WO2001095519A1 - Communication system - Google Patents

Communication system Download PDF

Info

Publication number
WO2001095519A1
WO2001095519A1 PCT/JP2000/003784 JP0003784W WO0195519A1 WO 2001095519 A1 WO2001095519 A1 WO 2001095519A1 JP 0003784 W JP0003784 W JP 0003784W WO 0195519 A1 WO0195519 A1 WO 0195519A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
power supply
microcomputer
level
signal
Prior art date
Application number
PCT/JP2000/003784
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Nakamoto
Yasumasa Hanazaki
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2000/003784 priority Critical patent/WO2001095519A1/en
Publication of WO2001095519A1 publication Critical patent/WO2001095519A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/548Systems for transmission via power distribution lines the power on the line being DC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/547Systems for power line communications via DC power distribution

Definitions

  • the present invention relates to a communication system that performs overnight communication between electronic control units mounted on a vehicle.
  • FIG. 1 is a configuration diagram showing a typical communication circuit of the system.
  • 1 is a main ECU that is an airbag deployment control device
  • 2 is a satellite sensor that performs current communication with the main ECU 1
  • 3 is a sensor that detects acceleration applied to the vehicle and outputs a signal corresponding to it.
  • Sensors 4 and 5 are a power supply line and a ground line that electrically connect main ECU 1 and satellite sensor 2, and 6 is supplied with power from power supply line 4 and generates a regulated voltage of 5 V.
  • a power supply circuit for supplying power to each component of the satellite sensor 2, a microcomputer 7 for converting an acceleration signal output from the G sensor 3 into a digital acceleration signal, and outputting the converted signal to a switching element 8, and a microcomputer 8 for Switching element controlled by icon 7, 9 is current limiting resistor
  • Reference numeral 10 denotes a stabilized power supply that generates a stabilized voltage of 12 V and supplies power to the satellite sensor 2 and the like, and 11 detects a current flowing through the power supply line 4.
  • 12 is a differential amplifier that amplifies the voltage generated across both ends of the current detection resistor 11
  • 13 is a voltage generator that generates the reference voltage V ref
  • 14 is a differential amplifier 1
  • a comparator that compares the output voltage of 2 with the reference voltage V ref
  • 15 is a microcomputer that reads the output voltage of 14
  • 16 is an ignition circuit for deploying the airbag 17
  • 17 is An airbag that protects occupants.
  • the power supply circuit 6 of the satellite sensor 2 When power is supplied from the constant voltage power supply 10 of the main ECU 1 via the power supply line 4 to the power supply circuit 6 of the satellite sensor 2, the power supply circuit 6 of the satellite sensor 2 generates a stabilized voltage of 5 V, and the power supply circuit 6 of the satellite sensor 2 Provides power to each component.
  • the microcomputer 7 of the satellite sensor 2 starts operating when receiving power supply from the power supply circuit 6, converts an acceleration signal output from the G sensor 3 into a digital acceleration signal, and outputs the signal to the switching element 8. .
  • the switching element 8 is opened when the output signal of the microcomputer 7 is at the L level, and only the current normally consumed by the satellite sensor 2 flows through the power supply line 4.
  • the output signal of the microcomputer 7 is at the H level, the circuit is closed, and the current flowing through the current limiting resistor 9 causes the current flowing through the power supply line 4 to be larger than the current normally consumed by the satellite sensor 2.
  • the differential amplifier 12 of the main ECU 1 amplifies the voltage generated across the current detection resistor 11, and the comparator 14 generates the output voltage of the differential amplifier 12 and the reference generated by the voltage generator 13.
  • the voltage V ref is compared, and when the output signal of the microcomputer 7 is at the L level, a comparison result indicating that the output voltage of the differential amplifier 12 is smaller than the reference voltage V ref is output, and the output signal of the microcomputer 7 is at the H level. In the case of a level, a comparison result indicating that the output voltage of the differential amplifier 12 is larger than the reference voltage V ref is output.
  • the microcomputer 15 of the main ECU 1 is the digital output of the comparator 13 Receives the acceleration signal and determines the magnitude of acceleration applied to the vehicle. Further, the microcomputer 15 determines whether or not it is necessary to deploy the airbag 17 based on the magnitude of the acceleration, and outputs a signal for deploying the airbag 17 when occupant protection is required. Output to the ignition circuit 16 to deploy the airbag 17.
  • serial communication interface hereinafter, SCI
  • FIG. 2 is a configuration diagram showing a communication circuit for performing communication using SCI.
  • Reference numeral 18 denotes an inversion buffer for inverting the logic of the communication signal output from the SCI transmission terminal of the microcomputer 7. Since the SCI transmission pin is at the H level in the standby state (during non-communication), the switching element 8 is closed and the current flows to the current limiting resistor 9 if there is no inverting buffer. The current consumption of sensor 2 increases.
  • the microcomputer 7 of the satellite sensor 2 When the satellite sensor 2 transmits a communication signal to the main ECU 1, the microcomputer 7 of the satellite sensor 2 outputs a communication signal from the SCI transmission terminal.
  • the inversion buffer 18 in the satellite sensor 2 inverts the logic of the communication signal output from the SCI transmission terminal of the microcomputer 7, and outputs the inverted signal to the gate of the switching element 8.
