WO2001096738A1 - Wave energy converter - Google Patents
Wave energy converter Download PDFInfo
- Publication number
- WO2001096738A1 WO2001096738A1 PCT/IE2001/000082 IE0100082W WO0196738A1 WO 2001096738 A1 WO2001096738 A1 WO 2001096738A1 IE 0100082 W IE0100082 W IE 0100082W WO 0196738 A1 WO0196738 A1 WO 0196738A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- submerged
- wave
- devices
- liquid
- float
- Prior art date
Links
- 230000033001 locomotion Effects 0.000 claims abstract description 35
- 230000000694 effects Effects 0.000 claims abstract description 12
- 238000006243 chemical reaction Methods 0.000 claims abstract description 11
- 230000004044 response Effects 0.000 claims abstract description 5
- 238000012546 transfer Methods 0.000 claims abstract description 4
- 239000007788 liquid Substances 0.000 claims description 23
- 230000010355 oscillation Effects 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 238000012423 maintenance Methods 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 claims description 2
- 239000000523 sample Substances 0.000 claims description 2
- 239000006096 absorbing agent Substances 0.000 description 20
- 238000013461 design Methods 0.000 description 11
- 238000007667 floating Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 6
- 238000003491 array Methods 0.000 description 5
- 230000010363 phase shift Effects 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 241000237988 Patellidae Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 235000012206 bottled water Nutrition 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000006386 memory function Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/44—Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/12—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
- F03B13/14—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
- F03B13/16—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
- F03B13/20—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" wherein both members, i.e. wom and rem are movable relative to the sea bed or shore
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/44—Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
- B63B2035/4433—Floating structures carrying electric power plants
- B63B2035/4466—Floating structures carrying electric power plants for converting water energy into electric energy, e.g. from tidal flows, waves or currents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
Definitions
- the invention relates to a point absorber wave energy converter, preferably comprising two or more heaving buoys floating on the surface each rigidly linked to one or more deeply suspended vessels or bodies, the relative movement between the two bodies being utilised to generate energy.
- wave or wave motion refers to both waves on a surface of a liquid and swell in a body of liquid
- the size of the wave energy resource The potential of wave energy has been recognised for many years.
- the size of this resource has been estimated to be 219 gigawatts along the coasts of the European Union, or more than 180 terawatt hours each year.
- the offshore resource is greater than
- Wave energy is lost by friction with the sea bottom as the sea becomes shallow (water depths of half a wavelength or less). This is most pronounced where wavelengths tend to be long, as off the NW coast of Europe. On or close to the shore the availability of this already attenuated resource is greatly diminished by the lack of physically suitable sites and restrictions imposed by planning controls. Development of wave energy converters.
- the wave energy resource may be split into three broad categories, based on where the energy from waves may be recovered:
- Wave Energy Converters may also be classified in different ways according to their operating principle and the ways in which they react with waves. In terms of practical application, only a very few types of device are presently, or in the recent past have been, in use or under test..
- OWC devices are typically those where the wave is confined in a vertical tube or a larger chamber and, as it surges back and forth, drives air through a power conversion device typically an air-turbine.
- Megawatt-scale OWC devices are now at an advanced stage of development.
- a similar but slightly smaller device, the LIMPET has been installed on the cliff face of ay in Scotland. These two installations would seem to be the best-developed and perfected WEC systems of this size currently available. It is, however, unlikely that any one such installation will have an installed capacity greater than two megawatts and the number of suitable sites has to be extremely limited.
- the present invention relates to an apparatus that may be of at least a comparable size, and capable of being deployed offshore and in large arrays. It is of a class of WECs known as Point Absorbers.
- Point absorbers are usually axi-symmetric about a vertical axis, and by definition their dimensions are small with respect to the wavelength of the predominant wave.
- the devices usually operate in a vertical mode, often referred to as 'heave'.
- a surface-piercing float rises and falls with the passing waves and reacts against the seabed or a taut mooring. As such they are capable of absorbing energy arising from changes in the surface level rather than from forward motion of breaking seas.
- the theoretical limit for the energy that can be absorbed by a single isolated, heaving, axi- symmetrical point absorber has been shown to depend on the wavelength of the incident waves rather than the cross sectional area of the device, i.e. from the wavelength divided by 2 ⁇ .
- the wavelength is a critically important criterion, resulting in the attraction of locating the point absorber devices well outside the region of breaking waves, an where they will be open to long wavelength ocean swell or 'heave'.
- Point absorbers may react against the seabed (therefore necessarily sited in relatively shallow water, usually near-shore), or be floating and react against the inherent inertia of one of its components.
- Small-scale practical point absorbers such as fog horns and navigation buoys, both of which may incorporate OWCs, have been in use for many years. Typically these have a power of a few hundred watts. Self -reacting heaving buoy point absorbers.
- a second variation of the heaving buoy principle is described in an international patent application, WO 97/41349.
- a single heaving buoy reacts against a column of water trapped in a cylinder suspended vertically below and open at either end, by means of a wide piston moving reciprocally within the cylinder.
- the column of water moved by the piston acts as an inertial mass; this arrangement is known as an accelerator tube.
- Similar technology is known and described in US -A- 4, 773, 221.
- heaving buoy In these illustrative examples and all such self-reacting heaving buoy systems, there are essentially three basic components: a heaving buoy on the surface, some form of reaction device suspended below (an inertial plate, accelerator tube, etc.) and a load resistance or power take-off placed between them.
- a further development in self-reacting point absorbers incorporates a three-body point absorber comprising a surface float, a submerged variable buoyancy and an inertial mass. Such a device is known and described in our corresponding international application WO 99/28623. Such a device does not provide an optimum transfer of energy from the passing waves to the converter.
- the invention provides a wave energy conversion apparatus for harnessing energy from wave motion comprising: at least two devices, each device comprising a surface float and/or at least one submerged body below the surface, linkages between the at least two devices, and wherein the at least two devices are adapted to move relative to one another in response to passing waves or swell in the body of liquid, and which relative movement between the at least two devices may be harnessed by the linkages between the at least two vessels or devices.
- each of at least two devices comprises a surface float rigidly connected to at least one submerged body below the surface float.
- the movement between the at least two devices preferably effects an energy generation which is harnessed by the linkages.
- rigidly connected is meant that the connection between the surface float and the at least one submerged body is sufficiently rigid to transmit tension and compression forces.
- the at least one submerged body is preferably submerged at a depth below the surface that is a significant fraction of the length of the prevailing wavelengths of wave or swell in the body of liquid.
- the at least one submerged body is preferably adapted to entrap volumes of the surrounding liquid or may alternatively or also in part entrap or contain airspaces or buoyancy devices.
- the surface floats are preferably of a size and weight sufficient to ensure that they remain partially submerged in the water under normal wave or swell conditions.
- surface float a surface-piercing body normally at least partially submerged, wherein at least part of the float normally pierces or projects above the level of the fluid in which the float is present.
- normal conditions conditions that are typical for prevailing weather conditions and wave/swell size in the area of deployment of the apparatus.
- each device comprising a surface float, submerged body or vessel and entrapped liquid has an overall mass, virtual mass and dimensions such that it will either tend to have a natural frequency of oscillation along its vertical axis that is close to the dominant frequency of the surface wave or have a means to alter its natural frequency to match that of the prevailing wave climate.
- virtual mass minimal gravitational weight and refers to a body that provides high hydrodynamic ballast or inertial mass with which there will be 'added mass' associated with its movement through the fluid.
- This desirably may be an enclosed vessel entrapping the liquid in which it is immersed, or alternatively a partially enclosed vessel or a submerged horizontal flat plate.
- the virtual mass is intended to provide a resistance to the acceleration of the rigidly linked surface float. It would preferably be smooth and streamlined to reduce drag and may enclose buoyancy to minimise gravitational weight.
- the apparatus may additionally comprise adjustment means by which the entrapped volume of the submerged vessels may be adjusted by, for example, adjusting the volume of liquid entrapped in the submerged vessel(s).
- the linkages are adapted to operate a power take off system which may typically be hydraulic and driving an electric alternator.
- the linkages are preferably arranged to allow several degrees of freedom of movement, and thus to collect additional power from relative movements arising from pitching and rolling as well as from vertical heave.
- the apparatus includes tuning and control systems linked to probes or detectors or an operating console either onboard and/or remote from the at least two devices.
- the apparatus may additionally comprise latching and/or phase control means adapted to assist and optimise the oscillation, amplitude and relative motion of linked devices in varying or heavy sea conditions. This may be effected by using hydraulics or air springs to freeze or temporarily dampen the movements of the devices and or to return power to the apparatus at certain stages in the cycle.
- the apparatus may also include mooring systems that maintain the complete apparatus in a position that is consistent with statutory requirements and not significantly inhibit its efficient operation.
- linked devices may also have elastic links or chains or shock absorbers or similar adaptations to absorb excessive relative movements in heave or surge or pitch that may be caused by breaking seas in storm conditions; such elastic links or chains would normally be slack and may be weighted.
- Figure 1 is a schematic showing the principle of operation of an apparatus of the present invention under wave conditions, with the floats and associated submerged bodies oscillating out of phase with one another,
- Figure 2 is a schematic showing one possible arrangement suitable for adjusting the virtual mass of the submerged body of the device of the present invention
- Figure 3 is a perspective view of a practical embodiment of the present invention
- Figure 4 is a side view of the embodiment illustrated in Figure 3
- Figure 5 is a plan section along the line A-A of Figure 4,
- Figure 6 is a schematic showing a possible arrangement for the power take-off linkages, illustrating possible degrees of freedom in x, y, z and one of rotation
- Figure 7 is a schematic illustrating a power take off circuit for use with the present invention
- Figure 8 is a schematic illustrating an alternative embodiment of the apparatus of the present invention equating to a conventional point absorber but incorporating a virtual mass.
- Figure 1 and 2 show an apparatus 1 for harnessing energy from waves or swell in a body of liquid 2 in accordance with one embodiment of the present invention. It comprises two devices: an inner device 3, and an outer device 4. Both the inner and outer devices comprise surface floats 5, 6 rigidly connected by means of stiff rods 7, 8 or other suitable means, to respective submerged bodies 9, 10 below the surface.
- the surface floats 5, 6, may preferably incorporate watertight bulkheads.
- the submerged bodies 9, 10 are preferably adapted to entrap volumes of the surrounding liquid or may alternatively or also in part entrap or contain airspace's or buoyancy devices.
- the submerged bodies 9, 10 may be considered to have a virtual mass: by the term virtual mass is meant minimal gravitational weight and refers to a body that provides inertial mass and hydrodynamic ballast or added mass. This may preferably be an enclosed vessel, but also suitably a partially enclosed vessel or a submerged horizontal flat plate or some combination of these.
- the virtual mass is intended to provide a resistance to the acceleration of the linked surface float.
- each device comprising surface float, submerged body or vessel(s) and entrapped liquid is such that each will tend to have a natural frequency of oscillation along its vertical axis that is close to the lower end of the range of frequencies that corresponds to the bulk of the passing wave energy.
- the actual frequency of oscillation of the linked devices may be increased above their natural frequency by means of phase control systems, for example by hydraulic means, so that the apparatus tends to move in phase with the immediate wave climate.
- the natural frequencies of the two linked devices may be further adjusted by altering the amount of the respective virtual mass (i.e. inertial mass and added mass) to which each is attached.
- These virtual masses resist the acceleration and hence rate of response of the linked floating body to the driving forces caused by the passing wave in both rising and sinking motions.
- the amount of difference may typically be a quarter of the frequency of the dominant wave.
- the submerged bodies 9, 10 may additionally comprise adjustment means by which the inertial mass of the submerged vessels may be adjusted by, for example, adjusting the volume of liquid entrapped in the submerged vessel(s).
- the submerged body may include a cylindrical compartment 13 running the length of the submerged vessel, but sealed off from the remaining portion of the sealed vessel. When open at both ends the cylindrical compartment will "hold" no liquid, and as such can be considered to have no inertial mass.
- a valve 14 which may be at the top and/ or bottom of the cylindrical vessel or above by means of a narrow bore extension open to the atmosphere via surface float it is possible to vary the entrapped mass contained within the compartment 13.
- the submerged body may have a plurality or none of such compartments contained therein. This method of adjustment can have the additional benefit of adjusting the added mass associated with the submerged body by effectively altering its cross-sectional area in the direction of the heaving movement.
- Figures 3 to 5 are illustrations of a practical embodiment of the apparatus illustrated in Figure 1 except that the power take off linkages and covering superstructures are omitted, and a sea-bed 100 is included for reference purposes. The same reference numerals will be used for similar components.
- Figure 3 includes a person 14 identified for scale purposes. Due to the large dimensions of the apparatus and the typical deployment in ocean conditions it may additionally comprise navigation lights and radar reflectors 15 to identify it to shipping
- the outer device comprises a float 6 linkable to four submerged bodies 10, which in this embodiment are arranged concentrically about a submerged body 9 which is part of the inner device 5.
- Figure 6 is a schematic of a view of an apparatus of the present invention above the surface of the sea.
- the inner 5 and outer 6 surface floats are evident, as are the power take off linkages 12, maintaining the communication between the inner and outer devices 3, 4.
- the linkages 12 incorporate hydraulic cylinders 30 and are connectable to a central shaft 31 rigidly connected to the inner oscillating unit.
- This arrangement of pistons will allow three degrees of freedom of movement between the two oscillating devices 5, 6; power may be collected, via movements in the hydraulic cylinders 30, from pitching and rolling as well as from vertical heaving.
- a further degree of freedom is allowed by the pistons being connected to the central shaft 31 via a rotatable collar member 20, which is adapted to allow the outer device to rotate completely about the inner device.
- the hydraulic linkages 12 of the present invention are typically of the type known in the art as heave compensators or double acting actuators.
- the incorporation of such actuators into a power take-off arrangement is illustrated in Figure 7, which describes a system for the conversion of the relative movement of the two devices into electricity. It will be appreciated by those skilled in the art that this power take-off arrangement is illustrative of the type that may be used and is not intended to restrict the invention to such an arrangement.
- two or more actuators 30 are mechanically linked to a pressurised hydraulic accumulator or reservoir 41, and the movement of pistons 42 through the actuator drives fluid from the reservoir 41 through flow turbines 33 to drive a hydraulic gear pump 34. This in turn is adapted to power an electric alternator 35.
- a flow computer 36 or other suitable arrangement, it is possible to control the generation of power from the actuators 30.
- Figure 8 illustrates an alternative embodiment that corresponds to a single point absorber with a moving float 43 reacting against a deeply submerged virtual mass 44.
- the apparatus of the present invention preferably derives its power from the relative motion of the two (or more) devices 3, 4 each comprising a float of fixed buoyancy 5, 6 on the surface 11 of the liquid 2 rigidly connected to one or more deeply submerged rigid vessels 9, 10.
- Each surface float 5,6 tends to act as a heaving buoy as surface waves pass under it and its vertical rising and sinking movements are impeded by it being rigidly connected to one or more deeply submerged vessels 9, 10 of substantial virtual mass.
- Each combination of surface float plus attached submerged vessel, as a vertically floating structure, will have its own natural frequency of oscillation along its vertical axis and which can be adjusted by appropriate design and control; each device being stable about a vertical position.
- (c) a diffraction force (c) a diffraction force.
- the latter two act to reduce the magnitude of the excitation force.
- the effect of the dynamic component is proportional to the volume of the submerged body 9, 10 and the submerged part of the surface float; because this effect diminishes with depth it is desirable therefore to place the submerged body 9, 10 at a depth sufficient to optimise design and efficiency of operation.
- the diffraction force is a function of the added mass of the submerged part of the surface float 5, 6 . Therefore, in ideal situations, it is desirable to minimise the draught of the submerged float 5, 6, i.e. to minimise the dead weight of each combination of float plus submerged vessel.
- the device as a whole will typically also lose energy because of:
- the negative effect of (d) and (e) may be minimised by appropriate hydrodynamic design; the effect is (f) is, desirably small with respect to the main excitation forces and is in turn minimised by good design and small overall aspect to lateral forces from wind and wave action and currents. Slack or buoyed reduced weight moorings may be appropriate.
- the natural frequency along the vertical axis of each combination of float and submerged vessel(s) may be designed to be close to that of the dominant wave frequency, thus providing the best chance for resonance to occur in the absence of a phase control system.
- the control systems may be optimised to enable the oscillations of the apparatus to be adjusted to match the prevailing wave period so that resonance may occur over a range of wave periods. In order to effect this, it will be necessary to design the basic apparatus such that its natural frequency will be higher (or its period shorter) than that of the majority of the waves; the control systems may then be used to slow this frequency, so that the phase velocity of the apparatus and that of the wave are matched and that the amplitude of oscillation tends towards an optimum for maximum useful power for the conditions.
- phase control and or latching will enable useful power to be recovered and efficient performance maintained even though the amplitude of oscillation would otherwise exceed the design limits of the hydraulics ('stroke out').
- An apparatus designed to have a natural frequency at the lower end of a selected range of wave periods and substantially less that the most common period means that that apparatus will be smaller than one designed to match the most common period.
- a wave prediction model may be incorporated in the software as will a memory function and data logging.
- the control system parameters may be altered remotely, including adjustments based on historical performance, weather forecasts, remotely sensed data, and storm alerts.
- the relative motion of the two devices 3, 4 each comprising surface float 5, 6 and submerged vessel(s) 9, 10 and a phase control system may be adjusted to be close to a resonance condition over a selected range of wave periods.
- the magnitude of oscillation tends to a maximum close to resonance; the preferred embodiment of the device takes advantage of the rapid change in phase shift close to resonance when adjusting parameters of the oscillating bodies.
- phase shift between a pair of linked devices may be exploited as a source of power by means of some suitable system of mechanical links or by electrical induction. It is to be noted that the amplitude of the relative motion between the two devices is at all times less than the amplitude that might be expected from a single device either following a wave or in resonance with a series of -waves. This feature greatly reduces the incidence of amplitude exceeding the design limits of the hydraulic cylinders ('stroke out') and facilitates the use of hydraulic cylinders of shorter stroke and hence lower capital costs.
- the apparatus comprises a single surface-piercing float and a deeply suspended virtual mass Jinked by means of the power take-off similar to that already described.
- the amount of power that may be recovered from the passing waves may approach the theoretical limit for a simple point absorber, i.e. from the wavelength divided by 2 ⁇ .
- a feature of this present invention facilitates the design of a simple and low-cost apparatus with a large installed capacity well matched to long-wave length and powerful ocean swell and suitable for offshore conditions.
- This embodiment has the additional advantage of allowing a greater amount of power to be absorbed from the pitching and lateral motion of the surface float as it is not inhibited by rigid attachment to a deeply suspended vessel.
- said means for converting resulting forces or changes in forces in the apparatus to useful energy may be selected from one or more of the following: (a) a hydraulic system
- said means for converting said forces or changing forces in the apparatus converts said change to an output device which is selected from one or more of the following: (a) an electricity generating device
- the output device preferably generates power in a cyclical manner and the apparatus may optionally further comprise means whereby power can be taken out of the system during one part of a cycle and put back into the system during another part of the cycle
- the combination of two or more converters in an array will provide opportunity to share costs associated with the power take off systems and also improvements in the continuity and supply of power.
- hydraulic cylinder, accumulator and motor generator may be accommodated in an 'engine room', preferentially capable of being detached for maintenance purposes.
- the device in any marine embodiment, is intended to be located away from the shoreline and outside the zone of impacting breaking waves. This will result in a more constant generation of power than other devices.
- the floating vessels 5, 6 will preferably be hermetically sealed, partitioned internally, and will have minimal resistance to breaking seas or very large waves. It may readily be designed such that exceptionally steep waves or breaking seas will pass over it, a form of hydrostatic clipping.
- the apparatus of the present invention utilises simple and robust components and systems. As such it is possible to maximise availability and simplify maintenance of deployed power conversion devices, which may deployed singularly or in large arrays.
- These arrays may be arrays of individually moored wave energy converters, which is typically the preferred arrangement for seas with predominantly long wavelengths.
- the oscillating unit of float and rigidly linked submerged virtual mass may be deployed in a floating and rigid open framework of adjoining cells, an arrangement that may suit shallower and more sheltered seas with generally shorter wavelengths. Such arrangements in arrays may allow the sharing of a common functionality between several devices.
- the devices are designed be independent of tidal changes in mean sea levels, have minimum dependence on wave direction, and maximise the return from long wavelength ocean swell.
- the combination of surface float and large deeply suspended virtual mass may be tuned to the prevailing wave climate, facilitating resonance across a range of wave periods, an important property if maximum power absorption is to be achieved.
- the use of hydraulic power take-off systems facilitates the incorporation of suitable forms of phase control.
- This solution is unlike any previously described self-reacting heaving buoy point absorber in two ways, m it incorporates a relatively very large inertial and associated added mass as a single virtual mass to react against, and secondly a it is preferably a combination of two oscillators that may be differentially tuned to allow maximum phase shift in all of which power is taken off from their relative movement. .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
- Optical Head (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
Claims
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002412724A CA2412724C (en) | 2000-06-16 | 2001-06-14 | Wave energy converter |
AT01940948T ATE275239T1 (en) | 2000-06-16 | 2001-06-14 | OCEAN WAVE ENERGY CONVERTER |
US10/311,091 US6857266B2 (en) | 2000-06-16 | 2001-06-14 | Wave energy converter |
DK01940948T DK1295031T3 (en) | 2000-06-16 | 2001-06-14 | Wave energy converter |
NZ523182A NZ523182A (en) | 2000-06-16 | 2001-06-14 | Wave energy converter |
EP01940948A EP1295031B1 (en) | 2000-06-16 | 2001-06-14 | Wave energy converter |
DE60105298T DE60105298T2 (en) | 2000-06-16 | 2001-06-14 | SEA wave transducer |
AU74434/01A AU780985B2 (en) | 2000-06-16 | 2001-06-14 | Wave energy converter |
NO20026006A NO324789B1 (en) | 2000-06-16 | 2002-12-13 | Wave energy converter |
US11/033,732 US7581901B2 (en) | 2000-06-16 | 2005-01-11 | Wave energy converter |
AU2005203089A AU2005203089B2 (en) | 2000-06-16 | 2005-07-15 | Wave energy converter |
US12/537,822 US7909536B2 (en) | 2000-06-16 | 2009-08-07 | Wave energy converter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IES2000/0493 | 2000-06-16 | ||
IE20000493A IES20000493A2 (en) | 2000-06-16 | 2000-06-16 | Wave energy converter |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10311091 A-371-Of-International | 2001-06-14 | ||
US11/033,732 Continuation US7581901B2 (en) | 2000-06-16 | 2005-01-11 | Wave energy converter |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001096738A1 true WO2001096738A1 (en) | 2001-12-20 |
Family
ID=46750579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IE2001/000082 WO2001096738A1 (en) | 2000-06-16 | 2001-06-14 | Wave energy converter |
Country Status (14)
Country | Link |
---|---|
US (3) | US6857266B2 (en) |
EP (2) | EP1295031B1 (en) |
AT (2) | ATE311533T1 (en) |
AU (1) | AU780985B2 (en) |
CA (3) | CA2412724C (en) |
DE (2) | DE60115509T2 (en) |
DK (2) | DK1295031T3 (en) |
ES (2) | ES2250940T3 (en) |
IE (1) | IES20000493A2 (en) |
NO (1) | NO324789B1 (en) |
NZ (2) | NZ542609A (en) |
PE (1) | PE20020204A1 (en) |
PT (1) | PT1295031E (en) |
WO (1) | WO2001096738A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005085632A1 (en) | 2004-02-05 | 2005-09-15 | Ocean Power Technologies, Inc. | Improved wave energy converter (wec) device and system |
WO2006108602A2 (en) * | 2005-04-11 | 2006-10-19 | Werner Westphal | Power plant |
ES2319156A1 (en) * | 2008-08-20 | 2009-05-04 | Manuel PINILLA MARTIN | Generator of energy from the seas (Machine-translation by Google Translate, not legally binding) |
US20100207392A1 (en) * | 2009-02-02 | 2010-08-19 | Bender Andrew L | Ocean wave-powered electric generator |
EP2238342A2 (en) * | 2007-12-31 | 2010-10-13 | Seanergy Electric Ltd. | Methods and apparatus for energy production |
EP2256337A1 (en) | 2008-01-14 | 2010-12-01 | Single Buoy Moorings Inc. | Wave energy generator |
WO2010086133A3 (en) * | 2009-01-29 | 2011-03-24 | Bärtle, Manfred | Device for converting the wave energy of water into mechanical and/or electrical energy |
EP2320068A1 (en) * | 2009-11-09 | 2011-05-11 | New Ecology V.O.F. | Device for converting wave energy into electrical energy |
US8778176B2 (en) | 2012-07-05 | 2014-07-15 | Murtech, Inc. | Modular sand filtration—anchor system and wave energy water desalination system incorporating the same |
US8784653B2 (en) | 2012-07-05 | 2014-07-22 | Murtech, Inc. | Modular sand filtration-anchor system and wave energy water desalinization system incorporating the same |
US8866321B2 (en) | 2012-09-28 | 2014-10-21 | Murtech, Inc. | Articulated-raft/rotary-vane pump generator system |
US9334860B2 (en) | 2014-07-11 | 2016-05-10 | Murtech, Inc. | Remotely reconfigurable high pressure fluid passive control system for controlling bi-directional piston pumps as active sources of high pressure fluid, as inactive rigid structural members or as isolated free motion devices |
US9702334B2 (en) | 2015-03-16 | 2017-07-11 | Murtech, Inc. | Hinge system for an articulated wave energy conversion system |
US10155678B2 (en) | 2012-07-05 | 2018-12-18 | Murtech, Inc. | Damping plate sand filtration system and wave energy water desalination system and methods of using potable water produced by wave energy desalination |
US10359023B2 (en) | 2017-01-18 | 2019-07-23 | Murtech, Inc. | Articulating wave energy conversion system using a compound lever-arm barge |
Families Citing this family (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2170029B1 (en) * | 2000-12-11 | 2003-11-01 | Molina Jose Antonio Serrano | ENERGY GENERATION SYSTEM FROM THE WAVES OF THE SEA. |
US7140180B2 (en) * | 2003-01-22 | 2006-11-28 | Ocean Power Technologies, Inc. | Wave energy converter (WEC) device and system |
NO322609B1 (en) * | 2003-06-23 | 2006-10-30 | Fobox As | Bolgekraftverk. |
GB2408075A (en) * | 2003-10-16 | 2005-05-18 | Univ Manchester | Device for utilising wave energy |
GB0325433D0 (en) * | 2003-10-31 | 2003-12-03 | Embley Energy Ltd | A mechanism to increase the efficiency of machines designed to abstract energy from oscillating fluids |
US7184363B2 (en) * | 2004-02-02 | 2007-02-27 | Northrop Grumman Corporation | Buoyant container with wave generated power production |
GB2411928B (en) * | 2004-03-08 | 2006-09-27 | Orecon Ltd | Wave energy device |
AU2005223056B2 (en) * | 2004-03-16 | 2011-06-23 | Ocean Power Technologies, Inc. | Wave energy converters (WECs) with linear electric generators (LEGs). |
NO320518B1 (en) * | 2004-09-13 | 2005-12-12 | Power Vision As | Bolgekraftverk |
GB0423368D0 (en) * | 2004-10-21 | 2004-11-24 | Embley Energy Ltd | Floating wave energy point absorbers-tuning facilities to enable wide band response from incident waves |
US7565596B2 (en) * | 2005-09-09 | 2009-07-21 | Searete Llc | Data recovery systems |
GB2434620B (en) * | 2006-01-28 | 2007-12-12 | John Charlton Gaunt | Off-shore wave-power machines |
ES2446928T3 (en) * | 2006-02-27 | 2014-03-10 | Ocean Power Technologies, Inc. | Anchorage of WEC type buoy assemblies |
WO2007137426A1 (en) * | 2006-05-30 | 2007-12-06 | Syncwave Energy Inc. | Wave energy converter |
NO329688B1 (en) * | 2006-06-01 | 2010-11-29 | Nat Oilwell Norway As | Lift system device |
US8858149B2 (en) * | 2006-06-01 | 2014-10-14 | David Murray Munson, Jr. | Remote docking port |
US8123579B2 (en) * | 2006-10-03 | 2012-02-28 | Ocean Power Technologies, Inc. | Protection of apparatus for capturing wave energy |
NZ551485A (en) * | 2006-11-21 | 2009-06-26 | Ind Res Ltd | Wave energy converter |
WO2008065684A1 (en) | 2006-11-28 | 2008-06-05 | 40South Energy Limited | A completely submerged wave energy converter |
BRPI0622188A2 (en) * | 2006-12-06 | 2012-01-03 | Diez Jose Antonio Ruiz | wave energy recovery device |
US7459802B2 (en) * | 2006-12-15 | 2008-12-02 | Navatek, Ltd. | Marine wave energy conversion system |
EP2134960B1 (en) * | 2007-04-18 | 2016-12-07 | Seabased AB | A wave power unit, a buoy, use of a wave power unit and a method for producing electric energy |
EP1983190A1 (en) | 2007-04-18 | 2008-10-22 | Technology for Ideas | Damper and damping structure for a wave energy conversion device |
US7896576B2 (en) * | 2007-04-25 | 2011-03-01 | Single Buoy Moorings, Inc. | Enhanced wave power generators |
ES2324082B1 (en) * | 2007-09-07 | 2010-05-26 | Antonio Font Llines | "SYSTEM OF USE OF THE ENERGY OF THE MARITIME WAVES FOR THEIR TRANSFORMATION IN ELECTRICAL ENERGY". |
US9016055B2 (en) | 2007-09-13 | 2015-04-28 | Mile Dragic | System for conversion of wave energy into electrical energy |
US20090175686A1 (en) * | 2008-01-09 | 2009-07-09 | Torsten Kruger | Fluid injection deflector shield viewing apparatus and method |
GB0802291D0 (en) * | 2008-02-07 | 2008-03-12 | Pure Marine Gen Ltd | Wave energy conversion apparatus |
DE102008011141B4 (en) | 2008-02-26 | 2010-02-18 | Hydac System Gmbh | Energy conversion device |
GB2459112B (en) * | 2008-04-10 | 2010-04-07 | Wavebob Ltd | A power take off system for harnessing wave energy |
GB0811280D0 (en) * | 2008-06-19 | 2008-07-30 | Wavebob Ltd | A power take off system for harnessing wave energy |
US8183708B2 (en) * | 2008-07-25 | 2012-05-22 | Carl Stanley Reiff | Open ocean wave energy converter with isolated stabilization floats |
US8004103B2 (en) * | 2008-10-30 | 2011-08-23 | Jeremy Brantingham | Power generation |
WO2010104565A2 (en) * | 2009-03-09 | 2010-09-16 | Natural Power Concepts, Inc. | System and method for generating electricity using grid of wind and water energy capture devices |
US8035243B1 (en) | 2009-03-24 | 2011-10-11 | Matter Wave Technologies, LLC. | System to obtain energy from water waves |
US8671675B2 (en) * | 2009-03-26 | 2014-03-18 | Nguyen Huu Cuong | Wave powered electric generator system |
GB2465642B (en) | 2009-05-13 | 2010-11-10 | Wavebob Ltd | A wave energy conversion system |
KR101133674B1 (en) * | 2009-08-07 | 2012-04-12 | 한국전력공사 | Variable liquid-column oscillator using wave energy |
US20110057448A1 (en) * | 2009-09-08 | 2011-03-10 | Joseph Page | Wave energy converters |
JP5308317B2 (en) * | 2009-11-30 | 2013-10-09 | 三菱重工業株式会社 | Wave power generator |
PT2527641E (en) | 2010-01-21 | 2014-01-30 | Inigo Echenique Gordillo | Balance wave-energy electricity generation system |
FR2956879B1 (en) * | 2010-02-26 | 2012-05-18 | Diez Jose Antonio Ruiz | IMPROVED DEVICE FOR RECOVERING THE ENERGY OF THE WAVE |
GB2480337B (en) * | 2010-05-13 | 2012-10-10 | Wavebob Ltd | A wave energy converter |
JP6101203B2 (en) * | 2010-07-19 | 2017-03-22 | ドラギッチ,ミレ | Ocean wave power plant |
WO2012026883A2 (en) * | 2010-08-23 | 2012-03-01 | Hann-Ocean Technology Pte Ltd | A modular system for implementation of solar, wind, wave, and/or current energy convertors |
EP2466118A1 (en) | 2010-12-15 | 2012-06-20 | Fundacion Inasmet | Power take-off device for wave energy transformation |
US8899036B2 (en) * | 2010-12-29 | 2014-12-02 | Yuriy Cherepashenets | Advanced high energy wave power module |
MX2011001074A (en) * | 2011-01-28 | 2012-07-27 | Maremotrices De En Renovables S A De C V | System for converting wave impact into energy using piezoelectric and other means. |
GB201103009D0 (en) | 2011-02-22 | 2011-04-06 | Albatern Ltd | Wave energy absorber |
WO2012127015A1 (en) | 2011-03-22 | 2012-09-27 | Technology From Ideas Limited | A mooring component having a smooth stress-strain response to high loads |
GB201104843D0 (en) * | 2011-03-23 | 2011-05-04 | Crowley Michael D | Wave energy conversion |
CN102478418B (en) * | 2011-04-29 | 2014-12-03 | 国家大容量第一计量站 | Novel method for measuring liquid level by combining laser interference technology and free-state floater |
MX2011004900A (en) * | 2011-05-09 | 2012-11-21 | Maremotrices De En Renovables S A De C V | System for converting wave impact into energy using piezoelectric, hydraulic, magnetic and other means. |
DE102011111219A1 (en) | 2011-08-20 | 2013-02-21 | Hydac System Gmbh | Energy conversion device for power plants and method for operating a device of this type |
WO2013029012A1 (en) * | 2011-08-25 | 2013-02-28 | Resolute Marine Energy, Inc. | Optimized control of multiple-pto wave-energy converters |
GB2494188B (en) | 2011-09-02 | 2014-07-02 | Wavebob Ltd | A wave energy conversion system |
US9127640B2 (en) | 2011-09-02 | 2015-09-08 | Rohrer Technologies, Inc. | Multi-capture mode wave energy converter with submergible float |
US8614520B2 (en) | 2011-11-05 | 2013-12-24 | Rohrer Technologies, Inc. | Submergable sloped absorption barrier wave energy converter |
EP2786012B1 (en) | 2011-11-30 | 2017-09-20 | Jospa Limited | Wave energy converters with enhanced tilting |
US9689281B2 (en) | 2011-12-22 | 2017-06-27 | Nanjing Tica Air-Conditioning Co., Ltd. | Hermetic motor cooling for high temperature organic Rankine cycle system |
EP2657511A1 (en) * | 2012-04-24 | 2013-10-30 | Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO | Water wave energy converter |
US9863395B2 (en) | 2012-05-08 | 2018-01-09 | Rohrer Technologies, Inc. | Wave energy converter with concurrent multi-directional energy absorption |
WO2014004699A1 (en) | 2012-06-26 | 2014-01-03 | Oscilla Power Inc. | Magnetostrictive wave energy harvester with heave plate |
CN103538705B (en) * | 2012-07-18 | 2015-11-18 | 浙江海洋学院 | A kind of stage apparatus that can be used for big kohoona generating |
US8723353B1 (en) | 2012-11-21 | 2014-05-13 | Barrie Franklin | Wave energy converter design incorporating an induction generator |
DE102013201716B4 (en) * | 2013-02-01 | 2015-06-03 | Sinn Power Gmbh | LINEAR GENERATOR AND LINEAR DRIVE |
ES2422459A1 (en) * | 2013-06-20 | 2013-09-11 | Univ Madrid Politecnica | Floating device for the use of wave energy, modular and adaptive (Machine-translation by Google Translate, not legally binding) |
US9140231B1 (en) * | 2013-10-07 | 2015-09-22 | Sandia Corporation | Controller for a wave energy converter |
WO2015109304A2 (en) | 2014-01-20 | 2015-07-23 | Fait Mitchell | Underwater utility line |
GB2522695A (en) | 2014-02-03 | 2015-08-05 | Bruce Gregory | Dynamic tuning of wave energy converters using inertial traps |
US9726143B2 (en) * | 2014-04-07 | 2017-08-08 | University Of Manitoba | Ocean wave energy harvesting with a piezoelectric coupled buoy |
WO2016014947A2 (en) | 2014-07-24 | 2016-01-28 | Oscilla Power Inc. | Method for deploying and recovering a wave energy converter |
JP5926428B2 (en) * | 2014-08-12 | 2016-05-25 | 西浦 信一 | Power generation system and reciprocating mechanism for power generation system |
WO2016064890A1 (en) * | 2014-10-20 | 2016-04-28 | Fait Mitchell | A buoy for obtaining energy from a wave in a body of water |
BE1023072A1 (en) * | 2015-04-14 | 2016-11-16 | Louis Stevens | System of storage and electric power generation in marine environment |
SE539972C2 (en) * | 2015-06-08 | 2018-02-13 | W4P Waves4Power Ab | Wave energy converter with differential cylinder |
CN104963805B (en) * | 2015-06-15 | 2017-10-13 | 山东科技大学 | A kind of parallel float ocean power generating device |
CN105857532B (en) * | 2015-07-06 | 2018-04-06 | 周剑辉 | General offshore platform and its buoyancy adjustment method and stable electric generation method |
SE539195C2 (en) | 2015-08-10 | 2017-05-09 | W4P Waves4Power Ab | Wave energy converter including piston rod with float body |
GB2544724A (en) * | 2015-10-30 | 2017-05-31 | Quoceant Ltd | Extendable and stowable volume for wave energy converters and other applications |
SE540263C2 (en) * | 2016-06-13 | 2018-05-15 | Novige Ab | Apparatus for harvesting energy from waves |
US10415537B2 (en) * | 2016-12-09 | 2019-09-17 | National Technology & Engineering Solutions Of Sandia, Llc | Model predictive control of parametric excited pitch-surge modes in wave energy converters |
US10344736B2 (en) * | 2016-12-09 | 2019-07-09 | National Technology & Engineering Solution of Sandia, LLC | Pseudo-spectral method to control three-degree-of-freedom wave energy converters |
FR3060667B1 (en) * | 2016-12-19 | 2019-05-24 | Pierre Lazare Amiel | SEMI-SUBMERSIBLE FLOATING COLUMN FOR SUPPORTING EQUIPMENT FOR RECOVERING AND TRANSFORMING THE ENERGY POTENTIAL OF THE HOOD AND METHOD FOR CONTROLLING SUCH A COLUMN |
US20200070383A1 (en) * | 2017-05-27 | 2020-03-05 | Daniel William Place | Additively manufactured object fabrication vessel |
CN108087188B (en) * | 2017-12-19 | 2024-01-09 | 中国华能集团清洁能源技术研究院有限公司 | Point floating type wave energy power generation device with variable float area |
WO2019164624A1 (en) * | 2018-01-23 | 2019-08-29 | Aquaring Energy, Inc. | Wave-energy converter systems and methods related thereto |
US10047717B1 (en) * | 2018-02-05 | 2018-08-14 | Energystics, Ltd. | Linear faraday induction generator for the generation of electrical power from ocean wave kinetic energy and arrangements thereof |
US10920739B2 (en) | 2018-04-16 | 2021-02-16 | Moosa Nematollahi Saein | Wave-power system |
US11802537B2 (en) | 2018-08-13 | 2023-10-31 | International Business Machines Corporation | Methods and systems for wave energy generation prediction and optimization |
CN109854434B (en) * | 2019-03-22 | 2024-01-09 | 上海交通大学 | Self-adaptive bistable float type wave energy power generation device and power generation method |
CN110761244B (en) * | 2019-11-28 | 2024-09-17 | 交通运输部天津水运工程科学研究所 | Floating breakwater with anti-rolling function |
US11004324B1 (en) * | 2020-07-24 | 2021-05-11 | Jet Rocafort of America, Inc. | Pool alarm |
US20230279831A1 (en) * | 2021-07-29 | 2023-09-07 | Narayan R. Iyer | System and method of capturing and storing ocean wave motion using an alternating-to-direct motion converter and liftable weights |
CN114278492B (en) * | 2021-12-21 | 2022-11-11 | 北科创新(深圳)科技有限公司 | Tidal energy and wave energy combined power generation device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4203294A (en) * | 1977-03-22 | 1980-05-20 | Kjell Budal | System for the conversion of sea wave energy |
DE4113410A1 (en) * | 1991-04-20 | 1992-10-22 | Immo Berg | Hydroelectric power generation system - uses wave-generating elements, connected to mechanical energy-generating device in water current, to produce electricity |
WO1999022137A1 (en) * | 1996-04-29 | 1999-05-06 | Ips Interproject Service Ab | Wave energy converter |
WO1999028623A1 (en) * | 1997-12-03 | 1999-06-10 | William Dick | A wave energy converter |
WO2000008334A1 (en) * | 1998-07-24 | 2000-02-17 | Ottersen Hans Olav | Double phased wind-wave motor |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3126830A (en) * | 1964-03-31 | dilliner | ||
US3569725A (en) * | 1970-02-09 | 1971-03-09 | Us Navy | Wave-actuated power generator-buoy |
US4076463A (en) * | 1976-10-26 | 1978-02-28 | Mordechai Welczer | Wave motor |
EP0001730A1 (en) * | 1977-10-14 | 1979-05-02 | Gabriel Ferone | Plant for utilizing oceanic energy |
JPS56146076A (en) * | 1980-04-14 | 1981-11-13 | Univ Osaka | Wave energy conversion apparatus |
US4883411A (en) * | 1988-09-01 | 1989-11-28 | Windle Tom J | Wave powered pumping apparatus and method |
DK0664855T3 (en) * | 1992-10-09 | 1997-10-27 | Torger Tveter | Bending-based wave power plant |
US5710464A (en) * | 1996-01-17 | 1998-01-20 | Kao; I. Nan | Power drive system for converting natural potential energy into a driving power to drive a power generator |
US5842838A (en) * | 1996-11-04 | 1998-12-01 | Berg; John L. | Stable wave motor |
-
2000
- 2000-06-16 IE IE20000493A patent/IES20000493A2/en not_active IP Right Cessation
-
2001
- 2001-06-14 AT AT04009715T patent/ATE311533T1/en not_active IP Right Cessation
- 2001-06-14 ES ES04009715T patent/ES2250940T3/en not_active Expired - Lifetime
- 2001-06-14 CA CA002412724A patent/CA2412724C/en not_active Expired - Fee Related
- 2001-06-14 DK DK01940948T patent/DK1295031T3/en active
- 2001-06-14 PT PT01940948T patent/PT1295031E/en unknown
- 2001-06-14 WO PCT/IE2001/000082 patent/WO2001096738A1/en active IP Right Grant
- 2001-06-14 AU AU74434/01A patent/AU780985B2/en not_active Ceased
- 2001-06-14 NZ NZ542609A patent/NZ542609A/en not_active IP Right Cessation
- 2001-06-14 AT AT01940948T patent/ATE275239T1/en not_active IP Right Cessation
- 2001-06-14 EP EP01940948A patent/EP1295031B1/en not_active Expired - Lifetime
- 2001-06-14 DK DK04009715T patent/DK1439306T3/en active
- 2001-06-14 CA CA2646547A patent/CA2646547C/en not_active Expired - Fee Related
- 2001-06-14 CA CA002566928A patent/CA2566928C/en not_active Expired - Fee Related
- 2001-06-14 DE DE60115509T patent/DE60115509T2/en not_active Expired - Lifetime
- 2001-06-14 NZ NZ523182A patent/NZ523182A/en unknown
- 2001-06-14 DE DE60105298T patent/DE60105298T2/en not_active Expired - Lifetime
- 2001-06-14 US US10/311,091 patent/US6857266B2/en not_active Expired - Fee Related
- 2001-06-14 ES ES01940948T patent/ES2225556T3/en not_active Expired - Lifetime
- 2001-06-14 EP EP04009715A patent/EP1439306B1/en not_active Expired - Lifetime
- 2001-06-15 PE PE2001000580A patent/PE20020204A1/en not_active Application Discontinuation
-
2002
- 2002-12-13 NO NO20026006A patent/NO324789B1/en not_active IP Right Cessation
-
2005
- 2005-01-11 US US11/033,732 patent/US7581901B2/en not_active Expired - Fee Related
-
2009
- 2009-08-07 US US12/537,822 patent/US7909536B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4203294A (en) * | 1977-03-22 | 1980-05-20 | Kjell Budal | System for the conversion of sea wave energy |
DE4113410A1 (en) * | 1991-04-20 | 1992-10-22 | Immo Berg | Hydroelectric power generation system - uses wave-generating elements, connected to mechanical energy-generating device in water current, to produce electricity |
WO1999022137A1 (en) * | 1996-04-29 | 1999-05-06 | Ips Interproject Service Ab | Wave energy converter |
WO1999028623A1 (en) * | 1997-12-03 | 1999-06-10 | William Dick | A wave energy converter |
WO2000008334A1 (en) * | 1998-07-24 | 2000-02-17 | Ottersen Hans Olav | Double phased wind-wave motor |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1718864A1 (en) * | 2004-02-05 | 2006-11-08 | Ocean Power Technologies, Inc. | Improved wave energy converter (wec) device and system |
WO2005085632A1 (en) | 2004-02-05 | 2005-09-15 | Ocean Power Technologies, Inc. | Improved wave energy converter (wec) device and system |
EP1718864A4 (en) * | 2004-02-05 | 2011-12-07 | Ocean Power Technologies Inc | Improved wave energy converter (wec) device and system |
WO2006108602A2 (en) * | 2005-04-11 | 2006-10-19 | Werner Westphal | Power plant |
WO2006108602A3 (en) * | 2005-04-11 | 2007-02-22 | Werner Westphal | Power plant |
EP2238342A4 (en) * | 2007-12-31 | 2011-05-25 | Seanergy Electric Ltd | Methods and apparatus for energy production |
EP2238342A2 (en) * | 2007-12-31 | 2010-10-13 | Seanergy Electric Ltd. | Methods and apparatus for energy production |
US8421259B2 (en) | 2008-01-14 | 2013-04-16 | Single Buoy Moorings Inc. | Wave energy absorber |
EP2256337A1 (en) | 2008-01-14 | 2010-12-01 | Single Buoy Moorings Inc. | Wave energy generator |
ES2319156A1 (en) * | 2008-08-20 | 2009-05-04 | Manuel PINILLA MARTIN | Generator of energy from the seas (Machine-translation by Google Translate, not legally binding) |
WO2010086133A3 (en) * | 2009-01-29 | 2011-03-24 | Bärtle, Manfred | Device for converting the wave energy of water into mechanical and/or electrical energy |
US20100207392A1 (en) * | 2009-02-02 | 2010-08-19 | Bender Andrew L | Ocean wave-powered electric generator |
US8686583B2 (en) * | 2009-02-02 | 2014-04-01 | Andrew L. Bender | Ocean wave-powered electric generator |
EP2320068A1 (en) * | 2009-11-09 | 2011-05-11 | New Ecology V.O.F. | Device for converting wave energy into electrical energy |
US10029927B2 (en) | 2012-07-05 | 2018-07-24 | Murtech, Inc. | Modular sand filtration-anchor system and wave energy water desalination system and methods of using potable water produced by wave energy desalination |
US8778176B2 (en) | 2012-07-05 | 2014-07-15 | Murtech, Inc. | Modular sand filtration—anchor system and wave energy water desalination system incorporating the same |
US8784653B2 (en) | 2012-07-05 | 2014-07-22 | Murtech, Inc. | Modular sand filtration-anchor system and wave energy water desalinization system incorporating the same |
US10766793B2 (en) | 2012-07-05 | 2020-09-08 | Murtech, Inc. | Damping plate sand filtration system and wave energy water desalination system and methods of using potable water produced by wave energy desalination |
US10155678B2 (en) | 2012-07-05 | 2018-12-18 | Murtech, Inc. | Damping plate sand filtration system and wave energy water desalination system and methods of using potable water produced by wave energy desalination |
US8866321B2 (en) | 2012-09-28 | 2014-10-21 | Murtech, Inc. | Articulated-raft/rotary-vane pump generator system |
US9845800B2 (en) | 2014-07-11 | 2017-12-19 | Murtech, Inc. | Remotely reconfigurable high pressure fluid passive control system for controlling bi-directional piston pumps as active sources of high pressure fluid, as inactive rigid structural members or as isolated free motion devices |
US10030645B2 (en) | 2014-07-11 | 2018-07-24 | Murtech, Inc. | Remotely reconfigurable high pressure fluid passive control system for controlling bi-directional piston pumps as active sources of high pressure fluid, as inactive rigid structural members or as isolated free motion devices |
US9587635B2 (en) | 2014-07-11 | 2017-03-07 | Murtech, Inc. | Remotely reconfigurable high pressure fluid passive control system for controlling bi-directional piston pumps as active sources of high pressure fluid, as inactive rigid structural members or as isolated free motion devices |
US9334860B2 (en) | 2014-07-11 | 2016-05-10 | Murtech, Inc. | Remotely reconfigurable high pressure fluid passive control system for controlling bi-directional piston pumps as active sources of high pressure fluid, as inactive rigid structural members or as isolated free motion devices |
US9702334B2 (en) | 2015-03-16 | 2017-07-11 | Murtech, Inc. | Hinge system for an articulated wave energy conversion system |
US10508640B2 (en) | 2015-03-16 | 2019-12-17 | Murtech, Inc. | Hinge system for an articulated wave energy conversion system |
US10359023B2 (en) | 2017-01-18 | 2019-07-23 | Murtech, Inc. | Articulating wave energy conversion system using a compound lever-arm barge |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1439306B1 (en) | Wave energy converter | |
EP1036274B1 (en) | A wave energy converter | |
EP2321526B1 (en) | Wave powered generator | |
US20130009402A1 (en) | Wave-energy converter | |
CA2749291A1 (en) | Method and apparatus for converting ocean wave energy into electricity | |
AU2008243086B2 (en) | Wave energy converter | |
Whittaker et al. | Nearshore oscillating wave surge converters and | |
IES81178B2 (en) | A wave energy converter | |
Watts et al. | Ocean Wave Energy Conversion Devices Popular Today | |
GB2459352A (en) | Wave powered with fluid moving in chamber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2412724 Country of ref document: CA Ref document number: 10311091 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 74434/01 Country of ref document: AU Ref document number: 523182 Country of ref document: NZ |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001940948 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001940948 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 2001940948 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWG | Wipo information: grant in national office |
Ref document number: 74434/01 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 523182 Country of ref document: NZ |