IES81178B2 - A wave energy converter - Google Patents

A wave energy converter

Info

Publication number
IES81178B2
IES81178B2 IES981011A IES81178B2 IE S81178 B2 IES81178 B2 IE S81178B2 IE S981011 A IES981011 A IE S981011A IE S81178 B2 IES81178 B2 IE S81178B2
Authority
IE
Ireland
Prior art keywords
buoyancy
variable
buoyant member
variable buoyancy
liquid
Prior art date
Application number
Inventor
William Dick
Original Assignee
William Dick
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by William Dick filed Critical William Dick
Priority to IE981011 priority Critical patent/IES81178B2/en
Publication of IES981011A2 publication Critical patent/IES981011A2/en
Publication of IES81178B2 publication Critical patent/IES81178B2/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

A Wave Energy Converter The invention relates to a point absorber wave energy converter, comprising in part an underwater device which derives power from buoyancy variations arising from changes in pressure caused by waves and/or changes in the level on the surface above and which reacts against either the bottom or a second vessel floating on the surface above.
Background Quest for economic sources of renewable energy The oil crisis in the early 1970's was the impetus for much of the pioneering work into wave energy conversion. A lack of practical solutions or reasonable prospects of efficient and robust technologies, plus declining oil prices, led to a general disenchantment. Research continued at a few largely academic centres and over the past twenty-five years a great deal has been learnt. Both theoretical understanding of sea waves and technical expertise in related marine engineering has gained immeasurably from the offshore oil and gas industries during the same period. Growing concern with global climate change has led to an increased sense of urgency in the quest for commercially viable renewable energy sources.
The size of the wave energy resource The theoretical potential of wave energy has been recognised for many years. The size of this resource has been estimated to be 219 gigawatts along the coats of the European Union, or more than 180 terawatt hours each year. The wave power off the west coasts of Ireland and Scotland, where the winter resource is approximately twice that available during summer months, ranks with the highest levels per kilometre in the World.
Wave energy is lost by friction with the sea bottom as the sea becomes shallow (water depths of half a wavelength or less). This is most pronounced where wavelengths tend to be long, as off the NW coast of Europe.
Development of wave energy converters.
Research and development into wave energy converters (WECs) over the past twenty-five years, plus the knowledge and practical experience gained from the off-shore oil and gas industries, has now reached a stage where robust and effective wave energy converters with installed capacities of one megawatt and greater are being developed.
The wave energy resource may be split into three broad categories, based on where the energy from waves may be recovered: 1. in the open sea, i.e. offshore 2. on or close to the shore line, i.e. on-shore or inshore 3. outside the normal area of breaking waves but not in the deep ocean, i.e. near shore.
A fourth category, not generally considered in the context of wave energy converters, but which may be of relevance to this present invention, is waves or surges in a liquid contained in vessels and tanks.
The very large number of devices and concepts proposed to date has been classified and described in summary form for the Engineering Committee on Oceanic Resources by the Working Group on Wave Energy Conversion (ECOR draft report, April 1998). This follows a similar classification based on the intended location, i.e. offshore, near shore to off-shore, and on-shore.
Wave Energy Converters (WECs) may also be classified in different ways according to their operating principle and the ways in which they react with waves. In terms of practical application, only a very few types of device are presently, or in the recent past have been, in use or under test in European waters.
By way of illustration, two different but overlapping classes will be briefly commented on: the Oscillating Water Column (OWC) devices and Point Absorbers, the latter being the relevant class in the present context.
OWC devices are typically those where the wave is confined in a vertical tube or a larger chamber and, as it surges back and forth, drives air through a power conversion device. Megawatt-scale OWC devices are now at an advanced stage of development. One such device, being built in a rocky gully on the western shore of Pico in the Azores, is a reinforced concrete chamber partly open at one side to the waves, and with two turbines above and behind through which the confined air is forced. These are specially developed Wells turbines (one with variable blade pitch) and on the whole would seem to be the best-developed and perfected conversion system available today. It is, however, unlikely that any one such installation will have an installed capacity greater than two megawatts and the number of suitable sites has to be extremely limited.
Point absorbers may react against the seabed (therefore necessarily sited nearshore), or be floating and self-reacting. Theoretical analysis has greatly increased our understanding of point absorbers.
Point absorbers are usually axi-symmetric about a vertical axis, and by definition their dimensions are small with respect to the wavelength of the predominant wave. The devices usually operate in a vertical mode, often referred to as 'heave'. As such they are capable of absorbing energy arising from changes in the surface level rather than from forward motion of breaking seas. The theoretical limit for the energy that can be absorbed by an isolated, heaving, axi-symmetrical device has been shown to depend on the wavelength of the incident waves rather than the cross section of the device, i.e. from the wavelength divided by 2π. Thus the wavelength is a critically important criterion, resulting in the attraction of locating the point absorber devices well outside the region of breaking waves, and where they will be open to long wavelength ocean swell or ‘heave’. A point absorber device may react against the inherent inertia of one of its components, or against the bottom of the sea. Thus, point absorbers may be deployed near-shore in contact with the sea-bed or, in the case of self-reacting devices, near-shore or off-shore.
Small-scale practical point absorbers such as fog horns and navigation buoys, both of which may incorporate OWCs, have been in use for decades. Typically these have a power of a few hundred watts.
One new point absorber device, now claimed to be capable of generating of the order of a megawatt, is described in International Application WO 95/17555. This is based on the buoyancy variations of a submerged, partly air filled, rigid vessel open at the bottom. Initially the device is floating with neutral buoyancy at a certain depth. If a wave passes above it the pressure around this vessel increases and water will flow into the vessel, displacing the air or gas inside (which is free to flow to a large reservoir or to similar devices linked by pipelines), decreasing the air volume in it and hence its buoyancy. The upthrust experienced has decreased in proportion to the volume of water displaced, i.e. Archimedes’ principle. The partially filled vessel will start to sink. When a trough passes above it the reverse process occurs, and the vessel tends to rise to recover its rest position. The size of the forces exerted will depend on the extent of the water surface within the vessel, the amplitude of the wave and the frequency of waves. WO 95/17555 describes the wave energy transformer in terms of two similar containers, horizontally displaced, such that the gas displaced from one container passes to the second. Essentially the gas, being free to move between two or more similar devices remains under constant pressure, as required by the depth below the surface.
International Application WO 95/17555 as described, and its subsequent developments is a heavily engineered device, one that will not readily flex with the lateral movements of water as found below waves, it is not independent of the seabed and is not independent of tidal changes in mean sea level. The base or centre of the device is fixed in its position with respect to the seabed.
A common problem with existing devices designed to harvest significant amounts of energy from the sea is their complexity and cost. They are predominantly large structures, with rigid components, placed in a harsh environment. There is little use of well-proven components. Most devices proposed are very demanding in terms of engineering design, deployment and maintenance.
Object of the Invention It is an object of this present invention to provide an improved device for extracting energy from sea waves or a swell in a body of liquid.
Summary of the invention Accordingly the invention provides: an apparatus for harnessing energy from waves or swell in a body of liquid comprising: a buoyant member of variable buoyancy for holding a substantially constant mass of gas in an at least partially submerged position in the body of liquid such that as the volume of the substantially constant mass of gas changes with changes of pressure on said buoyant member caused by wave motion or swelling of the liquid body, a change in buoyancy of the variable body results; and a means for converting forces or changes in forces resulting from said change in buoyancy of the buoyant member to an energy output device.
The apparatus preferably comprises farther; a fixed load or non-variable opposing buoyancy connected to the variable buoyant member wherein said load acts to balance the buoyancy of said buoyancy member of variable buoyancy so as to maintain said buoyant member of variable buoyancy in a normal position such that said means for converting said change in buoyancy of the buoyant member of variable buoyancy operates in a double acting manner and a means whereby the variable buoyancy so loaded may react against the bottom or against a farther vessel of non-variable buoyancy floating on the surface.
Preferably any such apparatus may be set up such that it may oscillate in resonance with prevailing wave frequencies.
Preferably said means for converting resulting forces or changes in forces in the apparatus to useful energy may be selected from one or more of the following: (a) a hydraulic system (b) a pneumatic system (c) a mechanical system (d) a piezo-electric system Preferably said means for converting said forces or changing forces in the apparatus converts said change to an output device which is selected from one or more of the following: (a) an electricity generating device (b) a device for the hydrolysis of water (c) a pumping device (d) a device for making potable water (e) a device for extracting dissolved salts (f) a hydraulic device (g) a mechanical device The buoyant member of variable buoyancy preferably includes means for altering the volume of the buoyant member of variable buoyancy in response to changes in pressure on the buoyant member of variable buoyancy.
Said buoyant member of variable buoyancy may be constructed from a substantially air-tight non-rigid flexible or otherwise elastic material which may be subdivided into two or more compartments.
Alternatively said buoyant member of variable buoyancy may be constructed from a substantially rigid container, substantially open at the bottom, such that the changes in surrounding pressure causes a fluctuation in liquid level within the container. The container or vessel may have a series of apertures on the underside of the container allowing liquid to enter and leave the container, depending on the pressure of the head of liquid on the contained gas. One example would be an inverted bell, with one or more apertures of varying sizes cut into the base.
In one embodiment said load is a mass that may move up or down over a predefined range, and whose position is determined by the buoyancy of said buoyant member of variable buoyancy to which it is linked. The mass and buoyant member are preferably constrained in their movement by a fixed or relatively fixed structure and against which they can react. The fixed or relatively fixed structure may be a mast or vertical spar tethered to the seabed, or a floating vessel of fixed and greater buoyancy that may move in opposition when floating on waves or swell on the surface above.
In a further embodiment said load is a buoyant member of non-variable buoyancy attached to said buoyant member of variable buoyancy by a cable passing a pulley-type structure which acts to balance the buoyancy of the variable buoyancy in its normal condition.
The primary excitation forces arise from the vertical displacement in the waves and corresponding changes in hydrostatic pressures below.
The constant mass of gas within the variable buoyancy responds to changes in surrounding hydrostatic pressures by changes in volume and thus, by Archimedes Principle, experiences changes in upthrust. The volume changes may occur adiabatically or close to adiabatically and are governed by the elementary gas laws.
Power may be taken off by the reaction of the buoyant member of variable buoyancy against the bottom, or a float on the surface moving in opposition, or a submerged reaction plate, or all, or some combination of these.
Other advantages and features of the present invention will become apparent from the following detailed description, the accompanying drawings, and the appended claims.
Brief Description of the Drawings Figure la is a schematic showing the principle of operation of a single acting device of the present invention, Figure lb is a schematic showing the principle of operation of a double acting device of the present invention, Figure 2a shows the device of Figure la under a flat surface of liquid, Figure 2b shows the device of Figure la under a crest, such that the head of liquid above is increased, Figure 2c shows the device of Figure la under a trough, such that the head of liquid above is reduced, Figure 3 shows an arrangement for the device of Figure lb combining a flexible vessel and a counterweight, Figure 4 shows a practical arrangement of the device of Figure 3, Figure 5a shows an alternative embodiment of the device of Figure lb, Figure 5b shows an alternative embodiment of the device of Figure 5a, Figure 5c shows an alternative embodiment of the device of Figure 5a, Figure 6 is a schematic showing the principle of operation of an embodiment of the present invention wherein power is derived from the reaction against a floating vessel, Figure 7a is a schematic showing the device of Figure 6 under a flat surface of liquid Figure 7b is a schematic showing the device of Figure 6 under a crest, such that the head of liquid above has increased, Figure 7c is a schematic showing the device of Figure 6 under a trough, such that the head of liquid is reduced, Figure 8 shows a practical arrangement of the embodiment shown in Figure 6, Figure 9 is a schematic for a method of converting energy of motion using hydraulics and a motor alternator set, Figure 10 is a schematic of a modification of the device of Figure 6.
Detailed Description of the Drawings The invention provides a device for extracting energy from a fluid body based on the reaction of a submerged, sealed, and elastic or otherwise compressible device partially filled with air or other gas, to changes in pressure around it. These changes in pressure result from an over-passing ocean swell or changing surface levels in a tank.
Figure 1 is a schematic indicating two basic forms of the embodiments in which a wave energy converter 1 reacts against the bottom of the sea or tank. The converter 1 comprises a buoyant member of variable buoyancy 6, hereinafter referred to as an elastic member or variable buoyancy 6, a spring representing a power take-off means 8 and a mass 13, linked by cables 2, 9 and all under the surface of the body of liquid 4. The variable buoyancy contains a constant mass of gas 7, the volume of which is dependant on the pressure exerted by the body of water. A varying pressure will result in a change in volume of the gas, a change in volume of the elastic member and a resultant change in buoyancy of the variable buoyancy 6. The Figure shows the position of the liquid surface at rest 5, a passing wave crest 10, and the bottom or seabed 3.
Figure 1(a) is that referred to as a single-acting device, Figure 1(b) as a doubleacting device. The basic operations of the two forms are further described in relation to Figures 2 and 4.
Figure 2 shows the basic operation of a wave energy converter device 1 of type shown in Figure la. Figure 2a shows the variable buoyancy 6 moored, via an inelastic mooring line 2 (or cables), to the bottom 3 of a liquid mass 4 , having a flat surface 5. In this single action embodiment, the variable buoyancy 6 is a balloon type structure, made of, or partly made of, elastic or otherwise flexible material that may change in shape and size according to the pressure exerted on the gas 7 contained therein. Preferably the balloon will be held in a net cage( not shown) and shaped so as to maximise the point effect, i e. minimise the diameter of the balloon with respect to the wavelength of the over-passing wave, from the prevailing wave climate. The variable buoyancy 6 is attached to hydraulic actuators 8 via an anchoring cable 9. The pressure exerted on the gas 7 in the variable buoyancy 6 is equivalent to atmospheric pressure plus the pressure exerted by the height of the water column h|. As a result of the buoyancy of the sealed gas 7, the variable buoyancy 6 is exerting a tension T i, towards the surface, on the hydraulic actuator 8. This device is also suitable for reacting against a lever or pump type mechanism within a tank or process vessel Figure 2b shows the situation when the surface 5 is not flat, equivalent to the occurrence of waves on a water surface. The device 1 is now under a crest 10 of a wave. As a result, the height of water column h2 is greater than hi. The effect of this is the exertion of more pressure on the quantity of gas 7. According to Boyle’s Law pressure times volume (PV) is constant for constant temperature or, under conditions that will most probably favour adiabatic change, PV is constant where gamma tends towards 1.4 for air. Hence, as the pressure has increased, the volume of gas 7 within the variable buoyancy 6 contracts. The height h2 is equivalent to the height of the wave crest 10 plus any downward movement of the variable buoyancy 6. Both components of h2 act so as to increase the pressure on the elastic member 6 and cause a reduction in volume of the elastic member. According to Archimedes’ Principle, as the volume of the elastic member 6 decreases and less liquid is displaced, the upthrust corresponding to the mass of water displaced will be lessened. The change in buoyancy, caused by the reduction in volume of the variable buoyancy 6, results in less tension T2 being exerted on the hydraulic actuator 8.
Figure 2c shows an equivalent situation for when the device 1 is under a trough 11 of a wave. The height hi is less than hi, such that less pressure is being exerted on the gas 7, with a resultant increase in the volume of the elastic member 6. In a similar manner to that described with relation to Figure 2b, h3 is made up of two components; the depth of the trough 11 and the upward movement of the variable buoyancy 6. The increase in buoyancy of the elastic member 6 results in more tension T3 being exerted on the actuator 8.
The movement of the variable buoyancy 6, which results from using a flexible balloon type arrangement, under the crest and trough adds a dynamic effect to the static effect caused by the passage of the passing wave.
The change in tension in the cable 9, arising from differing conditions illustrated in Figures 2b and 2c, is passed to the hydraulic actuator 8, displacing hydraulic fluid (not shown), which in turn powers a motor-generator set (not shown). In a preferred embodiment the actuators are of a variety called heave compensators, such as those regularly used to stabilise ship-borne drilling rigs in offshore oil exploration. The heave compensators may have an accumulator or air-cylinder, indicated by a spring 26, so as to return the main hydraulic cylinder to its normal position. The spring 26 is indicative of the reactive force which acts to compensate against the tension exerted on the actuator 8.
Figure 3 illustrates the principle behind a second and farther embodiment of the device 1 , corresponding to that shown in Figure lb. The same reference numerals are used for like parts. In this embodiment the wave power converter is adapted to be a double-acting device, i.e. one that will provide power as the variable buoyancy 6 expands and moves up under a trough 11 (as already described) and also as it is compressed and moves down under a crest 10. Essentially, the upthrust experienced by the variable buoyancy or elastic member 6 in its neutral state (under a level sea) is balanced by a weight or load 30, the two being directly linked by a piston-rod 14 which runs through cylinder 12 of the heave compensator 8. The operation of the heave compensator 8 is now simplified, net changes in upthrust on the elastic vessel 6 result in corresponding forces acting on the piston rod 14. These will act, in a regular sea, by alternately pulling the rod 14 up and down. The displaced hydraulic fluid, under pressure, powers an electricity motor-generator set (not shown) and is then returned to the low pressure side of the heave compensator. More than as in the previous arrangement, return springs (not shown) will be required as the device as a whole is, in this arrangement, not in stable equilibrium in the neutral position. Reaction against the bottom is effected by rigid mooring lines or vertical spar 2.
Figure 4 shows a practical arrangement of the double acting embodiment of Figure 3. The number and size of the hydraulic cylinders and air-springs is determined by the anticipated environment and the desirability or otherwise of matching oscillation of the device as a whole with the predominant wave climate. Two cables 9 connect the variable buoyancy (not shown) to a fixed or constant mass 30, which is free to move through a line of work dictated by a pillar 25 set on a vertical spar or column 27 resting or fixed to the bottom (not shown). As a result of the movement of the fixed mass 30, caused by the variation in buoyancy of the variable buoyancy member (not shown), piston rods 14 are driven through hydraulic cylinders 12 where the power can be taken off. In a modification to this embodiment (not shown) the hydraulic cylinders may be located below the fixed mass, but the mode of operation is the same.
Figure 5 a shows an alternative embodiment of the double acting arrangement shown schematically in Figure lb. In this embodiment the variable buoyancy 6 is attached through a hydraulic cylinder 12, driving a piston rod 14, and via a pulley or pivot arrangement 15, to a non-variable buoyancy 40. The non-variable buoyancy 40 acts to counteract the effect of the tension exerted by the variable buoyancy 6. Figure 5b shows an alternative embodiment in which the cable 9 from the variable buoyancy 6 passes through the non-variable buoyancy 40 so as to keep the two buoyancies in the same line of action. In the same manner as described with relation to Figures 1 to 4 , the change in height of water column above the variable buoyancy, results in a change in volume of the variable buoyancy 6 with a resultant change in tension exerted through the pulley 15 and the non-variable buoyancy 40. In a situation of a flat surface the two buoyancies 6, 40 are balanced and there is no movement through the cylinder 12. The change in buoyancy of the elastic member 6, caused by a passage of crests and troughs passing overhead, results in the piston rod 14 moving through the cylinder 12. Figure 5b shows the device reacting against the sea-bed (not shown) via the mooring cables 2. This embodiment is suited for work in process vessels and the cable may be replaced by a hinge or lever mechanism.
As with the previously described double-acting arrangement, the neutral position is not a position of stable equilibrium so the length of stroke is must be constrained. A system using springs (preferably air springs or hydraulic rams) is necessary to define the stroke and to provide a return force; this has the additional and important benefit of facilitating oscillation in resonance with the predominant wave frequency.
Figures 5c shows yet a further embodiment wherein the variable buoyancy 6 is formed from an inverted bell type structure. The same reference numerals are used for similar parts. This is a rigid vessel, at least partially open at the bottom, such that liquid can enter and leave the variable buoyancy. The amount of liquid contained within the variable buoyancy is dependant on the pressure exerted on the gas contained within the variable buoyancy. As the pressure increase, the volume of gas contained within the container 6 will decrease and liquid will enter from the bottom to takes its place. As the pressure increases the gas will expand, forcing the liquid to leave the container. The change in volume of gas within the variable buoyancy 6 will affect the buoyancy of the variable buoyancy, which will result in work being done about the pulley 15. The repeated increase and decrease in buoyancy of the variable buoyancy resulting may be used as a source of power in situations like tanker lorries, ships etc.
Figure 6 is a schematic indicating the basic form of an embodiment in which the wave energy converter reacts against a vessel floating on the surface of the body of liquid. Figure 6 shows the position of a liquid surface at rest 5, a passing crest 10 , a floating vessel of fixed or non-variable buoyancy 113 linked to a submerged variable buoyancy 6 via cables 9 to the spring or power take-off 8 actuated by the relative motion of the two vessels, and a mass 28 that may act as a reaction plate that more than counterbalances the buoyancy of the variable buoyancy 6 even at its greatest buoyancy. The whole device is suspended from the floating member of fixed buoyancy 113 and the predominant motion is along a vertical axis. The significant feature is that the floating vessel of fixed buoyancy 113 and the submerged variable buoyancy 6 with its counterbalancing mass tend to move in opposite phase as waves pass, thus being in effect a two-body oscillator. The device may be moored using a slack mooring system (not shown) attached to the floating vessel.
Figure 7 shows the basic operation of a device of type shown in Figure 6. Figure 7a shows the device at rest and a motionless surface 5. The variable buoyancy 6 is suspended, submerged, under the floating vessel of non-variable buoyancy 113. The two vessels are linked by means of cables or rods 9, and the spring representing the power take-off 8 .
In Figure 7b a wave crest 10 is passing which lifts the floating buoyancy 113. and, as previously explained, tends to reduce the buoyancy of the submerged variable buoyancy 6 and which, on account of the weight 28 below, will tend to sink. The reverse occurs during the passing of a trough 11 as in Figure 7c, during which the submerged variable buoyancy 6 will tend to expand and rise. A preferred embodiment will incorporate rods rather than inelastic cables between the two vessels 6, 113 and the power take-off 8, thus allowing reactive forces to arise as they tend to come together. With a properly chosen stiffness for the power take-off 8, appropriate sizes for the two vessels 6, 113 and the weight 28, the device as whole may be arranged to oscillate with a particular frequency. The hydrodynamics and natural frequencies of this two-bodied oscillator will be influenced by the shapes of the vessels 6, 113.
Figure 8 is a schematic of practical embodiment of the submerged variable buoyancy 6 arranged to react against a floating vessel of fixed buoyancy. The variable buoyancy 6 is an inverted bell type structure, as previously described with reference to Figure 5c. As the pressure on the variable buoyancy changes the liquid level 75 within the container will also change. The power take-off 8, located in the floating vessel of non-variable buoyancy 113, is preferably mounted on gimbals or similar acting devices (not shown) to allow it and the floating vessel 113 a necessary degree of independent movement. The shapes of the two vessels 6, 113 shown in Figure 8 may be quite different. The slack mooring system 31, and weight 28 are as previously described. The variable buoyancy may also be a container with a series of holes or apertures cut on the bottom.
Figure 9 shows the principle of a preferred hydraulic system utilised in the double acting embodiment of the invention. The schematic shows the possible adaptation of the device to two or more devices. A double acting hydraulic cylinder 12 is attached to a hydraulic spring or counterweight 26 and has a self contained oil reservoir 18. The forces exerted by the variable buoyant member (not shown) displaces high pressure oil from the pump 16 through high pressure oil lines 19 to a distribution manifold 20 and high pressure oil accumulators 21. The displaced hydraulic fluid, under pressure, drives a hydraulic motor 22 which in turn powers an electricity motor-generator set 23, and is then returned to the low pressure side of the hydraulic pump 16 via a low pressure oil line 24, Although each wave energy converter device may be deployed as an independent single entity, it may be desirable and expedient to arrange a number of similar devices in an array. For example two or more individual devices may be used to supply power in the form of hydraulic pressure to a common ‘ring main’ or an accumulator or a combination of these, and from which one or more motor-generator sets will be driven.
Oil inputs from additional devices may be added at junction points 125, The water particles below any wave oscillate in harmony with the overpassing wave, and decreases with depth below the surface. Under monochromatic waves this movement of the water particles is circular in a vertical plane parallel to the direction of travel of the wave. Necessarily, the submerged variable buoyancy, which must be located where the hydrostatic pressures are also varying significantly, will experience these circular movements in the surrounding water. In order to negate the resulting vertical oscillation of the variable buoyancy in the case where it is reacting against a fixed buoyancy on the surface above, the fixed mass 28 may be extended so that its horizontal dimensions with respect to the surface are substantially greater than its vertical dimensions. A schematic of such an extended fixed mass is shown in Figure 10. As is shown the fixed mass 28 forms a horizontal reaction plate which may be suspended at a depth below where the vertical component of the motion of the water particles is significant. There may also be tidal flows or drifts, typically two to three knots or less.
In theory a smooth vertical cylinder experiences no net lateral force from a fluid flowing smoothly past it horizontally.
The cables or rods linking the variable buoyancy with other elements could be inelastic but not rigid; individual rods may incorporate a link or hinge or pivot. For those embodiments that react against the bottom through a vertical spar, as shown in Figures 1 to 5, this may be stayed firmly but not necessarily absolutely rigidly. This general approach to design is to allow some flexing and lateral movement of the device and in particular the submerged elements.
The scale of the change in forces that may be expected with a typical configuration of the wave energy converter device developed for ocean wave power conversion, with a 50m3 vessel under a wave of amplitude one metre above level seas, will be of the order of plus or minus 70 tonnes every few seconds. Larger vessels can be deployed, the limiting factors being the predominant wavelength and the fall-off with depth of the pressure variation due to surface waves.
In any of the aforementioned described embodiments the hydraulic cylinder, accumulator and motor generator will be accommodated in an ‘engine room’, preferentially capable of being detached for maintenance purposes. In the embodiments where this is underwater it may be an air-tight or inverted bell type structure that will allow diver access for maintenance purposes and incorporate sufficient positive buoyancy to prevent it sinking, in the event of the effect of the variable buoyancy being removed. In those embodiments where there is a floating buoyancy on the surface, the engine room may be placed within the floating body, as shown in Figure 8.
Where the variable buoyancy comprises a balloon type structure it is envisaged that this may be divided into several non-interacting chambers, so as to reduce the possibility of an incapacitating lack of buoyancy should a leak occur. The weight attached to the lower end of the piston rod in the double-acting embodiment shown in Figure 4 may be of an adjustable mass, effected by an integral chamber that may be air filled or flooded with water. The balloon type structure may be manufactured from, for example, a neoprene or fabric reinforced PVC material, or similar material. The elasticity of the material is not essential, what is important is that the material is flexible and may alter its shape and volume.
The buoyant member of variable buoyancy may be further modified to include vanes or plates, which may be rigid or moveable in form, and serve to alter the drag coefficient of the variable buoyancy. This will affect the upward and downward movement of the variable buoyancy.
The device, in any marine embodiment, is intended to be located away from the shoreline and outside the zone of impacting breaking waves. This will result in a more constant generation of power than other point absorber devices. In those embodiments with a floating buoyancy on the surface, the floating vessel will be hermetically sealed, partitioned internally, and will have minimal resistance to breaking seas or very large waves. It may readily be designed such that exceptionally steep waves or breaking seas will pass over it, a form of hydrostatic clipping.
The wave energy converter will continue to perform effectively in irregular seas, a condition that is more usual than regular monochromatic wave forms. Very frequently the waves are the result of two or more patterns superimposed, with perhaps an underlying long wavelength swell where the chosen site is open to the ocean and prevailing wind directions. The design imperative is to obtain useful power at low cost, i.e. to optimise the unit cost of power delivered, rather than to seek to achieve the conversion of the maximum amount of the available wave power.
The device of the present invention is a simple, robust and low-cost device which maximises the use of proven components and technology. By utilising a flexible elastic member, the device is free to move with the prevailing conditions and does not require heavy engineering. As such it is possible to maximise availability and simplify maintenance of deployed power conversion devices, which may deployed singularly or in large arrays. This may allow the sharing of a common functionality between several devices. The devices are designed be independent of tidal changes in mean sea levels, have minimum dependence on wave direction, and maximise the return from long wavelength ocean swell. By utilising the advantages offered by totally or partially submerged devices it is possible to move out beyond the shore line and the breaking wave zone and generate of the order of 0.5MW or more per device.

Claims (5)

Claims
1. An apparatus for harnessing energy from wave motion (10,11) or swell relative to a bottom (3) in a body of liquid (4) comprising; 5 at least one buoyant member of variable buoyancy (6) for holding a substantially constant mass of gas (7) in an at least partially submerged position in the body of liquid (4), such that as the volume of the substantially constant mass of gas (7) changes with changes of pressure on the buoyant member 6 caused by the wave motion (10,11) or swell relative to the bottom (3) of the liquid body (4), a change in buoyancy of the 10 variable buoyant member (6) results; and a conversion means (8) for converting said change in buoyancy of the buoyant member to an energy output device.
2. The apparatus as claimed in claim 1 wherein, the buoyant member of variable 15 buoyancy (6) is constructed from a substantially air-tight, flexible or otherwise elastic material, whereby the volume of the buoyant member of variable buoyancy (6) may alter in response to changes in pressure on the buoyant member to alter the buoyancy of the buoyant member of variable buoyancy (6), or the buoyant member of variable buoyancy (6) may be constructed from a substantially rigid container, and at least 20 partially open at the bottom, such that the change in surrounding pressure causes a fluctuation in liquid level within the container to alter the buoyancy of the buoyant member of variable buoyancy (6).
3. The apparatus as claimed in any preceding claim further comprising a fixed mass 25 (30) connected to the variable buoyancy (6), wherein the fixed mass (30) moves in response to changes in buoyancy of the variable buoyancy (6), and the fixed mass (28) acts to balance the buoyancy of said buoyant member of variable buoyancy (6), so as to maintain said buoyant member of variable buoyancy (6) in a normal position, such that said means (8) for converting said change in buoyancy of the buoyant member of 30 variable buoyancy (6) operates in a double acting member.
4. The apparatus as claimed in claim 1 or 2 further comprising at least one buoyant member of constant, non-variable buoyancy (113) suitable for floating on the surface (5) of the liquid (4), wherein the non-variable buoyancy (113) is coupled via power conversion means (8) to the variable buoyancy (6), located beneath the surface of the 5 liquid (4), and the variable buoyancy (6) is coupled to a fixed mass (28), and the nonvariable buoyancy (113) moves with the wave motion (10,11), and this movement causes the non-variable buoyancy (113) to exert a force on the conversion means (8) opposite in direction to that exerted by the variable buoyancy (6), and the conversion means (8) is actuated by the relative movement of the non-variable (113) and variable 10 (6) buoyancies.
5. An apparatus for harnessing energy from wave motion substantially as hereinbefore described with reference to and, or as illustrated in Figures 1 to 4 or Figures 5a or Figure 5b or Figure 5c, or Figures 6 to 10
IE981011 1997-12-03 1998-12-03 A wave energy converter IES81178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
IE981011 IES81178B2 (en) 1997-12-03 1998-12-03 A wave energy converter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
IE970855 1997-12-03
IE980633 1998-07-28
IE980973 1998-11-23
IE981011 IES81178B2 (en) 1997-12-03 1998-12-03 A wave energy converter

Publications (2)

Publication Number Publication Date
IES981011A2 IES981011A2 (en) 1999-06-16
IES81178B2 true IES81178B2 (en) 2000-06-14

Family

ID=27452106

Family Applications (1)

Application Number Title Priority Date Filing Date
IE981011 IES81178B2 (en) 1997-12-03 1998-12-03 A wave energy converter

Country Status (1)

Country Link
IE (1) IES81178B2 (en)

Also Published As

Publication number Publication date
IES981011A2 (en) 1999-06-16

Similar Documents

Publication Publication Date Title
US6392314B1 (en) Wave energy converter
US7909536B2 (en) Wave energy converter
US7298054B2 (en) Wave energy conversion system
US7339285B2 (en) Hydroelectric wave-energy conversion system
AU2009272416B2 (en) Wave powered generator
CA3008148C (en) Tethered ballast systems for point absorbing wave energy converters and method of use thereof
AU2005203089B2 (en) Wave energy converter
IES81178B2 (en) A wave energy converter
Clare et al. HARNESSING SEA WAVE ENERGY BY A SUBMERGED CYLINDER DEVICE.
EP2501926B1 (en) Pumps
Song et al. A new type of wave energy converter using under-water pressure oscillation

Legal Events

Date Code Title Description
FK9A Application deemed to have been withdrawn section 23(9)
FK9A Application deemed to have been withdrawn section 23(9)
MM4A Patent lapsed