating sieve device 14, and among these, medium particles within a predetermined particle size distribution range. Only the product is subjected to anti-caking treatment by the drying cooler 16 to produce a product, and the coarse and fine particles and some medium particles pulverized by the pulverizer 15 are circulated to the fluidized bed 1 as seed particles. It has been made like that. Therefore, for example, when the amount of calcium chloride in the calcium chloride hydrate discharged as the above product and the aqueous solution of calcium chloride sprayed into the fluidized bed 1 is balanced, the seed particles from the seed hopper 12 are obtained only during the initial operation. Can be supplied to the fluidized bed 1 and, during normal operation, the seed particles can be covered by the circulating particles, so that efficient operation can be achieved.
ただし、 このように振動篩装置 1 4によって分別された粒子を流動層 1 に循環 させるに際しては、 この循環させられる粒子の量が製品とされる粒子の量に対し て多くなりすぎると製品の歩留まりの劣化を招く結果となる一方、 逆に循環する 粒子量が製品粒子の量に対して少なすぎると、 流動層 1 における種粒子量が不足 して頻繁にシードホッパー 1 2から種粒子を補充しなければならず、 運転操作が 煩雑となる。 従って、 流動層 1から排出される塩化カルシウム水和物の総重量と 分別されて製品とされる上記中粒子の重量との比、 すなわち塩化カルシウム水和 物の循環比は、 1 . 5〜 1 0の範囲に設定されるのが望ましい。 なお、 本実施形 態では、 振動篩装置 1 4によって分別された中粒子の一部をも流動層 1 に循環さ せるようにしているが、 この中粒子をすベて乾燥冷却機 1 6に送って製品とする ようにしてもよい。  However, when circulating the particles separated by the vibrating sieve device 14 in the fluidized bed 1 as described above, if the amount of the circulated particles is too large relative to the amount of the product particles, the product yield On the other hand, if the amount of circulating particles is too small relative to the amount of product particles, the amount of seed particles in the fluidized bed 1 will be insufficient and seed particles will be frequently replenished from the seed hopper 12. Operation becomes complicated. Therefore, the ratio of the total weight of the calcium chloride hydrate discharged from the fluidized bed 1 to the weight of the above-mentioned medium particles that are separated and formed into a product, that is, the circulation ratio of the calcium chloride hydrate is 1.5 to 1 It is desirable to set in the range of 0. In this embodiment, part of the medium particles separated by the vibrating sieve device 14 is also circulated to the fluidized bed 1, but all of the medium particles are sent to the drying cooler 16. It may be sent to the product.
また、 本実施形態では、 特にこの振動篩装置 1 4が水平面に対して傾斜した複 数段の篩網を振動装置によって振動させて造粒物を分別する構成とされていて、 篩網を傾斜させることによって分別すべき粒子の大きさに対して目開き量を大き くすることができ、 篩網を振動させることとも相俟って、 目詰まりの発生を防止 して効率的な分別を図ることができる。 しかも、 本実施形態では、 この振動篩装 置 1 4によって分別された粒子のうち、 製品とされる中粒子のみが乾燥冷却機 1 6に送られて冷却されるだけであり、 残りの粉砕された粗粒子、 細粒子、 および 一部の中粒子は冷却されないまま流動層 1 に循環させられるので、 これらの粒子 の循環によって流動層 1 内の温度が大きく低下するのを避けることができ、 熱的 にも効率的な塩化カルシウム水和物の造粒を図ることができる。 Further, in the present embodiment, the vibrating sieve device 14 is particularly configured to vibrate the multi-stage sieve mesh inclined with respect to the horizontal plane by the vibrator to separate the granulated material. In this way, the size of the particles to be separated can be increased with respect to the size of the particles to be separated, and together with vibrating the sieve screen, clogging can be prevented and efficient separation can be achieved. be able to. Moreover, in the present embodiment, among the particles separated by the vibrating sieve device 14, only the medium particles, which are considered to be products, are dried and cooled. 6 and is cooled only, and the remaining pulverized coarse, fine and some medium particles are circulated uncooled to fluidized bed 1, so that the circulation of these particles It is possible to prevent the temperature in the chamber 1 from dropping greatly, and to achieve thermally and efficiently granulation of calcium chloride hydrate.
これらに加えて、 本実施形態では、 流動層 1から排出された排気をスクラバー 1 7で洗浄したその洗浄水の一部を、 流動層 1 に噴霧する塩化カルシウム水溶液 のタンク 1 0に循環させるようにしている。 すなわち、 排気中に含まれる塩化力 ルシゥ厶水和物の微細粒子が溶け込んである程度の濃度を有した洗浄水に原料塩 化カルシウムが加えられて流動層 1 内に噴霧されるので、 同じ濃度の塩化カルシ ゥ厶水溶液を噴霧するにしても、 タンク 1 0に供給すべき原料塩化カルシウムの 量を低減することができ、 より経済的な塩化カルシウム水和物の造粒を促すこと が可能となる。  In addition to this, in the present embodiment, a part of the washing water obtained by washing the exhaust gas discharged from the fluidized bed 1 with the scrubber 17 is circulated to the tank 10 of the aqueous calcium chloride solution sprayed on the fluidized bed 1. I have to. That is, the fine particles of chloride hydrate contained in the exhaust gas are dissolved and the raw material calcium chloride is added to the washing water having a certain concentration and sprayed into the fluidized bed 1, so that the same concentration is obtained. Even if an aqueous solution of calcium chloride is sprayed, the amount of the raw material calcium chloride to be supplied to the tank 10 can be reduced, and more economical granulation of calcium chloride hydrate can be promoted. .
次に、 図 3ないし図 5は、 本発明の造粒装置の第 2の実施形態を示すものであ るが、 この第 2の実施形態では、 その基本的な構成は上述した第 1の実施形態の 造粒装置と同様とされているので、 共通する構成要素には同一の符号を配して説 明を省略する。 この第 2の実施形態は、 まず塩化カルシウム水溶液の固結防止手 段を備えていることを特徴とする。 すなわち、 本実施形態では、 まず第 1の固結 防止手段として、 上記タンク 1 0に保持された塩化カルシウム水溶液を供給ボン プ 1 1を介して流動層 1 に供給して上記スプレーノズル 8から噴霧する供給管 1 1 Aに、 その流動層 1側近傍において返送管 2 1の一端が接続されており、 この 返送管 2 1の他端は上記タンク 1 0に接続されている。 なお、 上記供給管 1 1 A の返送管 2 1 との接続部から流動層 1 内のスプレーノズル 8に至るまでの間には バルブ 1 1 Bが設けられている。  Next, FIG. 3 to FIG. 5 show a second embodiment of the granulating apparatus of the present invention. In the second embodiment, the basic configuration is the same as that of the first embodiment described above. Since the configuration is the same as that of the granulating apparatus of the embodiment, the same reference numerals are assigned to the same components, and the description is omitted. The second embodiment is characterized in that a means for preventing solidification of an aqueous solution of calcium chloride is provided first. That is, in the present embodiment, first, as a first solidification preventing means, the calcium chloride aqueous solution held in the tank 10 is supplied to the fluidized bed 1 through the supply pump 11 and sprayed from the spray nozzle 8. One end of a return pipe 21 is connected to the supply pipe 11 A near the fluidized bed 1 side, and the other end of the return pipe 21 is connected to the tank 10. A valve 11B is provided between the connection of the supply pipe 11A and the return pipe 21 to the spray nozzle 8 in the fluidized bed 1.
また、 本実施形態では、 第 2の固結防止手段として、 上記供給管 1 〗 Aの供給 ポンプ 1 1側にバルブ 2 2 Aを介して排液管 2 2の一端が接続されており、 この 排液管 2 2の他端はスクラバー 2 3に接続されている。 なお、 供給管 1 1 Aにお いて排液管 2 2との接続部より僅かに流動層 1側にもバルブ 1 1 Cが設けられて いる。 また、 本実施形態における上記スクラバー 2 3は、 第 1の実施形態のよう なベンチユリ式のものではなく、 洗浄塔 2 3 A内に導入された流動層 1からの排 気を該洗浄塔 2 3 A内の上部に設けられたスプレーノズル 2 3 Bから噴霧される 洗浄水によって洗浄するスプレー式のものとされており、 この排気を洗浄して該 排気中に含まれる塩化カルシウム成分を吸収した洗浄液は、 該洗浄塔 2 3 A底咅 P に保持されて蒸気により加熱され、 第 1の実施形態と同様にスクラバーポンプ 1 9によって洗浄水として循環させられるとともに、 その少なくとも一部が上記夕 ンク〗 0にも循環して供給可能とされている。 In this embodiment, one end of the drainage pipe 22 is connected to the supply pump 11 side of the supply pipe 1〗 A via a valve 22 A as a second solidification preventing means. The other end of the drainage pipe 22 is connected to the scrubber 23. In addition, a valve 11C is also provided on the fluidized bed 1 side of the supply pipe 11A slightly from the connection with the drainage pipe 22. Further, the scrubber 23 in the present embodiment is not of the bench lily type as in the first embodiment, but is an exhaust from the fluidized bed 1 introduced into the washing tower 23A. It is of a spray type in which air is washed by washing water sprayed from a spray nozzle 23B provided at an upper part in the washing tower 23A, and this exhaust gas is washed and contained in the exhaust gas. The washing liquid having absorbed the calcium chloride component is held in the washing tower 23A bottom P, heated by steam, circulated as washing water by a scrubber pump 19 as in the first embodiment, and Part of the supply is also possible to be circulated to the above-mentioned tank 0.
一方、 流動層 1 において生成された塩化カルシウム水和物の造粒物のうち上記 振動篩装置 1 4により分別された粗粒子は、 本実施形態では第 1のダンパー 2 4 を介して、 同じく分別された中粒子のうち製品として排出される以外の一部の中 粒子とともに粉碎機 1 5に供給されて粉砕され、 さらに細粒子とともに第 2のダ ンパー 2 5を介して種粒子として流動層 1 に循環可能とされている。 ここで、 上 記第 1、 第 2のダンパー 2 4, 2 5は、 図 4に示すように上記分別された粗粒子 や粗粒子および一部の中粒子を粉砕したものと細粒子とを給送する給送管 2 6が 二股に分岐させられるとともに、 この給送管 2 6内の分岐部分に遮蔽板 2 7が揺 動可能に取り付けられたもので、 この遮蔽板 2 7が分岐した給送管 2 6の一方を 塞ぐことにより、 他方に粒子が選択的に給送可能な構成とされている。 そして、 上記第 1のダンパー 2 4にあっては、 この分岐した給送管 2 6は上記粉碎機 1 5 と乾燥冷却機 1 6とにそれぞれ接続され、 また上記第 2のダンパー 2 5にあって は、 分岐した給送管 2 6は流動層 1 と上記シードホッパー 1 2とに接続されてい る。  On the other hand, among the granulated calcium chloride hydrate generated in the fluidized bed 1, coarse particles separated by the vibrating sieve device 14 are also separated through the first damper 24 in the present embodiment. The supplied medium particles are supplied to a pulverizer 15 together with a part of the medium particles other than discharged as a product, pulverized, and further, together with fine particles, pass through a second damper 25 as seed particles to form a fluidized bed 1. It is possible to circulate. Here, as shown in FIG. 4, the first and second dampers 24 and 25 supply the separated coarse particles, coarse particles and a part of the medium particles, and fine particles. The feed pipe 26 to be fed is branched into two branches, and a shield plate 27 is swingably attached to a branch portion in the feed pipe 26. By closing one of the feed pipes 26, particles can be selectively fed to the other. In the first damper 24, the branched feed pipe 26 is connected to the mill 15 and the drying cooler 16 respectively, and is connected to the second damper 25. In other words, the branched feed pipe 26 is connected to the fluidized bed 1 and the seed hopper 12.
なお、 本実施形態において上記振動篩装置 1 4により分別された中粒子は、 図 5に示すような貯留器 2 8に供給されて一旦保持される。 この貯留器 2 8は、 供 給された中粒子を貯留するホッパー 2 8 Aと、 このホッパー 2 8 Aの下端に取リ 付けられた振動コンベア 2 8 Bと、 ホッパー 2 8 Aの高さ方向において中程の位 置に設けられて上記粉砕機 1 5に接続される供給管 2 8 Cとから構成されており, ホッパー 2 8 Aに貯留された中粒子を上記振動コンベア 2 8 Bによって必要な量 ずつ抜き出して上記乾燥冷却機 1 6に供給する一方、 上記供給管 2 8 Cの位置を 越えてホッパー 2 8 A内に貯留された中粒子は、 この供給管 2 8 Cから排出され て上記粉砕機 1 5に供給され、 上述のように粗粒子とともに粉砕されるようにな されている。 In the present embodiment, the medium particles separated by the vibrating sieve device 14 are supplied to a storage device 28 as shown in FIG. The storage device 28 includes a hopper 28A for storing the supplied medium particles, a vibrating conveyor 28B attached to a lower end of the hopper 28A, and a height direction of the hopper 28A. And a supply pipe 28 C connected to the crusher 15 at a middle position in the hopper 28 A, and the medium particles stored in the hopper 28 A are required by the vibrating conveyor 28 B. The medium particles collected in the hopper 28A beyond the position of the supply pipe 28C are discharged from the supply pipe 28C, It is supplied to the crusher 15 and crushed together with the coarse particles as described above. Have been.
しかして、 このように構成された第 2の実施形態の造粒装置においては、 上記 第 1の実施形態と同様の効果が得られるのは勿論のこと、 第 1 、 第 2の固結防止 手段として返送管 2 1や排液管 2 2が設けられているので、 塩化カルシウム水和 物の造粒を一旦停止したリ造粒作業が終了したりしたときに、 塩化カルシウム水 溶液が滞留することによリ固結を生じて次に造粒を再開する際に支障を生じるよ うな事態を防ぐことができる。 すなわち、 例えばスプレーノズル 8から流動層 1 内への塩化カルシウム水溶液の噴霧を中断して造粒を停止した場合、 そのままで は供給管 1 1 A内に塩化カルシウム水溶液が残されて滞留することにより固結し て詰まリを生じ、 次に造粒を再開する際にスプレーノズル 8から塩化カルシウム 水溶液を噴霧しょうとしても、 供給管 1 〗 Aに塩化カルシウム水溶液を供給する ことができなくなるおそれがあるが、 本実施形態においてはこのような場合、 上 記バルブ 1 1 Bを閉じることによって供給管 1 1 A内に残された塩化カルシウム 水溶液を返送管 2 1 を介してタンク 1 0に返送したり、 あるいは供給管 1 1 Aと 返送管 2 1 とによって塩化カルシゥ厶水溶液を循環させたりすることにより、 供 給管 1 1 A内の塩化カルシウム水溶液の滞留による固結を防止することができる のである。  Thus, in the granulating apparatus of the second embodiment configured as described above, the same effects as those of the first embodiment can be obtained, as well as the first and second anti-consolidation means. Since the return pipe 21 and the drain pipe 22 are provided, the aqueous solution of calcium chloride stays when the re-granulation work in which the granulation of calcium chloride hydrate is temporarily stopped is completed. This can prevent a situation where re-consolidation occurs and hinders the subsequent restart of granulation. That is, for example, when the spraying of the aqueous solution of calcium chloride from the spray nozzle 8 into the fluidized bed 1 is interrupted and the granulation is stopped, the aqueous solution of calcium chloride is left in the supply pipe 11A and stays there. If the calcium chloride solution is condensed and clogged, and then the granulation is restarted, the calcium chloride solution may not be able to be supplied to the supply pipe 1A even if the calcium chloride solution is sprayed from the spray nozzle 8. However, in such a case in the present embodiment, by closing the valve 11B, the calcium chloride aqueous solution remaining in the supply pipe 11A is returned to the tank 10 via the return pipe 21. Alternatively, the calcium chloride aqueous solution is circulated through the supply pipe 11A and the return pipe 21 so that the calcium chloride aqueous solution in the supply pipe 11A solidifies due to stagnation. It is possible to prevent.
また、 このような一時的な造粒の中断ではなく、 例えば所定の塩化カルシウム 水和物の造粒が完了して造粒作業を終了し、 比較的長い時間当該造粒装置を停止 しておく場合などには、 上記タンクに保持された塩化カルシウム水溶液において も滞留により固結が生じるおそれがある。 しかるに、 このようなタンク 1 0にお ける固結を防ぐには、 この造粒装置が停止している間でもタンク 1 0に蒸気を与 え続けるとともに撹拌を行わなければならず、 熱的にも動力的にも経済性が損な われることが避けられないが、 本実施形態ではこのような場合、 上述のように供 給管 1 1 Aに残された塩化カルシウム水溶液を返送管 2 1 によってタンク 1 0に 返送した上で、 バルブ 1 1 Cを閉じて排液管 2 2のバルブ 2 2 Aを開き、 タンク 1 0内の塩化カルシウム水溶液をスクラバー 2 3に排液することにより、 この夕 ンク 1 0を空にして固結を防止することができる。 従って、 この場合には、 同じ 塩化カルシウム水溶液である塩化カルシウム成分が溶解した洗浄水とともに、 上 記タンク 1 0内の塩化カルシウム水溶液をスクラバー 2 3に保持しておくことが できるので、 このスクラバー 2 3内の塩化カルシウム水溶液のみを固結が生じな いように加熱したりしておけばよく、 タンク 1 0でも固結の防止を図るのに比べ て経済的かつ効率的である。 また、 次に造粒作業を再開する際には、 このスクラ バー 2 3から上述のようにスクラバーポンプ 1 9によってタンク 1 0に塩化カル シゥ厶水溶液を供給すればよい。 In addition, instead of such a temporary suspension of granulation, for example, granulation of a predetermined calcium chloride hydrate is completed and the granulation operation is completed, and the granulator is stopped for a relatively long time. In some cases, the calcium chloride aqueous solution held in the tank may be solidified due to stagnation. However, in order to prevent such caking in the tank 10, steam must be continuously supplied to the tank 10 and stirring must be performed even while the granulating apparatus is stopped, so that thermal Although it is inevitable that economical efficiency is impaired both in terms of power and dynamics, in this embodiment, in such a case, the calcium chloride aqueous solution remaining in the supply pipe 11A is returned by the return pipe 21 as described above. After returning to the tank 10, the valve 11 C is closed, the valve 22 A of the drain pipe 22 is opened, and the calcium chloride aqueous solution in the tank 10 is drained to the scrubber 23, and this evening. The link 10 can be emptied to prevent consolidation. Therefore, in this case, together with the washing water in which the calcium chloride component, which is the same calcium chloride aqueous solution, is dissolved, Since the aqueous solution of calcium chloride in the tank 10 can be retained in the scrubber 23, it is sufficient to heat only the aqueous solution of calcium chloride in the scrubber 23 so as not to cause caking. However, tank 10 is more economical and efficient than preventing caking. Next, when the granulation operation is restarted, the aqueous solution of calcium chloride may be supplied from the scrubber 23 to the tank 10 by the scrubber pump 19 as described above.
さらに、 このように造粒作業が終了した後、 次に作業を再開するときには、 ま ず流動層 1 内を洗浄した後に上記熱風炉 6から加熱された流動用ガスを供給して 流動層 1 内を乾燥、 昇温させるとともに、 上記タンク 1 0において塩化カルシゥ 厶水溶液を濃縮してその濃度を調整しなければならないが、 本実施形態では上述 のようにスクラバー 2 3において洗浄水が循環可能とされるとともに、 その少な くとも一部がタンク 1 0に供給可能とされることにより、 この造粒作業再開前の 塩化カルシウム水溶液の濃縮時間を短縮することも可能となる。 すなわち、 この 造粒作業再開前において、 予めスクラバ一 2 3内に例えば 3 5〜3 7 wt %程度の 濃度の塩化カルシウム水溶液を供給して循環させておき、このスクラバー 2 3に、 流動層 1の昇温、 乾燥時に発生した高温の排気を導入することで、 このスクラバ 一 2 3に供給される蒸気の熱と合わせて、 該スクラバー 2 3に供給された塩化力 ルシゥ厶水溶液を短時間で例えば 5 0 1 %程度の濃度まで濃縮することが可能と なるのである。 従って、 本実施形態によれば、 このような造粒作業再開時に必要 とされる準備時間の短縮を図ることができるとともに、 例えば造粒作業再開当初 はタンク 1 0を介さずにスクラバー 2 3から流動層 1 に直接的に濃度調整された 塩化カルシウム水溶液を供給して噴霧したり、 場合によってはタンク 1 0自体を 省略したりすることも可能となる。 なお、 これについては、 第 1の実施形態のベ ンチユリ式のスクラバー 1 7においても同様である。  Further, after the completion of the granulation work, when the work is resumed next, first, after the inside of the fluidized bed 1 is washed, the heated fluidizing gas is supplied from the hot blast stove 6 and the inside of the fluidized bed 1 is supplied. Must be dried and heated, and the calcium chloride aqueous solution must be concentrated in the tank 10 to adjust the concentration. In the present embodiment, the washing water can be circulated in the scrubber 23 as described above. In addition, since at least a part thereof can be supplied to the tank 10, the concentration time of the aqueous calcium chloride solution before the restart of the granulation operation can be shortened. That is, before restarting the granulation operation, for example, an aqueous solution of calcium chloride having a concentration of, for example, about 35 to 37 wt% is supplied and circulated into the scrubber 23, and the fluidized bed 1 is added to the scrubber 23. By introducing the high-temperature exhaust gas generated at the time of heating and drying, the chlorination aqueous solution supplied to the scrubber 23 together with the heat of the steam supplied to the scrubber 23 is quickly cooled. For example, it can be concentrated to a concentration of about 501%. Therefore, according to the present embodiment, it is possible to shorten the preparation time required for resuming the granulation work, and, for example, at the beginning of the resumption of the granulation work, the scrubber 23 does not pass through the tank 10. It is also possible to supply and spray the calcium chloride aqueous solution whose concentration has been directly adjusted to the fluidized bed 1 or, in some cases, omit the tank 10 itself. The same applies to the venturi-type scrubber 17 of the first embodiment.
さらに、 本実施形態では、 このスクラバー 2 3が、 第 1の実施形態のようなベ ンチユリ式のスクラバー 1 7ではなく、 洗浄塔 2 3 A内に導入された排気をスプ レーノズル 2 3 Bから噴霧される洗浄水によって洗浄するスプレー式のものとさ れている。 しかるに、 このようなスプレー式のスクラバー 2 3は、 上記ベンチュ リ式のスクラバー 1 7に比べて処理する排気のガス流速が遅くなリ、 これにより 圧損が小さくなるので、 上記洗浄塔 2 3 Aから洗浄された排気を排出するための 排気ブロア 1 8の動力も小さくてすむという利点を有してぉリ、 従って本実施形 態によれば、 一層経済的な造粒を図ることが可能となる。 Further, in the present embodiment, the scrubber 23 sprays the exhaust gas introduced into the washing tower 23A from the spray nozzle 23B instead of the venturi scrubber 17 as in the first embodiment. It is a spray type that is washed with washing water. However, such a spray-type scrubber 23 has a lower exhaust gas flow rate than the venturi-type scrubber 17. Since the pressure loss is reduced, the power of the exhaust blower 18 for discharging the exhaust gas washed from the washing tower 23A is also small, and therefore, according to the present embodiment, More economical granulation can be achieved.
ところで、 上述のように造粒作業を終了する際には、 流動層〗内の種粒子は固 結を防ぐために排出されるため、 次に造粒作業を再開するときにはシードホッパ - 1 2から改めて種粒子を流動層 1 内に供給しなければならないが、 このときに 系外から種粒子として塩化カルシウム水和物の造粒物をシードホッパー 1 2に供 給して流動層 1 に投入したのでは、 非効率的かつ非経済的である。 しかるに、 こ れに対して本実施形態では、 通常の造粒作業中は種粒子として流動層 1 に直接的 に供給される塩化カルシウム水和物の造粒物の粗粒子や中粒子の粉砕物および細 粒子が、 上記第 2のダンパー 2 5の切り替えによって選択的にシードホッパー 1 2に供給可能とされている。 従って、 上述のように造粒作業を終了する際には、 この第 2のダンパー 2 5を切り替えてシードホッパー 1 2に上記粗粒子や中粒子 の粉碎物および細粒子を供給して種粒子として保持しておくことにより、 次に造 粒作業を再開するときには系外から種粒子を導入することなく流動層 1 に供給す ることが可能となり、 効率的な造粒を図ることが可能となる。  By the way, when the granulation operation is completed as described above, the seed particles in the fluidized bed〗 are discharged in order to prevent solidification. The particles must be supplied into the fluidized bed 1.However, at this time, if the granulated calcium chloride hydrate was supplied from outside the system as seed particles to the seed hopper 12 and charged into the fluidized bed 1, , Inefficient and uneconomical. However, in the present embodiment, on the other hand, during the normal granulation operation, coarse particles of calcium chloride hydrate granules directly supplied to the fluidized bed 1 as seed particles and pulverized particles of medium particles And fine particles can be selectively supplied to the seed hopper 12 by switching the second damper 25. Therefore, when the granulation operation is completed as described above, the second damper 25 is switched to supply the coarse and medium particles and the fine particles to the seed hopper 12 as seed particles. By keeping the same, the next time the granulation operation is resumed, it is possible to supply the fluidized bed 1 without introducing seed particles from outside the system, and it is possible to achieve efficient granulation .
しかも、 本実施形態では、 上記粉砕機 1 5により、 粗粒子に加えて貯留器 2 8 のホッパー 2 8 Aから供給管 2 8 Cを介して排出された中粒子の一部も粉砕され ていた上で、 上記細粒子とともに流動層 1 に循環させられたリシ一ドホッパー 1 2に貯留されたりして種粒子として利用されることとなるので、 この種粒子の粒 径が必要以上に大きくなるのを防ぐことができ、 すなわち振動篩装置〗 4におい て粗粒子として分別される塩化カルシウム水和物の造粒物の割合が大きくなるの を防いで、 一層効率的な造粒を促すことが可能となる。 ただし、 このような造粒 装置においては、 第 1の実施形態のように所定の範囲内の粒径の中粒子のみを製 品として利用する以外にも、 場合によってはそれ以上の粒径の粗粒子が製品とし て必要とされることもある。 しかるに、 そのような場合でも本実施形態では、 上 記第 1のダンパー 2 5を切り替えることにより、 振動篩装置 1 4において分別さ れた粗粒子を選択的に乾燥冷却機 1 6に供給して製品として排出することが可能 であり、 上述のような要求にも容易に対応することが可能であるという利点を有 している。 Moreover, in the present embodiment, in addition to the coarse particles, a part of the medium particles discharged from the hopper 28 A of the reservoir 28 via the supply pipe 28 C was also crushed by the crusher 15. Above, the fine particles are stored in the liquid hopper 12 circulated through the fluidized bed 1 and are used as seed particles, so that the particle diameter of the seed particles becomes larger than necessary. In other words, it is possible to prevent the ratio of granulated calcium chloride hydrate separated as coarse particles in the vibrating sieve device〗 4 from increasing, and to promote more efficient granulation. Becomes However, in such a granulator, in addition to using only medium particles having a particle size within a predetermined range as a product as in the first embodiment, in some cases, a coarse particle having a larger particle size may be used. Particles may be required as a product. However, even in such a case, in the present embodiment, the coarse particles separated in the vibrating sieve device 14 are selectively supplied to the drying cooler 16 by switching the first damper 25 described above. It has the advantage that it can be discharged as a product and can easily respond to the demands described above. are doing.
次に表 1 は、 本発明の実施例を示すものであって、 図 1 に示した第 1の実施形 態の造粒装置を用いて、 流動層 1 内に噴霧される塩化カルシウム水溶液の濃度お よび噴霧量、 流動層 1 に供給される流動用ガスの温度および空塔速度、 流動層 1 の静止層高さからのスプレーノズル 8の高さ、 および循環比を種々に変更して塩 化カルシウム 2水和物の造粒物を生成した場合に、 流動層 1 内の温度、 水蒸気分 圧、 および塩化カルシウム 2水和物の蒸気圧と、 生成された粒子の形状および製 品としての塩化カルシウム 2水和物の濃度がどのように変化したかを調べたもの である。 なお、 生成された塩化カルシウム水和物の粒子の平均粒径は、 実施例 3 の場合において 2 7 5 0 m、 粒度分布は 2〜 4 Mlであった。  Next, Table 1 shows an example of the present invention, in which the concentration of the aqueous solution of calcium chloride sprayed into the fluidized bed 1 using the granulator of the first embodiment shown in FIG. Salting by changing the spraying rate, the spray gas temperature and the superficial velocity of the fluidizing bed supplied to the fluidized bed 1, the height of the spray nozzle 8 from the height of the fluidized bed 1 at the stationary bed, and the circulation ratio The temperature, water vapor partial pressure, and vapor pressure of calcium chloride dihydrate in the fluidized bed 1 when granulated calcium dihydrate is formed, as well as the shape of the formed particles and salinity as product This study examined how the concentration of calcium dihydrate changed. The average particle size of the produced calcium chloride hydrate particles was 275 m in Example 3, and the particle size distribution was 2 to 4 Ml.
しかるに、 この表 1 に示す結果より、 本発明によれば、 すべての実施例 1 〜 1 0において 3 7 wt %〜 5 3 wt %の希薄な塩化カルシウム水溶液により、 確実に塩 化カルシウム 2水和物を造粒することが可能であり、 また製品としての塩化カル シゥ厶水和物の濃度が 8 O wt %以下の一般的な造粒物を生成する場合には、 実施 例 1 〜 6に示されるように流動用ガスの温度も 1 5 0 °C程度までの比較的低い温 度で十分であった。 さらに、 実施例 7〜 1 0のように高濃度の製品塩化カルシゥ 厶水和物を造粒する場合でも、 流動用ガスの温度を昇温させるのは熱風炉 6によ る流動用ガスの加熱温度を上昇させるだけであったので、 従来のように塩化カル シゥム水溶液を溶融塩状態にまで濃縮するのに比べ、 きわめて容易であった。 一方、 スプレーノズル 8の高さを変化させた場合においては、 噴霧される塩化 カルシウム水溶液の濃度や噴霧量、 あるいは流動用ガスの温度や空塔速度などの 他の要因に関わらず、 静止層高さから 2 7 Ο ωι以下の場合の実施例 2〜 5では粒 子は丸粒状となり、 3 2 O mm以上の場合の実施例 1 、 6 ~ 1 0では粒子は金平糖 形状となった。 ただし、 これは上述のようにすベての粒子が丸粒状あるいは金平 糖形状というわけではなく、 その割合が顕著に多かったという結果である。 表 1 However, from the results shown in Table 1, according to the present invention, in all of Examples 1 to 10, a 37% to 53% by weight dilute aqueous solution of calcium chloride was used to ensure the calcium chloride dihydrate. In the case where a granulated product can be granulated, and a general granulated product having a calcium chloride hydrate concentration of 8 O wt% or less as a product is produced, Examples 1 to 6 As shown, the temperature of the fluidizing gas was relatively low, up to about 150 ° C. Further, even when granulating a product calcium chloride hydrate having a high concentration as in Examples 7 to 10, the temperature of the flowing gas is raised by heating the flowing gas by the hot blast stove 6. Since it was only necessary to raise the temperature, it was extremely easy to concentrate the calcium chloride aqueous solution to the molten salt state as in the past. On the other hand, when the height of the spray nozzle 8 is changed, the height of the stationary bed is changed regardless of the concentration and spray amount of the aqueous calcium chloride solution to be sprayed, the temperature of the flowing gas, and the superficial velocity. Thus, in Examples 2 to 5 where the particle size was 27ΟΩ or less, the particles were round, and in Examples 1 and 6 to 10 where the particle size was 32 O mm or more, the particles were in the shape of confetti. However, this is not a result of the fact that all the particles are in the shape of round granules or confetti, as described above. table 1
t t
Figure imgf000023_0001
Figure imgf000023_0001
産業上の利用可能性 Industrial applicability
以上説明したように、 本発明の塩化カルシウム水和物の造粒方法によれば、 流 動層を用いて塩化カルシウム水和物を造粒するため、 希薄な塩化カルシウム水溶 液によリ比較的低温でも造粒物の生成が可能であり、 そして流動用ガスの水分量 を調節したり、 噴霧される塩化カルシゥ厶水溶液の濃度を調整したりすることに よって流動層内の水蒸気分圧を調整することにより、 流動層内の塩化カルシウム 水和物の蒸気圧を流動層内の温度に応じて所定の水分子数の塩化カルシウム水和 物の蒸気圧に設定して、 この水分子数の塩化カルシウム水和物を確実に造粒する ことが可能となる。 また、 少なくとも上記流動層内における温度および該流動層 からの排気湿度を測定することによつて上記流動層内の水蒸気分圧を制御するこ とにより、 流動層内の水蒸気分圧を正確に調整して一層確実な塩化カルシウム水 和物の生成を図ることができる。  As described above, according to the method for granulating calcium chloride hydrate of the present invention, since a calcium chloride hydrate is granulated using a fluidized bed, the calcium chloride hydrate is comparatively diluted with a dilute calcium chloride aqueous solution. Granules can be produced even at low temperatures, and the partial pressure of water vapor in the fluidized bed is adjusted by adjusting the amount of water in the fluidizing gas or the concentration of the aqueous calcium chloride solution sprayed. By doing so, the vapor pressure of calcium chloride hydrate in the fluidized bed is set to the vapor pressure of calcium chloride hydrate having a predetermined number of water molecules according to the temperature in the fluidized bed, and the chloride pressure of this number of water molecules is increased. It is possible to reliably granulate calcium hydrate. Further, by controlling at least the temperature in the fluidized bed and the exhaust humidity from the fluidized bed to control the partial pressure of steam in the fluidized bed, the partial pressure of steam in the fluidized bed can be accurately adjusted. As a result, calcium chloride hydrate can be more reliably produced.
—方、 かかる流動層を用いた造粒方法においては、 流動層の静止層高さに対す る塩化カルシウム水溶液の噴霧高さを 3 0 O ral以上に設定して金平糖形状の粒子 を生成したり、 上記噴霧高さを 3 0 0匪未満に設定して丸粒状の粒子を生成した リするなど、 この噴霧高さを調整することによつて所定の形状の粒子を含んだ造 粒物を生成することが可能となり、 製品塩化カルシウム水和物の用途に応じて適 当な形状の造粒物を提供することができる。 また、 流動層内における水蒸気分圧 を 化カルシウムの蒸気圧に対して調整することによつても、 所定の形状の粒子 を含んだ造粒物を生成することができる。 さらに、 こうして流動層において生成 された塩化カルシウム水和物の造粒物を粗粒子と中粒子と細粒子とに分別し、 粗 粒子を粉砕して少なくとも細粒子とともに望ましくは 1 . 5〜 1 0の循環比で流 動層に循環させることにより、 製品歩留まりを確保しながらも種粒子の循環供給 を図って効率的な造粒を促すことができる。 さらにまた、 この場合には、 傾斜し た少なくとも 2段の振動篩によって粒子を分別するのがより効率的である。 また、 本発明の塩化カルシウム水和物の造粒装置によれば、 流動層に備えられ た温度センサや湿度センサによる測定結果に基づく制御によって、 また、 これに 加えて水分調整装置に備えられた流量センサ、 温度センサ、 および湿度センサに よる測定結果や、 濃度調整装置に備えられた濃度センサおよび流量センサによる 測定結果に基づく制御によって、 上記流動層内の水蒸気分圧を調整することによ リ、 流動層内の塩化カルシウムの蒸気圧をより正確に所定の蒸気圧に設定して、 確実に所望の水分子数の塩化カルシウム水和物を造粒することができるとともに, 当該造粒装置の運転の自動化を促すことが可能となる。 On the other hand, in such a granulation method using a fluidized bed, the spray height of the aqueous solution of calcium chloride with respect to the height of the stationary bed of the fluidized bed is set to 30 Oral or more to produce particles in the shape of confetti. By adjusting the spray height, for example, by setting the spray height to less than 300 and generating round particles, a granulated product containing particles of a predetermined shape is generated. It is possible to provide granules having an appropriate shape according to the use of the product calcium chloride hydrate. Also, by adjusting the partial pressure of water vapor in the fluidized bed with respect to the vapor pressure of calcium oxide, a granulated product containing particles of a predetermined shape can be produced. Further, the granulated product of calcium chloride hydrate thus formed in the fluidized bed is separated into coarse particles, medium particles and fine particles, and the coarse particles are pulverized and desirably at least 1.5 to 10 together with the fine particles. By circulating through the fluidized bed at a circulation ratio of, it is possible to promote efficient granulation by circulating and supplying seed particles while ensuring product yield. Furthermore, in this case, it is more efficient to separate the particles by at least two inclined vibrating sieves. Also, according to the calcium chloride hydrate granulating device of the present invention, the granulation device is provided with a moisture control device by controlling based on the measurement result by a temperature sensor and a humidity sensor provided in the fluidized bed. Measurement results by the flow rate sensor, temperature sensor, and humidity sensor, and by the concentration sensor and flow rate sensor provided in the concentration adjustment device By controlling the partial pressure of water vapor in the fluidized bed by control based on the measurement results, the vapor pressure of calcium chloride in the fluidized bed is more accurately set to a predetermined vapor pressure, and the desired water is surely supplied. Calcium chloride hydrate having the number of molecules can be granulated, and the automation of the operation of the granulator can be promoted.
さらに、 この造粒装置においては、 塩化カルシウム水溶液のタンクから流動層 への供給管にタンクに戻る返送管を接続可能としたり、 あるいはこのタンクを、 流動層の排気を処理するスクラバーに接続可能とたりすれば、 流動層における造 粒を一旦停止したり、 あるいは造粒作業自体が終了した際などに、 供給管やタン クにおいて塩化カルシウム水溶液が滞留して固結を生じたりするのを防ぐことが でき、 次に造粒を再開する際に固結による詰まリを取り除いたりする必要がなく なって、 効率的かつ経済的な造粒作業を図ることができる。 また、 流動層におい て生成された塩化カルシウム水和 1の造粒物の少なくとも一部を、 選択的にシー ドホッパーに供給可能とすれば、 上述のように造粒作業終了後に作業を再開する ときにも改めて系外から塩化カルシウム水和物の種粒子を準備したりする必要が なく、 効率的である。 さらに、 生成された塩化カルシウム水和物の造粒物を分別 した粗粒子の少なくとも一部を選択的に排出可能とすれば、 このような粗粒子が 製品として要求される場合でもこれに容易に対応することができる。  Furthermore, in this granulator, a return pipe returning to the tank can be connected to the supply pipe to the fluidized bed from the tank of the aqueous solution of calcium chloride, or this tank can be connected to a scrubber that processes the exhaust of the fluidized bed. To prevent the granulation in the fluidized bed from temporarily stopping, or to prevent the calcium chloride aqueous solution from accumulating in the supply pipes and tanks when the granulation operation is completed, etc. This eliminates the need to remove clogging due to consolidation the next time granulation is restarted, so that efficient and economical granulation work can be achieved. In addition, if at least a part of the granulated calcium chloride hydrate 1 generated in the fluidized bed can be selectively supplied to the seed hopper, when the operation is restarted after the end of the granulation operation as described above, There is no need to prepare calcium chloride hydrate seed particles from outside the system, which is efficient. Furthermore, if it is possible to selectively discharge at least a part of the coarse particles obtained by separating the formed granules of calcium chloride hydrate, even if such coarse particles are required as a product, it can be easily handled. Can respond.
さらにまた、 流動層にスクラバーを接続した場合においては、 この排気を洗浄 した洗浄水を、 該スクラバーに循環可能とするとともに、 その少なくとも一部を 上記流動層側に供給可能とすることにより、 造粒作業中のタンクにおける濃度調 整などを容易にすることができとともに、 例えば造粒作業再開前に塩化カルシゥ 厶水溶液を濃縮する場合でも、 このようなタンクではなく、 スクラバーにおいて 塩化カルシウム水溶液を濃縮して、 流動層側、 すなわちタンクや、 あるいは直接 的に流動層に供給することができ、 濃縮時間の短縮を図って効率的な造粒作業を 促すことが可能となる。 また、 このスクラバーをスプレー式とすれば、 該スクラ バーの排気ブロアの動力を小さくすることができて、 より効率的かつ経済的であ る。  Furthermore, in the case where a scrubber is connected to the fluidized bed, the washing water obtained by washing the exhaust gas can be circulated to the scrubber, and at least a part thereof can be supplied to the fluidized bed side. In addition to facilitating concentration adjustment in the tank during granulation work, for example, even when the calcium chloride aqueous solution is concentrated before resuming granulation work, the calcium chloride aqueous solution is concentrated in a scrubber instead of such a tank. Then, it can be supplied to the fluidized bed side, that is, the tank or directly to the fluidized bed, and it is possible to shorten the concentration time and promote efficient granulation work. If the scrubber is of a spray type, the power of the exhaust blower of the scrubber can be reduced, which is more efficient and economical.

Claims

請求の範囲 The scope of the claims
1 . 流動層において種粒子を流動させつつ塩化カルシウム水溶液を噴霧して造粒 物を生成する塩化カルシウム水和物の造粒方法であって、 上記流動層内の水蒸気 分圧を調整することにより、 流動層内の塩化カルシウムの蒸気圧を該流動層内の 温度に対する所定の水分子数の塩化カルシウム水和物の蒸気圧に設定することを 特徴とする塩化カルシウム水和物の造粒方法。 1. A method for granulating calcium chloride hydrate, in which a calcium chloride aqueous solution is sprayed while fluidizing seed particles in a fluidized bed to form granules, wherein the partial pressure of steam in the fluidized bed is adjusted. A method for granulating calcium chloride hydrate, comprising setting the vapor pressure of calcium chloride in a fluidized bed to the vapor pressure of calcium chloride hydrate having a predetermined number of water molecules with respect to the temperature in the fluidized bed.
2 . 上記流動層に供給される流動用ガスの水分量を調整することにより、 上記流 動層内の水蒸気分圧を調整することを特徴とする請求の範囲第 1項に記載の塩化 カルシウム水和物の造粒方法。 2. The calcium chloride water according to claim 1, wherein the partial pressure of steam in the fluidized bed is adjusted by adjusting the amount of water in the fluidizing gas supplied to the fluidized bed. Granulation method of Japanese products.
3 . 上記流動層に供給される上記塩化カルシウム水溶液の濃度を調整することに より、 上記流動層内の水蒸気分圧を調整することを特徴とする請求の範囲第 1項 に記載の塩化カルシウム水和物の造粒方法。 3. The calcium chloride aqueous solution according to claim 1, wherein the partial pressure of steam in the fluidized bed is adjusted by adjusting the concentration of the aqueous calcium chloride solution supplied to the fluidized bed. Granulation method of Japanese products.
4 . 少なくとも上記流動層内における温度および該流動層からの排気湿度を測定 することにより、 上記流動層内の水蒸気分圧を制御することを特徴とする請求の 範囲第 1項に記載の塩化カルシウム水和物の造粒方法。 4. The calcium chloride according to claim 1, wherein the partial pressure of steam in the fluidized bed is controlled by measuring at least the temperature in the fluidized bed and the exhaust humidity from the fluidized bed. Hydrate granulation method.
5 . 上記塩化カルシウム水溶液を噴霧する噴霧高さを調整することにより、 所定 の形状の粒子を含んだ造粒物を生成することを特徴とする請求の範囲第 1項に記 載の塩化カルシウム水和物の造粒方法。 5. A granulated product containing particles of a predetermined shape is produced by adjusting the spray height of the aqueous solution of calcium chloride, whereby the aqueous solution of calcium chloride according to claim 1 is produced. Granulation method of Japanese products.
6 . 上記流動層の静止層高さに対する上記噴霧高さを 3 0 0匪以上に設定するこ とにより、 金平糖形状の粒子を含んだ造粒物を生成することを特徴とする請求の 範囲第 5項に記載の塩化カルシウム水和物の造粒方法。 6. A granulated product containing particles in the shape of confetti is formed by setting the spray height with respect to the height of the stationary bed of the fluidized bed to 300 or more. Item 6. The method for granulating calcium chloride hydrate according to Item 5.
7 . 上記流動層の静止層高さに対する上記噴霧高さを 3 0 0匪未満に設定するこ とにょリ、 丸粒状の粒子を含んだ造粒物を生成することを特徴とする請求の範囲 第 5項に記載の塩化カルシウム水和物の造粒方法。 7. Set the spray height above the static bed height of the fluidized bed to less than 300 6. The method for granulating calcium chloride hydrate according to claim 5, wherein a granulated product containing round particles is produced.
8 . 上記流動層内の水蒸気分圧を、 該流動層内の塩化カルシウムの蒸気圧に対し て調整することにより、 所定の形状の粒子を含んだ造粒物を生成することを特徴 とする請求の範囲第 1項に記載の塩化カルシウム水和物の造粒方法。 8. A granulated product containing particles of a predetermined shape is produced by adjusting the partial pressure of steam in the fluidized bed with respect to the vapor pressure of calcium chloride in the fluidized bed. 2. The method for granulating calcium chloride hydrate according to item 1 above.
9 . 上記流動層において生成された塩化カルシウム水和物の造粒物を粗粒子と中 粒子と細粒子とに分別し、 上記粗粒子を粉砕して少なくとも上記細粒子とともに 上記流動層に循環させることを特徴とする請求の範囲第 1項に記載の塩化カルシ ゥ厶水和物の造粒方法。 9. The granulated calcium chloride hydrate produced in the fluidized bed is separated into coarse particles, medium particles and fine particles, and the coarse particles are pulverized and circulated through the fluidized bed together with at least the fine particles. The method for granulating calcium chloride hydrate according to claim 1, characterized in that:
1 0 . 上記流動層から排出される塩化カルシウム水和物の総重量と分別されて製 品とされる上記中粒子の重量との比を 1 . 5 ~ 1 0の範囲とすることを特徴とす る請求の範囲第 9項に記載の塩化カルシウム水和物の造粒方法。 10. The ratio of the total weight of the calcium chloride hydrate discharged from the fluidized bed to the weight of the above-mentioned medium particles to be separated into products is in the range of 1.5 to 10. 10. The method for granulating calcium chloride hydrate according to claim 9.
1 1 . 上記造粒物を、 傾斜した少なくとも 2段の振動篩によって分別することを 特徴とする請求の範囲第 9項に記載の塩化カルシウム水和物の造粒方法。 11. The method for granulating calcium chloride hydrate according to claim 9, wherein the granulated material is fractionated by at least two inclined vibrating sieves.
1 2 . 流動層において種粒子を流動させつつ塩化カルシウム水溶液を噴霧して造 粒物を生成する塩化カルシウム水和物の造粒装置であって、 上記流動層には、 こ の流動層内における温度を測定する温度センサと該流動層からの排気湿度を測定 する湿度センサとが備えられており、 少なくともこれらの温度センサおよび湿度 センサの測定結果に基づく制御によって上記流動層内の水蒸気分圧を調整するこ とにより、 流動層内の塩化カルシウムの蒸気圧を該流動層内の温度に対する所定 の水分子数の塩化カルシウム水和物の蒸気圧に設定することを特徴とする塩化力 ルシゥ厶水和物の造粒装置。 12. A calcium chloride hydrate granulator for generating granules by spraying an aqueous solution of calcium chloride while fluidizing seed particles in a fluidized bed, wherein the fluidized bed includes A temperature sensor for measuring the temperature and a humidity sensor for measuring the exhaust humidity from the fluidized bed are provided, and at least the partial pressure of water vapor in the fluidized bed is controlled by control based on the measurement results of the temperature sensor and the humidity sensor. Adjusting the vapor pressure of calcium chloride in the fluidized bed to the vapor pressure of calcium chloride hydrate having a predetermined number of water molecules with respect to the temperature in the fluidized bed. Japanese granulator.
1 3 . 上記流動層には、 該流動層に供給される流動用ガスの水分量を調整する水 分調整装置が備えられるとともに、 この水分調整装置には、 上記流動用ガスに付 与される水分量を測定する流量センサと、 水分調整された流動用ガスの温度およ び湿度を測定する温度センサおよび湿度センサとが備えられており、 少なくとも これら流量センサ、 温度センサ、 および湿度センサの測定結果と流動層に備えら れた上記温度センサおよび湿度センサの測定結果とに基づく制御によって上記流 動用ガスの水分量を調整することにより、 上記流動層内の水蒸気分圧を調整する ことを特徴とする請求の範囲第 1 2項に記載の塩化カルシウム水和物の造粒装置 ( 1 3. The fluidized bed contains water for adjusting the water content of the fluidizing gas supplied to the fluidized bed. And a flow rate sensor for measuring the amount of water applied to the flow gas, and a temperature for measuring the temperature and humidity of the flow-adjusted flow gas. A sensor and a humidity sensor, and at least the flow rate is controlled by the control based on the measurement results of the flow rate sensor, the temperature sensor, and the humidity sensor and the measurement results of the temperature sensor and the humidity sensor provided in the fluidized bed. by adjusting the water content of the gas, granulator calcium chloride hydrate according to the first two terms claims, characterized by adjusting the water vapor partial pressure of the fluidized bed (
1 4 . 上記流動層には、 該流動層に供給される上記塩化カルシウム水溶液の濃度 を調整する濃度調整装置が備えられるとともに、 この濃度調整装置には、 濃度調 整された塩化カルシウム水溶液の濃度および流量を測定する濃度センサおよび流 量センサが備えられており、 少なくともこれらの濃度センサおよび流量センサの 測定結果と流動層に備えられた上記温度センサおよび湿度センサの測定結果とに 基づく制御によって上記塩化カルシウム水溶液の濃度を調整することにより、 上 記流動層内の水蒸気分圧を調整することを特徴とする請求の範囲第 1 2項に記載 の塩化カルシウム水和物の造粒装置。 14. The fluidized bed is provided with a concentration adjusting device for adjusting the concentration of the aqueous calcium chloride solution supplied to the fluidized bed, and the concentration adjusting device is provided with a concentration of the adjusted aqueous solution of calcium chloride. And a flow rate sensor for measuring the flow rate and the flow rate.A control based on at least the measurement results of the concentration sensor and the flow rate sensor and the measurement results of the temperature sensor and the humidity sensor provided in the fluidized bed. 13. The apparatus for granulating calcium hydrate according to claim 12, wherein the partial pressure of steam in the fluidized bed is adjusted by adjusting the concentration of the aqueous solution of calcium chloride.
1 5 . 上記塩化カルシウム水溶液はタンクから供給管を介して上記流動層に供給 されて噴霧されるとともに、 この供給管には、 該供給管内の塩化カルシウム水溶 液を上記タンクに返送する返送管が接続可能とされていることを特徴とする請求 の範囲第 1 2項に記載の塩化カルシウム水和物の造粒装置。 15. The calcium chloride aqueous solution is supplied from the tank to the fluidized bed via a supply pipe and is sprayed, and the supply pipe has a return pipe for returning the calcium chloride aqueous solution in the supply pipe to the tank. The granulator for calcium chloride hydrate according to claim 12, wherein the granulator can be connected.
1 6 . 上記塩化カルシウム水溶液はタンクから上記流動層に供給されて噴霧され るとともに、 このタンクは、 上記流動層から排出される排気を洗浄水によって洗 浄するスクラバーに接続可能とされていて、 該タンク内の塩化カルシウム水溶液 が上記スクラバーに供給されて保持可能とされていることを特徴とする請求の範 囲第 1 2項に記載の塩化カルシウム水和物の造粒装置。 16. The calcium chloride aqueous solution is supplied from the tank to the fluidized bed and sprayed, and the tank can be connected to a scrubber for washing exhaust gas discharged from the fluidized bed with washing water. 13. The granulator of calcium chloride hydrate according to claim 12, wherein the aqueous solution of calcium chloride in the tank is supplied to the scrubber and can be held.
1 7 . 上記流動層には、 該流動層に上記種粒子を供給するシードホッパーが接続 されるとともに、 この流動層において生成された塩化カルシゥ厶水和物の造粒物 の少なくとも一部が、 選択的に上記シ一ドホッパーに供給可能とされていること を特徴とする請求の範囲第 1 2項に記載の塩化カルシウム水和物の造粒装置。 17. A seed hopper that supplies the seed particles to the fluidized bed is connected to the fluidized bed. And at least a part of the calcium chloride hydrate granules generated in the fluidized bed can be selectively supplied to the seed hopper. Item 12. A granulator for granulation of calcium chloride hydrate according to Item 2.
1 8 . 上記流動層には、 該流動層において生成された塩化カルシウム水和物の造 粒物を粗粒子と中粒子と細粒子とに分別する振動篩装置が接続されており、 この うち上記粗粒子の少なくとも一部が選択的に製品造粒物として排出可能とされて いることを特徴とする請求の範囲第 1 2項に記載の塩化カルシウム水和物の造粒 18. The above-mentioned fluidized bed is connected to a vibrating sieve device for separating the granulated calcium chloride hydrate produced in the fluidized bed into coarse particles, medium particles and fine particles. The granulated calcium chloride hydrate according to claim 12, wherein at least a part of the coarse particles can be selectively discharged as a product granulated product.
1 9 . 上記流動層には、 該流動層から排出される排気を洗浄水によって洗浄する スクラバ一が接続されており、 この排気を洗浄した洗浄水は、 該スクラバーに循 環可能とされるとともに、 その少なくとも一部が上記流動層側に供給可能とされ ていることを特徴とする請求の範囲第 1 2項に記載の塩化カルシウム水和物の造 粒装置。 19. A scrubber for washing the exhaust gas discharged from the fluidized bed with washing water is connected to the fluidized bed, and the washing water for washing the exhaust gas can be circulated to the scrubber. 13. The granulation device of calcium chloride hydrate according to claim 12, wherein at least a part thereof can be supplied to the fluidized bed side.
2 0 . 上記流動層には、 該流動層から排出される排気を洗浄水によって洗浄する スクラバーが接続されており、 このスクラバーが、 上記排気を洗浄塔に導入して 該洗浄塔内に噴霧される上記洗浄水により洗浄するスプレー式のスクラバーであ ることを特徴とする請求の範囲第 1 2項に記載の塩化カルシウム水和物の造粒装 20. A scrubber for washing the exhaust gas discharged from the fluidized bed with washing water is connected to the fluidized bed, and the scrubber introduces the exhaust gas into the washing tower and is sprayed into the washing tower. 3. The granulation device for calcium chloride hydrate according to claim 12, wherein the granulation device is a spray-type scrubber for washing with the washing water.
PCT/JP2000/004512 1999-01-13 2000-07-06 Method for granulating calcium chloride hydrate and granulation apparatus WO2002004351A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP00701099A JP4298032B2 (en) 1999-01-13 1999-01-13 Method and apparatus for granulating calcium chloride hydrate
CNB008197253A CN1297481C (en) 2000-07-06 2000-07-06 Method for granulating calcium chloride hydrate and granulation apparatus
PCT/JP2000/004512 WO2002004351A1 (en) 1999-01-13 2000-07-06 Method for granulating calcium chloride hydrate and granulation apparatus
AU2000258492A AU2000258492A1 (en) 2000-07-06 2000-07-06 Method for granulating calcium chloride hydrate and granulation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP00701099A JP4298032B2 (en) 1999-01-13 1999-01-13 Method and apparatus for granulating calcium chloride hydrate
PCT/JP2000/004512 WO2002004351A1 (en) 1999-01-13 2000-07-06 Method for granulating calcium chloride hydrate and granulation apparatus

Publications (1)

Publication Number Publication Date
WO2002004351A1 true WO2002004351A1 (en) 2002-01-17

Family

ID=26341235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004512 WO2002004351A1 (en) 1999-01-13 2000-07-06 Method for granulating calcium chloride hydrate and granulation apparatus

Country Status (2)

Country Link
JP (1) JP4298032B2 (en)
WO (1) WO2002004351A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11072621B2 (en) * 2017-07-14 2021-07-27 Gj Cheiljedang Corporation Methionine-metal chelate and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4298032B2 (en) * 1999-01-13 2009-07-15 アイテック有限会社 Method and apparatus for granulating calcium chloride hydrate
WO2003059501A1 (en) * 2001-12-28 2003-07-24 Kaisei Kogyo Co., Ltd. Apparatus and method for granulating mixed hydrate of calcium chloride and sodium chloride, and granule of the mixed hydrate
CN103028343B (en) * 2012-12-18 2015-07-29 天津大学 A kind of production method of pelletoidal calcium chloride dihydrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD200423A1 (en) * 1981-09-28 1983-05-04 Heinz Scherzberg PROCESS FOR THE PREPARATION OF CALCIUM CHLORIDE
DD223427A1 (en) * 1984-04-13 1985-06-12 Kali Veb K METHOD FOR THE PRODUCTION OF DUST-FREE CALCIUM CHLORIDE
DD223428A1 (en) * 1984-04-13 1985-06-12 Kali Veb K PROCESS FOR PREPARING CALCIUM CHLORIDE GRANULATE
DD232905A1 (en) * 1984-12-27 1986-02-12 Kali Veb K PROCESS FOR THE PRODUCTION OF HIGH-PURITY CALCIUM CHLORIDE GRANULES
JP2000203833A (en) * 1999-01-13 2000-07-25 Kaisei Kogyo Kk Granulation of calcium chloride hydrate and system therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD200423A1 (en) * 1981-09-28 1983-05-04 Heinz Scherzberg PROCESS FOR THE PREPARATION OF CALCIUM CHLORIDE
DD223427A1 (en) * 1984-04-13 1985-06-12 Kali Veb K METHOD FOR THE PRODUCTION OF DUST-FREE CALCIUM CHLORIDE
DD223428A1 (en) * 1984-04-13 1985-06-12 Kali Veb K PROCESS FOR PREPARING CALCIUM CHLORIDE GRANULATE
DD232905A1 (en) * 1984-12-27 1986-02-12 Kali Veb K PROCESS FOR THE PRODUCTION OF HIGH-PURITY CALCIUM CHLORIDE GRANULES
JP2000203833A (en) * 1999-01-13 2000-07-25 Kaisei Kogyo Kk Granulation of calcium chloride hydrate and system therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11072621B2 (en) * 2017-07-14 2021-07-27 Gj Cheiljedang Corporation Methionine-metal chelate and manufacturing method thereof

Also Published As

Publication number Publication date
JP4298032B2 (en) 2009-07-15
JP2000203833A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
JP4459326B2 (en) Mixed fertilizer granulation method
JP4852270B2 (en) Method for producing granular urea product
US6998481B2 (en) Process for the preparation of β-mannitol for direct compression
RU2528670C2 (en) Device and method for pelletising in fluidised bed
US9561988B2 (en) Method for preparing controlled release fertilizer with water-based coating on the basis of closed circulating fluidized bed, and device therefor
JP6514885B2 (en) Granule
JPS58170534A (en) Simultaneous sorting, adjusting and continuous discharging method for particulate substance from fluidized bed reactor
CA2407843C (en) Method for producing calcium nitrate granules
AU2001274357A1 (en) Method for producing calcium nitrate granules
JP4589225B2 (en) Granule product manufacturing method
JP2007022934A5 (en)
WO2002004351A1 (en) Method for granulating calcium chloride hydrate and granulation apparatus
JP3501831B2 (en) Alkali cyanide granules and production method thereof
JP4162837B2 (en) Calcium chloride hydrate granulator and granulation method
WO2003059501A1 (en) Apparatus and method for granulating mixed hydrate of calcium chloride and sodium chloride, and granule of the mixed hydrate
RU54931U1 (en) PLANT FOR PRODUCING GRANULATED SODIUM PERCARBONATE
JP5260019B2 (en) Method for producing granular sodium iodide
CN107477982B (en) The 316 titanium fluidized bed drying cooling techniques applied to sylvite
US8716536B2 (en) Process for the preparation of directly compressible δ-mannitol
JP2002155271A (en) Snow melting agent and method for producing the same
JP2002160919A (en) Method of producing calcium chloride granulated material, producing apparatus, and calcium chloride granulating material
RU2093766C1 (en) Method of drying calcium chloride solution obtaining granulated product and plant for realization of this method
JPS6140631B2 (en)
CN1297481C (en) Method for granulating calcium chloride hydrate and granulation apparatus
Fang Study on Basic Model and Application of Fluidized Bed Granulation Technology

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 008197253

Country of ref document: CN

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase