WO2002001199A1 - Methode d'identification d'une caracteristique biologique fonctionnelle d'une matiere vivante - Google Patents

Methode d'identification d'une caracteristique biologique fonctionnelle d'une matiere vivante Download PDF

Info

Publication number
WO2002001199A1
WO2002001199A1 PCT/FR2001/002101 FR0102101W WO0201199A1 WO 2002001199 A1 WO2002001199 A1 WO 2002001199A1 FR 0102101 W FR0102101 W FR 0102101W WO 0201199 A1 WO0201199 A1 WO 0201199A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological characteristic
functional
analysis
resistance
functional biological
Prior art date
Application number
PCT/FR2001/002101
Other languages
English (en)
Inventor
Michel Manfait
Dhruvananda Sockalingum
Original Assignee
Bioalliance Pharma (S.A.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bioalliance Pharma (S.A.) filed Critical Bioalliance Pharma (S.A.)
Priority to AU2001270723A priority Critical patent/AU2001270723A1/en
Priority to CA002414289A priority patent/CA2414289A1/fr
Priority to EP01949598A priority patent/EP1297322A1/fr
Publication of WO2002001199A1 publication Critical patent/WO2002001199A1/fr
Priority to US10/331,678 priority patent/US20040253575A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Definitions

  • the invention relates to a method for studying the multifactorial aspect of a biological function involving both physical technologies associated with biological methods taking more than one biological criterion into account.
  • the invention makes it possible to identify functional characteristics of living cells, tissues or microorganisms.
  • the method of the invention finds numerous applications such as the analysis of resistance phenomena (oncology and infectiology), the identification of tissues and cells (histocytology, classification, primary or metastatic tumors), the identification and analysis of microorganisms (Identification, Sensitivity / Resistance, Virulence, Epidemiology).
  • Confocal fluorescence microscopy also has its limits because the information obtained is often mono-parametric or even bi-parametric (measurement at one or two wavelengths in the fluorescence emission spectrum.
  • US Patent No. 5,660,998 the use of an infrared spectrometer with Fourier transform to identify microorganisms. The identification is based on the global comparison of an IR spectrum salt of the microorganism considered with a pre-established bank of spectra. Although this single spectrum can lead to identification, it does not as a whole make it possible to define a biological function or character associated with the microorganism (for example, sensitivity or resistance to a family of antibiotics.
  • the method of the invention aims precisely to avoid the drawbacks of the methods of the prior art described above by offering the possibility of simultaneously collecting several relevant criteria associated with the biological function studied. Thanks to mathematical modeling (multivariate statistical analysis, neural networks, genetic algorithms, etc.), the method of the invention makes it possible to identify the functional characteristics of living cells or tissues taking into account the multifactorial aspect of a function and therefore by simultaneously integrating several biological criteria.
  • a method for identifying a functional characteristic of a biological material comprising the following steps: a) at least one biological reference material for a functional characteristic is subjected to a physical analysis (Apr) to establish its spectrum (SAPr), b) the discriminating factors (CPnr) are calculated by a statistical analysis of all or part of the spectrum
  • a specific functional descriptor (Dfs) of the functional characteristic is established from said discriminating factors (CPnr), d) the biological material to be analyzed is subjected to steps (a) and ( b), e) the discriminating factors (CP) of the biological material to be analyzed are compared with the specific functional descriptor (Dfs) obtained in step (c) in order to deduce a possible functional characteristic of the biological material to be analyzed.
  • step (a) comprises the analysis of several reference biological materials with or without the functional characteristic.
  • the method of the invention is remarkable in that it implements an integrated model based on the construction of the specific functional descriptor Dfs of the biological state. For example, with regard to resistance, several factors can be analyzed simultaneously. Thus, the integrated descriptor of the biological state will be constructed to be representative of the in vivo function and to increase the predictivity of the response. It will take into account in a single analysis the multifactorial aspect existing in human clinic. This descriptor technique makes it possible in particular to quickly integrate a new criterion useful in the clinic.
  • the method of the invention makes it possible, on cells, microorganisms or living tissues, to determine, on the basis of several molecular criteria collected by physical analysis (Apr), one or more functional biological characteristics and thus to define a specific functional descriptor (Dfs) of that (s).
  • the biological material analyzed by the method of the invention can be a cell or tissue sample or even a single cell. They may, for example, be tumor cells originating either from cultures or from patients after blood sampling or by tissue biopsy and subsequently isolated on a density gradient.
  • the biological material analyzed by the method of the invention can also be a microorganism (bacteria, yeasts, fungi, etc.) obtained from, for example, an infectious focus or during cultivation.
  • a microorganism bacteria, yeasts, fungi, etc.
  • the method of the invention has the advantage, compared to the analysis techniques of the prior art, of not requiring any prior marking of the samples for physical analyzes (AP).
  • the physical analysis of reference biological material (s) (APr) and of the biological material to be analyzed (AP) of step (a) is advantageously carried out by spectroscopy and optical microspectroscopy and more particularly with vibrational spectroscopy. Raman and infrared and fluorescence emission, or a combination of these, to obtain spectra (SAPr or SAP), containing molecular information.
  • the Raman spectra are obtained with exciting laser radiation in the wavelength range from the ultraviolet to the near infrared and more particularly at 364, 514, 633, 785 and 830 nm.
  • the spectral range studied ranges from 200 to 4000 cm "1 .
  • the fluorescence spectra are also obtained with excitation laser radiation in the wavelength range from the ultraviolet to the near infrared (in the case of a multiphotonic excitation) and more particularly at 364, 514, 633 and 785 nm. .
  • the spectral range studied covers a region of 200 to 400 nm.
  • the choice of the magnification of the microscope objective makes it possible to define the spatial resolution (0.5 ⁇ m) at the level of the cell or tissue sample whose dimensions vary from 10 ⁇ m to a few mm (for example: 15 to 30 ⁇ m for cells, 40 to 100 ⁇ m for bacterial micro colonies, 100 to 2000 ⁇ m for tissues).
  • the spectral range analyzed ranges from 400 to 7000 cm “1 (more particularly from 400 to 4000 cm “ 1 ).
  • the spectra are obtained with a magnification objective ranging from 8X to 60X (usually 36X) on samples ranging from 10 ⁇ m to a few mm (for example: 15 to 30 ⁇ m for cells, 40 to 100 ⁇ m for bacterial micro colonies, 100 to 2000 ⁇ m for tissues).
  • the spectral acquisition times are between 0.1 and 0.1
  • the spectra of the reference biological materials and of the biological material to be analyzed of the reference cells or microorganisms, with or without the desired functional characteristic, are recorded under the same conditions, by the same techniques.
  • data spectroscopy is done on a panel of 10 to 100 isolated cells (more particularly 30) or from 1000 for micro-organisms with analysis times from a few seconds to several minutes (commonly from 1 to 100 seconds).
  • the method of the invention makes it possible to combine several criteria to perform an analysis of the functional characteristic of the biological material:
  • a first spectroscopic criterion from cells known to be sensitive or resistant and associate it with a second spectroscopic criterion specific to a state of resistance with respect to a particular substance (eg doxorubicin).
  • a particular substance eg doxorubicin
  • Dfs specific functional descriptor of a resistance phenotype specific to the anticancer agent
  • tissue origin of the cell breast, blood, prostate, bladder
  • function or condition associated with these cells for example : metastasizing power or not.
  • step (a) With regard to microorganisms, their nature, their identification and any other particular character may be recorded and coupled with other criteria (resistance / sensitivity, virulence or not).
  • the spectra collected in step (a) are then the subject of multivariate statistical analyzes in Principal Component Analysis (PCA) or in PLS (Partial Least Square) or by other appropriate mathematical methods, such as for example a Euclidean representation, a KNN method, a SIMCA method, or a combination of these, to identify the discriminating factors.
  • PCA Principal Component Analysis
  • PLS Partial Least Square
  • the PLS method is a linear regression method applicable when the predictor variables are collinear (Haaland D. and Thomas E., Partial Least Squares methods for spectral analysis, Anal Chem (1988), 60, 1193).
  • the KNN method is a multivariate statistical method based on Principal Component Analysis and which consists in classifying unknown samples according to their proximity in multidimensional space with known samples (Adam J., 1995, Chemometrics in Analytical Spectroscopy, Cambridge, The Royal Society of Chemists).
  • the SIMCA method Soft Independent Modeling by Class Analogy
  • This representation will make it possible to identify and attribute the discriminating spectroscopic elements to the different biological criteria studied.
  • a set of frequency intervals is chosen for its discrimination profile adapted to the functional character. studied.
  • the set of the most discriminating spectral elements allows the construction of the specific functional descriptor of the biological functional characteristic studied taking into account several phenomena or functional biological criteria.
  • step (d) the biological material to be analyzed will follow exactly the same procedure in steps (a) to (b) as that of the reference biological material (s) to be then compared during step ( e) the functional descriptor obtained in step (c).
  • this comparison consists in measuring the distance between the CPn of the reference reference biological material (s) and the CP of the biological material to be analyzed.
  • the biological material to be analyzed is thus projected into the factorial plan selected for the presentation of the results and will thus be classified according to the functional characteristic studied. For example, in the case of a characterization of a resistance phenotype from spectroscopic data, a set of spectra (Raman, infrared, fluorescence) are recorded on isolated tumor cells (in culture or isolated from patients). These data make it possible, using appropriate statistical methods, to extract a subset of spectroscopic elements (for example intensity, frequency, polarization, lifetime).
  • spectroscopic elements for example intensity, frequency, polarization, lifetime
  • the combination of these elements makes it possible to construct a Dfs leading to a discrimination of two or more cell populations (for example sensitive or resistant) or subpopulations having a particular biological function (for example a specific resistance mechanism such as Pgp, MRPl, non-MDR, etc.).
  • cancer cell the origin of the cancer cell (breast, leukemia, bladder, prostate, etc.),
  • the invention also finds applications in the identification of other biological functions or states on: - eukaryotic cells, such as, for example, the state of differentiation, the phases of the cell cycle, the signaling pathways, the apoptosis and necrosis, ability to proliferate, invasiveness, tumor status, etc.
  • - microorganisms such as, for example, sensitivity to a family or families of antibiotics, virulence, adhesion and mechanisms of infection, etc.
  • - tissues healthy, pathological, tumor, pre-tumoral, an ability to regenerate, a state of oxygenation, etc.
  • tissue and cells organ of origin, histology, primary or metastatic tumors
  • guidance of the surgical act in the case of resection of a tumor identification of microorganisms
  • - cell therapy characterization of a cell function of dendritic cells, prediction of a therapeutic response, creation of a Def allowing the definition of good and non-responders to chemotherapy (predictive pharmacology and early diagnosis), monitoring of individual therapeutic response for a new patient or during a relapse. - gradation of pathology. identification of prognostic factors guiding therapeutic choices (new evolutionary factors that can be integrated).
  • FIG. 1 represents the RAMAN spectra of sensitive (S) and resistant (R) human K562 leukemia cells with an MDR phenotype.
  • S sensitive
  • R resistant
  • the spectra in Figure 1 are subjected to a
  • PCA Principal Components Analysis
  • Figure 2 shows an example of main components, which after discriminant analysis for a biological function, will be used for the definition of Dfs and for the 2D representation (factorial plane).
  • Figure 2 gives an example of 3 main components for the construction of the specific functional descriptor of the resistance phenotype by discriminant analysis of the components CP1, CP2, CP3, ..., Cpn.
  • Figures 3, 4 and 5 represent a 2D or 3D projection (factorial plane) of the classification of the functional characteristic to be identified on the basis of its contribution in the initial spectral data.
  • Figure 3 represents the identi ication in a 2D factorial plane (CP1 versus CP3) of cells K562, HL60 and J82 sensitive and K562 resistant (each system is individualized).
  • FIG. 4 represents the regrouping of a new resistant HL60 line with the cluster K562 R. These lines, although different, are grouped together on the "multiple resistance" character. This shows the possibility of characterizing a precise biological function in different cellular systems.
  • FIG. 5 represents a new resistant line J82 R, which does not exhibit the same resistance mechanism as the K562 R and HL60 R, is not grouped in the same cluster.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

La présente invention concerne une méthode d'identification d'une caractéristique biologique fonctionnelle d'une matière vivante comprenant les étapes suivantes: (a) on soumet au moins une matière biologique de référence pour une caractéristique biologique fonctionnelle à une analyse physique APr pour établir son spectre SAPr, (b) on calcule les facteurs discriminants CPnr par une analyse statistique de tout ou partie du spectre SAP obtenu à l'étape (a), (c) on établit à partir desdits facteurs discriminants CPnr un descripteur fonctionnel spécifique Dfs de la caractéristique biologique fonctionnelle, (d) on soumet la matière vivante à analyser aux étapes (a) et (b), (e) on compare les facteurs discriminants CP de la matière vivante à analyser avec le descripteur fonctionnel spécifique Dfs obtenu à l'étape (c) afin de déduire une caractéristique biologique fonctionnelle éventuelle de la matière vivante à analyser.

Description

METHODE D'IDENTIFICATION D'UNE CARACTERISTIQUE BIOLOGIQUE FONCTIONNELLE D'UNE MATIERE VIVANTE.
L'invention se rapporte à une méthode pour étudier l'aspect multifactoriel d'une fonction biologique faisant intervenir à la fois des technologies physiques associées à des méthodes biologiques prenant plus d'un critère biologique en compte. L'invention permet d' identifier des caractéristiques fonctionnelles de cellules vivantes, de tissus ou de microorgansimes .
La méthode de l'invention trouve de nombreuses applications comme l'analyse de phénomènes de résistance (oncologie et infectiologie) , l'identification des tissus et cellules (histocytologie , classification, tumeurs primitives ou métastatiques) , l'identification et l'analyse de microorganismes (Identification, Sensibilité/Résistance, Virulence, Epidémiologie) .
L'évaluation d'une fonction particulière d'une cellule ou d'un tissu repose à l'heure actuelle sur un descriptif biologique. Il est établi sur des bases morphologiques ou bien sur la mise en évidence de marqueurs biochimiques, la vérification de l'expression de gènes, la vérification de l'expression phenotypique, la vérification in vi tro de la fonction ou de la croissance d'une cellule en présence de drogues ou de marqueurs spécifiques. Plusieurs recherches et examens successifs sont nécessaires si tous ces critères sont pris en compte.
Ainsi dans le domaine de la résistance à la chimiothérapie, de nombreux marqueurs sont décrits dans la littérature (Robert J. , Multidrug résistance in oncology : diagnostic and therapeutic approaches, Europ J of Clin Investig (1999) , 29, 536-545) . La mesure est réalisée par des techniques biologiques de mesures immunohistochimiques des protéines reliées aux phénomènes de multirésistance (P- gp, MRP, LRP) . La mesure de la fonctionnalité de ces pompes (cytométrie de flux) est également proposée. Enfin la mesure de l'expression du gène de résistance (RT-PCR, cytométrie de flux) est réalisée (Marie J. P et al, Multicentric évaluation of the MDR phenotype in leukemia, Leukemia 1997, 11 : 1095-1106) .
Ainsi, le National Cancer Institute utilise la fonction d'expulsion des protéines exprimées en cas de résistance et mesure ainsi l'efflux de rhodamine par la pompe P-gp sur 60 lignées de cultures cellulaires, ceci est réalisé dans un programme appelé COMPARE program (Alvarez M. et al., Génération of a drug résistance profile by quantification of mdrl/ P-gp in the cell lines of the National Cancer Institute anticancer drug screen, J of Clinical Invest 1995, 95 : 2205-2214) . Ce programme a cependant ses limites car le mécanisme de résistance induit, analysé par ce critère, est fréquent mais rarement seul en cause en clinique.
D'autres marqueurs de résistance sont établis en mesurant l'accumulation intracellulaire de substances endogènes ou à visée thérapeutique en (glutathion, adduits de DNA, médicaments) . Ces marqueurs dépendent du mécanisme de résistance et des médicaments inducteurs (Morjani H. et al., Anthracycline subcellular distribution in human leukemic cells by microspectrofluorometry : factors contributing to drug-induced cell death and reversai of multidrug résistance, Leukemia 1997, 11 :1170-1179).
Sur le plan des méthodes biologiques, il existe depuis longtemps des méthodes d'évaluation de la susceptibilité/résistance à une chimiothérapie. Elles reposent sur le concept de « chimiogrammes » dérivé du concept des antibiogrammes avec une prédiction de la sensibilité à des drogues (Human Tumor Stem Cell Assay) pour apprécier, en culture, la croissance en présence de classes chimiques variées et définir ainsi la susceptibilité ou la résistance (Legrand o. et al., Simultaneous activity of MRPl and P-gp is correlated with in vitro résistance to daunorubicin and with in vivo résistance in adult acute myeloid leukemia, Blood 1999, 94 : 1046-1056) .
Ces méthodes ont des limites et sont peu utilisées en clinique. Ceci est dû au prélèvement des cellules et à leur mise en culture. En effet, toutes les cellules ne prolifèrent pas, il est difficile d'obtenir une culture en agar, représentative de la prolifération cellulaire (35 % à 60% sont évaluables) (Von Hoff DD., He's not going to talk about in vitro prédictive assays again, is he ?, J. Nat Cancer Inst 1990, 82 : 96-101) .
Il ressort que parmi toutes les méthodes biologiques de plus en plus perfectionnées proposées aucune ne recueille l'unanimité car elles sont limitées par le critère choisi, rarement représentatif du caractère multifactoriel d'un état ou d'une fonction cellulaire. La mise en jeu du recueil de données nécessitant plusieurs méthodes se voit limitée par la multiplicité successive des techniques (génétiques, chimiques immunologiques , analytiques, culture) à mettre en œuvre.
Par ailleurs, une évaluation par des méthodes physiques a déjà été décrite dans la demande de brevet européen publiée sous le No. 0 568 126 en utilisant une technique de microscopie laser confocale pour déterminer la résistance ou la sensibilité à la doxorubicine de cellules en culture. Dans cette demande de brevet, seule une image de fluorescence différente est observée dans la membrane de cellules K562 résistantes. Cette image reflète simplement les altérations membranaires dues à l'accumulation de doxorubicine fluorescente dans les pompes P-gp, sur exprimées en cas de résistance, est représente une simple alternative aux méthodes immunohistochimiques développées plus haut .
Les limites de cette méthode d'imagerie sont, notamment, liées aux inconvénients d'étudier la localisation de la pompe P-gp dans la membrane sur une seule image. Cette localisation membranaire ne reflète aucunement sa fonction et i n'est pas discriminante d'un état de résistance qui, sur le plan biologique, est multifactoriel chez l'homme.
Ainsi, la méthode décrite dans cette demande de brevet ne permet pas de distinguer, par exemple, un phénotype P-gp d'un phénotype MRPl.
La microscopie confocale à fluorescence a également ses limites car l'information obtenue est souvent mono-paramétrique voire bi-paramétrique (mesure à une ou deux longueurs d'onde dans le spectre d'émission de fluorescence. Dans le domaine de la microbiologie, il a été décrit dans le brevet US No. 5 660 998 l'utilisation d'un spectromètre infrarouge à transformée de Fourier pour identifier des microorganismes. L'identification repose sur la comparaison globale d'un sel spectre IR du microorganisme considéré avec une banque pré-établie de spectres. Bien que ce seul spectre puisse conduire à l'identification, il ne permet pas dans sa globalité de définir une fonction ou un caractère biologique associé au microorganisme (par exemple, la sensibilité ou la résistance à une famille d'antibiotiques.
La méthode de l'invention vise précisément à éviter les inconvénients des méthodes de l'art antérieur décrites ci-dessus en offrant la possibilité de recueillir simultanément plusieurs critères pertinents associés à la fonction biologique étudiée. Grâce à une modélisation mathématique (analyse statistique multivariée, réseaux de neurones, algorithmes génétiques, etc) , la méthode de l'invention permet d'dentifier les caractéristiques fonctionnelles de cellules vivantes ou de tissus prenant en compte l'aspect multifactoriel d'une fonction et donc en intégrant simultanément plusieurs critères biologiques.
Ce but est atteint selon l ' invention grâce à une méthode d ' identi f icat ion d ' une caractéri st ique fonctionnelle d' une matière biologique comprenant les étapes suivantes : a) on soumet au moins une matière biologique de référence pour une caractéristique fonctionnelle à une analyse physique (Apr) pour établir son spectre (SAPr) , b) on calcule les facteurs discriminants (CPnr) par une analyse statistique de tout ou partie du spectre
SAP obtenu à l'étape (a), c) on établit à partir desdits facteurs discriminants (CPnr) un descripteur fonctionnel spécifique (Dfs) de la caractéristique fonctionnelle, d) on soumet la matière biologique à analyser aux étapes (a) et (b) , e) on compare les facteurs discriminants (CP) de la matière biologique à analyser avec le descripteur fonctionnel spécifique (Dfs) obtenu à l'étape (c) afin de déduire une caractéristique fonctionnelle éventuelle de la matière biologique à analyser.
Avantageusement, l'étape (a) comprend l'analyse de plusieurs matières biologiques de référence présentant ou non la caractéristique fonctionnelle.
La méthode de l'invention est remarquable en ce qu'elle met en oeuvre un modèle intégré basé sur la construction du descripteur fonctionnel spécifique Dfs de l'état biologique. Par exemple, en ce qui concerne la résistance, plusieurs facteurs peuvent être analysés simultanément. Ainsi, le descripteur intégré de l'état biologique sera construit pour être représentatif de la fonction in vivo et augmenter la prédictivité de la réponse. Il prendra en compte dans une même analyse l'aspect multifactoriel existant en clinique humaine. Cette technique de descripteur permet notamment d'intégrer rapidement un nouveau critère utile en clinique.
Ainsi, la méthode de l'invention permet sur des cellules, des microorganismes ou des tissus vivants de déterminer, à partir de plusieurs critères moléculaires recueillis grâce à l'analyse physique (Apr) , une ou plusieurs caractéristiques biologiques fonctionnelles et de définir ainsi un descripteur fonctionnel spécifique (Dfs) de celle (s) -ci .
La matière biologique analysée par la méthode de l'invention peut être un échantillon cellulaire ou tissulaire ou même une unique cellule. Il peut s'agir par exemple de cellules tumorales provenant soit de cultures soit de patients après prélèvement sanguin ou par biopsie tissulaire et par la suite isolées sur gradient de densité.
Dans le cas des tissus, les analyses physiques peuvent être réalisées soit sur des pièces anatomiques extemporanées soit in vivo (directement sur les tissus accessibles ou à la suite d'un acte chirurgical ou par voie endoscopique) .
La matière biologique analysée par la méthode de l ' invent ion peut être aus s i un mi croorgani sme (bactéries , levures , champignons , etc) obtenu à partir par exemple d' un foyer infectieux ou lors d' une mise en culture
( après ensemencement sur gélose ) permettant également l ' analyse de microcolonies .
Ces échant illons sont maintenus dans des conditions de survie pendant les analyses physiques (AP) . La méthode de l'invention présentent l'avantage, par rapport aux techniques d'analyse de l'art antérieur, de ne nécessiter aucun marquage préalable des échantillons pour les analyses physiques (AP) .
L'analyse physique de matière (s) biologique (s) de référence (APr) et de la matière biologique à analyser (AP) de l'étape (a) est avantageusement réalisée par spectroscopie et microspectroscopie optique et plus particulièrement avec les spectroscopies vibrationnelles Raman et infrarouge et d'émission de fluorescence, ou une combinaison de ceux-ci, permettant d'obtenir des spectres (SAPr ou SAP), contenant des informations moléculaires.
Les spectres Raman son obtenus avec des radiations excitatrices lasers dans le domaine de longueur d'onde allant de l'ultraviolet au proche infrarouge et plus particulièrement à 364, 514, 633, 785 et 830 nm. Le domaine spectral étudié s'étend de 200 à 4000 cm"1.
Les spectres de fluorescence sont également obtenus avec des radiations excitatrices lasers dans le domaine de longueur d'onde allant de l'ultraviolet au proche infrarouge (dans le cas d'une excitation multiphotonique) et plus particulièrement à 364, 514, 633 et 785 nm. Le domaine spectral étudié couvre une région de 200 à 400 nm.
Pour les microspectroscopies Raman et de fluorescence, le choix du grandissement de l'objectif de microscope (par exemple 100X) permet de définir la résolution spatiale (0,5 μm) au niveau de l'échantillon cellulaire ou tissulaire dont les dimensions varient de 10 μm à quelques mm (par exemple : 15 a 30 μm pour les cellules, 40 à 100 μm pour les micro colonies bactériennes, 100 à 2000 μm pour les tissus) .
Pour la spectroscopie d'absorption infrarouge par transmission ou par réflexion le domaine spectral analysé s'étend de 400 à 7000 cm"1 (plus particulièrement de 400 à 4000 cm"1) .
En microspectroscopie infrarouge, les spectres sont obtenus avec un objectif de grandissement allant de 8X à 60X (de façon usuelle de 36X) sur des échantillons allant de 10 μm à quelques mm (par exemple : 15 à 30 μm pour les cellules, 40 à 100 μm pour les micro colonies bactériennes, 100 à 2000 μm pour les tissus) .
Pour les spectroscopies de diffusion Raman, d'absorption infrarouge et d'émission de fluorescence, les temps d'acquisition des spectres sont compris entre 0,1 et
1000 secondes et plus particulièrement de 1 à 100 secondes pour les mesures associées à la construction du Dfs.
Les spectres des matières biologiques de référence et de la matière biologique à analyser des cellules ou des microorganismes de référence, présentant ou non la caractéristique fonctionnelle recherchée, sont enregistrés dans les mêmes conditions, par les mêmes techniques . Comparée aux données obtenus avec les méthodologies conventionnelles par exemple de biochimie, de biologie cellulaire et moléculaire, de cytométrie en flux et d' immunocytochimie, nécessitant en moyenne de 105 à 107 cellules et des temps d'analyse de quelques dizaines de minutes à plusieurs jours, l'obtention des données spectroscopiques se fait sur un panel de 10 à 100 cellules isolées (plus particulièrement 30) ou à partir de 1000 pour les micro-organismes avec des temps d'analyse de quelques secondes à plusieurs minutes (de façon courante de 1 à 100 secondes) .
De façon remarquable, la méthode de l'invention permet d'associer plusieurs critères pour effectuer une analyse de la caractéristique fonctionnelle de la matière biologique :
- Par exemple, pour définir le caractère de sensibilité ou de résistance, il est possible d'identifier un premier critère spectroscopique à partir de cellules connues pour être sensibles ou résistantes et l'associer à un deuxième critère spectroscopique spécifique d'un état de résistance vis à vis d'une substance particulière (par exemple doxorubicine). Ceci permettant la construction d'un descripteur fonctionnel spécifique (Dfs) d'un phénotype de résistance spécifique à l'agent anticancéreux (par exemple Pgp-DOX) .
- Lors d'un prélèvement, il est possible non seulement de réaliser l'identification cellulaire ou tissulaire (origine tissulaire de la cellule : sein, sang, prostate, vessie) mais aussi identifier une fonction ou un état associé à ces cellules (par exemple : pouvoir métastasiant ou non) .
- En ce qui concerne les microorganismes, leur nature, leur identification et tout autre caractère particulier pourront être enregistrés et couplés à d'autres critères (résistance/sensibilité, virulence ou non) . Les spectres recueillis à l'étape (a) font ensuite l'objet d'analyses statistiques multivariées en Analyse en Composantes Principales (ACP) ou bien en PLS (Partial Least Square) ou par d'autres méthodes mathématiques appropriées, comme par exemple une représentation euclidienne, une méthode KNN, une méthode SIMCA, ou encore une combinaison de celles-ci, pour identifier les facteurs discriminants. La méthode PLS est une méthode de régression linéaire applicable lorsque les variables prédictives sont colinéaires (Haaland D. et Thomas E., Partial Least Squares methods for spectral analysis, Anal Chem (1988) , 60, 1193) . La méthode KNN est une méthode statistique multivariee basée sur l'Analyse en Composantes Principales et qui consiste à classer des échantillons inconnus en fonction de leur proximité dans l'espace multidimensionnel avec des échantillons connus (Adam J., 1995, Chemometrics in Analytical Spectroscopy, Cambridge, The Royal Society of Chemists) . La méthode SIMCA (Soft Independent Modelling by Class Analogy) est une méthode statistique multivariee basée sur l'Analyse en Composantes Principales et qui nécessite la construction de modèles d'Analyse en Composantes Principales décrivant chacune des classes de référence (Frank, I. et Lanteri, S., 1989, Chemometrics and Intelligent Laboratory Systems, 5, 247). Cette représentation va permettre d'identifier et d'attribuer les éléments spectroscopiques discriminants aux différents critères biologiques étudiés. En pratique, un ensemble d' intervalles de fréquence est retenu pour son profil de discrimination adapté au caractère fonctionnel étudié. Ainsi, l'ensemble des éléments spectraux les plus discriminants permet la construction du descripteur fonctionnel spécifique de la caractéristique fonctionnelle biologique étudiée prenant en compte plusieurs phénomènes ou critères biologiques fonctionnels.
A l'étape (d) , la matière biologique à analyser va suivre exactement la même procédure des étape (a) à (b) que celle du ou des matières biologique (s) de référence pour être ensuite comparé lors de l'étape (e) au descripteur fonctionnel obtenu à l'étape (c) . Avantageusement cette comparaison consiste à mesurer la distance entre les CPn de la ou des matières biologiques de référence de référence et les CP de la matière biologique à analyser.
La matière biologique à analyser est ainsi projetée dans le plan factoriel retenu pour la présentation des résultats et sera ainsi classé suivant la caractéritique fonctionnelle étudiée. Par exemple, dans le cas d'une caractérisation d'un phénotype de résistance à partir de données spectroscopique, un ensemble de spectres (Raman, infrarouge, fluorescence) sont enregistrés sur des cellules tumorales isolées (en culture ou isolées de patients) . Ces données permettent, à l'aide de méthodes statistiques appropriées, d'extraire un sous-ensemble d'éléments spectroscopiques (par exemple intensité, fréquence, polarisation, durée de vie) . De façon remarquable, la combinaison de ces éléments permet de construire un Dfs conduisant à une discrimination de deux ou plusieurs populations cellulaires (par exemple sensibles ou résistante) ou des sous-populations possédant une fonction biologique particulière (par exemple un mécanisme de résistance spécifique tel que Pgp, MRPl, non-MDR, etc) .
L'étude statistique des différences spectrales se fait donc entre le système exprimant ou non les différents critères biologiques utiles à la détermination de la fonction. Par exemple pour la problématique du phénotype de résistance dans la pathologie du cancer, il est possible d'intégrer :
- l'origine de la cellule cancéreuse (sein, leucémie, vessie, prostate, etc) ,
- le caractère de sensibilité ou de résistance (cultures connues pour être sensibles ou résistantes) , le type de substance ayant induit la résistance : par exemple, classe des anthracyclines , des vincaalcaloides , des taxanes, des platines, ces classes étant connues pour mettre en jeu plusieurs de types de pompes ou de phénomènes intervenant dans la fonction de résistance.
Mais l'invention trouve aussi des applications en matière d'identification d'autres fonctions ou états biologiques sur : - des cellules eucaryotes, comme par exemple, l'état de différenciation, les phases du cycle cellulaire, les voies de signalisation, l'apoptose et nécrose, l'aptitude à la prolifération, le pouvoir invasif, l'état tumoral, etc, - des microorganismes, comme par exemple, la sensibilité à une famille ou des familles d'antibiotiques, la virulence, l'adhésion et les mécanismes d'infection, etc, - des tissus, sains, pathologiques, tumoraux, pré-tumoraaux, présentant une aptitude à la régénération, un état d'oxygénation, etc.
Ainsi, on envisage plus particulièrement les applications suivantes de la méthode de l'invention : - sensibilité/résistance notamment vis à vis de différentes classes d'agents pharmacologiques,
- identification des tissus et cellules (organe d'origine, histologie, tumeurs primitives ou métastatiques) , - guidage de l'acte chirurgical dans le cas de la résection d'une tumeur, identification des microorganismes
(identification du genre, de l'espèce et de la souche, résistance, virulence) , - identification de nouvelles cibles antibactériennes,
- thérapie cellulaire : caractérisation d'une fonction cellulaire de cellules dendritiques , prédiction d'une réponse thérapeutique, création d'un Def permettant de définir les bons et les non- répondeurs à une chimiothérapie (pharmacologie prédictive et diagnostic précoce) , suivi de la réponse thérapeutique individuelle pour un nouveau patient ou lors d'une rechute. - gradation de la pathologie. identification de facteurs pronostics orientant les choix thérapeutiques (de nouveaux facteurs évolutifs pouvant être intégrés) .
D'autres avantages et caractéristiques de l'invention apparaîtront de la description ci-après des figures en annexe concernant l'utilisation des spectroscopies pour définir un descripteur fonctionnel associé à une caractéristique biologique consistant en la résistance multiple aux agents anticancéreux dans différentes lignées cellulaires.
La figure 1 représente les spectres RAMAN de cellules leucémiques humaines K562 sensibles (S) et résistantes (R) avec un phénotype MDR. Les spectres de la figure 1 sont soumis à une
Analyse en Composantes Principales (ACP) . La figure 2 montre un exemple de composantes principales, qui après analyse discriminante pour une fonction biologique, serviront à la définition de Dfs et à la représentation 2D (plan factoriel) . La figure 2 donne un exemple de 3 composantes principales pour la construction du descripteur fonctionnel spécifique du phénotype de résistance par analyse discriminante des composantes CP1, CP2 , CP3 , ..., Cpn. Les figures 3, 4 et 5 représentent une projection 2D ou 3D (plan factoriel) de la classification de la caractéristique fonctionelle à identifier sur la base de sa contribution dans les données spectrales initiales.
La figure 3 représente l'identi ication dans un plan factoriel 2D (CP1 versus CP3) des cellules K562, HL60 et J82 sensibles et K562 résistantes (chaque système est individualisé) .
La figure 4 représente le regroupement d'une nouvelle lignée HL60 résistante avec le cluster K562 R. Ces lignées bien que différentes sont regroupées sur le caractère "résistance multiple" . Ceci montre la possibilité de caractériser une fonction biologique précise dans différents systèmes cellulaires.
La figure 5 représente Une nouvelle lignée résistante J82 R, qui ne présente pas le même mécanisme de résistance que les K562 R et HL60 R, n'est pas regroupée dans le même cluster.

Claims

REVENDICATIONS
1) Méthode d'identification d'une caractéristique biologique fonctionnelle d'une matière vivante comprenant les étapes suivantes : a) on soumet au moins une matière biologique de référence pour une caractéristique biologique fonctionnelle à une analyse physique APr pour établir son spectre SAPr, b) on calcule les facteurs discriminants CPnr par une analyse statistique de tout ou partie du spectre
SAP obtenu à l'étape (a), c) on établit à partir desdits facteurs discriminants CPnr un descripteur fonctionnel spécifique Dfs de la caractéristique biologique fonctionnelle, d) on soumet la matière vivante à analyser aux étapes (a) et (b) , e) on compare les facteurs discriminants CP de la mat ière vivante à analyser avec le descripteur fonctionnel spécif ique Df s obtenu à l ' étape (c) af in de déduire une caractéri st ique biologique f onct ionnel le éventuelle de la matière vivante à analyser .
2 ) Méthode se l on l a revendi cat ion 1 , caractérisée en ce que la matière vivante substantiellement pure est un échantillon cellulaire ou tissulaire ou une unique cellule .
3 ) Méthode selon l ' une des revendications 1 ou 2 , caractérisée en ce que les mesures phys iques sont réalisées par spectroscopie ou microspectroscopie , et plus particulièrement par spectroscopies vibrationnelles Raman, infrarouge, ou d'émission de fluorescence, ou une combinaison de celles-ci.
4) Méthode selon la revendication 3, caractérisée en ce que les mesures de spectroscopies vibrationnelles Raman ou d'émission de fluorescence sont effectuées avec des radiations excitatrices lasers dans le domaine de longueur d'onde allant de l'ultraviolet au proche infrarouge et plus particulièrement à 364, 514, 633 et 785 nm, et dans un domaine spectral s 'étendant de 200 à 4000 cm"1.
5) Méthode selon la revendication 3, caractérisée en ce que les mesures de spectroscopies d'absorption infrarouge par transmission ou par réflexion sont effectuées dans un domaine spectral s 'étendant de 400 à 7000 cm"1, plus particulièrement de 400 à 4000 cm"1) .
6) Méthode selon l'une quelconque des revendications 3 à 5, caractérisée en ce que les temps d'acquisition des spectres des mesures de spectroscopies de diffusion Raman, d'absorption infrarouge et d'émission de fluorescence, sont compris entre 0,1 et 1000 secondes et plus particulièrement de 1 à 100 secondes pour les mesures associées à la construction du descripteur fonctionnel intégré .
7) Méthode selon l'une quelconque des revendications 1 à 6, caractérisée en ce que l'analyse statistique pour caractériser les facteurs discriminants est une Analyse en Composante Principale (ACP) ou bien en PLS (Partial Least Square) ou encore une représentation euclidienne, une méthode KNN, une méthode SIMCA, ou une combinaison de celles-ci.
8) Méthode selon l'une quelconque des revendications précédentes, caractérisée en ce que la caractéristique biologique fonctionnelle est la sensibilité ou la résistance à un ou plusieurs agents pharmacologiques .
PCT/FR2001/002101 2000-06-29 2001-06-29 Methode d'identification d'une caracteristique biologique fonctionnelle d'une matiere vivante WO2002001199A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2001270723A AU2001270723A1 (en) 2000-06-29 2001-06-29 Method for identifying a functional biological characteristic of a living matter
CA002414289A CA2414289A1 (fr) 2000-06-29 2001-06-29 Methode d'identification d'une caracteristique biologique fonctionnelle d'une matiere vivante
EP01949598A EP1297322A1 (fr) 2000-06-29 2001-06-29 Methode d'identification d'une caracteristique biologique fonctionnelle d'une matiere vivante
US10/331,678 US20040253575A1 (en) 2000-06-29 2002-12-27 Method for identifying a fuctional biological characteristic of a living matter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0008440A FR2811084B1 (fr) 2000-06-29 2000-06-29 Methode d'identification d'une caracteristique biologique fonctionnelle d'une matiere vivante
FR00/08440 2000-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/331,678 Continuation US20040253575A1 (en) 2000-06-29 2002-12-27 Method for identifying a fuctional biological characteristic of a living matter

Publications (1)

Publication Number Publication Date
WO2002001199A1 true WO2002001199A1 (fr) 2002-01-03

Family

ID=8851902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/002101 WO2002001199A1 (fr) 2000-06-29 2001-06-29 Methode d'identification d'une caracteristique biologique fonctionnelle d'une matiere vivante

Country Status (6)

Country Link
US (1) US20040253575A1 (fr)
EP (1) EP1297322A1 (fr)
AU (1) AU2001270723A1 (fr)
CA (1) CA2414289A1 (fr)
FR (1) FR2811084B1 (fr)
WO (1) WO2002001199A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004017066A1 (fr) * 2002-08-16 2004-02-26 Lattec I/S Systeme et methode d'observation et de prediction d'un etat physiologique d'un animal
DE10241793A1 (de) * 2002-09-06 2004-06-17 Roos, Gudrun, Dr. Vorrichtung zur Ermittlung der Wirksamkeit von Pflanzenextrakten
US7302349B2 (en) 2002-08-16 2007-11-27 Lattec I/S System and a method for observing and predicting a physiological state of an animal
CN104458703A (zh) * 2014-12-16 2015-03-25 盐城工学院 一种转基因水稻种子及其亲本的快速检测方法及其专用装置
CN104749156A (zh) * 2013-12-27 2015-07-01 同方威视技术股份有限公司 拉曼光谱检测方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1890557A (zh) 2003-11-28 2007-01-03 Bc肿瘤研究所 根据拉曼和背景荧光谱多峰检测组织异常
US8614419B2 (en) 2008-03-28 2013-12-24 The Ohio State University Rapid diagnosis of a disease condition using infrared spectroscopy
US8309931B2 (en) * 2008-03-28 2012-11-13 The Ohio State University Rapid diagnosis of a disease condition using infrared spectroscopy
CN106404745B (zh) * 2016-11-24 2019-09-10 中国科学院长春光学精密机械与物理研究所 一种CaF2光学基底深紫外激光辐射诱导表面变化检测方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5630413A (en) * 1992-07-06 1997-05-20 Sandia Corporation Reliable noninvasive measurement of blood gases

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4404059A (en) * 1982-05-26 1983-09-13 Livshits Vladimir I Process for manufacturing panels to be used in microelectronic systems
US5829128A (en) * 1993-11-16 1998-11-03 Formfactor, Inc. Method of mounting resilient contact structures to semiconductor devices
US5643472A (en) * 1988-07-08 1997-07-01 Cauldron Limited Partnership Selective removal of material by irradiation
US4906920A (en) * 1988-10-11 1990-03-06 Hewlett-Packard Company Self-leveling membrane probe
US5264787A (en) * 1991-08-30 1993-11-23 Hughes Aircraft Company Rigid-flex circuits with raised features as IC test probes
US5180977A (en) * 1991-12-02 1993-01-19 Hoya Corporation Usa Membrane probe contact bump compliancy system
US5422574A (en) * 1993-01-14 1995-06-06 Probe Technology Corporation Large scale protrusion membrane for semiconductor devices under test with very high pin counts
US5583445A (en) * 1994-02-04 1996-12-10 Hughes Aircraft Company Opto-electronic membrane probe
US5914613A (en) * 1996-08-08 1999-06-22 Cascade Microtech, Inc. Membrane probing system with local contact scrub
US6060891A (en) * 1997-02-11 2000-05-09 Micron Technology, Inc. Probe card for semiconductor wafers and method and system for testing wafers
US5929521A (en) * 1997-03-26 1999-07-27 Micron Technology, Inc. Projected contact structure for bumped semiconductor device and resulting articles and assemblies
US6027346A (en) * 1998-06-29 2000-02-22 Xandex, Inc. Membrane-supported contactor for semiconductor test

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5630413A (en) * 1992-07-06 1997-05-20 Sandia Corporation Reliable noninvasive measurement of blood gases

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CLEVE E ET AL: "ANWENDUNG CHEMOMETRISCHER AUSWERTEMETHODEN IN DER NIR-SPEKTROSKOPIEZUM NACHWEIS VON SCHLICHTEMITTELN AUF TEXTILEN FLACHENGEBILDEN", TEXTILVEREDLUNG,CH,THURGAUER TAGBLATT, WEINFELDEN, vol. 30, no. 7/08, 1 July 1995 (1995-07-01), pages 169 - 172, XP000516930, ISSN: 0040-5310 *
RILEY M R ET AL: "MATRIX-ENHANCED CALIBRATION PROCEDURE FOR MULTIVARIATE CALIBRATION MODELS WITH NEAR-INFRARED SPECTRA", APPLIED SPECTROSCOPY,US,THE SOCIETY FOR APPLIED SPECTROSCOPY. BALTIMORE, vol. 52, no. 10, October 1998 (1998-10-01), pages 1339 - 1347, XP000805981, ISSN: 0003-7028 *
ZHANG S ET AL: "PARTIAL LEAST-SQUARES MODELING OF NEAR-INFRARED REFLECTANCE DATA FOR NONINVASIVE IN VIVO DETERMINATION OF DEEP-TISSUE PH", APPLIED SPECTROSCOPY,US,THE SOCIETY FOR APPLIED SPECTROSCOPY. BALTIMORE, vol. 52, no. 3, 1 March 1998 (1998-03-01), pages 400 - 406, XP000776174, ISSN: 0003-7028 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004017066A1 (fr) * 2002-08-16 2004-02-26 Lattec I/S Systeme et methode d'observation et de prediction d'un etat physiologique d'un animal
US7302349B2 (en) 2002-08-16 2007-11-27 Lattec I/S System and a method for observing and predicting a physiological state of an animal
US7676346B2 (en) 2002-08-16 2010-03-09 Lattec I/S System and a method for observing and predicting a physiological state of an animal
DE10241793A1 (de) * 2002-09-06 2004-06-17 Roos, Gudrun, Dr. Vorrichtung zur Ermittlung der Wirksamkeit von Pflanzenextrakten
CN104749156A (zh) * 2013-12-27 2015-07-01 同方威视技术股份有限公司 拉曼光谱检测方法
US10267678B2 (en) 2013-12-27 2019-04-23 Nuctech Company Limited Raman spectroscopic detection method
CN104458703A (zh) * 2014-12-16 2015-03-25 盐城工学院 一种转基因水稻种子及其亲本的快速检测方法及其专用装置

Also Published As

Publication number Publication date
FR2811084B1 (fr) 2002-10-25
US20040253575A1 (en) 2004-12-16
EP1297322A1 (fr) 2003-04-02
CA2414289A1 (fr) 2002-01-03
AU2001270723A1 (en) 2002-01-08
FR2811084A1 (fr) 2002-01-04

Similar Documents

Publication Publication Date Title
Cialla-May et al. Raman spectroscopy and imaging in bioanalytics
Zhao et al. Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy
Garini et al. Spectral imaging: principles and applications
Diem et al. Molecular pathology via IR and Raman spectral imaging
US20060281068A1 (en) Cytological methods for detecting a disease condition such as malignancy by Raman spectroscopic imaging
US7990533B2 (en) System and method for analyzing biological samples using Raman molecular imaging
Vanna et al. Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy
US20070153268A1 (en) System and method for classifying cells and the pharmaceutical treatment of such cells using Raman spectroscopy
US20060253261A1 (en) Digitizing biology
US8379197B2 (en) Spectroscopic systems and methods for classifying and pharmaceutically treating cells
US7956996B2 (en) Distinguishing between invasive ductal carcinoma and invasive lobular carcinoma using raman molecular imaging
US20120200850A1 (en) Cytological methods for detecting a condition such as transplant efficiency by raman spectroscopic imaging
Kerr et al. Applications of Raman spectroscopy to the urinary bladder for cancer diagnostics
AU2010247132B2 (en) Tissue sample analysis
Smith et al. Raman scattering in pathology
EP1297322A1 (fr) Methode d'identification d'une caracteristique biologique fonctionnelle d'une matiere vivante
Verdonck et al. Label-free phenotyping of peripheral blood lymphocytes by infrared imaging
Pavillon et al. Immune cell type, cell activation, and single cell heterogeneity revealed by label-free optical methods
Goodacre et al. Biofluids and other techniques: general discussion
CN107847145B (zh) 光子结构和化学计量学病理系统
Diem et al. Spectral histopathology of the lung: a review of two large studies
Martinez-Marin et al. Accounting for tissue heterogeneity in infrared spectroscopic imaging for accurate diagnosis of thyroid carcinoma subtypes
Bénard et al. Discrimination between healthy and tumor tissues on formalin-fixed paraffin-embedded breast cancer samples using IR imaging
US11591640B2 (en) Photonic resonator absorption microscopy (PRAM) for digital resolution biomolecular diagnostics
Donfack et al. Micro Raman spectroscopy for monitoring alterations between human skin keratinocytes HaCaT and their tumorigenic derivatives A5RT3—toward a Raman characterization of a skin carcinoma model

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 2414289

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2001949598

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10331678

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001949598

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2001949598

Country of ref document: EP