WO2001098437A1 - Use of nickel compounds as vanadium corrosion inhibitors - Google Patents

Use of nickel compounds as vanadium corrosion inhibitors Download PDF

Info

Publication number
WO2001098437A1
WO2001098437A1 PCT/FR2001/001681 FR0101681W WO0198437A1 WO 2001098437 A1 WO2001098437 A1 WO 2001098437A1 FR 0101681 W FR0101681 W FR 0101681W WO 0198437 A1 WO0198437 A1 WO 0198437A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
vanadium
combustion
contaminated
liquid fuel
Prior art date
Application number
PCT/FR2001/001681
Other languages
French (fr)
Inventor
Michel Moliere
Emmanuel Rocca
Pierre Steinmetz
Original Assignee
Ge Energy Products France Snc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ge Energy Products France Snc filed Critical Ge Energy Products France Snc
Priority to AU2001274160A priority Critical patent/AU2001274160A1/en
Priority to EP01940643A priority patent/EP1292656A1/en
Publication of WO2001098437A1 publication Critical patent/WO2001098437A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/1828Salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2431Organic compounds containing sulfur, selenium and/or tellurium sulfur bond to oxygen, e.g. sulfones, sulfoxides
    • C10L1/2437Sulfonic acids; Derivatives thereof, e.g. sulfonamides, sulfosuccinic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/003Additives for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/002Cleaning of turbomachines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/007Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/04Cleaning of, preventing corrosion or erosion in, or preventing unwanted deposits in, combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/30Preventing corrosion or unwanted deposits in gas-swept spaces
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1233Inorganic compounds oxygen containing compounds, e.g. oxides, hydroxides, acids and salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1233Inorganic compounds oxygen containing compounds, e.g. oxides, hydroxides, acids and salts thereof
    • C10L1/125Inorganic compounds oxygen containing compounds, e.g. oxides, hydroxides, acids and salts thereof water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1266Inorganic compounds nitrogen containing compounds, (e.g. NH3)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1275Inorganic compounds sulfur, tellurium, selenium containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1616Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1881Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1985Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid polyethers, e.g. di- polygylcols and derivatives; ethers - esters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0466Nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0469Other heavy metals

Definitions

  • the present invention relates, in general, to the inhibition of vanadic corrosion of thermal equipment materials burning liquid fuels contaminated with vanadium.
  • This corrosion is caused by the formation in combustion gases of low-melting vanadic derivatives, such as vanadium pentoxide (N 2 O 5 ) (pure vanadic corrosion), and eutectic mixtures of N 2 O 5 - ⁇ a -SO. (vanadium-sodium corrosion) capable of inducing, under the temperature conditions prevailing on the surface of the metal parts concerned, electrochemical attacks developing in the medium of molten electrolyte and in the presence of oxidants, in particular the oxygen contained in the fumes and sulfate ions formed from the fuel sulfur.
  • vanadium-sodium corrosion capable of inducing, under the temperature conditions prevailing on the surface of the metal parts concerned, electrochemical attacks developing in the medium of molten electrolyte and in the presence of oxidants, in particular the oxygen contained in the fumes and sulfate ions formed from the fuel sulfur.
  • potassium has a corrosive effect similar to sodium, the term "sodium” will mean in the following description "s
  • Type I corrosion or high temperature corrosion, which typically occurs at temperatures between 800 and 900 ° C.
  • Type II corrosion or corrosion at low temperature, which typically occurs at temperatures between 550 and 750 ° C.
  • Type I corrosion is an acid attack in a hot oxidizing environment of metallic materials by molten electrolytes such as those rich in vanadium pentoxide.
  • Type II corrosion is generally associated with the formation of eutectics comprising Na 2 SO 4 and another metal (eg vanadium and cobalt).
  • eutectics comprising Na 2 SO 4 and another metal (eg vanadium and cobalt).
  • sodium sulphate is generally present in the form of traces in thermal equipment. This sodium sulphate results from the reaction between the sodium contained in the combustion air and the sulfur derivatives present in the fuels.
  • the first stage of the turbine is in contact with the combustion gases at high temperature and is exposed to type I corrosion, while the last stage sees combustion gases pass less hot and is exposed to IL-type corrosion.
  • the last stage sees combustion gases pass less hot and is exposed to IL-type corrosion.
  • the corrosive power of these vanadic compounds can be inhibited by chemically "trapping" N 2 O 5 within refractory compounds. This removes the corrosive molten electrolyte medium.
  • the classic vanadium inhibitors are represented by the aline-earth salts, such as the calcium salts and the magnesium salts, the latter being the most commonly used. Under certain conditions of temperature and dosage of the inhibitor, the vanadium forms with it refractory alkaline earth orthovanadates, of the M 3 N 2 O g type , where M represents an alkaline earth metal.
  • the dosage of the inhibitor must be sufficient to allow all of the vanadium present in the fuel to be trapped and avoid the formation of vanadates of lower stoichiometry, such as pyro vanadates (M 2 N 2 O-) or metavanadates (MN 2 O 6 ), which are insufficiently refractory to ensure the targeted inhibition effect.
  • vanadates of lower stoichiometry such as pyro vanadates (M 2 N 2 O-) or metavanadates (MN 2 O 6 ), which are insufficiently refractory to ensure the targeted inhibition effect.
  • the vanadates resulting from this inhibition process produce ash suspended in the combustion gases, part of which is deposited on the walls of the combustion chambers and of the components of the combustion apparatus situated downstream thereof. This causes a gradual fouling of the combustion apparatus as and when it is operated and results in a correlative and progressive loss of its energy performance.
  • Dry cleaning consists in introducing into the equipment kept in operation a slightly abrasive material, free from corrosive compounds and without ash.
  • magnesium is taken as an example of a classic inhibitor because, its sulfate being very soluble, it is more widely used industrially than calcium, for example, whose sulfate is poorly soluble.
  • the formation of magnesium sulphate, in parallel with that of orthovanadate, requires that in order to "trap" all of the vanadium, a large excess of magnesium is provided relative to the stoichiometry of the reaction with, in practice, a ratio mass of vanadium magnesium greater than or equal to 3.
  • magnesium orthovanadate is not very stable in the presence of sodium with which it reacts to form salts with low melting points. This leads to increasing the dosage of magnesium in the presence of sodium.
  • a mass ratio of magnesium to vanadium of 10 is required when the sodium contamination represents 20% of the mass vanadic contamination.
  • the flame temperature is defined as the temperature of the hot gases at the inlet of the first stage of movable blades of the turbine and constitutes one of the parameters conditioning in essence the energy performance of the turbine.
  • inhibitors of vanadic corrosion in particular against type I corrosion and type II corrosion, which can be used in particular during the combustion of liquid fuels contaminated with vanadium, in particular in the presence of sodium, giving reduced fouling of the thermal equipment used and therefore better availability thereof, in particular when it comes to gas turbines.
  • the Applicant has now found that it is possible and particularly advantageous to use nickel-based compounds, the mass ratio of nickel to contaminating vanadium being greater than or equal to 1.74, to inhibit vanadic corrosion of metallic materials, in particular thermal equipment burning liquid fuels contaminated with vanadium, even at high temperature.
  • the present invention therefore relates to the use of nickel-based compounds for inhibiting vanadic corrosion of metallic materials, characterized in that the mass ratio of nickel to contaminating vanadium is greater than or equal to 1.74.
  • the metallic materials whose corrosion can thus be inhibited are of any type and in particular ferrous metallic materials (unalloyed, weakly to highly alloyed, stainless steels) or superalloys (based on chromium and / or nickel and / or cobalt ). This application to any type of metallic material is due to the nature of the inhibition in which the vanadium, trapped by nickel, is removed from the medium as a corrosive agent.
  • thermal equipment any type of combustion device such as diesel engines, boilers, gas turbines, etc.
  • metallic materials of vanadic corrosion are protected gas turbines.
  • Nickel-based inhibitors can be substituted for those based on alkaline earth metals in any application where the latter can be used, regardless of the type of combustion device and of vanadium-containing fuel, while overcoming the drawbacks linked to the use of these alkaline earth metal inhibitors.
  • the Applicant has established that certain chemical compounds of nickel combine with the vanadium contained in the fuels to form, under appropriate temperature and stoichiometric conditions, nickel orthovanadate (Ni 3 N 2 O g ).
  • Nickel orthovanadate is a refractory, non-corrosive compound capable of inhibiting vanadic corrosion at high temperatures of metallic materials.
  • nickel unlike magnesium, does not form sulphate, which eliminates the need for the overdose of inhibitors linked to the formation of this salt.
  • nickel orthovanadate is not only thermally stable, but also chemically inert in the temperature range prevailing on the surface of the parts of the equipment to be protected, even in the presence of sodium sulphate.
  • Sodium can be supplied by the fuel and / or by the combustion air.
  • a Ni / V mass ratio of 2.25 provides effective protection against compositions containing sodium and vanadium, with a sodium concentration less than or equal to 0.1 ppm in the combustion gas, equivalent to 5 ppm in the fuel.
  • nickel-based compounds as inhibitors also has the additional advantage of reducing the soot particles in thermal equipment by the action of atomic nickel in hydrocarbon flames.
  • At least one nickel-based compound is used to inhibit the vanadic corrosion of metallic materials, in a mass ratio of contaminating nickel to vanadium greater than or equal to 1.74, and in particular of thermal equipment materials, and more particularly superalloys of industrial gas turbines burning liquid fuels contaminated with vanadium.
  • the fuel can be any type of liquid fuel contaminated with vanadium, and in particular a fuel slightly contaminated with vanadium, such as a gas condensate or a heavy petroleum distillate, or a fuel very highly contaminated with vanadium.
  • a fuel slightly contaminated with vanadium such as a gas condensate or a heavy petroleum distillate
  • a fuel very highly contaminated with vanadium in these two cases, the use of magnesium as an inhibitor led to significant fouling of active hot parts, detrimental to the proper functioning of the thermal machine.
  • the combustion according to the invention can be carried out at high temperature, in particular higher than 1100 ° C., and more particularly between 1100 ° C. and 1300 ° C. Indeed, the melting and decomposition temperatures of nickel orthovanadate (Ni AOA which forms are respectively 1310 ° C and about 2000 ° C.
  • Ni AOA nickel orthovanadate
  • nickel-based inhibitor a potentially wider range of application than that of magnesium-based inhibitors, the orthovanadate of which melts at 1200 ° C. They contribute in particular to the substantial increase in the flame temperature of gas turbines burning fuels contaminated with vanadium, and make possible the combustion of such fuels in more efficient new technology gas turbine models.
  • the mass ratio of nickel to contaminating vanadium is preferably between 1.9 and 2.5 (a ratio of 2.25 is even more particularly preferred).
  • a ratio of 2.25 is even more particularly preferred.
  • an excess of nickel leads to the formation of refractory, non-corrosive and slightly abrasive nickel oxide, which plays a role of self-cleaning of thermal equipment favorable to the conservation of the energy performance of said equipment.
  • An adjustment of the nickel to vanadium ratio makes it possible to adjust this self-cleaning power of the inhibitor.
  • the amount of ash formed by the nickel-based compound is at least two times less than the amount of ash formed by a magnesium-based compound.
  • the Applicant has found that the nickel-based deposits, composed of orthovanadate and nickel oxide, are both extremely friable and of porous structure. This results in three beneficial effects in nickel ablation operations: a) particularly high efficiency of dry cleaning, thanks to the brittleness of the deposits, b) effectiveness of washing with water despite the insolubility of the nickel ash; indeed, during a washing with hot water, the water penetrates into the porous structure of the deposit, which by its low mechanical resistance, disintegrates under the combined effect of capillary forces and hydrodynamic forces caused by the circulation of the wash water (the stirring effect is particularly important in the case of a gas turbine due to the rotation of the blades).
  • the wettability of the deposit can be further increased by the addition of a wetting agent, free of sodium to avoid the corrosive effect of this metal, such as a cationic or nonionic surfactant, c) increased reactivity compared to a possible chemical reagent.
  • a wetting agent free of sodium to avoid the corrosive effect of this metal, such as a cationic or nonionic surfactant, c) increased reactivity compared to a possible chemical reagent.
  • the invention also relates to the use of nickel - based compounds, in the proportions described above, for inhibiting type I corrosion of metallic materials, as well as for inhibiting type II corrosion of metallic materials.
  • the nickel-based compounds are used to inhibit the vanadic corrosion of metallic materials by a liquid fuel contaminated with vanadium and in the presence of sodium.
  • in the presence of sodium is meant that sodium is present in the liquid fuel and / or in the combustion air.
  • Nickel-based compounds can also be used to inhibit vanadic corrosion of metallic materials when combusting a vanadium-contaminated liquid at temperatures above 1100 ° C.
  • the combustion temperature is between 1100 ° C and 1300 ° C.
  • this nickel-based inhibitor is similar to those of conventional inhibitors. It can be injected in the form of a fat-soluble additive in a mixture directly with the liquid fuel in the storage tanks or in line before the injection of the fuel into the combustion chamber. It can also be used in the form of a water-soluble additive, emulsified in line in liquid fuels before injection into the combustion chamber or else injected separately into thermal equipment. Depending on the mode of addition of the nickel-based compound to the liquid fuel, it may be in liposoluble or water-soluble form, in the form of a water-in-oil or oil-in-water emulsion or micro-emulsion, or in the form of a suspension.
  • the nickel-based compound is chosen in particular from organometallic compounds such as sulfonates, nickel carboxylates or alkanoates with a variable hydrocarbon chain comprising between 2 and 12 carbon atoms, and preferably 6 or 7 carbon atoms, dissolved in an organic solvent compatible with liquid fuel.
  • organometallic compounds such as sulfonates, nickel carboxylates or alkanoates with a variable hydrocarbon chain comprising between 2 and 12 carbon atoms, and preferably 6 or 7 carbon atoms, dissolved in an organic solvent compatible with liquid fuel.
  • the nickel-based compound When used in a water-soluble form, the nickel-based compound is in particular constituted by an aqueous solution of an organic or inorganic nickel salt, such as for example a nitrate or a sulfate.
  • an organic or inorganic nickel salt such as for example a nitrate or a sulfate.
  • the nickel-based compound When used in the form of a water-in-oil emulsion or micro-emulsion, it is then an aqueous solution of at least one organic or inorganic nickel salt, such as that a nitrate or a sulfate, emulsified in a solvent compatible with the fuel to be treated, by means of an emulsifier having a suitable hydrophilic / lipophilic balance, such as for example a polyethoxylated nonylphenol of generic formula CH3- (CH2) 8- (C6H4) -O- (CH2CH2O) nH, and introduced in appropriate concentration.
  • the compound of generic formula CH3- (CH2) 8- (C6H4) -O- (CH2CH2O) nH can represent up to 10% by mass of the solution.
  • the long-term stability of the emulsion, essential for industrial applications, can be enhanced by the addition of a co-solvent such as oleic acid introduced in small proportion.
  • the nickel-based compound When it is used in the form of an oil-in-water emulsion or micro-emulsion, it is an organic solution of a nickel sulfonate, a carboxylate or an alkanoate emulsified in an aqueous solution by means of an emulsifier having a suitable lipophilic / hydrophilic balance of the same type as described above and introduced in an appropriate concentration.
  • a co-solvent can also be added.
  • the nickel-based compound When it is used in the form of a suspension, it is a solid compound such as an oxide, a partially hydrated oxide, a hydroxide or a nickel super-base, in particulate form, suspended in an aqueous solution or in an organic solvent compatible with the fuel to be treated.
  • nickel with respect to vanadium allows, according to a particular implementation of the invention, to use it in association, in the form of a mixture in any proportion, with one or more other metals.
  • metals having other corrosion-inhibiting functions chosen in particular from chromium, silicon, aluminum, zinc and magnesium.
  • at least one or more metals having a role of combustion catalyst chosen in particular from iron, manganese and cerium.
  • the fuel contaminated with vanadium also contains nickel as a notable metallic contaminant.
  • nickel-based inhibitors allows a particularly economical combustion of these fuels which contain nickel naturally.
  • the quantity of inhibiting nickel to be added is then equal to the complement between the concentration corresponding to the ratio of nickel to targeted vanadium and the natural concentration of nickel in the fuel.
  • this type of fuel include crude oils and distillation residues from certain oils, such as crude oils from China and Indonesia, "Low Sulfur Waxy Residuals" from the South Asian oil market.
  • Another aspect of the invention relates to a method of combustion of a liquid fuel contaminated with vanadium, which, in addition to the known conventional steps accompanying combustion, comprises a step of introducing into the thermal equipment, separately or as a mixture with the contaminated liquid fuel, at least one nickel-based compound.
  • the nickel is supplied in proportions such that the mass ratio of nickel to the contaminating vanadium is greater than or equal to 1.74 and preferably between 1.9 and 2.5. A mass ratio of 2.25 is particularly preferred.
  • the nickel-based compounds are used to inhibit the vanadic corrosion of metallic materials by a liquid fuel contaminated with vanadium, the combustion taking place in the presence of sodium.
  • the presence of sodium is meant that sodium is present in the liquid fuel and / or in the combustion air. Due to this presence, the combustion gases contain sodium. More particularly, according to a preferred embodiment of the invention, this method is applied to combustion in gas turbines. In fact, in a gas turbine, performance is closely linked to the state of cleanliness of the components of the expansion turbine. In addition, the Applicant has found that the nickel oxide, stable above 650 ° C., under partial pressure conditions of
  • SO 3 prevalent in combustion gases, is mainly available as a self-cleaning agent in the hottest areas, that is to say precisely where deposits are most difficult to remove. These zones are the flame tubes, the transition pieces and the first expansion stages (essentially the first and second stages).
  • the nickel-based compound can be in the forms defined above, which depend in particular on its mode of addition. This is carried out according to conventional methods described above.
  • the liquid fuel can be any type of liquid fuel contaminated with vanadium, and in particular those described above.
  • the method of combustion of liquid fuels contaminated with vanadium also comprises a step of leaching of the ash based on nickel with a reducing organic acid.
  • any deposits based on nickel which could accumulate in the thermal equipment, and in particular the turbine, are eliminated, for example over long periods of non-stop operation, by means of a solution to reducing organic acid base.
  • a reducing organic acid which is particularly suitable is oxalic acid.
  • This acid remarkably dissolves the solids Ni 3 N 2 O 8 , ⁇ iO, and CaSO 4 , as well as their mixtures.
  • the dissolution reactions are as follows:
  • Reaction (1) is essential because orthovanadate is the main phrase and requires both the reduction of vanadium from the degree of oxidation N to IN under acidic conditions and the formation of an insoluble salt of nickel in order to displace the left to right reaction.
  • Oxalic acid combines these properties and also has the advantages of being weakly corrosive, very soluble in water and of moderate cost.
  • a 0.5 M aqueous solution of oxalic acid at 80 ° C obtained from commercial H2C2O4, 2 H2O, ensures a dissolution rate of 90% after three hours of leaching.
  • Oxalic acid can be used with an inhibitor of the acid corrosion of carbon steels and cast irons, such as thiourea, benzotriazole or tolyltriazole in order to protect the ferrous alloys present in the mechanical structures of the turbine. .
  • the oxalic acid can also be added with a wetting agent such as a cationic or nonionic surfactant making it possible to accelerate the diffusion of the oxalic acid in the pores of the deposit and the dissolution of the latter.
  • a wetting agent such as a cationic or nonionic surfactant making it possible to accelerate the diffusion of the oxalic acid in the pores of the deposit and the dissolution of the latter.
  • the ability of oxalic acid to also dissolve calcium sulphate is useful when the fuel is contaminated with calcium: petroleum fuels can contain calcium in water-soluble form (mineral salts contained in residual water droplets in emulsion in fuel) or liposoluble (organic calcium salts dissolved in the fuel phase). Indeed, the combustion of fuels contaminated with calcium forms calcium sulphate which is very slightly soluble in water, strongly adheres to the hot parts of the turbine and is likely to trap the other phases of the ash including those rich in nickel.
  • three embodiments are described below:
  • gas turbine class “E” means a gas turbine which has a nominal flame temperature between 1100 and 1150 °.
  • the heavy fuel oil used with a composition typical of that of the Southeast Asian market, is a residue from the atmospheric distillation of petroleum which contains 50 ppm of vanadium and 30 ppm of nickel.
  • an aqueous solution of nickel nitrate emulsified with a metal-free surfactant and at a rate of 10% by mass of nickel is added to the liquid fuel.
  • the nickel nitrate emulsion is injected using a metering pump into the low pressure part of the liquid fuel circuit, and more precisely upstream of the high pressure filters.
  • the quantity of nickel nitrate emulsion injected is such that the ratio of nickel to vanadium is equal to 2.25.
  • the implementation of a chemical leaching step of the nickel-based ash optimizes the state of cleanliness of the hot parts of the turbine at the end of cleaning and, thereby, improves the energy performance of the latter during the cycle of next operation.
  • thermal equipment is made more available since there is a multiplication by a factor greater than 2.5 of the continuous operating time of the turbine between two consecutive washing operations. This eliminates a cumulative downtime of 60 hours over a period of 1000 hours, which represents a gain. availability greater than 6%.
  • a “gas condensate” is very slightly contaminated with vanadium.
  • the "F” class gas turbine is one of those new generation gas turbines mentioned above in the text which have a flame temperature of 1300 ° C. or more.
  • the fuel used corresponds to the condensable fraction at ambient temperature and pressure of the production of a natural gas well, after possible stabilization treatments (reduction of the vapor pressure by flash distillation), and softening (removal of HJ3).
  • These gas condensates can typically contain between 0.2 and 1.5 ppm vanadium.
  • the sodium concentration is approximately 2.5 ppm, corresponding to a concentration of 0.05 ppm in air.
  • a nickel compound in liposoluble form is used, for example a nickel carboxylate, containing 8% by weight of nickel, with the same method of introduction into the turbine as in the previous application mode.
  • the Ni / N dosage ratio is 2.25.
  • the flame temperature of the gas turbine is for example 1280 ° C. It should be noted that gas condensates frequently contain small quantities of vanadium which either exceed the permitted specification (for example 0.5 ppm) for operation of the turbine without having to use a corrosion inhibitor, or if they do not not exceed this permitted specification, decrease the service life of active hot machine parts when an inhibitor is not added.
  • conventional inhibitors, in particular based on magnesium form very hard deposits, which cannot be removed by washing, when the turbine is operated at high flame temperature, which is one of the characteristics of gas turbines of class "F ", the operation of such a machine would lead to irreversible fouling of the blades.
  • nickel as an inhibitor thus makes it possible to protect effectively from vanadic corrosion the gas turbines of class "F", by using a heavy distillate, combustible whose use was until now considered as risky in class turbines F.

Abstract

The invention concerns inhibition of vanadium corrosion of thermal equipment materials burning vanadium-contaminated liquid fuels using nickel compounds. The invention is applicable in particular to liquid fuel combustion in gas turbines.

Description

Utilisation de composés du nickel comme inhibiteurs de la corrosion vanadique Use of nickel compounds as inhibitors of vanadic corrosion
La présente invention concerne, de manière générale, l'inhibition de la corrosion vanadique de matériaux d'équipements thermiques brûlant des combustibles liquides contaminés au vanadium.The present invention relates, in general, to the inhibition of vanadic corrosion of thermal equipment materials burning liquid fuels contaminated with vanadium.
Il s' avère économiquement intéressant de pouvoir exploiter les extraits pétrolifères de qualité moyenne, tels que par exemple des produits diversement contaminés par des impuretés.It turns out to be economically interesting to be able to exploit medium quality oil extracts, such as for example products variously contaminated with impurities.
La présence de composés organiques du vanadium dans les combustibles liquides brûlés dans des équipements thermiques variés, tels que des chaudières, des moteurs diesel, des turbines à gaz, ... etc. , est susceptible d'engendrer une corrosion à haute température des matériaux métalliques en contact avec les gaz de combustion. Cette corrosion dite vanadique peut être plus ou moins sévère selon le type de métal ou d'alliage de l'équipement thermique, le type même de cet équipement thermique, la gamme de température de service, la durée et les conditions d'exploitation.The presence of organic vanadium compounds in liquid fuels burned in various thermal equipment, such as boilers, diesel engines, gas turbines, etc. , is likely to cause high temperature corrosion of metallic materials in contact with combustion gases. This so-called vanadic corrosion can be more or less severe depending on the type of metal or alloy of the thermal equipment, the very type of this thermal equipment, the operating temperature range, the duration and the operating conditions.
Cette corrosion est provoquée par la formation dans les gaz de combustion de dérivés vanadiques à bas point de fusion, tels que le pentoxyde de vanadium (N2O5) (corrosion vanadique pure), et les mélanges eutectiques de N2O5-Νa-SO . (corrosion vanadium- sodium) susceptibles d'induire, dans les conditions de température prévalant à la surface des pièces métalliques concernées, des attaques électrochimiques se développant en milieu d'électrolyte fondu et en présence d'oxydants, notamment l'oxygène contenu dans les fumées et les ions sulfates formés à partir du soufre du combustible. Comme le potassium a un effet corrosif similaire au sodium, le terme « sodium » signifiera dans la suite de la description « sodium ou potassium ». Les matériaux métalliques sont soumis à deux principaux mécanismes de corrosion :This corrosion is caused by the formation in combustion gases of low-melting vanadic derivatives, such as vanadium pentoxide (N 2 O 5 ) (pure vanadic corrosion), and eutectic mixtures of N 2 O 5 -Νa -SO. (vanadium-sodium corrosion) capable of inducing, under the temperature conditions prevailing on the surface of the metal parts concerned, electrochemical attacks developing in the medium of molten electrolyte and in the presence of oxidants, in particular the oxygen contained in the fumes and sulfate ions formed from the fuel sulfur. As potassium has a corrosive effect similar to sodium, the term "sodium" will mean in the following description "sodium or potassium". Metallic materials are subject to two main corrosion mechanisms:
- la corrosion de type I, ou corrosion à haute température, qui se produit typiquement à des températures comprises entre 800 et 900°C. - la corrosion de type II, ou corrosion à basse température, qui se produit typiquement à des températures comprises entre 550 et 750°C.- Type I corrosion, or high temperature corrosion, which typically occurs at temperatures between 800 and 900 ° C. - Type II corrosion, or corrosion at low temperature, which typically occurs at temperatures between 550 and 750 ° C.
La corrosion de type I est une attaque acide en milieu oxydant chaud des matériaux métalliques par des électrolytes fondus tels que ceux riches en pentoxyde de vanadium. La corrosion de type II est généralement associée à la formation d' eutectiques comprenant Na2SO4 et un autre métal (par exemple le vanadium et le cobalt). Dans la plupart des équipements thermiques, les deux types de risques de corrosion existent. En effet, il est à noter que le sulfate de sodium est généralement présent sous forme de traces dans les équipements thermiques. Ce sulfate de sodium résulte de la réaction entre le sodium contenu dans l' air de combustion et les dérivés soufrés présents dans les fuels. Ainsi, dans une turbine à gaz comprenant plusieurs étages successifs, le premier étage de la turbine est en contact avec les gaz de combustion à haute température et est exposé à la corrosion de type I, tandis que le dernier étage voit passer des gaz de combustion moins chauds et est exposé à la corrosion de type IL Ainsi, pour lutter contre la corrosion vanadique dans les turbines à gaz, il est essentiel de maîtriser les deux mécanismes de corrosion.Type I corrosion is an acid attack in a hot oxidizing environment of metallic materials by molten electrolytes such as those rich in vanadium pentoxide. Type II corrosion is generally associated with the formation of eutectics comprising Na 2 SO 4 and another metal (eg vanadium and cobalt). In most thermal equipment, there are two types of corrosion risks. Indeed, it should be noted that sodium sulphate is generally present in the form of traces in thermal equipment. This sodium sulphate results from the reaction between the sodium contained in the combustion air and the sulfur derivatives present in the fuels. Thus, in a gas turbine comprising several successive stages, the first stage of the turbine is in contact with the combustion gases at high temperature and is exposed to type I corrosion, while the last stage sees combustion gases pass less hot and is exposed to IL-type corrosion. To fight against vanadic corrosion in gas turbines, it is essential to master the two corrosion mechanisms.
Le pouvoir corrosif de ces composés vanadiques peut être inhibé en "piégeant" chimiquement N2O5 au sein de composés réfractaires. On supprime ainsi le milieu corrosif d'électrolyte fondu. Les inhibiteurs classiques du vanadium sont représentés par les sels aie alino- terreux, tels que les sels de calcium, les sels de magnésium, ces derniers étant les plus couramment utilisés. Dans certaines conditions de température et de dosage de l'inhibiteur, le vanadium forme avec celui-ci des orthovanadates alcalino-terreux réfractaires, du type M3N2Og, où M représente un métal alcalino-terreux.The corrosive power of these vanadic compounds can be inhibited by chemically "trapping" N 2 O 5 within refractory compounds. This removes the corrosive molten electrolyte medium. The classic vanadium inhibitors are represented by the aline-earth salts, such as the calcium salts and the magnesium salts, the latter being the most commonly used. Under certain conditions of temperature and dosage of the inhibitor, the vanadium forms with it refractory alkaline earth orthovanadates, of the M 3 N 2 O g type , where M represents an alkaline earth metal.
Le dosage de l'inhibiteur doit être suffisant pour à la fois permettre de piéger la totalité du vanadium présent dans le combustible et éviter la formation de vanadates de stoechiométries inférieures, tels que les pyro vanadates (M2N2O-) ou métavanadates (MN2O6), qui sont insuffisamment réfractaires pour assurer l'effet d'inhibition visé.The dosage of the inhibitor must be sufficient to allow all of the vanadium present in the fuel to be trapped and avoid the formation of vanadates of lower stoichiometry, such as pyro vanadates (M 2 N 2 O-) or metavanadates (MN 2 O 6 ), which are insufficiently refractory to ensure the targeted inhibition effect.
Les vanadates résultant de ce procédé d'inhibition produisent des cendres en suspension dans les gaz de combustion, dont une partie se dépose sur les parois des chambres de combustion et des composants de l'appareil de combustion situés en aval de celles-ci. Ceci provoque un encrassement progressif de l'appareil de combustion au fur et à mesure de son exploitation et entraîne une perte corrélative et progressive de ses performances énergétiques.The vanadates resulting from this inhibition process produce ash suspended in the combustion gases, part of which is deposited on the walls of the combustion chambers and of the components of the combustion apparatus situated downstream thereof. This causes a gradual fouling of the combustion apparatus as and when it is operated and results in a correlative and progressive loss of its energy performance.
Aussi, afin d'assurer une exploitation adéquate des équipements traités avec ces inhibiteurs vanadiques, il est indispensable que ces dépôts (1) se forment en quantités minimales et (2) puissent être éliminés le plus complètement possible, sans charger le bilan économique de l'exploitation. Ainsi, le coût de l'opération de nettoyage et la durée d'immobilisation de l'équipement doivent être minimaux.Also, in order to ensure an adequate exploitation of the equipment treated with these vanadic inhibitors, it is essential that these deposits (1) are formed in minimal quantities and (2) can be eliminated as completely as possible, without loading the economic balance of the exploitation. Thus, the cost of the cleaning operation and the downtime of the equipment must be minimal.
Deux méthodes de nettoyage sont couramment utilisées, notamment dans le cas des turbines à gaz, le nettoyage à sec et le lavage à l'eau. Le nettoyage à sec consiste à introduire dans l'équipement maintenu en marche un matériau légèrement abrasif, exempt de composés corrosifs et sans cendres.Two cleaning methods are commonly used, notably in the case of gas turbines, dry cleaning and washing with water. Dry cleaning consists in introducing into the equipment kept in operation a slightly abrasive material, free from corrosive compounds and without ash.
Dans le lavage à l'eau, on met en circulation de l' eau chaude à l'intérieur de la turbine, les flammes étant éteintes mais le rotor étant en rotation à vitesse réduite pour assurer le brassage des surfaces à nettoyer. La dissolution de la phase sulfatée entraîne la déstabilisation mécanique de toutes les phases solides insolubles qui lui sont associées dans le dépôt, en particulier les vanadates alcalino-terreux. L' eau de lavage entraîne le dépôt sous forme partiellement dissoute et partiellement en suspension dans celle-ci.In water washing, hot water is circulated inside the turbine, the flames being extinguished but the rotor being rotated at reduced speed to ensure mixing of the surfaces to be cleaned. The dissolution of the sulfated phase leads to the mechanical destabilization of all the insoluble solid phases associated with it in the deposit, in particular the alkaline earth vanadates. The washing water results in the deposit in partially dissolved form and partially in suspension therein.
Dans ce qui suit, le magnésium est pris comme exemple d'inhibiteur classique car, son sulfate étant très soluble, il est plus largement utilisé industriellement que le calcium, par exemple, dont le sulfate est peu soluble. La formation de sulfate de magnésium, parallèlement à celle de l'orthovanadate, exige que pour "piéger" la totalité du vanadium, l'on apporte un fort excès de magnésium par rapport à la stoechiométrie de la réaction avec, en pratique, un rapport massique du magnésium au vanadium supérieur ou égal à 3.In what follows, magnesium is taken as an example of a classic inhibitor because, its sulfate being very soluble, it is more widely used industrially than calcium, for example, whose sulfate is poorly soluble. The formation of magnesium sulphate, in parallel with that of orthovanadate, requires that in order to "trap" all of the vanadium, a large excess of magnesium is provided relative to the stoichiometry of the reaction with, in practice, a ratio mass of vanadium magnesium greater than or equal to 3.
Cet excès de consommation d'inhibiteur entraîne un surcoût direct de l'exploitation.This excess consumption of inhibitor leads to a direct additional cost of operation.
De plus, l'orthovanadate de magnésium est peu stable en présence de sodium avec lequel il réagit pour former des sels à bas points de fusion. Ceci conduit à augmenter le dosage du magnésium en présence de sodium. Ainsi, un rapport massique du magnésium au vanadium de 10 est requis lorsque la contamination sodique représente 20 % de la contamination vanadique en masse.In addition, magnesium orthovanadate is not very stable in the presence of sodium with which it reacts to form salts with low melting points. This leads to increasing the dosage of magnesium in the presence of sodium. Thus, a mass ratio of magnesium to vanadium of 10 is required when the sodium contamination represents 20% of the mass vanadic contamination.
Par ailleurs, on observe un encrassement plus rapide de l'équipement de combustion, entraînant une dégradation accélérée des performances et la nécessité de décrassages plus fréquents, notamment à l'eau, pour assurer une exploitation adéquate.Furthermore, there is a faster fouling of the combustion equipment, leading to an accelerated degradation of performance and the need for more frequent cleaning, especially with water, to ensure adequate operation.
Un autre inconvénient lié à l'utilisation des inhibiteurs classiques à base d'alcalino-terreux, et notamment de magnésium, concerne le "détarage" de l'équipement thermique utilisé. On entend parAnother drawback linked to the use of conventional inhibitors based on alkaline earth metals, and in particular on magnesium, relates to the "de-scaling" of the thermal equipment used. We hear by
"détarage" le fait que la température de flamme des turbines à gaz soumises à un tel traitement d'inhibition doit être réduite par rapport à la valeur nominale du modèle de turbine à gaz considéré. La température de flamme est définie comme la température des gaz chauds à l'entrée du premier étage d' aubes mobiles de la turbine et constitue l'un des paramètres conditionnant par essence les performances énergétiques de la turbine."derating" the fact that the flame temperature of gas turbines subjected to such inhibition treatment must be reduced compared to the nominal value of the model of gas turbine under consideration. The flame temperature is defined as the temperature of the hot gases at the inlet of the first stage of movable blades of the turbine and constitutes one of the parameters conditioning in essence the energy performance of the turbine.
La raison de ce "détarage" tient au fait qu'à haute température, on observe une désuif atation du magnésium. Sachant que la vitesse de désulfatation, d'une part, et le taux de désulfatation à l'équilibre de la réaction, d'autre part, augmentent avec la température et que l'oxyde de magnésium, produit de la désulfatation, est par ailleurs insoluble dans l'eau, il advient qu'au-delà d'une certaine valeur de température de flamme et d'une certaine durée de marche continue, la proportion de sulfate restant dans le dépôt devient insuffisante pour assurer l'élimination correcte du dépôt par lavage à l'eau.The reason for this "derating" is due to the fact that at high temperatures, there is a desuif atation of magnesium. Knowing that the rate of desulfation, on the one hand, and the rate of desulfation at equilibrium of the reaction, on the other hand, increase with temperature and that the magnesium oxide, product of desulfation, is moreover insoluble in water, it happens that beyond a certain value of flame temperature and a certain duration of continuous operation, the proportion of sulfate remaining in the deposit becomes insufficient to ensure the correct removal of the deposit by washing with water.
Actuellement, la combustion dans des turbines à gaz de combustibles contaminés au vanadium et utilisant le magnésium comme inhibiteur, conduit à limiter la température de flamme aux environs deCurrently, combustion in gas turbines of fuels contaminated with vanadium and using magnesium as an inhibitor, results in limiting the flame temperature to around
1100°C.1100 ° C.
La nécessité de limiter la température de flamme interdit, pour des raisons économiques, l'utilisation de turbines à gaz de technologie récente. Ces dernières ont des niveaux de température de flamme nominale supérieurs à 1100°C et disposent de rendements supérieurs.The need to limit the flame temperature prohibits, for economic reasons, the use of gas turbines of recent technology. These have nominal flame temperature levels above 1100 ° C and have higher yields.
Mais leurs prix d'achat au kW électrique sont supérieurs à ceux des turbines dont la température de flamme est de l'ordre de 1100°C (machines dites de classes « E »), de sorte que leur fonctionnement à température de flamme réduite n'est pas économique. Par ailleurs, lorsque la température de flamme est fixée au voisinage de cette valeur limite de 1100°C, plutôt qu'à un niveau plus faible, en vue précisément de maximiser les performances énergétiques de la turbine à gaz, la désulfatation plus rapide du magnésium exige des lavages plus fréquents, ce qui réduit la disponibilité de l'équipement. > Ainsi, au vu des inconvénients observés avec les inhibiteurs classiques, il apparaît souhaitable de disposer d'inhibiteurs de la corrosion vanadique, en particulier contre la corrosion de type I et la corrosion de type II, utilisables notamment lors de la combustion de combustibles liquides contaminés au vanadium, en particulier en présence de sodium, conférant un encrassement réduit de l' équipement thermique utilisé et donc une meilleure disponibilité de celui-ci, notamment lorsqu'il s' agit de turbines à gaz.However, their purchase prices per electric kW are higher than those of turbines with a flame temperature of around 1100 ° C (so-called “E” class machines), so that their operation at reduced flame temperature n is not economical. Furthermore, when the flame temperature is fixed near this limit value of 1100 ° C., rather than at a lower level, with a view precisely to maximizing the energy performance of the gas turbine, the faster desulfation of magnesium requires more frequent washing, which reduces the availability of equipment. > Thus, in view of the drawbacks observed with conventional inhibitors, it appears desirable to have inhibitors of vanadic corrosion, in particular against type I corrosion and type II corrosion, which can be used in particular during the combustion of liquid fuels contaminated with vanadium, in particular in the presence of sodium, giving reduced fouling of the thermal equipment used and therefore better availability thereof, in particular when it comes to gas turbines.
Par ailleurs, il apparaît également souhaitable de pouvoir utiliser sans "détarage" préalable, ou avec un détarage minimal, les turbines de nouvelle technologie fonctionnant à haute température de flamme en vue de meilleurs rendements énergétiques.Furthermore, it also appears desirable to be able to use, without prior "derating", or with minimal derating, the new technology turbines operating at high flame temperature for better energy yields.
D'un autre point de vue, il apparaît également souhaitable de rendre l'utilisation de combustibles contaminés au vanadium plus efficiente et économiquement plus rentable. Finalement, il apparaît particulièrement souhaitable de remédier aux inconvénients liés à l'utilisation des inhibiteurs classiques, notamment lors de la combustion de combustibles liquides contaminés au vanadium. La demanderesse a maintenant trouvé qu'il était possible et particulièrement avantageux d'utiliser des composés à base de nickel, le rapport massique du nickel au vanadium contaminant étant supérieur ou égal à 1,74, pour inhiber la corrosion vanadique des matériaux métalliques, notamment d'équipements thermiques brûlant des combustibles liquides contaminés au vanadium, même à haute température. La présente invention a donc pour objet l'utilisation de composés à base de nickel pour inhiber la corrosion vanadique de matériaux métalliques, caractérisée en ce que le rapport massique du nickel au vanadium contaminant est supérieur ou égal à 1,74. Les matériaux métalliques dont la corrosion peut ainsi être inhibée sont de tout type et notamment des matériaux métalliques ferreux (non alliés, faiblement à fortement alliés, aciers inoxydables) ou des superalliages (à base de chrome et/ou de nickel et/ou de cobalt). Cette application à tout type de matériau métallique tient à la nature de l'inhibition dans laquelle le vanadium, piégé par le nickel, est soustrait du milieu en tant qu' agent corrosif.From another point of view, it also appears desirable to make the use of fuels contaminated with vanadium more efficient and economically more profitable. Finally, it appears particularly desirable to remedy the drawbacks associated with the use of conventional inhibitors, in particular during the combustion of liquid fuels contaminated with vanadium. The Applicant has now found that it is possible and particularly advantageous to use nickel-based compounds, the mass ratio of nickel to contaminating vanadium being greater than or equal to 1.74, to inhibit vanadic corrosion of metallic materials, in particular thermal equipment burning liquid fuels contaminated with vanadium, even at high temperature. The present invention therefore relates to the use of nickel-based compounds for inhibiting vanadic corrosion of metallic materials, characterized in that the mass ratio of nickel to contaminating vanadium is greater than or equal to 1.74. The metallic materials whose corrosion can thus be inhibited are of any type and in particular ferrous metallic materials (unalloyed, weakly to highly alloyed, stainless steels) or superalloys (based on chromium and / or nickel and / or cobalt ). This application to any type of metallic material is due to the nature of the inhibition in which the vanadium, trapped by nickel, is removed from the medium as a corrosive agent.
Par équipement thermique on entend tout type d' appareil de combustion tels que les moteurs diesel, les chaudières, les turbines à gaz, etc .. Selon une mise en œuvre préférentielle de l'invention, on protège de la corrosion vanadique les matériaux métalliques de turbines à gaz.By thermal equipment is meant any type of combustion device such as diesel engines, boilers, gas turbines, etc. According to a preferred implementation of the invention, metallic materials of vanadic corrosion are protected gas turbines.
Ces inhibiteurs à base de nickel peuvent se substituer à ceux à base de métaux alcalino-terreux dans toute application où ces derniers sont utilisables, ceci quel que soit le type d'appareil de combustion et de combustible contenant du vanadium, tout en surmontant les inconvénients liés à l'utilisation de ces inhibiteurs à base d'alcalino- terreux. En effet, la demanderesse a établi que certains composés chimiques du nickel se combinent avec le vanadium contenu dans les combustibles pour former, dans des conditions de température et de stoechiométrie appropriées, l'orthovanadate de nickel (Ni3N2Og). L'orthovanadate de nickel est un composé réfractaire et non corrosif, susceptible d'inhiber la corrosion vanadique à haute température des matériaux métalliques.These nickel-based inhibitors can be substituted for those based on alkaline earth metals in any application where the latter can be used, regardless of the type of combustion device and of vanadium-containing fuel, while overcoming the drawbacks linked to the use of these alkaline earth metal inhibitors. Indeed, the Applicant has established that certain chemical compounds of nickel combine with the vanadium contained in the fuels to form, under appropriate temperature and stoichiometric conditions, nickel orthovanadate (Ni 3 N 2 O g ). Nickel orthovanadate is a refractory, non-corrosive compound capable of inhibiting vanadic corrosion at high temperatures of metallic materials.
Dans la gamme de température prévalant à la surface des matériaux d'équipements thermiques à protéger, le nickel, contrairement au magnésium, ne forme pas de sulfate, ce qui supprime la nécessité du surdosage d'inhibiteurs liée à la formation de ce sel.In the temperature range prevailing on the surface of the thermal equipment materials to be protected, nickel, unlike magnesium, does not form sulphate, which eliminates the need for the overdose of inhibitors linked to the formation of this salt.
La protection contre la corrosion vanadique offerte par ces inhibiteurs à base de nickel est très efficace du fait que l'orthovanadate de nickel est non seulement thermiquement stable, mais aussi chimiquement inerte dans la gamme de température qui prévaut à la surface des pièces de l'équipement à protéger, même en présence de sulfate de sodium.The vanadic corrosion protection offered by these nickel-based inhibitors is very effective since nickel orthovanadate is not only thermally stable, but also chemically inert in the temperature range prevailing on the surface of the parts of the equipment to be protected, even in the presence of sodium sulphate.
Dans les mêmes conditions, une fraction notable du magnésium, lorsque celui-ci est utilisé comme inhibiteur, se combine avec le sulfate de sodium pour former des eutectiques MgSO .-Na-.SO . à bas point de fusion, et donc potentiellement corrosifs. La protection contre la corrosion vanadique assurée par les inhibiteurs à base de nickel est donc supérieure à celle assurée par les inhibiteurs magnésiens, notamment en présence de sodium qui est susceptible d'être introduit dans l'équipement thermique, soit via le circuit du combustible, soit via l'air de combustion. Ceci est dû au fait que l'orthovanadate de nickel est très stable en présence de sodium et ne forme pas de sels à bas point de fusion. L'utilisation du vanadium est donc particulièrement bien adaptée pour inhiber la corrosion vanadique de matériaux métalliques par un combustible liquide contaminé au vanadium et en présence de sodium. Le sodium peut être apporté par le combustible et/ou par l' air de combustion. Ainsi, un rapport massique Ni/V de 2,25 apporte une protection efficace contre les compositions contenant du sodium et du vanadium, avec une concentration en sodium inférieure ou égale à 0, 1 ppm dans le gaz de combustion, équivalente à 5 ppm dans le fuel.Under the same conditions, a significant fraction of magnesium, when it is used as an inhibitor, combines with sodium sulfate to form eutectics MgSO.-Na-.SO. low melting point, and therefore potentially corrosive. The protection against vanadic corrosion provided by nickel-based inhibitors is therefore greater than that provided by magnesium inhibitors, in particular in the presence of sodium which is liable to be introduced into the thermal equipment, either via the fuel circuit, either via combustion air. This is due to the fact that nickel orthovanadate is very stable in the presence of sodium and does not form salts with a low melting point. The use of vanadium is therefore particularly suitable for inhibiting vanadic corrosion of metallic materials by a liquid fuel contaminated with vanadium and in the presence of sodium. Sodium can be supplied by the fuel and / or by the combustion air. Thus, a Ni / V mass ratio of 2.25 provides effective protection against compositions containing sodium and vanadium, with a sodium concentration less than or equal to 0.1 ppm in the combustion gas, equivalent to 5 ppm in the fuel.
L'utilisation de composés à base de nickel comme inhibiteurs, présente également l'avantage supplémentaire de réduire les particules de suie au sein de l'équipement thermique de par l' action du nickel atomique dans les flammes d'hydrocarbures.The use of nickel-based compounds as inhibitors also has the additional advantage of reducing the soot particles in thermal equipment by the action of atomic nickel in hydrocarbon flames.
Ainsi, selon un premier aspect de l'invention, on utilise au moins un composé à base de nickel pour inhiber la corrosion vanadique de matériaux métalliques, dans un rapport massique du nickel au vanadium contaminant supérieur ou égal à 1,74, et notamment de matériaux d'équipements thermiques, et plus particulièrement de superalliages de turbines à gaz industrielles brûlant des combustibles liquides contaminés au vanadium.Thus, according to a first aspect of the invention, at least one nickel-based compound is used to inhibit the vanadic corrosion of metallic materials, in a mass ratio of contaminating nickel to vanadium greater than or equal to 1.74, and in particular of thermal equipment materials, and more particularly superalloys of industrial gas turbines burning liquid fuels contaminated with vanadium.
Selon l'invention, le combustible peut être tout type de combustible liquide contaminé au vanadium, et notamment un combustible faiblement contaminé au vanadium, tel qu'un condensât de gaz ou un distillât lourd du pétrole, ou un combustible très fortement contaminé au vanadium. Dans ces deux cas, l'utilisation du magnésium comme inhibiteur conduisait à un encrassement important des pièces chaudes actives, néfaste au bon fonctionnement de la machine thermique.According to the invention, the fuel can be any type of liquid fuel contaminated with vanadium, and in particular a fuel slightly contaminated with vanadium, such as a gas condensate or a heavy petroleum distillate, or a fuel very highly contaminated with vanadium. In these two cases, the use of magnesium as an inhibitor led to significant fouling of active hot parts, detrimental to the proper functioning of the thermal machine.
La combustion selon l'invention peut s'effectuer à haute température, notamment supérieure à 1100°C, et plus particulièrement comprise entre 1100°C et 1300°C. En effet, les températures de fusion et de décomposition de l'orthovanadate de nickel (Ni AOA qui se forme sont respectivement 1310°C et environ 2000°C.The combustion according to the invention can be carried out at high temperature, in particular higher than 1100 ° C., and more particularly between 1100 ° C. and 1300 ° C. Indeed, the melting and decomposition temperatures of nickel orthovanadate (Ni AOA which forms are respectively 1310 ° C and about 2000 ° C.
Ces caractéristiques confèrent à l'inhibiteur à base de nickel une plage d'application potentiellement plus vaste que celle des inhibiteurs à base de magnésium, dont l' orthovanadate fond à 1200°C. Elles contribuent notamment à l'augmentation substantielle de la température de flamme des turbines à gaz brûlant des combustibles contaminés au vanadium, et rendent possible la combustion de tels combustibles dans des modèles de turbines à gaz de nouvelle technologie plus performantes.These characteristics give the nickel-based inhibitor a potentially wider range of application than that of magnesium-based inhibitors, the orthovanadate of which melts at 1200 ° C. They contribute in particular to the substantial increase in the flame temperature of gas turbines burning fuels contaminated with vanadium, and make possible the combustion of such fuels in more efficient new technology gas turbine models.
Le rapport massique du nickel au vanadium contaminant est de préférence compris entre 1,9 et 2,5 (un rapport de 2,25 est encore plus particulièrement préféré). D'une part, afin de ménager une marge de sécurité acceptable en application industrielle. D'autre part, un excès de nickel conduit à la formation d'oxyde de nickel réfractaire, non corrosif et légèrement abrasif, qui joue un rôle d'auto-nettoyant de l'équipement thermique favorable à la conservation des performances énergétiques dudit équipement. Un ajustement du rapport nickel au vanadium permet de régler ce pouvoir auto-nettoyant de l'inhibiteur.The mass ratio of nickel to contaminating vanadium is preferably between 1.9 and 2.5 (a ratio of 2.25 is even more particularly preferred). On the one hand, in order to provide an acceptable safety margin in industrial application. On the other hand, an excess of nickel leads to the formation of refractory, non-corrosive and slightly abrasive nickel oxide, which plays a role of self-cleaning of thermal equipment favorable to the conservation of the energy performance of said equipment. An adjustment of the nickel to vanadium ratio makes it possible to adjust this self-cleaning power of the inhibitor.
En outre, dans cette plage, on a constaté que la quantité de cendre formée par le composé à base de nickel, était au moins deux fois moins importante que la quantité de cendre formée par un composé à base de magnésium.Furthermore, within this range, it has been found that the amount of ash formed by the nickel-based compound is at least two times less than the amount of ash formed by a magnesium-based compound.
Ceci s'explique par deux faits :This is explained by two facts:
- le caractère non-adhérent des cendres à base de nickel dans les conditions de température et de vitesse prévalent au sein des gaz de combustion au voisinage des surfaces à protéger, - le caractère légèrement abrasif de ces particules, particulièrement celles d'oxyde de nickel qui tendent à éroder tout dépôt naissant à la surface des pièces fixes et mobiles de l'équipement thermique.- the non-adherent nature of the ash based on nickel under the temperature and speed conditions prevail in the combustion gases in the vicinity of the surfaces to be protected, - the slightly abrasive nature of these particles, particularly those of nickel oxide which tend to erode any emerging deposit on the surface of fixed and moving parts of thermal equipment.
Ainsi la fréquence des opérations de nettoyage de l'équipement thermique se trouve fortement réduite et la disponibilité de l'équipement accrue.Thus the frequency of cleaning operations of the thermal equipment is greatly reduced and the availability of the equipment increased.
En outre, la demanderesse a constaté que les dépôts à base de nickel, composés d' orthovanadate et d'oxyde nickel, sont à la fois extrêmement friables et de structure poreuse. Ceci a pour conséquence trois effets bénéfiques dans les opérations d' ablation des cendres à base de nickel : a) efficacité particulièrement élevée des nettoyages à sec, grâce à la friabilité des dépôts, b) efficacité des lavages à l'eau malgré l'insolubilité des cendres de nickel; en effet, durant un lavage à l' eau chaude, l'eau pénètre dans la structure poreuse du dépôt, qui de par sa faible résistance mécanique, se désagrège sous l' effet combiné des forces capillaires et des forces hydrodynamiques causées par la circulation de l' eau de lavage (l' effet de brassage est particulièrement important dans le cas d' une turbine à gaz du fait de la rotation des aubes). La mouillabilité du dépôt peut être encore accrue par l' addition d'un agent mouillant, exempt de sodium pour éviter l'effet corrosif de ce métal, tel qu'un tensio-actif cationique ou non ionique, c) réactivité accrue par rapport à un réactif chimique éventuel. L' invention concerne également l' utilisation de composés à base de nickel, dans les proportions décrites plus haut, pour inhiber la corrosion de type I des matériaux métalliques, ainsi que pour inhiber la corrosion de type II des matériaux métalliques.In addition, the Applicant has found that the nickel-based deposits, composed of orthovanadate and nickel oxide, are both extremely friable and of porous structure. This results in three beneficial effects in nickel ablation operations: a) particularly high efficiency of dry cleaning, thanks to the brittleness of the deposits, b) effectiveness of washing with water despite the insolubility of the nickel ash; indeed, during a washing with hot water, the water penetrates into the porous structure of the deposit, which by its low mechanical resistance, disintegrates under the combined effect of capillary forces and hydrodynamic forces caused by the circulation of the wash water (the stirring effect is particularly important in the case of a gas turbine due to the rotation of the blades). The wettability of the deposit can be further increased by the addition of a wetting agent, free of sodium to avoid the corrosive effect of this metal, such as a cationic or nonionic surfactant, c) increased reactivity compared to a possible chemical reagent. The invention also relates to the use of nickel - based compounds, in the proportions described above, for inhibiting type I corrosion of metallic materials, as well as for inhibiting type II corrosion of metallic materials.
Selon un autre aspect de l'invention, les composés à base de nickel sont utilisés pour inhiber la corrosion vanadique de matériaux métalliques par un combustible liquide contaminé au vanadium et en présence de sodium. Par « en présence de sodium », on entend que le sodium est présent dans le combustible liquide et/ou dans l' air de combustion.According to another aspect of the invention, the nickel-based compounds are used to inhibit the vanadic corrosion of metallic materials by a liquid fuel contaminated with vanadium and in the presence of sodium. By "in the presence of sodium" is meant that sodium is present in the liquid fuel and / or in the combustion air.
Les composés à base de nickel peuvent également être utilisés pour inhiber la corrosion vanadique de matériaux métalliques lors de combustions d'un liquide contaminé au vanadium à des températures supérieures à 1100°C. De préférence, la température de combustion est comprise entre 1100°C et 1300°C.Nickel-based compounds can also be used to inhibit vanadic corrosion of metallic materials when combusting a vanadium-contaminated liquid at temperatures above 1100 ° C. Preferably, the combustion temperature is between 1100 ° C and 1300 ° C.
Les modes d'injection de cet inhibiteur à base de nickel sont semblables à ceux des inhibiteurs classiques. Il peut être injecté sous forme d'un additif liposoluble en mélange directement avec le combustible liquide dans les cuves de stockage ou en ligne avant l'injection du combustible dans la chambre de combustion. Il peut être également mis en oeuvre sous forme d'additif hydro soluble, émulsionné en ligne dans les combustibles liquides avant injection dans la chambre de combustion ou bien injecté séparément dans l' équipement thermique. Suivant le mode d'adjonction du composé à base de nickel au combustible liquide, il peut se présenter sous forme liposoluble ou hydro soluble, sous forme d'une émulsion ou micro-émulsion eau-dans- huile ou huile-dans-eau, ou sous forme d'une suspension. Lorsqu'il se présente sous forme liposoluble, le composé à base de nickel est choisi notamment parmi les organométalliques tels que les sulfonates, les carboxylates ou alcanoates de nickel à chaîne hydrocarbonée variable comprenant entre 2 et 12 atomes de carbone, et de préférence 6 ou 7 atomes de carbone, dissous dans un solvant organique compatible avec le combustible liquide.The injection methods of this nickel-based inhibitor are similar to those of conventional inhibitors. It can be injected in the form of a fat-soluble additive in a mixture directly with the liquid fuel in the storage tanks or in line before the injection of the fuel into the combustion chamber. It can also be used in the form of a water-soluble additive, emulsified in line in liquid fuels before injection into the combustion chamber or else injected separately into thermal equipment. Depending on the mode of addition of the nickel-based compound to the liquid fuel, it may be in liposoluble or water-soluble form, in the form of a water-in-oil or oil-in-water emulsion or micro-emulsion, or in the form of a suspension. When it is in liposoluble form, the nickel-based compound is chosen in particular from organometallic compounds such as sulfonates, nickel carboxylates or alkanoates with a variable hydrocarbon chain comprising between 2 and 12 carbon atoms, and preferably 6 or 7 carbon atoms, dissolved in an organic solvent compatible with liquid fuel.
Lorsqu'il est mis en oeuvre sous une forme hydro soluble, le composé à base de nickel est notamment constitué par une solution aqueuse d'un sel organique ou inorganique de nickel, comme par exemple un nitrate ou un sulfate. Lorsque le composé à base de nickel est mis en oeuvre sous forme d'une émulsion ou micro-émulsion eau-dans-huile, il s' agit alors d'une solution aqueuse d'au moins un sel organique ou inorganique de nickel, tel qu'un nitrate ou un sulfate, émulsionné dans un solvant compatible avec le combustible à traiter, au moyen d'un émulsifiant possédant une balance hydrophile/lipophile adaptée, tel que par exemple un nonylphénol polyéthoxylé de formule générique CH3- (CH2)8-(C6H4)-O-(CH2CH2O)nH, et introduit en concentration appropriée. Le composé de formule générique CH3-(CH2)8-(C6H4)-O- (CH2CH2O)nH peut représenter jusqu' à 10% en masse de la solution. La stabilité de l' émulsion sur le long terme, indispensable pour les applications industrielles, peut être renforcée par l' ajout d'un co- solvant tel que l' acide oléique introduit en faible proportion.When used in a water-soluble form, the nickel-based compound is in particular constituted by an aqueous solution of an organic or inorganic nickel salt, such as for example a nitrate or a sulfate. When the nickel-based compound is used in the form of a water-in-oil emulsion or micro-emulsion, it is then an aqueous solution of at least one organic or inorganic nickel salt, such as that a nitrate or a sulfate, emulsified in a solvent compatible with the fuel to be treated, by means of an emulsifier having a suitable hydrophilic / lipophilic balance, such as for example a polyethoxylated nonylphenol of generic formula CH3- (CH2) 8- (C6H4) -O- (CH2CH2O) nH, and introduced in appropriate concentration. The compound of generic formula CH3- (CH2) 8- (C6H4) -O- (CH2CH2O) nH can represent up to 10% by mass of the solution. The long-term stability of the emulsion, essential for industrial applications, can be enhanced by the addition of a co-solvent such as oleic acid introduced in small proportion.
Lorsqu'il est mis en oeuvre sous forme d'une émulsion ou micro- émulsion huile-dans-eau, il s'agit d'une solution organique d'un sulfonate, d'un carboxylate ou d'un alcanoate de nickel émulsionné dans une solution aqueuse au moyen d'un émulsifiant possédant une balance lipophile/hydrophile adaptée du même type que décrit plus haut et introduit en concentration appropriée. Un co- solvant peut également y être ajouté. Lorsque le composé à base de nickel est mis en oeuvre sous forme de suspension, il s'agit d'un composé solide tel qu'un oxyde, un oxyde partiellement hydraté, un hydroxyde ou une super-base de nickel, sous forme particulaire, en suspension dans une solution aqueuse ou dans un solvant organique compatible avec le combustible à traiter.When it is used in the form of an oil-in-water emulsion or micro-emulsion, it is an organic solution of a nickel sulfonate, a carboxylate or an alkanoate emulsified in an aqueous solution by means of an emulsifier having a suitable lipophilic / hydrophilic balance of the same type as described above and introduced in an appropriate concentration. A co-solvent can also be added. When the nickel-based compound is used in the form of a suspension, it is a solid compound such as an oxide, a partially hydrated oxide, a hydroxide or a nickel super-base, in particulate form, suspended in an aqueous solution or in an organic solvent compatible with the fuel to be treated.
On préfère souvent des composés du nickel sous forme liposoluble directement utilisables et aisément miscibles au combustible à traiter .Preference is often given to nickel compounds in liposoluble form which are directly usable and easily miscible with the fuel to be treated.
La réactivité très importante du nickel vis-à-vis du vanadium permet, selon une mise en oeuvre particulière de l'invention, de l'utiliser en association, sous forme de mélange en toute proportion, à un ou plusieurs autres métaux. Ainsi, on peut envisager une association à au moins un ou plusieurs métaux ayant d'autres fonctions inhibitrices de la corrosion, choisis notamment parmi le chrome, le silicium, l'aluminium, le zinc et le magnésium. On peut également envisager l'association à au moins un ou plusieurs métaux ayant un rôle de catalyseur de combustion, choisis notamment parmi le fer, le manganèse et le cérium.The very high reactivity of nickel with respect to vanadium allows, according to a particular implementation of the invention, to use it in association, in the form of a mixture in any proportion, with one or more other metals. Thus, it is possible to envisage a combination with at least one or more metals having other corrosion-inhibiting functions, chosen in particular from chromium, silicon, aluminum, zinc and magnesium. It is also possible to envisage the association with at least one or more metals having a role of combustion catalyst, chosen in particular from iron, manganese and cerium.
Selon un autre mode de réalisation de l'invention, le combustible contaminé au vanadium contient également du nickel comme contaminant métallique notable.According to another embodiment of the invention, the fuel contaminated with vanadium also contains nickel as a notable metallic contaminant.
L'utilisation d'inhibiteurs à base de nickel permet une combustion particulièrement économique de ces combustibles qui contiennent du nickel de façon naturelle. En effet, la quantité de nickel inhibiteur à ajouter est alors égale au complément entre la concentration correspondant au rapport du nickel au vanadium visé et la concentration naturelle en nickel dans le combustible. On peut citer à titre d'exemple de ce type de combustibles, les pétroles bruts et résidus de distillation de certains pétroles, tels que les pétroles bruts de Chine et d'Indonésie, "Low Sulphur Waxy Residuals" du marché pétrolier sud- asiatique.The use of nickel-based inhibitors allows a particularly economical combustion of these fuels which contain nickel naturally. In fact, the quantity of inhibiting nickel to be added is then equal to the complement between the concentration corresponding to the ratio of nickel to targeted vanadium and the natural concentration of nickel in the fuel. Examples of this type of fuel include crude oils and distillation residues from certain oils, such as crude oils from China and Indonesia, "Low Sulfur Waxy Residuals" from the South Asian oil market.
Un autre aspect de l'invention concerne un procédé de combustion d'un combustible liquide contaminé au vanadium, qui, outre les étapes classiques connues accompagnant la combustion, comprend une étape d'introduction dans l' équipement thermique, de façon séparée ou en mélange avec le combustible liquide contaminé, d'au moins un composé à base de nickel.Another aspect of the invention relates to a method of combustion of a liquid fuel contaminated with vanadium, which, in addition to the known conventional steps accompanying combustion, comprises a step of introducing into the thermal equipment, separately or as a mixture with the contaminated liquid fuel, at least one nickel-based compound.
L' apport de nickel se fait dans des proportions telles que le rapport massique du nickel au vanadium contaminant est supérieur ou égal à 1,74 et de préférence compris entre 1,9 et 2,5. Un rapport massique de 2,25 est particulièrement préféré.The nickel is supplied in proportions such that the mass ratio of nickel to the contaminating vanadium is greater than or equal to 1.74 and preferably between 1.9 and 2.5. A mass ratio of 2.25 is particularly preferred.
Selon une variante du procédé de l'invention, les composés à base de nickel sont utilisés pour inhiber la corrosion vanadique de matériaux métalliques par un combustible liquide contaminé au vanadium, la combustion s' effectuant en présence de sodium.According to a variant of the process of the invention, the nickel-based compounds are used to inhibit the vanadic corrosion of metallic materials by a liquid fuel contaminated with vanadium, the combustion taking place in the presence of sodium.
Par « en présence de sodium », on entend que le sodium est présent dans le combustible liquide et/ou dans l' air de combustion. Du fait de cette présence, les gaz de combustion contiennent du sodium. Plus particulièrement, selon un mode de réalisation préférentiel de l'invention, ce procédé est appliqué à la combustion dans des turbines à gaz. En effet, dans une turbine à gaz, les performances sont étroitement liées à l'état de propreté des composants de la turbine de détente. De plus, la demanderesse a constaté que l' oxyde de nickel, stable au-dessus de 650°C, dans des conditions de pression partielle deBy "in the presence of sodium" is meant that sodium is present in the liquid fuel and / or in the combustion air. Due to this presence, the combustion gases contain sodium. More particularly, according to a preferred embodiment of the invention, this method is applied to combustion in gas turbines. In fact, in a gas turbine, performance is closely linked to the state of cleanliness of the components of the expansion turbine. In addition, the Applicant has found that the nickel oxide, stable above 650 ° C., under partial pressure conditions of
SO3 prévalant dans les gaz de combustion, est essentiellement disponible comme agent auto-nettoyant dans les zones les plus chaudes, c'est-à-dire précisément là où les dépôts sont les plus difficiles à enlever. Ces zones sont les tubes à flammes, les pièces de transition et les premiers étages de détente (essentiellement les premier et deuxième étages).SO 3, prevalent in combustion gases, is mainly available as a self-cleaning agent in the hottest areas, that is to say precisely where deposits are most difficult to remove. These zones are the flame tubes, the transition pieces and the first expansion stages (essentially the first and second stages).
Trois avantages des inhibiteurs à base de nickel permettent d' augmenter substantiellement la température de flamme des turbines à gaz brûlant des combustibles liquides contaminés au vanadium. Il s' agit :Three advantages of nickel-based inhibitors allow a substantial increase in the flame temperature of gas turbines burning liquid fuels contaminated with vanadium. It's about :
- du caractère réfractaire et non-adhérent des particules de cendre à base de nickel,- the refractory and non-adherent nature of the nickel-based ash particles,
- du faible taux d' encrassement des pièces de turbine qui en résulte, - de la suppression de la nécessité de former des cendres sulfatées solubles dans l'eau.- the low fouling rate of the turbine parts which results therefrom, - the elimination of the need to form sulphated ash which is soluble in water.
Il en résulte la possibilité d' appliquer de façon avantageuse le procédé à des turbines à gaz de technologie les plus récentes, plus performantes, dont les températures de flamme sont supérieures àThis results in the possibility of advantageously applying the process to the most recent, more efficient technology gas turbines, the flame temperatures of which are higher than
1100°C et sont notamment comprises entre 1100°C et 1300°C.1100 ° C and are in particular between 1100 ° C and 1300 ° C.
Le composé à base de nickel peut se présenter sous les formes définies plus haut, qui dépendent notamment de son mode d' adjonction. Celui-ci s'effectue selon des méthodes classiques décrites précédemment.The nickel-based compound can be in the forms defined above, which depend in particular on its mode of addition. This is carried out according to conventional methods described above.
Le combustible liquide peut être tout type de combustible liquide contaminé au vanadium, et notamment ceux décrits précédemment.The liquid fuel can be any type of liquid fuel contaminated with vanadium, and in particular those described above.
Selon un mode de réalisation particulier du procédé de l'invention, le procédé de combustion de combustibles liquides contaminés au vanadium comprend également une étape de lixiviation des cendres à base de nickel par un acide organique réducteur.According to a particular embodiment of the method of the invention, the method of combustion of liquid fuels contaminated with vanadium also comprises a step of leaching of the ash based on nickel with a reducing organic acid.
La lixiviation chimique des cendres au lieu du simple lavage à l'eau permet d' optimiser l' état de propreté des pièces chaudes de la turbine en fin de nettoyage et, par là, d' améliorer les performances énergétique de cette dernière durant le cycle d'exploitation suivant.The chemical leaching of the ash instead of simple washing with water makes it possible to optimize the state of cleanliness of the hot parts of the turbine at the end of cleaning and, thereby, to improve the energy performance of the latter during the cycle of following exploitation.
Conformément à ce mode de réalisation, on élimine les éventuels dépôts à base de nickel qui pourraient s'accumuler dans l'équipement thermique, et notamment la turbine, par exemple sur de longues périodes de fonctionnement sans arrêt, au moyen d'une solution à base d'acide organique réducteur.In accordance with this embodiment, any deposits based on nickel which could accumulate in the thermal equipment, and in particular the turbine, are eliminated, for example over long periods of non-stop operation, by means of a solution to reducing organic acid base.
En effet, la demanderesse a établi qu'un acide organique réducteur qui convient particulièrement est l' acide oxalique. Cet acide dissout de manière remarquable les solides Ni3N2O8, ΝiO, et CaSO4, ainsi que leurs mélanges. Les réactions de dissolution sont les suivantes :Indeed, the applicant has established that a reducing organic acid which is particularly suitable is oxalic acid. This acid remarkably dissolves the solids Ni 3 N 2 O 8 , ΝiO, and CaSO 4 , as well as their mixtures. The dissolution reactions are as follows:
(1) Νi3N2O8 + 4H2C2O4 + 4H+ → 3ΝiC2O4l + 2CO2 + 2VO2+ + 6H2O(1) Νi 3 N 2 O 8 + 4H 2 C 2 O 4 + 4H + → 3ΝiC 2 O 4 l + 2CO 2 + 2VO 2+ + 6H 2 O
(2) NiO + H2C2O4 → NiC2O4i + H2O (3) CaSO4 + H2C2O4 → CaC2O4l + 2H+ + SO4 2" (2) NiO + H 2 C 2 O 4 → NiC 2 O 4 i + H 2 O (3) CaSO 4 + H 2 C 2 O 4 → CaC 2 O 4 l + 2H + + SO 4 2 "
La réaction (1) est essentielle car l' orthovanadate constitue la phrase principale et nécessite à la fois la réduction du vanadium du degré d' oxydation N à IN dans des conditions acides et la formation d'un sel insoluble du nickel afin de déplacer la réaction de la gauche vers la droite. L' acide oxalique réunit ces propriétés et présente en outre comme avantages d' être faiblement corrosif, très solubles dans l'eau et de coût modéré.Reaction (1) is essential because orthovanadate is the main phrase and requires both the reduction of vanadium from the degree of oxidation N to IN under acidic conditions and the formation of an insoluble salt of nickel in order to displace the left to right reaction. Oxalic acid combines these properties and also has the advantages of being weakly corrosive, very soluble in water and of moderate cost.
Ainsi, une solution aqueuse 0,5 M d'acide oxalique à 80°C, obtenue à partir de H2C2O4, 2 H2O commercial, assure un taux de dissolution de 90 % au bout de trois heures de lixiviation.Thus, a 0.5 M aqueous solution of oxalic acid at 80 ° C, obtained from commercial H2C2O4, 2 H2O, ensures a dissolution rate of 90% after three hours of leaching.
L' acide oxalique peut être utilisé additionné d'un inhibiteur de la corrosion acide des aciers au carbone et des fontes, tels que la thio- urée, le benzotriazole ou le tolyltriazole afin de protéger les alliages ferreux présents dans les structures mécaniques de la turbine.Oxalic acid can be used with an inhibitor of the acid corrosion of carbon steels and cast irons, such as thiourea, benzotriazole or tolyltriazole in order to protect the ferrous alloys present in the mechanical structures of the turbine. .
L' acide oxalique peut également être additionné d'un agent mouillant tel qu'un tensioactif cationique ou non ionique permettant d' accélérer la diffusion de l' acide oxalique dans les pores du dépôt et la dissolution de ce dernier. Enfin, la capacité de l'acide oxalique à dissoudre également le sulfate de calcium est utile lorsque le combustible est contaminé par du calcium : les combustibles pétroliers peuvent contenir du calcium sous fome hydrosoluble (sels minéraux contenus dans des goutelettes d' eau résiduelles en émulsion dans le fuel) ou liposoluble (sels organiques de calcium dissous dans la phase fuel). En effet, la combustion de fuels contaminés au calcium forme du sulfate de calcium qui est très peu soluble dans l' eau, adhère fortement aux pièces chaudes de la turbine et est susceptible d'y piéger les autres phases des cendres y compris celles riches en nickel. Afin d'illustrer l'invention, trois modes de réalisation sont décrits ci-après : Premier mode de réalisationThe oxalic acid can also be added with a wetting agent such as a cationic or nonionic surfactant making it possible to accelerate the diffusion of the oxalic acid in the pores of the deposit and the dissolution of the latter. Finally, the ability of oxalic acid to also dissolve calcium sulphate is useful when the fuel is contaminated with calcium: petroleum fuels can contain calcium in water-soluble form (mineral salts contained in residual water droplets in emulsion in fuel) or liposoluble (organic calcium salts dissolved in the fuel phase). Indeed, the combustion of fuels contaminated with calcium forms calcium sulphate which is very slightly soluble in water, strongly adheres to the hot parts of the turbine and is likely to trap the other phases of the ash including those rich in nickel. In order to illustrate the invention, three embodiments are described below: First embodiment
Dans une turbine à gaz traditionnelle dite "de deuxième génération" ou de classe "E", on brûle un fuel lourd fortement contaminé au vanadium. Par turbine à gaz de classe "E" , on entend une turbine à gaz qui présente une température de flamme nominale comprise entre 1100 et 1150°. Le fuel lourd utilisé, de composition typique de celles du marché du Sud-Est asiatique, est un résidu de la distillation atmosphérique du pétrole qui contient 50 ppm de vanadium et 30 ppm de nickel.In a traditional gas turbine called "second generation" or class "E", a heavy fuel oil highly contaminated with vanadium is burned. By gas turbine class "E" means a gas turbine which has a nominal flame temperature between 1100 and 1150 °. The heavy fuel oil used, with a composition typical of that of the Southeast Asian market, is a residue from the atmospheric distillation of petroleum which contains 50 ppm of vanadium and 30 ppm of nickel.
Selon l'invention, afin d'inhiber la corrosion vanadique, on ajoute au combustible liquide une solution aqueuse de nitrate de nickel émulsionnée à l'aide d'un tensio-actif exempt de métaux et à raison de 10% massique de nickel, dans un solvant organique constitué par un distillât moyen du pétrole de type kérosène, miscible au combustible pétrolier à brûler. L'émulsion de nitrate de nickel est injectée à l'aide d'une pompe doseuse dans la partie basse pression du circuit de combustible liquide, et plus précisément en amont des filtres haute pression. La quantité d' émulsion de nitrate de nickel injectée est telle que le rapport du nickel au vanadium est égal à 2,25. Ceci conduit à injecter (2,25*50-30)= 82,5 mg de nickel par kg de fuel, alors que 3*50=150 mg de magnésium étaient requis avec les méthodes traditionnelles. On injecte périodiquement des agents abrasifs, tels des coquilles de noix, dans le circuit en vue d' opérer des nettoyages à sec, particulièrement efficaces avec les cendres à base de nickel.According to the invention, in order to inhibit vanadic corrosion, an aqueous solution of nickel nitrate emulsified with a metal-free surfactant and at a rate of 10% by mass of nickel is added to the liquid fuel. an organic solvent constituted by a middle petroleum distillate of the kerosene type, miscible with the petroleum fuel to be burned. The nickel nitrate emulsion is injected using a metering pump into the low pressure part of the liquid fuel circuit, and more precisely upstream of the high pressure filters. The quantity of nickel nitrate emulsion injected is such that the ratio of nickel to vanadium is equal to 2.25. This leads to injecting (2.25 * 50-30) = 82.5 mg of nickel per kg of fuel, while 3 * 50 = 150 mg of magnesium was required with traditional methods. Abrasive agents, such as nut shells, are periodically injected into the circuit for dry cleaning, which is particularly effective with nickel-based ash.
On constate que l'utilisation du nickel comme inhibiteur selon l'invention appliquée à la combustion d'un fuel lourd fortement contaminé en vanadium dans une turbine à gaz de classe "E", réduit par un facteur 2,5 le taux de déposition de cendre par rapport à l'utilisation du magnésium comme inhibiteur. Ceci représente un gain de puissance électrique moyenne de l'ordre de 6% pour une consommation de combustible égale. On peut chiffrer ce gain à environ 300 000 dollars (soit 2, 1 MF en mai 2001) pour une production annuelle de 5 millions de dollars (soit 35 MF en mai 2001), ce qui représente un gain considérable.It can be seen that the use of nickel as an inhibitor according to the invention applied to the combustion of a heavy fuel highly contaminated with vanadium in a gas turbine of class "E", reduces by a factor 2.5 the rate of deposition of ash compared to the use of magnesium as an inhibitor. This represents an average electrical power gain of around 6% for an equal fuel consumption. We can put this gain at around 300,000 dollars (or 2.1 MF in May 2001) for an annual production of 5 million dollars (35 MF in May 2001), which represents a considerable gain.
La mise en œuvre d'une étape de lixiviation chimique des cendres à base de nickel optimise l'état de propreté des pièces chaudes de la turbine en fin de nettoyage et, par là, améliore les performances énergétique de cette dernière durant le cycle d' exploitation suivant.The implementation of a chemical leaching step of the nickel-based ash optimizes the state of cleanliness of the hot parts of the turbine at the end of cleaning and, thereby, improves the energy performance of the latter during the cycle of next operation.
Par ailleurs, l'équipement thermique est rendu plus disponible puisqu'on a une multiplication par un facteur supérieur à 2,5 de la durée d'exploitation continue de la turbine entre deux opérations de lavage consécutif. On supprime ainsi une durée d' arrêt cumulée de 60 heures sur une période de 1000 heures, ce qui représente un gain . de disponibilité supérieur à 6%.Furthermore, thermal equipment is made more available since there is a multiplication by a factor greater than 2.5 of the continuous operating time of the turbine between two consecutive washing operations. This eliminates a cumulative downtime of 60 hours over a period of 1000 hours, which represents a gain. availability greater than 6%.
Deuxième mode de réalisationSecond embodiment
Dans une turbine à gaz dite "de troisième génération" ou de classe "F" , installée par exemple dans une zone maritime, où l' air est contaminé par du sodium, on brûle un « condensât de gaz » très légèrement contaminé au vanadium. La turbine à gaz de classe "F" fait partie de ces turbines à gaz de nouvelle génération citées plus haut dans le texte et qui présentent une température de flamme de 1300°C ou plus. Le combustible utilisé correspond à la fraction condensable à température et pression ambiantes de la production d'un puits de gaz naturel, après traitements éventuels de stabilisation (baisse de la pression de vapeur par distillation flash) , et adoucissement (enlèvement de HJ3). Ces condensats de gaz peuvent contenir de façon typique entre 0,2 et 1,5 ppm de vanadium. La concentration en sodium est d' environ 2,5 ppm, correspondant à une concentration de 0,05 ppm dans l' air.In a so-called "third generation" or class "F" gas turbine, installed for example in a maritime area where the air is contaminated with sodium, a "gas condensate" is very slightly contaminated with vanadium. The "F" class gas turbine is one of those new generation gas turbines mentioned above in the text which have a flame temperature of 1300 ° C. or more. The fuel used corresponds to the condensable fraction at ambient temperature and pressure of the production of a natural gas well, after possible stabilization treatments (reduction of the vapor pressure by flash distillation), and softening (removal of HJ3). These gas condensates can typically contain between 0.2 and 1.5 ppm vanadium. The sodium concentration is approximately 2.5 ppm, corresponding to a concentration of 0.05 ppm in air.
On utilise un composé de nickel sous forme liposoluble, par un exemple un carboxylate de nickel, contenant 8% en poids de nickel, avec le même mode d'introduction dans la turbine que dans le mode d'application précédent.A nickel compound in liposoluble form is used, for example a nickel carboxylate, containing 8% by weight of nickel, with the same method of introduction into the turbine as in the previous application mode.
Le rapport de dosage Ni/N est de 2,25. La température de flamme de la turbine à gaz est par exemple 1280°C. Il faut noter que les condensats de gaz contiennent fréquemment de faibles quantités de vanadium qui, soit dépassent la spécification permise (par exemple 0,5 ppm) pour une exploitation de la turbine sans avoir à utiliser d'inhibiteur de corrosion, soit si elles ne dépassent pas cette spécification permise, diminuent la durée de vie des pièces chaudes actives de la machine lorsqu'un inhibiteur n'est pas ajouté. Du fait que les inhibiteurs classiques, notamment à base de magnésium, forment des dépôts très durs, non éliminables par lavage, lorsque la turbine est exploitée à haute température de flamme, qui est l'une des spécificités des turbines à gaz de classe "F" , le fonctionnement d'une telle machine conduirait à un encrassement irréversible des aubages. Un tel encrassement nécessiterait de fait un démontage de la machine pour un nettoyage manuel. De plus, l'orthovanadate de magnésium commence à fondre à 1100°C et la protection anti-corrosion serait alors remise en cause. Ces gros inconvénients sont supprimés lorsqu'on utilise selon l'invention un inhibiteur à base de nickel, qui protège aussi les turbines à gaz des effets néfastes d'éventuelles incursions du sodium présent dans l' air. La température de flamme peut être ajustée à une valeur inférieure ou égale à 1300°C.The Ni / N dosage ratio is 2.25. The flame temperature of the gas turbine is for example 1280 ° C. It should be noted that gas condensates frequently contain small quantities of vanadium which either exceed the permitted specification (for example 0.5 ppm) for operation of the turbine without having to use a corrosion inhibitor, or if they do not not exceed this permitted specification, decrease the service life of active hot machine parts when an inhibitor is not added. The fact that conventional inhibitors, in particular based on magnesium, form very hard deposits, which cannot be removed by washing, when the turbine is operated at high flame temperature, which is one of the characteristics of gas turbines of class "F ", the operation of such a machine would lead to irreversible fouling of the blades. Such fouling would in fact require disassembly of the machine for manual cleaning. In addition, magnesium orthovanadate begins to melt at 1100 ° C and the anti-corrosion protection would then be called into question. These major drawbacks are eliminated when a nickel-based inhibitor is used according to the invention, which also protects gas turbines from the harmful effects of possible incursions of sodium present in the air. The flame temperature can be adjusted to a value less than or equal to 1300 ° C.
Troisième mode de réalisationThird embodiment
Un résultat analogue est obtenu si l'on utilise un distillât pétrolier lourd comme combustible. Ce type de combustible, faiblement contaminé, contient également typiquement entre 1 et 1,5 ppm de vanadium. Par ailleurs, ces fuels contiennent des quantités notables de sels de sodium dissous dans des gouttelettes d'eau présentes dans le fuel. La concentration en sodium est typiquement comprise entre 1 et 1 ,5 ppm dans de tels distillats pétroliers lourds.A similar result is obtained if a heavy petroleum distillate is used as fuel. This type of fuel, slightly contaminated, also typically contains between 1 and 1.5 ppm of vanadium. In addition, these fuels contain significant amounts of sodium salts dissolved in water droplets present in the fuel. The sodium concentration is typically between 1 and 1.5 ppm in such heavy petroleum distillates.
L'usage du nickel comme inhibiteur permet ainsi de protéger efficacement de la corrosion vanadique les turbine à gaz de classe "F", en utilisant un distillât lourd, combustible dont l'utilisation était jusqu' à présent considérée comme risquée dans les turbines de classe F. The use of nickel as an inhibitor thus makes it possible to protect effectively from vanadic corrosion the gas turbines of class "F", by using a heavy distillate, combustible whose use was until now considered as risky in class turbines F.

Claims

REVENDICATIONS
1. Utilisation de composés à base de nickel pour inhiber la corrosion vanadique de matériaux métalliques, caractérisée en ce que le rapport massique du nickel au vanadium contaminant est supérieur ou égal à 1,74.1. Use of nickel-based compounds to inhibit vanadic corrosion of metallic materials, characterized in that the mass ratio of nickel to contaminating vanadium is greater than or equal to 1.74.
2. Utilisation selon la revendication 1, caractérisé en ce que le rapport massique du nickel au vanadium contaminant est compris entre 1 ,9 et 2,5.2. Use according to claim 1, characterized in that the mass ratio of nickel to contaminating vanadium is between 1, 9 and 2.5.
3. Utilisation selon la revendication 1 ou 2, caractérisée en ce que le rapport massique du nickel au vanadium contaminant est égal à3. Use according to claim 1 or 2, characterized in that the mass ratio of nickel to contaminating vanadium is equal to
2,25.2.25.
4. Utilisation selon l'une quelconque des revendications 1 à 3, pour inhiber la corrosion de type I des matériaux métalliques.4. Use according to any one of claims 1 to 3, for inhibiting type I corrosion of metallic materials.
5. Utilisation selon l'une quelconque des revendications 1 à 3, pour inhiber la corrosion de type II des matériaux métalliques.5. Use according to any one of claims 1 to 3, for inhibiting type II corrosion of metallic materials.
6. Utilisation selon l'une quelconque des revendications 1 à 3, pour inhiber la corrosion vanadique de matériaux métalliques lors de combustions à des températures supérieures à 1100°C6. Use according to any one of claims 1 to 3, for inhibiting vanadic corrosion of metallic materials during combustion at temperatures above 1100 ° C
7. Utilisation selon la revendication 6, caractérisée en ce que la température de combustion est comprise entre 1100°C et 1300°C.7. Use according to claim 6, characterized in that the combustion temperature is between 1100 ° C and 1300 ° C.
8. Utilisation selon l'une quelconque des revendications 1 à 7, pour inhiber la corrosion vanadique de matériaux métalliques par un combustible liquide contaminé au vanadium et en présence de sodium.8. Use according to any one of claims 1 to 7, for inhibiting vanadic corrosion of metallic materials by a liquid fuel contaminated with vanadium and in the presence of sodium.
9. Utilisation selon l'une quelconque des revendications 1 à 8, caractérisée en ce que le composé à base de nickel se présente sous forme liposoluble ou hydro soluble, sous forme d'une émulsion ou micro-émulsion eau-dans-huile ou huile-dans-eau, ou sous forme d'une suspension aqueuse ou organique .9. Use according to any one of claims 1 to 8, characterized in that the nickel-based compound is in liposoluble or water-soluble form, in the form of a water-in-oil emulsion or micro-emulsion or oil -in-water, or in the form of an aqueous or organic suspension.
10. Utilisation selon l'une quelconque des revendications 1 à 9, caractérisée en ce que le composé à base de nickel est associé, sous forme de mélange en toute proportion, à au moins un autre métal choisi de préférence parmi le chrome, le silicium, l'aluminium, le magnésium, le fer, le manganèse, le zinc et le cérium. 10. Use according to any one of claims 1 to 9, characterized in that the nickel-based compound is associated, in the form of a mixture in any proportion, with at least one other metal preferably chosen from chromium, silicon , aluminum, magnesium, iron, manganese, zinc and cerium.
1 1. Utilisation selon l'une quelconque des revendications 1 à 10, caractérisée en ce que le combustible liquide est un combustible contenant du nickel comme contaminant métallique notable.1 1. Use according to any one of claims 1 to 10, characterized in that the liquid fuel is a fuel containing nickel as a significant metallic contaminant.
12. Procédé de combustion d'un combustible liquide contaminé au vanadium, caractérisé en ce qu'il comprend une étape d'introduction d'au moins un composé à base de nickel, le rapport massique du nickel au vanadium contaminant étant supérieur ou égal à 1 ,74.12. Method of combustion of a liquid fuel contaminated with vanadium, characterized in that it comprises a step of introducing at least one nickel-based compound, the mass ratio of nickel to contaminating vanadium being greater than or equal to 1, 74.
13. Procédé de combustion d'un combustible liquide contaminé au vanadium selon la revendication 12, caractérisé en ce que le rapport massique du nickel au vanadium contaminant est compris entre 1,9 et13. A method of combustion of a liquid fuel contaminated with vanadium according to claim 12, characterized in that the mass ratio of nickel to contaminating vanadium is between 1.9 and
2,5.2.5.
14. Procédé de combustion d'un combustible liquide contaminé au vanadium selon la revendication 12 ou 13, caractérisée en ce que le rapport massique du nickel au vanadium contaminant est égal à 2,25. 14. A method of combustion of a liquid fuel contaminated with vanadium according to claim 12 or 13, characterized in that the mass ratio of nickel to contaminating vanadium is equal to 2.25.
15. Procédé de combustion d'un liquide contaminé au vanadium selon l'une quelconque des revendications 12 à 14, caractérisé en ce que la combustion s'effectue en présence de sodium.15. Method of combustion of a liquid contaminated with vanadium according to any one of claims 12 to 14, characterized in that the combustion is carried out in the presence of sodium.
16. Procédé de combustion d'un combustible liquide contaminé au vanadium selon l'une quelconque des revendications 12 à 15, caractérisé en ce que l' équipement thermique est une turbine à gaz, et de préférence une turbine à gaz ayant une température de flamme supérieure à 1 100°C.16. A method of combustion of a liquid fuel contaminated with vanadium according to any one of claims 12 to 15, characterized in that the thermal equipment is a gas turbine, and preferably a gas turbine having a flame temperature higher than 1100 ° C.
17. Procédé de combustion d'un combustible liquide contaminé au vanadiu selon la revendication 16, caractérisé en ce que la température de flamme est comprise entre 1 100°C et 1300°C.17. A method of combustion of a liquid fuel contaminated with vanadiu according to claim 16, characterized in that the flame temperature is between 1100 ° C and 1300 ° C.
18. Procédé de combustion d'un combustible liquide contaminé au vanadium selon l'une quelconque des revendications 12 à 17, caractérisé en ce qu'il comporte une étape de lixiviation des cendres à base de nickel par un acide organique réducteur. 18. A method of combustion of a vanadium-contaminated liquid fuel according to any one of claims 12 to 17, characterized in that it comprises a step of leaching the ash based on nickel with a reducing organic acid.
19. Procédé de combustion d'un combustible liquide contaminé au vanadium selon la revendication 18, caractérisé en ce qu'il comporte une étape de lixiviation des cendres à base de nickel par l' acide oxalique. 19. A method of combustion of a liquid fuel contaminated with vanadium according to claim 18, characterized in that it comprises a step of leaching of the ash based on nickel by oxalic acid.
PCT/FR2001/001681 2000-06-19 2001-05-30 Use of nickel compounds as vanadium corrosion inhibitors WO2001098437A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2001274160A AU2001274160A1 (en) 2000-06-19 2001-05-30 Use of nickel compounds as vanadium corrosion inhibitors
EP01940643A EP1292656A1 (en) 2000-06-19 2001-05-30 Use of nickel compounds as vanadium corrosion inhibitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0007806A FR2810341B1 (en) 2000-06-19 2000-06-19 USE OF NICKEL COMPOUNDS AS VANADIC CORROSION INHIBITORS AND COMBUSTION METHOD USING SUCH NICKEL COMPOUNDS
FR00/07806 2000-06-19

Publications (1)

Publication Number Publication Date
WO2001098437A1 true WO2001098437A1 (en) 2001-12-27

Family

ID=8851410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/001681 WO2001098437A1 (en) 2000-06-19 2001-05-30 Use of nickel compounds as vanadium corrosion inhibitors

Country Status (7)

Country Link
US (1) US20030159338A1 (en)
EP (1) EP1292656A1 (en)
CN (1) CN1271179C (en)
AU (1) AU2001274160A1 (en)
FR (1) FR2810341B1 (en)
MA (1) MA25946A1 (en)
WO (1) WO2001098437A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008103063A1 (en) * 2007-02-22 2008-08-28 Mihai Suta Process for reducing polluting emissions and greenhouse effect gas emissions, resulting from combustibles burning
WO2016162718A1 (en) * 2015-04-10 2016-10-13 Ge Energy Products France Snc Method of operating a gas turbine with yttrium and/or magnesium injection
US10577553B2 (en) * 2017-08-09 2020-03-03 General Electric Company Water based product for treating vanadium rich oils

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1045851A (en) * 1950-06-28 1953-12-01 Power Jets Res & Dev Ltd Improvements in the treatment of oils used as fuel
GB877132A (en) * 1958-11-24 1961-09-13 Exxon Research Engineering Co Petroleum residual fuel oils containing oil-insoluble metallic additives
GB997335A (en) * 1961-07-17 1965-07-07 Continental Oil Co Process for preparing inorganic dispersions
FR2229861A1 (en) * 1973-05-14 1974-12-13 United Aircraft Corp
EP0013243A1 (en) * 1978-12-27 1980-07-09 Calgon Corporation Residual fuel oil conditioners containing metal salts in aqueous solution and method of improving combustion therewith
FR2610945A1 (en) * 1987-02-17 1988-08-19 Intevep Sa METHOD FOR CONTROLLING THE FORMATION AND EMISSIONS OF SULFUR OXIDE DURING COMBUSTION OF COMBUSTIBLE OIL IN THE FORM OF HYDROCARBON EMULSION IN WATER
US5938855A (en) * 1998-01-20 1999-08-17 General Electric Company Method for cleaning a turbine component

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2911292A (en) * 1950-11-30 1959-11-03 Exxon Research Engineering Co Reducing the corrosivity of vanadiumcontaining oils
US3078665A (en) * 1960-08-03 1963-02-26 Gulf Research Development Co Vanadium containing residual fuels modified with iron, c o b a l t or nickel and alkali metal compounds
US4131433A (en) * 1977-07-27 1978-12-26 The Perolin Company, Inc. Fuel additives, additive compositions and methods of employing same to prevent corrosion of metal surfaces in contact with hot gaseous combustion products
US4549958A (en) * 1982-03-30 1985-10-29 Ashland Oil, Inc. Immobilization of vanadia deposited on sorbent materials during treatment of carbo-metallic oils
US4548700A (en) * 1983-12-14 1985-10-22 Exxon Research And Engineering Co. Hydroconversion process
US5637118A (en) * 1994-06-30 1997-06-10 United Technologies Corporation Vanadium corrosion inhibitor
US5641938A (en) * 1995-03-03 1997-06-24 Primex Technologies, Inc. Thermally stable gas generating composition
US6444259B1 (en) * 2001-01-30 2002-09-03 Siemens Westinghouse Power Corporation Thermal barrier coating applied with cold spray technique

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1045851A (en) * 1950-06-28 1953-12-01 Power Jets Res & Dev Ltd Improvements in the treatment of oils used as fuel
GB877132A (en) * 1958-11-24 1961-09-13 Exxon Research Engineering Co Petroleum residual fuel oils containing oil-insoluble metallic additives
GB997335A (en) * 1961-07-17 1965-07-07 Continental Oil Co Process for preparing inorganic dispersions
FR2229861A1 (en) * 1973-05-14 1974-12-13 United Aircraft Corp
EP0013243A1 (en) * 1978-12-27 1980-07-09 Calgon Corporation Residual fuel oil conditioners containing metal salts in aqueous solution and method of improving combustion therewith
FR2610945A1 (en) * 1987-02-17 1988-08-19 Intevep Sa METHOD FOR CONTROLLING THE FORMATION AND EMISSIONS OF SULFUR OXIDE DURING COMBUSTION OF COMBUSTIBLE OIL IN THE FORM OF HYDROCARBON EMULSION IN WATER
US5938855A (en) * 1998-01-20 1999-08-17 General Electric Company Method for cleaning a turbine component

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOLIERE M ET AL: "EGT EXPERIENCE WITH GAS TURBINES BURNING ASH-FORMING FUELS", TECHNICAL REVIEW GEC ALSTHOM,FR,GEC ALSTHOM, PARIS, no. 11, 1993, pages 47 - 61, XP000369823, ISSN: 1148-2893 *

Also Published As

Publication number Publication date
US20030159338A1 (en) 2003-08-28
FR2810341A1 (en) 2001-12-21
CN1271179C (en) 2006-08-23
AU2001274160A1 (en) 2002-01-02
CN1330134A (en) 2002-01-09
FR2810341B1 (en) 2003-03-28
EP1292656A1 (en) 2003-03-19
MA25946A1 (en) 2003-12-31

Similar Documents

Publication Publication Date Title
EP2236585B1 (en) Method of operating a thermal device and use of such a method to inhibit vanadium corrosion
FR3044684A1 (en) VANADI CORROSION INHIBITORS BASED ON YTTRIUM AND MAGNESIUM
US5685917A (en) Method for cleaning cracks and surfaces of airfoils
FR2551463A1 (en) OXIME COMPOSITION AND USE THEREOF FOR TREATING AQUEOUS SYSTEMS TO FIX OXYGEN
FR2672820A1 (en) PROCESS FOR THE IN SITU PRODUCTION OF A SORPTION AGENT OXIDE AEROSOL USED TO REMOVE EFFLUENTS FROM A GASEOUS COMBUSTION CURRENT
FR2571429A1 (en) PROCESS FOR REMOVING THE SOOT DEPOSITED ON AN EXHAUST GAS FILTER OF AN INTERNAL COMBUSTION ENGINE AND ELEMENTS FOR THE EXECUTION OF SAID METHOD
CS276140B6 (en) Aqueous solution of a catalyst for more perfect combustion of carbon- or/and hydrocarbon-containing compounds
WO2001098437A1 (en) Use of nickel compounds as vanadium corrosion inhibitors
JP3712262B2 (en) Operation method of gas turbine with additive
FR3000498A1 (en) COMBUSTIBLE COMPOSITION COMPRISING A HEAVY FUEL AND A PRODUCT FROM THE BIOMASS.
EP2316911B1 (en) Operating method of a thermal device supplied with aluminium- and titanium-based compounds to reduce corrosion and clogging at high temperatures.
EP0270719B1 (en) Process for reducing unburned combustion particles, and agent for carrying out the process
JPS6114198B2 (en)
FR2519645A1 (en) COMPOSITION CONTAINING PEROXIDE AND METHOD FOR SELECTIVE STRIPPING
US20170253821A1 (en) Processes, gas turbine processes, and fuel compositions
KR100664974B1 (en) Combusting Composition of Accelerator for Scale Environmental Contaminant Reduction/Prohibition
FR2637909A1 (en) Combustion additives containing metal derivatives, process for their manufacture and their use
FR3096055A1 (en) Oxidation process in a molten salt bath
US10557099B2 (en) Oil based product for treating vanadium rich oils
BE1008468A4 (en) Method for extracting heavy metals from used oils
FR2672817A1 (en) PROCESS FOR THE IN SITU REMOVAL OF EFFLUENTS FROM A GAS STREAM BY INJECTION OF AN EFFLUENT SORPTION AGENT DOWNSTREAM OF THE COMBUSTION AREA.
JPS58140425A (en) Cleansing method for gas turbine casing and cleansing device thereof
WO2017096334A1 (en) Yttrium and magnesium based vanadium corrosion inhibitors
BE499650A (en)
Stalder et al. Use of chromium containing fuel additive to reduce high temperature corrosion of hot section parts

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001940643

Country of ref document: EP

Ref document number: IN/PCT/2002/1500/KOL

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2001940643

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10311238

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP