WO2001098259A1 - Composes de tetracycline 7-phenyl-substituee - Google Patents

Composes de tetracycline 7-phenyl-substituee Download PDF

Info

Publication number
WO2001098259A1
WO2001098259A1 PCT/US2000/016632 US0016632W WO0198259A1 WO 2001098259 A1 WO2001098259 A1 WO 2001098259A1 US 0016632 W US0016632 W US 0016632W WO 0198259 A1 WO0198259 A1 WO 0198259A1
Authority
WO
WIPO (PCT)
Prior art keywords
sancycline
compound
tetracycline
substituted
group
Prior art date
Application number
PCT/US2000/016632
Other languages
English (en)
Inventor
Mark Nelson
Glen Rennie
Darrell Koza
Original Assignee
Trustees Of Tufts College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trustees Of Tufts College filed Critical Trustees Of Tufts College
Priority to AU2000254942A priority Critical patent/AU2000254942A1/en
Priority to PCT/US2000/016632 priority patent/WO2001098259A1/fr
Priority to US09/882,505 priority patent/US20020132798A1/en
Publication of WO2001098259A1 publication Critical patent/WO2001098259A1/fr
Priority to US10/819,343 priority patent/US20050119235A1/en
Priority to US11/706,111 priority patent/US7521437B2/en
Priority to US12/425,852 priority patent/US7851460B2/en
Priority to US12/967,906 priority patent/US8168810B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/24Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton
    • C07C237/26Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring of the carbon skeleton of a ring being part of a condensed ring system formed by at least four rings, e.g. tetracycline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/65Tetracyclines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • C07C2603/44Naphthacenes; Hydrogenated naphthacenes
    • C07C2603/461,4,4a,5,5a,6,11,12a- Octahydronaphthacenes, e.g. tetracyclines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • New tetracycline analogues have also been investigated which may prove to be equal to or more effective than the originally introduced tetracycline compounds.
  • Examples include U.S. Patent Nos. 3,957,980; 3,674,859; 2,980,584; 2,990,331; 3,062,717; 3,557,280; 4,018,889; 4,024,272; 4,126,680; 3,454,697; and 3,165,531. These patents are representative of the range of pharmaceutically active tetracycline and tetracycline analogue compositions.
  • tetracyclines were found to be highly effective pharmacologically against rickettsiae; a number of gram-positive and gram-negative bacteria; and the agents responsible for lymphogranuloma venereum, inclusion conjunctivitis, and psittacosis.
  • tetracyclines became known as "broad spectrum" antibiotics.
  • the tetracyclines as a class rapidly became widely used for therapeutic purposes.
  • the invention pertains to 7-substituted tetracycline compounds of the formula:
  • R 4 and R 4 are each alkyl
  • R 5 is hydrogen, hydroxyl, or a prodrug moiety
  • R 6 and R 6 are each independently hydrogen, hydroxyl, alkyl, or taken together, alkenyl;
  • R 7 is halo substituted or unsubstituted phenyl; and pharmaceutically acceptable salts
  • R is mono-, di-, or tri- halo substituted phenyl.
  • R 7 is 2- halo substituted phenyl.
  • R 7 is 3- halo substituted phenyl.
  • R is 4- halo substituted phenyl.
  • the invention also pertains to a method for treating a tetracycline responsive state in a mammal, by administering to a mammal a compound of formula I.
  • the invention relates to the use of a compound of formula I to treat a tetracycline responsive state.
  • the invention also pertains to pharmaceutical compositions comprising a compound of formula I, and to the use of a compound of formula I in the manufacture of a medicament to treat a tetracycline responsive state.
  • the invention pertains to 7-substituted tetracycline compounds of the formula:
  • R 4 and R 4 are each alkyl
  • R 5 is hydrogen, hydroxyl, or a prodrug moiety
  • R 6 and R 6' are each independently hydrogen, hydroxyl, alkyl, or taken together, alkenyl;
  • R 7 is halo substituted or unsubstituted phenyl; and pharmaceutically acceptable salts thereof.
  • R 7 is mono-, di-, or tri- halo substituted phenyl.
  • R 7 is 2- halo substituted phenyl.
  • R 7 is 3- halo substituted phenyl.
  • R 7 is 4- halo substituted phenyl.
  • tetracycline compound includes compounds with a similar ring structure to tetracycline, such as those included in formula I.
  • Some examples of tetracycline compounds which can be modified to include a substituent at position 7 include tetracycline, oxytetracycline, demeclocycline, methacycline, sancycline, and doxycycline; however, other derivatives and analogues comprising a similar ring structure are also included.
  • Table 1 depicts tetracycline and several known tetracycline derivatives.
  • 7-substituted tetracycline compounds includes tetracycline compounds with a phenyl substituent at the 7 position.
  • the substituted tetracycline compound is substituted tetracycline (e.g., wherein R 4 and R 4 are methyl, R 5 is hydrogen, R 6 is methyl and R 6 is hydroxyl); substituted doxycycline (e.g., wherein R 4 and R 4 are methyl, R 5 is hydroxyl R 6 is methyl and R 6 is hydrogen); or substituted sancycline (wherein R 4 and R 4 are methyl; R 5 is hydrogen and R 6 and R 6 are hydrogen atoms).
  • the compound is a derivative of tetracycline, sancycline, doxycycline, oxytetracycline, or methacycline.
  • R 5 , R 6 and R 6 are each hydrogen and R 4 and R 4 are each methyl.
  • R 7 is unsubstituted phenyl. Examples of tetracycline compounds with this R 7 substituent include 7-phenyl sancycline and 7,9 diphenyl sancycline.
  • R 7 is halo substituted phenyl.
  • the halo substituent can be, for example, chlorine, fluorine, bromine, or iodine, as well as mono-, di- or tri- halo substituted lower alkyl group, e.g., mono-, di- or tri- halo substituted methyl.
  • the halo substitution of the phenyl substituent enhances the ability of the tetracycline compound to perform its intended function, e.g., treat tetracycline responsive states.
  • R 7 is mono-, di-, or tri- halo substituted phenyl.
  • the 7-substituted tetracycline compound is 7-(2,4-difluorophenyl) sancycline, 7- (2,4-dichlorophenyl) sancycline, 7-(2,4-dibromophenyl) sancycline, or 7-(2,4-diiodophenyl) sancycline.
  • the 7-substituted tetracycline compound is 7-(2,6- difluorophenyl) sancycline, 7-(2,6-dichlorophenyl) sancycline, 7-(2,6-dibromophenyl) sancycline, or 7-(2,6-diiodophenyl) sancycline.
  • R 7 is 2-halo substituted phenyl, e.g., 7-(2-fluorophenyl) sancycline, 7-(2-chlorophenyl) sancycline, 7-(2-bromophenyl) sancycline, or 7-(2-iodophenyl) sancycline.
  • R 7 is 3-halo substituted phenyl, e.g., 7-(3-fluorophenyl) sancycline, 7-(3-chlorophenyl) sancycline, 7-(3-bromophenyl) sancycline, or 7-(3-iodophenyl) sancycline.
  • R 7 is 4-halo substituted phenyl, e.g., 7-(4-fluorophenyl) sancycline, 7-(4-chlorophenyl) sancycline, 7-(4-bromophenyl) sancycline, or 7-(4-iodophenyl) sancycline.
  • R is a mono-, di-, or tri- substituted phenyl where the substituent is a mono-, di- or tri- halo substituted lower alkyl group, e.g., mono-, di- or tri- halo substituted methyl.
  • the compound may be 7-(4-trichloromethylphenyl) sancycline, 7-(4-trifluoromethylphenyl) sancycline, 7-(4-tribromomethylphenyl) sancycline, or 7-(4-triiodomethylphenyl) sancycline.
  • the 7-substituted compounds of the invention can be synthesized by methods known in the art and/or as described herein.
  • Scheme 1 a general synthetic scheme is outlined using a Suzuki coupling of a boronic acid with an iodo tetracycline compound. Although the reaction is shown for sancycline, a similar procedure can be used for other tetracycline compounds. Furthermore, other aryl coupling reactions known in the art may also be used.
  • an iodosancycline compound can be synthesized from unsubstituted sancycline by treating it with at least one equivalent N-iodosuccinimide (NIS) under acidic conditions. The reaction is then quenched, and the resulting 7-iodosancycline can then be purified using standard techniques known in the art. The 7-iodosancycline can then be further reacted with a boronic acid, as shown in Scheme 1. 7-iodosancycline, a palladium catalyst (such as Pd(OAc) 2 ), is dissolved in a solvent and treated with aqueous sodium carbonate, and the boronic acid. The resulting compound can then be purified using techniques known in the art such as preparative HPLC and characterized.
  • NIS N-iodosuccinimide
  • the compounds of the invention can also be synthesized using Stille cross couplings.
  • Stille cross couplings can be performed using an appropriate tin reagent (e.g., R-SnBu ) and a halogenated tetracycline compound, (e.g., 7-iodosancycline).
  • the tin reagent and the iodotetracycline compound can be treated with a palladium catalyst (e.g., Pd(PPh 3 ) 2 Cl or Pd(AsPh 3 ) Cl 2 ) and, optionally, with an additional copper salt, e.g., Cul.
  • the resulting compound can then be purified using techniques known in the art.
  • alkyl includes saturated aliphatic groups, including straight-chain alkyl groups (e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, etc.), branched-chain alkyl groups (isopropyl, tert-butyl, isobutyl, etc.), cycloalkyl (alicyclic) groups (cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl), alkyl substituted cycloalkyl groups, and cycloalkyl substituted alkyl groups.
  • straight-chain alkyl groups e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl,
  • alkyl further includes alkyl groups, which comprise oxygen, nitrogen, sulfur or phosphorous atoms replacing one or more carbons of the hydrocarbon backbone.
  • a straight chain or branched chain alkyl has 6 or fewer carbon atoms in its backbone (e.g., C ⁇ -Cg for straight chain, C3-C6 for branched chain), and more preferably 4 or fewer.
  • preferred cycloalkyls have from 3- 8 carbon atoms in their ring structure, and more preferably have 5 or 6 carbons in the ring structure.
  • C ⁇ -C 6 includes alkyl groups containing 1 to 6 carbon atoms.
  • alkyl includes both "unsubstituted alkyls" and “substituted alkyls”, the latter of which refers to alkyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone.
  • substituents can include, for example, alkyl, alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxy
  • Cycloalkyls can be further substituted, e.g., with the substituents described above.
  • An "alkylaryl” or an “aralkyl” moiety is an alkyl substituted with an aryl (e.g., phenylmethyl
  • alkyl also includes the side chains of natural and unnatural amino acids.
  • aryl includes groups with aromaticity, including 5- and 6-membered single- ring aromatic groups that may include from zero to four heteroatoms as well as multicyclic systems with at least one aromatic ring.
  • aryl groups include benzene, phenyl, pyrrole, furan, thiophene, thiazole, isothiazole, imidazole, triazole, tetrazole, pyrazole, oxazole, isooxazole, pyridine, pyrazine, pyridazine, and pyrimidine, and the like.
  • aryl includes multicyclic aryl groups, e.g., tricyclic, bicyclic, e.g., naphthalene, benzoxazole, benzodioxazole, benzothiazole, benzoimidazole, benzothiophene, methylenedioxyphenyl, quinoline, isoquinoline, napthridine, indole, benzofuran, purine, benzofuran, deazapurine, or indolizine.
  • aryl groups having heteroatoms in the ring structure may also be referred to as “aryl heterocycles", “heterocycles,” “heteroaryls” or “heteroaromatics”.
  • the aromatic ring can be substituted at one or more ring positions with such substituents as described above, as for example, halogen, hydroxyl, alkoxy, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkylaminocarbonyl, aralkylaminocarbonyl, alkenylaminocarbonyl, alkylcarbonyl, arylcarbonyl, aralkylcarbonyl, alkenylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and
  • alkenyl includes unsaturated aliphatic groups analogous in length and possible substitution to the alkyls described above, but that contain at least one double bond.
  • alkenyl includes straight-chain alkenyl groups (e.g., ethenyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, etc.), branched-chain alkenyl groups, cycloalkenyl (alicyclic) groups (cyclopropenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl), alkyl or alkenyl substituted cycloalkenyl groups, and cycloalkyl or cycloalkenyl substituted alkenyl groups.
  • alkenyl includes straight-chain alkenyl groups (e.g., ethenyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, de
  • alkenyl further includes alkenyl groups which include oxygen, nitrogen, sulfur or phosphorous atoms replacing one or more carbons of the hydrocarbon backbone.
  • a straight chain or branched chain alkenyl group has 6 or fewer carbon atoms in its backbone (e.g., C -C 6 for straight chain, C 3 -C 6 for branched chain).
  • cycloalkenyl groups may have from 3-8 carbon atoms in their ring structure, and more preferably have 5 or 6 carbons in the ring structure.
  • C 2 -C 6 includes alkenyl groups containing 2 to 6 carbon atoms.
  • alkenyl includes both "unsubstituted alkenyls" and “substituted alkenyls”, the latter of which refers to alkenyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone.
  • substituents can include, for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate,
  • alkynyl includes straight-chain alkynyl groups (e.g., ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, etc.), branched- chain alkynyl groups, and cycloalkyl or cycloalkenyl substituted alkynyl groups.
  • alkynyl further includes alkynyl groups which include oxygen, nitrogen, sulfur or phosphorous atoms replacing one or more carbons of the hydrocarbon backbone.
  • a straight chain or branched chain alkynyl group has 6 or fewer carbon atoms in its backbone (e.g., C 2 -C 6 for straight chain, C -C 6 for branched chain).
  • C -C 6 includes alkynyl groups containing 2 to 6 carbon atoms.
  • alkynyl includes both "unsubstituted alkynyls" and “substituted alkynyls", the latter of which refers to alkynyl moieties having substituents replacing a hydrogen on one or more carbons of the hydrocarbon backbone.
  • substituents can include, for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate,
  • lower alkyl as used herein means an alkyl group, as defined above, but having from one to five carbon atoms in its backbone structure.
  • Lower alkenyl and “lower alkynyl” have chain lengths of, for example, 2-5 carbon atoms.
  • acyl includes compounds and moieties which contain the acyl radical
  • substituted acyl includes acyl groups where one or more of the hydrogen atoms are replaced by for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido
  • acylamino includes moieties wherein an acyl moiety is bonded to an amino group.
  • the term includes alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido groups.
  • aroyl includes compounds and moieties with an aryl or heteroaromatic moiety bound to a carbonyl group. Examples of aroyl groups include phenylcarboxy, naphthyl carboxy, etc.
  • alkoxyalkyl examples include alkyl groups, as described above, which further include oxygen, nitrogen or sulfur atoms replacing one or more carbons of the hydrocarbon backbone, e.g., oxygen, nitrogen or sulfur atoms.
  • alkoxy includes substituted and unsubstituted alkyl, alkenyl, and alkynyl groups covalently linked to an oxygen atom. Examples of alkoxy groups include methoxy, ethoxy, isopropyloxy, propoxy, butoxy, and pentoxy groups. Examples of substituted alkoxy groups include halogenated alkoxy groups.
  • the alkoxy groups can be substituted with groups such as alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxy
  • amine or “amino” includes compounds where a nitrogen atom is covalently bonded to at least one carbon or heteroatom.
  • alkylamino includes groups and compounds wherein the nitrogen is bound to at least one additional alkyl group.
  • dialkylamino includes groups wherein the nitrogen atom is bound to at least two additional alkyl groups.
  • arylamino and “diarylamino” include groups wherein the nitrogen is bound to at least one or two aryl groups, respectively.
  • alkylarylamino alkylaminoaryl or “arylaminoalkyl” refers to an amino group which is bound to at least one alkyl group and at least one aryl group.
  • alkaminoalkyl refers to an alkyl, alkenyl, or alkynyl group bound to a nitrogen atom which is also bound to an alkyl group.
  • amide or "aminocarboxy” includes compounds or moieties which contain a nitrogen atom which is bound to the carbon of a carbonyl or a thiocarbonyl group.
  • alkaminocarboxy groups which include alkyl, alkenyl, or alkynyl groups bound to an amino group bound to a carboxy group. It includes arylaminocarboxy groups which include aryl or heteroaryl moieties bound to an amino group which is bound to the carbon of a carbonyl or thiocarbonyl group.
  • alkylaminocarboxy include moieties wherein alkyl, alkenyl, alkynyl and aryl moieties, respectively, are bound to a nitrogen atom which is in turn bound to the carbon of a carbonyl group.
  • carbonyl or “carboxy” includes compounds and moieties which contain a carbon connected with a double bond to an oxygen atom.
  • moieties which contain a carbonyl include aldehydes, ketones, carboxylic acids, amides, esters, anhydrides, etc.
  • thiocarbonyl or “thiocarboxy” includes compounds and moieties which contain a carbon connected with a double bond to a sulfur atom.
  • ether includes compounds or moieties which contain an oxygen bonded to two different carbon atoms or heteroatoms.
  • alkoxyalkyl which refers to an alkyl, alkenyl, or alkynyl group covalently bonded to an oxygen atom which is covalently bonded to another alkyl group.
  • esteer includes compounds and moieties which contain a carbon or a heteroatom bound to an oxygen atom which is bonded to the carbon of a carbonyl group.
  • esteer includes alkoxycarboxy groups such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, pentoxycarbonyl, etc.
  • the alkyl, alkenyl, or alkynyl groups are as defined above.
  • thioether includes compounds and moieties which contain a sulfur atom bonded to two different carbon or hetero atoms.
  • examples of thioethers include, but are not limited to alkthioalkyls, alkthioalkenyls, and alkthioalkynyls.
  • alkthioalkyls include compounds with an alkyl, alkenyl, or alkynyl group bonded to a sulfur atom which is bonded to an alkyl group.
  • alkthioalkenyls and alkthioalkynyls refer to compounds or moieties wherein an alkyl, alkenyl, or alkynyl group is bonded to a sulfur atom which is covalently bonded to an alkynyl group.
  • hydroxy or "hydroxyl” includes groups with an -OH or -O " .
  • halogen includes fluorine, bromine, chlorine, iodine, etc.
  • perhalogenated generally refers to a moiety wherein all hydrogens are replaced by halogen atoms.
  • polycyclyl or “polycyclic radical” refer to two or more cyclic rings (e.g., cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or heterocyclyls) in which two or more carbons are common to two adjoining rings. Rings that are joined through non-adjacent atoms are termed "bridged" rings.
  • Each of the rings of the polycycle can be substituted with such substituents as described above, as for example, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, alkylaminocarbonyl, aralkylaminocarbonyl, alkenylaminocarbonyl, alkylcarbonyl, arylcarbonyl, aralkylcarbonyl, alkenylcarbonyl, aminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and urei
  • heteroatom includes atoms of any element other than carbon or hydrogen. Examples of heteroatoms include nitrogen, oxygen, sulfur and phosphorus.
  • the structure of some of the compounds of this invention includes asymmetric carbon atoms. It is to be understood accordingly that the isomers arising from such asymmetry (e.g., all enantiomers and diastereomers) are included within the scope of this invention, unless indicated otherwise. Such isomers can be obtained in substantially pure form by classical separation techniques and by stereochemically controlled synthesis. Furthermore, the structures and other compounds and moieties discussed in this application also include all tautomers thereof.
  • Prodrugs are compounds which are converted in vivo to active forms (see, e.g., R.B. Silverman, 1992, “The Organic Chemistry of Drug Design and Drug Action", Academic Press, Chp. 8). Prodrugs can be used to alter the biodistribution (e.g. , to allow compounds which would not typically enter the reactive site of the protease) or the pharmacokinetics for a particular compound. For example, a hydroxyl group, can be esterified, e.g., with a carboxy lie acid group to yield an ester. When the ester is administered to a subject, the ester is cleaved, enzymatically or non-enzymatically, reductively or hydrolytically, to reveal the hydroxyl group.
  • prodrug moiety includes moieties which can be metabolized in vivo to a hydroxyl group and moieties which may advantageously remain esterified in vivo.
  • the prodrugs moieties are metabolized in vivo by esterases or by other mechanisms to hydroxyl groups or other advantageous groups. Examples of prodrugs and their uses are well known in the art (See, e.g., Berge et al. (1977) "Pharmaceutical Salts", J Pharm. Set 66:1-19).
  • the prodrugs can be prepared in situ during the final isolation and purification of the compounds, or by separately reacting the purified compound in its free acid form or hydroxyl with a suitable esterifying agent.
  • Hydroxyl groups can be converted into esters via treatment with a carboxylic acid.
  • prodrug moieties include substituted and unsubstituted, branch or unbranched lower alkyl ester moieties, (e.g., propionoic acid esters), lower alkenyl esters, di- lower alkyl-amino lower-alkyl esters (e.g., dimethylaminoethyl ester), acylamino lower alkyl esters (e.g., acetyloxymethyl ester), acyloxy lower alkyl esters (e.g., pivaloyloxymethyl ester), aryl esters (phenyl ester), aryl-lower alkyl esters (e.g., benzyl ester), substituted (e.g., with methyl, halo, or methoxy substituents) aryl and aryl-lower alkyl esters, amides, lower-alkyl amides, di
  • Preferred prodrug moieties are propionoic acid esters and acyl esters.
  • the invention also features a method for treating a tetracycline compound responsive state in a subject, by administering to the subject a 7-substituted tetracycline compound of the invention, e.g., a compound of formula I. Preferably, an effective amount of the tetracycline compound is administered.
  • Examples of 7-substituted tetracycline compounds of the invention include 7-phenyl sancycline, 7, 9 diphenyl sancycline, 7-(2 -fluorophenyl) sancycline, 7-(2- chlorophenyl) sancycline, 7-(2-bromophenyl) sancycline, 7-(2-iodophenyl) sancycline, 7-(3- fluorophenyl) sancycline, 7-(3 -chlorophenyl) sancycline, 7-(3-bromophenyl) sancycline, 7-(3- iodophenyl) sancycline, 7-(4-fluorophenyl) sancycline, 7-(4-chlorophenyl) sancycline, 7-(4- bromophenyl) sancycline, 7-(4-iodophenyl
  • tetracycline compound responsive state includes states which can be treated, prevented, or otherwise ameliorated by the administration of a tetracycline compound of the invention.
  • Tetracycline compound responsive states include bacterial infections (including those which are resistant to other tetracycline compounds), cancer, diabetes, and other states for which tetracycline compounds have been found to be active (see, for example, U.S. Patent Nos. 5,789,395; 5,834,450; and 5,532,227).
  • Compounds of the invention can be used to prevent or control important mammalian and veterinary diseases such as diarrhea, urinary tract infections, infections of skin and skin structure, ear, nose and throat infections, wound infection, mastitis and the like.
  • methods for treating neoplasms using tetracycline compounds of the invention are also included (van der Bozert et al., Cancer Res., 48:6686-6690 (1988)).
  • Bacterial infections may be caused by a wide variety of gram positive and gram negative bacteria.
  • the compounds of the invention are useful as antibiotics against organisms which are resistant to other tetracycline compounds.
  • the antibiotic activity of the tetracycline compounds of the invention may be determined using the method discussed in Example 2, or by using the in vitro standard broth dilution method described in Waitz, J.A., National Commission for Clinical Laboratory Standards, Document M7-A2, vol. 10, no. 8, pp. 13-20, 2 nd edition, Villanova, PA (1990).
  • the tetracycline compounds may also be used to treat infections traditionally treated with tetracycline compounds such as, for example, rickettsiae; a number of gram-positive and gram-negative bacteria; and the agents responsible for lymphogranuloma venereum, inclusion conjunctivitis, psittacosis.
  • the tetracycline compounds may be used to treat infections of, e.g., K. pneumoniae, Salmonella, E. hirae, A. baumanii, B. catarrhalis, H. influenzae, P. aeruginosa, E. faecium, E. coli, S. aureus or E. faecalis.
  • the tetracycline compound is used to treat a bacterial infection that is resistant to other tetracycline antibiotic compounds.
  • the tetracycline compound of the invention may be administered with a pharmaceutically acceptable carrier.
  • the language "effective amount" of the compound is that amount necessary or sufficient to treat or prevent a tetracycline compound responsive state.
  • the effective amount can vary depending on such factors as the size and weight of the subject, the type of illness, or the particular tetracycline compound. For example, the choice of the tetracycline compound can affect what constitutes an "effective amount".
  • One of ordinary skill in the art would be able to study the aforementioned factors and make the determination regarding the effective amount of the tetracycline compound without undue experimentation.
  • the invention also pertains to methods of treatment against microorganism infections and associated diseases.
  • the methods include administration of an effective amount of one or more tetracycline compounds to a subject.
  • the subject can be either a plant or, advantageously, an animal, e.g., a mammal, e.g., a human.
  • one or more tetracycline compounds of the invention may be administered alone to a subject, or more typically a compound of the invention will be administered as part of a pharmaceutical composition in mixture with conventional excipient, i.e., pharmaceutically acceptable organic or inorganic carrier substances suitable for parenteral, oral or other desired administration and which do not deleteriously react with the active compounds and are not deleterious to the recipient thereof.
  • conventional excipient i.e., pharmaceutically acceptable organic or inorganic carrier substances suitable for parenteral, oral or other desired administration and which do not deleteriously react with the active compounds and are not deleterious to the recipient thereof.
  • the pharmaceutical composition comprises a 7-substituted tetracycline compound of the invention, e.g., of formula I.
  • the 7- substituted tetracycline compound is 7-phenyl sancycline, 7, 9 diphenyl sancycline, 7-(2- fluorophenyl) sancycline, 7-(2-chlorophenyl) sancycline, 7-(2-bromophenyl) sancycline, 7-(2- iodophenyl) sancycline, 7-(3 -fluorophenyl) sancycline, 7-(3 -chlorophenyl) sancycline, 7-(3- bromophenyl) sancycline, 7-(3-iodophenyl) sancycline, 7-(4-fluorophenyl) sancycline, 7-(4- chlorophenyl)
  • pharmaceutically acceptable carrier includes substances capable of being coadministered with the tetracycline compound(s), and which allow both to perform their intended function, e.g., treat or prevent a tetracycline compound responsive state.
  • Suitable pharmaceutically acceptable carriers include but are not limited to water, salt solutions, alcohol, vegetable oils, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid monoglycerides and diglycerides, petroethral fatty acid esters, hydroxymethyl-cellulose, polyvinylpyrrolidone, etc.
  • the pharmaceutical preparations can be sterilized and if desired mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously react with the active compounds of the invention.
  • auxiliary agents e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously react with the active compounds of the invention.
  • the tetracycline compounds of the invention that are basic in nature are capable of forming a wide variety of salts with various inorganic and organic acids.
  • the acids that may be used to prepare pharmaceutically acceptable acid addition salts of the tetracycline compounds of the invention that are basic in nature are those that form non-toxic acid addition salts, i.e., salts containing pharmaceutically acceptable anions, such as the hydrochloride, hydrobromide, hydroiodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, isonicotinate, acetate, lactate, salicylate, citrate, acid citrate, tartrate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate
  • salts must be pharmaceutically acceptable for administration to a subject, e.g., a mammal
  • the acid addition salts of the base compounds of this invention are readily prepared by treating the base compound with a substantially equivalent amount of the chosen mineral or organic acid in an aqueous solvent medium or in a suitable organic solvent, such as methanol or ethanol. Upon careful evaporation of the solvent, the desired solid salt is readily obtained.
  • the preparation of other tetracycline compounds of the invention not specifically described in the foregoing experimental section can be accomplished using combinations of the reactions described above that will be apparent to those skilled in the art.
  • the tetracycline compounds of the invention that are acidic in nature are capable of forming a wide variety of base salts.
  • the chemical bases that may be used as reagents to prepare pharmaceutically acceptable base salts of those tetracycline compounds of the invention that are acidic in nature are those that form non-toxic base salts with such compounds.
  • Such non-toxic base salts include, but are not limited to those derived from such pharmaceutically acceptable cations such as alkali metal cations (e.g., potassium and sodium) and alkaline earth metal cations (e.g., calcium and magnesium), ammonium or water-soluble amine addition salts such as N-methylglucamine-(meglumine), and the lower alkanolammonium and other base salts of pharmaceutically acceptable organic amines.
  • the pharmaceutically acceptable base addition salts of tetracycline compounds of the invention that are acidic in nature may be formed with pharmaceutically acceptable cations by conventional methods.
  • these salts may be readily prepared by treating the tetracycline compound of the invention with an aqueous solution of the desired pharmaceutically acceptable cation and evaporating the resulting solution to dryness, preferably under reduced pressure.
  • a lower alkyl alcohol solution of the tetracycline compound of the invention may be mixed with an alkoxide of the desired metal and the solution subsequently evaporated to dryness.
  • tetracycline compounds of the invention can be administered via either the oral, parenteral or topical routes.
  • these compounds are most desirably administered in effective dosages, depending upon the weight and condition of the subject being treated and the particular route of administration chosen. Variations may occur depending upon the species of the subject being treated and its individual response to said medicament, as well as on the type of pharmaceutical formulation chosen and the time period and interval at which such administration is carried out.
  • compositions of the invention may be administered alone or in combination with other known compositions for treating tetracycline responsive states in a mammal.
  • Preferred mammals include pets (e.g., cats, dogs, ferrets, etc.), farm animals (cows, sheep, pigs, horses, goats, etc.), lab animals (rats, mice, monkeys, etc.), and primates (chimpanzees, humans, gorillas).
  • the language "in combination with" a known composition is intended to include simultaneous administration of the composition of the invention and the known composition, administration of the composition of the invention first, followed by the known composition and administration of the known composition first, followed by the composition of the invention.
  • any of the therapeutically composition known in the art for treating tetracycline responsive states can be used in the methods of the invention.
  • the compounds of the invention may be administered alone or in combination with pharmaceutically acceptable carriers or diluents by any of the routes previously mentioned, and the administration may be carried out in single or multiple doses.
  • the novel therapeutic agents of this invention can be administered advantageously in a wide variety of different dosage forms, i.e., they may be combined with various pharmaceutically acceptable inert carriers in the form of tablets, capsules, lozenges, troches, hard candies, powders, sprays, creams, salves, suppositories, jellies, gels, pastes, lotions, ointments, aqueous suspensions, injectable solutions, elixirs, syrups, and the like.
  • Such carriers include solid diluents or fillers, sterile aqueous media and various non-toxic organic solvents, etc.
  • oral pharmaceutical compositions can be suitably sweetened and/or flavored.
  • the therapeutically-effective compounds of this invention are present in such dosage forms at concentration levels ranging from about 5.0% to about 70% by weight.
  • tablets containing various excipients such as microcrystalline cellulose, sodium citrate, calcium carbonate, dicalcium phosphate and glycine may be employed along with various disintegrants such as starch (and preferably corn, potato or tapioca starch), alginic acid and certain complex silicates, together with granulation binders like polyvinylpyrrolidone, sucrose, gelatin and acacia.
  • disintegrants such as starch (and preferably corn, potato or tapioca starch), alginic acid and certain complex silicates, together with granulation binders like polyvinylpyrrolidone, sucrose, gelatin and acacia.
  • lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc are often very useful for tabletting purposes.
  • compositions of a similar type may also be employed as fillers in gelatin capsules; preferred materials in this connection also include lactose or milk sugar as well as high molecular weight polyethylene glycols.
  • preferred materials in this connection also include lactose or milk sugar as well as high molecular weight polyethylene glycols.
  • the active ingredient may be combined with various sweetening or flavoring agents, coloring matter or dyes, and, if so desired, emulsifying and/or suspending agents as well, together with such diluents as water, ethanol, propylene glycol, glycerin and various like combinations thereof.
  • solutions of a therapeutic compound of the present invention in either sesame or peanut oil or in aqueous propylene glycol may be employed.
  • the aqueous solutions should be suitably buffered (preferably pH greater than 8) if necessary and the liquid diluent first rendered isotonic.
  • These aqueous solutions are suitable for intravenous injection purposes.
  • the oily solutions are suitable for intraarticular, intramuscular and subcutaneous injection purposes. The preparation of all these solutions under sterile conditions is readily accomplished by standard pharmaceutical techniques well known to those skilled in the art.
  • suitable preparations include solutions, preferably oily or aqueous solutions as well as suspensions, emulsions, or implants, including suppositories.
  • Therapeutic compounds may be formulated in sterile form in multiple or single dose formats such as being dispersed in a fluid carrier such as sterile physiological saline or 5% saline dextrose solutions commonly used with injectables.
  • topical administration examples include transdermal, buccal or sublingual application.
  • therapeutic compounds can be suitably admixed in a pharmacologically inert topical carrier such as a gel, an ointment, a lotion or a cream.
  • topical carriers include water, glycerol, alcohol, propylene glycol, fatty alcohols, triglycerides, fatty acid esters, or mineral oils.
  • topical carriers are liquid petrolatum, isopropylpalmitate, polyethylene glycol, ethanol 95%, polyoxyethylene monolauriate 5% in water, sodium lauryl sulfate 5% in water, and the like.
  • materials such as anti-oxidants, humectants, viscosity stabilizers and the like also may be added if desired.
  • tablets, dragees or capsules having talc and/or carbohydrate carrier binder or the like are particularly suitable, the carrier preferably being lactose and/or corn starch and/or potato starch.
  • a syrup, elixir or the like can be used wherein a sweetened vehicle is employed.
  • Sustained release compositions can be formulated including those wherein the active component is protected with differentially degradable coatings, e.g., by microencapsulation, multiple coatings, etc.
  • the therapeutic methods of the invention also will have significant veterinary applications, e.g.
  • the compounds of the invention may be used to treat non-animal subjects, such as plants. It will be appreciated that the actual preferred amounts of active compounds used in a given therapy will vary according to the specific compound being utilized, the particular compositions formulated, the mode of application, the particular site of administration, etc. Optimal administration rates for a given protocol of administration can be readily ascertained by those skilled in the art using conventional dosage determination tests conducted with regard to the foregoing guidelines.
  • compounds of the invention for treatment can be administered to a subject in dosages used in prior tetracycline therapies. See, for example, the Physicians' Desk Reference.
  • a suitable effective dose of one or more compounds of the invention will be in the range of from 0.01 to 100 milligrams per kilogram of body weight of recipient per day, preferably in the range of from 0.1 to 50 milligrams per kilogram body weight of recipient per day, more preferably in the range of 1 to 20 milligrams per kilogram body weight of recipient per day.
  • the desired dose is suitably administered once daily, or several sub-doses, e.g. 2 to 5 sub-doses, are administered at appropriate intervals through the day, or other appropriate schedule.
  • the medicament may include a pharmaceutically acceptable carrier and the tetracycline compound is an effective amount, e.g., an effective amount to treat a tetracycline responsive state.
  • the invention also pertains to the use of a tetracycline compound of formula I to treat a tetracycline responsive state, e.g., in a subject, e.g., a mammal, e.g., a human.
  • N-iodosuccinimide N-iodosuccinimide
  • the reaction is removed from the ice bath.
  • the mixture analyzed by HPLC or TLC, show the product of D-ring iodotetracyclines.
  • the sulfuric acid was dripped slowly 1 L of ice water and extracted 7 times with 300 mL of n-butanol. The solvent was removed in vacuo to produce a mixture of three products.
  • the 7-iodo regioisomer, 9-regioisomer and 7,9-diiodosancycline derivative of sancycline were purified by preparative HPLC chromatography or by methods known in the art.
  • the solid was dissolved in dimethylformamide and injected onto a preparative HPLC system using C18 reverse-phase silica. The fraction at 19-20 minutes was isolated, and the solvent removed in vacuo to yield the product plus salts. The salts were removed by extraction into 50:25:25 water:butanol:ethyl acetate and dried in vacuo. This solid was dissolved in MeOH and the HCl salt made by bubbling in HCl gas. The solvent was removed to produce the product in 47% yield as a yellow solid.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oncology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Communicable Diseases (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

L'invention concerne des composés de tétracycline 7-phényl-substitutée, des méthodes de traitement de pathologies sensibles à la tétracycline et des compositions pharmaceutiques renfermant lesdits composés de tétracycline 7-phényl-substituée.
PCT/US2000/016632 2000-06-16 2000-06-16 Composes de tetracycline 7-phenyl-substituee WO2001098259A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2000254942A AU2000254942A1 (en) 2000-06-16 2000-06-16 7-phenyl-substituted tetracycline compounds
PCT/US2000/016632 WO2001098259A1 (fr) 2000-06-16 2000-06-16 Composes de tetracycline 7-phenyl-substituee
US09/882,505 US20020132798A1 (en) 2000-06-16 2001-06-15 7-phenyl-substituted tetracycline compounds
US10/819,343 US20050119235A1 (en) 2000-06-16 2004-04-05 7-phenyl-substituted tetracycline compounds
US11/706,111 US7521437B2 (en) 2000-06-16 2007-02-13 7-phenyl-substituted tetracycline compounds
US12/425,852 US7851460B2 (en) 2000-06-16 2009-04-17 7-phenyl-substituted tetracycline compounds
US12/967,906 US8168810B2 (en) 2000-06-16 2010-12-14 7-phenyl-substituted tetracycline compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2000/016632 WO2001098259A1 (fr) 2000-06-16 2000-06-16 Composes de tetracycline 7-phenyl-substituee

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/882,505 Continuation US20020132798A1 (en) 2000-06-16 2001-06-15 7-phenyl-substituted tetracycline compounds
US10/819,343 Continuation US20050119235A1 (en) 2000-06-16 2004-04-05 7-phenyl-substituted tetracycline compounds

Publications (1)

Publication Number Publication Date
WO2001098259A1 true WO2001098259A1 (fr) 2001-12-27

Family

ID=21741497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/016632 WO2001098259A1 (fr) 2000-06-16 2000-06-16 Composes de tetracycline 7-phenyl-substituee

Country Status (2)

Country Link
AU (1) AU2000254942A1 (fr)
WO (1) WO2001098259A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004407A2 (fr) 2000-07-07 2002-01-17 Trustees Of Tufts College Composes de tetracycline substitues en 7
WO2003005971A2 (fr) 2001-07-13 2003-01-23 Paratek Pharmaceuticals, Inc. Composes de tetracycline a activites therapeutiques cibles
JP2005520846A (ja) * 2002-03-21 2005-07-14 パラテック ファーマシューティカルズ インコーポレイテッド 置換されたテトラサイクリン化合物。
EP1562608A2 (fr) * 2002-10-24 2005-08-17 Paratek Pharmaceuticals, Inc. Procedes d'utilisation de composes tetracycline substituee pour moduler l'arn
US7056902B2 (en) 2002-01-08 2006-06-06 Paratek Pharmaceuticals, Inc. 4-dedimethylamino tetracycline compounds
EP1753713A2 (fr) * 2004-05-21 2007-02-21 The President and Fellows of Harvard College Synthese de tetracyclines et d'analogues de tetracyclines
US7763735B2 (en) 2006-10-11 2010-07-27 President And Fellows Of Harvard College Synthesis of enone intermediate
EP2218785A2 (fr) 2006-05-15 2010-08-18 Paratek Pharmaceuticals, Inc. Procédés de régulation de l'expression de gènes ou de produits génétiques utilisant des composés tétracyclines substitués
EP2305637A3 (fr) * 2004-10-25 2011-09-21 Paratek Pharmaceuticals, Inc. Composés de tétracycline substituée
US8486921B2 (en) 2006-04-07 2013-07-16 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
AU2012202559B2 (en) * 2004-05-21 2014-07-17 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US9073829B2 (en) 2009-04-30 2015-07-07 President And Fellows Of Harvard College Synthesis of tetracyclines and intermediates thereto

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOZA ET AL: "Synthesis of 7-Substituted Tetracyclin Derivatives", ORGANIC LETTERS,ACS, WASHINGTON, DC,US, vol. 2, no. 6, 1 March 2000 (2000-03-01), pages 815 - 817, XP000943852, ISSN: 1523-7060 *

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818635B2 (en) 2000-07-07 2004-11-16 Paratek Pharmaceuticals, Inc. 7-substituted tetracycline compounds
WO2002004407A3 (fr) * 2000-07-07 2002-04-04 Tufts College Composes de tetracycline substitues en 7
WO2002004407A2 (fr) 2000-07-07 2002-01-17 Trustees Of Tufts College Composes de tetracycline substitues en 7
EP2332548A1 (fr) 2001-07-13 2011-06-15 Paratek Pharmaceuticals, Inc. Tetracyclines pour le traitement des accidents cérebrovasculaires
EP2332547A1 (fr) 2001-07-13 2011-06-15 Paratek Pharmaceuticals, Inc. Tetracyclines pour le traitement de la maladie inflammatoire des selles
EP2329826A1 (fr) 2001-07-13 2011-06-08 Paratek Pharmaceuticals, Inc. Tetracyclines pour le traitement de la sclérose en plaques
EP2327409A1 (fr) 2001-07-13 2011-06-01 Paratek Pharmaceuticals, Inc. Tetracycline avec activité pharmacéutique
EP2329828A1 (fr) 2001-07-13 2011-06-08 Paratek Pharmaceuticals, Inc. Tetracyclines pour le traitement de l'ischémie
WO2003005971A2 (fr) 2001-07-13 2003-01-23 Paratek Pharmaceuticals, Inc. Composes de tetracycline a activites therapeutiques cibles
EP2301915A1 (fr) 2001-07-13 2011-03-30 Paratek Pharmaceuticals, Inc. Tétracycline avec groupe 7-(diethylamino)methyl doté d'activités thérapeutiques
EP2301550A1 (fr) 2001-07-13 2011-03-30 Paratek Pharmaceuticals, Inc. Composés de tétracycline dotés d'activités thérapeutiques
EP2332550A1 (fr) 2001-07-13 2011-06-15 Paratek Pharmaceuticals, Inc. Composés de tétracycline pour le traitement des maladies neurodégénératives
EP2332549A1 (fr) 2001-07-13 2011-06-15 Paratek Pharmaceuticals, Inc. Nouvelle tetracyclines et leur utilisation en médicine
EP2332546A1 (fr) 2001-07-13 2011-06-15 Paratek Pharmaceuticals, Inc. Tetracyclines pour le traitement des accidents cérebrovasculaires
US7056902B2 (en) 2002-01-08 2006-06-06 Paratek Pharmaceuticals, Inc. 4-dedimethylamino tetracycline compounds
JP2010090138A (ja) * 2002-03-21 2010-04-22 Paratek Pharmaceuticals Inc 置換されたテトラサイクリン化合物。
JP2005520846A (ja) * 2002-03-21 2005-07-14 パラテック ファーマシューティカルズ インコーポレイテッド 置換されたテトラサイクリン化合物。
EP1562608A4 (fr) * 2002-10-24 2010-09-01 Paratek Pharm Innc Procedes d'utilisation de composes tetracycline substituee pour moduler l'arn
EP1562608A2 (fr) * 2002-10-24 2005-08-17 Paratek Pharmaceuticals, Inc. Procedes d'utilisation de composes tetracycline substituee pour moduler l'arn
EP1753713A2 (fr) * 2004-05-21 2007-02-21 The President and Fellows of Harvard College Synthese de tetracyclines et d'analogues de tetracyclines
US9884830B2 (en) 2004-05-21 2018-02-06 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US7807842B2 (en) 2004-05-21 2010-10-05 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US10669244B2 (en) 2004-05-21 2020-06-02 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US11192866B2 (en) 2004-05-21 2021-12-07 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US8598148B2 (en) 2004-05-21 2013-12-03 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
AU2005244988B2 (en) * 2004-05-21 2012-02-02 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
US9365493B2 (en) 2004-05-21 2016-06-14 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
AU2005244988C1 (en) * 2004-05-21 2012-06-28 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
AU2012202559B2 (en) * 2004-05-21 2014-07-17 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
EP1753713A4 (fr) * 2004-05-21 2009-07-08 Harvard College Synthese de tetracyclines et d'analogues de tetracyclines
EP2305637A3 (fr) * 2004-10-25 2011-09-21 Paratek Pharmaceuticals, Inc. Composés de tétracycline substituée
US8486921B2 (en) 2006-04-07 2013-07-16 President And Fellows Of Harvard College Synthesis of tetracyclines and analogues thereof
EP2537934A2 (fr) 2006-05-15 2012-12-26 Paratek Pharmaceuticals, Inc. Procédés de régulation de lýexpression des gènes ou produits génétiques utilisant des composés tétracyclines substitués
EP2431469A2 (fr) 2006-05-15 2012-03-21 Paratek Pharmaceuticals, Inc. Procédés de régulation de l'expression des gènes ou produits génétiques utilisant des composés tétracyclines substitués
EP2218785A2 (fr) 2006-05-15 2010-08-18 Paratek Pharmaceuticals, Inc. Procédés de régulation de l'expression de gènes ou de produits génétiques utilisant des composés tétracyclines substitués
US8580969B2 (en) 2006-10-11 2013-11-12 President And Fellows Of Harvard College Synthesis of enone intermediate
US8293920B2 (en) 2006-10-11 2012-10-23 President And Fellows Of Harvard College Synthesis of enone intermediate
US8907104B2 (en) 2006-10-11 2014-12-09 President And Fellows Of Harvard College Synthesis of enone intermediate
US7960559B2 (en) 2006-10-11 2011-06-14 President And Fellows Of Harvard College Synthesis of enone intermediate
US7763735B2 (en) 2006-10-11 2010-07-27 President And Fellows Of Harvard College Synthesis of enone intermediate
US9073829B2 (en) 2009-04-30 2015-07-07 President And Fellows Of Harvard College Synthesis of tetracyclines and intermediates thereto
US9688644B2 (en) 2009-04-30 2017-06-27 President And Fellows Of Harvard College Synthesis of Tetracyclines and intermediates thereto

Also Published As

Publication number Publication date
AU2000254942A1 (en) 2002-01-02

Similar Documents

Publication Publication Date Title
US7521437B2 (en) 7-phenyl-substituted tetracycline compounds
US8288570B2 (en) 7-iodo tetracyclines and related methods
US8119622B2 (en) 7-phenyl-substituted tetracycline compounds
US8012951B2 (en) 7-N-substituted phenyl tetracycline compounds
US20020128237A1 (en) 7-N-substituted phenyl tetracycline compounds
EP1303479A2 (fr) Composes de tetracycline substitues en 7, 8 et 9
WO2001098259A1 (fr) Composes de tetracycline 7-phenyl-substituee
WO2001098260A1 (fr) Composes de phenyl tetracycline 7-n-substituee
WO2002012170A1 (fr) Composes de tetracycline substitues en 8
EP2204361B1 (fr) Composés méthacycline substitués en position 13
EP1426369A1 (fr) Composés tétracycline substitués en 7 par cycle condensé

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP