WO2002000965A1 - Corrosion protective agent - Google Patents

Corrosion protective agent Download PDF

Info

Publication number
WO2002000965A1
WO2002000965A1 PCT/JP2001/005504 JP0105504W WO0200965A1 WO 2002000965 A1 WO2002000965 A1 WO 2002000965A1 JP 0105504 W JP0105504 W JP 0105504W WO 0200965 A1 WO0200965 A1 WO 0200965A1
Authority
WO
WIPO (PCT)
Prior art keywords
anticorrosion
copper
metal film
anticorrosive
film
Prior art date
Application number
PCT/JP2001/005504
Other languages
French (fr)
Japanese (ja)
Inventor
Corporation Nec
Original Assignee
Koito, Tatsuya
Hirano, Keiji
Aoki, Hidemitsu
Tomimori, Hiroaki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koito, Tatsuya, Hirano, Keiji, Aoki, Hidemitsu, Tomimori, Hiroaki filed Critical Koito, Tatsuya
Publication of WO2002000965A1 publication Critical patent/WO2002000965A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom

Definitions

  • the present invention relates to an anticorrosion agent for preventing corrosion of a metal film formed on a semiconductor wafer, and more particularly to an anticorrosion agent for preventing corrosion of corrosive metals such as copper formed on a semiconductor wafer. .
  • a metal film that has been patterned into a predetermined shape is formed on a semiconductor wafer, and wirings and connection plugs are formed.
  • anticorrosion technology for preventing corrosion of the metal film and preventing an increase in interconnect resistance is important.
  • copper has been widely used as a constituent material of wiring and connection plugs from the viewpoint of achieving high-speed operation of devices, and the demand for corrosion prevention of metal films has become more severe than ever. I have. This is because copper has excellent properties such as excellent electrification-migration resistance and low resistance, but easily oxidizes and etches, and is easily corroded.
  • An example of a process in which corrosion prevention of a metal film is important is a stripping process using a resist stripper.
  • a resist stripper When forming through-holes on metal wiring, it is necessary to form a hole by dry etching, and then remove and remove the resist residue and etching residue. Is an important issue. For this reason, it is widely practiced to add an anticorrosive to the resist stripping solution to prevent corrosion of metal wiring.
  • aromatic hydroxy compounds such as hydroxybenzoic acid, organic compounds containing a carboxyl group such as acetic acid, cunic acid, and succinic acid, and benzotriazole (BTA) have been used.
  • Japanese Unexamined Patent Publication No. Hei 8-333495) Japanese Unexamined Patent Publication No. Hei 8-333495.
  • the damascene method In the damascene method, first, a wiring groove is formed in the insulating film 3 (FIG. 3 (a)), and then a non-metal film 4 is formed on the entire surface. Next, after a copper film 5 is formed on the entire surface so as to fill the wiring groove (FIG.
  • Dating is a phenomenon in which the center of the surface of the copper film 5 is dented as shown in FIG. This is caused by the fact that the polishing rate of the copper film 5 is much higher than the polishing rate of the non-metal film 4.
  • various problems such as a decrease in the cross-sectional area of the wiring and a local increase in the resistance are caused.
  • Erosion is a phenomenon in which the CMP progresses excessively in the dense wiring area, and the surface of the dense wiring area is dented as shown in Fig. 3 (d).
  • the slit between the copper film and the barrier metal film refers to a slit as shown in FIG. 4 generated in the CMP by a kind of battery effect. The occurrence of such a slit increases the wiring resistance and causes a subsequent film formation failure.
  • the adhesion of copper polished by CMP to wafers, etc. means that copper ions generated during CMP accumulate on the polishing pad and re-adhere on the A-side, deteriorating the flatness of the A-side. Or cause an electrical short circuit. This problem is described in, for example, JP-A-10-116804.
  • CMP requires not only metal quality degradation due to corrosion but also metal corrosion protection for process reasons.
  • traditional CMP mainly W
  • BTA and its derivatives are difficult to be decomposed by living organisms, and there is a problem that it is difficult to treat wastewater containing them.
  • biological treatment Organic wastewater generated from semiconductor manufacturing plants is usually subjected to biological treatment (hereinafter referred to as “biological treatment”), decomposed, and released.
  • biological treatment for substances that cannot be treated by biological treatment, other It is desirable to treat by means or to replace with other biodegradable chemicals.
  • the above-mentioned BTA and its derivatives are extremely difficult to decompose by biological treatment. For the above reasons, factories that use chemicals containing BTAs not only pose environmental risks to the treatment of their waste liquids and wastewater, but also have to rely on treatment methods other than biodegradation treatment, which are costly and laborious. It was not possible to get it.
  • an aromatic hydroxy compound or an organic conjugate containing a ruboxyl group was sometimes used as an anticorrosive agent.
  • it is more biodegradable than BTAs.
  • BTAs are mainly for the purpose of preventing corrosion of wiring materials made of aluminum-copper alloy, they do not have sufficient anticorrosion action against easily corrosive metals such as copper, and are subject to severe conditions such as CMP. It was difficult to use it as an anticorrosive for use in steels.
  • Japanese Patent Application Laid-Open No. 9-291381 discloses a water-soluble antibacterial agent.
  • urea condensates isocyanuric acid, hydantoin, uric acid, triscarboxymethyl isocyanuric acid, and triscarboxyethyl isocyanuric acid are exemplified.
  • this technology is aimed at preventing metal buckling during metal processing such as cutting, polishing, and plastic processing, and in the storage of such metal.
  • Anti-corrosion is to prevent the progress of metal oxidation
  • anti-corrosion in the present invention is to prevent corrosion of the metal film formed on the semiconductor layer. Specifically, it is intended to prevent a metal such as copper from being dissolved by a resist stripping solution, various cleaning solutions, a CMP slurry, or the like, or from being altered by forming a complex or the like.
  • the treatment with the P-matrix agent is usually performed in the air to form a protective layer made of a protective agent on an oxide film present on the metal surface
  • the present invention provides "Corrosion protection” is to form a protective layer by applying an anticorrosive agent to a clean metal surface that has not been oxidized. Even if the surface of the metal is slightly oxidized (when the surface is slightly oxidized), the metal B-diameter formed on the semiconductor wafer has various problems such as increased resistance and poor adhesion to the film formed thereon. Problems arise.
  • the anticorrosive agent of the present invention forms a dense protective film on the surface of the metal film, substantially completely suppresses oxidation of the metal film, and dissolves the metal film in a resist stripping solution or various cleaning solutions. It is necessary to effectively prevent the formation of That is, “corrosion protection” in the present invention requires a higher level of metal film protection than protection. Furthermore, as will be described later, anticorrosives used for preventing corrosion of a metal film formed on a semiconductor wafer need to have various characteristics, unlike anticorrosives for general metal members. . As described above, in designing the anticorrosive agent of the present invention used in the manufacturing process of a semiconductor device, it is necessary to study from a viewpoint different from that of general metal. Disclosure of the invention
  • the present invention has been made in view of the above circumstances, has an excellent anticorrosion performance for effectively preventing corrosion of easily corrodable metals such as copper, has excellent product safety, and further has a decomposition treatment by living organisms. It is an object of the present invention to provide an anticorrosive agent that has good decomposability and that can be used.
  • an anticorrosion agent for preventing corrosion of a metal film formed on a semiconductor wafer, which contains a heterocyclic compound having a six-membered ring containing a nitrogen atom as an anticorrosion component.
  • An anticorrosive is provided.
  • an anticorrosion agent for preventing corrosion of a metal film formed on a semiconductor wafer, wherein
  • the present invention provides an anticorrosive comprising a heterocyclic compound having a 5- or 6-membered heterocyclic ring containing the following atomic group.
  • an anticorrosion agent for preventing corrosion of a metal film formed on a semiconductor element comprising purine or a derivative thereof as an anticorrosion component. Is provided.
  • an anticorrosion solution obtained by dissolving the anticorrosion agent in water or a water-soluble organic solvent.
  • an anticorrosion treatment solution for use in a semiconductor way, wherein the anticorrosion treatment solution is a corrosion-resistant treatment solution for a metal film formed thereon, the anticorrosion treatment solution comprising the anticorrosive agent.
  • a storage solution for storing a semiconductor wafer having a metal film formed on a surface thereof, wherein the storage solution contains the anticorrosive agent.
  • a metal film is formed on a semiconductor wafer, a part of the metal film is chemically and mechanically polished, and the surface of the semiconductor wafer is cleaned using a cleaning liquid.
  • the present invention provides an anticorrosion treatment method comprising performing an anticorrosion treatment on the metal film by using the method.
  • the present invention uses a heterocyclic compound having a specific structure as described above as an anticorrosive Since it is used, a dense protective layer is formed on the surface of the metal film, and the surface of the metal film can be kept moderately hydrophobic, and exhibits excellent anticorrosion performance. In addition to being excellent in safety, it is possible to decompose by living organisms and easily perform wastewater treatment.
  • the anticorrosive in the present invention is used for the purpose of preventing the corrosion of a metal film formed on a semiconductor wafer, it is necessary to have various properties unlike the anticorrosive for general metal members.
  • the post-corrosion treatment be not adversely affected.
  • an anticorrosive is left on the surface of a metal film and an insulating film or other metal film is formed thereon, the device performance may be adversely affected, such as an increase in resistance and film peeling. Therefore, select an anticorrosion agent that does not adversely affect the element performance even if it remains, or select an anticorrosion agent that desorbs from the metal film surface at the stage after the anticorrosion treatment and before moving to the next process It is desirable to do so.
  • the anticorrosive of the present invention has the above properties. That is, the anticorrosive contained in the release agent composition of the present invention exhibits strong release performance even in the presence of other chemical substances. It does not damage the substrate or other films. In addition, the anticorrosive attached to the metal film is quickly eliminated by preheating for film formation. Furthermore, it is excellent in safety and biodegradability. Therefore, the configuration is particularly suitable for preventing corrosion of the metal film formed on the semiconductor wafer.
  • FIG. 1 is a process sectional view for explaining a copper wiring forming process by a damascene method.
  • FIG. 2 is a schematic configuration diagram of a chemical mechanical polishing apparatus.
  • FIG. 4 is a diagram showing a cross section of a copper wiring in which dishing and slit have occurred.
  • FIG. 5 is a view for explaining a step after CMP.
  • FIG. 6 is a view for explaining a process after the CMP.
  • FIG. 7 is a diagram for explaining a process using the anticorrosive agent according to the present invention.
  • FIG. 8 is a diagram for explaining a process using the anticorrosive agent according to the present invention.
  • FIG. 9 is a process cross-sectional view for explaining the through-hole forming process.
  • FIG. 10 is a process cross-sectional view for explaining the through-hole forming process.
  • FIG. 11 is a graph showing the effect of uric acid concentration on the etching rate of a copper film.
  • FIG. 12 is a diagram showing a change in the electron migration lifetime due to the difference in the anticorrosion treatment.
  • the component (a) in the present invention may contain a heterocyclic compound having a six-membered ring containing a nitrogen atom in the molecule.
  • a heterocyclic compound exhibits a good anticorrosive action and a good biodegradability due to the chelating action of the nitrogen atom in the complex.
  • each atom of C, N, 0, and H is on the same plane
  • Lactam type Lactim type In the above formula, a conjugate system spreads over each of the N, C, and 0 atoms, and electrons are delocalized in this region. The electrons in this conjugated system are liable to interact with the free orbitals on the metal surface, and are considered to form stable chelate bonds.
  • the above-mentioned atomic group is contained in the cyclic portion of the 5- or 6-membered heterocyclic ring, the steric hindrance is low, and the above-mentioned atomic group is easily accessible to metal atoms. Conceivable.
  • heterocyclic compound having a 5- or 6-membered heterocyclic ring containing an amide unit or an iminohydrin unit in the molecule has a remarkable anticorrosive action for the above-mentioned reason.
  • the reason for the good biodegradability is presumed to be related to the high biocompatibility of the amide bond.
  • Azaguanine such as 8-azaguanine and derivatives thereof
  • Pteridine such as pteridine, pterin, 2-amino-4,6-dihydroxypteridine, 2-amino-1,4,7-dihydroxypteridine, 2-amino-4,6,7-trihydroxypteridine, and derivatives thereof;
  • Cyanuric acid isocyanuric acid, triscarboxymethylcyanuric acid, triscarboxycylcyanuric acid, triscarboxymethylisocyanuric acid, triscarboxyxyl isocyanuric acid, etc.
  • Conductor ;
  • Hydantoin allantoin and derivatives thereof, such as hydantoin, dimethylhydantoin, and allantoin (5-ureidohydantoin);
  • Nicotinic acid such as isonicotinic acid and citrazinic acid and derivatives thereof; and the like, and these can be used alone or in combination of two or more.
  • purine and its derivatives, and nicotinic acid and their derivatives are preferred and used. It is not only excellent in biodegradability, but also has an excellent anticorrosion effect on metals such as copper.
  • pudding and its derivatives exhibit an excellent anticorrosion effect, do not damage the semiconductor substrate and various films formed thereon, and do not adversely affect the processes after the peeling treatment. Therefore, it is preferably used.
  • the compound represented by the following general formula (1) particularly uric acid, is a highly safe substance that is widely distributed in nature, is particularly excellent in biodegradability, and is extremely excellent in anticorrosion. Used.
  • (,,. ⁇ 2 and ⁇ 3 are each independently a hydrogen atom, a hydroxyl group, a carbon atom. Represents a alkyl group or an amino group. )
  • At least one of A 2 and A 3 is a hydroxyl group (in this case, a structure having an amide bond in the heterocyclic ring is obtained, and the anticorrosive action and the biodegradability are particularly improved.
  • uric acid has the following resonance structure.
  • the anticorrosive of the present invention can be used by dispersing it in water or a water-soluble organic solvent described below. In this case, if the alkanolamines are further added, the solubility of the anticorrosive can be improved. If an alkanolamine having good biodegradability is selected, an anticorrosive solution having particularly excellent safety and biodegradability can be obtained.
  • alkanolamines include monoethanolamine, jetanolamine, N-ethylaminoethanol, N-methylaminoethanol, N-methylethylethanol, dimethylaminoethanol, 2- (2-aminoethoxyamine).
  • Ethanol, 1-amino-12-propanol, triethanolamine, monopropanolamine, dibutanolamine and the like are exemplified. Of these, monoethanolamine and N-methylaminoethanol are particularly preferred. These compounds may be used alone or in combination of two or more.
  • the mixing ratio of the anticorrosive component (hereinafter, referred to as component (a)) and the alkanolamines (hereinafter, referred to as component (b)) in the anticorrosive agent can be set arbitrarily.
  • the amount of the component (b) relative to 100% by mass of the component is preferably 0.1 to 1000% by mass, and more preferably 1 to 100% by mass. With such a mixing ratio, it is possible to exhibit higher anticorrosion performance.
  • a copper alloy containing copper as a main component is an alloy containing 90% by mass or more of copper, such as Mg, Sc, Zr, Hf, Nb, Ta, Cr, or Mo.
  • a copper alloy containing a different element improve the high-speed operability of the device with low resistance, but are liable to cause corrosion such as dissolution and alteration by a chemical solution, so that the application effects of the present invention are remarkable.
  • the anticorrosion solution according to the present invention is obtained by dissolving the anticorrosion agent in water and / or a water-soluble organic solvent.
  • water-soluble organic solvent examples include sulfoxides such as dimethyl sulfoxide; sulfones such as dimethyl sulfone, getyl sulfone, bis (2-hydroxyethyl) sulfone and tetramethylene sulfone; N, N-dimethylformamide; Amides such as N-methylformamide, N, N-dimethylacetamide, N-methylacetamide, N, N-getylacetamide; N-methyl-2-pyrrolidone, N-ethyl-12-pyrrolidone Lactams such as N-propyl-12-pyrrolidone, N-hydroxymethyl-12-pyrrolidone, N-hydroxyethyl-12-pyridone; 1,3-dimethyl-2-imidazolidinone; Imidazolidinones such as, 3-Jethyl-2-imidazolidinone and 1,3-diisopropyl-l2-imidazolidinone; r-
  • Alkanolamines may be added to the anticorrosive liquid according to the present invention.
  • the solubility of the anticorrosion component (component (a)) can be increased, and the anticorrosion effect is more remarkably exhibited.
  • the concentration of the components (a) and (b) in the anticorrosive solution according to the present invention is appropriately set according to the intended use and purpose. For example, the following is preferable. That is, the amount of the component (a) is W
  • the lower limit is preferably 0.0001% by mass, particularly preferably 0.01% by mass.
  • the upper limit is not particularly limited, but is, for example, about 20% by mass due to solubility.
  • the upper limit of the amount of component (b) is preferably 20% by mass / 0 , particularly preferably 10% by mass / 0 .
  • the lower limit is preferably 0.0001% by mass, and particularly preferably 0.001% by mass. With such a blending amount, the anticorrosion performance can be further improved.
  • the anticorrosive agent of the present invention is used for anticorrosion of metal films (particularly copper films) formed on semiconductor wafers.
  • anticorrosion treatment solutions used for CMP slurry or after CMP, and storage of wafers liquid, or, c present invention can be applied to the stripping solution of Regis Bok, etc., a metal film, particularly when applied to a semiconductor ⁇ E eighteen of CM P processes with an exposed surface of the copper film, more effective It is.
  • the metal corrosive slurry is used, so that the corrosion of the metal is apt to progress, (i) dishing erosion occurs, and (ii) the slit between the metal film and the barrier metal film.
  • the steel wiring forming process using CMP is performed through the steps shown in FIG.
  • a silicon oxide film 1, a silicon nitride film 2 and a silicon oxide film 3 are formed in this order on a silicon wafer (not shown), and then dry etching is performed.
  • a plurality of wiring grooves patterned into a predetermined shape are formed.
  • a barrier metal film 4 is deposited on the entire surface by a sputtering method.
  • the material of Roh 1 barrier metal film Ta, TaN, T i, Ding i N, W, WN, can be used WS i N, etc., the thickness is usually about 10 to 100 nm.
  • a copper film 5 is formed on the barrier metal film 4 (FIG. 1 (b)).
  • the copper film 5 can be formed by a plating method, a CVD method, a sputtering method, or the like.
  • the surface of the copper film 5 is polished by the CMP method.
  • CMP usually uses a slurry consisting mainly of an oxidizing agent and abrasive grains, and etches the copper surface by the chemical action of the oxidizing agent.
  • the surface of the oxide film is mechanically removed by abrasive grains.
  • a single slurry for CMP may be used, but two or more slurries may be used from the viewpoint of preventing dicing and erosion. Two types of slurries for polishing can be used.
  • the anticorrosive agent of the present invention When applied to a slurry for CMP, it may be used in any stage of the slurry.However, as shown in Fig. It is effective. This is because the effect of preventing corrosion of the copper film 5 constituting the wiring portion and the effect of suppressing dating / erosion are further remarkable.
  • CMP ends when the barrier metal film 4 is removed and the torque changes (FIG. 1 (d)). Thereafter, post-cleaning is performed as necessary, and then rinsing is performed with a rinsing liquid containing pure water as a main component. Then, the copper wiring forming process is completed.
  • CMP can be performed using, for example, a chemical mechanical polishing apparatus as shown in FIG.
  • the wafer 21 on which an insulating film, a copper-based metal film, or the like is formed is placed on a wafer carrier 22 of a spindle.
  • the surface of the wafer 21 is brought into contact with a polishing pad 24 stuck on a rotating plate (platen) 23, and the slurry for CMP is supplied to the surface of the polishing pad 24 from a slurry supply port 25 for CMP.
  • the pad conditioner 26 is brought into contact with the surface of the polishing pad 24 to condition the polishing pad surface.
  • the slurry for CMP may be supplied from the rotating plate 23 to the surface of the polishing pad 24.
  • the present invention can be applied in post-processing after CMP.
  • Figure 5 shows an example of post-processing after CMP.
  • CMP once store the wafer in the storage solution, perform post-CMP cleaning to remove abrasive particles and the like. Then, if necessary, add an anticorrosive Perform anti-corrosion treatment, and finally rinse with a rinsing liquid containing pure water as a main component.
  • the anticorrosive agent according to the present invention is added to the above-mentioned storage solution, anticorrosion treatment solution, and rinsing solution, there is no risk of waste liquid treatment, and there is a risk of working on the safety of chemical substances. Therefore, it is possible to suitably prevent corrosion of the copper film formed on the substrate.
  • the slurry for chemical mechanical polishing of the present invention contains the anticorrosive agent according to the present invention described above.
  • the content of the anticorrosive is preferably 0.01% by mass or more, more preferably 0.1% by mass or more based on the total amount of the slurry, from the viewpoint of obtaining a sufficient anticorrosive effect. From the viewpoint of adjusting the polishing rate to an appropriate value, the content is preferably 30% by mass or less, more preferably 20% by mass or less. If the content is too large, the anticorrosion effect becomes too large, and the polishing rate of copper is too low, so that it may take time for CMP.
  • the slurry for chemical mechanical polishing of the present invention preferably contains a polishing material, an oxidizing agent, and water in addition to the above anticorrosive agent, and may further contain an organic acid or the like as appropriate. .
  • abrasives examples include alumina such as mono-alumina, 0-alumina, and 5-alumina, silica such as fumed silica and colloidal silica, titania, zirconia, germania, ceria, and abrasive grains of these metal oxides.
  • alumina such as mono-alumina, 0-alumina, and 5-alumina
  • silica such as fumed silica and colloidal silica
  • titania, zirconia, germania, ceria examples of abrasives.
  • abrasives include alumina such as mono-alumina, 0-alumina, and 5-alumina, silica such as fumed silica and colloidal silica, titania, zirconia, germania, ceria, and abrasive grains of these metal oxides.
  • abrasives include alumina such as mono-alumina, 0-alumina, and 5-alumina, silica such as fumed silica and coll
  • the content of the abrasive in the CMP slurry is appropriately set in consideration of the polishing efficiency, the polishing accuracy, and the like, and is preferably 0.1 to 50% by mass, and more preferably ⁇ 2%, based on the total amount of the slurry composition. To 30% by mass.
  • the oxidizing agent can be appropriately selected from known water-soluble oxidizing agents in consideration of the type of the conductive metal film, polishing accuracy, and polishing efficiency.
  • hydrogen peroxide H 2 ⁇ 2
  • do not cause heavy metal ion contamination H 2 ⁇ 2
  • hypochlorous acid HC 10
  • perchloric acid examples include nitric acid, ozone water, and organic peroxides such as peracetic acid and nitrobenzene. Among them, it does not contain a metal component, not generate a harmful byproduct H 2 0 2 is preferred arbitrariness.
  • the amount of the oxidizing agent is preferably at least 0.01% by mass, more preferably at least 0.05% by mass, based on the total amount of the CMP slurry, from the viewpoint of obtaining a sufficient effect of addition. From the viewpoint of suppressing dating and adjusting the polishing rate to an appropriate level, the amount is preferably 15% by mass or less, more preferably 10% by mass or less.
  • a solution containing an oxidizing agent having a predetermined concentration and a solution containing an abrasive are separately adjusted, and immediately before use. May be mixed.
  • the organic acid is added to promote the oxidation of the oxidizing agent and perform stable polishing.
  • the organic acid one having a function as a proton donor is used, and diamino carboxylic acid is preferably used.
  • carboxylic acids include citric acid, formic acid, acetic acid, propyl acetic acid, butyric acid, valeric acid, acrylic acid, lactic acid, succinic acid, nicotinic acid, oxalic acid, malonic acid, tartaric acid, malic acid, Examples include glutaric acid, cunic acid, maleic acid, and salts thereof. '
  • amino acids include, for example, L-glucamic acid, D-glucamic acid, L-glucamic acid monohydrochloride, L-glucamic acid sodium monohydrate, L-glutamine, glutathione, glycylglycine, DL-alanine, L-alanine, -alanine, D-alanine, ⁇ -peranine, 7 "-aminobutyric acid, etc.-aminocaproic acid, L-arginine monohydrochloride Salt, L-aspartic acid, L-aspartic acid monohydrate, L-aspartic acid potassium, L-aspartate calcium trihydrate, D-aspartic acid, L-titrulline, L-tryptophan, L-threonine, L-arginine, glycine, L-cystine, L-cystine, L-cystine hydrochloride [7] hydrate, L-proximal xyproline, shi-isol
  • the content of the organic acid is preferably at least 0.01% by mass, more preferably at least 0.05% by mass, based on the total amount of the slurry for CMP, from the viewpoint of obtaining a sufficient effect of addition as a proton donor.
  • the content is preferably 5% by mass or less, more preferably 3% by mass or less.
  • the CMP slurry of the present invention may contain various additives such as a dispersant, a buffer, a viscosity modifier and the like, which are widely and generally added to the CMP slurry, as long as the properties are not impaired. .
  • the slurry for CMP according to the present invention can be produced by using a general method for producing a free abrasive polishing slurry composition. That is, an appropriate amount of abrasive particles is mixed with the dispersion medium. If necessary, mix the appropriate amount of protective agent. In this state, air is strongly adsorbed on the surface of the abrasive particles, so that the abrasive particles have poor wettability and exist in an aggregated state. Therefore, in order to make the aggregated abrasive particles into primary particles, the particles are dispersed.
  • a general dispersing method and dispersing apparatus can be used. Specifically, it can be carried out by a known method using, for example, an ultrasonic disperser, various types of bead mill dispersers, kneaders, ball mills and the like.
  • the storage solution of the present invention is preferably an aqueous solution in which the anticorrosive agent of the present invention is dissolved in water.
  • the lower limit of the concentration of the anticorrosive agent relative to the whole storage solution is preferably ⁇ 0.01% by mass, more preferably 0.01% by mass or more. If the concentration of the anticorrosive is too low, a sufficient anticorrosive effect may not be obtained. Although there is no particular upper limit on the concentration of the anticorrosive agent, a sufficient anticorrosive effect can be obtained, for example, at 20% by mass or less. However, in some cases, the anticorrosive agent of the present invention does not have sufficient anticorrosive properties simply by adding it to water.c Therefore, by adding alkanolamine and adjusting the pH to alkaline. Therefore, it is necessary to increase the solubility of purines and purine derivatives, and adjust the concentration to obtain sufficient anticorrosion performance.
  • the storage solution according to the present invention can be used not only for storage after CMP but also for various processes.
  • the anticorrosion treatment liquid of the present invention is preferably an aqueous solution in which the anticorrosive agent of the present invention is dissolved in water, like the above-mentioned storage solution. Other additives, water-soluble organic solvents, and the like may be appropriately added to this aqueous solution.
  • the lower limit of the concentration of the anticorrosive in the whole storage solution is preferably 0.001% by mass, more preferably 0.01% by mass or more.
  • Anticorrosive concentration If it is too low, a sufficient anticorrosion effect may not be obtained. Although there is no particular upper limit on the concentration of the anticorrosive, a sufficient anticorrosive effect can be obtained, for example, at 20 mass% or less.
  • the anticorrosion treatment solution of the present invention can be applied to the anticorrosion treatment step shown in FIG. 5 or to a pure water rinsing step.
  • the anticorrosion treatment liquid preferably has a configuration in which the anticorrosion agent of the present invention is dissolved in pure water in the above concentration range.
  • the anticorrosion treatment solution of the present invention can be used not only in the anticorrosion treatment after CMP but also in various steps.
  • the above-mentioned slurry for chemical mechanical polishing, anticorrosion treatment solution, and storage solution are used for treating semiconductors A having a metal film-exposed surface, and the metal film contains a copper film or copper as a main component.
  • the effect of the present invention is more remarkably exhibited when the copper alloy film is
  • the storage solution and anticorrosion solution of the present invention may optionally contain additives, organic solvents and the like.
  • additives organic solvents and the like.
  • an acid or base for adjusting the pH may be added to improve the solubility of the anticorrosive, and a water-soluble organic compound miscible with water or other compounding components may be added to further improve the anticorrosion performance.
  • Solvents can be used.
  • the anticorrosive according to the present invention can also be applied to a stripping solution such as a resist.
  • a stripping solution such as a resist.
  • alkanoamine examples include monoethanolamine, jetano-lamine, N-ethylaminoethanol, N-methylaminoethanol, N-methylgenolamine, dimethylaminoethanol, and 2- (2-aminoethylamine.
  • Toxi Ethanol, 1-amino-2-propanol, triethanolamine, monopropanolamine, dibutanolamine and the like are exemplified. Of these, monoethanolamine and N-methylaminoethanol are particularly preferred.
  • hydrofluoric acid salt can be used as the release component. Specifically, fluoride ammonium or the like is preferably used. When hydrofluoric acid is used, deposits and the like adhering to the resist side wall can be removed.
  • the upper limit of the release component in the release solution is preferably 95% by mass, and particularly preferably 85% by mass.
  • the lower limit is preferably 1% by mass, and particularly preferably 10% by mass.
  • the upper limit of the proportion of water in the stripping solution is preferably 90% by mass, particularly 80% by mass. / 0 is preferred.
  • the lower limit is preferably 1% by mass, and particularly preferably 5% by mass.
  • the stripping solution using the anticorrosive of the present invention may contain a water-soluble organic solvent.
  • a water-soluble organic solvent the same ones as described above can be used.
  • the upper limit of the amount of the water-soluble raw organic solvent is preferably 80% by mass, particularly preferably 70% by mass.
  • the lower limit is preferably 5% by mass, particularly preferably 10% by mass.
  • the above-mentioned stripping liquid is used to turn an unnecessary object on the semiconductor substrate into an object to be stripped.
  • the unnecessary substances on the semiconductor substrate refer to various unnecessary substances generated during a semiconductor device manufacturing process, and include a resist film, an etching residue after dry etching, and a chemically modified resist film. In particular, it is more effective when the object to be peeled is a resist film and / or an etching residue on the semiconductor substrate including the metal film exposed surface. Further, when the metal film is a copper film, the anticorrosive action of the anticorrosive agent of the present invention is more effectively exhibited.o
  • the above-mentioned stripping solution can be used for stripping various resists, and should be applied to KrF resists made of aromatic compounds and ArF resists such as alicyclic acryl polymers.
  • a positive resist containing a naphthoquinonediazide compound and a novolak resin (ii) a compound that generates an acid upon exposure, a compound that is decomposed by an acid to increase the solubility in an aqueous solution of an aqueous solution, and (Iiii) a compound capable of generating an acid upon exposure, and a positive resist containing a soluble resin having a group which is decomposed by the acid and increases the solubility in an aqueous solution of an aqueous solution.
  • an interlayer connection plug on a copper wiring is formed by a process.
  • a silicon oxide film 1, a silicon nitride film 2, and a silicon oxide film 3 are formed on a semiconductor substrate (not shown) on which elements such as transistors are formed.
  • a copper interconnect composed of a barrier metal film 4 and a copper film 5 is formed by a known damascene process using chemical polishing (CMP), and a silicon nitride film 6 having a thickness of about 50 to 100 nm is formed thereon.
  • CMP chemical polishing
  • an interlayer insulating film (silicon oxide film or low dielectric constant film) 7 having a thickness of about 600 to 1 OOO nm is formed.
  • the thickness of the copper film 5 is arbitrarily selected, but is preferably, for example, 350 nm or less from the viewpoint of reducing the parasitic capacitance between adjacent wirings.
  • the thickness of the copper wiring is reduced, the thickness of the corroded layer relative to the entire copper wiring layer becomes relatively large, and an increase in wiring resistance due to corrosion of the copper surface becomes a particular problem.
  • the use of the stripping solution can reduce the film thickness while solving such a problem.
  • the thickness of the silicon nitride film 6 is set to about 50 to 100 nm, but it may be made thicker to enhance the function as an etching stopper film.
  • a resist film 8 patterned into a predetermined shape is provided on the interlayer insulating film 7 (FIG. 9 (b)).
  • the interlayer insulating film 7 is dry-etched using the resist film 8 as a mask until the silicon nitride film 6 is exposed, thereby forming a through hole 10 (FIG. 9 (c)).
  • the etching residue 11 adheres to the inner wall of the through hole 10.
  • the opening diameter of the through hole is, for example, about 0.2 m.
  • As an etching gas it is preferable to use a gas that can etch an interlayer insulating film faster than a silicon nitride film.
  • the silicon nitride film 6 also has a function of preventing diffusion of copper and a function as an etching stop film. However, as shown in FIG.
  • the silicon nitride film 6 is controlled on the silicon nitride film 6.
  • dry etching cannot be stopped well. This is for the following reasons.
  • various through holes are generally formed on the semiconductor wafer.
  • etching proceeds slowly in a hole with a small opening diameter due to the micro-loading effect. For this reason, it is necessary to provide a certain amount of etching time for the etching for forming the through-hole, and as a result, the silicon nitride film 6 is etched in some of the through-holes and the copper film 5 The part will be exposed.
  • the silicon nitride film 6 is formed thick in the step shown in FIG. 9 (a), it is possible to prevent the copper film 5 from being exposed.However, in this case, the capacitance between adjacent copper wirings increases, and the semiconductor element The disadvantage is that the high-speed operation is hindered.
  • FIG. 10 (a) shows a state in which the resist film and the etching residue 11 can be effectively removed without damaging the copper film 5 by using the liquid.
  • the etching of the silicon nitride film 6 is performed by changing the above-mentioned etching and etching gas.
  • the etching residue 12 adheres to the inner wall of the through hole 10 (FIG. 10 (b)).
  • a stripping treatment is performed again using the stripping solution described above.
  • the copper film 5 is exposed at the bottom of the through hole 10.
  • the stripping solution containing the anticorrosive agent of the present invention the copper film 5 is etched without damaging the copper film 5.
  • the residue 12 can be removed (Fig. 10 (c)).
  • the amount of each component is based on the total amount of the anticorrosive solution and the stripping solution unless otherwise specified.
  • FIG. 7 The state corresponding to this step is shown in FIGS. 8 (a) and 8 (b).
  • a silicon nitride film 80 and a silicon oxide film 82 were formed in this order on a silicon wafer, and then patterned into a predetermined shape by dry etching. A plurality of wiring grooves were formed.
  • a barrier metal film 84 of TaN was deposited on the entire surface by a sputtering method, a seed Cu 85 and a plating Cu 86 were formed. Subsequently, the wafer surface was polished by the CMP method to form a copper wiring as shown in FIG. 8 (b).
  • the scrub cleaning step 72 was performed c, that is, the brush was moved while applying a cleaning liquid composed of electrolytic ionized water to the rotating brush to remove particle contamination.
  • a spin cleaning step 74 was performed. In this process, an aqueous solution of oxalic acid was sprayed as a cleaning solution while rotating the semiconductor wafer to remove metal contamination, that is, copper oxide on the surface, and rinsed with pure water.
  • an anticorrosion treatment step 75 was performed. This step is performed continuously after the spin cleaning step 74 so that the wafer surface does not come into contact with air. That is, the anticorrosion treatment is performed by spraying the anticorrosion treatment liquid without drying the surface of the wafer. As a result, oxidation of the metal film (copper film) on the wafer surface can be prevented, and an anticorrosive can be attached to a clean metal surface that has not been oxidized.
  • the anticorrosion treatment was performed by spraying the treatment liquid onto the surface of the phenol while rotating the phenol at a predetermined number of rotations, similarly to the spin cleaning.
  • anticorrosive treating solution used c using an anticorrosive treatment liquid containing an anticorrosive agent of the present invention in anticorrosion treatment step 7 5 has the following composition.
  • the anticorrosion solution was sprayed on the wafer surface at a flow rate of 1 liter / min for 10 seconds while rotating the semiconductor wafer to prevent corrosion of the Cu film.
  • a spin rinse-drying step 76 the substrate was rinsed with pure water for 15 seconds, and then dried.
  • a film forming step 78 FIG. 7
  • a silicon nitride film 88 was formed as shown in FIG. 8C, and a silicon oxide film 89 was formed thereon.
  • an upper layer wiring was formed to complete the semiconductor device.
  • the obtained semiconductor device showed the designed performance.
  • the adhesion at the Cu / silicon nitride film interface was evaluated to evaluate the degree of deterioration of the Cu surface.
  • the evaluation was performed by laying out lines in a grid pattern at a pitch of 1 mm on the silicon nitride film, then attaching an adhesive tape on the silicon nitride film, peeling it off, and peeling it out of the 100 grids. This was done by counting the number of grids. Excessive peeling ⁇ If the interface adhesion is poor, the Cu surface It is considered that the corrosion is progressing. Table 2 shows the evaluation results.
  • the copper wiring was formed by forming a copper film by plating and then performing CMP. Next, steps from scrub cleaning 72 to interlayer film formation 79 were performed according to the procedure shown in FIG. Except for the composition of the anticorrosion treatment solution, the same procedure was performed as in Example 1. Next, holes were formed in the Si 3 N 4 film and interlayer film, a plug metal was buried inside, and a pad was formed to connect to this plug.Conducting portions were formed at both ends of the wiring. .
  • the biodegradability of the test substances shown in Table 3 was evaluated by a biodegradability test method based on the MITI method. Activated sludge was inoculated with the test substance in an inorganic medium so that the concentration of the test substance became 1 OOmgZl.], Cultured at 25 ° C, and the oxygen consumption was measured using a closed system oxygen consumption measuring device. In addition, the residual amount of the test substance was measured, the decomposition rate was determined from the oxygen consumption, and the biodegradability was determined according to the following evaluation criteria.
  • ⁇ ... Decomposition rate is 40% or more and less than 60%
  • ⁇ ⁇ -'Decomposition rate is 10% or more and less than 40%
  • Table 4 shows the evaluation results.
  • the release agent composition according to the present invention was applied to a process of forming a through hole on a copper wiring, and the releasability and corrosion resistance were evaluated.
  • the samples to be evaluated were prepared according to the same processes as those shown in Figs. 9 to 10 (c).
  • As the resist film material PEX4 (manufactured by Tokyo Ohka Kogyo Co., Ltd.), which is a positive resist material for KrF, was used.
  • the resist film was exposed through a mask pattern, and developed using an aqueous solution of tetramethylammonium hydroxide to obtain a resist pattern.
  • the interlayer insulating film was dry-etched until the silicon nitride film was exposed to form a through hole having an opening diameter of 0.2 ⁇ m.
  • an etching gas a full-year carbon-based gas was used. After the etching was completed, a part of the resist film was removed by oxygen plasma ashes, and then a release treatment was performed using a release agent composition shown in Table 5.1 of NO.
  • the etching gas was changed and the silicon nitride film was etched to expose the copper wiring at the bottom of the through hole.
  • the etching residue generated by this etching is For removal, the same release agent composition (N 0.1 in Table 5) as used in the above-described release treatment was used, and the release treatment was performed again.
  • the state of corrosion of the copper film surface was observed and evaluated according to the following four levels.
  • the state of the surface of the HSQ film when HSQ (hydrogensilsesquioxane) was used as the low dielectric constant film was observed, and evaluated according to the following four grades.
  • MSQ methyl silsesquioxane
  • the release agent composition of the present invention has excellent release performance and anticorrosion performance.
  • the present invention is applied to a single damascene process. W
  • the present invention can be applied to a so-called dual damascene process.
  • a silicon wafer having a copper film formed on the entire surface of the substrate was immersed in a predetermined stripper at 80 for 10 minutes.
  • the copper etching rate was measured from the thickness of the copper film before and after immersion.
  • the stripping solution used was of the following composition. In order to eliminate the effect of pH fluctuation due to the difference in the amount of uric acid added, 2N — Aqueous ammonia was added to control the pH to 11.
  • NMAE N-methylaminoethanol
  • the present embodiment is an example in which the release agent composition according to the present invention is applied to a process of forming a through hole on a copper wiring.
  • a peeling component ammonium fluoride having a strong peeling action was used. The process was almost the same as that in Example 5, but the thickness of the nitride film and the type of etching gas were slightly different, and the c evaluation results in which the deposit to be stripped was different from Example 5 are shown in the following table. The evaluation criteria for peelability and anticorrosion were the same as in Example 5. It was confirmed that those using uric acid exhibited the same peeling properties and anticorrosion properties as BTA derivatives. Table 6
  • the anticorrosive agent of the present invention contains specific components, so that corrosion of easily corrosive metals such as copper can be effectively prevented, and since it is highly safe, it is easy to handle. Since biological treatment is possible, wastewater treatment is also easy. Therefore, it can be suitably used for a manufacturing process of a semiconductor device provided with copper wiring.

Abstract

A corrosion protective agent for protecting the corrosion of a metal film formed on a semiconductor wafer, characterized in that it comprises a heterocyclic compound having a six-membered ring containing a nitrogen atom.

Description

明 細 書  Specification
防食剤 技術分野  Anticorrosive technology
本発明は、 半導体ゥエーハ上に形成された金属膜の腐食を防止する防食剤に関 し、 より詳しくは、 半導体ゥエーハ上に形成された銅等の腐食性金属の腐食を防 止する防食剤に関する。  The present invention relates to an anticorrosion agent for preventing corrosion of a metal film formed on a semiconductor wafer, and more particularly to an anticorrosion agent for preventing corrosion of corrosive metals such as copper formed on a semiconductor wafer. .
背景技術  Background art
半導体装置の製造プロセスにおいては、 半導体ゥエーハ上に所定の形状にバタ —ニングされた金属膜を形成し、 配線や接続プラグを形成する。 このような配線 や接続プラグの形成工程では、 金属膜の腐食を防止し、 配線抵抗の上昇等を防ぐ ための防食技術が重要となる。特に、 近年では、 素子の高速動作化を図る観点か ら配線や接続プラグの構成材料として銅が広く利用されるようになってきており、 金属膜の防食に対する要請は従来以上に厳しくなってきている。何故ならば銅は、 エレクト口マイグレーション耐性に優れ、 かつ、 低抵抗であるという優れた利点 を有するものの、 容易に酸化やエッチング等が起こり、 腐食しやすい性質を有し ているからである。  In a semiconductor device manufacturing process, a metal film that has been patterned into a predetermined shape is formed on a semiconductor wafer, and wirings and connection plugs are formed. In the process of forming such interconnects and connection plugs, anticorrosion technology for preventing corrosion of the metal film and preventing an increase in interconnect resistance is important. In particular, in recent years, copper has been widely used as a constituent material of wiring and connection plugs from the viewpoint of achieving high-speed operation of devices, and the demand for corrosion prevention of metal films has become more severe than ever. I have. This is because copper has excellent properties such as excellent electrification-migration resistance and low resistance, but easily oxidizes and etches, and is easily corroded.
金属膜の防食が重要となるプロセスの例として、 レジス卜剥離液による剥離処 理工程が挙げられる。金属配線上にスルーホールを形成する場合、 ドライエッチ ングによりホールを形成した後、 レジスト残渣やエッチング残渣を剥離除去する 工程が必要となるが、 この際、 剥離液による金属配線の腐食を防止することが重 要な課題となる。 このため、 レジス卜剥離液に防食剤を配合し、 金属配線の腐食 を防止することが広く行われている。 このような防食剤として、 従来、 ヒドロキ シ安息香酸等の芳香族ヒドロキシ化合物、 酢酸、 クェン酸、 コハク酸等のカルボ ' キシル基含有有機化合物、 ベンゾ卜リアゾール (B T A ) 類が使用されていた (特開平 8— 3 3 4 9 0 5号公報等) 。  An example of a process in which corrosion prevention of a metal film is important is a stripping process using a resist stripper. When forming through-holes on metal wiring, it is necessary to form a hole by dry etching, and then remove and remove the resist residue and etching residue. Is an important issue. For this reason, it is widely practiced to add an anticorrosive to the resist stripping solution to prevent corrosion of metal wiring. As such anticorrosives, aromatic hydroxy compounds such as hydroxybenzoic acid, organic compounds containing a carboxyl group such as acetic acid, cunic acid, and succinic acid, and benzotriazole (BTA) have been used. Japanese Unexamined Patent Publication No. Hei 8-333495).
また、 配線金属として銅を用いる場合に行われる化学的機械的研磨 (Chemical Mechanical Pol ishing: CMP) プロセスにおいては、 腐食による配線金属の品質 劣化だけでなく、 プロセス上の理由からも金属の防食が重要となる。配線金属と して銅を用いる場合、 ドライエッチング法による微細加工が困難であるため、通 常、 ダマシン法とよばれるプロセスにより配線のパターニングが行われる (図 3) 。 ダマシン法では、 まず絶縁膜 3中に配線溝を形成した後 (図 3 (a) ) 、 全面にノ リアメタル膜 4を形成する。 次いで配線溝を埋め込むように全面に銅膜 5を成膜した後 (図 3 (b) ) 、化学的機械的研磨 (以下 「CMP」 という) に より配線溝以外の領域に形成された銅膜 5を除去する。 このようにして配線溝に 銅が埋め込まれた形状の銅配線を形成される (図 3 (c)、 (d) ) 。 ここで、 CMP工程では腐食性のスラリ一が用いられるため銅の腐食が進行しやすいこと から、 銅の防食が重要となる。 くわえて、 CM Pプロセスにおいては、 (i)ディ ヅシングゃェロージョンの発生、 (i i )銅膜とバリアメタル膜との間のスリツ卜の 発生、 (iii)CMPにより研磨された銅の研磨パッドやゥェ一ハへの付着等、 C M Pプロセス特有の課題が生じるため、 これらを防止する観点からも銅の防食を 行うことが重要となる。 以下、 この点について説明する。 In addition, in the chemical mechanical polishing (CMP) process that is performed when copper is used as the wiring metal, not only is the quality of the wiring metal deteriorated due to corrosion, but also the corrosion prevention of the metal is required for process reasons. It becomes important. With wiring metal If copper is used, fine patterning by dry etching is difficult, so wiring is usually patterned by a process called the damascene method (Figure 3). In the damascene method, first, a wiring groove is formed in the insulating film 3 (FIG. 3 (a)), and then a non-metal film 4 is formed on the entire surface. Next, after a copper film 5 is formed on the entire surface so as to fill the wiring groove (FIG. 3 (b)), the copper film formed in a region other than the wiring groove by chemical mechanical polishing (hereinafter referred to as “CMP”). Remove 5 In this way, a copper wiring having a shape in which copper is embedded in the wiring groove is formed (FIGS. 3C and 3D). Here, corrosion prevention of copper is important because corrosive slurry is used in the CMP process, so that copper corrosion is likely to progress. In addition, in the CMP process, (i) generation of a discarding erosion, (ii) generation of a slit between a copper film and a barrier metal film, and (iii) a copper polishing pad polished by CMP. Problems specific to the CMP process, such as adhesion to wafers, occur, so it is important to prevent copper corrosion from the viewpoint of preventing these problems. Hereinafter, this point will be described.
デイツシングとは、 図 4のように、 銅膜 5の表面中央部が凹む現象をいう。 こ れは、 銅膜 5の研磨速度がノ リアメタル膜 4の研磨速度に比べて格段に大きいこ とに起因して生じるものである。 このようなディヅシングが生じると配線の断面 積が減少して抵抗が局所的に増加する等、 種々の問題を引き起こすこととなる。 エロージョンとは、 配線密集部で CM Pが過剰に進行し、 図 3 (d)のように配 線密集部の表面が凹んでしまう現象をいう。 エロ一ジョンが発生すると、 配線抵 抗が上昇するとともに、 基板表面の平坦性が悪化して配線の短絡等の要因となる。 銅膜とバリアメタル膜との間のスリツ卜とは、 CM P中に一種の電池効果によ つて生じる、 図 4に示すようなスリットをいう。 このようなスリッ卜が生じると、 配線抵抗が上昇するとともに、 その後の成膜不良の要因となる。  Dating is a phenomenon in which the center of the surface of the copper film 5 is dented as shown in FIG. This is caused by the fact that the polishing rate of the copper film 5 is much higher than the polishing rate of the non-metal film 4. When such dicing occurs, various problems such as a decrease in the cross-sectional area of the wiring and a local increase in the resistance are caused. Erosion is a phenomenon in which the CMP progresses excessively in the dense wiring area, and the surface of the dense wiring area is dented as shown in Fig. 3 (d). When the erosion occurs, the wiring resistance increases, and the flatness of the substrate surface deteriorates, which causes a short circuit of the wiring. The slit between the copper film and the barrier metal film refers to a slit as shown in FIG. 4 generated in the CMP by a kind of battery effect. The occurrence of such a slit increases the wiring resistance and causes a subsequent film formation failure.
CMPにより研磨された銅のゥェ一ハ等への付着とは、 CM P中に発生した銅 イオンが研磨パッドに蓄積し、 ゥエー八面上に再付着し、 ゥエー八面の平坦性を 悪化させたり、 電気的短絡を起こしたりすることをいう。 この問題については、 たとえば特開平 10—1 1 6804号公報等に記載されている。  The adhesion of copper polished by CMP to wafers, etc. means that copper ions generated during CMP accumulate on the polishing pad and re-adhere on the A-side, deteriorating the flatness of the A-side. Or cause an electrical short circuit. This problem is described in, for example, JP-A-10-116804.
以上のように、 CMPにおいては、 腐食による配線金属の品質劣化だけでなく、 プロセス上の理由からも金属の防食が必要となる。 従来の CM Pでは、 主として W As mentioned above, CMP requires not only metal quality degradation due to corrosion but also metal corrosion protection for process reasons. In traditional CMP, mainly W
3 ディッシング防止および研磨パヅドへの銅の付着防止の観点から防食剤が使用さ れ、 ベンゾ卜リアゾールやその誘導体が用いられていた (特開平 8— 8 3 7 8 0 号公報、 特開平 1 1—2 3 8 7 0 9号公報) 。 3 An anticorrosive was used from the viewpoint of preventing dishing and preventing copper from adhering to the polishing pad, and benzotriazole or a derivative thereof was used (Japanese Patent Application Laid-Open Nos. 8-83780 and 11-11). —2 3 8 7 0 9 Publication).
ところが、 B T Aやその誘導体は生物による分解処理することが難しく、 これ らを含む廃液の処理が困難であるという課題を有していた。近年、 環境負荷低減 に対する要求が強まる中、 半導体製造工場で使用される化学物質に対しても、 よ り高い安全性が求められるようになってきている。 半導体製造工場から発生する 有機廃水は、通常、 生物学的処理 (以下 「生物処理」 と記す) を施し、分解した 後に放流されているが、 生物処理によって処理が出来ない物質に関しては、 他の 手段を用いて処理するか、 生分解性を示す他の化学物質に代替することが望まし い。 上記した B T Aやその誘導体は生物処理によって分解することが極めて困難 である。 以上の理由から、 B T A類を含む薬液を使用する工場では、 その廃液や 廃水の処理に環境リスクを負うばかりか、 多大なコス卜や手間のかかる生分解処 理以外の処理方法に頼らざるを得ないのが現状であつた。  However, BTA and its derivatives are difficult to be decomposed by living organisms, and there is a problem that it is difficult to treat wastewater containing them. In recent years, as the demand for reducing environmental burden has increased, higher safety has also been required for chemical substances used in semiconductor manufacturing plants. Organic wastewater generated from semiconductor manufacturing plants is usually subjected to biological treatment (hereinafter referred to as “biological treatment”), decomposed, and released. However, for substances that cannot be treated by biological treatment, other It is desirable to treat by means or to replace with other biodegradable chemicals. The above-mentioned BTA and its derivatives are extremely difficult to decompose by biological treatment. For the above reasons, factories that use chemicals containing BTAs not only pose environmental risks to the treatment of their waste liquids and wastewater, but also have to rely on treatment methods other than biodegradation treatment, which are costly and laborious. It was not possible to get it.
—方、 前述したように、 レジス卜剥離液の分野においては芳香族ヒドロキシ化 合物や力ルボキシル基含有有機ィ匕合物等が防食剤として用いられる場合もあった c これらの防食剤は、 一般に、 B T A類よりも生分解性に優れる。 しかし、 これら は主としてアルミ一銅合金からなる配線材料の防食を目的とするものであつたた め、 銅のような腐食されやすい金属に対する防食作用は充分ではなく、 C M Pの ような過酷な条件下で使用する防食剤として利用することは困難であった。  On the other hand, as described above, in the field of the resist stripping solution, an aromatic hydroxy compound or an organic conjugate containing a ruboxyl group was sometimes used as an anticorrosive agent. Generally, it is more biodegradable than BTAs. However, since these are mainly for the purpose of preventing corrosion of wiring materials made of aluminum-copper alloy, they do not have sufficient anticorrosion action against easily corrosive metals such as copper, and are subject to severe conditions such as CMP. It was difficult to use it as an anticorrosive for use in steels.
以上、 半導体装置の製造プロセスにおける防食に関する従来技術について述べ たが、 本発明と異なる技術分野の従来技術として、 特開平 9— 2 9 1 3 8 1号公 報には、 水溶性防 ί青剤として尿素縮合体が有効であることが記載され、 尿素縮合 体の例としてイソシァヌル酸、 ヒダン卜イン、 尿酸、 卜リスカルボキシメチルイ ソシァヌル酸、 卜リスカルボキシェチルイソシァヌル酸が例示されている。 しか しながらこの技術は、 切削加工、研磨加工、 塑性加工等の金属加工時、 およびそ の保管における金属の鯖び防止を目的とするものであり、 半導体製造工程のよう に極微細なホール内に堆積する残渣物の除去や高度な表面清浄化を考慮した技術 を提供するものではない。 また、 上記公報記載の技術は、 金属の 「防鯖」 を目的 とするものであり、 「防食」 を目的とする本発明とは解決すべき課題が相違する。 「防請」 とは金属の酸ィ匕の進行を抑えるものであるのに対し、本発明における 「防食」 とは半導体ゥェ— / \上に形成された金属膜の腐食を防止するものであり、 具体的には、 レジス卜剥離液や各種洗浄液、 C M Pスラリー等によって銅等の金 属が溶解したり、 あるいは、錯体を形成する等して変質することを防止するもの である。 また、 P方鯖剤による処理は、通常、 空気中で行われ、金属表面に存在す る酸化膜上に防鲭剤からなる保護層を形成するものであるのに対し、本発明にお ける 「防食」 は、酸ィ匕していない金属清浄面に防食剤を作用させて保護層を形成 するものである。半導体ゥエーハ上に形成された金属 B奠は、 その表面がわずかに 酸化した場合 (請が生じた場合) でも、抵抗の上昇や、 その上に形成される膜と の密着性不良等、種々の問題が生じる。 したがって本発明における防食剤は、 金 属膜表面に緻密な保護膜を形成し、 金属膜の酸化を実質的に完全に抑えた上で、 レジスト剥離液や各種洗浄液により金属膜が溶解したり錯体を形成するのを有効 に防止することが求められる。すなわち、本発明における 「防食」 とは、 防請よ りも高度の金属膜保護作用が求められるのである。 さらに、後述するように、 半 導体ゥエーハ上に形成された金属膜の腐食を防止する用途に用いられる防食剤は、 一般の金属部材の防食剤と異なり、種々の特性を備えることが必要となる。以上 のように、 半導体装置の製造プロセスにおいて使用される本発明の防食剤の設計 においては、 一般の金属の防請とは異なる観点からの検討が必要となる。 発明の開示 As described above, the prior art relating to corrosion prevention in a semiconductor device manufacturing process has been described. As a prior art in a technical field different from the present invention, Japanese Patent Application Laid-Open No. 9-291381 discloses a water-soluble antibacterial agent. As examples of urea condensates, isocyanuric acid, hydantoin, uric acid, triscarboxymethyl isocyanuric acid, and triscarboxyethyl isocyanuric acid are exemplified. . However, this technology is aimed at preventing metal buckling during metal processing such as cutting, polishing, and plastic processing, and in the storage of such metal. It does not provide technology that takes into account the removal of residues that accumulate on the surface or advanced surface cleaning. In addition, the technology described in the above publication aims The problem to be solved is different from that of the present invention for the purpose of “corrosion prevention”. "Anti-corrosion" is to prevent the progress of metal oxidation, whereas "anti-corrosion" in the present invention is to prevent corrosion of the metal film formed on the semiconductor layer. Specifically, it is intended to prevent a metal such as copper from being dissolved by a resist stripping solution, various cleaning solutions, a CMP slurry, or the like, or from being altered by forming a complex or the like. In addition, the treatment with the P-matrix agent is usually performed in the air to form a protective layer made of a protective agent on an oxide film present on the metal surface, whereas the present invention provides "Corrosion protection" is to form a protective layer by applying an anticorrosive agent to a clean metal surface that has not been oxidized. Even if the surface of the metal is slightly oxidized (when the surface is slightly oxidized), the metal B-diameter formed on the semiconductor wafer has various problems such as increased resistance and poor adhesion to the film formed thereon. Problems arise. Therefore, the anticorrosive agent of the present invention forms a dense protective film on the surface of the metal film, substantially completely suppresses oxidation of the metal film, and dissolves the metal film in a resist stripping solution or various cleaning solutions. It is necessary to effectively prevent the formation of That is, “corrosion protection” in the present invention requires a higher level of metal film protection than protection. Furthermore, as will be described later, anticorrosives used for preventing corrosion of a metal film formed on a semiconductor wafer need to have various characteristics, unlike anticorrosives for general metal members. . As described above, in designing the anticorrosive agent of the present invention used in the manufacturing process of a semiconductor device, it is necessary to study from a viewpoint different from that of general metal. Disclosure of the invention
本発明は上記事情を踏まえてなされたものであり、銅等の腐食しやすい金属の 腐食を効果的に防止する優れた防食性能を有し、 製品安全性に優れ、 さらに、 生 物による分解処理が可能な、 良好な分解性を兼ね備えた防食剤を提供することを 目的とする。  The present invention has been made in view of the above circumstances, has an excellent anticorrosion performance for effectively preventing corrosion of easily corrodable metals such as copper, has excellent product safety, and further has a decomposition treatment by living organisms. It is an object of the present invention to provide an anticorrosive agent that has good decomposability and that can be used.
これまでの防食剤の開発にあっては、金属に対する防食性能をいかに高めるか が重要な技術的課題とされてきたが、 防食性能に加えて十分に高い安全性や優れ た生分解性を付与するためには、従来とは異なる観点からの検討が必要となる。 本発明者らは、 かかる観点から検討を進め、特定の構造を有する複素環式化合物 を防食成分として用いることにより、 高度な防食性能と十分に高い安全性、優れ た生分解性を両立させ得ることを見出し、本発明を完成した。 In the development of anticorrosion agents, how to enhance the anticorrosion performance against metals has been an important technical issue.However, in addition to the anticorrosion performance, sufficient high safety and excellent biodegradability are provided. In order to do so, it is necessary to study from a different perspective. The present inventors have studied from such a viewpoint, and have found that a heterocyclic compound having a specific structure It has been found that the use of as an anticorrosion component can achieve both high anticorrosion performance, sufficiently high safety, and excellent biodegradability, and completed the present invention.
本発明によれば、 半導体ゥェ—ハ上に形成された金属膜の腐食を防止する防食 剤であって、 防食成分として、窒素原子を含む六員環を有する複素環式化合物を 含有することを特徴とする防食剤が提供される。  According to the present invention, there is provided an anticorrosion agent for preventing corrosion of a metal film formed on a semiconductor wafer, which contains a heterocyclic compound having a six-membered ring containing a nitrogen atom as an anticorrosion component. An anticorrosive is provided.
また本発明によれば、 半導体ゥェ一ハ上に形成された金属膜の腐食を防止する 防食剤であって、 P方食成分として、  Further, according to the present invention, there is provided an anticorrosion agent for preventing corrosion of a metal film formed on a semiconductor wafer, wherein
- C ( O H ) = N—、 または -C (O H) = N—, or
一 C O N H— One C O N H—
なる原子団を含む五員ないし六員の複素環を有する複素環式化合物を含有するこ とを特徴とする防食剤が提供される。 The present invention provides an anticorrosive comprising a heterocyclic compound having a 5- or 6-membered heterocyclic ring containing the following atomic group.
また本発明によれば、 半導体ゥェ一ノ \上に形成された金属膜の腐食を防止する 防食剤であって、 防食成分として、 プリンまたはその誘導体を含有することを特 徴とする防食剤が提供される。  Further, according to the present invention, there is provided an anticorrosion agent for preventing corrosion of a metal film formed on a semiconductor element, comprising purine or a derivative thereof as an anticorrosion component. Is provided.
また本発明によれば、上記防食剤を、水または水溶性有機溶媒に溶解させてな る防食液が提供される。  Further, according to the present invention, there is provided an anticorrosion solution obtained by dissolving the anticorrosion agent in water or a water-soluble organic solvent.
また本発明によれば、 半導体ウェー 、上に形成された金属膜の防食処理 Iこ用しヽ られる防食処理液であつて、上記防食剤を含むことを特徴とする防食処理液が提 供される。  Further, according to the present invention, there is provided an anticorrosion treatment solution for use in a semiconductor way, wherein the anticorrosion treatment solution is a corrosion-resistant treatment solution for a metal film formed thereon, the anticorrosion treatment solution comprising the anticorrosive agent. You.
また本発明によれば、 表面に金属膜の形成された半導体ゥェ一ハを保管するた めの保管液であつて、上記防食剤を含むことを特徴とする保管液が提供される。 また本発明によれば、表面に金属膜の形成された半導体ゥェ—ハを化学的機械 的研磨するためのスラリーであって、 上記防食剤を含むことを特徴とする化学的 機械的研磨用スラリ一が提供される。  Further, according to the present invention, there is provided a storage solution for storing a semiconductor wafer having a metal film formed on a surface thereof, wherein the storage solution contains the anticorrosive agent. Further, according to the present invention, there is provided a slurry for chemically and mechanically polishing a semiconductor wafer having a metal film formed on a surface thereof, the slurry containing the anticorrosive agent. A slurry is provided.
また本発明によれば、 半導体ゥエーハ上に金属膜を形成し、該金属膜の一部を 化学的機械的研磨し、 洗浄液を用いて該半導体ゥエーハ表面の洗浄を行った後、 上記防食処理液を用いて該金属膜の防食処理を行うことを特徴とする防食処理方 法が提供される。  Further, according to the present invention, a metal film is formed on a semiconductor wafer, a part of the metal film is chemically and mechanically polished, and the surface of the semiconductor wafer is cleaned using a cleaning liquid. The present invention provides an anticorrosion treatment method comprising performing an anticorrosion treatment on the metal film by using the method.
本発明は、 上記したような特定の構造を有する複素環式化合物を防食剤として 用いているため、金属膜表面に緻密な保護層を形成し、 かつ、金属膜表面が適度 な疎水性に保つことができ、優れた防食性能を発揮する。 また、 安全性に優れる 上、 生物による分解処理が可能で容易に廃水処理を行うことができる。 The present invention uses a heterocyclic compound having a specific structure as described above as an anticorrosive Since it is used, a dense protective layer is formed on the surface of the metal film, and the surface of the metal film can be kept moderately hydrophobic, and exhibits excellent anticorrosion performance. In addition to being excellent in safety, it is possible to decompose by living organisms and easily perform wastewater treatment.
本発明における防食剤は半導体ゥエーハ上に形成された金属膜の腐食を防止す る用途に用いられるため、 一般の金属部材の防食剤と異なり、種々の特性を備え ることが必要となる。  Since the anticorrosive in the present invention is used for the purpose of preventing the corrosion of a metal film formed on a semiconductor wafer, it is necessary to have various properties unlike the anticorrosive for general metal members.
第一に、 半導体装置の製造プロセスにおいては、金属配線の一部がわずかに損 傷した場合でも設計通りの性能を発揮できなくなることが多いことから、 きわめ て高度の防食性能が要求される。特に半導体装置の製造プロセスでは、 ゥエツト エッチングやレジス卜剥離処理、 洗浄等、 酸やアルカリの薬液を使用する工程が 多数存在し、 これらの工程を行う際に金属膜の溶解や変質を充分に抑制すること が必要となる。 また、本発明の防食剤をレジス卜等の剥離液や C M Pスラリーに 添加して用いる場合は、他の成分との共存下で高度の防食作用を発撺することが 要求される。  First, in the semiconductor device manufacturing process, even if a part of the metal wiring is slightly damaged, it is often impossible to achieve the performance as designed, so that extremely high corrosion protection performance is required. In particular, in the manufacturing process of semiconductor devices, there are many steps using acid or alkali chemicals, such as etching, resist stripping, and cleaning, and in these steps, the dissolution and deterioration of the metal film are sufficiently suppressed. Need to be done. In addition, when the anticorrosive agent of the present invention is used by being added to a stripping solution such as a resist or a CMP slurry, it is required to exhibit a high anticorrosive action in the presence of other components.
第二に、 半導体基板やその上に形成される各種の膜に損傷を与えないことが必 要となる。近時の半導体装置の製造プロセスにおいては素子の微細化が一層進行 しており、 半導体装置を構成する基板や膜がわずかに損傷を受けた場合でも、 素 子性能に致命的なダメ一ジを与えることがある。  Second, it is necessary not to damage the semiconductor substrate and various films formed thereon. In recent semiconductor device manufacturing processes, the miniaturization of elements has been further advanced, and even if the substrate or film constituting the semiconductor device is slightly damaged, fatal damage to the element performance will occur. May give.
第三に、 防食処理後の工程に悪影響を与えないことが必要となる。 たとえば金 属膜表面に防食剤が残存したまま、 その上に絶縁膜や他の金属膜を形成すると、 抵抗の上昇、膜剥がれ等、 素子性能に悪影響を与える場合がある。 このため、残 存しても素子性能に悪影響を与えない防食剤を選択するか、 あるいは、 防食処理 後、 次工程に移る前の段階で防食剤が金属膜表面から脱離する防食剤を選択する ことが望まれる。  Third, it is necessary that the post-corrosion treatment be not adversely affected. For example, if an anticorrosive is left on the surface of a metal film and an insulating film or other metal film is formed thereon, the device performance may be adversely affected, such as an increase in resistance and film peeling. Therefore, select an anticorrosion agent that does not adversely affect the element performance even if it remains, or select an anticorrosion agent that desorbs from the metal film surface at the stage after the anticorrosion treatment and before moving to the next process It is desirable to do so.
第四に、 半導体装置の製造プロセス中で使用されるため、廃液の量が多大であ り、 その処理に関し、安全、迅速かつ低コストで行うことが特に要求される。 し たがつて生物処理可能な成分で構成することが強く求められる。  Fourth, since it is used in the process of manufacturing semiconductor devices, the amount of waste liquid is large, and it is particularly required that the treatment be performed safely, promptly and at low cost. Therefore, it is strongly required to be composed of bioprocessable components.
本発明の防食剤は上記特性を兼ね備えたものである。すなわち、 本発明の剥離 剤組成物に含まれる防食剤は、他の化学物質の存在下でも強力な剥離性能を発揮 し、 基板や他の膜を損傷することがない。 また、 金属膜上に付着した防食剤は、 成膜のための予備加熱等により速やかに脱離する。 さらに、安全性および生分解 性に優れるものである。 したがって、 半導体ゥエーハ上に形成された金属膜の腐 食を防止するのに特に適した構成となっている。 図面の簡単な説明 The anticorrosive of the present invention has the above properties. That is, the anticorrosive contained in the release agent composition of the present invention exhibits strong release performance even in the presence of other chemical substances. It does not damage the substrate or other films. In addition, the anticorrosive attached to the metal film is quickly eliminated by preheating for film formation. Furthermore, it is excellent in safety and biodegradability. Therefore, the configuration is particularly suitable for preventing corrosion of the metal film formed on the semiconductor wafer. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 ダマシン法による銅配線の形成プロセスを説明するための工程断面図 で toる。  FIG. 1 is a process sectional view for explaining a copper wiring forming process by a damascene method.
図 2は、 化学的機械的研磨装瀣の概略構成図である。  FIG. 2 is a schematic configuration diagram of a chemical mechanical polishing apparatus.
図 3は、 ダマシン法による銅配線の形成プロセスを説明するための工程断面図 であ Q 3, der process sectional view for explaining a process of forming copper wiring by a damascene process Q
図 4は、 ディッシングおよびスリッ卜の発生した銅配線の断面を示す図である。 図 5は、 C M P後の工程を説明するための図である。  FIG. 4 is a diagram showing a cross section of a copper wiring in which dishing and slit have occurred. FIG. 5 is a view for explaining a step after CMP.
図 6は、 C M P後の工程を 明するための図である。  FIG. 6 is a view for explaining a process after the CMP.
図 7は、本発明に係る防食剤を適用したプロセスを説明するための図である。 図 8は、 本発明に係る防食剤を適用したプロセスを説明するための図である。 図 9は、 スルーホール形成プロセスを説明するための工程断面図である。  FIG. 7 is a diagram for explaining a process using the anticorrosive agent according to the present invention. FIG. 8 is a diagram for explaining a process using the anticorrosive agent according to the present invention. FIG. 9 is a process cross-sectional view for explaining the through-hole forming process.
図 1 0は、 スルーホール形成プロセスを説明するための工程断面図である。 図 1 1は、銅膜のエッチング速度におよぼす尿酸濃度の影響を示すグラフであ る。  FIG. 10 is a process cross-sectional view for explaining the through-hole forming process. FIG. 11 is a graph showing the effect of uric acid concentration on the etching rate of a copper film.
図 1 2は、 防食処理の相違によるエレクトロンマイグレーションライフタイム の変化を示す図である。 発明を実施するための最良の形態  FIG. 12 is a diagram showing a change in the electron migration lifetime due to the difference in the anticorrosion treatment. BEST MODE FOR CARRYING OUT THE INVENTION
本発明における (a )成分は、窒素原子を含む六員環を分子中に有する複素環 式化合物を含有するものとすることができる。 このような複素環式化合物は、複 素璟中の窒素原子の有するキレ—卜作用により、 良好な防食作用を発揮する上、 生分解性も良好である。  The component (a) in the present invention may contain a heterocyclic compound having a six-membered ring containing a nitrogen atom in the molecule. Such a heterocyclic compound exhibits a good anticorrosive action and a good biodegradability due to the chelating action of the nitrogen atom in the complex.
また、 (a ) 成分として、 一 C (OH) 二 N—、 または Also, as the component (a), One C (OH) two N—, or
一 CON H— One CON H—
なる原子団を含む五員ないし六員の複素環を有する複素環式化合物を用いれば、 特に良好な防食作用および生分解性が発揮される。 この理由は必ずしも明らかで はないが、 以下のように推察される。 When a heterocyclic compound having a 5- or 6-membered heterocyclic ring containing the following atomic group is used, particularly good anticorrosive action and biodegradability are exhibited. The reason for this is not necessarily clear, but is presumed as follows.
上記複素環式化合物において、 C、 N、 0、 Hの各原子は、 同一平面上にある ため、  In the above heterocyclic compound, each atom of C, N, 0, and H is on the same plane,
-C (OH) = N— (アミド単位) と  -C (OH) = N— (amide unit) and
-C0NH- (イミノヒドリン単位) とは互変異性をなす。 このことは、 ラクタ ムーラクチム互変異性として知られている (下記式) 。
Figure imgf000010_0001
It is tautomeric with -C0NH- (iminohydrin unit). This is known as lacta muractim tautomerism (formula below).
Figure imgf000010_0001
ラクタム形 ラクチム形 上記式において、 N、 C、 0の各原子上に共役系が広がり、 この領域に電子が 非局在化する。 この共役系の電子は、 金属表面の空軌道と相互作用しやすいため、 安定なキレ一卜結合を形成するものと考えられる。  Lactam type Lactim type In the above formula, a conjugate system spreads over each of the N, C, and 0 atoms, and electrons are delocalized in this region. The electrons in this conjugated system are liable to interact with the free orbitals on the metal surface, and are considered to form stable chelate bonds.
また、 上記原子団は五員ないし六員の複素環の環状部分に含まれているため、 立体障害が低く、 上記原子団が金属原子に接近しやす〈キレー卜結合を形成しや すいものと考えられる。  In addition, since the above-mentioned atomic group is contained in the cyclic portion of the 5- or 6-membered heterocyclic ring, the steric hindrance is low, and the above-mentioned atomic group is easily accessible to metal atoms. Conceivable.
アミド単位乃至イミノヒドリン単位を含む五員ないし六員の複素環を分子中に 有する複素環式化合物が顕著な防食作用を有するのは、 上記理由によるものと推 察される。  It is presumed that the heterocyclic compound having a 5- or 6-membered heterocyclic ring containing an amide unit or an iminohydrin unit in the molecule has a remarkable anticorrosive action for the above-mentioned reason.
また、 生分解性が良好な理由は、 アミド結合が高い生体親和性を有することに 関連するものと推察される。  The reason for the good biodegradability is presumed to be related to the high biocompatibility of the amide bond.
本発明における複素環式化合物の具体例としては、  As specific examples of the heterocyclic compound in the present invention,
プリン、 6—ァミノプリン、 2—ァミノ一 6—才キソプリン、 6—フルフリルァ ミノプリン、 2, 6- ( 1 H. 3 H) —プリンジオン、 2—ァミノ一 6—ヒドロ キシ一 8—メルカプトプリン、 ァロプリノール、 尿酸、 力イネチン、 ゼァチン、 グァニン、 キサンチン、 ヒポキサンチン、 アデニン、 テオフェリン、 カフェイン、 テオプロミン等のプリンおよびその誘導体; ' Purine, 6-Aminopurine, 2-Amino-1-6-isoquinopurine, 6-Furfurylaminopurine, 2,6- (1H.3H) -Purinedion, 2-Amino-1-6-hydroxy-18-Mercaptopurine, Aloprinol , Uric acid, power ricetin, zeatin, Purines and derivatives thereof such as guanine, xanthine, hypoxanthine, adenine, theopherin, caffeine, and theopromine;
8—ァザグァニン等のァザグァニンおよびその誘導体; Azaguanine such as 8-azaguanine and derivatives thereof;
プテリジン、 プテリン、 2—アミノー 4 , 6—ジヒドロキシプテリジン、 2—ァ ミノ一 4 , 7—ジヒドロキシプテリジン、 2—アミノー 4, 6 , 7—トリヒドロ キシプテリジン等のプテリジン、 プテリンおよびそれらの誘導体; Pteridine, pterin such as pteridine, pterin, 2-amino-4,6-dihydroxypteridine, 2-amino-1,4,7-dihydroxypteridine, 2-amino-4,6,7-trihydroxypteridine, and derivatives thereof;
シァヌル酸、 イソシァヌル酸、 トリスカルボキシメチルシアヌル酸、 卜リスカル ボキシェチルシアヌル酸、 卜リスカルボキシメチルイソシァヌル酸、 卜リスカル ボキシェチルイソシァヌル酸等のシァヌル酸、 ィソシァヌル酸およびそれらの言秀 導体; Cyanuric acid, isocyanuric acid, triscarboxymethylcyanuric acid, triscarboxycylcyanuric acid, triscarboxymethylisocyanuric acid, triscarboxyxyl isocyanuric acid, etc. Conductor;
ヒダン卜イン、 ジメチルヒダン卜イン、 アラントイン (5—ウレイ ドヒダントイ ン) 等のヒダン卜イン、 アラントインおよびそれらの誘導体; Hydantoin, allantoin and derivatives thereof, such as hydantoin, dimethylhydantoin, and allantoin (5-ureidohydantoin);
バルビツール酸およびそれらの誘導体; Barbituric acids and their derivatives;
イソニコチン酸、 シ卜ラジン酸等のニコチン酸およびそれらの誘導体; 等が挙げられ、 これらを単独で使用、 または 2種以上を併用することができる。 上記のうち、 プリンおよびその誘導体、 および、 ニコチン酸およびそれらの誘導 体が好まし〈用いられる。 生分解性に優れる上、 銅等の金属に対して優れた防食 効果を発揮するからである。 Nicotinic acid such as isonicotinic acid and citrazinic acid and derivatives thereof; and the like, and these can be used alone or in combination of two or more. Of the above, purine and its derivatives, and nicotinic acid and their derivatives are preferred and used. It is not only excellent in biodegradability, but also has an excellent anticorrosion effect on metals such as copper.
上記のうち、 特にプリンおよびその誘導体は優れた防食効果を発揮する上、 半 導体基板やその上に形成される各種の膜に損傷を与えることがなく、 剥離処理後 の工程に悪影響を与えないため、 好ましく用いられる。 なかでも、 下記一般式 ( 1 ) で表される化合物、 特に尿酸は、 天然に広く分布する安全性の高い物質で あり、 生分解性が特に優れ、 さらに防食性が顕著に優れており、 好ましく用いら れ 。  Of the above, pudding and its derivatives, in particular, exhibit an excellent anticorrosion effect, do not damage the semiconductor substrate and various films formed thereon, and do not adversely affect the processes after the peeling treatment. Therefore, it is preferably used. Among them, the compound represented by the following general formula (1), particularly uric acid, is a highly safe substance that is widely distributed in nature, is particularly excellent in biodegradability, and is extremely excellent in anticorrosion. Used.
0)
Figure imgf000011_0001
0)
Figure imgf000011_0001
( Α ,. Α2および Α3は、 それぞれ独立して水素原子、 水酸基、 炭素数.1 ~ 5のァ ルキル基またはアミノ基を表す。 ) (,,. Α 2 and Α 3 are each independently a hydrogen atom, a hydroxyl group, a carbon atom. Represents a alkyl group or an amino group. )
上記式中、 A2および A3のうち、 少なくとも一方が水酸基であることが望ましい ( このようにすれば複素環内にアミド結合を有する構造となり、 防食作用および生 分解性が特に良好となる。 In the above formula, it is desirable that at least one of A 2 and A 3 is a hydroxyl group (in this case, a structure having an amide bond in the heterocyclic ring is obtained, and the anticorrosive action and the biodegradability are particularly improved.
なお、 上記環状部分にアミド単位を有する化合物は、 アミド単位がイミノヒド リン単位に変換し、 下記式に示すようにラクタム形とラクチム形の互変異性をな すことが知られている。 たとえば尿酸の場合は、 以下のような共鳴構造をとる。  It is known that, in the compound having an amide unit in the cyclic portion, the amide unit is converted into an iminohydrin unit and forms a lactam type and a lactim type as shown in the following formula. For example, uric acid has the following resonance structure.
Figure imgf000012_0001
Figure imgf000012_0001
本発明の防食剤は、 水や後述する水溶性有機溶媒に分散させて用いることがで きる。 この場合、 アルカノ一ルァミン類をさらに添カロすれば、 防食剤の溶解性を 改善できる。 生分解性の良好なアルカノ一ルァミンを選択すれば、 特に安全性、 生分解性に優れた防食液とすることができる。  The anticorrosive of the present invention can be used by dispersing it in water or a water-soluble organic solvent described below. In this case, if the alkanolamines are further added, the solubility of the anticorrosive can be improved. If an alkanolamine having good biodegradability is selected, an anticorrosive solution having particularly excellent safety and biodegradability can be obtained.
アルカノ一ルァミン類の具体例としては、 モノエタノールァミン、 ジェタノ一 ルァミン、 N—ェチルアミノエ夕ノール、 N—メチルアミノエ夕ノール、 N—メ チルジェ夕ノールァミン、 ジメチルァミノエタノール、 2— (2—アミノエトキ シ) エタノール、 1 ーァミノ一 2—プロパノール、 トリエタノールァミン、 モノ プロパノ一ルァミン、 ジブタノ一ルァミン等が例示される。 このうち、 モノエタ ノールァミン、 N—メチルアミノエ夕ノールが特に好ましい。 これらの化合物は 単独で用いてもよく、 あるいは 2種以上を組み合わせて用いてもよい。  Specific examples of alkanolamines include monoethanolamine, jetanolamine, N-ethylaminoethanol, N-methylaminoethanol, N-methylethylethanol, dimethylaminoethanol, 2- (2-aminoethoxyamine). ) Ethanol, 1-amino-12-propanol, triethanolamine, monopropanolamine, dibutanolamine and the like are exemplified. Of these, monoethanolamine and N-methylaminoethanol are particularly preferred. These compounds may be used alone or in combination of two or more.
防食剤中の防食成分 (以下、 (a ) 成分と称する) およびアルカノールァミン 類 (以下、 (b ) 成分と称する) の混合比は任意に設定することができるが、 た とえば、 (a ) 成分 1 0 0質量%に対する (b ) 成分の量を、好ましくは 0 . 1 〜1 0 0 0 0質量%、 さらに好ましくは 1〜1 0 0質量%とする。 このような混 合比にすることによって、 より高い防食性能を発揮することが可能になる。  The mixing ratio of the anticorrosive component (hereinafter, referred to as component (a)) and the alkanolamines (hereinafter, referred to as component (b)) in the anticorrosive agent can be set arbitrarily. For example, (a) ) The amount of the component (b) relative to 100% by mass of the component is preferably 0.1 to 1000% by mass, and more preferably 1 to 100% by mass. With such a mixing ratio, it is possible to exhibit higher anticorrosion performance.
本発明の防食剤は、銅または銅を主成分とする銅合金の防食に用いられた場合、 特に効果的である。銅を主成分とする銅合金とは、銅を 9 0質量%以上含有する 合金であって、 M g、 S c、 Z r、 H f、 N b、 T a、 C r、 M o等の異種元素 を含む銅合金をいう。 これらの金属は、 低抵抗で素子の高速動作性を向上させる 反面、 薬液により溶解、 変質等の腐食を起こしやすいため、 本発明の適用効果が 顕著となる。 The anticorrosive of the present invention, when used for anticorrosion of copper or a copper alloy containing copper as a main component, Especially effective. A copper alloy containing copper as a main component is an alloy containing 90% by mass or more of copper, such as Mg, Sc, Zr, Hf, Nb, Ta, Cr, or Mo. A copper alloy containing a different element. These metals improve the high-speed operability of the device with low resistance, but are liable to cause corrosion such as dissolution and alteration by a chemical solution, so that the application effects of the present invention are remarkable.
本発明に係る防食液は、 上記防食剤を水及び/または水溶性有機溶媒に溶解さ せてなるものである。  The anticorrosion solution according to the present invention is obtained by dissolving the anticorrosion agent in water and / or a water-soluble organic solvent.
上記水溶性有機溶媒としては、 ジメチルスルホキシド等のスルホキシド類;ジ メチルスルホン、 ジェチルスルホン、 ビス (2—ヒドロキシェチル) スルホン、 テ卜ラメチレンスルホン等のスルホン類; N , N—ジメチルホルムアミド、 N— メチルホルムアミド、 N , N—ジメチルァセトアミド、 N—メチルァセトアミド、 N , N—ジェチルァセ卜アミド等のアミド類; N—メチル— 2—ピロリ ドン、 N —ェチル一 2—ピロリ ドン、 N—プロピル一 2—ピロリ ドン、 N—ヒドロキシメ チル一 2—ピロリ ドン、 N—ヒドロキシェチル一 2—ピ ΰリ ドン等のラクタム 類; 1 , 3—ジメチルー 2—イミダゾリジノン、 1 , 3—ジェチルー 2—イミダ ゾリジノン、 1, 3—ジィソプロピル一 2—イミダゾリジノン等のイミダゾリジ ノン類; r—プチロラク卜ン、 άーノ1レロラク卜ン等のラクトン類;エチレング リコール、 エチレングリコールモノメチルエーテル、 エチレングリコールモノエ チルエーテル、 エチレングリコールモノプチルエーテル、 エチレングリコールモ ノメチルエーテルァセテ一卜、 エチレングリコールモノェチルエーテルァセテ一 卜、 ジエチレングリコール、 ジエチレングリコールモノメチルエーテル、 ジェチ レングリコールモノェチルエーテル、 ジエチレングリコールモノブチルエーテル 等の多価ァルコ一ル類およびその誘導体があげられる。 これらは単独で用いても よく、 あるいは 2種以上を組み合わせて用いてもよい。 Examples of the water-soluble organic solvent include sulfoxides such as dimethyl sulfoxide; sulfones such as dimethyl sulfone, getyl sulfone, bis (2-hydroxyethyl) sulfone and tetramethylene sulfone; N, N-dimethylformamide; Amides such as N-methylformamide, N, N-dimethylacetamide, N-methylacetamide, N, N-getylacetamide; N-methyl-2-pyrrolidone, N-ethyl-12-pyrrolidone Lactams such as N-propyl-12-pyrrolidone, N-hydroxymethyl-12-pyrrolidone, N-hydroxyethyl-12-pyridone; 1,3-dimethyl-2-imidazolidinone; Imidazolidinones such as, 3-Jethyl-2-imidazolidinone and 1,3-diisopropyl-l2-imidazolidinone; r-butyrolactone, ά- Lactones such as Roh 1 Reroraku Bokun; ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol mono-et Chirueteru, ethylene glycol mono-Petit ether, ethylene glycol mono methyl ether § cetearyl Ichiboku, ethylene glycol monomethyl E chill ether § cetearyl one And polyvalent alcohols such as diethylene glycol, diethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and diethylene glycol monobutyl ether, and derivatives thereof. These may be used alone or in combination of two or more.
本発明に係る防食液には、 アルカノールァミン類 ( (b ) 成分) を添加しても よい。 このようにすれば防食成分 ( (a )成分) の溶解度を高めることが可能に なり、 防食効果がより顕著に発揮される。本発明に係る防食液中の (a )、 ( b ) 成分の濃度は、 用途■ 目的に応じて適宜設定されるが、 たとえば以下のよ うにすることが好ましい。 すなわち、 防食液全体に対し、 (a ) 成分の配合量の W Alkanolamines (component (b)) may be added to the anticorrosive liquid according to the present invention. By doing so, the solubility of the anticorrosion component (component (a)) can be increased, and the anticorrosion effect is more remarkably exhibited. The concentration of the components (a) and (b) in the anticorrosive solution according to the present invention is appropriately set according to the intended use and purpose. For example, the following is preferable. That is, the amount of the component (a) is W
12 下限は 0. 0001質量%が好ましく、 特に 0. 01質量%が好ましい。 上限に ついては特に制限がないが、 溶解度の関係上、 たとえば 20質量%程度とする。 一方、 ( b ) 成分の配合量の上限は 20質量 °/0が好ましく、 特に 10質量 °/0が好 ましい。 また下限は 0. 0001質量%が好ましく、 特に 0. 001質量%が好 ましい。 このような配合量とすることにより、 防食性能を一層良好にすることが できる。 12 The lower limit is preferably 0.0001% by mass, particularly preferably 0.01% by mass. The upper limit is not particularly limited, but is, for example, about 20% by mass due to solubility. On the other hand, the upper limit of the amount of component (b) is preferably 20% by mass / 0 , particularly preferably 10% by mass / 0 . Further, the lower limit is preferably 0.0001% by mass, and particularly preferably 0.001% by mass. With such a blending amount, the anticorrosion performance can be further improved.
本発明の防食剤は、 半導体ゥエーハ上に形成された金属膜 (特に銅膜) の防食 に用いられ、 たとえば、 CM P用スラリーや CM P後等に用いられる防食処理液 およびゥェ一ハ保管液、 あるいは、 レジス卜等の剥離液へ適用することができる c 本発明は、 金属膜、 特に銅膜の露出面を有する半導体ゥェ一八の CM Pプロセ スへ適用した場合、 一層効果的である。 CM Pプロセスは、 金属腐食性のスラリ —が用いられることから金属の腐食が進行しやすい上、 (i)ディッシングゃエロ —ジョンの発生、 (ii)金属膜とバリアメタル膜との間のスリットの発生、 (iii) CMPにより研磨された金属の研磨パッ ドゃゥエー八への付着等、 CM Pプロセ ス特有の課題を有している。本発明の防食剤によれば、 金属膜表面に緻密な保護 層が形成され、 かつ、 金属膜表面が適度な疎水性に保たれるため、 上記課題を有 効に角军決することができる。 以下、 本発明に係る防食剤の CM Pプロセスへの適 用について説明する。 The anticorrosive agent of the present invention is used for anticorrosion of metal films (particularly copper films) formed on semiconductor wafers. For example, anticorrosion treatment solutions used for CMP slurry or after CMP, and storage of wafers liquid, or, c present invention can be applied to the stripping solution of Regis Bok, etc., a metal film, particularly when applied to a semiconductor © E eighteen of CM P processes with an exposed surface of the copper film, more effective It is. In the CMP process, the metal corrosive slurry is used, so that the corrosion of the metal is apt to progress, (i) dishing erosion occurs, and (ii) the slit between the metal film and the barrier metal film. And (iii) adhesion of the metal polished by CMP to the polishing pad A8. According to the anticorrosive agent of the present invention, a dense protective layer is formed on the surface of the metal film, and the surface of the metal film is maintained at an appropriate hydrophobicity, so that the above problem can be effectively resolved. Hereinafter, the application of the anticorrosive agent according to the present invention to the CMP process will be described.
CMPを利用した鋼配線形成プロセスは図 1に示す工程を経て行われる。 まず、 図 1 (a)に示すように、 シリコンゥェ一ハ (不図示) 上にシリコン酸化膜 1、 シリコン窒化膜 2およびシリコン酸ィ匕膜 3をこの順で形成し、 ついで、 ドライエ ツチングにより、所定の形状にパターニングされた複数の配線溝を形成する。 次 に図 1 (b) に示すように、 全面にバリアメタル膜 4をスパッタリング法により 堆積する。 ノ1リアメタル膜の材料としては、 Ta、 TaN、 T i、 丁 i N、 W、 WN、 WS i N等を用いることができ、 膜厚は、 通常、 10〜100 nm程度と する。 つづいてバリアメタル膜 4上に銅膜 5を形成する (図 1 (b) ) 。銅膜 5 の形成は、 めっき法、 CVD法、 スパッタリング法等を用いることができる。 次に銅膜 5の表面を CM P法により研磨する。 CMPは、 通常、 酸化剤と研磨 砥粒を主成分とするスラリ一を用い、 酸化剤の化学的作用で銅表面をエッチング するとともに、 その酸ィ匕表面層を研磨砥粒により機械的に除去することにより行 われる。 この C M P用スラリーに本発明の防食剤を含有させることにより、 C M P中の銅の腐食を防止し、 また、 銅の研磨速度を抑制することによりデイツシン グの防止を図ることができる。 また、 C M Pプロセスでは大量の廃液が発生する が、 本発明の防食剤は生分解性が良好であるため、 廃液処理も容易となる。 The steel wiring forming process using CMP is performed through the steps shown in FIG. First, as shown in FIG. 1 (a), a silicon oxide film 1, a silicon nitride film 2 and a silicon oxide film 3 are formed in this order on a silicon wafer (not shown), and then dry etching is performed. A plurality of wiring grooves patterned into a predetermined shape are formed. Next, as shown in FIG. 1 (b), a barrier metal film 4 is deposited on the entire surface by a sputtering method. As the material of Roh 1 barrier metal film, Ta, TaN, T i, Ding i N, W, WN, can be used WS i N, etc., the thickness is usually about 10 to 100 nm. Subsequently, a copper film 5 is formed on the barrier metal film 4 (FIG. 1 (b)). The copper film 5 can be formed by a plating method, a CVD method, a sputtering method, or the like. Next, the surface of the copper film 5 is polished by the CMP method. CMP usually uses a slurry consisting mainly of an oxidizing agent and abrasive grains, and etches the copper surface by the chemical action of the oxidizing agent. At the same time, the surface of the oxide film is mechanically removed by abrasive grains. By adding the anticorrosive agent of the present invention to the slurry for CMP, corrosion of copper during CMP can be prevented, and dating can be prevented by suppressing the polishing rate of copper. Further, although a large amount of waste liquid is generated in the CMP process, the anticorrosive agent of the present invention has good biodegradability, so that waste liquid treatment becomes easy.
C M Pは、 最終的に図 1 ( d ) の如くバリアメタル膜 4が完全に除去されるま で行う。 この工程において、 単一の C M P用スラリーを用いても良いが、 ディヅ シングゃエロ一ジョンを防止する観点から 2種類以上のスラリーを用いてもよい c たとえば金属研磨用および酸化膜 ·バリアメタル膜研磨用の 2種類のスラリーを 用いることができる。 C M P用スラリーに本発明の防食剤を適用する場合、 どの 段階のスラリーに忝カ□してもよいが、 特に図 1 ( c ) のようにバリアメタル月奠露 出以降のスラリ一に添加すると効果的である。 このようにすれば、 配線部を構成 する銅膜 5の腐食防止効果、 および、 デイツシング 'エロ—ジョンの抑制効果が 一層顕著となるからである。  CMP is performed until the barrier metal film 4 is completely removed as shown in FIG. In this step, a single slurry for CMP may be used, but two or more slurries may be used from the viewpoint of preventing dicing and erosion. Two types of slurries for polishing can be used. When the anticorrosive agent of the present invention is applied to a slurry for CMP, it may be used in any stage of the slurry.However, as shown in Fig. It is effective. This is because the effect of preventing corrosion of the copper film 5 constituting the wiring portion and the effect of suppressing dating / erosion are further remarkable.
C M Pはバリアメタル膜 4が除去されてトルクが変化した時点で終了し (図 1 ( d ) ) 、 その後、 必要に応じて後洗浄を行い、 さらに純水を主成分とするリン ス液でリンス処理して銅配線形成プロセスを終了する。  CMP ends when the barrier metal film 4 is removed and the torque changes (FIG. 1 (d)). Thereafter, post-cleaning is performed as necessary, and then rinsing is performed with a rinsing liquid containing pure water as a main component. Then, the copper wiring forming process is completed.
C M Pは、 例えば図 2に示すような化学的機械的研磨装置を用いて行うことが できる。絶縁膜や銅系金属膜等が成膜されたゥエーハ 2 1は、 スピンドルのゥェ —ハキャリア 2 2に設置される。 このゥエーハ 2 1の表面を、 回転プレート (定 盤) 2 3上に貼り付けられた研磨パッド 2 4に接触させ、 C M P用スラリー供給 口 2 5から C M P用スラリーを研磨パッド 2 4表面に供給しながら、 ゥェ一ハ 2 1と研磨パヅド 2 4の両方を回転させて研磨する。 必要により、 パッドコンディ ショナ一 2 6を研磨パッド 2 4の表面に接触させて研磨パヅド表面のコンディシ ョニングを行う。 なお、 C M P用スラリーの供給は、 回転プレー卜 2 3側から研 磨パヅド 2 4表面へ供給する構成とすることも可能である。  CMP can be performed using, for example, a chemical mechanical polishing apparatus as shown in FIG. The wafer 21 on which an insulating film, a copper-based metal film, or the like is formed is placed on a wafer carrier 22 of a spindle. The surface of the wafer 21 is brought into contact with a polishing pad 24 stuck on a rotating plate (platen) 23, and the slurry for CMP is supplied to the surface of the polishing pad 24 from a slurry supply port 25 for CMP. While polishing, both wafer 21 and polishing pad 24 are rotated. If necessary, the pad conditioner 26 is brought into contact with the surface of the polishing pad 24 to condition the polishing pad surface. The slurry for CMP may be supplied from the rotating plate 23 to the surface of the polishing pad 24.
本発明は、 C M P後の後処理において適用することができる。 C M P後の後処 理の一例を図 5に示す。 C M P後、 いったん保管液中にゥェ一ハを保管した後、 研磨粒子等を除去するための C M P後洗浄を行う。 その後、 必要に応じ防食剤を 用いて防食処理を行い、 最後に純水を主成分とするリンス液でリンスする。 ここ で、 上記保管液や防食処理液、 リンス液に、 本発明に係る防食剤を添加すれば、 廃液処理の困難をもたらすことなく、 また化学物質の安全性に対する作業上のリ スクを負うことなくゥエー八に形成された銅膜を好適に防食することができる。 The present invention can be applied in post-processing after CMP. Figure 5 shows an example of post-processing after CMP. After CMP, once store the wafer in the storage solution, perform post-CMP cleaning to remove abrasive particles and the like. Then, if necessary, add an anticorrosive Perform anti-corrosion treatment, and finally rinse with a rinsing liquid containing pure water as a main component. Here, if the anticorrosive agent according to the present invention is added to the above-mentioned storage solution, anticorrosion treatment solution, and rinsing solution, there is no risk of waste liquid treatment, and there is a risk of working on the safety of chemical substances. Therefore, it is possible to suitably prevent corrosion of the copper film formed on the substrate.
C M Pと C M P後処理がィンラィン化されている場合は、 図 6のようなプロセ スとなる。 この場合は、 図中の防食処理において本発明に係る防食剤を用いるこ とが有効となる。  If CMP and CMP post-processing are inlined, the process is as shown in Figure 6. In this case, it is effective to use the anticorrosion agent according to the present invention in the anticorrosion treatment shown in the figure.
以下、 本発明に係る化学的機械的研磨用スラリー、 保管液お.よび防食液の好ま しい実施形態について説明する。  Hereinafter, preferred embodiments of the slurry for chemical mechanical polishing, the storage solution, and the anticorrosion solution according to the present invention will be described.
本発明の化学的機械的研磨用スラリ一は、 前記した本発明に係る防食剤を含む ものである。 防食剤の含有量は、 充分な防食効果を得る点から、 スラリー全体量 に対して 0 . 0 1質量%以上が好ましく、 0 . 1質量%以上がより好ましい。 ま た、 適度な研磨速度に調整する点から、 3 0質量%以下が好ましく、 2 0質量% 以下がさらに好ましい。含有量が多すぎると、 防食効果が大きくなりすぎて銅の 研磨速度が低下しすぎ、 C M Pに時間がかかる場合がある。  The slurry for chemical mechanical polishing of the present invention contains the anticorrosive agent according to the present invention described above. The content of the anticorrosive is preferably 0.01% by mass or more, more preferably 0.1% by mass or more based on the total amount of the slurry, from the viewpoint of obtaining a sufficient anticorrosive effect. From the viewpoint of adjusting the polishing rate to an appropriate value, the content is preferably 30% by mass or less, more preferably 20% by mass or less. If the content is too large, the anticorrosion effect becomes too large, and the polishing rate of copper is too low, so that it may take time for CMP.
本発明の化学的機械的研磨用スラリーは、 上記防食剤のほかに研磨材、 酸化剤 及び水を含む構成とすることが好ましく、 さらに、 有機酸等を適宜配合させるこ ともできる。.  The slurry for chemical mechanical polishing of the present invention preferably contains a polishing material, an oxidizing agent, and water in addition to the above anticorrosive agent, and may further contain an organic acid or the like as appropriate. .
研磨材としては、 一アルミナや 0アルミナ、 5—アルミナ等のアルミナ、 ヒ ユー厶ドシリカゃコロイダルシリカ等のシリカ、 チタニア、 ジルコニァ、 ゲルマ ニァ、 セリア、 及びこれらの金属酸ィ匕物研磨砥粒からなる群より選ばれる 1種ま たは 2種以上の混合物を用いることができる。  Examples of abrasives include alumina such as mono-alumina, 0-alumina, and 5-alumina, silica such as fumed silica and colloidal silica, titania, zirconia, germania, ceria, and abrasive grains of these metal oxides. One or a mixture of two or more selected from the group can be used.
C M P用スラリ一中の研磨材の含有量は研磨能率や研磨精度等を考慮して適宜 設定され、 スラリー組成物全量に対し、 好ましくは 0 . 1〜5 0質量%、 より好 まし〈は 2〜3 0質量%の範囲とする。  The content of the abrasive in the CMP slurry is appropriately set in consideration of the polishing efficiency, the polishing accuracy, and the like, and is preferably 0.1 to 50% by mass, and more preferably <2%, based on the total amount of the slurry composition. To 30% by mass.
酸化剤としては、 導電性金属膜の種類や研磨精度、 研磨能率を考慮して適宜、 公知の水溶性の酸化剤から選択して用いることができる。 例えば、 重金属イオン のコンタミネーシヨンを起こさないものとして、 過酸化水素 (H 22) 、 N a20 2、 B a202、 ( C6 H5C ) 202等の過酸化物、 次亜塩素酸 (H C 1 0 ) 、過塩素酸、 硝酸、 オゾン水、 過酢酸やニトロベンゼン等の有機過酸化物を挙げることができ る。 なかでも、 金属成分を含有せず、 有害な複生成物を発生しない H 202が好ま しい。酸化剤量は、 十分な添加効果を得る点から、 C M P用スラリー全量に対し て 0 . 0 1質量%以上が好ましく、 0 . 0 5質量%以上がより好ましい。 デイツ シングの抑制や適度な研磨速度に調整する点から、 1 5質量%以下が好ましく、 1 0質量%以下がより好ましい。 なお、 過酸化水素のように比較的経時的に劣化 しゃすい酸化剤を用いる場合は、所定の濃度の酸化剤含有溶液と、研磨剤等を含 む液を別個に調整しておき、 使用直前に両者を混命してもよい。 The oxidizing agent can be appropriately selected from known water-soluble oxidizing agents in consideration of the type of the conductive metal film, polishing accuracy, and polishing efficiency. For example, hydrogen peroxide (H 22 ), Na 2 O 2 , Ba 2 O 2 , (C 6 H 5 C) 2 O 2, etc., do not cause heavy metal ion contamination. Substances, hypochlorous acid (HC 10), perchloric acid, Examples include nitric acid, ozone water, and organic peroxides such as peracetic acid and nitrobenzene. Among them, it does not contain a metal component, not generate a harmful byproduct H 2 0 2 is preferred arbitrariness. The amount of the oxidizing agent is preferably at least 0.01% by mass, more preferably at least 0.05% by mass, based on the total amount of the CMP slurry, from the viewpoint of obtaining a sufficient effect of addition. From the viewpoint of suppressing dating and adjusting the polishing rate to an appropriate level, the amount is preferably 15% by mass or less, more preferably 10% by mass or less. When a oxidizing agent that deteriorates relatively slowly over time, such as hydrogen peroxide, is used, a solution containing an oxidizing agent having a predetermined concentration and a solution containing an abrasive are separately adjusted, and immediately before use. May be mixed.
有機酸は、 上記酸化剤の酸化を促進するとともに安定した研磨を行うために添 加される。有機酸はプロトン供与剤としての機能を有するものが用いられ、 カル ボン酸ゃァミノ酸が好適に用いられる。  The organic acid is added to promote the oxidation of the oxidizing agent and perform stable polishing. As the organic acid, one having a function as a proton donor is used, and diamino carboxylic acid is preferably used.
カルボン酸の具体例としては、 クェン酸、 ギ酸、 酢酸、 プロピ才ン酸、 酪酸、 吉草酸、 アクリル酸、 乳酸、.コハク酸, ニコチン酸、 シユウ酸、 マロン酸、 酒石 酸、 リンゴ酸、 グルタル酸、 クェン酸、 マレイン酸、 及びこれらの塩などが挙げ られる。 '  Specific examples of carboxylic acids include citric acid, formic acid, acetic acid, propyl acetic acid, butyric acid, valeric acid, acrylic acid, lactic acid, succinic acid, nicotinic acid, oxalic acid, malonic acid, tartaric acid, malic acid, Examples include glutaric acid, cunic acid, maleic acid, and salts thereof. '
ァミノ酸の具体例としては、 例えば、 L-グル夕ミン酸、 D-グル夕ミン酸、 L-グ ル夕ミン酸一塩酸塩、 L-グル夕ミン酸ナ卜リゥ厶一水和物、 L-グルタミン、 グル タチオン、 グリシルグリシン、 DL-ァラニン、 L-ァラニン、 -ァラニン、 D-ァラ ニン、 Ύ -Ύラニン、 7"-アミノ酪酸、 ど-アミノカプロン酸、 L-アルギニン一塩 酸塩、 L-ァスパラギン酸、 L-ァスパラギン酸一水和物、 L-ァスパラギン酸力リウ 厶、 L-ァスパラギン酸カルシウム三水塩、 D-ァスパラギン酸、 L-チトルリン、 L- トリプトファン、 L-スレオニン、 L-アルギニン、 グリシン、 L-シスチン、 L-シス ティン、 L-システィン塩酸塩一 7]和物、 L-才キシプロリン、 し-ィソロイシン、 L - ロイシン、 L-リジン一塩酸塩、 DL-メチ才ニン、 L -メチ才ニン、 L -才ルチニン塩 酸塩、 L -フエ二ルァラニン、 D-フエニルグリシン、 L -プロリン、 L-セリン、 L-チ 口シン、 L - リンなどが挙げられる。  Specific examples of amino acids include, for example, L-glucamic acid, D-glucamic acid, L-glucamic acid monohydrochloride, L-glucamic acid sodium monohydrate, L-glutamine, glutathione, glycylglycine, DL-alanine, L-alanine, -alanine, D-alanine, Ύ-peranine, 7 "-aminobutyric acid, etc.-aminocaproic acid, L-arginine monohydrochloride Salt, L-aspartic acid, L-aspartic acid monohydrate, L-aspartic acid potassium, L-aspartate calcium trihydrate, D-aspartic acid, L-titrulline, L-tryptophan, L-threonine, L-arginine, glycine, L-cystine, L-cystine, L-cystine hydrochloride [7] hydrate, L-proximal xyproline, shi-isoloucine, L-leucine, L-lysine monohydrochloride, DL-methiculo Nin, L-methyin, L-glutinin hydrochloride, L-Hue Ruaranin, D- phenylglycine, L - proline, L- serine, L- Ji port Shin, L - such as phosphorus and the like.
有機酸の含有量は、 プロトン供与剤として十分な添加効果を得る点から、 C M P用スラリー全体量に対して 0 . 0 1質量%以上が好ましく、 0 . 0 5質量%以 上がより好ましい。 また、 ディヅシングの抑制や適度な研磨速度に調整する点か ら、 5質量%以下が好ましく、 3質量%以下がより好ましい。 The content of the organic acid is preferably at least 0.01% by mass, more preferably at least 0.05% by mass, based on the total amount of the slurry for CMP, from the viewpoint of obtaining a sufficient effect of addition as a proton donor. In addition, it is important to control the dicing and adjust the polishing rate to an appropriate level. Therefore, the content is preferably 5% by mass or less, more preferably 3% by mass or less.
本発明の C M P用スラリーには、 その特性を損なわない範囲内で、 広く一般に C M P用スラリーに添加されている分散剤、 緩衝剤、 粘度調整剤などの種々の添 加剤を含有させてもよい。  The CMP slurry of the present invention may contain various additives such as a dispersant, a buffer, a viscosity modifier and the like, which are widely and generally added to the CMP slurry, as long as the properties are not impaired. .
本発明の C M P用スラリ一は、 一般的な遊離砥粒研磨スラリ一組成物の製造方 法を用いて製造することができる。 すなわち、 分散媒に研磨材粒子を適量混合す る。 必要であるならば保護剤を適量混合する。 この状態では、研磨材粒子表面は 空気が強く吸着しているため、 ぬれ性が悪く凝集状態で存在している。 そこで、 凝集した研磨材粒子を一次粒子の状態にするために粒子の分散を実施する。分散 工程では一般的な分散方法および分散装置を使用することができる。具体的には、 例えば超音波分散機、 各種のビーズミル分散機、 ニーダ一、 ボールミルなどを用 いて公知の方法で実施できる。  The slurry for CMP according to the present invention can be produced by using a general method for producing a free abrasive polishing slurry composition. That is, an appropriate amount of abrasive particles is mixed with the dispersion medium. If necessary, mix the appropriate amount of protective agent. In this state, air is strongly adsorbed on the surface of the abrasive particles, so that the abrasive particles have poor wettability and exist in an aggregated state. Therefore, in order to make the aggregated abrasive particles into primary particles, the particles are dispersed. In the dispersing step, a general dispersing method and dispersing apparatus can be used. Specifically, it can be carried out by a known method using, for example, an ultrasonic disperser, various types of bead mill dispersers, kneaders, ball mills and the like.
本発明の保管液は、 本発明に係る防食剤を水に溶解させた水溶液とすることが 好ましい。保管液全体に対する防食剤濃度の下限は、 好まし〈は 0 . 0 0 0 1質 量%、 より好ましくは 0 . 0 1質量%以上とする。 防食剤濃度が低すぎると充分 な防食効果が得られない場合がある。 なお、 防食剤濃度の上限は特にないが、 た とえば 2 0質量%以下でも充分な防食効果が得られる。 ただし、 本発明に係る防 食剤は水に添加するだけでは十分な防食性を有するまでには至らない場合もある c そこで、 アルカノ一ルァミンを添加し、 p Hをアルカリ性に調節することによつ てプリンおよびプリン誘導体の溶解度を高め、 十分な防食性能が得られる濃度に 調整する必要がある。  The storage solution of the present invention is preferably an aqueous solution in which the anticorrosive agent of the present invention is dissolved in water. The lower limit of the concentration of the anticorrosive agent relative to the whole storage solution is preferably <0.01% by mass, more preferably 0.01% by mass or more. If the concentration of the anticorrosive is too low, a sufficient anticorrosive effect may not be obtained. Although there is no particular upper limit on the concentration of the anticorrosive agent, a sufficient anticorrosive effect can be obtained, for example, at 20% by mass or less. However, in some cases, the anticorrosive agent of the present invention does not have sufficient anticorrosive properties simply by adding it to water.c Therefore, by adding alkanolamine and adjusting the pH to alkaline. Therefore, it is necessary to increase the solubility of purines and purine derivatives, and adjust the concentration to obtain sufficient anticorrosion performance.
半導体ゥェ一ハを保管液に保管する際の環境については特に制限がない。 たと えば C M P後の保管においては、 C M P装置の設置されている環境と同一の環境 で保管するのが一般的である。 なお、 本発明に係る保管液は、 C M P後の保管だ けでなく種々の工程において用いることができる。  There is no particular limitation on the environment in which the semiconductor wafer is stored in the storage solution. For example, for storage after CMP, it is common to store in the same environment where the CMP equipment is installed. The storage solution according to the present invention can be used not only for storage after CMP but also for various processes.
本発明の防食処理液は、 上記保管液と同様、 本発明に係る防食剤を水に溶解さ せた水溶液とすることが好ましい。 この水溶液に適宜、 他の添加剤や水溶性有機 溶媒等を配合してもよい。 保管液全体に対する防食剤濃度の下限は、 好ましくは 0 . 0 0 0 1質量%、 より好ましくは 0 . 0 1質量%以上とする。 防食剤濃度が 低すぎると充分な防食効果が得られない場合がある。 なお、 防食剤濃度の上限は 特にないが、 たとえば 2 0質量%以下でも充分な防食効果が得られる。本発明の 防食処理液は、 図 5中の防食処理工程に適用するほか、 純水リンス工程で適用す ることもできる。 この場合の防食処理液は、 純水に本発明の防食剤を上記した濃 度範囲で溶解させた構成とすることが好ましい。 なお、 本発明の防食処理液は、 C M P後の防食処理だけでなく種々の工程において用いることができる。 The anticorrosion treatment liquid of the present invention is preferably an aqueous solution in which the anticorrosive agent of the present invention is dissolved in water, like the above-mentioned storage solution. Other additives, water-soluble organic solvents, and the like may be appropriately added to this aqueous solution. The lower limit of the concentration of the anticorrosive in the whole storage solution is preferably 0.001% by mass, more preferably 0.01% by mass or more. Anticorrosive concentration If it is too low, a sufficient anticorrosion effect may not be obtained. Although there is no particular upper limit on the concentration of the anticorrosive, a sufficient anticorrosive effect can be obtained, for example, at 20 mass% or less. The anticorrosion treatment solution of the present invention can be applied to the anticorrosion treatment step shown in FIG. 5 or to a pure water rinsing step. In this case, the anticorrosion treatment liquid preferably has a configuration in which the anticorrosion agent of the present invention is dissolved in pure water in the above concentration range. The anticorrosion treatment solution of the present invention can be used not only in the anticorrosion treatment after CMP but also in various steps.
上記した化学的機械的研磨用スラリー、 防食処理液および保管液は、 金属膜露 出面を有する半導体ゥエー八の処理に用いられるものであるが、 金属膜が銅膜ま たは銅を主成分とする銅合金膜である場合、 本発明の効果はより顕著に発揮され る o  The above-mentioned slurry for chemical mechanical polishing, anticorrosion treatment solution, and storage solution are used for treating semiconductors A having a metal film-exposed surface, and the metal film contains a copper film or copper as a main component. The effect of the present invention is more remarkably exhibited when the copper alloy film is
本発明の保管液および防食液には、 適宜、 添加剤や有機溶媒等を配合してもよ い。 たとえば、 防食剤の溶解性を向上させるために p H調節用の酸や塩基を加え てもよく、 防食性能をさらに向上させる目的で、 水や他の配合成分と混和性のあ る水溶性有機溶媒を用いることができる。  The storage solution and anticorrosion solution of the present invention may optionally contain additives, organic solvents and the like. For example, an acid or base for adjusting the pH may be added to improve the solubility of the anticorrosive, and a water-soluble organic compound miscible with water or other compounding components may be added to further improve the anticorrosion performance. Solvents can be used.
本発明に係る防食剤は、 レジス卜等の剥離液へ適用することもできる。 この場 合、 剥離成分として、 アルカノールァミンやフヅ化水素酸アンモニゥムを含み、 さらに水を含む構成の剥離液とすることが好ましい。  The anticorrosive according to the present invention can also be applied to a stripping solution such as a resist. In this case, it is preferable to use a stripping solution containing alkanolamine or ammonium hydrofluoride as a stripping component and further containing water.
アルカノ一ルァミンとしては、 具体的には、 モノエタノールァミン、 ジェタノ —ルァミン、 N—ェチルアミノエ夕ノール、 N—メチルアミノエタノール、 N— メチルジェ夕ノールァミン、 ジメチルアミノエ夕ノール、 2— ( 2—アミノエ卜 キシ) エタノール、 1 一アミノー 2—プロパノール、 トリエタノールアミン、 モ ノプロパノ一ルァミン、 ジブタノ一ルァミン等が例示される。 このうち、 モノエ タノ一ルァミン、 N—メチルアミノエタノールが特に好ましい。  Examples of the alkanoamine include monoethanolamine, jetano-lamine, N-ethylaminoethanol, N-methylaminoethanol, N-methylgenolamine, dimethylaminoethanol, and 2- (2-aminoethylamine. (Toxi) Ethanol, 1-amino-2-propanol, triethanolamine, monopropanolamine, dibutanolamine and the like are exemplified. Of these, monoethanolamine and N-methylaminoethanol are particularly preferred.
上記アミン系剥離成分では除去困難な残渣等を除去する場合は、 剥離成分とし てフッ化水素酸塩を用いることができる。具体的には、 フヅ化アンモニゥム等が 好適に用いられる。 フッ化水素酸塩を使用した場合、 レジスト側壁に付着する堆 積物等を除去することができる。  When removing residues and the like that are difficult to remove with the above-mentioned amine-based release component, hydrofluoric acid salt can be used as the release component. Specifically, fluoride ammonium or the like is preferably used. When hydrofluoric acid is used, deposits and the like adhering to the resist side wall can be removed.
剥離液中の剥離成分の上限は 9 5質量%が好ましく、 特に 8 5質量%が好まし い。 また下限は 1質量%が好ましく、 特に 1 0質量%が好ましい。 このような配 合量とすることにより、 防食性能を良好に維持しつつ、 レジスト膜やエッチング 残渣を一層効率よく除去することができる。 The upper limit of the release component in the release solution is preferably 95% by mass, and particularly preferably 85% by mass. The lower limit is preferably 1% by mass, and particularly preferably 10% by mass. Such a distribution By using the total amount, the resist film and the etching residue can be more efficiently removed while maintaining good anticorrosion performance.
剥離液中の水の割合の上限は 9 0質量%が好ましく、 特に 8 0質量。 /0が好まし い。 また下限は 1質量%が好ましく、 特に 5質量%が好ましい。 上記のような配 合量どすることにより、 剥離成分であるアル力ノ一ルァミンの機能が充分に発揮 され、 剥離性能および防食性能が一層良好となる。 The upper limit of the proportion of water in the stripping solution is preferably 90% by mass, particularly 80% by mass. / 0 is preferred. The lower limit is preferably 1% by mass, and particularly preferably 5% by mass. By controlling the amount as described above, the function of the peeling component alkanolamine is sufficiently exhibited, and the peeling performance and the anticorrosion performance are further improved.
本発明の防食剤を用いた剥離液には、 水溶性有機溶媒を含有しても良い。 水溶 性有機溶媒としては前述したのと同様のものを用いることができる。水溶' t生有機 溶媒の配合量の上限は、 8 0質量%が好ましく、 特に 7 0質量%が好ましい。 ま た下限は 5質量%が好ましく、特に 1 0質量%が好ましい。 このような配合量と することにより、 剥離性能と防食性能のバランスがー層良好となる。  The stripping solution using the anticorrosive of the present invention may contain a water-soluble organic solvent. As the water-soluble organic solvent, the same ones as described above can be used. The upper limit of the amount of the water-soluble raw organic solvent is preferably 80% by mass, particularly preferably 70% by mass. The lower limit is preferably 5% by mass, particularly preferably 10% by mass. By using such an amount, the balance between the peeling performance and the anticorrosion performance becomes better.
上記剥離液は、 半導体基板上の不要物を被剥離物とするものである。 半導体基 板上の不要物とは、 半導体装置の製造プロセス中に生じた種々の不要物をいい、 レジスト膜、 ドライエッチング後のエッチング残渣のほか、 化学的に変質したレ ジスト膜等も含む。特に、 被剥離物が、 金属膜露出面を含む半導体基板上のレジ スト膜および/またはエッチング残渣である場合、 より効果的である。 さらに、 上記金属膜が銅膜である場合、 本発明の防食剤の防食作用がより効果的に発揮さ れる o  The above-mentioned stripping liquid is used to turn an unnecessary object on the semiconductor substrate into an object to be stripped. The unnecessary substances on the semiconductor substrate refer to various unnecessary substances generated during a semiconductor device manufacturing process, and include a resist film, an etching residue after dry etching, and a chemically modified resist film. In particular, it is more effective when the object to be peeled is a resist film and / or an etching residue on the semiconductor substrate including the metal film exposed surface. Further, when the metal film is a copper film, the anticorrosive action of the anticorrosive agent of the present invention is more effectively exhibited.o
上記剥離剤液は種々のレジス卜の剥離に使用することができ、 芳香族化合物か らなる K r F用レジス卜や、脂環式ァクリルポリマー等の A r F用レジストに適 用することができる。 たとえば、 (i )ナフトキノンジアジド化合物とノボラック 樹脂を含有するポジ型レジス卜、 (i i )露光により酸を発生する化合物、 酸により 分解しアル力リ水溶液に対する溶解性が増大する化合物及びアル力リ可溶性樹月旨 を含有するポジ型レジスト、 (ii i )露光により酸を発生する化合物、 酸により分 解しアル力リ水溶液に対する溶解性が増大する基を有するアル力リ可溶性樹脂を 含有するポジ型レジス卜、 (iv)光により酸を発生する化合物、 架橋剤及びアル力 リ可溶性樹脂を含有するネガ型レジス卜等に対して使用することができる。 次に、 本発明の防食剤を用いた剥離液の適用例として、 シ  The above-mentioned stripping solution can be used for stripping various resists, and should be applied to KrF resists made of aromatic compounds and ArF resists such as alicyclic acryl polymers. Can be. For example, (i) a positive resist containing a naphthoquinonediazide compound and a novolak resin, (ii) a compound that generates an acid upon exposure, a compound that is decomposed by an acid to increase the solubility in an aqueous solution of an aqueous solution, and (Iiii) a compound capable of generating an acid upon exposure, and a positive resist containing a soluble resin having a group which is decomposed by the acid and increases the solubility in an aqueous solution of an aqueous solution. It can be used for a resist, (iv) a compound which generates an acid by light, a cross-linking agent and a negative resist containing a soluble resin. Next, as an application example of the stripping solution using the anticorrosive agent of the present invention,
セスにより銅配線上の層間接続プラグを形成する例を示す。 まず図 9 ( a ) のように、 トランジスタ等の素子を形成した半導体基板 (不図 示) 上にシリコン酸化膜 1、 シリコン窒化膜 2、 およびシリコン酸化膜 3を成膜 した後、 化学的機械的研磨 ( C M P ) を利用した公知のダマシンプロセスを用い てバリアメタル膜 4および銅膜 5からなる銅配線を形成し、 さらにその上に膜厚 5 0〜 1 0 0 n m程度のシリコン窒化膜 6および膜厚 6 0 0〜1 O O O n m程度 の層間絶縁膜 (シリコン酸化膜又は低誘電率膜) 7を形成する。銅膜 5の膜厚は 任意に選択されるが、 隣接配線間の寄生容量を低減する観点からは膜厚をたとえ ば 3 5 0 n m以下とすることが好ましい。銅配線の膜厚を薄くした場合、 銅配線 層全体に対する腐食層の厚みが相対的に大きくなり、 銅表面の腐食による配線抵 抗の増大が特に問題となるが、 本発明の防食剤を用いた剥離液を用いれば、 かか る問題を解消しつつ膜厚を薄〈することが可能となる。 なお、本実施形態では、 シリコン窒化膜 6の膜厚を 5 0〜1 0 0 n m程度としているが、 これより厚くし てエッチング阻止膜としての機能を高めてもよい。 An example in which an interlayer connection plug on a copper wiring is formed by a process. First, as shown in Fig. 9 (a), a silicon oxide film 1, a silicon nitride film 2, and a silicon oxide film 3 are formed on a semiconductor substrate (not shown) on which elements such as transistors are formed. A copper interconnect composed of a barrier metal film 4 and a copper film 5 is formed by a known damascene process using chemical polishing (CMP), and a silicon nitride film 6 having a thickness of about 50 to 100 nm is formed thereon. Then, an interlayer insulating film (silicon oxide film or low dielectric constant film) 7 having a thickness of about 600 to 1 OOO nm is formed. The thickness of the copper film 5 is arbitrarily selected, but is preferably, for example, 350 nm or less from the viewpoint of reducing the parasitic capacitance between adjacent wirings. When the thickness of the copper wiring is reduced, the thickness of the corroded layer relative to the entire copper wiring layer becomes relatively large, and an increase in wiring resistance due to corrosion of the copper surface becomes a particular problem. The use of the stripping solution can reduce the film thickness while solving such a problem. In the present embodiment, the thickness of the silicon nitride film 6 is set to about 50 to 100 nm, but it may be made thicker to enhance the function as an etching stopper film.
次いで層間絶縁膜 7の上に、 所定の形状にパ夕一ニングしたレジス卜膜 8を設 ける (図 9 ( b ) ) 。  Next, a resist film 8 patterned into a predetermined shape is provided on the interlayer insulating film 7 (FIG. 9 (b)).
次にレジス卜膜 8をマスクとしてシリコン窒化膜 6が露出するまで層間絶縁膜 7をドライエッチングし、 スルーホール 1 0を形成する (図 9 ( c ) ) 。 このと き、 スルーホール 1 0の内壁にエッチング残渣 1 1が付着する。 スルーホールの 開口径はたとえば 0 . 2〃 m程度とする。 エッチングガスとしては、 シリコン窒 化膜よりも層間絶縁膜をより速くェヅチングできるガスを用いることが好ましい。 ここで、 シリコン窒化膜 6は銅の拡散防止機能のぼか、 エッチング阻止膜とし ての機能も有しているのであるが、 図 9 ( c ) に示すように、 シリコン窒化膜 6 上で制御性良く ドライエッチングを停止できないことがある。 これは以下の理由 による。本実施形態のようなプロセスでは、 一般に、 半導体ゥエーハ上に種々の 開口怪のスルーホールが形成される。 ところが、 小さい開口径のホールではマイ クロローデイング効果によりエッチングの進行が遅くなる。 このため、 スルーホ 一ル形成のためのェッチングに一定程度才一バーエツチング時間を設けることが 必要となり、 これにより、 一部のスルーホールにおいてシリコン窒化膜 6がエツ チングを受け、 銅膜 5の一部が露出することとなる。 また、 たとえば銅膜 5の上 面にディッシングとよばれる凹部が生じると、 シリコン窒化膜 6の薄膜部が発生 し、 この箇所でシリコン窒化膜 6がェッチングされて銅膜 5の一部が露出するこ ともある (図 9 ( c ) ) 。 図 9 ( a ) に示す工程でシリコン窒化膜 6を厚く形成 しておけば銅膜 5の露出を防止することもできるが、 この場合、 隣接する銅配線 の配線間容量が大きくなり、 半導体素子の高速動作が阻害されるという弊害が生 じゃすい。 Next, the interlayer insulating film 7 is dry-etched using the resist film 8 as a mask until the silicon nitride film 6 is exposed, thereby forming a through hole 10 (FIG. 9 (c)). At this time, the etching residue 11 adheres to the inner wall of the through hole 10. The opening diameter of the through hole is, for example, about 0.2 m. As an etching gas, it is preferable to use a gas that can etch an interlayer insulating film faster than a silicon nitride film. Here, the silicon nitride film 6 also has a function of preventing diffusion of copper and a function as an etching stop film. However, as shown in FIG. 9 (c), the silicon nitride film 6 is controlled on the silicon nitride film 6. Sometimes dry etching cannot be stopped well. This is for the following reasons. In the process as in the present embodiment, various through holes are generally formed on the semiconductor wafer. However, etching proceeds slowly in a hole with a small opening diameter due to the micro-loading effect. For this reason, it is necessary to provide a certain amount of etching time for the etching for forming the through-hole, and as a result, the silicon nitride film 6 is etched in some of the through-holes and the copper film 5 The part will be exposed. Also, for example, on the copper film 5 When a concave portion called dishing occurs on the surface, a thin film portion of the silicon nitride film 6 is generated, and the silicon nitride film 6 is etched at this portion, and a part of the copper film 5 may be exposed (see FIG. 9 (c)). )). If the silicon nitride film 6 is formed thick in the step shown in FIG. 9 (a), it is possible to prevent the copper film 5 from being exposed.However, in this case, the capacitance between adjacent copper wirings increases, and the semiconductor element The disadvantage is that the high-speed operation is hindered.
エッチング終了後、 酸素プラズマァヅシングによりレジス卜膜 8の一部を除去 した後、本発明の防食剤を含む剥離液を用いて剥離処理を行う。 この剥離処理に より、 アツシングで除去しきれなかったレジス卜膜ゃェヅチング残渣 1 1が除去 される。前述したように、 エッチング後、 少なくとも一部のスルーホールにおい て銅膜 5が露出していることから、 剥離液には銅に対する防食性能が必要となる が、 本発明の防食剤を用いた剥離液を用いることにより、 銅膜 5に損傷を与える ことなくレジス卜膜およびエッチング残渣 1 1を効果的に除去することができる c 剥離処理を終了した状態を図 1 0 ( a ) に示す。  After the etching is completed, a part of the resist film 8 is removed by oxygen plasma pacing, and then a stripping treatment is performed using a stripping solution containing the anticorrosive agent of the present invention. By this stripping treatment, the resist film etching residue 11 that could not be removed by asshing is removed. As described above, since the copper film 5 is exposed in at least some of the through holes after etching, the stripping solution needs to have anticorrosion performance against copper, but the stripping using the anticorrosive of the present invention is required. FIG. 10 (a) shows a state in which the resist film and the etching residue 11 can be effectively removed without damaging the copper film 5 by using the liquid. C The stripping process is completed.
その後、 上記したエッチングとエッチングガスを変え、 シリコン窒ィ匕膜 6のェ ツチングを行う。 このとき、 スルーホール 1 0の内壁にエッチング残渣 1 2が付 着する (図 1 0 ( b ) ) 。 このエッチング残渣 1 2を剥離除去するため、 上記し た剥離液を用いて、 再度、 剥離処理を行う。 この剥離処理を行う段階では、 スル —ホール 1 0底部に銅膜 5が露出しているが、 本発明の防食剤を含む剥離液を用 いることにより、銅膜 5に損傷を与えることなくエッチング残渣 1 2を除去でき る (図 1 0 ( c ) ) 。  Then, the etching of the silicon nitride film 6 is performed by changing the above-mentioned etching and etching gas. At this time, the etching residue 12 adheres to the inner wall of the through hole 10 (FIG. 10 (b)). In order to strip and remove the etching residue 12, a stripping treatment is performed again using the stripping solution described above. At the stage of performing the stripping process, the copper film 5 is exposed at the bottom of the through hole 10. However, by using the stripping solution containing the anticorrosive agent of the present invention, the copper film 5 is etched without damaging the copper film 5. The residue 12 can be removed (Fig. 10 (c)).
その後、 スルーホール内部に T iおよび T i Nがこの順で積層したバリアメタ ル膜 1 4およびタングステン膜 1 5を成膜し、 次いで C M Pによる平坦化を行う ことにより層間接続プラグを形成すること できる (図 1 0 ( d ) ) 。  After that, a barrier metal film 14 and a tungsten film 15 in which Ti and TiN are stacked in this order inside the through hole are formed, and then the interlayer connection plug can be formed by planarization by CMP. (Figure 10 (d)).
以下、 実施例により本発明についてさらに詳細に説明する。 なお、 各成分の配 合量は、特にことわりがない限り防食液や剥離液全体の量を基準とする。  Hereinafter, the present invention will be described in more detail with reference to examples. The amount of each component is based on the total amount of the anticorrosive solution and the stripping solution unless otherwise specified.
実施例 1  Example 1
本実施例は、 本発明に係る防食剤を C M P後の防食処理に適用した例である。 以下、 図 7および図 8を参照して本実施例で行ったプロセスの概要を説明する。 はじめに C u— C M P工程 7 0を行った (図 7 ) 。 この工程に対応する状態を 図 8 ( a ) 、 ( b ) に示す。 まず、 図 8 ( a ) に示すように、 シリコンゥエーハ 上にシリコン窒化膜 8 0およびシリコン酸化膜 8 2をこの順で形成し、 ついで、 ドライエツチングにより、 所定の形状にバタ一ニングされた複数の配線溝を形成 した。 次に全面に T a Nからなるバリアメタル膜 8 4をスパヅタリング法により 堆積した後、 シ一ド C u 8 5およびメツキ C u 8 6を形成した。 つづいてゥェ一 ハ表面を C M P法により研磨し、 図 8 ( b ) のように銅配線を形成した。 This embodiment is an example in which the anticorrosive agent according to the present invention is applied to anticorrosion treatment after CMP. Hereinafter, an outline of the process performed in the present embodiment will be described with reference to FIGS. First, a Cu—CMP process 70 was performed (FIG. 7). The state corresponding to this step is shown in FIGS. 8 (a) and 8 (b). First, as shown in FIG. 8 (a), a silicon nitride film 80 and a silicon oxide film 82 were formed in this order on a silicon wafer, and then patterned into a predetermined shape by dry etching. A plurality of wiring grooves were formed. Next, after a barrier metal film 84 of TaN was deposited on the entire surface by a sputtering method, a seed Cu 85 and a plating Cu 86 were formed. Subsequently, the wafer surface was polished by the CMP method to form a copper wiring as shown in FIG. 8 (b).
次いで半導体ゥエー八表面に付着した研磨砥粒、研磨屑等の粒子、 金属、 スラ リ一を除去するため、 以下の工程を行った。 まずスクラブ洗浄工程 7 2を行った c すなわち、 回転するブラシに電解イオン水よりなる洗浄液をかけながらブラシを 移動させて粒子汚染を除去した。 次いでスピン洗浄工程 7 4を行った。 この工程 では、 半導体ゥェ一ハを回転させながら洗浄液としてシユウ酸水溶液を吹きかけ、 金属汚染すなわち表面の酸化銅を除去し、 純水でリンスした。 Next, the following steps were performed in order to remove particles such as polishing abrasive grains and polishing debris, metal, and slurry attached to the surface of the semiconductor A8. First, the scrub cleaning step 72 was performed c, that is, the brush was moved while applying a cleaning liquid composed of electrolytic ionized water to the rotating brush to remove particle contamination. Next, a spin cleaning step 74 was performed. In this process, an aqueous solution of oxalic acid was sprayed as a cleaning solution while rotating the semiconductor wafer to remove metal contamination, that is, copper oxide on the surface, and rinsed with pure water.
次に防食処理工程 7 5を行った。 この工程は、 ゥエーハ表面が空気に接触しな いように、 上記スピン洗浄工程 7 4の後に連続して行う。 すなわち、 ゥエーハ表 面を乾燥させることなく防食処理液を吹き付け、 防食処理を行う。 これにより、 ゥエーハ表面の金属膜 (銅膜) の酸化を防止でき、 酸化されていない金属清浄面 に防食剤を付着せしめることができる。 なお、 防食処理は、 スピン洗浄と同様、 ゥエーノ \を所定の回転数で回転させつつゥェ一ノ \表面に処理液を吹き付けること により行った。  Next, an anticorrosion treatment step 75 was performed. This step is performed continuously after the spin cleaning step 74 so that the wafer surface does not come into contact with air. That is, the anticorrosion treatment is performed by spraying the anticorrosion treatment liquid without drying the surface of the wafer. As a result, oxidation of the metal film (copper film) on the wafer surface can be prevented, and an anticorrosive can be attached to a clean metal surface that has not been oxidized. In addition, the anticorrosion treatment was performed by spraying the treatment liquid onto the surface of the phenol while rotating the phenol at a predetermined number of rotations, similarly to the spin cleaning.
本実施例では、 防食処理工程 7 5で本発明の防食剤を含む防食処理液を用いる c 用いた防食処理液は、 以下の組成を有する。 In this embodiment, anticorrosive treating solution used c using an anticorrosive treatment liquid containing an anticorrosive agent of the present invention in anticorrosion treatment step 7 5 has the following composition.
尿酸 0 . 0 5質量%  Uric acid 0.05 mass%
N—メチルアミノエ夕ノール 0 . 0 1質量%  N-methylaminoethanol 0.01% by mass
水 残部  Water
この防食液を、 半導体ゥェ一ハを回転させながら 1 リヅトル/分の流量で 1 0 秒間、 ゥエーハ表面に吹きかけ、 C u膜の防食を行った。  The anticorrosion solution was sprayed on the wafer surface at a flow rate of 1 liter / min for 10 seconds while rotating the semiconductor wafer to prevent corrosion of the Cu film.
その後、 スピンリンス■乾燥工程 7 6で、 純水で 1 5秒間リンスを行った後、 乾燥させた。 次いで成膜工程 7 8 (図 7 ) で、 図 8 ( c ) のようにシリコン窒化膜 8 8を成 膜し、 さらにその上にシリコン酸化膜 8 9を成膜した。 その後、 上層配線を形成 して半導体装置を完成した。得られた半導体装置は設計通りの性能を示した。 実施例 2 Thereafter, in a spin rinse-drying step 76, the substrate was rinsed with pure water for 15 seconds, and then dried. Next, in a film forming step 78 (FIG. 7), a silicon nitride film 88 was formed as shown in FIG. 8C, and a silicon oxide film 89 was formed thereon. After that, an upper layer wiring was formed to complete the semiconductor device. The obtained semiconductor device showed the designed performance. Example 2
シリコンゥェ一ハ上の全面に銅めつき膜を形成した後、 図 7に示す手順にした がって C u— C M P 7 0、 スクラブ洗浄 7 2、 スピン洗浄 7 4、 防食処理 7 5、 スピンりンス +乾燥 7 6、 S i 3 N4膜成膜 7 8を順次行い試料を作製した。得ら れた試料について、 密着性の測定により防食性の評価を行った。 スクラブ洗浄ェ 程 7 2およびスピン洗浄工程 7 4は、 実施例 1 と同様にして行った。防食処理 7 5においては、 以下の 1 0種類の防食処理液を用い、 1 0種類の試料を作製した c After forming a copper plating film on the entire surface of the silicon wafer, Cu-CMP 70, scrub cleaning 72, spin cleaning 74, anticorrosion treatment 75, and spinning according to the procedure shown in Fig. 7. A sample was prepared by sequentially performing the following steps: sensing + drying 76 and forming a Si 3 N 4 film 78. The anticorrosion properties of the obtained samples were evaluated by measuring the adhesion. The scrub cleaning step 72 and the spin cleaning step 74 were performed in the same manner as in Example 1. In the anticorrosion treatment 75, 10 types of samples were prepared using the following 10 types of anticorrosion treatment solutions.
表 1 table 1
Figure imgf000025_0001
Figure imgf000025_0001
防食処理後、 所定の日数、 大気下に放置し、 次いで、 その上に CVD法により シリコン窒化月奠 (膜厚 50 n m) を成膜した。 放置日数は、 0日 (直後) 、 1曰, 3日とした。  After the anti-corrosion treatment, it was left in the air for a predetermined number of days, and then silicon nitride (50 nm in thickness) was formed thereon by CVD. The number of days left unattended was 0 days (immediately), 1 day, and 3 days.
上記のように作製した試料 1〜10について、 C u表面の変質の程度を評価す るため Cu/シリコン窒化膜界面の密着性評価を行った。 評価は、 シリコン窒ィ匕 膜に 1 mmピッチで碁盤目状にラインを入れた後、 シリコン窒化膜上に粘着テ一 プを貼り付けてこれを引き剥がし、 1 00個の碁盤目中の剥がれた碁盤目の数を 計数することにより行った。剥がれが多〈界面密着性が劣るものは、 Cu表面の 腐食が進んでいると考えられる。評価結果を表 2に示す c For samples 1 to 10 prepared as described above, the adhesion at the Cu / silicon nitride film interface was evaluated to evaluate the degree of deterioration of the Cu surface. The evaluation was performed by laying out lines in a grid pattern at a pitch of 1 mm on the silicon nitride film, then attaching an adhesive tape on the silicon nitride film, peeling it off, and peeling it out of the 100 grids. This was done by counting the number of grids. Excessive peeling <If the interface adhesion is poor, the Cu surface It is considered that the corrosion is progressing. Table 2 shows the evaluation results.
表 2  Table 2
Figure imgf000026_0001
Figure imgf000026_0001
上記結果から、 本発明に係る防食剤を用いることにより、 Cu表面の腐食が効 果的に抑制され、 C u/シリコン窒化膜界面の密着性が向上することが確認され た。  From the above results, it was confirmed that by using the anticorrosive agent according to the present invention, corrosion on the Cu surface was effectively suppressed and the adhesion at the Cu / silicon nitride film interface was improved.
実施例 3  Example 3
シリコン基板上の層間絶縁膜中に幅 0. 28〃(71、 厚み3500171、 長さ 1 0 0〃 mのダマシン銅配線を形成し、 エレクトロンマイグレーション耐性を言平価し o  Form a damascene copper interconnect of 0.28〃 (71, thickness 3500171 and length 100〃 m) in the interlayer insulating film on the silicon substrate.
銅配線は、 めっき法により銅膜を形成した後、 CMPを行うことにより形成し た。 次いで図 7に示す手順にしたがい、 スクラブ洗浄 72から層間膜成膜 79ま での工程を実施した。 防食処理液の組成以外は実施例 1と同様にして行った。 次 いで S i 3N4膜および層間膜中にホールを形成し、 その内部にプラグ金属を埋め 込み、 さらにこのプラグと接続するパッ ドを形成することにより、 配線の両端に 導通部を形成した。 The copper wiring was formed by forming a copper film by plating and then performing CMP. Next, steps from scrub cleaning 72 to interlayer film formation 79 were performed according to the procedure shown in FIG. Except for the composition of the anticorrosion treatment solution, the same procedure was performed as in Example 1. Next, holes were formed in the Si 3 N 4 film and interlayer film, a plug metal was buried inside, and a pad was formed to connect to this plug.Conducting portions were formed at both ends of the wiring. .
上記工程中、 防食処理工程 75では、 以下に示す組成の防食液を用いた。 W In the above anticorrosion treatment step 75, an anticorrosion solution having the following composition was used. W
25 表 3 25 Table 3
Figure imgf000027_0001
Figure imgf000027_0001
各実験 NO. について複数の試料を作製し、 各試料の配線両端のパッド間に電 流を流し続け、 配線が断線するまでのエレクトロンマイグレーションライフタイ 厶を測定した。評価結果を図 12に示す。尿酸処理をしたものは、 BTA処理し たものと同様のライフタイムを示した。  A plurality of samples were prepared for each experiment No., and a current was continuously applied between the pads at both ends of the wiring of each sample, and the electron migration life time until the wiring was disconnected was measured. Figure 12 shows the evaluation results. Those treated with uric acid showed the same lifetime as those treated with BTA.
実施例 4  Example 4
M I T I法に準拠した生分解性試験法により、 表 3に示す供試物質の生分解性 を評価した。無機培地に供試物質を 1 OOmgZl.になるように添力!]し、 これに 活性汚泥を接種し、 25 °Cで培養して閉鎖系酸素消費量測定装置を用いて酸素の 消費量、 ならびに供試物質の残存量を測定し、酸素消費量から分解率を求め、 以 下の評価基準にしたがって生分解性を判定した。  The biodegradability of the test substances shown in Table 3 was evaluated by a biodegradability test method based on the MITI method. Activated sludge was inoculated with the test substance in an inorganic medium so that the concentration of the test substance became 1 OOmgZl.], Cultured at 25 ° C, and the oxygen consumption was measured using a closed system oxygen consumption measuring device. In addition, the residual amount of the test substance was measured, the decomposition rate was determined from the oxygen consumption, and the biodegradability was determined according to the following evaluation criteria.
◎…分解率が 60%以上 ◎… Decomposition rate is 60% or more
〇…分解率が 40%以上 60%未満 〇… Decomposition rate is 40% or more and less than 60%
△· - '分解率が 10 %以上 40 %未満 △ ·-'Decomposition rate is 10% or more and less than 40%
X…分解率が 10%未満 X: Decomposition rate is less than 10%
評価結果を表 4に示す。 Table 4 shows the evaluation results.
表 4 Table 4
Figure imgf000028_0001
Figure imgf000028_0001
N M A N—メチルアミノエタノ ル  N M A N—Methylaminoethanol
M E A モノエタノールァミン  M E A Monoethanolamine
B T A ベンゾトリアゾ一ル  B T A Benzotriazole
実施例 5  Example 5
銅配線上のスルーホール形成プロセスに、 本発明に係る剥離剤組成物を適用し、 剥離性および防食性の評価を行った。  The release agent composition according to the present invention was applied to a process of forming a through hole on a copper wiring, and the releasability and corrosion resistance were evaluated.
評価に供する試料は、 図 9〜図 1 0 ( c ) に示したものと同様のプロセスにし たがって作成した。 まずシリコンゥエーハ上に銅配線を形成した後、 その上に膜 厚 9 0 n mのシリコン窒化膜および膜厚 9 0 0 n mの層間絶縁膜 ( H S Q及び M S Qなどの低誘電率膜) を成膜した。 次にポジ型レジスト膜をスヒンナー塗布し レジスト膜を形成した。 レジス卜膜材料としては、 K r F用ポジ型レジス卜材料 である P E X 4 (東京応化工業株式会社製) を用いた。 このレジス卜膜を、 マス クパターンを介して露光し、 テ卜ラメチルアンモニゥムヒドロキシド水溶液を用 し、て現像処理しレジス卜パターンを得た。  The samples to be evaluated were prepared according to the same processes as those shown in Figs. 9 to 10 (c). First, copper wiring is formed on the silicon wafer, and then a 90-nm-thick silicon nitride film and a 900-nm-thick interlayer insulating film (low-k film such as HSQ and MSQ) are formed on top of it. did. Next, a positive resist film was applied by a shiner to form a resist film. As the resist film material, PEX4 (manufactured by Tokyo Ohka Kogyo Co., Ltd.), which is a positive resist material for KrF, was used. The resist film was exposed through a mask pattern, and developed using an aqueous solution of tetramethylammonium hydroxide to obtain a resist pattern.
このレジスト膜をマスクとしてシリコン窒化膜が露出するまで層間絶縁膜をド ライエッチングし、 開口径 0 . 2〃mのスルーホールを形成した。 エッチングガ スとしては、 フル才口カーボン系のガスを用いた。 エッチング終了後、酸素ブラ ズマアツシングによりレジス卜膜の一部を除去した後、 表 5中の N O . 1に示す 剥離剤組成物を用いて剥離処理を行つた。  Using this resist film as a mask, the interlayer insulating film was dry-etched until the silicon nitride film was exposed to form a through hole having an opening diameter of 0.2 μm. As an etching gas, a full-year carbon-based gas was used. After the etching was completed, a part of the resist film was removed by oxygen plasma ashes, and then a release treatment was performed using a release agent composition shown in Table 5.1 of NO.
次に、 エッチングガスを変え、 シリコン窒化膜のエッチングを行い、 スルーホ 一ル底部に銅配線を露出させた。 このエッチングにより生じたエツチング残渣を 除去するため、 前記した剥離処理で用いたものと同じ剥離剤組成物 (表 5中の N 0. 1 ) を用い、 再度、 剥離処理を行った。 Next, the etching gas was changed and the silicon nitride film was etched to expose the copper wiring at the bottom of the through hole. The etching residue generated by this etching is For removal, the same release agent composition (N 0.1 in Table 5) as used in the above-described release treatment was used, and the release treatment was performed again.
同様の処理を、 表 5中の NO. 2-1 7の剥離剤組成物を用いて行い、 合計で 1 7種類の試料を作成した。  The same treatment was performed using the release agent composition of No. 2-17 in Table 5, and a total of 17 kinds of samples were prepared.
以上のように処理を行ったゥェ一ハを純水でリンス処理した後、 S EM (走査 型電子顕微鏡) による断面観察を行い、 ①レジス卜膜およびエッチング残渣の剝 離性および②銅膜に対する防食性を評価した。 評価の基準は以下のとおりである c (剥離性)  After the wafer treated as described above is rinsed with pure water, the cross section is observed with a scanning electron microscope (SEM). 1) Separation of resist film and etching residue and 2) Copper film The anti-corrosion properties of the samples were evaluated. The evaluation criteria are as follows. C (peelability)
レジス卜膜およびエッチング残渣の残存状況を観察し、 以下の 4段階で評価し  Observe the residual state of the resist film and the etching residue, and evaluate in the following four steps.
◎…残存が全く認められなかった。 A: No residual was observed.
ο· · '残存がほとんど認められなかった。  ο · · 'There was almost no residual.
△…残存量少。  Δ: The remaining amount is small.
X…残存量多。  X: The remaining amount is large.
(防食性)  (Anticorrosion)
銅膜表面の腐食状況を観察し、 以下の 4段階で評価した。  The state of corrosion of the copper film surface was observed and evaluated according to the following four levels.
©· · '銅膜の腐食がまったく認められなかった。  © · · 'No corrosion of the copper film was observed.
O…銅膜の腐食がわずかに認められた。  O: Slight corrosion of the copper film was observed.
△·'·銅膜の腐食が認められた。  △ · '· Copper film corrosion was observed.
X…銅膜の腐食が顕著であつた。  X: The corrosion of the copper film was remarkable.
(H SQダメージ)  (H SQ damage)
低誘電率膜として H SQ (ハイ ドロジェンシルセスキ才キサン) を用いた場合 の H SQ膜表面の状態を観察し、 以下の 4段階で評価した。  The state of the surface of the HSQ film when HSQ (hydrogensilsesquioxane) was used as the low dielectric constant film was observed, and evaluated according to the following four grades.
◎…ダメージが全く認められなかった。  A: No damage was observed.
〇…ダメージがわずかに認められた。 〇: Damage was slightly observed.
厶…ダメ—ジが認められた。  MM ... no damage.
X…ダメ一ジが顕著であった。 (MSQダメージ) W X: Damage was remarkable. (MSQ damage) W
28 低誘電率膜として MS Q (メチルシルセスキ才キサン) を用いた場合の MS Q 膜表面の状態を観察し、 以下の 4段階で評価した。 28 When the MSQ (methyl silsesquioxane) was used as the low dielectric constant film, the state of the MSQ film surface was observed and evaluated according to the following four grades.
◎…ダメージが全く認められなかった。  A: No damage was observed.
〇…ダメージがわずかに認められた。  〇: Damage was slightly observed.
△…ダメージが認められた。  Δ: Damage was observed.
X…ダメージが顕著であった。  X: The damage was remarkable.
表 5 Table 5
Figure imgf000030_0001
Figure imgf000030_0001
* 1 水の配合量で 「残部」 とあるのは、 1 00質量%から、 防食剤および剥離 剤の配合量を差し引いた残りをいう。  * 1 “Remainder” in the amount of water is the remainder obtained by subtracting the amounts of the anticorrosive and the release agent from 100% by mass.
* 2 NMA E N—メチルアミノエ夕ノール  * 2 NMA E N—Methylaminoethanol
ME A モノエタノールァミン  ME A Monoethanolamine
BTA ベンゾトリアゾール  BTA benzotriazole
以上のように、 本発明の剥離剤組成物は優れた剥離性能および防食性能を有し ていることがわかる。 なお、 本実施例はシングルダマシンプロセスに本発明を適 W As described above, it can be seen that the release agent composition of the present invention has excellent release performance and anticorrosion performance. In this embodiment, the present invention is applied to a single damascene process. W
29 , 用したものであるが、 いわゆるデュアルダマシンプロセスにも本発明を適用でき 実施例 6 29, the present invention can be applied to a so-called dual damascene process.
基板全面に銅膜が形成されたシリコンゥェ一ハを、 80 で10分間、所定の 剥離液に浸漬した。浸漬前後の銅膜の膜厚から銅のエッチングレー卜を測定した ( 剥離液は、 以下の組成のものを用いた。 なお、尿酸添加量の相違による pH変動 の影響を排除するため、 2 N—アンモニア水を添加し、 pHを1 1にコント口一 ルした。 A silicon wafer having a copper film formed on the entire surface of the substrate was immersed in a predetermined stripper at 80 for 10 minutes. The copper etching rate was measured from the thickness of the copper film before and after immersion. (The stripping solution used was of the following composition. In order to eliminate the effect of pH fluctuation due to the difference in the amount of uric acid added, 2N — Aqueous ammonia was added to control the pH to 11.
ァミン 80質量%  80% by mass
尿酸 0, 0. 0001 , 0. 001 , 0. 01 , 0. 1 , 1質量% 水 残部  Uric acid 0, 0.0001, 0.001, 0.01, 0.1, 1% by mass Water balance
ァミンとしては、 NMAE (N—メチルアミノエタノール) を用いた。 結果を図 1 1に示す。図の縦軸の示すエッチングレ一卜が 4 nmZm i nを超 えると銅膜の腐食が顕著となる。 図に示す結果から、尿酸を添加することよって 優れた防食性が発現することがわかる。  NMAE (N-methylaminoethanol) was used as the amine. The results are shown in FIG. When the etching rate indicated by the vertical axis in the figure exceeds 4 nmZmin, the corrosion of the copper film becomes remarkable. From the results shown in the figure, it can be seen that excellent anticorrosion properties are exhibited by adding uric acid.
実施例 7  Example 7
本実施例は、銅配線上のスルーホール形成プロセスに、本発明に係る剥離剤組 成物を適用した例である。剥離成分として、 剥離作用の強力なフッ化アンモニゥ 厶を用いた。 実施例 5とぼぼ同様のプロセスとしたが、窒化膜の厚みやエツチン グガスの種類は若干相違するため、 剥離対象となる堆積物が実施例 5と相違する c 評価結果を下記表に示す。剥離性や防食性の評価基準は実施例 5と同様である。 尿酸を用いたものは、 BT A誘導体と同等の剥離性、 防食性を示すことが確認さ れた。 表 6 The present embodiment is an example in which the release agent composition according to the present invention is applied to a process of forming a through hole on a copper wiring. As a peeling component, ammonium fluoride having a strong peeling action was used. The process was almost the same as that in Example 5, but the thickness of the nitride film and the type of etching gas were slightly different, and the c evaluation results in which the deposit to be stripped was different from Example 5 are shown in the following table. The evaluation criteria for peelability and anticorrosion were the same as in Example 5. It was confirmed that those using uric acid exhibited the same peeling properties and anticorrosion properties as BTA derivatives. Table 6
Figure imgf000032_0001
Figure imgf000032_0001
N M P : N—メチルー 2—ピロリ ドン  NMP: N-methyl-2-pyrrolidone
D M S 0 :ジメチルスルホキシド 産業上の利用可能性  D M S 0: Dimethyl sulfoxide Industrial applicability
以上説明したように、 本発明の防食剤は、 特定成分を含んでなるため、 銅等の 腐食しやすい金属の腐食を効果的に防止できる上、 安全性が高いため取り扱いが 容易であり、 しかも生物処理が可能なため、 廃水の処理も容易である。 このため、 銅配線の設けられた半導体装置の製造プロセス等に好適に用いることができる。  As described above, the anticorrosive agent of the present invention contains specific components, so that corrosion of easily corrosive metals such as copper can be effectively prevented, and since it is highly safe, it is easy to handle. Since biological treatment is possible, wastewater treatment is also easy. Therefore, it can be suitably used for a manufacturing process of a semiconductor device provided with copper wiring.

Claims

請求の範囲 The scope of the claims
1 . 半導体ゥェ一ハ上に形成された金属膜の腐食を防止する防食剤であって、 防食成分として、窒素原子を含む六員環を有する複素環式化合物を含有すること を特徴とする防食剤。  1. An anticorrosion agent for preventing corrosion of a metal film formed on a semiconductor wafer, comprising a heterocyclic compound having a six-membered ring containing a nitrogen atom as an anticorrosion component. Anticorrosive.
2 . 半導体ゥエーハ上に形成された金属膜の腐食を防止する防食剤であって、 防食成分として、  2. An anticorrosion agent for preventing corrosion of a metal film formed on a semiconductor wafer.
- C ( O H ) = N—、 または  -C (O H) = N—, or
一 C O N H— One C O N H—
なる原子団を含む五員ないし六員の複素環を有する複素環式化合物を含有するこ とを特徴とする防食剤。 An anticorrosive comprising a heterocyclic compound having a 5- or 6-membered heterocyclic ring containing the following atomic group.
3 . 半導体ゥエーハ上に形成された金属膜の腐食を防止する防食剤であって、 防食成分として、 プリンまたはその誘導体を含有することを特徴とする防食剤。 3. An anticorrosion agent for preventing corrosion of a metal film formed on a semiconductor wafer, comprising purine or a derivative thereof as an anticorrosion component.
4 . 半導体ゥエー/ \上に形成された金属膜の腐食を防止する防食剤であって、 防食成分として、下記一般式 (1 ) で表される化合物を含有することを特徴とす る防食剤。 4. An anticorrosion agent for preventing corrosion of a metal film formed on a semiconductor substrate, which is characterized by containing a compound represented by the following general formula (1) as an anticorrosion component. .
Figure imgf000033_0001
Figure imgf000033_0001
!、、 A2および A3は、 それぞれ独立して水素原子、水酸基、炭素数 1〜5のァ ルキル基またはアミノ基を表す。 ) ! ,, A 2 and A 3 represent independently hydrogen atom, a hydroxyl group, a § alkyl group or an amino group having 1 to 5 carbon atoms. )
5 . 請求項 4に記載の防食剤において、 A2および A3の少なくとも一方が水酸 基であることを特徴とする防食剤。 5. Anticorrosive agent, characterized in that the corrosion inhibitor of claim 4, at least one of A 2 and A 3 is a hydroxyl group.
6 . 請求項 4に記載の防食剤において、一般式 ( 1 ) で表される化合物が尿酸 であることを特徴とする防食剤。  6. The anticorrosive according to claim 4, wherein the compound represented by the general formula (1) is uric acid.
7 . 請求項 1乃至 6いずれかに記載の防食剤において、 前記金属膜が銅または 銅を主成分とする銅合金からなることを特徴とする防食剤。  7. The anticorrosion agent according to claim 1, wherein the metal film is made of copper or a copper alloy containing copper as a main component.
8 . 請求項 1乃至 7いずれかに記載の防食剤を、水または水溶性有機溶媒に溶 解させてなる防食液。 8. An anticorrosion solution obtained by dissolving the anticorrosion agent according to any one of claims 1 to 7 in water or a water-soluble organic solvent.
9 . 半導体ゥエーハ上に形成された金属膜の防食処理に用いられる防食処理液 であって、請求項 1乃至 7いずれかに記載の防食剤を含むことを特徴とする防食 処理液。 9. An anticorrosion treatment solution used for anticorrosion treatment of a metal film formed on a semiconductor wafer, comprising the anticorrosion agent according to any one of claims 1 to 7.
1 0 . 請求項 9に記載の防食処理液において、前記金属膜が銅または銅を主成 分とする銅合金からなることを特徴とする防食処理液。  10. The anticorrosion treatment liquid according to claim 9, wherein the metal film is made of copper or a copper alloy containing copper as a main component.
1 1 . 表面に金属膜の形成された半導体ゥェ一ハを保管するための保管液であ つて、請求項 1乃至 7いずれかに記載の防食剤を含むことを特徴とする保管液。  11. A storage solution for storing a semiconductor wafer having a metal film formed on a surface thereof, wherein the storage solution contains the anticorrosive according to any one of claims 1 to 7.
1 2 . 請求項 1 1に記載の保管液において、前記金属膜が銅または銅を主成分 とする銅合金からなることを特徴とする保管液。 12. The storage solution according to claim 11, wherein the metal film is made of copper or a copper alloy containing copper as a main component.
1 3 . 表面に金属膜の形成された半導体ゥェ一ハを化学的機械的研磨するため のスラリーであって、 請求項 1乃至 7いずれかに記載の防食剤を含むことを特徴 とする化学的機械的研磨用スラリ一。  13. A slurry for chemically and mechanically polishing a semiconductor wafer having a metal film formed on a surface thereof, wherein the slurry contains the anticorrosive according to any one of claims 1 to 7. Slurry for mechanical and mechanical polishing.
1 4 . 請求項 1 3に記載の化学的機械的研磨用スラリ一において、前記金属膜 が銅または銅を主成分とする銅合金からなることを特徴とする化学的機械的研磨 用スラリー。  14. The slurry for chemical mechanical polishing according to claim 13, wherein the metal film is made of copper or a copper alloy containing copper as a main component.
1 5 . 半導体ゥェ—ハ上に金属膜を形成し、 該金属膜の一部を化学的機械的研 磨し、 洗浄液を用いて該半導体ゥェ—ハ表面の洗浄を行った後、 請求項 9に記載 の防食処理液を用いて該金属膜の防食処理を行うことを特徴とする防食処理方法。 15 5. A metal film is formed on the semiconductor wafer, a part of the metal film is chemically and mechanically polished, and the surface of the semiconductor wafer is cleaned using a cleaning solution. Item 10. An anticorrosion treatment method comprising performing an anticorrosion treatment on the metal film using the anticorrosion treatment solution according to Item 9.
1 6 . 請求項 1 5に記載の防食処理方法において、前記金属膜が銅または銅を 主成分とする銅合金からなることを特徴とする防食処理方法。 16. The anticorrosion treatment method according to claim 15, wherein the metal film is made of copper or a copper alloy containing copper as a main component.
PCT/JP2001/005504 2000-06-28 2001-06-27 Corrosion protective agent WO2002000965A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-19498020000628 2000-06-28
JP2000194980 2000-06-28

Publications (1)

Publication Number Publication Date
WO2002000965A1 true WO2002000965A1 (en) 2002-01-03

Family

ID=18693726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005504 WO2002000965A1 (en) 2000-06-28 2001-06-27 Corrosion protective agent

Country Status (1)

Country Link
WO (1) WO2002000965A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102150263A (en) * 2008-11-06 2011-08-10 松下电器产业株式会社 Lead, wiring member, package component, metal component with resin, resin-encapsulated semiconductor device, and methods for producing same
US10190222B2 (en) 2015-05-28 2019-01-29 Ecolab Usa Inc. Corrosion inhibitors
US10202694B2 (en) 2015-05-28 2019-02-12 Ecolab Usa Inc. 2-substituted imidazole and benzimidazole corrosion inhibitors
US10519116B2 (en) 2015-05-28 2019-12-31 Ecolab Usa Inc. Water-soluble pyrazole derivatives as corrosion inhibitors
US10669637B2 (en) 2015-05-28 2020-06-02 Ecolab Usa Inc. Purine-based corrosion inhibitors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149474A (en) * 1981-03-11 1982-09-16 Chiyoda Kagaku Kenkyusho:Kk Corrosion inhibitor for cuppric metal
WO1996020295A1 (en) * 1994-12-23 1996-07-04 Cookson Group Plc Process for the corrosion protection of copper or copper alloys
JP2000008185A (en) * 1998-06-22 2000-01-11 Mec Kk Rust preventive of copper and copper alloy
JP2000183003A (en) * 1998-10-07 2000-06-30 Toshiba Corp Polishing composition for copper metal and manufacture of semiconductor device
JP2001055559A (en) * 1999-08-18 2001-02-27 Jsr Corp Aqueous dispersion for chemical and mechanical polishing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149474A (en) * 1981-03-11 1982-09-16 Chiyoda Kagaku Kenkyusho:Kk Corrosion inhibitor for cuppric metal
WO1996020295A1 (en) * 1994-12-23 1996-07-04 Cookson Group Plc Process for the corrosion protection of copper or copper alloys
JP2000008185A (en) * 1998-06-22 2000-01-11 Mec Kk Rust preventive of copper and copper alloy
JP2000183003A (en) * 1998-10-07 2000-06-30 Toshiba Corp Polishing composition for copper metal and manufacture of semiconductor device
JP2001055559A (en) * 1999-08-18 2001-02-27 Jsr Corp Aqueous dispersion for chemical and mechanical polishing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102150263A (en) * 2008-11-06 2011-08-10 松下电器产业株式会社 Lead, wiring member, package component, metal component with resin, resin-encapsulated semiconductor device, and methods for producing same
US8723298B2 (en) 2008-11-06 2014-05-13 Panasonic Corporation Lead, wiring member, package component, metal component with resin, resin-encapsulated semiconductor device, and methods for producing the same
US10190222B2 (en) 2015-05-28 2019-01-29 Ecolab Usa Inc. Corrosion inhibitors
US10202694B2 (en) 2015-05-28 2019-02-12 Ecolab Usa Inc. 2-substituted imidazole and benzimidazole corrosion inhibitors
US10519116B2 (en) 2015-05-28 2019-12-31 Ecolab Usa Inc. Water-soluble pyrazole derivatives as corrosion inhibitors
US10669637B2 (en) 2015-05-28 2020-06-02 Ecolab Usa Inc. Purine-based corrosion inhibitors
US11306400B2 (en) 2015-05-28 2022-04-19 Ecolab Usa Inc. 2-substituted imidazole and benzimidazole corrosion inhibitors

Similar Documents

Publication Publication Date Title
EP3245668B1 (en) Cleaning composition and method for cleaning semiconductor wafers after cmp
EP2975108B1 (en) Copper corrosion inhibition system
TWI507521B (en) Copper passivating post-chemical mechanical polishing cleaning composition and method of use
EP1612611B1 (en) Composition and process for removing photoresist residue and polymer residue
US20040134873A1 (en) Abrasive-free chemical mechanical polishing composition and polishing process containing same
US9416338B2 (en) Composition for and method of suppressing titanium nitride corrosion
CN100456429C (en) Aqueous cleaning composition containing copper-specific corrosion inhibitor for cleaning inorganic residues on semiconductor substrate
US6635186B1 (en) Chemical mechanical polishing composition and process
EP2028262B1 (en) Improved alkaline chemistry for post-cmp cleaning
JP3869608B2 (en) Anticorrosive
US20080076688A1 (en) Copper passivating post-chemical mechanical polishing cleaning composition and method of use
US20090130849A1 (en) Chemical mechanical polishing and wafer cleaning composition comprising amidoxime compounds and associated method for use
TW200538544A (en) Alkaline post-chemical mechanical planarization cleaning compositions
WO2002001300A1 (en) Stripping agent composition and method of stripping
JP3402365B2 (en) Anticorrosive
US7252718B2 (en) Forming a passivating aluminum fluoride layer and removing same for use in semiconductor manufacture
JP3431074B2 (en) Release agent composition and release method
WO2002000965A1 (en) Corrosion protective agent
JP2010087258A (en) Cleaning agent for semiconductor substrate surface, method of cleaning semiconductor device using the same
CN110418834A (en) Composition for cleaning after chemical-mechanical polishing
US20060175297A1 (en) Metallization method for a semiconductor device and post-CMP cleaning solution for the same
EP2687589A2 (en) Copper passivating post-chemical mechanical polishing cleaning composition and method of use
TWI787225B (en) Cleaning liquid composition
WO2010024093A1 (en) Solution for removal of residue after semiconductor dry processing and residue removal method using same
US20040140288A1 (en) Wet etch of titanium-tungsten film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WA Withdrawal of international application
121 Ep: the epo has been informed by wipo that ep was designated in this application