  • the switching element 8 Since the switching element 8 is open when the SCI transmission terminal is at the H level (the output of the inverting buffer 18 is at the L level), as shown in FIG. 3, the switching element 8 normally consumes the power supply line 4. Only current 10 flows. On the other hand, when the SCI transmission terminal is at L level (the output of the inverted buffer 18 is at H level), it is closed. As shown in FIG. 3, the current I 1 flowing through the power supply line 4 increases more than the normal current consumption I 0.
  • the output voltage V 0 of the differential amplifier 12 is equal to the reference voltage V 0.
  • a comparison result indicating that the output voltage is smaller than ref is output.
  • the SCI transmission terminal is at L level (the output of the inverting buffer 18 is at H level)
  • the output voltage V 1 of the differential amplifier 12 is higher than the reference voltage V ref. The comparison result indicating that the value is larger is output.
  • the result of this comparison is input to the SCI reception terminal of the microcomputer 15 and reception processing is performed.
  • the inversion buffer 18 Since the conventional communication circuit is configured as described above, when performing communication using SCI, the inversion buffer 18 must be mounted, and there have been problems such as an increase in the size of the device. .
  • the present invention has been made to solve the above problems, and has as its object to obtain a circuit capable of performing communication using SCI without mounting an inversion buffer. Disclosure of the invention
  • the communication circuit according to the present invention includes a microcomputer that inverts the logic of the communication signal and outputs the inverted signal to the gate terminal of the switching element.
  • Use SCI This has the effect of enabling communication.
  • FIG. 1 is a configuration diagram showing a conventional communication circuit.
  • FIG. 2 is a configuration diagram showing a communication circuit that performs SCI communication.
  • FIG. 3 is a waveform diagram showing logic of a communication signal and the like.
  • FIG. 4 is a configuration diagram showing a communication circuit according to Embodiment 1 of the present invention.
  • FIG. 5 is a waveform diagram showing logic of a communication signal and the like. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 4 is a configuration diagram showing a communication circuit according to the first embodiment of the present invention.
  • 21 is a main ECU (sensing device) which is an airbag deployment control device
  • 22 is a main ECU 21 Satellite sensor that performs current communication with the vehicle
  • 23 detects the acceleration applied to the vehicle, and outputs a signal in accordance with that acceleration.
  • G sensors 24 and 25 electrically connect the main ECU 21 and the satellite sensor 22.
  • Power supply line and ground line connected to the power supply, and 26 receive power from the power supply line 24, generate a regulated voltage of 5 V, and supply power to each component of the satellite sensor 22
  • a power supply circuit 27 converts the acceleration signal output from the G sensor 23 into a digitized acceleration signal, a microcomputer that inverts the logic of the signal and outputs the inverted signal to the switching element 28, and 28 a microcomputer 2 Switching element controlled by 7, 29 current limit Anti, 3 0 is a protective resistor.
  • 31 is a stabilized power supply for generating a stabilized voltage of, for example, 12 V and supplying power to the satellite sensor 23 and the like
  • 32 is a current detecting resistor for detecting a current flowing through the power supply line 24
  • 33 is a differential amplifier for amplifying the voltage generated across the current detection resistor 32
  • 34 is a voltage generator for generating the reference voltage V ref
  • 35 is the output voltage of the differential amplifier 33.
  • 36 is a microcomputer for reading the output voltage of the comparator 35
  • 37 is an ignition circuit for deploying the air bag 38
  • 38 is for protecting the occupant at the time of collision It is a hair bag.
  • the microcomputer 27 of the satellite sensor 22 When the satellite sensor 22 transmits an acceleration signal to the main ECU 21, the microcomputer 27 of the satellite sensor 22 outputs an acceleration signal from the SCI transmission terminal.
  • the acceleration signal output from the SCI transmission terminal is input to the external interrupt terminal via the protection resistor 30.
  • the state of the external interrupt terminal changes (H level L level, L level-H level)
  • the microcomputer 27 As shown in Fig. 5, the output level of the inverting terminal is changed.
  • the switching element 28 Since the switching element 28 enters the state when the SCI transmitting terminal is at the H level (the inverting terminal is at the L level), the power supply line 24 has only the normal current consumption I 0 as shown in FIG. Flows. On the other hand, when the SCI transmitting terminal is at the L level (the inverting terminal is at the H level), it closes and the current flows through the current limiting resistor 29, and as shown in FIG. I1 is larger than the normal current consumption I0.
  • the comparator 35 in the main ECU 21 indicates that the output voltage V 0 of the differential amplifier 33 is smaller than the reference voltage V ref when the SCI transmission terminal is at the H level (the inversion terminal is at the L level). Outputs the comparison result.
  • the differential amplifier 33 Outputs the comparison result indicating that the output voltage V1 of 3 is higher than the reference voltage Vref.
  • the main ECU 21 can recognize the acceleration signal of the satellite sensor 22.
  • the microcomputer 27 that inverts the logic of the communication signal output from the SCI transmission terminal and outputs the inverted signal to the gate terminal of the switching element 28 is used. Since it is configured to be provided, the communication signal of the satellite sensor 22 can be transmitted to the main ECU 21 without mounting the inversion buffer 18 as in the conventional example described above. Industrial applicability
  • the communication circuit according to the present invention is suitable for an airbag system that transmits acceleration applied to a vehicle detected by a G sensor in a satellite sensor to a sensor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Air Bags (AREA)

Abstract

A microcomputer for inverting the logic of a communication signal outputted from an SCI transmission terminal and outputting the inverted signal to control the current flowing through a power feed line.

Description

明 細 書 通信システム 技術分野  Description Communication system Technical field
. この発明は、 車両に搭載した電子制御ユニッ ト間で、 デ一夕通信を実 施する通信システムに関するものである。 背景技術  TECHNICAL FIELD The present invention relates to a communication system that performs overnight communication between electronic control units mounted on a vehicle. Background art
車両に搭載されるエアバッグシステムにおいて、 車両に加わる加速度 を検出するサテライ トセンサと車両の乗員保護のためにェアバッグを展 開させるメイ ン E C U間でデ一夕通信が行われる。 この様なエアバッグ システムの構成は、 例えば特閧平 1 1 一 5 3 6 7 7号公報等に記載され ているものがある。 第 1図は該システムの代表的な通信回路を示す構成 図である。 図において、 1はエアバッグの展開制御装置であるメイ ン E C U、 2はメイ ン E C U 1 と電流通信を実施するサテライ トセンサ、 3 は車両に加わる加速度を検出し、 それに応じた信号を出力する Gセンサ 、 4および 5はメイ ン E C U 1 とサテライ トセンサ 2を電気的に接続す る電力供給線と接地線、 6は電力供給線 4から電力の供給を受け 5 Vの 安定化電圧を生成して、 サテライ トセンサ 2の各構成要素に電力を供給 する電源回路、 7は Gセンサ 3から出力される加速度信号をディ ジ夕ル 加速度信号に変換し、 スイ ッチング素子 8に出力するマイコン、 8はマ イコン 7によ り制御されるスィ ツチング素子、 9 は電流制限抵抗である  In an airbag system installed in a vehicle, data communication is performed between a satellite sensor that detects acceleration applied to the vehicle and a main ECU that deploys an airbag to protect the occupants of the vehicle. The configuration of such an airbag system is described in, for example, Japanese Patent Application Publication No. Hei 11-365677. FIG. 1 is a configuration diagram showing a typical communication circuit of the system. In the figure, 1 is a main ECU that is an airbag deployment control device, 2 is a satellite sensor that performs current communication with the main ECU 1, and 3 is a sensor that detects acceleration applied to the vehicle and outputs a signal corresponding to it. Sensors 4 and 5 are a power supply line and a ground line that electrically connect main ECU 1 and satellite sensor 2, and 6 is supplied with power from power supply line 4 and generates a regulated voltage of 5 V. , A power supply circuit for supplying power to each component of the satellite sensor 2, a microcomputer 7 for converting an acceleration signal output from the G sensor 3 into a digital acceleration signal, and outputting the converted signal to a switching element 8, and a microcomputer 8 for Switching element controlled by icon 7, 9 is current limiting resistor
1 0は 1 2 Vの安定化電圧を生成して、 サテライ トセンサ 2等に電力 を供給する安定化電源、 1 1は電力供給線 4に流れる電流を検出するた めの電流検出用抵抗、 1 2は電流検出用抵抗 1 1の両端に発生する電圧 を増幅する差動増幅器、 1 3は基準電圧 V r e f を発生する電圧発生器 、 1 4は差動増幅器 1 2の出力電圧と基準電圧 V r e f を比較するコン パレー夕、 1 5はコンパレー夕 1 4の出力電圧を読み取るマイコン、 1 6はエアバッグ 1 7を展開させるための点火回路、 1 7は衝突時に乗員 を保護するエアバッグである。 Reference numeral 10 denotes a stabilized power supply that generates a stabilized voltage of 12 V and supplies power to the satellite sensor 2 and the like, and 11 detects a current flowing through the power supply line 4. 12 is a differential amplifier that amplifies the voltage generated across both ends of the current detection resistor 11, 13 is a voltage generator that generates the reference voltage V ref, 14 is a differential amplifier 1 A comparator that compares the output voltage of 2 with the reference voltage V ref, 15 is a microcomputer that reads the output voltage of 14, 16 is an ignition circuit for deploying the airbag 17, and 17 is An airbag that protects occupants.
次に動作について説明する。  Next, the operation will be described.
サテライ トセンサ 2の電源回路 6は、 メイン E C U 1の定電圧電源 1 0から電力供給線 4を介して、 電力の供給を受けると、 5 Vの安定化電 圧を生成して、 サテライ トセンサ 2の各構成要素に電力を供給する。  When power is supplied from the constant voltage power supply 10 of the main ECU 1 via the power supply line 4 to the power supply circuit 6 of the satellite sensor 2, the power supply circuit 6 of the satellite sensor 2 generates a stabilized voltage of 5 V, and the power supply circuit 6 of the satellite sensor 2 Provides power to each component.
サテライ トセンサ 2のマイコン 7は、 電源回路 6から電力の供給を受 けると動作を開始し、 Gセンサ 3から出力される加速度信号をディジ夕 ル加速度信号に変換し、 スイ ッチング素子 8に出力する。 スイ ッチング 素子 8はマイコン 7の出力信号が Lレベルのとき開状態になり、 電力供 給線 4にはサテライ トセンサ 2が通常に消費する電流のみが流れる。 一 方、 マイコン 7の出力信号が Hレベルのとき閉状態になり、 電流制限抵 抗 9に電流が流れるため電力供給線 4に流れる電流はサテライ トセンサ 2が通常に消費する電流より増加する。  The microcomputer 7 of the satellite sensor 2 starts operating when receiving power supply from the power supply circuit 6, converts an acceleration signal output from the G sensor 3 into a digital acceleration signal, and outputs the signal to the switching element 8. . The switching element 8 is opened when the output signal of the microcomputer 7 is at the L level, and only the current normally consumed by the satellite sensor 2 flows through the power supply line 4. On the other hand, when the output signal of the microcomputer 7 is at the H level, the circuit is closed, and the current flowing through the current limiting resistor 9 causes the current flowing through the power supply line 4 to be larger than the current normally consumed by the satellite sensor 2.
メイン E C U 1の差動増幅器 1 2は電流検出用抵抗 1 1の両端に発生 する電圧を増幅し、 コンパレー夕 1 4は差動増幅器 1 2の出力電圧と電 圧発生器 1 3が発生する基準電圧 V r e f を比較し、 マイコン 7の出力 信号が Lレベルのときは差動増幅器 1 2の出力電圧が基準電圧 V r e f より小さい旨を示す比較結果を出力し、 マイコン 7の出力信号が Hレべ ルのときは差動増幅器 1 2の出力電圧が基準電圧 V r e f より大きい旨 を示す比較結果を出力する。  The differential amplifier 12 of the main ECU 1 amplifies the voltage generated across the current detection resistor 11, and the comparator 14 generates the output voltage of the differential amplifier 12 and the reference generated by the voltage generator 13. The voltage V ref is compared, and when the output signal of the microcomputer 7 is at the L level, a comparison result indicating that the output voltage of the differential amplifier 12 is smaller than the reference voltage V ref is output, and the output signal of the microcomputer 7 is at the H level. In the case of a level, a comparison result indicating that the output voltage of the differential amplifier 12 is larger than the reference voltage V ref is output.
メイン E C U 1のマイコン 1 5はコンパレー夕 1 3が出力するデイ ジ タル加速度信号を受信し、 車両に加わる加速度の大きさを判断する。 さ らにマイコン 1 5は加速度の大きさを基にエアバッグ 1 7を展開させる 必要があるか否かを判断し、 乗員保護が必要な場合にはエアバッグ 1 7 を展開させるための信号を点火回路 1 6に出力してエアバッグ 1 7を展 開させる。 The microcomputer 15 of the main ECU 1 is the digital output of the comparator 13 Receives the acceleration signal and determines the magnitude of acceleration applied to the vehicle. Further, the microcomputer 15 determines whether or not it is necessary to deploy the airbag 17 based on the magnitude of the acceleration, and outputs a signal for deploying the airbag 17 when occupant protection is required. Output to the ignition circuit 16 to deploy the airbag 17.
上記従来例において、 通信の制御を簡略化するためマイコンのシリア ルコミュニケーションイ ン夕フ ェース (以下、 S C I ) を利用して通信 を実施することが容易に考えられる。  In the above conventional example, communication can be easily performed using a serial communication interface (hereinafter, SCI) of a microcomputer to simplify communication control.
第 2図は S C Iを利用して通信を実施する通信回路を示す構成図であ り、 図において、 第 1図と同一符号は同一または相当部分を示すので説 明を省略する。 1 8はマイコン 7の S C I送信端子から出力される通信 信号の論理を反転する反転バッフ ァである。 S C Iの送信端子は待機状 態 (デ一夕非通信時) では Hレベルを保っているため、 反転バッファが 無いとスイ ッチング素子 8が閉状態になり電流制限抵抗 9に電流が流れ るためサテライ トセンサ 2の消費電流が増加してしまう。  FIG. 2 is a configuration diagram showing a communication circuit for performing communication using SCI. In the figure, the same reference numerals as those in FIG. 1 denote the same or corresponding parts, and a description thereof will not be repeated. Reference numeral 18 denotes an inversion buffer for inverting the logic of the communication signal output from the SCI transmission terminal of the microcomputer 7. Since the SCI transmission pin is at the H level in the standby state (during non-communication), the switching element 8 is closed and the current flows to the current limiting resistor 9 if there is no inverting buffer. The current consumption of sensor 2 increases.
次に動作について説明する。  Next, the operation will be described.
サテライ トセンサ 2がメイン E C U 1に対して通信信号を送信する場 合、 サテライ トセンサ 2のマイコン 7が S C I送信端子から通信信号を 出力する。  When the satellite sensor 2 transmits a communication signal to the main ECU 1, the microcomputer 7 of the satellite sensor 2 outputs a communication signal from the SCI transmission terminal.
サテライ トセンサ 2内の反転バッファ 1 8は、 マイコン 7の S C I送 信端子から出力される通信信号の論理を反転し、 該反転信号をスィ ツチ ング素子 8のゲートに出力する。  The inversion buffer 18 in the satellite sensor 2 inverts the logic of the communication signal output from the SCI transmission terminal of the microcomputer 7, and outputs the inverted signal to the gate of the switching element 8.
スィ ヅチング素子 8は、 S C I送信端子が Hレベル (反転バッ ファ 1 8の出力が Lレベル) のとき開状態になるため、 第 3図に示すように、 電力供給線 4には通常に消費する電流 1 0のみが流れる。 一方、 S C I 送信端子が L レベル (反転バッ フ ァ 1 8の出力が H レベル) のとき閉状 態になり、 第 3図に示すように、 電力供給線 4に流れる電流 I 1は通常 の消費電流 I 0より も増加する。 Since the switching element 8 is open when the SCI transmission terminal is at the H level (the output of the inverting buffer 18 is at the L level), as shown in FIG. 3, the switching element 8 normally consumes the power supply line 4. Only current 10 flows. On the other hand, when the SCI transmission terminal is at L level (the output of the inverted buffer 18 is at H level), it is closed. As shown in FIG. 3, the current I 1 flowing through the power supply line 4 increases more than the normal current consumption I 0.
したがって、 メイ ン E CU 1におけるコンパレ一夕 1 3は S C I送信 端子が Hレベル (反転バッファ 1 8の出力が Lレベル) のとき、 差動増 幅器 1 2の出力電圧 V 0が基準電圧 V r e f より小さい旨を示す比較結 果を出力し、 S C I送信端子が Lレベル (反転バッファ 1 8の出力が H レベル) のとき、 差動増幅器 1 2の出力電圧 V 1が基準電圧 V r e f よ り大きい旨を示す比較結果を出力する。  Therefore, when the SCI transmission pin is at H level (the output of the inverting buffer 18 is at L level), the output voltage V 0 of the differential amplifier 12 is equal to the reference voltage V 0. A comparison result indicating that the output voltage is smaller than ref is output. When the SCI transmission terminal is at L level (the output of the inverting buffer 18 is at H level), the output voltage V 1 of the differential amplifier 12 is higher than the reference voltage V ref. The comparison result indicating that the value is larger is output.
この比較結果はマイコン 1 5の S C I受信端子に入力されて受信処理 される。  The result of this comparison is input to the SCI reception terminal of the microcomputer 15 and reception processing is performed.
なお、 上記従来例の他に、 マイコンの I 0ポートから通信信号を出力 して、 スィ ヅチング素子を制御する通信システムが特開平 1 1— 6 8 6 2 6号公報に開示されているが、 マイコンの S C I送信機能を利用して いないので、 通信に伴うマイコンの負荷が大きくなる。  In addition to the above conventional example, a communication system that outputs a communication signal from an I0 port of a microcomputer and controls a switching element is disclosed in Japanese Patent Application Laid-Open No. H11-68662. Since the SCI transmission function of the microcomputer is not used, the load on the microcomputer for communication increases.
従来の通信回路は以上のように構成されているので、 S C Iを利用し て通信を実施する場合、 反転バッファ 1 8を搭載しなければならず、 装 置が大型化するなどの課題があった。  Since the conventional communication circuit is configured as described above, when performing communication using SCI, the inversion buffer 18 must be mounted, and there have been problems such as an increase in the size of the device. .
この発明は上記の課題を解決するためになされたもので、 反転バッフ ァを搭載することなく、 S C Iを利用した通信ができる回路を得ること を目的とする。 発明の開示  The present invention has been made to solve the above problems, and has as its object to obtain a circuit capable of performing communication using SCI without mounting an inversion buffer. Disclosure of the invention
この発明に係る通信回路は、 通信信号の論理を反転し、 該反転信号を スィ ツチング素子のゲ一ト端子に出力するマイコンを設けたものである このことによって、 反転バッファを搭載することなく、 S C Iを利用 した通信を可能にする効果がある。 図面の簡単な説明 The communication circuit according to the present invention includes a microcomputer that inverts the logic of the communication signal and outputs the inverted signal to the gate terminal of the switching element. Use SCI This has the effect of enabling communication. BRIEF DESCRIPTION OF THE FIGURES
第 1図は従来の通信回路を示す構成図である。  FIG. 1 is a configuration diagram showing a conventional communication circuit.
第 2図は S C I通信を実施する通信回路を示す構成図である。  FIG. 2 is a configuration diagram showing a communication circuit that performs SCI communication.
第 3図は通信信号等の論理を示す波形図である。  FIG. 3 is a waveform diagram showing logic of a communication signal and the like.
第 4図はこの発明の実施の形態 1による通信回路を示す構成図である ο  FIG. 4 is a configuration diagram showing a communication circuit according to Embodiment 1 of the present invention.
第 5図は通信信号等の論理を示す波形図である。 発明を実施するための最良の形態  FIG. 5 is a waveform diagram showing logic of a communication signal and the like. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明をより詳細に説明するために、 この発明を実施するた めの最良の形態について、 添付の図面に従って説明する。  Hereinafter, in order to explain this invention in greater detail, the preferred embodiments of the present invention will be described with reference to the accompanying drawings.
実施の形態 1 . Embodiment 1
第 4図はこの発明の実施の形態 1による通信回路を示す構成図であり 、 図において、 2 1はエアバッグの展開制御装置であるメイン E C U ( セン夕装置) 、 2 2はメイン E C U 2 1 と電流通信を実施するサテライ トセンサ、 2 3は車両に加わる加速度を検出し、 それに応じた信号を出 力する Gセンサ、 2 4および 2 5はメイン E C U 2 1 とサテライ トセン サ 2 2を電気的に接続する電力供給線と接地線、 2 6は電力供給線 2 4 から電力の供給を受け、 5 Vの安定化電圧を生成して、 サテライ トセン サ 2 2の各構成要素に電力を供給する電源回路、 2 7は Gセンサ 2 3か ら出力される加速度信号をディジ夕ル加速度信号に変換し、 該信号の論 理を反転しスィ ツチング素子 2 8に出力するマイコン、 2 8はマイコン 2 7により制御されるスイ ッチング素子、 2 9は電流制限抵抗、 3 0は 保護抵抗である。 3 1は例えば 1 2 Vの安定化電圧を生成して、 サテライ トセンサ 2 3 等に電力を供給する安定化電源、 3 2は電力供給線 2 4に流れる電流を 検出するための電流検出用抵抗、 3 3は電流検出用抵抗 3 2の両端に発 生する電圧を増幅する差動増幅器、 3 4は基準電圧 V r e f を発生する 電圧発生器、 3 5は差動増幅器 3 3の出力電圧と基準電圧 V r e f を比 較するコンパレー夕、 3 6はコンパレー夕 3 5の出力電圧を読み取るマ イコン、 3 7はエアバヅグ 3 8を展開させるための点火回路、 3 8は衝 突時に乗員を保護するェアバッグである。 FIG. 4 is a configuration diagram showing a communication circuit according to the first embodiment of the present invention. In the figure, 21 is a main ECU (sensing device) which is an airbag deployment control device, and 22 is a main ECU 21 Satellite sensor that performs current communication with the vehicle, 23 detects the acceleration applied to the vehicle, and outputs a signal in accordance with that acceleration.G sensors 24 and 25 electrically connect the main ECU 21 and the satellite sensor 22. Power supply line and ground line connected to the power supply, and 26 receive power from the power supply line 24, generate a regulated voltage of 5 V, and supply power to each component of the satellite sensor 22 A power supply circuit 27 converts the acceleration signal output from the G sensor 23 into a digitized acceleration signal, a microcomputer that inverts the logic of the signal and outputs the inverted signal to the switching element 28, and 28 a microcomputer 2 Switching element controlled by 7, 29 current limit Anti, 3 0 is a protective resistor. 31 is a stabilized power supply for generating a stabilized voltage of, for example, 12 V and supplying power to the satellite sensor 23 and the like, and 32 is a current detecting resistor for detecting a current flowing through the power supply line 24 , 33 is a differential amplifier for amplifying the voltage generated across the current detection resistor 32, 34 is a voltage generator for generating the reference voltage V ref, and 35 is the output voltage of the differential amplifier 33. A comparator for comparing the reference voltage V ref, 36 is a microcomputer for reading the output voltage of the comparator 35, 37 is an ignition circuit for deploying the air bag 38, and 38 is for protecting the occupant at the time of collision It is a hair bag.
次に動作について説明する。  Next, the operation will be described.
サテライ トセンサ 2 2がメイン E C U 2 1に対して加速度信号を送信 する場合、 サテライ トセンサ 2 2のマイコン 2 7が S C I送信端子から 加速度信号を出力する。  When the satellite sensor 22 transmits an acceleration signal to the main ECU 21, the microcomputer 27 of the satellite sensor 22 outputs an acceleration signal from the SCI transmission terminal.
S C I送信端子から出力された加速度信号は、 保護抵抗 3 0を介して 外部割り込み端子に入力され、 マイコン 2 7は外部割り込み端子の状態 が変化すると (Hレベル Lレベル、 Lレベル— Hレベル) 、 第 5図の ように反転端子の出力レベルを変化させる。  The acceleration signal output from the SCI transmission terminal is input to the external interrupt terminal via the protection resistor 30. When the state of the external interrupt terminal changes (H level L level, L level-H level), the microcomputer 27 As shown in Fig. 5, the output level of the inverting terminal is changed.
スィ ツチング素子 2 8は、 S C I送信端子が Hレベル (反転端子が L レベル) のとき閧状態になるため、 第 5図に示すように、 電力供給線 2 4には通常の消費電流 I 0のみが流れる。 一方、 S C I送信端子が Lレ ベル (反転端子が Hレベル) のとき閉状態になり電流制限抵抗 2 9に電 流が流れるため、 第 5図に示すように、 電力供給線 2 4に流れる電流 I 1は通常の消費電流 I 0よりも増加する。  Since the switching element 28 enters the state when the SCI transmitting terminal is at the H level (the inverting terminal is at the L level), the power supply line 24 has only the normal current consumption I 0 as shown in FIG. Flows. On the other hand, when the SCI transmitting terminal is at the L level (the inverting terminal is at the H level), it closes and the current flows through the current limiting resistor 29, and as shown in FIG. I1 is larger than the normal current consumption I0.
したがって、 メイン E C U 2 1におけるコンパレー夕 3 5は S C I送 信端子が Hレベル (反転端子が Lレベル) のとき、 差動増幅器 3 3の出 力電圧 V 0が基準電圧 V r e f より小さい旨を示す比較結果を出力し、 S C I送信端子が Lレベル (反転端子が Hレベル) のとき、 差動増幅器 3 3の出力電圧 V 1が基準電圧 V r e f より大きい旨を示す比較結果を 出力する。 Therefore, the comparator 35 in the main ECU 21 indicates that the output voltage V 0 of the differential amplifier 33 is smaller than the reference voltage V ref when the SCI transmission terminal is at the H level (the inversion terminal is at the L level). Outputs the comparison result. When the SCI transmission terminal is at L level (the inversion terminal is at H level), the differential amplifier 33 Outputs the comparison result indicating that the output voltage V1 of 3 is higher than the reference voltage Vref.
よって、 メイ ン E C U 2 1は、 サテライ トセンサ 2 2の加速度信号を 認識することができる。  Therefore, the main ECU 21 can recognize the acceleration signal of the satellite sensor 22.
以上で明らかなように、 この実施形態によれば、 S C I送信端子から 出力される通信信号の論理を反転し、 該反転信号をスィ ツチング素子 2 8のゲ一ト端子に出力するマイコン 2 7を設けるように構成したので、 上記従来例のように反転パヅファ 1 8を搭載することなく、 サテライ ト センサ 2 2の通信信号をメイ ン E C U 2 1 に送信することができる効力 を奏する。 産業上の利用可能性  As is clear from the above, according to this embodiment, the microcomputer 27 that inverts the logic of the communication signal output from the SCI transmission terminal and outputs the inverted signal to the gate terminal of the switching element 28 is used. Since it is configured to be provided, the communication signal of the satellite sensor 22 can be transmitted to the main ECU 21 without mounting the inversion buffer 18 as in the conventional example described above. Industrial applicability
以上のように、 この発明に係る通信回路は、 サテライ トセンサ内の G センサが検出した車両に加わる加速度をセン夕装置に対して伝達するェ ァバッグシステムに適している。  As described above, the communication circuit according to the present invention is suitable for an airbag system that transmits acceleration applied to a vehicle detected by a G sensor in a satellite sensor to a sensor device.

Claims

請 求 の 範 囲 The scope of the claims
1 . セン夕装置と電力供給線および接地線を介して接続されたサテライ トセンサが上記電力供給線にデータを重畳して、 上記セン夕装置と通信 を行う通信システムにおいて、 S C I送信端子から出力される通信信号 の論理を反転し、 該反転信号を出力して上記電力供給線に流れる電流を 制御するマイクロコンビュー夕を上記サテライ トセンサに設けたことを 特徴とする通信システム。 1. A satellite sensor connected to the transmitter and receiver via a power supply line and a ground line superimposes data on the power supply line and outputs the data from the SCI transmission terminal in the communication system that communicates with the transmitter and receiver. A communication system, comprising: a micro-computer for inverting the logic of a communication signal, and outputting the inverted signal to control a current flowing through the power supply line, in the satellite sensor.
PCT/JP2000/003784 2000-06-09 2000-06-09 Communication system WO2001095519A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/003784 WO2001095519A1 (en) 2000-06-09 2000-06-09 Communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/003784 WO2001095519A1 (en) 2000-06-09 2000-06-09 Communication system

Publications (1)

Publication Number Publication Date
WO2001095519A1 true WO2001095519A1 (en) 2001-12-13

Family

ID=11736136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003784 WO2001095519A1 (en) 2000-06-09 2000-06-09 Communication system

Country Status (1)

Country Link
WO (1) WO2001095519A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135367A (en) * 2011-12-27 2013-07-08 Dx Antenna Co Ltd Low-frequency signal receiving device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738474A (en) * 1993-07-21 1995-02-07 Casio Comput Co Ltd Full duplex communication method
JPH09321810A (en) * 1996-05-28 1997-12-12 Denso Corp Serial data communication system
JPH1168626A (en) * 1997-08-26 1999-03-09 Fujitsu Ten Ltd Current signal communication circuit utilizing power line

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738474A (en) * 1993-07-21 1995-02-07 Casio Comput Co Ltd Full duplex communication method
JPH09321810A (en) * 1996-05-28 1997-12-12 Denso Corp Serial data communication system
JPH1168626A (en) * 1997-08-26 1999-03-09 Fujitsu Ten Ltd Current signal communication circuit utilizing power line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135367A (en) * 2011-12-27 2013-07-08 Dx Antenna Co Ltd Low-frequency signal receiving device

Similar Documents

Publication Publication Date Title
US6205383B1 (en) Method and apparatus for transmitting digital data from a measurement station of an occupant protection system in a motor vehicle to an air bag control unit
US8041482B2 (en) Seat sensor system
US20050109111A1 (en) Sensor and method of transmitting sensor data
US20020038947A1 (en) Occupant detecting apparatus capable of improving detection accuracy
WO1998037488A1 (en) Vehicle safety system with safety device controllers
GB2248332A (en) Vehicle occupant protective system
US20050109935A1 (en) Sensor and method of transmitting data in multiple protocols
US20030155754A1 (en) Air bag activation device
US7576445B2 (en) Power supply arrangement for providing an output signal with a predetermined output signal level
US7273229B2 (en) Apparatus for driving on-vehicle occupant-protecting airbag device
JP4029744B2 (en) Data communication system and occupant protection device
US20100241317A1 (en) Activation device for passenger protection system and acceleration sensor module therefor
WO2001095519A1 (en) Communication system
JP2002029365A (en) Actuator control method
JP2004284452A (en) Airbag system
JP2002067846A (en) Two-way data transmission device unit thereof air bag device, and seat belt takeup device
US20110074140A1 (en) Control unit and method for controlling occupant protection means for a vehicle
US20090030577A1 (en) Seat Occupancy Sensor Assembly
EP1621411A1 (en) Seat sensor system
JP3457515B2 (en) Occupant protection device
JP3229358B2 (en) Waveform shaping circuit
JP2001174567A (en) Object detector and occupant detection system
JP2001004653A (en) Acceleration detector
JP3158611B2 (en) Occupant protection device drive circuit
JP4118438B2 (en) Control system for occupant protection devices

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase