WO2002000138A2 - Intraluminal stents - Google Patents

Intraluminal stents

Info

Publication number
WO2002000138A2
WO2002000138A2 PCT/US2001/020392 US0120392W WO0200138A2 WO 2002000138 A2 WO2002000138 A2 WO 2002000138A2 US 0120392 W US0120392 W US 0120392W WO 0200138 A2 WO0200138 A2 WO 0200138A2
Authority
WO
WIPO (PCT)
Prior art keywords
stent
nodes
node
adjacent
arms
Prior art date
Application number
PCT/US2001/020392
Other languages
French (fr)
Other versions
WO2002000138A3 (en
Inventor
Dirk V. Hoyns
Original Assignee
C.R. Bard, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C.R. Bard, Inc. filed Critical C.R. Bard, Inc.
Priority to JP2002504923A priority Critical patent/JP5036116B2/en
Priority to AU7301801A priority patent/AU7301801A/en
Priority to EP01952241A priority patent/EP1294312B1/en
Priority to MXPA02012827A priority patent/MXPA02012827A/en
Priority to DE60121947T priority patent/DE60121947T2/en
Priority to AU2001273018A priority patent/AU2001273018B2/en
Priority to CA2415939A priority patent/CA2415939C/en
Publication of WO2002000138A2 publication Critical patent/WO2002000138A2/en
Publication of WO2002000138A3 publication Critical patent/WO2002000138A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/9522Means for mounting a stent or stent-graft onto or into a placement instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91525Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other within the whole structure different bands showing different meander characteristics, e.g. frequency or amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/91533Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other characterised by the phase between adjacent bands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • A61F2002/9155Adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0018Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility

Definitions

  • This invention relates to stents placeable in a lumen of the human body to maintain patency of the lumen.
  • stents have become common in connection with procedures where it is desired to reinforce the wall of a vessel in the human body to maintain the patency of the lumen and reduce the risk of constriction of the lumen or collapse of the vessel wall.
  • Stents have come into common use in connection with angioplasty procedures in which a blood vessel in the human body, having become obstructed, is dilated to restore the flow area of the lumen.
  • a stent placed in the treated region of the lumen serves as a scaffold to support the vessel wall that defines the lumen.
  • Stents may be placed as part of a surgical procedure or, as is more often the case, percutaneously, by navigating a slender catheter, on which the stent is mounted into and through the patient's vasculature to the target site. Stents also are used in connection with other body lumens, such as in the urinary and biliary tracts, among others. Most stents are generally tubular in shape and may be classified either as self- expanding or as balloon expandable. Self-expanding stents characteristically are in their expanded configuration when in a free, released state.
  • the stent In order to advance a self- expanding stent to the deployment site in the vessel, the stent is contracted to its small diameter (low profile) dimension and is mounted to the distal end of a delivery catheter that maintains the stent in its low profile configuration as the catheter is advanced to the target site.
  • the stent is deployed by freeing the stent from the catheter to enable the stent to self-expandj under its inherent resilience, into supportive engagement with the vessel wall.
  • the delivery catheter then can be removed from the patient, leaving the stent in place.
  • a balloon expandable stent does not rely on inherent resilience for its use or operation.
  • a balloon expandable stent typically is formed as a metal tubular structure defined by a selected pattern of interconnected structures and links configured to enable the diameter of the stent to be expanded forcibly, as by a balloon, from its low profile diameter to a larger diameter at which it can support the vessel wall.
  • the metallic stent undergoes plastic deformation and retains its expanded diameter.
  • the balloon deployment catheter then can be deflated and withdrawn, leaving the stent in place.
  • Another class of stents includes those formed from a shape memory alloy, such as a nickel-titanium alloy (nitinol).
  • the alloy has a thermal-dependent memory in that it will maintain a stable configuration, as in a low profile configuration suitable for delivery by a catheter, but will return to its memory shape (e.g. to expand to a larger, vessel-supporting diameter) in response to a thermal event such as injecting warm saline into the vessel to trigger the shape memory phenomenon or exposing the stent to body temperature.
  • a thermal event such as injecting warm saline into the vessel to trigger the shape memory phenomenon or exposing the stent to body temperature.
  • Such alloys also can be made to exhibit superelastic properties
  • a stent should have sufficient hoop strength to support the vessel against the stresses that the vessel can be expected to impose on the deployed stent.
  • the degree of scaffolding a measure of the percentage of cylindrical area defined by the expanded stent as compared to the void spaces between its metal structures and links, should be selected to provide the desired balance between structural strength of the stent and exposure of the inner surface of the vessel to the lumen. It is important that the stent be capable of being contracted to a low profile diameter that is sufficiently small to facilitate percutaneous insertion of the stent and navigation of the stent through the sometime tortuous vasculature.
  • the longitudinal flexibility of the stent also is an important characteristic, particularly in settings in which the stent must be navigated through tortuous vessels in order to reach the intended deployment site. Longitudinal flexibility also is important after the stent has been expanded in order that the natural curvature of the body lumen, which typically is deformed when the balloon is inflated, can return to its natural shape after the stent has been deployed and the delivery catheter removed. Also among the desirable characteristics of a stent is that it should have a sufficiently large expansion ratio, that is, the ability to expand from its low profile configuration to as large a diameter as can reasonably be expected, in order to treat the condition at hand.
  • a large expansion ratio enables the physician to perform a procedure with an additional measure of confidence that if the original assessment of proper stent size is smaller than what is actually required, the stent can be expanded to a still larger diameter. Further, in many cases, it is important that the stent, when expanded radially, does not contract substantially, if at all, in length as it is deployed. Also among the desirable characteristics of a stent, particularly with balloon expandable stents, is that the expansion of the stent components be relatively uniformly distributed. Additionally, it is desirable that when the stent is expanded from its low profile to its deployed diarneter, it does not have stress points that, upon expansion or after deployment, could ibad to fracture of portions of the stent.
  • the invention is embodied in a tubular stent in wljiich the wall of the stent is defined by a filigree-like pattern defined by regions of interconnected metal members and openwork.
  • the pattern is characterized by a plurality of nodes arranged in clusters, each cluster comprising a group of nodes.
  • Each of the nodes includes a central hub and at least three arms connected to and circumscribing, partially, the hub.
  • each arm isjarranged circumferentially about the hub of the node and lies closely adjacent to the next adjacent arm of the node i in a spiral-like fashion.
  • Each of the arms in a node is connected at a transition region to an adjacent node by being connected to the outer end ojf an arm of that adjacent node, the connected arms and transition region together defining a link between adjacent nodes.
  • the links uncoil.
  • the links uncoil differentially, the degree to which a particular link uncoils depending on the degree to which the link is oriented in a generally circumferential direction.
  • a link that is oriented in a generally circumferential direction may uncoil more than a link that extends in a direction that is closer to the axial direction of the stent.
  • the nodes enable each of the links to unfold to the extent necessary to respond to the radial and axial forces applied to the stent during balloon expansion. The nodes are free to shift and reorient themselves in response to the applied forces of expansion.
  • FIG. 3 One embodiment of the invention (FIG. 3) includes clusters that define a pattern of nodes arranged generally hexagonally.
  • the nodes may be packed more closely together and are disposed to lie generally helically along the stent with each node along the helix being serially connected by a link to the next adjacent nodes on that helix.
  • the stent is formed by laser cutting the pattern of the stent from a metal tube having a diameter selected to correspond to the lowest profile that the stent is expected to have, typically the diameter that the stent will have when mounted and crimped onto the balloon of a delivery catheter.
  • the stent In order to load the stent onto the deflated balloon, the stent is preliminarily expanded slightly, for example, by advancing a tapered mandrel through the stent to increase its diameter sufficiently so that it can be slid onto the balloon. Once in position on the balloon, the stent then is crimped firmly about the balloon, with the stent returning toward its lowest profile configuration during the crimping process.
  • FIG. 1 is an illustration of a tubular stent incorporating one embodiment of the invention in which the nodes are arranged in hexagonal clusters, with the stent being in its low profile configuration;
  • FIG. 2 is an illustration of the stent in FIG. 1 after expansion, as by a balloon catheter
  • FIG. 3 is an illustration of the pattern of the stent of FIG. 1 shown before expansion and lying in a flat plane;
  • FIG. 4 is an enlarged illustration of a group of clusters of the stent pattern illustrated in FIG. 3;
  • FIG. 5 is a greatly enlarged illustration of a single node;
  • FIG. 6 is a diagram of the repeating cell pattern defined by a single hexagonal cluster of nodes
  • FIG. 7 is a fragmented illustration of a pair of adjacent nodes aligned circumferentially and showing the configuration of an individual circumferentially oriented link connecting the nodes;
  • FIG. 8 is a diagrammatic illustration of a stent mounted on a catheter after having been advanced through a sharp bend and illustrating the manner in which the leading edge of the stent has become permanently deformed to a "fishmouth" configuration;
  • FIGS. 9A-9C illustrate an aspect of the invention in which a stent may be mounted onto a balloon catheter;
  • FIG. 10 is a flat plane illustration of a stent pattern having hexagonal clusters of nodes in which the orientation of the clusters has been modified
  • FIG. 11 is a diagram of the repeating cell pattern defined by a single hexagonal cluster of nodes as show in FIG. 0;
  • FIG. 12 is a flat plane illustration of the pattern of another embodiment of a stent in accordance with the invention in which the nodes are packed more closely together than with the hexagonal cluster;
  • FIG. 13 is a diagram of the repeating cell pattern of the stent having the pattern shown in FIG. 12;
  • FIG. 14 is an enlarged illustration of a portion 12" of the embodiment of FIG. 12 illustrating the arrangement of a cluster of nodes
  • FIG. 14A is an illustration similar to FIG. 14, showing in more detail, a slight offset from a helical line of two sequential pairs of nodes;
  • FIGS. 15A-15C are diagrammatic illustrations of the cluster shown in FIG. 14 showing the manner in which the nodes and interconnecting links shift about as the stent is forcibly expanded;
  • FIG. 16 is a diagrammatic illustration of a stent during expansion on a balloon showing the manner in which the end of the stent may tend to expand before the midportion of the stent;
  • FIG. 17 is an illustration of an end portion of a stent, in the flat, showing the configuration by which the end may be interlocked to provide increased resistance to the expansion of the end of the stent;
  • FIG. 18 is an enlarged illustration of the details of the interlocking arrangement of FIG. 17;
  • FIG. 1 illustrates one embodiment of a stent embodying the principles of the invention.
  • the stent may be formed from a tube of stainless steel (316L) or titanium although other metals suitable for use in a stent may be employed, including shape memory alloys, as will be appreciated by those skilled in the art.
  • the stent may be manufactured by any of a number of techniques known and in use in the prior art (such as etching and laser ablation), although the preferred approach is to manufacture it using laser ablation in which a solid-walled tube is rotated and translated about its longitudinal axis while a laser beam selectively ablates regions of the tube to form a filigree-like pattern.
  • the stent may be made using a neodimium-YAG laser.
  • the width of the laser beam may be controlled to be quite small, of the order of about 0.002 inches.
  • Such laser etching techniques in the manufacture of stents are known to those skilled in the art as disclosed in, for example, U.S. patents numbers 4,762,128; 5,345,057; 5,356,423; 5,788,558; 5,800,526 and 5,843,1 7.
  • the present invention relates to a pattern for such a stent that is characterized by a plurality of nodes where the nodes have a central hub and three arms projecting from the hub, with the arms being wrapped partly about the hub in somewhat of a spiral configuration.
  • the nodes are arranged in clusters that can have varying geometric patterns, one of which is shown in FIGS. 1-6.
  • FIG. 1-6 FIG.
  • FIG. 3 illustrates the invention in which the cylindrical wall of the stent is shown, for ease of explanation, as it would appear if the cylinder was slit longitudinally and laid out in a flat plane.
  • the arrangement can be seen to include a plurality of nodes 10 arranged to define a plurality of hexagonally-shaped clusters, one of which is encircled in phantom at 12.
  • Each cluster 12 in this embodiment may be considered as having nodes 10a, 10b, 10c, 10d 10e and 10f that are oriented with the first node 10a (in the 12 o'clock position) and the fourth node 10d (in the 6 o'clock position) being aligned in a circumferential direction indicated by arrow 14.
  • the nodes 10a-10f in an individual cluster may be equiangularly spaced about the center of the cluster. Except for the nodes 10 at the ends of the stent, the second and third nodes 10b, 10c serve as the fifth and sixth nodes 10e, 10f of the next adjacent hexagonal cluster. It also may be noted that each node may be considered to be in any one of three positions (10A-10F) because each node may be considered as being shared by three clusters that incorporate and surround that node. Thus, for example, in FIG. 4 one node may be designated as 10C, E, A, an adjacent node may be designated as 10B, D, F. It will be appreciated that each pair of adjacent clusters shares a pair of three-arm nodes.
  • each cluster 12 may be considered as defining an open cell 16.
  • each cell 16 is characterized by an open central portion and six open curled fingers 18 radiating outwardly from the central portion of the cell as shown in FIG 6.
  • the minimum width of the open curled fingers 18 may be determined by the width of the laser cutting beam which may be of the order of 0.002 inch wide.
  • the nodes 10 may be configured so that the arms 20 wrap closely about the hub of the node in order to maximize the extent to which the arms can unwind from their low profile to their expanded configuration.
  • FIG. 4 illustrates, in further enlargement, the relationship between the nodes of an hexagonal cluster and of an adjacent hexagonal cluster, in which two of the nodes are common to both clusters.
  • each node 10 may be considered to have three arms 20a, 20b and 20c, joined, respectively, at roots 22a, 22b, 22c, to the central hub 24 of the node.
  • Each of the arms 20 extends from its root 22 and circumscribes its associated hub 24.
  • Each of the arms 20a also circumscribes a portion of the next adjacent arm in the node.
  • arm 20a circumscribes and lies closely adjacent a portion of arm 20c which, in turn, circumscribes and lies closely adjacent a portion of the arm 20b that, in turn, circumscribes and lies closely adjacent a portion of the arm 20a.
  • the arms 20a, 20b and 20c may be considered as being arranged in a generally spiral pattern.
  • a stent having nodes in which the arms define a larger arc between its root and its transition will tend to exhibit a greater expansions ratio from the compacted diameter to its maximum expanded diameter.
  • FIG. 14A (described in further detail below) illustrates a stent configuration in which the nodes have arms that define an arc A extending between the root of an arm along the outer edge of the arm to the transition region 26 of that link.
  • each of the arms 20a, 20b, 20c also may be considered as being joined to the outer region of an arm 20 of an adjacent node, the two arms being connected at a transition region 26.
  • Each pair of connected arms 20 may be considered as a link 28 (FIG. 7) that extends from the root 22 of an arm 20 of one node to the root 22 of an arm 20 of an adjacent node, thus defining a connection between each pair of adjacent nodes 10.
  • Each of the links 28 may be considered to define an S- shaped configuration in which the pair of arms 20 that defines a link 28 curve in opposite directions on either side of the transition region 26.
  • a link 28 may be considered as extending along a direction that includes the roots 22 and transition region 26 of that link. Adjacent nodes 10 are connected to each other by one link 28.
  • the tubular stent may be considered as having a plurality of longitudinally spaced radial planes 30A, 30B (FIG. 4) that alternate lengthwise of the stent.
  • the stent also may be considered as having a plurality of pairs of circumferentially adjacent nodes (10d, e and 10c, a), each pair of nodes being disposed in one or the other of the radial planes 30A, 30B.
  • the circumferentially adjacent nodes 10 are connected by a circumferentially oriented link 28 in which the hubs and, preferably, the roots 22 and transition region 26 of that link are disposed substantially along the radial plane 30A or 30B of the pair of nodes connected by that link 28 (FIGS. 4 and 5).
  • the radially outward directed force of the balloon will translate to a circumferential force on the tubular stent that causes the circumferentially aligned pairs of nodes to separate, in a direction generally circumferential of the stent. That expansion tends to straighten the circumferentially oriented links.
  • the stent embodiment described above also may be considered as defining pairs of longitudinally extending rows 32A, 32B that are circumferentially spaced about the stent.
  • the arrangement of nodes with respect to the longitudinal rows 32A, 32B is one in which the nodes of each pair of adjacent nodes in an individual cluster lie along an alternate one of rows 32A, 32B. Consequently, adjacent nodes are not aligned along a longitudinal row but, instead, are aligned in a generally helical orientation or circumferential orientation, as indicated by the helical rows 34A, 34B and circumferential rows 30A, 30B.
  • the circumferentially oriented links 28 will be the most deformed from their S-shaped configuration, because the principal direction of expansion is radial.
  • the links 28 that extend in a generally helical direction (along the helical axes 34A, 34B) are free to expand differentially to be self-accommodating to the forces and strains imposed on the stent as it is expanded.
  • Those links 28 that are not circumferentially oriented will expand to a lesser degree than circumferentially oriented links. This is illustrated diagrammatically in FIGS. 15A-15C in connection with another embodiment, described in further detail below.
  • FIGS. 15A-15C This is illustrated diagrammatically in FIGS. 15A-15C in connection with another embodiment, described in further detail below.
  • 15A-15C which shows, diagrammatically, a portion of the stent during and after expansion, where the circumferentially oriented links have been expanded and straightened more than the non-circumferentially oriented links.
  • the extent to which the stent is expanded will be determined as a function of the geometry of the stent, the expanded diameter of the relatively inelastic balloon of the delivery catheter and the anatomy of the body lumen into which the stent is to be placed.
  • the invention may be used with equal facility in short stents as well as in long stents, the length of the stent being selected to correspond to the anatomy into which the stent is to be placed.
  • the high degree of flexibility achievable with stents made in accordance with the invention enables relatively long stents (e.g. of the order of 100 mm, as might be used in a bile duct) to be made and be deliverable, even where the path leading to the deployment site is tortuous.
  • the wall thickness of the tube from which the stent is made preferable is of the order of 0.007 inches.
  • the width of the links 28 preferably is less than the dimension of the wall thickness and may be of the order of about half of the wall thickness (e.g., about .0035 inches).
  • the nodes can be made to be disposed closer to each other to facilitate formation of a relatively compact, dense array.
  • the stent After the stent pattern has been cut in the tube the stent then may be electropolished to put a slight radius on the edges of the stent members that remain after the laser cutting has been completed.
  • the stent In a stent having the hexagonal pattern shown in FIGS. 3 and 4, the stent may be cut from a tube having a diameter of the order of 0.080 inches that can be expanded to a diameter of about 7 mm, presenting an expansion ratio of approximately 3:1.
  • Other embodiments, described below, can be configured with the nodes more closely packed (see, for example, the pattern shown in FIG. 12) in which a stent formed from a tube having a diameter of the order of 0.095 inches is expandable to a diameter of about 10 mm, providing an expansion ratio of about 5:1.
  • the stent to maintain a high degree- of flexibility both in its low profile configuration as well as after it has been expanded and deployed at the intended target site in the body lumen.
  • the flexibility of the stent in its low profile configuration is important during the navigation of the delivery catheter to the deployment site, particularly when sharply curved, tortuous or other non-linear or irregular pathway to the deployment site is presented.
  • the relatively inelastic balloon will assume its characteristic elongate, straight shape under the influence of the pressure of the inflation fluid. That, in turn, tends to straighten the portion of the vessel in which it is located.
  • the flexibility of the stent, when expanded, is desirable in order that, after the delivery catheter has been removed, the stent can flex with the vessel as the vessel tends to return to its natural shape.
  • a high degree of expanded stent flexibility thus will provide relatively low resistance to the vessel as it tends to return to its natural shape. This characterization of the invention is achieved while maintaining a high level of hoop strength for the stent.
  • the excellent longitudinal flexibility of the stent is considered to be the result of the use ' of the node construction described above in which the nodes also display an ability to flex or deform somewhat in a radial direction.
  • the ability to flex in a radial direction is the result of the spiral-like configuration of the arms about the hub of each node.
  • the arms in each node can flex radially, thus enabling the hub to flex slightly, but sufficiently, toward or away from the stent longitudinal axis.
  • the ability of the hub to flex radially is believed to result in a progressive and gradual flexure along the length of the stent with a reduced tendency to develop sharp kinks, and contributes to the high longitudinal flexibility of the invention. Also among the advantages of the invention is that it tends to avoid formation of a "fishmouth" condition at an end of a stent that is advanced, while mounted on the delivery catheter, through tortuous anatomy. As shown in FIG. 8, it is not uncommon for a stent, at its leading end 36, to develop an asymmetrical flare, somewhat like an open fishmouth, in which a portion of the leading end of the stent deforms to a flared shape and remains separated from the surface of the delivery catheter.
  • flare 38 can present an obstacle to further advancement of the catheter and stent. It may cause damage to the interior surface of the lumen of the vessel and may become caught in a manner that may cause the stent to shift its longitudinal position on the delivery catheter before the stent has been advanced to the intended deployment site.
  • advantages of the present invention is that it displays reduced tendency for such flaring and, consequently, tends to avoid such difficulties.
  • the stent In order that a stent can achieve its maximum range of expansion, it is desirable to mount the stent on the delivery catheter in a profile that is as low as can be achieved with the particular stent configuration and geometry.
  • the stent preferably is fabricated in its intended lowest profile configuration corresponding to what would normally be the diameter to which the stent is crimped onto the balloon of the delivery catheter.
  • the stent In the context of the stent described above, therefore, the stent is formed from a tube of metal with the nodes being cut out and located in as close proximity to each other as can be achieved for the particular stent pattern.
  • the stent In order to mount the stent on the balloon, the stent is preliminarily expanded slightly to "size" the stent to the balloon. Such stent sizing may be achieved by inflating a small diameter balloon within the stent or by passing a mandrel 46 through the stent in which the mandrel has a tapered leading end 48 and a slightly enlarged trailing end 50 (FIG. 9B). The stent is expanded just slightly, enough to slip it onto the balloon of the catheter (FIG. 9C).
  • the stent Because the stent was expanded from its low profile configuration in which it was fabricated, the stent then can be crimped down tightly about the balloon, causing the stent to be secured to the balloon while also compacting the stent back toward or, if permitted by the laser-cut dimensions, slightly beyond its originally formed profile.
  • the stent By initially fabricating the stent in its low profile diameter and then expanding it slightly to place it on the balloon, it is assured that when crimped back toward its fabricated diameter, the nodes will not collide or otherwise interfere with each other.
  • FIG. 10 illustrates a modified embodiment of the invention in which the hexagonal clusters 12 are oriented so that adjacent pairs of nodes (e.g., 10a, 10e and 10c, 10d) are aligned substantially parallel to the longitudinal axis of the stent such that the link 28' connecting the nodes in each of those pairs extends longitudinally of the stent.
  • the transition region 26 of the connecting links 28' and their hubs 22 lie along lines 48 that parallel the longitudinal axis of the stent.
  • Those adjacent pairs of nodes that are not longitudinally aligned are disposed along rows 50, 52 that are generally helically disposed about the stent. In this embodiment, none of the adjacent pairs of nodes extends in a purely circumferential direction.
  • FIG. 10 illustrates the configuration of a characteristic cell 16 of the stent pattern of FIG. 10.
  • FIG. 12 illustrates a modified embodiment of the invention in which the nodes are more closely compacted than with the hexagonal cluster configurations described above.
  • the nodes 10 may be considered as being generally aligned along helically extending rows 52A, 52B, 52C, with adjacent nodes along each helical row being serially connected to each other by an individual link 28".
  • two of the three arms 20 form links 28" to adjacent nodes along the same row.
  • Each node also includes an arm 20' that forms a portion of a third link 28" that is connected to a node in an adjacent helically oriented row.
  • the third links of the nodes alternate from one node to the next along a given helical row.
  • one node in that row will include a link 28'" that connects to a node in a second adjacent helical row 52A while the next succeeding node in the first row has a third link that connects to a node on the adjacent helical row 52C on the other side. It should be noted that, it may be desirable in this embodiment, in order to avoid interference between the nodes, to shift successive pairs of nodes that lie along a helical row to a position that is slightly offset from a precise helical line.
  • nodes 10m, 10n, 10p, 10q, 10r, 10s are all disposed generally along the helical row 52a, it may be necessary for adjacent pairs (e.g., 10p, 10q) in the helical rows to be shifted very slightly laterally with respect to the immediately preceding pair (10m, 10n).
  • node pair 10m, 10n may be considered as defining a line that lies along the helical row 52a while the node pair 10p, 10q may define a line that parallels helical line 52a but is . displaced slightly (a few thousandths of an inch) to one side of line 52a.
  • FIG 14A The slight displacement is illustrated in FIG 14A from which it may be seen that helical line 52a ' is displaced slightly to one side of line 52a.
  • the series of nodes 10m-10s nonetheless may be considered as lying generally along a helical row. It should be noted that those nodes that lie along a row that extends longitudinally of the stent or along the plane that extends transversely of the tubular stent can be aligned without displacement such that all of the orthoginally related nodes may be considered as being more precisely in alignment along the longitudinal direction and along radial planes than the less precisely aligned nodes that extend along the helical rows.
  • FIGS. 14 and 15A-C illustrate in diagrammatic fashion, the manner in which a stent patterned as shown in FIG. 12 may expand under the influence of an expanding balloon.
  • the cluster is shown, in enlarged detail, and includes six nodes 10g, 10h, 10i, 10j, 10k, 101.
  • the cluster tends to rotate in a clockwise direction as illustrated by arrows 53 in FIGS. 14 and 15A-15C.
  • the links 28 in the cluster will tend to expand, although at a relatively slow rate, until the cluster has rotated to a more circumferential orientation (FIG. 15B).
  • the links 28lg and 28ij that connect the endmost pairs (10g, 101 and 101, 10j) of the cluster will become reoriented to extend generally along lines that are more parallel to the longitudinal axis of the stent than when the stent is in its low profile configuration.
  • those links rotate into a more longitudinal orientation, they become positioned to resist longitudinal compression of the stent. Consequently, the reorientation of those links results in an increase in the resistance to shortening of the stent as the stent is expanded radially.
  • the ends of the stent may be finished, for example, as indicated in FIG. 4, in which an arm of each of the nodes in the endmost radial plane 30E is connected to another arm of another node in that plane.
  • FIG. 4 One such arrangement is illustrated in FIG. 4 from which it can be seen that links x, y, each of which extends from a node in the endmost radial plane 30A is connected, as by a connecting link z.
  • the connecting link and the ends of the links x and y are joined at a junction that may be considered as defining a partial, two-armed node in which the arms have portions that parallel each other in a generally spiral configuration.
  • FIG. 16 illustrates, diagrammatically, a phenomenon associated with balloon expandable stents in which the ends 56 of the stent 8 tend to begin to expand before the mid-portion 58 of the stent.
  • the ends of the balloon in the early stages of expansion, may flare so that the balloon and stent assume a "dog bone" configuration in which the end regions 60 of the balloon 42 are expanded to a greater diameter than the mid-portion of the balloon.
  • the expansion of the ends before the middle of the stent tends to develop a compressive end loading, indicated at arrow 62, being placed on the end regions of the stent.
  • the compressive loading on the end regions may tend to shorten the end regions until the mid-portion of the balloon has expanded, at which time continued balloon expansion will be more uniform along its length. It is desirable to minimize the extent of stent shortening during expansion because such shortening can result in the stent being deployed in a position shifted from that which was intended. Additionally, shortening of the stent during expansion may result in the deployed stent having insufficient length to support the entire length of lumen intended.
  • FIGS. 17 and 18 illustrate another embodiment of an arrangement for increasing the resistance to expansion at the ends of the stent, discussed above, sufficiently to reduce, and possibly to eliminate, the longitudinal shortening at the end regions of the stent during the early part of the balloon expansion.
  • the arrangement includes a series of interlocked elements at the end of the stent that resist expansion, at least during the early portion of balloon expansion.
  • the interlocked components are formed from extensions of arms of nodes in the endmost radial plane 30E and may be considered to include an L-shaped member 62 and an L-shaped socket 64 receptive to the member 62.
  • the member 62 and the socket 64 are formed by extensions of arms of adjacent nodes at the end of the stent.
  • the arm of one node is extended to define a series of serpentine legs 62a, 62b, 62c, 62d that define the L-shaped member.
  • the extension continues to include a pair of sequential legs 64a, 64b that parallel each other and are joined at a hairpin bend 64d.
  • Legs 64a and 64b thus define a double thickness socket that captures an L-shaped member.
  • the portion of the L-shaped member, including legs 62c and 62d define a second socket 66 that receives the hairpin bend 64d of the socket legs 64a, 64b.
  • the space between adjacent paralleling components (such as 64a, 64b) of the stent may be as small as the width of the laser beam by which the pattern is cut, for example, about 0.002 inch.
  • the distal ends of the stent preferably are provided with a configuration that differs from the spiral configuration of the nodes and which includes interlocking members that will present resistance to stent expansion as the balloon is inflated.
  • the spaces between the interlocking components should be sufficient so that at a desired point in the expansion of the balloon, the interlocking components will have deformed sufficiently to release, thereby enabling the end of the stent to continue expansion together with the midportions of the stent.
  • the invention provides a stent construction that may be used to achieve a high degree of stent flexibility both when in a low profile configuration as well as when in an expanded configuration.
  • the invention enables a stent to be configured in a low profile while being expandable through a substantial range of larger diameters.
  • the stent may be configured in a manner that lessens the degree of stent shortening as the stent is deployed and provides additional benefits discussed above.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Prostheses (AREA)
  • Inorganic Fibers (AREA)

Abstract

An intraluminal stent placeable in the lumen of the human body. Includes a generally tubular wall having a filigree-like pattern of interconnected links and open work. The pattern includes nodes that have a central hub and three arms connected to the hub. The arms are arranged circumferentially about the hub and lie adjacent the next adjacent arm of the node in a spiral-like fashion. The arms are connected to other components of the stent which, themselves, may comprise other nodes. The nodes are arranged in repeatable clusters. The disclosure also relates to a technique for making a stent and for mounting a stent on a delivery catheter by which the stent may be crimped onto the catheter in its lowest profile configuration.

Description

1NTRALUMINAL STENTS
Field of the Invention This invention relates to stents placeable in a lumen of the human body to maintain patency of the lumen.
Background of the invention
The use of stents has become common in connection with procedures where it is desired to reinforce the wall of a vessel in the human body to maintain the patency of the lumen and reduce the risk of constriction of the lumen or collapse of the vessel wall. Stents have come into common use in connection with angioplasty procedures in which a blood vessel in the human body, having become obstructed, is dilated to restore the flow area of the lumen. A stent placed in the treated region of the lumen serves as a scaffold to support the vessel wall that defines the lumen. Stents may be placed as part of a surgical procedure or, as is more often the case, percutaneously, by navigating a slender catheter, on which the stent is mounted into and through the patient's vasculature to the target site. Stents also are used in connection with other body lumens, such as in the urinary and biliary tracts, among others. Most stents are generally tubular in shape and may be classified either as self- expanding or as balloon expandable. Self-expanding stents characteristically are in their expanded configuration when in a free, released state. In order to advance a self- expanding stent to the deployment site in the vessel, the stent is contracted to its small diameter (low profile) dimension and is mounted to the distal end of a delivery catheter that maintains the stent in its low profile configuration as the catheter is advanced to the target site. The stent is deployed by freeing the stent from the catheter to enable the stent to self-expandj under its inherent resilience, into supportive engagement with the vessel wall. The delivery catheter then can be removed from the patient, leaving the stent in place. In contrast, a balloon expandable stent does not rely on inherent resilience for its use or operation. Rather, a balloon expandable stent typically is formed as a metal tubular structure defined by a selected pattern of interconnected structures and links configured to enable the diameter of the stent to be expanded forcibly, as by a balloon, from its low profile diameter to a larger diameter at which it can support the vessel wall. During such expansion, the metallic stent undergoes plastic deformation and retains its expanded diameter. The balloon deployment catheter then can be deflated and withdrawn, leaving the stent in place. Another class of stents includes those formed from a shape memory alloy, such as a nickel-titanium alloy (nitinol). The alloy has a thermal-dependent memory in that it will maintain a stable configuration, as in a low profile configuration suitable for delivery by a catheter, but will return to its memory shape (e.g. to expand to a larger, vessel-supporting diameter) in response to a thermal event such as injecting warm saline into the vessel to trigger the shape memory phenomenon or exposing the stent to body temperature. Such alloys also can be made to exhibit superelastic properties
Among the desirable features of a stent are that it should have sufficient hoop strength to support the vessel against the stresses that the vessel can be expected to impose on the deployed stent. The degree of scaffolding, a measure of the percentage of cylindrical area defined by the expanded stent as compared to the void spaces between its metal structures and links, should be selected to provide the desired balance between structural strength of the stent and exposure of the inner surface of the vessel to the lumen. It is important that the stent be capable of being contracted to a low profile diameter that is sufficiently small to facilitate percutaneous insertion of the stent and navigation of the stent through the sometime tortuous vasculature. The longitudinal flexibility of the stent also is an important characteristic, particularly in settings in which the stent must be navigated through tortuous vessels in order to reach the intended deployment site. Longitudinal flexibility also is important after the stent has been expanded in order that the natural curvature of the body lumen, which typically is deformed when the balloon is inflated, can return to its natural shape after the stent has been deployed and the delivery catheter removed. Also among the desirable characteristics of a stent is that it should have a sufficiently large expansion ratio, that is, the ability to expand from its low profile configuration to as large a diameter as can reasonably be expected, in order to treat the condition at hand. A large expansion ratio enables the physician to perform a procedure with an additional measure of confidence that if the original assessment of proper stent size is smaller than what is actually required, the stent can be expanded to a still larger diameter. Further, in many cases, it is important that the stent, when expanded radially, does not contract substantially, if at all, in length as it is deployed. Also among the desirable characteristics of a stent, particularly with balloon expandable stents, is that the expansion of the stent components be relatively uniformly distributed. Additionally, it is desirable that when the stent is expanded from its low profile to its deployed diarneter, it does not have stress points that, upon expansion or after deployment, could ibad to fracture of portions of the stent.
It is among the general objects of the invention to provide an improved stent construction and mode of operation by which the foregoing desirable characteristics of a stent may be obtained.
Summary of the Invention
The invention is embodied in a tubular stent in wljiich the wall of the stent is defined by a filigree-like pattern defined by regions of interconnected metal members and openwork. The pattern is characterized by a plurality of nodes arranged in clusters, each cluster comprising a group of nodes. Each of the nodes includes a central hub and at least three arms connected to and circumscribing, partially, the hub. When the i stent is in its low profile, unexpanded state, each arm isjarranged circumferentially about the hub of the node and lies closely adjacent to the next adjacent arm of the node i in a spiral-like fashion. Each of the arms in a node is connected at a transition region to an adjacent node by being connected to the outer end ojf an arm of that adjacent node, the connected arms and transition region together defining a link between adjacent nodes. When the stent is expanded, as by a balloon catheter, the links uncoil. The links uncoil differentially, the degree to which a particular link uncoils depending on the degree to which the link is oriented in a generally circumferential direction. A link that is oriented in a generally circumferential direction may uncoil more than a link that extends in a direction that is closer to the axial direction of the stent. The nodes enable each of the links to unfold to the extent necessary to respond to the radial and axial forces applied to the stent during balloon expansion. The nodes are free to shift and reorient themselves in response to the applied forces of expansion.
One embodiment of the invention (FIG. 3) includes clusters that define a pattern of nodes arranged generally hexagonally. In another embodiment (FIG. 13), the nodes may be packed more closely together and are disposed to lie generally helically along the stent with each node along the helix being serially connected by a link to the next adjacent nodes on that helix. In another aspect of the invention, the stent is formed by laser cutting the pattern of the stent from a metal tube having a diameter selected to correspond to the lowest profile that the stent is expected to have, typically the diameter that the stent will have when mounted and crimped onto the balloon of a delivery catheter. In order to load the stent onto the deflated balloon, the stent is preliminarily expanded slightly, for example, by advancing a tapered mandrel through the stent to increase its diameter sufficiently so that it can be slid onto the balloon. Once in position on the balloon, the stent then is crimped firmly about the balloon, with the stent returning toward its lowest profile configuration during the crimping process. It is among the objects of the invention to provide an intraluminal stent that can be delivered while being maintained in a very low profile, yet in which the stent has a high degree of longitudinal flexibility to facilitate navigation through tortuous vessels; to provide an intraluminal stent that has sufficient flexibility in its expanded, deployed state to enable the vessel to return toward its natural shape; to provide such a stent with a desirably high degree of longitudinal flexibility that has a large expansion ratio between its low profile and expandable diameters; to provide a stent that does not shorten adversely when it is deployed; and to provide a stent that, when it expands, maintains a relatively uniform distribution of its components and to provide such a stent with sufficient radial strength to provide luminal patency.
Brief Description of the Drawings The foregoing and other objects and advantages of the invention will be appreciated more fully from the following further description thereof, with reference to the accompanying drawings in which: FIG. 1 is an illustration of a tubular stent incorporating one embodiment of the invention in which the nodes are arranged in hexagonal clusters, with the stent being in its low profile configuration;
FIG. 2 is an illustration of the stent in FIG. 1 after expansion, as by a balloon catheter; FIG. 3 is an illustration of the pattern of the stent of FIG. 1 shown before expansion and lying in a flat plane;
FIG. 4 is an enlarged illustration of a group of clusters of the stent pattern illustrated in FIG. 3; FIG. 5 is a greatly enlarged illustration of a single node;
FIG. 6 is a diagram of the repeating cell pattern defined by a single hexagonal cluster of nodes;
FIG. 7 is a fragmented illustration of a pair of adjacent nodes aligned circumferentially and showing the configuration of an individual circumferentially oriented link connecting the nodes;
FIG. 8 is a diagrammatic illustration of a stent mounted on a catheter after having been advanced through a sharp bend and illustrating the manner in which the leading edge of the stent has become permanently deformed to a "fishmouth" configuration; FIGS. 9A-9C illustrate an aspect of the invention in which a stent may be mounted onto a balloon catheter;
FIG. 10 is a flat plane illustration of a stent pattern having hexagonal clusters of nodes in which the orientation of the clusters has been modified;
FIG. 11 is a diagram of the repeating cell pattern defined by a single hexagonal cluster of nodes as show in FIG. 0;
FIG. 12 is a flat plane illustration of the pattern of another embodiment of a stent in accordance with the invention in which the nodes are packed more closely together than with the hexagonal cluster;
FIG. 13 is a diagram of the repeating cell pattern of the stent having the pattern shown in FIG. 12;
FIG. 14 is an enlarged illustration of a portion 12" of the embodiment of FIG. 12 illustrating the arrangement of a cluster of nodes;
FIG. 14A is an illustration similar to FIG. 14, showing in more detail, a slight offset from a helical line of two sequential pairs of nodes; FIGS. 15A-15C are diagrammatic illustrations of the cluster shown in FIG. 14 showing the manner in which the nodes and interconnecting links shift about as the stent is forcibly expanded;
FIG. 16 is a diagrammatic illustration of a stent during expansion on a balloon showing the manner in which the end of the stent may tend to expand before the midportion of the stent;
FIG. 17 is an illustration of an end portion of a stent, in the flat, showing the configuration by which the end may be interlocked to provide increased resistance to the expansion of the end of the stent; FIG. 18 is an enlarged illustration of the details of the interlocking arrangement of FIG. 17;
Description of the illustrative Embodiments
FIG. 1 illustrates one embodiment of a stent embodying the principles of the invention. The stent may be formed from a tube of stainless steel (316L) or titanium although other metals suitable for use in a stent may be employed, including shape memory alloys, as will be appreciated by those skilled in the art. The stent may be manufactured by any of a number of techniques known and in use in the prior art (such as etching and laser ablation), although the preferred approach is to manufacture it using laser ablation in which a solid-walled tube is rotated and translated about its longitudinal axis while a laser beam selectively ablates regions of the tube to form a filigree-like pattern. For example, the stent may be made using a neodimium-YAG laser. The width of the laser beam may be controlled to be quite small, of the order of about 0.002 inches. Such laser etching techniques in the manufacture of stents are known to those skilled in the art as disclosed in, for example, U.S. patents numbers 4,762,128; 5,345,057; 5,356,423; 5,788,558; 5,800,526 and 5,843,1 7. The present invention relates to a pattern for such a stent that is characterized by a plurality of nodes where the nodes have a central hub and three arms projecting from the hub, with the arms being wrapped partly about the hub in somewhat of a spiral configuration. The nodes are arranged in clusters that can have varying geometric patterns, one of which is shown in FIGS. 1-6. FIG. 3 illustrates the invention in which the cylindrical wall of the stent is shown, for ease of explanation, as it would appear if the cylinder was slit longitudinally and laid out in a flat plane. In this embodiment, the arrangement can be seen to include a plurality of nodes 10 arranged to define a plurality of hexagonally-shaped clusters, one of which is encircled in phantom at 12. Each cluster 12 in this embodiment may be considered as having nodes 10a, 10b, 10c, 10d 10e and 10f that are oriented with the first node 10a (in the 12 o'clock position) and the fourth node 10d (in the 6 o'clock position) being aligned in a circumferential direction indicated by arrow 14. The nodes 10a-10f in an individual cluster may be equiangularly spaced about the center of the cluster. Except for the nodes 10 at the ends of the stent, the second and third nodes 10b, 10c serve as the fifth and sixth nodes 10e, 10f of the next adjacent hexagonal cluster. It also may be noted that each node may be considered to be in any one of three positions (10A-10F) because each node may be considered as being shared by three clusters that incorporate and surround that node. Thus, for example, in FIG. 4 one node may be designated as 10C, E, A, an adjacent node may be designated as 10B, D, F. It will be appreciated that each pair of adjacent clusters shares a pair of three-arm nodes. The open region defined within each cluster 12 may be considered as defining an open cell 16. In the hexagonal configuration illustrated in FIGS. 1 and 3, each cell 16 is characterized by an open central portion and six open curled fingers 18 radiating outwardly from the central portion of the cell as shown in FIG 6. In a laser-cut device, the minimum width of the open curled fingers 18 may be determined by the width of the laser cutting beam which may be of the order of 0.002 inch wide.
The nodes 10 may be configured so that the arms 20 wrap closely about the hub of the node in order to maximize the extent to which the arms can unwind from their low profile to their expanded configuration. FIG. 4 illustrates, in further enlargement, the relationship between the nodes of an hexagonal cluster and of an adjacent hexagonal cluster, in which two of the nodes are common to both clusters. As shown in FIGS. 4 and 5, each node 10 may be considered to have three arms 20a, 20b and 20c, joined, respectively, at roots 22a, 22b, 22c, to the central hub 24 of the node. Each of the arms 20 extends from its root 22 and circumscribes its associated hub 24. Each of the arms 20a also circumscribes a portion of the next adjacent arm in the node. Thus, arm 20a circumscribes and lies closely adjacent a portion of arm 20c which, in turn, circumscribes and lies closely adjacent a portion of the arm 20b that, in turn, circumscribes and lies closely adjacent a portion of the arm 20a. The arms 20a, 20b and 20c may be considered as being arranged in a generally spiral pattern. A stent having nodes in which the arms define a larger arc between its root and its transition will tend to exhibit a greater expansions ratio from the compacted diameter to its maximum expanded diameter. FIG. 14A (described in further detail below) illustrates a stent configuration in which the nodes have arms that define an arc A extending between the root of an arm along the outer edge of the arm to the transition region 26 of that link. , Also, as shown in FIG. 14A, the angle A extends over an arc of nearly 270°, with an angle of 254° being shown. Each of the arms 20a, 20b, 20c also may be considered as being joined to the outer region of an arm 20 of an adjacent node, the two arms being connected at a transition region 26. Each pair of connected arms 20 may be considered as a link 28 (FIG. 7) that extends from the root 22 of an arm 20 of one node to the root 22 of an arm 20 of an adjacent node, thus defining a connection between each pair of adjacent nodes 10. Each of the links 28 may be considered to define an S- shaped configuration in which the pair of arms 20 that defines a link 28 curve in opposite directions on either side of the transition region 26. A link 28 may be considered as extending along a direction that includes the roots 22 and transition region 26 of that link. Adjacent nodes 10 are connected to each other by one link 28. In the hexagonal cluster configuration described above, the tubular stent may be considered as having a plurality of longitudinally spaced radial planes 30A, 30B (FIG. 4) that alternate lengthwise of the stent. The stent also may be considered as having a plurality of pairs of circumferentially adjacent nodes (10d, e and 10c, a), each pair of nodes being disposed in one or the other of the radial planes 30A, 30B. In the illustrative embodiment, the circumferentially adjacent nodes 10 are connected by a circumferentially oriented link 28 in which the hubs and, preferably, the roots 22 and transition region 26 of that link are disposed substantially along the radial plane 30A or 30B of the pair of nodes connected by that link 28 (FIGS. 4 and 5). When the stent is expanded, as by a balloon, the radially outward directed force of the balloon will translate to a circumferential force on the tubular stent that causes the circumferentially aligned pairs of nodes to separate, in a direction generally circumferential of the stent. That expansion tends to straighten the circumferentially oriented links. As an adjacent pair of circumferentially aligned nodes is urged apart, the circumferential link connecting those nodes will tend to become straightened while the hubs of the adjacent nodes are free to shift, as necessary, in order to accommodate the straightening of the circumferential link.
The stent embodiment described above also may be considered as defining pairs of longitudinally extending rows 32A, 32B that are circumferentially spaced about the stent. The arrangement of nodes with respect to the longitudinal rows 32A, 32B is one in which the nodes of each pair of adjacent nodes in an individual cluster lie along an alternate one of rows 32A, 32B. Consequently, adjacent nodes are not aligned along a longitudinal row but, instead, are aligned in a generally helical orientation or circumferential orientation, as indicated by the helical rows 34A, 34B and circumferential rows 30A, 30B.
When the foregoing pattern is embodied in a balloon expandable stent, the circumferentially oriented links 28 will be the most deformed from their S-shaped configuration, because the principal direction of expansion is radial. The links 28 that extend in a generally helical direction (along the helical axes 34A, 34B) are free to expand differentially to be self-accommodating to the forces and strains imposed on the stent as it is expanded. Those links 28 that are not circumferentially oriented will expand to a lesser degree than circumferentially oriented links. This is illustrated diagrammatically in FIGS. 15A-15C in connection with another embodiment, described in further detail below. FIGS. 15A-15C which shows, diagrammatically, a portion of the stent during and after expansion, where the circumferentially oriented links have been expanded and straightened more than the non-circumferentially oriented links. The extent to which the stent is expanded will be determined as a function of the geometry of the stent, the expanded diameter of the relatively inelastic balloon of the delivery catheter and the anatomy of the body lumen into which the stent is to be placed.
The invention may be used with equal facility in short stents as well as in long stents, the length of the stent being selected to correspond to the anatomy into which the stent is to be placed. The high degree of flexibility achievable with stents made in accordance with the invention enables relatively long stents (e.g. of the order of 100 mm, as might be used in a bile duct) to be made and be deliverable, even where the path leading to the deployment site is tortuous. The wall thickness of the tube from which the stent is made preferable is of the order of 0.007 inches. The width of the links 28 preferably is less than the dimension of the wall thickness and may be of the order of about half of the wall thickness (e.g., about .0035 inches). By maintaining the width of the links 28 relatively narrow, the nodes can be made to be disposed closer to each other to facilitate formation of a relatively compact, dense array. After the stent pattern has been cut in the tube the stent then may be electropolished to put a slight radius on the edges of the stent members that remain after the laser cutting has been completed. In a stent having the hexagonal pattern shown in FIGS. 3 and 4, the stent may be cut from a tube having a diameter of the order of 0.080 inches that can be expanded to a diameter of about 7 mm, presenting an expansion ratio of approximately 3:1. Other embodiments, described below, can be configured with the nodes more closely packed (see, for example, the pattern shown in FIG. 12) in which a stent formed from a tube having a diameter of the order of 0.095 inches is expandable to a diameter of about 10 mm, providing an expansion ratio of about 5:1.
Also among the advantages of the present invention is the ability of the stent to maintain a high degree- of flexibility both in its low profile configuration as well as after it has been expanded and deployed at the intended target site in the body lumen. The flexibility of the stent in its low profile configuration is important during the navigation of the delivery catheter to the deployment site, particularly when sharply curved, tortuous or other non-linear or irregular pathway to the deployment site is presented. When a balloon catheter is operated to expand the stent at the intended deployment site, the relatively inelastic balloon will assume its characteristic elongate, straight shape under the influence of the pressure of the inflation fluid. That, in turn, tends to straighten the portion of the vessel in which it is located. The flexibility of the stent, when expanded, is desirable in order that, after the delivery catheter has been removed, the stent can flex with the vessel as the vessel tends to return to its natural shape. A high degree of expanded stent flexibility thus will provide relatively low resistance to the vessel as it tends to return to its natural shape. This characterization of the invention is achieved while maintaining a high level of hoop strength for the stent.
The excellent longitudinal flexibility of the stent, particularly when in its low profile configuration, is considered to be the result of the use'of the node construction described above in which the nodes also display an ability to flex or deform somewhat in a radial direction. The ability to flex in a radial direction (that is, in a direction perpendicular to the tubular wall and toward and away from the longitudinal axis of the stent), is the result of the spiral-like configuration of the arms about the hub of each node. The arms in each node can flex radially, thus enabling the hub to flex slightly, but sufficiently, toward or away from the stent longitudinal axis. The ability of the hub to flex radially is believed to result in a progressive and gradual flexure along the length of the stent with a reduced tendency to develop sharp kinks, and contributes to the high longitudinal flexibility of the invention. Also among the advantages of the invention is that it tends to avoid formation of a "fishmouth" condition at an end of a stent that is advanced, while mounted on the delivery catheter, through tortuous anatomy. As shown in FIG. 8, it is not uncommon for a stent, at its leading end 36, to develop an asymmetrical flare, somewhat like an open fishmouth, in which a portion of the leading end of the stent deforms to a flared shape and remains separated from the surface of the delivery catheter. The presence of such a flare 38 can present an obstacle to further advancement of the catheter and stent. It may cause damage to the interior surface of the lumen of the vessel and may become caught in a manner that may cause the stent to shift its longitudinal position on the delivery catheter before the stent has been advanced to the intended deployment site. Among the advantages of the present invention is that it displays reduced tendency for such flaring and, consequently, tends to avoid such difficulties.
In order that a stent can achieve its maximum range of expansion, it is desirable to mount the stent on the delivery catheter in a profile that is as low as can be achieved with the particular stent configuration and geometry. To that end, the stent preferably is fabricated in its intended lowest profile configuration corresponding to what would normally be the diameter to which the stent is crimped onto the balloon of the delivery catheter. In the context of the stent described above, therefore, the stent is formed from a tube of metal with the nodes being cut out and located in as close proximity to each other as can be achieved for the particular stent pattern. When a stent, so formed, is to be mounted on a balloon catheter 40, the balloon 42 will have been wrapped tightly about itself and the catheter shaft 44 (FIG. 9A). In order to mount the stent on the balloon, the stent is preliminarily expanded slightly to "size" the stent to the balloon. Such stent sizing may be achieved by inflating a small diameter balloon within the stent or by passing a mandrel 46 through the stent in which the mandrel has a tapered leading end 48 and a slightly enlarged trailing end 50 (FIG. 9B). The stent is expanded just slightly, enough to slip it onto the balloon of the catheter (FIG. 9C). Because the stent was expanded from its low profile configuration in which it was fabricated, the stent then can be crimped down tightly about the balloon, causing the stent to be secured to the balloon while also compacting the stent back toward or, if permitted by the laser-cut dimensions, slightly beyond its originally formed profile. By initially fabricating the stent in its low profile diameter and then expanding it slightly to place it on the balloon, it is assured that when crimped back toward its fabricated diameter, the nodes will not collide or otherwise interfere with each other.
FIG. 10 illustrates a modified embodiment of the invention in which the hexagonal clusters 12 are oriented so that adjacent pairs of nodes (e.g., 10a, 10e and 10c, 10d) are aligned substantially parallel to the longitudinal axis of the stent such that the link 28' connecting the nodes in each of those pairs extends longitudinally of the stent. In this embodiment, the transition region 26 of the connecting links 28' and their hubs 22 lie along lines 48 that parallel the longitudinal axis of the stent. Those adjacent pairs of nodes that are not longitudinally aligned are disposed along rows 50, 52 that are generally helically disposed about the stent. In this embodiment, none of the adjacent pairs of nodes extends in a purely circumferential direction. FIG. 10 illustrates the configuration of a characteristic cell 16 of the stent pattern of FIG. 10.
FIG. 12 illustrates a modified embodiment of the invention in which the nodes are more closely compacted than with the hexagonal cluster configurations described above. In this embodiment the nodes 10 may be considered as being generally aligned along helically extending rows 52A, 52B, 52C, with adjacent nodes along each helical row being serially connected to each other by an individual link 28". Thus for each node 10 two of the three arms 20 form links 28" to adjacent nodes along the same row. Each node also includes an arm 20' that forms a portion of a third link 28" that is connected to a node in an adjacent helically oriented row. The third links of the nodes alternate from one node to the next along a given helical row. Thus, considering helical row 52B as a first row, one node in that row will include a link 28'" that connects to a node in a second adjacent helical row 52A while the next succeeding node in the first row has a third link that connects to a node on the adjacent helical row 52C on the other side. It should be noted that, it may be desirable in this embodiment, in order to avoid interference between the nodes, to shift successive pairs of nodes that lie along a helical row to a position that is slightly offset from a precise helical line. Thus, although nodes 10m, 10n, 10p, 10q, 10r, 10s are all disposed generally along the helical row 52a, it may be necessary for adjacent pairs (e.g., 10p, 10q) in the helical rows to be shifted very slightly laterally with respect to the immediately preceding pair (10m, 10n). Thus, node pair 10m, 10n may be considered as defining a line that lies along the helical row 52a while the node pair 10p, 10q may define a line that parallels helical line 52a but is . displaced slightly (a few thousandths of an inch) to one side of line 52a. The slight displacement is illustrated in FIG 14A from which it may be seen that helical line 52a' is displaced slightly to one side of line 52a. For ease of description, the series of nodes 10m-10s nonetheless may be considered as lying generally along a helical row. It should be noted that those nodes that lie along a row that extends longitudinally of the stent or along the plane that extends transversely of the tubular stent can be aligned without displacement such that all of the orthoginally related nodes may be considered as being more precisely in alignment along the longitudinal direction and along radial planes than the less precisely aligned nodes that extend along the helical rows.
FIGS. 14 and 15A-C illustrate in diagrammatic fashion, the manner in which a stent patterned as shown in FIG. 12 may expand under the influence of an expanding balloon. The cluster is shown, in enlarged detail, and includes six nodes 10g, 10h, 10i, 10j, 10k, 101. As the cluster is subjected to the forces of radial expansion of the balloon, indicated by arrows 54, the cluster tends to rotate in a clockwise direction as illustrated by arrows 53 in FIGS. 14 and 15A-15C. During such cluster rotation the links 28 in the cluster will tend to expand, although at a relatively slow rate, until the cluster has rotated to a more circumferential orientation (FIG. 15B). As the cluster approaches a more circumferential orientation, the rate at which the links begin to expand increases. Thereafter, continued radial expansion of the balloon causes the circumferentially oriented links (28gh, 28hi, 28jk, 28kl) to expand toward their full expandable lengths (FIG. 15C).
As shown in FIGS. 15A-15C, as the cluster rotates clockwise during the initial portion of the balloon expansion, the links 28lg and 28ij that connect the endmost pairs (10g, 101 and 101, 10j) of the cluster will become reoriented to extend generally along lines that are more parallel to the longitudinal axis of the stent than when the stent is in its low profile configuration. As those links rotate into a more longitudinal orientation, they become positioned to resist longitudinal compression of the stent. Consequently, the reorientation of those links results in an increase in the resistance to shortening of the stent as the stent is expanded radially.
The ends of the stent may be finished, for example, as indicated in FIG. 4, in which an arm of each of the nodes in the endmost radial plane 30E is connected to another arm of another node in that plane. One such arrangement is illustrated in FIG. 4 from which it can be seen that links x, y, each of which extends from a node in the endmost radial plane 30A is connected, as by a connecting link z. The connecting link and the ends of the links x and y are joined at a junction that may be considered as defining a partial, two-armed node in which the arms have portions that parallel each other in a generally spiral configuration. It should be understood, however, that other arrangements for connecting the nodes in the endmost radial planes of the stent may be employed. In another aspect of the invention, the ends of the stent may be configured to present a greater resistance to radial expansion than the portions of the stent intermediate the ends. FIG. 16 illustrates, diagrammatically, a phenomenon associated with balloon expandable stents in which the ends 56 of the stent 8 tend to begin to expand before the mid-portion 58 of the stent. As a result, the ends of the balloon, in the early stages of expansion, may flare so that the balloon and stent assume a "dog bone" configuration in which the end regions 60 of the balloon 42 are expanded to a greater diameter than the mid-portion of the balloon. The expansion of the ends before the middle of the stent tends to develop a compressive end loading, indicated at arrow 62, being placed on the end regions of the stent. The compressive loading on the end regions may tend to shorten the end regions until the mid-portion of the balloon has expanded, at which time continued balloon expansion will be more uniform along its length. It is desirable to minimize the extent of stent shortening during expansion because such shortening can result in the stent being deployed in a position shifted from that which was intended. Additionally, shortening of the stent during expansion may result in the deployed stent having insufficient length to support the entire length of lumen intended.
FIGS. 17 and 18 illustrate another embodiment of an arrangement for increasing the resistance to expansion at the ends of the stent, discussed above, sufficiently to reduce, and possibly to eliminate, the longitudinal shortening at the end regions of the stent during the early part of the balloon expansion. The arrangement includes a series of interlocked elements at the end of the stent that resist expansion, at least during the early portion of balloon expansion. The interlocked components are formed from extensions of arms of nodes in the endmost radial plane 30E and may be considered to include an L-shaped member 62 and an L-shaped socket 64 receptive to the member 62. The member 62 and the socket 64 are formed by extensions of arms of adjacent nodes at the end of the stent. The arm of one node is extended to define a series of serpentine legs 62a, 62b, 62c, 62d that define the L-shaped member. The extension continues to include a pair of sequential legs 64a, 64b that parallel each other and are joined at a hairpin bend 64d. Legs 64a and 64b thus define a double thickness socket that captures an L-shaped member. The portion of the L-shaped member, including legs 62c and 62d define a second socket 66 that receives the hairpin bend 64d of the socket legs 64a, 64b. It should be understood that in the illustrations, the space between the legs that make up the L-shaped member 62 and L-shaped socket 64 are spaced apart sufficiently for clarity of illustration. As discussed above, the space between adjacent paralleling components (such as 64a, 64b) of the stent may be as small as the width of the laser beam by which the pattern is cut, for example, about 0.002 inch. Thus, the distal ends of the stent preferably are provided with a configuration that differs from the spiral configuration of the nodes and which includes interlocking members that will present resistance to stent expansion as the balloon is inflated. The spaces between the interlocking components, however, should be sufficient so that at a desired point in the expansion of the balloon, the interlocking components will have deformed sufficiently to release, thereby enabling the end of the stent to continue expansion together with the midportions of the stent.
From the foregoing, it may be appreciated that the invention provides a stent construction that may be used to achieve a high degree of stent flexibility both when in a low profile configuration as well as when in an expanded configuration. The invention enables a stent to be configured in a low profile while being expandable through a substantial range of larger diameters. The stent may be configured in a manner that lessens the degree of stent shortening as the stent is deployed and provides additional benefits discussed above.
It should be understood however, that the foregoing description of the invention is intended merely to be illustrative thereof and that other modifications, embodiments and equivalents may be apparent to those who are skilled in the art without departing from its spirit. Having thus described the invention what I desire to claim and secure by letters patent is:

Claims

Claims
1. A radially expandable intraluminal stent in the form of a generally tubular wall having open regions that define wall structure comprising: a plurality of nodes, each node having a central hub and three arms extending from the hub, each arm circumscribing the hub and a segment of the next adjacent arm of that node; each arm being connected, at a transition region, to an arm of an adjacent node, the connected arms of the adjacent nodes defining a link between those nodes.
2. A stent as defined in claim 1 wherein the arms in said links of adjacent nodes curve in opposite directions.
3. A stent as defined in claim 1 wherein the links are S-shaped.
4. A stent as defined in claim 1 where a plurality of nodes are arranged in a hexagonal cluster.
5. ' A stent as defined in claim 4 wherein the hexagonal clusters are oriented so that none of the adjacent pairs of nodes is aligned in a direction that parallels the longitudinal axis of the stent.
6. A stent as defined in claim 4 wherein the hexagonal clusters are oriented so that none of the adjacent pairs of nodes is aligned in a circumferential direction.
7. A stent as defined in claim 1 wherein the arms of the nodes are arranged generally to define a spiral
8. A stent as defined in claim 7 wherein the gap between adjacent arms of a spiral is of substantially constant width up to the transition region.
9. A stent as defined in claim 1 wherein each of the arms of a node is connected at a root to the hub of the node and where the roots are equiangularly spaced about the hub.
10. A stent as defined in claim 1 wherein each arm of each node is connected to a different one of the adjacent nodes.
11. A stent as defined in claim 1 further comprising: the nodes being arranged so that a plurality of adjacent pairs of nodes lie along radially extending planes, the planes being spaced along the length of the stent.
12. A stent as defined in claim 11 wherein the links between the nodes of said pairs thereof lie along the radial, planes and extend in a circumferential direction.
13. A stent as defined in claim 12 further comprising additional pairs of adjacent nodes extending along a row that extends generally helically along the stent.
14. A stent as defined in claim 1 further comprising: the nodes being arranged so that a plurality of adjacent pairs of nodes lie along a row extending longitudinally of the stent.
15. A stent as defined in claim 14 wherein the nodes are arranged to define a plurality of said longitudinally extending rows.
16. A stent as defined in claim 1 wherein the transition region is disposed at the midportion of the link.
17. A stent as defined in claim 1 formed from a metal having sufficient ductility to plastically deform in response to application of a radially outward expansion force applied to the stent.
18. A stent as defined in claim 1 formed from a material having sufficient inherent resilience to cause the stent to itself expand from a low profile diameter to an expanded diameter.
19. A stent as defined in claim 1 formed from a metal having shape memory characteristics adapted to enable the stent to expand in response to a thermal event.
20. A stent as defined in claim 1 having low profile and expanded diameters and being dimensioned to enable the stent to be delivered into and deployed within a human biliary duct.
21. A stent as defined in claim 1 having low profile and expanded diameters to enable the stent to be delivered into and deployed within a blood vessel.
22. A stent as defined in claim 1 having low profile and expanded diameters and being dimensioned to enable the stent to be delivered into and deployed within a urological passage.
23. In a radially expandable tubular intraluminal stent defined by and having a plurality of interconnected members deformable to a larger diameter tubular configuration, the improvement comprising a plurality of nodes, each defined by a central hub and three arms, each of the arms in each of the nodes having a portion that circumscribes the hub and a segment of an adjacent arm of that node.
24. A stent as defined in claim 23 wherein the three-armed nodes are arranged in general alignment along a plurality of helically extending rows, two of the arms of each link being connected serially to adjacent nodes along its associated helical row, the third arm of the node being connected to a node that lies along the next adjacent helical row.
25. A stent as defined in claim 24 wherein the third link of succeeding nodes lying along a helical row are connected to nodes in alternately adjacent helical rows.
26. A stent as defined in claim 16 further in which the arms define a generally spiral configuration.
27. A stent as defined in claim 26 wherein the nodes are arranged in clusters of six nodes each.
28. A stent as defined in claim 26 wherein the nodes are arranged along a plurality of helical rows, the nodes in each row being serially connected to each other by a link, each of the nodes in each helical row also being connected, by a link, to a node in each adjacent helical row.
29. A stent as defined in claim 16 wherein the paralleling relation extends over a substantial arc.
30. A radially expandable intraluminal stent in the form of a generally tubular wall having cut out regions that define wall structure comprising: a plurality of interconnected links deformable to enable the stent to expand from a small diameter to a larger diameter in response to expansion of an expanding member within the stent; the links disposed at the opposite ends of the stent being interconnected to provide greater resistance to radial expansion of the end regions of the stent than at the intermediate region of the stent.
31. A stent as defined in claim 30 wherein said interconnection further comprises: a plurality of nodes extending circumferentially about an end of the stent and defining the end most radial plane of nodes, an arm of each of a pair of adjacent nodes in the radial plane each having extensions thereof that are connected to each other at a transition region, one of the extensions being formed to define a male contour and the other of the extensions being formed to define a female contour receptive to member having said male shaped contour.
32. A stent as defined in claim 31 further comprising a portion of the male member defining a socket receptive to a portion of the arm defining the female socket.
33. A stent as defined in claim 32 wherein the male and female members are L-shaped.
34. A radially expandable intraluminal stent in the form of a generally tubular wall having cut-out regions that define wall structure comprising: a plurality of interconnected links deformable to enable the stent to expand from a small diameter to a large diameter in response to expansion of an expanding member within the stent; means at the ends of the stent for providing greater resistance to radially expansion of the ends region of the stent than at the intermediate region of the stent, at least during the initial portion of said expansion.
35. A radially expandable intraluminal stent in the form of a generally tubular wall having cut out regions that define wall structure comprising: a plurality of nodes, each node being connected to adjacent nodes by an individual generally S-shaped link; the links and nodes being arranged so that when the stent is expanded from its initial diameter to an expanded diameter, the circumferentially oriented links will elongate to a greater degree than the links oriented in a less circumferential direction.
36. In a radially expandable tubular stent having a wall defined by and having a plurality of interconnected links deformable from a low profile diameter to an expanded diameter, the improvement comprising a plurality of nodes, each node having a central hub and three arms extending from and circumscribing the hub and a segment of the next adjacent arm of that node, the arms being of sufficient length to flex to permit the central hub to be displaced transversely with respect to those regions of the stent wall that surround the radially displaced node.
37. A stent as defined in claim 1 wherein each cluster is formed from six nodes.
38. A stent as defined in claim 1 further comprising the nodes being arranged in clusters of 6 in which two arms of each node are connected to nodes of that cluster and one arm of each of the nodes in that cluster is connected to a node of another
5 cluster.
39. A stent as defined in claim 38 wherein each of the nodes in the stent is shared by three adjacent clusters.
Q 40. A method for making a balloon expandable tubular stent adapted to be placed on a balloon and then crimped about a balloon to a low profile for delivery comprising: initially forming a tubular stent in a diameter equal to that of the desired low profile after the stent is crimped onto the balloon; 5 whereby the diameter of the stent can be increased to enable insertion of the balloon of a balloon delivery device into the slightly expanded stent and then crimped to return the stent to its original low profile configuration on the balloon.
0 41. A method as defined in claim 40 wherein the tubular stent is made from an initially solid walled tube.
42. A method for assembling a tubular stent on a balloon comprising: providing a balloon catheter with a defined low profile about which the 5 stent can be crimped; forming a stent with an unstressed diameter equal to the crimped diameter; expanding slightly the stent; inserting the balloon into the slightly expanded stent; and 0 crimping the stent onto the balloon to reduce it to its low profile.
43. A method as defined in claim 42 wherein the expansion of the stent is to a degree that is a small fraction of the fully expandable diameter of the stent.
PCT/US2001/020392 2000-06-26 2001-06-26 Intraluminal stents WO2002000138A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002504923A JP5036116B2 (en) 2000-06-26 2001-06-26 Endovascular stent
AU7301801A AU7301801A (en) 2000-06-26 2001-06-26 Intraluminal stents
EP01952241A EP1294312B1 (en) 2000-06-26 2001-06-26 Intraluminal stent
MXPA02012827A MXPA02012827A (en) 2000-06-26 2001-06-26 Intraluminal stents.
DE60121947T DE60121947T2 (en) 2000-06-26 2001-06-26 INTRALUMINAL STENT
AU2001273018A AU2001273018B2 (en) 2000-06-26 2001-06-26 Intraluminal stents
CA2415939A CA2415939C (en) 2000-06-26 2001-06-26 Intraluminal stents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/603,409 2000-06-26
US09/603,409 US6805704B1 (en) 2000-06-26 2000-06-26 Intraluminal stents

Publications (2)

Publication Number Publication Date
WO2002000138A2 true WO2002000138A2 (en) 2002-01-03
WO2002000138A3 WO2002000138A3 (en) 2002-08-01

Family

ID=24415310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/020392 WO2002000138A2 (en) 2000-06-26 2001-06-26 Intraluminal stents

Country Status (11)

Country Link
US (1) US6805704B1 (en)
EP (1) EP1294312B1 (en)
JP (1) JP5036116B2 (en)
CN (1) CN1303948C (en)
AT (1) ATE334642T1 (en)
AU (2) AU7301801A (en)
CA (1) CA2415939C (en)
DE (1) DE60121947T2 (en)
ES (1) ES2267792T3 (en)
MX (1) MXPA02012827A (en)
WO (1) WO2002000138A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6805707B1 (en) 2001-12-27 2004-10-19 Advanced Cardiovascular Systems, Inc. Stent with improved ring and link pattern
WO2007055768A1 (en) * 2005-11-14 2007-05-18 Boston Scientific Limited Stent with spiral side-branch support designs
US7758634B2 (en) 2001-02-26 2010-07-20 Boston Scientific Scimed, Inc. Bifurcated stent and delivery system
US8157858B2 (en) 2005-03-30 2012-04-17 Terumo Kabushiki Kaishia Stent and stent delivery device
US8449596B2 (en) 2005-03-30 2013-05-28 Terumo Kabushiki Kaisha Stent and stent delivery device

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040093056A1 (en) 2002-10-26 2004-05-13 Johnson Lianw M. Medical appliance delivery apparatus and method of use
US7959671B2 (en) 2002-11-05 2011-06-14 Merit Medical Systems, Inc. Differential covering and coating methods
US7875068B2 (en) 2002-11-05 2011-01-25 Merit Medical Systems, Inc. Removable biliary stent
US7637942B2 (en) 2002-11-05 2009-12-29 Merit Medical Systems, Inc. Coated stent with geometry determinated functionality and method of making the same
US7637934B2 (en) 2003-03-31 2009-12-29 Merit Medical Systems, Inc. Medical appliance optical delivery and deployment apparatus and method
US7604660B2 (en) 2003-05-01 2009-10-20 Merit Medical Systems, Inc. Bifurcated medical appliance delivery apparatus and method
US8048146B2 (en) 2003-05-06 2011-11-01 Abbott Laboratories Endoprosthesis having foot extensions
JP4846414B2 (en) * 2005-03-30 2011-12-28 テルモ株式会社 In vivo indwelling stent and biological organ dilator
US8216267B2 (en) 2006-09-12 2012-07-10 Boston Scientific Scimed, Inc. Multilayer balloon for bifurcated stent delivery and methods of making and using the same
US8932340B2 (en) 2008-05-29 2015-01-13 Boston Scientific Scimed, Inc. Bifurcated stent and delivery system
DE102008045039A1 (en) * 2008-08-29 2010-03-04 Dr. Osypka Gmbh Implantable vessel support for use as support sleeve in blood vessels in region of vascular constriction, has spiral whose twists run in gaps of twists of other spiral, where spirals form part of wall of support in initial position
NZ609908A (en) * 2008-10-27 2014-07-25 Baxter Int Models of thrombotic thrombocytopenic purpura and methods of use thereof
CA2902209A1 (en) 2013-03-15 2014-09-18 The Regents Of The University Of California Peptides having reduced toxicity that stimulate cholesterol efflux
US10105073B2 (en) * 2013-11-21 2018-10-23 Biosense Webster (Israel) Ltd Flexible multiple-arm diagnostic catheter
JP6522518B2 (en) * 2013-12-25 2019-05-29 株式会社 京都医療設計 Vascular stent
US9381103B2 (en) * 2014-10-06 2016-07-05 Abbott Cardiovascular Systems Inc. Stent with elongating struts
US20170007430A1 (en) * 2015-07-10 2017-01-12 Boston Scientific Scimed, Inc. Method for improving stent retention and deployment characteristics
JP6470219B2 (en) * 2016-03-25 2019-02-13 日本ライフライン株式会社 Stents and medical devices
CA3046087A1 (en) 2016-12-09 2018-06-14 Zenflow, Inc. Systems, devices, and methods for the accurate deployment of an implant in the prostatic urethra
EP4450031A2 (en) * 2017-08-11 2024-10-23 Elixir Medical Corporation Uncaging stent
US11154410B2 (en) * 2018-06-29 2021-10-26 Monarch Biosciences, Inc. Spiral-based thin-film mesh systems and related methods
US11648115B2 (en) * 2018-10-03 2023-05-16 Edwards Lifesciences Corporation Expandable introducer sheath
CA3156685A1 (en) 2019-11-19 2021-05-27 Zenflow, Inc. Systems, devices, and methods for the accurate deployment and imaging of an implant in the prostatic urethra
CN113274175B (en) * 2021-05-26 2022-07-19 河南科技大学第一附属医院 Displacement-preventing heart stent capable of being unfolded in corrugated manner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4762128A (en) 1986-12-09 1988-08-09 Advanced Surgical Intervention, Inc. Method and apparatus for treating hypertrophy of the prostate gland
US5345057A (en) 1993-03-25 1994-09-06 Lasag Ag Method of cutting an aperture in a device by means of a laser beam
US5356423A (en) 1991-01-04 1994-10-18 American Medical Systems, Inc. Resectable self-expanding stent
US5788558A (en) 1995-11-13 1998-08-04 Localmed, Inc. Apparatus and method for polishing lumenal prostheses
US5800526A (en) 1995-03-17 1998-09-01 Endotex Interventional Systems, Inc. Multi-anchor stent
US5843117A (en) 1996-02-14 1998-12-01 Inflow Dynamics Inc. Implantable vascular and endoluminal stents and process of fabricating the same

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133732A (en) 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US4886062A (en) 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5019090A (en) 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
US5122154A (en) 1990-08-15 1992-06-16 Rhodes Valentine J Endovascular bypass graft
US5314472A (en) 1991-10-01 1994-05-24 Cook Incorporated Vascular stent
US6107004A (en) 1991-09-05 2000-08-22 Intra Therapeutics, Inc. Method for making a tubular stent for use in medical applications
CA2079417C (en) 1991-10-28 2003-01-07 Lilip Lau Expandable stents and method of making same
US5683366A (en) 1992-01-07 1997-11-04 Arthrocare Corporation System and method for electrosurgical tissue canalization
US5507767A (en) 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
US5683448A (en) 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
US5540712A (en) 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
US5342387A (en) 1992-06-18 1994-08-30 American Biomed, Inc. Artificial support for a blood vessel
US5443478A (en) 1992-09-02 1995-08-22 Board Of Regents, The University Of Texas System Multi-element intravascular occlusion device
US5342348A (en) 1992-12-04 1994-08-30 Kaplan Aaron V Method and device for treating and enlarging body lumens
GB2281865B (en) 1993-09-16 1997-07-30 Cordis Corp Endoprosthesis having multiple laser welded junctions,method and procedure
US5913897A (en) 1993-09-16 1999-06-22 Cordis Corporation Endoprosthesis having multiple bridging junctions and procedure
JP2703510B2 (en) 1993-12-28 1998-01-26 アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド Expandable stent and method of manufacturing the same
ATE188863T1 (en) 1994-02-25 2000-02-15 Fischell Robert STENT
US5449373A (en) 1994-03-17 1995-09-12 Medinol Ltd. Articulated stent
US6165210A (en) 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
DE4424242A1 (en) 1994-07-09 1996-01-11 Ernst Peter Prof Dr M Strecker Endoprosthesis implantable percutaneously in a patient's body
US5575816A (en) 1994-08-12 1996-11-19 Meadox Medicals, Inc. High strength and high density intraluminal wire stent
US5836964A (en) 1996-10-30 1998-11-17 Medinol Ltd. Stent fabrication method
US5549662A (en) 1994-11-07 1996-08-27 Scimed Life Systems, Inc. Expandable stent using sliding members
CA2301351C (en) 1994-11-28 2002-01-22 Advanced Cardiovascular Systems, Inc. Method and apparatus for direct laser cutting of metal stents
US5630829A (en) 1994-12-09 1997-05-20 Intervascular, Inc. High hoop strength intraluminal stent
DE4446036C2 (en) 1994-12-23 1999-06-02 Ruesch Willy Ag Placeholder for placement in a body tube
US5591197A (en) 1995-03-14 1997-01-07 Advanced Cardiovascular Systems, Inc. Expandable stent forming projecting barbs and method for deploying
US5591198A (en) 1995-04-27 1997-01-07 Medtronic, Inc. Multiple sinusoidal wave configuration stent
RU2157146C2 (en) 1995-06-13 2000-10-10 ВИЛЬЯМ КУК Европа, A/S Device for performing implantation in blood vessels and hollow organs
US5562697A (en) 1995-09-18 1996-10-08 William Cook, Europe A/S Self-expanding stent assembly and methods for the manufacture thereof
US5824036A (en) 1995-09-29 1998-10-20 Datascope Corp Stent for intraluminal grafts and device and methods for delivering and assembling same
US5776161A (en) 1995-10-16 1998-07-07 Instent, Inc. Medical stents, apparatus and method for making same
AU7458596A (en) 1995-10-20 1997-05-07 Bandula Wijay Vascular stent
US5593417A (en) 1995-11-27 1997-01-14 Rhodes; Valentine J. Intravascular stent with secure mounting means
US5913896A (en) 1995-11-28 1999-06-22 Medtronic, Inc. Interwoven dual sinusoidal helix stent
US6203569B1 (en) 1996-01-04 2001-03-20 Bandula Wijay Flexible stent
US5725547A (en) 1996-01-04 1998-03-10 Chuter; Timothy A. M. Corrugated stent
US5980553A (en) 1996-12-20 1999-11-09 Cordis Corporation Axially flexible stent
US5938682A (en) 1996-01-26 1999-08-17 Cordis Corporation Axially flexible stent
US5895406A (en) 1996-01-26 1999-04-20 Cordis Corporation Axially flexible stent
WO1997027959A1 (en) 1996-01-30 1997-08-07 Medtronic, Inc. Articles for and methods of making stents
US5695516A (en) 1996-02-21 1997-12-09 Iso Stent, Inc. Longitudinally elongating balloon expandable stent
CA2192520A1 (en) 1996-03-05 1997-09-05 Ian M. Penn Expandable stent and method for delivery of same
CA2247891C (en) 1996-03-07 2007-07-31 Med Institute, Inc. An expandable stent
DE69729137T2 (en) 1996-03-10 2005-05-12 Terumo K.K. Stent for implantation
US5833699A (en) 1996-04-10 1998-11-10 Chuter; Timothy A. M. Extending ribbon stent
DE19614160A1 (en) 1996-04-10 1997-10-16 Variomed Ag Stent for transluminal implantation in hollow organs
FR2747301B1 (en) 1996-04-10 1998-09-18 Nycomed Lab Sa IMPLANTABLE DEVICE FOR MAINTAINING OR RE-ESTABLISHING THE NORMAL PASSAGE SECTION OF A BODY DUCT, AS WELL AS A SYSTEM FOR ITS PLACEMENT
NZ331269A (en) 1996-04-10 2000-01-28 Advanced Cardiovascular System Expandable stent, its structural strength varying along its length
DE69702281T2 (en) 1996-04-16 2001-02-22 Medtronic, Inc. Welded sinusoidal stent
US6235053B1 (en) 1998-02-02 2001-05-22 G. David Jang Tubular stent consists of chevron-shape expansion struts and contralaterally attached diagonal connectors
US5922021A (en) 1996-04-26 1999-07-13 Jang; G. David Intravascular stent
US6039756A (en) 1996-04-26 2000-03-21 Jang; G. David Intravascular stent
US6241760B1 (en) 1996-04-26 2001-06-05 G. David Jang Intravascular stent
US5670161A (en) 1996-05-28 1997-09-23 Healy; Kevin E. Biodegradable stent
US5697971A (en) 1996-06-11 1997-12-16 Fischell; Robert E. Multi-cell stent with cells having differing characteristics
US5728150A (en) 1996-07-29 1998-03-17 Cardiovascular Dynamics, Inc. Expandable microporous prosthesis
US5922020A (en) 1996-08-02 1999-07-13 Localmed, Inc. Tubular prosthesis having improved expansion and imaging characteristics
US6022370A (en) 1996-10-01 2000-02-08 Numed, Inc. Expandable stent
US5755776A (en) 1996-10-04 1998-05-26 Al-Saadon; Khalid Permanent expandable intraluminal tubular stent
US5824045A (en) 1996-10-21 1998-10-20 Inflow Dynamics Inc. Vascular and endoluminal stents
US5868781A (en) 1996-10-22 1999-02-09 Scimed Life Systems, Inc. Locking stent
US6010529A (en) 1996-12-03 2000-01-04 Atrium Medical Corporation Expandable shielded vessel support
US6027527A (en) 1996-12-06 2000-02-22 Piolax Inc. Stent
US5868782A (en) 1996-12-24 1999-02-09 Global Therapeutics, Inc. Radially expandable axially non-contracting surgical stent
US5925061A (en) 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
US6241757B1 (en) 1997-02-04 2001-06-05 Solco Surgical Instrument Co., Ltd. Stent for expanding body's lumen
US5911732A (en) 1997-03-10 1999-06-15 Johnson & Johnson Interventional Systems, Co. Articulated expandable intraluminal stent
US5810872A (en) 1997-03-14 1998-09-22 Kanesaka; Nozomu Flexible stent
US5817126A (en) 1997-03-17 1998-10-06 Surface Genesis, Inc. Compound stent
US5824053A (en) 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Helical mesh endoprosthesis and methods of use
US5843168A (en) 1997-03-31 1998-12-01 Medtronic, Inc. Double wave stent with strut
US6033433A (en) * 1997-04-25 2000-03-07 Scimed Life Systems, Inc. Stent configurations including spirals
US5741327A (en) 1997-05-06 1998-04-21 Global Therapeutics, Inc. Surgical stent featuring radiopaque markers
US5855597A (en) 1997-05-07 1999-01-05 Iowa-India Investments Co. Limited Stent valve and stent graft for percutaneous surgery
US5836966A (en) 1997-05-22 1998-11-17 Scimed Life Systems, Inc. Variable expansion force stent
US5913895A (en) 1997-06-02 1999-06-22 Isostent, Inc. Intravascular stent with enhanced rigidity strut members
EP0890346A1 (en) 1997-06-13 1999-01-13 Gary J. Becker Expandable intraluminal endoprosthesis
IT1293690B1 (en) 1997-08-08 1999-03-08 Sorin Biomedica Cardio Spa ANGIOPLASTIC STENT, PARTICULARLY FOR THE TREATMENT OF AORTO-HOSPITAL AND HOSPITAL INJURIES.
US5948016A (en) 1997-09-25 1999-09-07 Jang; G. David Intravascular stent with non-parallel slots
US5972028A (en) 1997-10-07 1999-10-26 Atrion Medical Products, Inc. Stent holder/compression instrument
US5994667A (en) 1997-10-15 1999-11-30 Scimed Life Systems, Inc. Method and apparatus for laser cutting hollow workpieces
US6190406B1 (en) 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
WO1999040876A2 (en) 1998-02-17 1999-08-19 Jang G David Tubular stent consists of chevron-shape expansion struts and ipsilaterally attached m-frame connectors
US5931866A (en) 1998-02-24 1999-08-03 Frantzen; John J. Radially expandable stent featuring accordion stops
DE69942515D1 (en) * 1998-03-04 2010-07-29 Boston Scient Ltd Stent with improved cell configuration
US5935162A (en) 1998-03-16 1999-08-10 Medtronic, Inc. Wire-tubular hybrid stent
DE19822157B4 (en) 1998-05-16 2013-01-10 Abbott Laboratories Vascular Enterprises Ltd. Radially expandable stent for implantation in a body vessel
US6171334B1 (en) 1998-06-17 2001-01-09 Advanced Cardiovascular Systems, Inc. Expandable stent and method of use
US5911754A (en) 1998-07-24 1999-06-15 Uni-Cath Inc. Flexible stent with effective strut and connector patterns
US6193744B1 (en) 1998-09-10 2001-02-27 Scimed Life Systems, Inc. Stent configurations
US6071307A (en) 1998-09-30 2000-06-06 Baxter International Inc. Endoluminal grafts having continuously curvilinear wireforms
US6042597A (en) 1998-10-23 2000-03-28 Scimed Life Systems, Inc. Helical stent design
US6096072A (en) 1999-01-26 2000-08-01 Uni-Cath Inc. Self-exchange stent with effective supporting ability
US6248122B1 (en) 1999-02-26 2001-06-19 Vascular Architects, Inc. Catheter with controlled release endoluminal prosthesis
US6245101B1 (en) 1999-05-03 2001-06-12 William J. Drasler Intravascular hinge stent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4762128A (en) 1986-12-09 1988-08-09 Advanced Surgical Intervention, Inc. Method and apparatus for treating hypertrophy of the prostate gland
US5356423A (en) 1991-01-04 1994-10-18 American Medical Systems, Inc. Resectable self-expanding stent
US5345057A (en) 1993-03-25 1994-09-06 Lasag Ag Method of cutting an aperture in a device by means of a laser beam
US5800526A (en) 1995-03-17 1998-09-01 Endotex Interventional Systems, Inc. Multi-anchor stent
US5788558A (en) 1995-11-13 1998-08-04 Localmed, Inc. Apparatus and method for polishing lumenal prostheses
US5843117A (en) 1996-02-14 1998-12-01 Inflow Dynamics Inc. Implantable vascular and endoluminal stents and process of fabricating the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7758634B2 (en) 2001-02-26 2010-07-20 Boston Scientific Scimed, Inc. Bifurcated stent and delivery system
US6805707B1 (en) 2001-12-27 2004-10-19 Advanced Cardiovascular Systems, Inc. Stent with improved ring and link pattern
US8157858B2 (en) 2005-03-30 2012-04-17 Terumo Kabushiki Kaishia Stent and stent delivery device
US8449596B2 (en) 2005-03-30 2013-05-28 Terumo Kabushiki Kaisha Stent and stent delivery device
WO2007055768A1 (en) * 2005-11-14 2007-05-18 Boston Scientific Limited Stent with spiral side-branch support designs

Also Published As

Publication number Publication date
JP5036116B2 (en) 2012-09-26
CA2415939C (en) 2010-05-18
EP1294312B1 (en) 2006-08-02
CN1449264A (en) 2003-10-15
EP1294312A2 (en) 2003-03-26
ATE334642T1 (en) 2006-08-15
CA2415939A1 (en) 2002-01-03
AU2001273018B2 (en) 2006-06-29
MXPA02012827A (en) 2003-10-15
DE60121947D1 (en) 2006-09-14
ES2267792T3 (en) 2007-03-16
US6805704B1 (en) 2004-10-19
DE60121947T2 (en) 2007-03-01
WO2002000138A3 (en) 2002-08-01
CN1303948C (en) 2007-03-14
AU7301801A (en) 2002-01-08
JP2004500961A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
EP1294312B1 (en) Intraluminal stent
AU2001273018A1 (en) Intraluminal stents
US6485508B1 (en) Low profile stent
EP1970033B1 (en) Improved longitudinally flexible expandable stent
US6419694B1 (en) Medical prosthesis
US6962603B1 (en) Longitudinally flexible expandable stent
US8075610B2 (en) Endoprosthesis for controlled contraction and expansion
US8016878B2 (en) Bifurcation stent pattern
EP2311410B1 (en) Stent having helical elements
US6558415B2 (en) Stent
US8512392B2 (en) Stent design with struts of various angles and stiffness
US20070112418A1 (en) Stent with spiral side-branch support designs
EP1357858B1 (en) Crimpable intraluminal endoprosthesis having helical elements
US20010032010A1 (en) Medical prosthesis

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2415939

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/012827

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2002 504923

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/01892/MU

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2001952241

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2001273018

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 018147208

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001952241

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001952241

Country of ref document: EP