WO2001095388A1 - Supporting container and semiconductor manufacturing and inspecting device - Google Patents

Supporting container and semiconductor manufacturing and inspecting device Download PDF

Info

Publication number
WO2001095388A1
WO2001095388A1 PCT/JP2001/004822 JP0104822W WO0195388A1 WO 2001095388 A1 WO2001095388 A1 WO 2001095388A1 JP 0104822 W JP0104822 W JP 0104822W WO 0195388 A1 WO0195388 A1 WO 0195388A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic substrate
plate
support container
supporting
container
Prior art date
Application number
PCT/JP2001/004822
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuji Hiramatsu
Yasutaka Ito
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000292837A external-priority patent/JP2002064133A/en
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Publication of WO2001095388A1 publication Critical patent/WO2001095388A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Definitions

  • the present invention mainly relates to a support container constituting a hot plate (ceramic heater), an electrostatic chuck, a wafer prober, etc. used as a device for manufacturing or inspecting a semiconductor, and a semiconductor manufacturing / inspection device using the same.
  • the present invention relates to a support container and a semiconductor manufacturing / inspection apparatus which constitute a semiconductor manufacturing / inspection apparatus having a high cooling rate.
  • a typical example of a semiconductor chip is to slice a silicon single crystal to a predetermined thickness to produce a silicon wafer, It is manufactured by forming various circuits and the like on this silicon wafer.
  • a heater for heating such a silicon wafer a heater provided with a resistance heating element such as an electric resistor on the back side of an aluminum substrate has been frequently used.
  • a thickness of about 15 mm is required, which increases the weight and is bulky, making it difficult to handle.
  • the temperature controllability is insufficient from the viewpoint of the ability to follow the current flowing through the silicon. It was not easy to heat the wafer uniformly.
  • a ceramic heater using a ceramic such as aluminum nitride as a substrate has recently been developed.
  • These heaters are excellent in mechanical properties such as bending strength, so that their thickness can be reduced, and their heat capacity can be reduced, so that they are excellent in various properties such as temperature followability.
  • it is required to reduce the time required for the throughput, and there is a strong demand for shortening not only the heating time but also the cooling time.
  • a ceramic substrate functioning as a heater is installed in a supporting container to form a hot plate unit, and when cooling the hot plate unit, a cooling mechanism is used.
  • a refrigerant for forced cooling is supplied to the support container to forcibly cool the ceramic substrate.
  • the present invention has been made in order to solve the above-described problems, and provides a support container for improving the cooling rate of a ceramic substrate having a resistance heating element, and a semiconductor manufacturing / inspection apparatus using the support container. With the goal.
  • a first aspect of the present invention is a support container for supporting a ceramic substrate, comprising: a plate-shaped body functioning as a bottom plate or a heat shield plate, wherein a plurality of openings are formed in the plate-shaped body. It is a supporting container characterized by the following.
  • a support container for supporting a ceramic substrate comprising a substantially cylindrical outer frame portion and a plate-like body, wherein the plate-like body has a plurality of openings. It is a supporting container.
  • a semiconductor manufacturing / inspection apparatus using such a supporting container is also one of the present invention.
  • a plurality of openings are formed in the plate-like body functioning as a bottom plate or a heat shield plate, and the heat capacity of the plate-like body is reduced, and the cooling medium This makes it possible to increase the cooling rate by facilitating the discharge of water.
  • the heat shield in the present invention is a functional expression, and the plate-like body basically functions as a heat shield unless there is another heat shield.
  • the bottom plate and ceramics If there is a heat shield plate that blocks 100% heat between the heat sink and the substrate, the bottom plate will not be called a heat shield plate but will be called a bottom plate.
  • the bottom plate also functions as a heat shield.
  • the midsole refers to the case where the midsole is provided inside the outer frame and other than the bottom, and does not assume the presence of the bottom. Further, the bottom plate indicates a case where the bottom plate is formed at the bottom of the outer frame portion.
  • the plate-shaped body may be a bottom plate or an intermediate bottom plate. Further, both the bottom plate and the middle bottom plate may be used.
  • the support container of the first aspect of the present invention does not have to be provided with an outer frame portion, for example, a ceramic substrate is fixed to a plate-like body via another member. However, it may have an outer frame portion. Further, the semiconductor manufacturing / inspection apparatus of the present invention may be such that the ceramic substrate is supported and fixed to the outer frame portion of the first and second supporting containers of the present invention.
  • the plate-shaped body is connected and fixed to the substantially cylindrical outer frame portion. This is because the strength of the entire support container and the form stability are improved.
  • the relationship between the projected area SA of the plate-shaped body and the total area S of the openings provided in the plate-shaped body is preferably 0.33 ⁇ SZSA, and more preferably 0.1 ⁇ SZSA. .
  • the ratio of the total area of the openings By setting the ratio of the total area of the openings to 3% or more, the heat capacity of the plate-like body can be reduced, and the cooling medium that has exchanged heat with the ceramic substrate can be easily discharged, thereby improving the cooling rate. Because it can be.
  • the opening is a hybrid of two or more types of openings having different diameters. This is because the distortion of the plate-like body can be reduced by combining the opening having a relatively large diameter and the opening having a relatively small diameter. If the plate is distorted, the entire support container will be distorted, lowering the flatness of the surface of the ceramic substrate, Uniform heating is hindered. In addition, when the plate used as the heat shield is distorted, the heat is not reflected uniformly, making the heating surface temperature of the ceramic substrate non-uniform and hindering uniform heating of the semiconductor wafer.
  • the cooling medium is supplied from a cooling medium supply port provided in the plate.
  • the cooling medium may be a liquid or a gas, but is preferably a gas from the viewpoint of preventing a short circuit of the resistance heating element.
  • the gas include an inert gas such as nitrogen, argon, helium, and chlorofluorocarbon, and air.
  • the liquid include water and ethylene glycol.
  • a third aspect of the present invention is a support container for supporting a ceramic substrate, comprising a plate-like body functioning as a bottom plate or a heat shield plate, and the weight M (kg) of the support container and the ceramic substrate.
  • the relationship of the diameter L (mm) of the support container is ML / 200.
  • a fourth aspect of the present invention is a support container for supporting a ceramic substrate, comprising a bottom plate or a plate-like body functioning as a heat shield plate and an accessory, and a total weight TM of the support container and the accessory component. (kg) and the diameter L (mm) of the ceramic substrate are TM ⁇ 3 (L / 200) 2 .
  • a fifth invention provides a support container for supporting a ceramic substrate, comprising a substantially cylindrical outer frame portion and a plate-like body, wherein the weight of the support container is M (kg) and the diameter of the ceramic substrate is L.
  • the relationship (mm) is 00, which is a support container.
  • a sixth aspect of the present invention is a support container for supporting a ceramic substrate, comprising a substantially cylindrical outer frame portion, a plate-like body, and accessories, and a total weight TM (kg) of the support container and the accessories. ) And the diameter L (mm) of the ceramic substrate are TM ⁇ 3 (L / 200) 2 .
  • the third to sixth semiconductor manufacturing / inspection apparatuses using the support container according to the present invention are also one of the present invention.
  • the weight of the supporting container is defined as M (kg) and the diameter of the ceramic substrate L (mm) such that the relational expression of M ⁇ L / 200 is satisfied.
  • the weight M and the diameter L of the ceramic substrate are set. The reason why both are set in this way is that the smaller the weight of the supporting container, the smaller the heat capacity, the faster the cooling, the lower the radiant heat from the supporting container, and the more difficult the cooling of the ceramic substrate. This is because there is nothing to do.
  • the upper limit of the weight M of the supporting container is set to be a function of the diameter of the ceramic substrate.
  • the ceramic substrate is fixed to the plate-like body via another member. It may be provided with an outer frame part. Further, in the semiconductor manufacturing and inspection apparatus according to the third to sixth aspects of the present invention, a ceramic substrate may be supported and fixed to an outer frame portion of the support container.
  • the outer frame portion or the outer frame portion and the plate-like body are provided with accessory parts, and the total weight TM (kg) of the support container and the accessory parts and the ceramic substrate are provided.
  • the relationship between the diameters L (mm) is TM ⁇ 3 (L / 200) 2 .
  • the upper limit of the total weight T M of the supporting container and the accessory is set to be a function of the diameter of the ceramic substrate.
  • the weight M (kg) of the support container refers to the total weight of the substantially cylindrical outer frame portion and the plate-like body
  • the total weight TM (kg) of the support container and accessories is substantially cylindrical shape.
  • one or more selected from the cooling medium supply port, cooling medium exhaust port, cooling medium suction port, sleeve, heat insulating ring, and power control component (thermostat etc.) Is the total weight of the accessories. It is not necessary to provide all of these accessories, and if they are, Add to the weight.
  • the total weight of the supporting container and accessories is a problem because when the temperature of the heating surface of the ceramic substrate suddenly drops, the time required for returning the temperature to the original temperature (recovery time) is shortened. This is the case.
  • the temperature may temporarily deviate upward from the set temperature (overshoot), and this overshoot must be minimized.
  • the cooling time is largely determined only by the outer shell of the supporting vessel (plate or body such as the bottom plate or mid-bottom plate and the outer frame) .
  • the outer shell of the supporting vessel plate or body such as the bottom plate or mid-bottom plate and the outer frame.
  • the plate-like body is connected and fixed to the substantially cylindrical outer frame portion. This is because the strength of the entire support container and the form stability are improved.
  • a method of reducing the weight of the support container a method of providing an opening in a plate-like body and adopting a method in which the thickness of each member constituting the support container is set to 0.1 to 5 mm is adopted. it can. If the thickness of the supporting vessel exceeds 5 mm, the heat capacity becomes too large.
  • a plurality of openings are formed in the plate-shaped body constituting the support container, and in the third to sixth aspects of the present invention, the weight M (kg) or the support
  • the weight M of the supporting container and the ceramic material satisfy the relationship of 0 or 3 (L / 200) 2 between the total weight TM of the container and the accessory and the diameter L (mm) of the ceramic substrate.
  • the substrate diameter L is set.
  • the supporting container is defined as described above is to increase the temperature drop rate of the semiconductor manufacturing / inspection apparatus.
  • the opening is formed in the plate-shaped body, It is desirable that the relation between the weight M (kg) of the container or the total weight TM of the supporting container and the accessory satisfies the above relational expression.
  • the first, third and fourth supporting containers according to the present invention do not have the outer frame portion, but as described above, these supporting containers have the outer frame portion. Is desirable.
  • other configurations are substantially the same. Therefore, in the following, the above-mentioned six inventions and the semiconductor manufacturing / inspection apparatus using the supporting container according to these inventions will be summarized and described as one invention. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 (a) is a cross-sectional view schematically showing a hot plate which is an example of the semiconductor manufacturing / inspection apparatus of the present invention
  • FIG. 1 (b) is a schematic view showing the bottom of a heat shielding member constituting a support container.
  • FIG. 2 is a plan view of the hot plate shown in FIG.
  • FIG. 3A is a cross-sectional view schematically showing another embodiment of a hot plate which is an example of the semiconductor manufacturing / inspection apparatus of the present invention
  • FIG. 3B is a sectional view showing a heat shield plate constituting a supporting container. It is a perspective view which shows typically.
  • FIG. 4A is a vertical sectional view schematically showing a ceramic substrate constituting the electrostatic chuck according to the present invention
  • FIG. 4B is a sectional view taken along line AA of the ceramic substrate shown in FIG. It is.
  • FIG. 5 is a horizontal sectional view schematically showing another example of the ceramic substrate constituting the electrostatic chuck according to the present invention.
  • FIG. 6 is a horizontal sectional view schematically showing still another example of the ceramic substrate constituting the electrostatic chuck according to the present invention.
  • FIG. 7 is a sectional view schematically showing a ceramic substrate constituting a wafer prober which is an example of the semiconductor manufacturing / inspection apparatus of the present invention.
  • FIG. 8 is a plan view schematically showing the ceramic substrate shown in FIG.
  • FIG. 9 is a cross-sectional view taken along line AA of the ceramic substrate shown in FIG.
  • 10 (a) to 10 (d) are cross-sectional views schematically showing a part of a method for manufacturing a hot plate, which is an example of the semiconductor manufacturing / inspection apparatus of the present invention.
  • FIG. 11 (a) is a cross-sectional view schematically showing a hot plate which is an example of the semiconductor manufacturing and inspection apparatus of the present invention
  • FIG. 11 (b) is a heat shield member (middle) constituting a support container.
  • FIG. 4 is a perspective view schematically showing a bottom plate).
  • FIG. 12 (a) is a cross-sectional view schematically showing a hot plate which is an example of the semiconductor manufacturing / inspection apparatus of the present invention
  • FIG. 12 (b) shows the bottom of the heat shield member constituting the support container. It is a perspective view which showed typically
  • (c) is explanatory drawing which showed typically the mode which forms a thermostat. Explanation of reference numerals
  • FIG. 1A is a longitudinal sectional view schematically showing a hot plate which is an example of the semiconductor manufacturing / inspection apparatus of the present invention
  • FIG. 1B is a perspective view showing the bottom of a heat shield member (heat shield plate).
  • FIG. FIG. 2 is a plan view of the semiconductor manufacturing / inspection apparatus shown in FIG. 1.
  • the hot plate 40 includes, for example, a ceramic substrate 41 and a support container 10 as shown in FIG. On the surface (bottom surface) of the disc-shaped ceramic substrate 41, a plurality of resistance heating elements 42 having a concentric circular shape in a plan view are formed, and a bottomed hole 44, a through hole 45, and the like are formed. In order to measure the temperature of the ceramic substrate 41, a temperature measuring element 47 to which a lead wire 46 is connected is embedded in the bottomed hole 44.
  • the ceramic substrate 41 is fitted on the upper portion of a substantially cylindrical support container 10 via an insulating ring 15 having an L-shaped cross section.
  • the support container 10 has an annular substrate receiving portion 13 that supports the ceramic substrate 41 and the heat insulating ring 15 inside the substantially cylindrical outer frame portion 11.
  • the heat insulating ring 15 and the ceramic substrate 41 are fixed by a substrate receiving portion 13 and a fixing bracket 17 via bolts 18. That is, a fixing bracket 17 is attached to the bolt 18 and the ceramic substrate 41 or the like is pressed and fixed.
  • a heat shield member (heat shield plate) 16 having a plurality of openings 16 a for preventing heat radiation may be connected and fixed to the outer frame portion 11.
  • the heat shield member (heat shield plate) 16 may be fixed via bolts or the like, may be integrally formed with the outer frame portion 11, or may be fixed by welding or the like.
  • the outer frame portion 11 may be constituted by a heat insulating ring.
  • the heat shield plate 16 is not necessarily a plate-like body, but may be a bottomed cylindrical member in which the plate-like body and the cylindrical member are integrated.
  • control device containing a control device, a power supply, and the like is provided below the support container 10, and the conductive wires 48 and the lead wires 46 are connected to the control device in the control device. .
  • a heat shield plate 16 is provided between the control device and the ceramic substrate 41. Further, a radiation fin may be interposed between the control device and the hot plate 40 as required.
  • the temperature and the like of the ceramic substrate 41 can be accurately controlled, and the silicon wafer W can be uniformly heated to a target temperature.
  • the control device is also protected from the heat of the hot plate 40, and can operate normally.
  • the outer frame portion 11 and the heat shield plate 16 are made of metal, specifically, at least one metal selected from stainless steel, aluminum alloy, copper, steel, nickel, and noble metal. Is desirable. This is because metal has high thermal conductivity and low specific heat, so it is easy to cool, and does not hinder cooling of the ceramic substrate 41 by radiant heat.
  • the thickness of the members (the outer frame portion 11 and the heat shield plate 16) constituting the support container 10 is preferably 0.1 to 5 mm. If the thickness is less than 0.1 mm, the strength is poor, and if it exceeds 5 mm, the heat capacity increases.
  • the total weight of the outer frame 11 and the heat shield 16, that is, the weight M (kg) of the support container 10 is a function of the diameter L (mm) of the ceramic substrate 41, and M ⁇ 200. M is If it exceeds L / 200, the heat capacity will increase, and radiant heat will be generated from the outer frame 11 and the heat shield 16, causing the ceramic substrate 41 to shine and prevent the ceramic substrate 41 from lowering in temperature. I do.
  • the cooling time of the ceramic substrate 41 is substantially determined by the weight M of the outer frame portion 11 and the heat shield plate 16.
  • the total weight TM (kg) of the weight M of the outer frame 11 and the heat shield 16 plus the weight of the accessory parts is a function of the diameter L (mm) of the ceramic substrate 41, and TM ⁇ 3 ( L / 200) 2 is desirable. If TM exceeds 3 (L / 200) 2 , radiant heat from the insulation ring (insulation material) 5 and the above-mentioned accessories cannot be ignored, and the temperature measuring element cannot measure the temperature accurately, and the recovery time will be longer. However, the overshoot temperature may be too high.
  • the relationship between the projected area SA of the heat shield plate 16 (that is, the area of the bottom when there is no opening 16a) and the total area S of the openings 16a provided in the plate-like body is 0.03 SZSA. .
  • the total opening area is less than 3%, it is difficult to discharge the cooling medium that has contacted with the ceramic substrate 41 and exchanged heat, and the heat capacity of the heat shield plate also becomes large.
  • the diameter of one opening 16a (average diameter or length of one side in the case of an ellipse or square) is preferably 1 to 5 Omm. If the diameter of the opening 16a is less than 1 mm, it is difficult to discharge the cooling medium, and if it exceeds 5 Omm, it cannot function as a heat shield.
  • the openings 16a are desirably arranged evenly on the heat shield plate 16, as shown in FIG. 1 (b).
  • the openings 16a have different diameters (for example, 30mm, 10mm, 8mm). mm). This is because distortion of the heat shield plate 16 due to the opening 16a can be minimized. If the openings 16a are only large, the rigidity of the heat shield plate 16 will decrease and be distorted.However, the rigidity of the heat shield plate 16 is prevented from decreasing by coexisting the large and small openings. And distortion can be minimized.
  • the resistance heating elements 42 are provided on the bottom surface as described above. Are connected via a solder layer, and a socket 49 having a conductive wire 48 is attached to the external terminal 43.
  • a through hole 45 for inserting a lifter pin (not shown) is formed in a portion near the center of the ceramic substrate 41, and a guide tube 12 communicating with the through hole 45 is provided with a heat shield plate. It is installed in 16.
  • the supporting container 10 includes a substantially cylindrical outer frame portion 11 and an annular substrate receiving portion 13 provided inside the outer frame portion 11, and these are integrally formed. . Further, on the bottom surface of the outer frame 11, a bottomed cylindrical heat shield member (heat shield plate 16) is installed.
  • the substrate receiving portion 13 supports the ceramic substrate 41 fitted via the heat insulating ring 15.
  • the heat shield plate 16 is provided with a refrigerant supply pipe 19 so that a cooling medium such as cooling air can be introduced when cooling the ceramic substrate 41.
  • a number of apertures 16a are provided for discharging cooling air. Therefore, after the ceramic substrate 41 is heated, a cooling medium is supplied from the refrigerant supply pipe 19 and is discharged from the opening 16a while cooling the ceramic substrate 41, whereby the ceramic substrate 41 is quickly cooled. Can be cooled.
  • the heat insulating ring 15 is desirably made of at least one resin selected from polyimide resin, fluorine resin, and benzimidazole resin, or a fiber-reinforced resin.
  • Fiber-reinforced resin is glass fiber Resins in which one is dispersed can be cited. Since the fiber-reinforced resin softens even when the temperature rises and the ceramic substrate does not tilt, the separation distance can be accurately secured when the silicon wafer is heated from the heating surface.
  • the resistance heating element 42 When the semiconductor manufacturing / inspection apparatus (hot plate) of the present invention is operated, the resistance heating element 42 generates heat and the temperature of the ceramic substrate 41 rises, but the temperature measuring element buried inside the ceramic substrate 41. 4 7 measures the temperature of the ceramic substrate 41, the measured data is input to the control device through the lead wire 46, and the applied voltage (current) is controlled, so that the temperature of the ceramic substrate 41 is constant. Is controlled by
  • FIG. 3 (a) is a cross-sectional view showing a hot plate according to another embodiment
  • (b) is a perspective view schematically showing the heat shield plate shown in (a).
  • a cylindrical portion 22 to which the radiation fins 22d are attached may be extended below the support container 20.
  • the hot plate 30 can be cooled more quickly.
  • the total weight TM includes the outer frame 21 including the radiating fins 22 d, the bottom plate (heat shield 26), the refrigerant supply port 19, the sleeve (guide tube 12), the heat insulation Total weight of ring 15
  • the outer diameter of the cylindrical portion 22 provided at the lower portion of the support container 20 is large enough to fit into the radiation fin, so that the control device and the power supply are not required.
  • the hot plate 30 can be installed on the housed control device via the radiation fins 22d. Then, by the action of the radiation fins 22 d, the temperature of the lower control device does not become high, but is kept close to room temperature. The configuration of the hot plate 30 shown in FIG. 3 will be described later in detail.
  • FIG. 11 (a) is a cross-sectional view schematically showing a hot plate having an insole plate (heat shield plate) inside, and (b) is a schematic view of the insole plate shown in (a). It is a perspective view shown in FIG.
  • This hot plate 110 has the same configuration as the hot plate 40 shown in FIG. 1 except that an inner bottom plate 116 is provided inside the support container 10.
  • the midsole plate 1 1 6 is made of metal plate panel 1 1 2
  • the metal plate panel 1 1 2 is fixed to the heat shield plate (bottom plate) 16 with screws.
  • the midsole plate 116 supported in this way does not contact the outer frame portion 11 due to thermal expansion and does not distort the outer frame portion 11.
  • the midsole plate 1 16 functions as a heat shield plate.
  • a plurality of openings 1 17 are formed in the midsole plate 1 16, and the openings 1 17 serve to exhaust the heat-exchanged refrigerant and to reduce the heat capacity of the midsole plate 1 16.
  • the openings 117 are desirably of different diameters (for example, 30 mm, 10 mm, 8 mm) as shown. If the openings 1 17 are made too large, the rigidity of the midsole plate 1 16 will be reduced, and the distortion will occur.The coexistence of a large opening and a small opening prevents the rigidity of the midsole plate 1 16 from decreasing. To minimize distortion.
  • Fig. 12 (a) is a cross-sectional view schematically showing a hot plate having a thermostat, a refrigerant exhaust pipe (refrigerant exhaust port), and a refrigerant supply pipe (refrigerant supply port) on the bottom plate. () Is a perspective view schematically showing the bottom plate shown in (a), and (c) is an explanatory view showing how the thermostat is fixed in the opening.
  • the hot plate 120 has a thermostat 121 in an opening 16 a formed in the heat shield plate 16, and a refrigerant exhaust pipe (refrigerant exhaust port) 124 in the heat shield plate 16. Other than being formed, it is configured almost similarly to the hot plate 40 shown in FIG.
  • the thermostat 12 1 is disposed on the support plate 12 2, and the support plate 1 2 ′ 2 on which the thermostat 12 1 is disposed is a heat shield plate (bottom plate).
  • the screw is fixed to the opening of 16 with screws 1 2 3.
  • the thermostat 121 is provided on the heat shield plate (bottom plate) 16
  • some trouble occurs in the temperature measuring element 47 or the control device, and the ceramic plate is not used.
  • the circuit between the power supply and the resistance heating element 42 can be cut off to prevent the ceramic substrate 41 from overheating.
  • the total weight TM is the outer frame portion 11, the heat shield plate (bottom plate) 16, the refrigerant supply pipe (refrigerant supply port) 19, and the refrigerant exhaust pipe (refrigerant exhaust port). )
  • the resistance heating element embedded in the ceramic substrate is made of a metal such as a noble metal (gold, silver, platinum, palladium), tanda stainless steel, molybdenum, nickel, or tungsten. It is desirable to be made of a conductive ceramic such as carbide of molybdenum. This is because the resistance value can be increased, the thickness itself can be increased for the purpose of preventing disconnection, etc., and it is not easily oxidized, and the thermal conductivity is not easily reduced. These may be used alone or in combination of two or more.
  • the resistance heating element needs to make the temperature of the entire ceramic substrate uniform, a concentric pattern as shown in FIG. 2 or a combination of a concentric pattern and a curved pattern is preferable.
  • the thickness of the resistance heating element is desirably 1 to 50 ⁇ m, and the width thereof is desirably 5 to 20 mm.
  • the resistance value can be changed by changing the thickness and width of the resistance heating element, but this range is the most practical.
  • the resistance value of the resistance heating element becomes thinner and becomes larger as it becomes thinner.
  • a resistance heating element is provided inside as shown in Fig. 3, the distance between the heating surface 31a and the resistance heating element 32 will be short, and the uniformity of the surface temperature will be reduced. 3 2 It is necessary to increase the width of itself. Further, since the resistance heating element 32 is provided inside the ceramic substrate 31, it is not necessary to consider the adhesion to the nitride ceramic or the like. Also, if the resistance heating element 42 is provided on the surface (bottom 4 lb), the distance between the heating surface 41a and the resistance heating element 42 becomes longer, and the uniformity of the surface temperature is improved. be able to. In addition, since the heat exchange can be performed by bringing the cooling medium into direct contact with the resistor, rapid temperature reduction can be achieved.
  • the resistance heating element may have a rectangular, elliptical, spindle-shaped or kettle-shaped cross section, but is preferably flat. This is because the flattened surface tends to radiate heat toward the heated surface, so that the amount of heat transmitted to the heated surface can be increased, and the temperature distribution on the heated surface is difficult.
  • the resistance heating element may have a spiral shape.
  • the resistance heating element be formed in an area of up to 50% in the thickness direction from the bottom surface. This is to prevent the occurrence of temperature distribution on the heating surface and to uniformly heat the silicon wafer.
  • a conductive paste made of metal or conductive ceramic.
  • a resistance heating element is formed on the bottom surface of a ceramic substrate, usually, after firing, a ceramic substrate is manufactured, and then the above-mentioned conductor paste layer is formed on the surface of the ceramic substrate, followed by firing. Form the body.
  • the resistance heating element 32 is formed inside the ceramic substrate as shown in FIG. 1, after forming the conductive paste layer on the green sheet, the green sheet is laminated and fired. A resistance heating element is formed inside.
  • the conductive paste is not particularly limited, but preferably contains not only metal particles or conductive ceramic particles for ensuring conductivity, but also a resin, a solvent, a thickener, and the like.
  • Examples of the material of the metal particles and the conductive ceramic particles include those described above.
  • the particle size of these metal particles or conductive ceramic particles is preferably from 0.1 to 10 ⁇ . If it is too small, less than 0.1 / zm, it is liable to be oxidized. On the other hand, if it exceeds 100 ⁇ m, sintering becomes difficult and the resistance value becomes large.
  • the shape of the metal particles may be spherical or scaly. When these metal particles are used, the metal particles may be a mixture of the above-mentioned spherical particles and the above-mentioned scaly particles.
  • the metal particles are flakes or a mixture of spheroids and flakes This is advantageous because the metal oxide between metal particles can be easily held, the adhesion between the resistance heating element and the ceramic substrate can be ensured, and the resistance value can be increased.
  • Examples of the resin used for the conductor paste include an acrylic resin, an epoxy resin, and a phenol resin.
  • Examples of the solvent include isopropyl alcohol.
  • Examples of the thickener include cellulose and the like.
  • a metal oxide is added to the conductor paste in addition to the metal particles, and the metal particles and the metal oxide are sintered. It is preferable to use In this way, by sintering the metal oxide together with the metal particles, the ceramic substrate and the metal particles can be more closely adhered.
  • the metal oxide for example, lead oxide, zinc oxide, silica, boron oxide (B 2 0 3), alumina, even without less selected from the group consisting of yttria and Chitayua one is preferred.
  • These oxides can improve the adhesion between the metal particles and the ceramic substrate without increasing the resistance value of the resistance heating element.
  • the ratio of the lead oxide, zinc oxide, silica, boron oxide (B 2 O 3 ), alumina, yttria, and titaure is as follows, when the total amount of metal oxide is 100 parts by weight, 1 ⁇ 10, silica 1 ⁇ 30, boron oxide 5 ⁇ 50, zinc oxide 20 ⁇ 70, alumina 1 ⁇ : L0, yttria 1 ⁇ 50, titaure 1 ⁇ 50 and the total is adjusted so as not to exceed 100 parts by weight. Is preferred.
  • the adhesion to the ceramic substrate can be particularly improved.
  • the amount of the metal oxide added to the metal particles is preferably 0.1% by weight or more and less than 10% by weight.
  • the area resistivity when the resistance heating element is formed using the conductor paste having such a configuration is preferably 1 to 45 ⁇ / port.
  • the area resistivity exceeds 45 ⁇ 1 ⁇ , the amount of heat generated will be too large for the applied voltage, and in a ceramic substrate for a semiconductor device provided with a resistive heating element on the surface, the amount of heat generated will be controlled. Because it is difficult. If the addition amount of the metal oxide is 10% by weight or more, the sheet resistivity exceeds 5 ⁇ , and the calorific value becomes too large, so that the temperature control becomes difficult and the temperature distribution becomes poor. Will occur.
  • a metal coating layer is preferably formed on the surface of the resistance heating element. This is to prevent the resistance value from changing due to oxidation of the internal metal sintered body.
  • the thickness of the metal coating layer to be formed is preferably 0.1 to 10 ⁇ m.
  • the metal used for forming the metal coating layer is not particularly limited as long as it is a non-oxidizing metal, and specific examples include gold, silver, palladium, platinum, nickel, and the like. These may be used alone or in combination of two or more. Of these, nickel is preferred.
  • the resistance heating element When the resistance heating element is formed inside the ceramic substrate, no coating is required because the surface of the resistance heating element is not oxidized.
  • the ceramic substrate that constitutes the above-described semiconductor manufacturing / inspection apparatus is provided with a resistance heating element, has a function as a heater, and is capable of heating a target to be heated such as a semiconductor wafer. Can be heated to temperature.
  • a ceramic substrate provided with a resistance heating element has been described as an example of the conductor layer.
  • the conductor layer is not limited to the resistance heating element.
  • a chuck top conductor layer is formed on the surface, and a guard electrode and ground electrode are formed inside.
  • electrostatic electrodes and RF electrodes are formed inside a ceramic substrate.
  • the material of the ceramic substrate 31 constituting the semiconductor manufacturing / inspection apparatus of the present invention is not particularly limited, and examples thereof include a nitride ceramic, a carbide ceramic, and an oxide ceramic.
  • nitride ceramic examples include metal nitride ceramics, for example, aluminum nitride, silicon nitride, boron nitride, and the like.
  • carbide ceramic examples include metal carbide ceramics, for example, silicon carbide, zirconium carbide, tantalum carbide, and the like.
  • oxide ceramic examples include metal oxide ceramics, for example, alumina, zirconia, cordierite, and mullite.
  • These ceramics may be used alone or in combination of two or more.
  • nitride ceramics and carbide ceramics are more preferable than oxide ceramics. This is because the thermal conductivity is high.
  • Aluminum nitride is the most preferable among the nitride ceramics. This is because the thermal conductivity is the highest at 180 W / m ⁇ K.
  • the ceramic material may contain a sintering aid.
  • the sintering aid include alkali metal oxides, alkaline earth metal oxides, and rare earth oxides.
  • C a O, Y 2 0 3, N a 2 0, L it 2 0, R b 2 O is preferred.
  • Their content is preferably 0.1 to 10% by weight. Further, it may contain alumina.
  • the ceramic substrate for a semiconductor device according to the present invention preferably has a brightness of N6 or less as a value based on the provisions of JIS Z8721. This is because those having such brightness have excellent radiation heat quantity and concealability. In addition, such a ceramic substrate can accurately measure the surface temperature by means of a thermoviewer.
  • N is the ideal black lightness
  • 0 is the ideal white lightness
  • 10 is the perceived brightness of the color between these black lightness and white lightness.
  • Each color is divided into 10 so as to have a uniform rate, and is indicated by symbols N0 to N10.
  • the actual measurement is performed by comparing the color charts corresponding to NO to N10. In this case, the first decimal place is 0 or 5.
  • Ceramic substrates having such characteristics include carbon in the ceramic substrate. It is obtained by containing 50 to 500 ppm. There are two types of carbon, amorphous and crystalline. Amorphous carbon can suppress a decrease in the volume resistivity of a ceramic substrate at high temperatures, and crystalline carbon can be a ceramic. Since the decrease in the thermal conductivity of the substrate at a high temperature can be suppressed, the type of carbon can be appropriately selected according to the purpose of the substrate to be manufactured. As amorphous carbon, for example, hydrocarbons consisting only of C, H, and O, preferably, saccharides can be obtained by calcining in air. Graphite powder or the like can be used.
  • carbon can be obtained by thermally decomposing the acrylic resin in an inert atmosphere (nitriding gas, argon gas) and then heating and pressurizing it.
  • an inert atmosphere nitriding gas, argon gas
  • the acid value of the acrylic resin must be changed.
  • the degree of crystallinity amorphousness
  • the ceramic substrate for a semiconductor device of the present invention preferably has a disk shape, preferably has a diameter of 200 mm or more, and most preferably 250 mm or more.
  • Disc-shaped ceramic substrates for semiconductor devices are required to have uniform temperature, but the larger the diameter of the substrate, the more likely the temperature will be non-uniform.
  • the thickness of the ceramic substrate for a semiconductor device of the present invention is preferably 50 mm or less, more preferably 20 mm or less. Also, 1 to 10 mm is optimal.
  • the thickness is too small, warping at high temperatures is likely to occur, and if the thickness is too large, the heat capacity becomes too large and the temperature rise / fall characteristics deteriorate.
  • the porosity of the ceramic substrate for a semiconductor device of the present invention is desirably 0 or 5% or less. This is because a decrease in thermal conductivity at high temperatures and the occurrence of warpage can be suppressed.
  • the ceramic substrate for a semiconductor device of the present invention can be used at 200 ° C. or higher.
  • thermocouple in a bottomed hole formed in a ceramic substrate. This is because the temperature of the resistance heating element can be measured with a thermocouple, and the temperature can be controlled by changing the voltage and current based on the data.
  • thermocouple metal wires The size of the junction of the above-mentioned thermocouple metal wires is the same as the strand diameter of each metal wire. It is better to be larger and less than 0.5 mm. With such a configuration, the heat capacity of the junction is reduced, and the temperature is accurately and quickly converted to a current value. For this reason, the temperature controllability is improved, and the temperature distribution on the heated surface of the semiconductor wafer is reduced.
  • thermocouple examples include K-type, R-type, B-type, E-type, J-type, and T-type thermocouples, as described in JIS-C-162 (1980). Can be
  • FIG. 3 (a) is a cross-sectional view schematically showing another embodiment of a hot plate which is an example of a semiconductor manufacturing / inspection apparatus of the present invention
  • FIG. 3 (b) is a heat shield constituting a support container. It is the perspective view which showed the board typically.
  • the hot plate 30 is composed of a ceramic substrate 31 and a supporting container 20.
  • the ceramic substrate 31 has a resistance heating element 32 formed therein, and is provided directly below an end of the resistance heating element 32.
  • a through hole 39 is formed, and a cushion 29 as a cushioning member is fitted into a blind hole 38 that exposes the through hole 39, and is fixed with a brazing material or the like.
  • a conductive wire 33 is inserted into the center hole of the washer 29, and is fixed with a brazing material or the like.
  • the ceramic substrate 31 having such a configuration is fitted to the upper portion of the support container 20 via the heat insulating ring 15.
  • the support container 20 includes a substantially cylindrical outer frame portion 21, and a ring-shaped substrate receiving portion 23 and a heat-shielding plate receiving portion 24 provided on the inner upper and lower portions of the outer frame portion 21, respectively. And these are integrally formed.
  • an upper annular portion 2 2 b and a lower annular portion 22 c are connected via a middle portion 22 a having a heat radiation fin 22 d.
  • the part 22 is present, and the diameter of the cylindrical part of the intermediate part 22 a is smaller than that of the outer frame part 21.
  • the cylindrical portion 22 is separated from the outer frame portion 21 and the like, and is extended so as to be detachable. Therefore, the cylindrical portion 22 is connected with bolts and the like together with the heat shield plate 26. It is supported and fixed to the heat shield plate receiving portion 24 via the member 27.
  • the internal structure, wiring, etc. of the heat shield plate 26 are substantially the same as those of the hot plate 40 shown in FIG. 1, but the opening 26 a is set larger than the hot plate shown in FIG. .
  • a control device is provided below the cylindrical portion 22 having the radiation fins 2 2 d.
  • a conductive wire 33 and a lead wire 36 are connected to a control device in the control device.
  • the resistance heating element 32 When the hot plate 40 is operated, the resistance heating element 32 generates heat and the temperature of the ceramic substrate 31 rises. However, the ceramic substrate 31 is embedded by the temperature measuring element 37 embedded in the ceramic substrate 31. The temperature of 1 is measured, the measured data is input to the control device, and the amount of applied voltage (current) is controlled, so that the temperature of the ceramic substrate 31 is controlled to a constant value.
  • the cylindrical portion 22 can be attached to a control device, the control device and the power supply are housed, and the semiconductor manufacturing / inspection device of the present invention can be installed on the control device.
  • the lower control device can be kept at almost normal temperature.
  • the size of the fitting portion can be the same as that of the conventional one, so that the apparatus main body may be left as it is.
  • the heat shield plate 26 has a large number of openings 26a, the heat capacity of the plate-like body can be reduced, and the cooling medium can be easily discharged, thereby improving the cooling speed. Can be.
  • the hot plate has been described as an example of the semiconductor manufacturing and inspection apparatus of the present invention.
  • Specific examples of the semiconductor manufacturing / inspection apparatus of the present invention include, in addition to the above hot plate, an electrostatic chuck, a wafer prober, a susceptor, and the like.
  • the hot plate is a device in which only a resistance heating element is provided on the surface or inside of a ceramic substrate, and can heat an object to be heated such as a semiconductor wafer to a predetermined temperature.
  • an electrostatic electrode when provided as a conductive layer inside a ceramic substrate constituting the semiconductor manufacturing / inspection apparatus of the present invention, it functions as an electrostatic check.
  • FIG. 4A is a longitudinal sectional view schematically showing a ceramic substrate used for an electrostatic chuck
  • FIG. 4B is a sectional view taken along line AA of the ceramic substrate shown in FIG.
  • chuck positive and negative electrode layers 62 and 63 are buried inside the ceramic substrate 61 and connected to through holes 680 respectively, and a ceramic dielectric film 64 is formed on the electrode. Are formed.
  • a resistance heating element 66 and a through hole 68 are provided inside the ceramic substrate 61 so that an object to be heated such as a silicon wafer 29 can be heated.
  • an RF electrode may be embedded in the ceramic substrate 61 as necessary.
  • the ceramic substrate 61 is usually formed in a circular shape in plan view, and the semi-circular portion 6 shown in (b) is formed inside the ceramic substrate 61.
  • the chuck positive electrode electrostatic layer 6 2 composed of 2 a and the comb tooth part 6 2 b
  • the chuck negative electrode electrostatic layer 6 3 also composed of the semicircular part 6 3 a and the comb tooth part 6 3 b Tooth
  • the ceramic substrate having such a configuration is fitted into a support container having substantially the same structure and function as the support container 10 shown in FIG. 1, and operates as an electrostatic chuck.
  • the plus side and one side of the wiring extending from the DC power supply in the control device are connected to the chuck positive electrode electrostatic layer 62 and the chuck negative electrode electrostatic layer 63, and a DC voltage is applied.
  • the semiconductor wafer mounted on the electrostatic chuck is electrostatically attracted and various processing can be performed on the semiconductor wafer.
  • FIGS. 5 and 6 are horizontal cross-sectional views schematically showing electrostatic electrodes of a ceramic substrate constituting another electrostatic chuck.
  • a ceramic substrate is used in the ceramic substrate for an electrostatic chuck shown in FIG. 5.
  • a semi-circular chuck positive electrode electrostatic layer 2 1 2 and a chuck negative electrode electrostatic layer 2 13 are formed inside 2 1 1.
  • the ceramic substrate for the electrostatic chuck shown in FIG. Chuck positive electrode electrostatic layer 2 2 2a, 2 2 b and chuck negative electrode electrostatic layer 2 2 3a, 2 2
  • 3b is formed.
  • two positive electrode electrostatic layers 2 2 2a, 2 2 2b and The two chuck negative electrode electrostatic layers 223a and 223b are formed so as to cross each other.
  • the number of divisions is not particularly limited, and may be five or more, and the shape is not limited to a sector.
  • a check conductor layer is provided on the surface of a ceramic substrate constituting a semiconductor manufacturing / inspection apparatus of the present invention, and a guard electrode or a ground electrode is provided as an internal conductor layer, it functions as a wafer proper.
  • FIG. 7 is a cross-sectional view schematically showing one embodiment of a ceramic substrate constituting the wafer prober according to the present invention
  • FIG. 8 is a plan view thereof
  • FIG. 9 is a plan view of the wafer shown in FIG.
  • FIG. 3 is a sectional view taken along line AA in the prober.
  • concentric grooves 8 are formed on the surface of a ceramic substrate 3 having a circular shape in plan view, and a plurality of suction holes 9 for sucking a silicon wafer are provided in a part of the grooves 8.
  • the check conductor layer 2 for connecting to the electrode of the silicon wafer is formed in a circular shape on most of the ceramic substrate 3 including the groove 8.
  • a resistance heating element 51 having a concentric circular shape in a plan view is provided in order to control the temperature of the silicon wafer.
  • external terminals are connected and fixed to both ends of the resistance heating element 51.
  • a guard electrode 6 and a ground electrode 7 having a lattice shape as shown in FIG. 9 are provided in order to remove a stray capacitor noise.
  • Reference numeral 52 indicates an electrode non-formed portion. The reason why such a rectangular electrode non-formed portion 52 is formed inside the guard electrode 6 is that the upper and lower ceramic substrates 3 sandwiching the guard electrode 6 are firmly bonded.
  • the ceramic substrate having such a configuration is fitted into a support container having a structure substantially similar to that shown in FIG. 1, and operates as a wafer prober.
  • a probe card having tester pins is pressed against the silicon wafer, and a voltage is applied while heating and cooling to conduct a continuity test. What to do Can be.
  • FIGS. 10 (a) to (d) are cross-sectional views schematically showing steps of manufacturing a ceramic substrate having a resistance heating element inside a ceramic substrate constituting a semiconductor manufacturing / inspection apparatus of the present invention. .
  • a paste is prepared by mixing nitride ceramic powder with a binder, a solvent, and the like, and a green sheet is prepared using the paste.
  • ceramic powder aluminum nitride or the like can be used, and if necessary, a sintering aid such as yttria may be added. Further, when producing a green sheet, crystalline or amorphous carbon may be added.
  • binder at least one selected from an acrylic binder, ethyl cellulose, butyl cellosolve, and polyvinyl alcohol is desirable.
  • solvent at least one selected from ⁇ -terbineol and glycol is desirable.
  • a paste obtained by mixing these is formed into a sheet by a doctor blade method to produce a green sheet 50.
  • the thickness of the green sheet 50 is preferably 0.1 to 5 mm.
  • the obtained green sheet is provided, as necessary, with a portion serving as a through hole for inserting a support pin for supporting a silicon wafer, and a bottomed hole for embedding a temperature measuring element such as a thermocouple. And a portion 390 serving as a through hole for connecting the resistance heating element to the external terminal is formed.
  • the above-described processing may be performed after forming a green sheet laminate described later, or the above-described processing may be performed after forming a sintered body.
  • a conductive paste containing a metal paste or a conductive ceramic is printed on the green sheet 50 to form a conductive paste layer 320.
  • These conductive pastes contain metal particles or conductive ceramic particles. Have been.
  • the average particle diameter of the metal particles such as tungsten particles or molybdenum particles is preferably 0.1 to 5 ⁇ . If the average particle size is less than 0.1 l / zm or more than 5 ⁇ m, it is difficult to print the conductive paste.
  • a conductive paste for example, 85 to 87 parts by weight of metal particles or conductive ceramic particles; at least one kind selected from atarinole-based, etinoresenorelose, butylcellosonolep, and polybutyl alcohol 1.5 to 10 parts by weight of a binder; and 1.5 to 10 parts by weight of a composition (paste) in which at least one solvent selected from ⁇ -terbineol and glycol is mixed.
  • the green sheet 50 not printed with the conductor paste manufactured in the above step (1) is laminated on and under the dull sheet 50 printed with the conductor paste layer 320 formed in the above step (2) (see FIG. 10 (a)).
  • the number of green sheets 50 stacked on the upper side is made larger than the number of green sheets 50 stacked on the lower side, and the formation position of the resistance heating element 32 is eccentric toward the bottom.
  • the number of stacked upper dust sheets 50 is 20 to 50, and the number of stacked lower green sheets 50 is 5 to 20.
  • the green sheet laminate is heated and pressurized to sinter the green sheet 50 and the conductive paste therein to produce a ceramic substrate 31 (FIG. 10 (b)).
  • the heating temperature is preferably from 1,000 to 2000 ° C.
  • the pressure is preferably from 10 to 20 MPa (100 to 200 kg / cm 2 ). Heating is performed in an inert gas atmosphere.
  • the inert gas for example, argon, nitrogen, and the like can be used.
  • the obtained ceramic substrate 31 is provided with a bottomed hole (not shown) for inserting a temperature measuring element and a blind hole 38 for inserting an external terminal (FIG. 10 (c)).
  • the bottomed hole and the blind hole 38 can be formed by blasting such as drilling or sand blasting after surface polishing.
  • a washer 29 made of conductive ceramic or the like is fitted into the through hole 38 exposed from the blind hole 38, and the conductive wire 33 is connected using a gold solder or the like (FIG. 10 (d)).
  • the heating temperature is preferably from 90 to 450 ° C. in the case of soldering, and from 900 to 110 ° C. in the case of processing with brazing material.
  • a thermocouple as a temperature measuring element is sealed with a heat-resistant resin to make a ceramic substrate for a hot plate.
  • the obtained ceramic substrate is fitted through a heat insulating ring 15 into a support container 20 having a structure as shown in FIG. 3, and wiring from the temperature measuring element 37 such as a thermocouple and the resistance heating element 32 is connected. Then, fit the cylindrical part, etc. into the heat radiation fin of the control device equipped with the heat radiation fin, or attach it to the control device, and connect the wiring with the control device below.
  • the heat shield plate 26 of the support container is formed by forming a circular plate or the like with a metal and then punching out the same to form an opening.
  • a silicon wafer or the like is placed on the hot plate, or after the silicon wafer or the like is held by support pins, an object to be heated such as a silicon wafer is heated and various operations are performed. be able to.
  • a ceramic substrate for electrostatic chuck can be manufactured by providing an electrostatic electrode inside the ceramic substrate, and a chuck top conductor layer is provided on a heating surface, By providing a guard electrode and a ground electrode inside a ceramic substrate, a ceramic substrate for a wafer prober can be manufactured.
  • a conductive paste layer may be formed on the surface of the green sheet as in the case of forming the resistance heating element.
  • a conductor layer is formed on the surface of the ceramic substrate, a sputtering method or a plating method can be used, and these may be used in combination.
  • this granular powder was placed in a mold having a hexagonal cross section, and formed into a hexagonal flat plate to obtain a green body (green).
  • a disk having a diameter of 21 Omm was cut out from the sintered body to obtain a ceramic plate (ceramic substrate).
  • this plate is drilled to form a through hole for inserting the support pins of the semiconductor wafer and a bottomed hole for embedding the thermocouple (diameter: 1.1 mm, depth: 2 mm).
  • a conductor paste was printed by screen printing on the bottom surface of the sintered body obtained in (3) above.
  • the printing pattern was concentric.
  • Solvent PS603D manufactured by Tokuka Chemical Laboratory, which is used to form through holes in printed wiring boards, was used.
  • This conductor paste is a silver-lead paste, and based on 100 parts by weight of silver, lead oxide (5% by weight), zinc oxide (55% by weight), silica (10% by weight), It contained 7.5 parts by weight of a metal oxide consisting of nitrogen (25% by weight) and alumina (5% by weight).
  • the silver particles had a mean particle size of 4.5 ⁇ and were scaly.
  • the ceramic substrate on which the conductor paste is printed is heated and baked at 780 ° C to sinter the silver and lead in the conductor paste and bake them on a sintered body, thereby forming a resistance heating element.
  • the silver-lead lead resistance heating element 32 had a thickness of 5 ⁇ , a width of 2.4 mm, and a sheet resistivity of 7.7 ⁇ / port.
  • Silver-lead solder paste (manufactured by Tanaka Kikinzoku Co., Ltd.) was printed by screen printing on the part where external terminals for securing connection to the power supply were to be formed, forming a solder paste layer.
  • an external terminal made of Kovar is placed on the solder paste layer, heated and reflowed at 420 ° C, the external terminal is attached to the surface of the resistance heating element, and then a socket having a conductive wire is connected to the external terminal. Attached.
  • thermocouple for temperature control into the bottomed hole, fill with polyimide resin
  • the outer frame portion and the heat shield plate are made of stainless steel having a diameter of 220 mm and a thickness of 1.5 mm, and the heat insulating ring 15 is made of a fluorine resin reinforced with glass fiber. Porto 18, fixture 17 and refrigerant supply pipe 19 are also made of stainless steel. Further, the heat shield plate 16 is provided with an opening having a diameter of 10 to 4 Omm, and the area ratio of the opening is 15% (Example 1), 30% (Example 2), 50% (Example 3). , 8% (Example 4) and 3% (Example 6).
  • the total weight including the support container and accessories (total of the outer frame 11, heat shield plate 16, heat insulation ring 15, sleeve (guide pipe 12), and refrigerant supply pipe 19) TM 0.96 kg (Example 1), 0.86 kg (Example 2), 0.78 kg (Example 3), 0.99 kg (Example 4), 1.03 kg (Example Example 6) and 1.05 kg (Example 9).
  • a refrigerant exhaust pipe exhaust port
  • Example 5 is basically similar to Example 1, except that the diameter of the opening is 2 Omm (Example 5) and 10 mm (Examples 7 and 8), and the opening of the heat shield plate 16 is Area ratio of The difference is that the ratio is 30% (Example 5) and 5% (Examples 7 and 8), and the thickness of the heat shield is 3 mm.
  • Example 7 an insole plate having openings (diameter 30 mm, 1 Omm, 8 mm) as shown in FIG. 11 was used.
  • the total weight including the supporting container and accessories (the outer frame portion 11, the heat shield plate 16, the midsole plate (only in the seventh embodiment), the heat insulating ring) 1,5, sleeve (guide tube 1 2) and refrigerant supply tube 19 total 1.42 kg (Example 5), 2.57 kg (Example 7), 3.72 kg (Example 8) ) And became heavy. Details of the weight of the supporting container are shown in Table 1.
  • Example 1 Manufacture of a hot plate in which an opening was not formed in a heat shield plate Basically, it was the same as in Example 1, except that no opening was provided and an exhaust port was formed in an outer frame portion. Weight (total of outer frame part 11, heat shield plate 16, heat insulation ring 15, sleep, exhaust port, refrigerant supply pipe 19) was 3.70 kg.
  • Example 1 After the same hot plate as that of Example 1 was manufactured, the hot plate was naturally cooled without introducing any refrigerant into the supporting container of the hot plate.
  • Example 17 it is the same as Example 1, except that the diameter of the ceramic substrate is 31 Omm.
  • the outer frame portion and the heat shield plate are made of stainless steel having a diameter of 320 mm and a thickness of 1.5 mm, and the heat insulating ring 15 is made of a fluororesin reinforced with glass fiber.
  • the refrigerant supply pipe 19 and the exhaust port are also made of stainless steel.
  • the heat shield plate 16 is provided with an opening having a diameter of 8 to 3 Omm, and the area ratio of the opening is 10% (Example 10), 31% (Example 11), 51% (Example Examples 12), 8% (Example 13), 3% (Example 14), 5% (Examples 15 and 16), and 0% (Example 17).
  • Example 15 an inner bottom plate having an opening as shown in FIG. 11 was used. Further, as shown in FIG. 12, a plurality of openings having different diameters were formed.
  • the total weight including the support container and accessories is 2. 3 1 kg (Example 10), 1.76 kg (Example 11), 1.50 kg (Example 1) Example 12), 2.76 kg (Example 13), 2.91 kg (Example 17), 7.OO kg (Example 15), 7.80 kg (Example 16), 3. 0 1 kg (Example 17).
  • an exhaust port was formed in the outer frame portion. Comparative Example 3 was the same as Example 17 except that the thickness of the outer frame portion and the heat shield plate was set to 2. Omm. Details such as the weight of the supporting container are described in Table 1.
  • the time required to decrease the temperature from 200 ° C to 25 ° C was measured.
  • a silicon wafer at 25 ° C was placed in a state where the silicon wafer was heated to 140 ° C, and the time until the temperature of the silicon wafer recovered to 140 ° C was measured.
  • Example 12 1.5 51 50 10 1.55 0.73 7.21 1.50 2 35 0.3
  • Example 14 ⁇ . ⁇ 3 10 32 1.55 1.15 7.21 2.91 3 35 0.3 Example 15 1.5 5 10 51 1.55 1.45 7.21 7.00 3 40 0.4 Example 16 1.5 5 10 51 1.55 1.45 7.21 7.80 ⁇ 60 1.0
  • the temperature reduction time can be reduced from 5 minutes to 3 minutes by forming an opening of 3% or more in the bottom plate (heat shield plate).
  • the heat-fall time can be shortened by the presence of the heat shield plate (middle bottom plate).
  • Example 7 shows that if the weight of the supporting container itself and the weight of the accessory exceed 3 (L / 200) 2 , the recovery time and the overshoot temperature are affected. Further, from Example 9 and Comparative Example 1, when the weight of the support container exceeds L / 200, the cooling rate is reduced regardless of the presence or absence of the opening. In other words, the dominant factor in the cooling rate is not the opening but the weight of the supporting vessel.
  • Example 15 Comparing Example 17 with Example 14, it can be seen that at an aperture ratio of 3% or more, the temperature drop rate can be improved. Example 15 also shows that the midsole plate has the effect of improving the cooling rate.
  • Example 16 and 17 it can be seen that when the weight of the supporting container itself and the weight of the accessory parts exceed 3 (LZ200) 2 , the recovery time and the overshoot temperature are affected. Further, from Example 17 and Comparative Example 3, when the weight of the supporting container exceeds LZ 200, the cooling rate is reduced regardless of the presence or absence of the opening. In other words, the controlling factor of the cooling rate is not the opening but the weight of the supporting container. .
  • the warpage of the ceramic substrate of Examples 10 and 16 was measured using a shape measuring device (Nexip), and it was 9 m in Example 10 and was 9 m in Example 16. 15 / x ni.
  • the opening ratio of the bottom plate is higher in the tenth embodiment, the amount of warpage is larger in the sixteenth embodiment. This is presumed to be because in Example 10, the openings having a plurality of diameters were formed, so that the distortion of the bottom plate was small, and as a result, the distortion of the supporting container could be prevented.
  • the main factor that determines the cooling rate is the weight of the supporting vessel, and the opening ratio is a secondary factor.
  • the cooling rate is significantly reduced.
  • the temperature reduction rate can be improved only by controlling the weight of the opening and the supporting container, and a device having a simple structure and low cost can be obtained.
  • the recovery time and the overshoot temperature are affected by the total weight of the supporting container and the accessory parts, and it is possible to improve the temperature controllability by reducing the total weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A supporting container (10) used for a semiconductor manufacturing and inspecting device capable of decreasing a temperature at a high speed and supporting a ceramic substrate (41), comprising a tabular body (16) functioning as a thermal insulating plate, characterized in that a plurality of openings (16a) are formed in the tabular body.

Description

明細書  Specification
支持容器および半導体製造■検査装置 技術分野  Support container and semiconductor manufacturing / inspection equipment
本発明は、 主に、 半導体の製造用や検査用の装置として用いられるホットプ レート (セラミックヒータ) 、 静電チャック、 ウェハプローバなどを構成する 支持容器およびこれを用いた半導体製造 ·検査装置に関し、 特には、 冷却速度 が速い半導体製造■検査装置を構成する支持容器および半導体製造 ·検査装置 に関する。 背景技術  The present invention mainly relates to a support container constituting a hot plate (ceramic heater), an electrostatic chuck, a wafer prober, etc. used as a device for manufacturing or inspecting a semiconductor, and a semiconductor manufacturing / inspection device using the same. In particular, the present invention relates to a support container and a semiconductor manufacturing / inspection apparatus which constitute a semiconductor manufacturing / inspection apparatus having a high cooling rate. Background art
半導体製品は、 種々の産業において必要とされる極めて重要な製品であり、 その代表的製品である半導体チップは、 例えば、 シリコン単結晶を所定の厚さ にスライスしてシリコンウェハを作製した後、 このシリコンウェハ上に種々の 回路等を形成することにより製造される。  Semiconductor products are extremely important products that are required in various industries.A typical example of a semiconductor chip is to slice a silicon single crystal to a predetermined thickness to produce a silicon wafer, It is manufactured by forming various circuits and the like on this silicon wafer.
この種の回路等を形成するには、 シリコンウェハ上に、 感光性樹脂を塗布し、 これを露光、 現像処理した後、 ポストキュアさせたり、 スパッタリングにより 導体層を形成する工程が必要である。 このためには、 シリコンウェハを加熱す る必要がある。  In order to form such a circuit, a process of applying a photosensitive resin on a silicon wafer, exposing and developing the resin, post-curing, or forming a conductor layer by sputtering is required. This requires heating the silicon wafer.
かかるシリコンウェハを加熱するためのヒータとして、 従来から、 アルミ二 ゥム製の基板の裏側に電気的抵抗体等の抵抗発熱体を備えたものが多用されて いたが、 アルミニウム製の基板は、 厚さ 1 5 mm程度を要するので、 重量が大 きくなり、 また、 嵩張るために取扱いが容易ではなく、 さらに、 通電電流に対 する温度追従性という観点でも温度制御性が不充分であり、 シリコンウェハを 均一に加熱することは容易ではなかった。  Conventionally, as a heater for heating such a silicon wafer, a heater provided with a resistance heating element such as an electric resistor on the back side of an aluminum substrate has been frequently used. A thickness of about 15 mm is required, which increases the weight and is bulky, making it difficult to handle.In addition, the temperature controllability is insufficient from the viewpoint of the ability to follow the current flowing through the silicon. It was not easy to heat the wafer uniformly.
そこで、 最近では、 窒化アルミニウム等のセラミックを基板として用いたセ ラミックヒータが開発されている。 これらのヒータでは、 曲げ強度等の機械的 特性に優れるため、 その厚さを薄くすることができ、 また、 熱容量を小さくす ることができるため、 温度追従性等の諸特性に優れる。 ところで、 近年の半導体製品の製造においては、 スループットに要する時間 の短縮化が'要求されており、 昇温時間のみならず、 冷却時間の短縮化の強い要 言 がある。 Therefore, a ceramic heater using a ceramic such as aluminum nitride as a substrate has recently been developed. These heaters are excellent in mechanical properties such as bending strength, so that their thickness can be reduced, and their heat capacity can be reduced, so that they are excellent in various properties such as temperature followability. By the way, in the recent manufacture of semiconductor products, it is required to reduce the time required for the throughput, and there is a strong demand for shortening not only the heating time but also the cooling time.
そこで、 半導体製造 ·検査装置では、 通常、 ヒータとして機能するセラミツ ク基板を支持容器に設置してホットプレートユニットとし、 このホットプレー トユニットの冷却を行う際には、 冷却機構を用い、 例えば、 支持容器に強制冷 却用の冷媒を供給して、 上記セラミック基板を強制冷却する。 発明の要約  Therefore, in a semiconductor manufacturing / inspection apparatus, usually, a ceramic substrate functioning as a heater is installed in a supporting container to form a hot plate unit, and when cooling the hot plate unit, a cooling mechanism is used. A refrigerant for forced cooling is supplied to the support container to forcibly cool the ceramic substrate. Summary of the Invention
しかしながら、 上記した構成のホットプレートユニット (半導体製造 '検査 装置) では、 支持容器に強制冷却用の冷媒を供給しても、 底板あるいは遮熱板 からの輻射熱のためセラミック基板の温度が充分に下がらないという問題があ つた。  However, in the hot plate unit (semiconductor manufacturing / inspection apparatus) having the above-described configuration, even when the cooling medium is supplied to the supporting container, the temperature of the ceramic substrate is sufficiently lowered due to radiant heat from the bottom plate or the heat shield plate. There was a problem that there was not.
本発明は、 上述した問題点を解決するためになされたもので、 抵抗発熱体を 有するセラミック基板の冷却速度を向上させる支持容器と該支持容器を用いた 半導体製造 ·検査装置とを提供することを目的とする。  The present invention has been made in order to solve the above-described problems, and provides a support container for improving the cooling rate of a ceramic substrate having a resistance heating element, and a semiconductor manufacturing / inspection apparatus using the support container. With the goal.
第一の本発明は、 セラミック基板を支持する支持容器であって、 底板あるい は遮熱板として機能する板状体を具備し、 該板状体に複数の開口が形成されて いることを特徴とする支持容器である。  A first aspect of the present invention is a support container for supporting a ceramic substrate, comprising: a plate-shaped body functioning as a bottom plate or a heat shield plate, wherein a plurality of openings are formed in the plate-shaped body. It is a supporting container characterized by the following.
第二の本発明は、 セラミック基板を支持する支持容器であって、 略円筒形状 の外枠部および板状体を具備し、 上記板状体には複数の開口が形成されている ことを特徴とする支持容器である。  According to a second aspect of the present invention, there is provided a support container for supporting a ceramic substrate, comprising a substantially cylindrical outer frame portion and a plate-like body, wherein the plate-like body has a plurality of openings. It is a supporting container.
このような支持容器を用いた半導体製造 ·検査装置も本発明の一つである。 このように、 第一おょぴ第二の本発明に係る支持容器では、 底板あるいは遮 熱板として機能する板状体に開口を複数形成し、 板状体の熱容量を小さくする とともに、 冷却媒体を排出しやすくすることで、 冷却速度を向上させることを 可能にしている。  A semiconductor manufacturing / inspection apparatus using such a supporting container is also one of the present invention. As described above, in the first and second supporting containers according to the present invention, a plurality of openings are formed in the plate-like body functioning as a bottom plate or a heat shield plate, and the heat capacity of the plate-like body is reduced, and the cooling medium This makes it possible to increase the cooling rate by facilitating the discharge of water.
なお、 本発明でいう遮熱板とは機能的な表現であり、 板状体は、 他に遮熱板 が存在しない限り、 基本的に遮熱板として機能する。 例えば、 底板とセラミツ ク基板との間に 1 0 0 %熱を遮断する遮熱板があれば、 底板は遮熱板と言えず 底板と呼ぶことになるが、 通常、 1 0 0 %遮熱することは少ないため、 底板も 遮熱板として機能する。 また、 中底板は、 外枠部の内部であって、 底部以外に 設けられた場合を指し、 底板の存在を前提とするわけではない。 さらに、 底板 は、 外枠部の底部に形成された場合を指す。 It should be noted that the heat shield in the present invention is a functional expression, and the plate-like body basically functions as a heat shield unless there is another heat shield. For example, bottom plate and ceramics If there is a heat shield plate that blocks 100% heat between the heat sink and the substrate, the bottom plate will not be called a heat shield plate but will be called a bottom plate. The bottom plate also functions as a heat shield. In addition, the midsole refers to the case where the midsole is provided inside the outer frame and other than the bottom, and does not assume the presence of the bottom. Further, the bottom plate indicates a case where the bottom plate is formed at the bottom of the outer frame portion.
上記板状体は、 底板であってもよく、 中底板であってもよい。 また、 底板と 中底板の両方であってもよい。  The plate-shaped body may be a bottom plate or an intermediate bottom plate. Further, both the bottom plate and the middle bottom plate may be used.
また、 第一の本発明の支持容器は、 外枠部を備えていることを条件とするも のではないので、 例えば、 板状体に他の部材を介してセラミック基板が固定さ れていてもよいが、 外枠部を具備するものであってもよい。 また、 本発明の半 導体製造 ·検査装置は、 このような第一および第二の本発明の支持容器の外枠 部にセラミック基板が支持固定されたものであってもよい。  In addition, since the support container of the first aspect of the present invention does not have to be provided with an outer frame portion, for example, a ceramic substrate is fixed to a plate-like body via another member. However, it may have an outer frame portion. Further, the semiconductor manufacturing / inspection apparatus of the present invention may be such that the ceramic substrate is supported and fixed to the outer frame portion of the first and second supporting containers of the present invention.
第二の本発明の支持容器においては、 上記板状体は、 上記略円筒形状の外枠 部に連結固定されていることが望ましい。 支持容器全体の強度の確保と形態安 定性が向上するからである。  In the support container according to the second aspect of the present invention, it is preferable that the plate-shaped body is connected and fixed to the substantially cylindrical outer frame portion. This is because the strength of the entire support container and the form stability are improved.
上記外枠部の内側には、 断熱リングを介して嵌め込まれたセラミック基板を 支持する円環形状の基板受け部を有することが望ましい。 セラミック基板と外 枠部との断熱を確保しつつ、 セラミック基板の保持安定性を向上させるためで ある。  It is desirable to have a ring-shaped substrate receiving portion for supporting the ceramic substrate fitted via the heat insulating ring inside the outer frame portion. This is to improve the holding stability of the ceramic substrate while ensuring heat insulation between the ceramic substrate and the outer frame.
上記板状体の投影面積 S Aおよび上記板状体に設けられた開口の合計面積 S の関係は、 0 . 0 3≤ S Z S Aであることが望ましく、 0 . 1≤S Z S Aであ ることがより望ましい。  The relationship between the projected area SA of the plate-shaped body and the total area S of the openings provided in the plate-shaped body is preferably 0.33 ≦ SZSA, and more preferably 0.1 ≦ SZSA. .
開口の合計面積の割合を 3 %以上とすることで、 板状体の熱容量を小さくす ることができ、 しかも、 セラミック基板と熱交換した冷却媒体が排出しやすく なり、 冷却速度を向上させることができるからである。  By setting the ratio of the total area of the openings to 3% or more, the heat capacity of the plate-like body can be reduced, and the cooling medium that has exchanged heat with the ceramic substrate can be easily discharged, thereby improving the cooling rate. Because it can be.
さらに、 上記開口は、 直径の異なる 2種類以上の開口の混成であることが望 ましい。 相対的に大きな直径の開口と小さな直径の開口とを組み合わせること で、 板状体の歪みを小さくすることができるからである。 板状体が歪むと支持 容器全体が歪み、 セラミック基板の表面の平坦性を低下させ、 半導体ウェハの 均一加熱を阻害してしまう。 また、 遮熱板として使用する板状体が歪んだ場合 は、 熱が均一に反射されず、 セラミック基板の加熱面温度を不均一にし、 半導 体ウェハの均一加熱を阻害する。 Further, it is desirable that the opening is a hybrid of two or more types of openings having different diameters. This is because the distortion of the plate-like body can be reduced by combining the opening having a relatively large diameter and the opening having a relatively small diameter. If the plate is distorted, the entire support container will be distorted, lowering the flatness of the surface of the ceramic substrate, Uniform heating is hindered. In addition, when the plate used as the heat shield is distorted, the heat is not reflected uniformly, making the heating surface temperature of the ceramic substrate non-uniform and hindering uniform heating of the semiconductor wafer.
上記冷却媒体は、 上記板状体に設けた冷却媒体供給口から供給される。 上記 冷却媒体は、 液体、 気体のどちらであってもよいが、 抵抗発熱体の短絡を防止 する観点から気体であることが望ましい。 気体としては、 例えば、 窒素、 アル ゴン、 ヘリウム、 フロンなどの不活性気体、 空気などが挙げられる。 また、 液 体としては、 例えば、 水、 エチレングリコールなどが挙げられる。  The cooling medium is supplied from a cooling medium supply port provided in the plate. The cooling medium may be a liquid or a gas, but is preferably a gas from the viewpoint of preventing a short circuit of the resistance heating element. Examples of the gas include an inert gas such as nitrogen, argon, helium, and chlorofluorocarbon, and air. Examples of the liquid include water and ethylene glycol.
第三の本発明は、 セラミック.基板を支持する支持容器であって、 底板あるい は遮熱板として機能する板状体を具備し、 上記支持容器の重量 M (k g) およ びセラミック基板の直径 L (mm) の関係は、 M L/ 200であることを特 徴とする支持容器である。  A third aspect of the present invention is a support container for supporting a ceramic substrate, comprising a plate-like body functioning as a bottom plate or a heat shield plate, and the weight M (kg) of the support container and the ceramic substrate. The relationship of the diameter L (mm) of the support container is ML / 200.
第四の本発明は、 セラミック基板を支持する支持容器であって、 底板あるい は遮熱板として機能する板状体とともに付属部品を具備し、 上記支持容器と付 属部品との総重量 TM (k g) およびセラミック基板の直径 L (mm) の関係 は、 TM≤ 3 (L/ 200) 2 であることを特徴とする支持容器である。 A fourth aspect of the present invention is a support container for supporting a ceramic substrate, comprising a bottom plate or a plate-like body functioning as a heat shield plate and an accessory, and a total weight TM of the support container and the accessory component. (kg) and the diameter L (mm) of the ceramic substrate are TM≤3 (L / 200) 2 .
第五の本発明は、 セラミック基板を支持する支持容器であって、 略円筒形状 の外枠部および板状体を具備し、 上記支持容器の重量 M (k g) およびセラミ ック基板の直径 L (mm) の関係は、 00であることを特徴とする 支持容器である。  A fifth invention provides a support container for supporting a ceramic substrate, comprising a substantially cylindrical outer frame portion and a plate-like body, wherein the weight of the support container is M (kg) and the diameter of the ceramic substrate is L. The relationship (mm) is 00, which is a support container.
第六の本発明は、 セラミック基板を支持する支持容器であって、 略円筒形状 の外枠部、 板状体および付属部品を具備し、 上記支持容器と付属部品との総重 量 TM (k g) およびセラミック基板の直径 L (mm) の関係は、 TM≤ 3 ( L/200) 2 であることを特徴とする支持容器である。 A sixth aspect of the present invention is a support container for supporting a ceramic substrate, comprising a substantially cylindrical outer frame portion, a plate-like body, and accessories, and a total weight TM (kg) of the support container and the accessories. ) And the diameter L (mm) of the ceramic substrate are TM ≦ 3 (L / 200) 2 .
なお、 上記第三〜第六の本発明に係る支持容器を用いた半導体製造 '検査装 置も本発明の一つである。  The third to sixth semiconductor manufacturing / inspection apparatuses using the support container according to the present invention are also one of the present invention.
第三および第五の本発明では、 支持容器の重量 M (k g) と、 セラミック基 板の直径 L (mm) との間で、 M≤L/200の関係式を満たすように、 支持 容器の重量 Mとセラミック基板の直径 Lとを設定している。 このように両者を設定したのは、 支持容器の重量が小さいほど熱容量が小さ く、 速く冷却させることができ、 支持容器からの輻射熱を低減させることが可 能となり、 セラミック基板の冷却が阻害されることがないからである。 According to the third and fifth aspects of the present invention, the weight of the supporting container is defined as M (kg) and the diameter of the ceramic substrate L (mm) such that the relational expression of M≤L / 200 is satisfied. The weight M and the diameter L of the ceramic substrate are set. The reason why both are set in this way is that the smaller the weight of the supporting container, the smaller the heat capacity, the faster the cooling, the lower the radiant heat from the supporting container, and the more difficult the cooling of the ceramic substrate. This is because there is nothing to do.
また、 セラミック基板の直径が大きくなると支持容器も大きくなるため、 重 量の上限もそれに伴い大きくなる。 このため、 支持容器の重量 Mの上限を、 セ ラミック基板の直径の関数となるように設定しているのである。  In addition, as the diameter of the ceramic substrate increases, the size of the supporting container also increases, so that the upper limit of the weight also increases accordingly. For this reason, the upper limit of the weight M of the supporting container is set to be a function of the diameter of the ceramic substrate.
なお、 第三および第四の本発明の支持容器は、 外枠部を備えていることを条 件とするものではないので、 例えば、 板状体に他の部材を介してセラミック基 板が固定されていてもよいが、 外枠部を具備するものであってもよい。 また、 第三〜第六の本発明に係る半導体製造,検査装置は、 上記支持容器の外枠部に セラミック基板が支持固定されたものであってもよい。  Since the third and fourth supporting containers of the present invention do not have to be provided with an outer frame portion, for example, the ceramic substrate is fixed to the plate-like body via another member. It may be provided with an outer frame part. Further, in the semiconductor manufacturing and inspection apparatus according to the third to sixth aspects of the present invention, a ceramic substrate may be supported and fixed to an outer frame portion of the support container.
また、 第四および第六の本発明では、 外枠部または外枠部と板状体とともに 付属部品を具備しており、 上記支持容器と付属部品との総重量 T M ( k g ) お よびセラミック基板の直径 L (mm) の関係は、 TM≤ 3 ( L / 2 0 0 ) 2 であ る。 In the fourth and sixth aspects of the present invention, the outer frame portion or the outer frame portion and the plate-like body are provided with accessory parts, and the total weight TM (kg) of the support container and the accessory parts and the ceramic substrate are provided. The relationship between the diameters L (mm) is TM≤3 (L / 200) 2 .
このように両者を設定したのは、 支持容器と付属部品との総重量が小さいほ ど、 やはり熱容量が小さくなり、 速く冷却させることができ、 支持容器からの 輻射熱を低減させることが可能となり、 セラミック基板の冷却が阻害されるこ とがないからである。  The reason why both were set in this way is that the smaller the total weight of the supporting container and the accessory parts, the smaller the heat capacity, the faster the cooling, the lower the radiant heat from the supporting container, This is because cooling of the ceramic substrate is not hindered.
また、 セラミック基板の直径が大きくなると支持容器も大きくなるため、 重 量の上限もそれに伴い大きくなる。 このため、 支持容器と付属部品との総重量 T Mの上限を、 セラミック基板の直径の関数となるように設定しているのであ る。  In addition, as the diameter of the ceramic substrate increases, the size of the supporting container also increases, so that the upper limit of the weight also increases accordingly. For this reason, the upper limit of the total weight T M of the supporting container and the accessory is set to be a function of the diameter of the ceramic substrate.
ここで、 上記支持容器の重量 M ( k g ) とは、 略円筒形状の外枠部および板 状体の総重量を指し、 支持容器および付属部品の総重量 T M ( k g ) とは、 略 円筒形状の外枠部および板状体の合計重量に加えて、 冷却媒体供給ポート、 冷 却媒体排気ポート、 冷却媒体吸引ポート、 スリーブ、 断熱リング、 電源制御部 品 (サーモスタット等) から選ばれる 1種以上の付属部品の合計重量である。 なお、 これらの付属部品を全て具備する必要はなく、 具備した場合にその分を 重量に加算するのである。 Here, the weight M (kg) of the support container refers to the total weight of the substantially cylindrical outer frame portion and the plate-like body, and the total weight TM (kg) of the support container and accessories is substantially cylindrical shape. In addition to the total weight of the outer frame part and the plate-shaped body, one or more selected from the cooling medium supply port, cooling medium exhaust port, cooling medium suction port, sleeve, heat insulating ring, and power control component (thermostat etc.) Is the total weight of the accessories. It is not necessary to provide all of these accessories, and if they are, Add to the weight.
また、 支持容器および付属部品の総重量が問題となるのは、 セラミック基板 の加熱面の温度が急激に低下した際に、 これを元の温度に戻すまでに要する時 間 (リカバリー時間) を短くしなければならない場合である。  Also, the total weight of the supporting container and accessories is a problem because when the temperature of the heating surface of the ceramic substrate suddenly drops, the time required for returning the temperature to the original temperature (recovery time) is shortened. This is the case.
また、 昇温した場合に、 設定温度から一時的に上方に外れることがあり (ォ 一バーシュート) 、 このオーバーシュートをできるだけ小さく しなればならな い。  Also, when the temperature rises, the temperature may temporarily deviate upward from the set temperature (overshoot), and this overshoot must be minimized.
冷却時間は、 支持容器の外郭 (底板あるいは中底板などの板状体と外枠部) だけでほぼ決まるが、 オーバーシユート温度やリカバリー時間の制御まで行う 場合は、 付属部品の重量まで考慮して制御する必要がある。 そこで、 支持容器 と付属部品との総重量 T M ( k g ) およびセラミック基板の直径の関係を、 上 記のように規定したものである。  The cooling time is largely determined only by the outer shell of the supporting vessel (plate or body such as the bottom plate or mid-bottom plate and the outer frame) .When controlling the overshooting temperature and recovery time, take into account the weight of attached parts. Need to be controlled. Therefore, the relationship between the total weight T M (kg) of the supporting container and the accessory and the diameter of the ceramic substrate is defined as described above.
上記板状体は、 上記略円筒形状の外枠部に連結固定されていることが望まし い。 支持容器全体の強度の確保と形態安定性が向上するからである。  It is desirable that the plate-like body is connected and fixed to the substantially cylindrical outer frame portion. This is because the strength of the entire support container and the form stability are improved.
また、 上記支持容器の重量を軽減する方法としては、 板状体に開口を設ける カ 上記支持容器を構成する各部材の厚さを、 0 . 1 〜 5 mmにする方法を採 用することができる。 支持容器の厚さが 5 mmを超えると、 熱容量が大きくな り過ぎる。  In addition, as a method of reducing the weight of the support container, a method of providing an opening in a plate-like body and adopting a method in which the thickness of each member constituting the support container is set to 0.1 to 5 mm is adopted. it can. If the thickness of the supporting vessel exceeds 5 mm, the heat capacity becomes too large.
このように、 第一および第二の本発明では、 支持容器を構成する板状体に開 口を複数形成し、 第三〜第六の本発明では、 支持容器の重量 M ( k g ) または 支持容器と付属部品の総重量 T Mと、 セラミック基板の直径 L (mm) との間 で、 0 0または 3 ( L / 2 0 0 ) 2 の関係式を満たすように、 支持容器の重量 Mとセラミック基板の直径 Lとを設定している。 As described above, in the first and second aspects of the present invention, a plurality of openings are formed in the plate-shaped body constituting the support container, and in the third to sixth aspects of the present invention, the weight M (kg) or the support The weight M of the supporting container and the ceramic material satisfy the relationship of 0 or 3 (L / 200) 2 between the total weight TM of the container and the accessory and the diameter L (mm) of the ceramic substrate. The substrate diameter L is set.
上記のように支持容器を規定しているのは、 いずれも半導体製造 ·検査装置 の降温速度を速めるためであり、 上記したいずれの発明においても、 板状体に 開口が形成されており、 支持容器の重量 M ( k g ) または支持容器と付属部品 の総重量 T Mとの関係が上記関係式を満たすことが望ましい。 また、 第一、 第 三および第四の本発明に係る支持容器は、 外枠部を具備していないが、 上述し たように、 これらの支持容器は、 外枠部を具備していることが望ましい。 また、 上記したいずれの発明においても、 その他の構成については、 略同様である。 従って、 以下においては、 上記した六つの発明およびこれらの発明に係る支 持容器を用いた半導体製造■検査装置をまとめ、 一つの発明として説明するこ とにする。 図面の簡単な説明 The reason why the supporting container is defined as described above is to increase the temperature drop rate of the semiconductor manufacturing / inspection apparatus. In any of the above-mentioned inventions, the opening is formed in the plate-shaped body, It is desirable that the relation between the weight M (kg) of the container or the total weight TM of the supporting container and the accessory satisfies the above relational expression. Further, the first, third and fourth supporting containers according to the present invention do not have the outer frame portion, but as described above, these supporting containers have the outer frame portion. Is desirable. Also, In any of the above-mentioned inventions, other configurations are substantially the same. Therefore, in the following, the above-mentioned six inventions and the semiconductor manufacturing / inspection apparatus using the supporting container according to these inventions will be summarized and described as one invention. BRIEF DESCRIPTION OF THE FIGURES
図 1 ( a) は、 本発明の半導体製造 ·検査装置の一例であるホットプレート を模式的に示す断面図であり、 (b) は、 支持容器を構成する遮熱部材の底部 を模式的に示す斜視図である。  FIG. 1 (a) is a cross-sectional view schematically showing a hot plate which is an example of the semiconductor manufacturing / inspection apparatus of the present invention, and FIG. 1 (b) is a schematic view showing the bottom of a heat shielding member constituting a support container. FIG.
図 2は、 図 1に示したホットプレートの平面図である。  FIG. 2 is a plan view of the hot plate shown in FIG.
図 3 ( a) は、 本発明の半導体製造 ·検査装置の一例であるホットプレート の別の実施形態を模式的に示す断面図であり、 (b) は、 支持容器を構成する 遮熱板を模式的に示す斜視図である。  FIG. 3A is a cross-sectional view schematically showing another embodiment of a hot plate which is an example of the semiconductor manufacturing / inspection apparatus of the present invention, and FIG. 3B is a sectional view showing a heat shield plate constituting a supporting container. It is a perspective view which shows typically.
図 4 (a) は、 本発明に係る静電チャックを構成するセラミック基板を模式 的に示す縦断面図であり、 (b) は、 (a) に示したセラミック基板の A— A 線断面図である。  FIG. 4A is a vertical sectional view schematically showing a ceramic substrate constituting the electrostatic chuck according to the present invention, and FIG. 4B is a sectional view taken along line AA of the ceramic substrate shown in FIG. It is.
図 5は、 本発明に係る静電チャックを構成するセラミック基板の別の一例を 模式的に示す水平断面図である。  FIG. 5 is a horizontal sectional view schematically showing another example of the ceramic substrate constituting the electrostatic chuck according to the present invention.
図 6は、 本発明に係る静電チャックを構成するセラミック基板のさらに別の 一例を模式的に示す水平断面図である。  FIG. 6 is a horizontal sectional view schematically showing still another example of the ceramic substrate constituting the electrostatic chuck according to the present invention.
図 7は、 本発明の半導体製造 ·検査装置の一例であるウェハプローバを構成 するセラミック基板を模式的に示す断面図である。  FIG. 7 is a sectional view schematically showing a ceramic substrate constituting a wafer prober which is an example of the semiconductor manufacturing / inspection apparatus of the present invention.
図 8は、 図 7に示したセラミック基板を模式的に示す平面図である。  FIG. 8 is a plan view schematically showing the ceramic substrate shown in FIG.
図 9は、 図 7に示したセラミック基板の A— A線断面図である。  FIG. 9 is a cross-sectional view taken along line AA of the ceramic substrate shown in FIG.
図 1 0 ( a) 〜 (d) は、 本発明の半導体製造 ·検査装置の一例であるホッ トプレートの製造方法の一部を模式的に示す断面図である。  10 (a) to 10 (d) are cross-sectional views schematically showing a part of a method for manufacturing a hot plate, which is an example of the semiconductor manufacturing / inspection apparatus of the present invention.
図 1 1 (a ) は、 本発明の半導体製造 .検查装置の一例であるホットプレー トを模式的に示した断面図であり、 (b) は、 支持容器を構成する遮熱部材 ( 中底板) を模式的に示した斜視図である。 図 1 2 (a) は、 本発明の半導体製造 ·検査装置の一例であるホットプレー トを模式的に示した断面図であり、 (b) は、 支持容器を構成する遮熱部材の 底部を模式的に示した斜視図であり、 (c) は、 サーモスタッ トを形成する様 子を模式的に示した説明図である。 符号の説明 FIG. 11 (a) is a cross-sectional view schematically showing a hot plate which is an example of the semiconductor manufacturing and inspection apparatus of the present invention, and FIG. 11 (b) is a heat shield member (middle) constituting a support container. FIG. 4 is a perspective view schematically showing a bottom plate). FIG. 12 (a) is a cross-sectional view schematically showing a hot plate which is an example of the semiconductor manufacturing / inspection apparatus of the present invention, and FIG. 12 (b) shows the bottom of the heat shield member constituting the support container. It is a perspective view which showed typically, (c) is explanatory drawing which showed typically the mode which forms a thermostat. Explanation of reference numerals
1 0, 2 0 支持容器  1 0, 2 0 Support container
1 1、 2 1 外枠部  1 1, 2 1 Outer frame
1 2、 ガイ ド管  1 2, Guide tube
1 3 , 2 3 基板受け部  1 3, 2 3 PCB receiver
1 5 断熱リング  1 5 Insulation ring
1 6 , 2 6 遮熱部材 (遮熱板)  1 6, 2 6 Heat shield material (heat shield plate)
1 6 a、 2 6 a、 1 1 7 開口  1 6a, 2 6a, 1 1 7 aperture
1 7 固定金具  1 7 Fixing bracket
1 8 ポルト  1 8 Porto
1 9 冷媒供給管  1 9 Refrigerant supply pipe
2 2 円筒部  2 2 Cylindrical part
2 2 d 放熱フィン  2 2d radiation fin
2 4 遮熱板受け部  2 4 Heat shield plate receiving part
3 0、 4 0、 1 1 0、 1 2 0 ホットプレ一ト  3 0, 4 0, 1 1 0, 1 2 0 Hot plate
3 1、 4 1 セラミック基板  3 1, 4 1 Ceramic substrate
3 1 a、 4 1 a 加熱面  3 1a, 4 1a heating surface
3 2, 4 2 抵抗発熱体  3 2, 4 2 Resistance heating element
3 3 導電線  3 3 Conductive wire
3 4, 4 4 有底孔  3 4, 4 4
3 5 , 4 5 貫通孔  3 5, 4 5 Through hole
3 6 , 4 6 リード線  3 6, 4 6 Lead wire
3 7 , 4 7 測温素子  3 7, 4 7 Temperature sensor
4 3 外部端子 4 8 導電線 4 3 External terminal 4 8 Conductive wire
1 1 2 金属板パネ  1 1 2 Metal panel
1 1 6 中底板  1 1 6 Middle bottom plate
1 2 1 サーモスタット  1 2 1 Thermostat
1 2 2 支持板  1 2 2 Support plate
1 2 3 ネジ  1 2 3 screw
1 2 4 冷媒排気管 (冷媒排気ポート) 発明の詳細な開示  1 2 4 Refrigerant exhaust pipe (refrigerant exhaust port) Detailed disclosure of the invention
以下、 発明の実施の形態に則して本発明を説明するが、 本発明は、 この実施 形態に限定されることなく、 本発明の効果を損なわない範囲で改変できること はいうまでもない。  Hereinafter, the present invention will be described with reference to the embodiments of the present invention. However, it is needless to say that the present invention is not limited to the embodiments and can be modified without impairing the effects of the present invention.
図 1 ( a ) は、 本発明の半導体製造 ·検査装置の一例であるホットプレート を模式的に示す縦断面図であり、 (b ) は、 遮熱部材 (遮熱板) の底部を示す 斜視図である。 また、 図 2は、 図 1に示した半導体製造 ·検査装置の平面図で このホットプレート 4 0は、 例えば、 図 1に示したように、 セラミック基板 4 1と支持容器 1 0とからなり、 円板形状のセラミック基板 4 1の表面 (底面 ) に、 複数の平面視同心円形状の抵抗発熱体 4 2が形成されるとともに、 有底 孔 4 4、 貫通孔 4 5等が形成されている。 そして、 この有底孔 4 4には、 セラ ミック基板 4 1の温度を測定するために、 リード線 4 6が接続された測温素子 4 7が埋め込まれている。  FIG. 1A is a longitudinal sectional view schematically showing a hot plate which is an example of the semiconductor manufacturing / inspection apparatus of the present invention, and FIG. 1B is a perspective view showing the bottom of a heat shield member (heat shield plate). FIG. FIG. 2 is a plan view of the semiconductor manufacturing / inspection apparatus shown in FIG. 1. The hot plate 40 includes, for example, a ceramic substrate 41 and a support container 10 as shown in FIG. On the surface (bottom surface) of the disc-shaped ceramic substrate 41, a plurality of resistance heating elements 42 having a concentric circular shape in a plan view are formed, and a bottomed hole 44, a through hole 45, and the like are formed. In order to measure the temperature of the ceramic substrate 41, a temperature measuring element 47 to which a lead wire 46 is connected is embedded in the bottomed hole 44.
また、 セラミック基板 4 1は、 断面視 L字型の断熱リング 1 5を介して略円 筒形状の支持容器 1 0の上部に嵌め込まれている。  The ceramic substrate 41 is fitted on the upper portion of a substantially cylindrical support container 10 via an insulating ring 15 having an L-shaped cross section.
この支持容器 1 0には、 略円筒形状の外枠部 1 1の内側に、 セラミック基板 4 1と断熱リング 1 5とを支持する円環形状の基板受け部 1 3が設けられてい る。 断熱リング 1 5およびセラミック基板 4 1は、 基板受け部 1 3とボルト 1 8を介した固定金具 1 7とで固定されている。 すなわち、 ボルト 1 8には固定 金具 1 7が取り付けられ、 セラミック基板 4 1等を押しつけて固定している。 さらに、 外枠部 1 1には、 複数の開口 1 6 aを有する放熱防止用の遮熱部材 (遮熱板) 1 6が連結固定されてもよい。 遮熱部材 (遮熱板) 1 6は、 ボルト 等を介して固定してもよく、 外枠部 1 1と一体成形してもよく、 あるいは溶接 などで固定してもよい。 また、 外枠部 1 1は、 断熱リングより構成されていて もよい。 The support container 10 has an annular substrate receiving portion 13 that supports the ceramic substrate 41 and the heat insulating ring 15 inside the substantially cylindrical outer frame portion 11. The heat insulating ring 15 and the ceramic substrate 41 are fixed by a substrate receiving portion 13 and a fixing bracket 17 via bolts 18. That is, a fixing bracket 17 is attached to the bolt 18 and the ceramic substrate 41 or the like is pressed and fixed. Further, a heat shield member (heat shield plate) 16 having a plurality of openings 16 a for preventing heat radiation may be connected and fixed to the outer frame portion 11. The heat shield member (heat shield plate) 16 may be fixed via bolts or the like, may be integrally formed with the outer frame portion 11, or may be fixed by welding or the like. Further, the outer frame portion 11 may be constituted by a heat insulating ring.
なお、 図 1に示したように、 遮熱板 1 6は、 必ずしも板状体でなく、 板状体 と円筒部材とが一体化した有底円筒状形状の部材であってもよい。  In addition, as shown in FIG. 1, the heat shield plate 16 is not necessarily a plate-like body, but may be a bottomed cylindrical member in which the plate-like body and the cylindrical member are integrated.
なお、 この支持容器 1 0の下部には制御機器や電源等を収めた制御装置が存 在しており、 導電線 4 8およびリード線 4 6が、 制御装置内の制御機器に接続 されている。  Note that a control device containing a control device, a power supply, and the like is provided below the support container 10, and the conductive wires 48 and the lead wires 46 are connected to the control device in the control device. .
通常、 精密機器類は高温に弱いため、 ホッ トプレート 4 0を使用する際、 セ ラミック基板 4 1からの放射熱を遮蔽し、 精密機器類等が収められた制御装置 を保護する必要がある。 そのため、 上記制御装置とセラミック基板 4 1との間 には、 遮熱板 1 6が設けられている。 さらに、 必要に応じ、 制御装置とホット プレート 4 0との間には放熱フィンが介装されることもある。  Normally, precision equipment is sensitive to high temperatures, so when using the hot plate 40, it is necessary to shield the radiant heat from the ceramic substrate 41 and protect the control device containing the precision equipment, etc. . Therefore, a heat shield plate 16 is provided between the control device and the ceramic substrate 41. Further, a radiation fin may be interposed between the control device and the hot plate 40 as required.
この際、 このような構成のホットプレートを用いることにより、 セラミック 基板 4 1の温度等を、 精度よく制御することができ、 シリ コンウェハ Wを目的 とする温度に均一に加熱することができるとともに、 上記制御装置もホットプ レート 4 0の熱から保護され、 正常な動作が可能となる。  At this time, by using a hot plate having such a configuration, the temperature and the like of the ceramic substrate 41 can be accurately controlled, and the silicon wafer W can be uniformly heated to a target temperature. The control device is also protected from the heat of the hot plate 40, and can operate normally.
本実施形態では、 外枠部 1 1、 遮熱板 1 6は、 金属、 具体的にはステンレス、 アルミエゥム、 銅、 スチール、 ニッケル、 貴金属から選ばれる少なくとも 1種 以上の金属で構成されていることが望ましい。 金属は熱伝導率が高く、 比熱が 低いため冷却しやすく、 輻射熱によりセラミック基板 4 1の冷却を阻害しない からである。  In the present embodiment, the outer frame portion 11 and the heat shield plate 16 are made of metal, specifically, at least one metal selected from stainless steel, aluminum alloy, copper, steel, nickel, and noble metal. Is desirable. This is because metal has high thermal conductivity and low specific heat, so it is easy to cool, and does not hinder cooling of the ceramic substrate 41 by radiant heat.
本発明では、 支持容器 1 0を構成する部材 (外枠部 1 1、 遮熱板 1 6 ) の厚 さは、 0 . 1〜 5 mmが好ましい。 0 . 1 mm未満では、 強度に乏しく、 5 m mを超えると熱容量が大きくなるからである。  In the present invention, the thickness of the members (the outer frame portion 11 and the heat shield plate 16) constituting the support container 10 is preferably 0.1 to 5 mm. If the thickness is less than 0.1 mm, the strength is poor, and if it exceeds 5 mm, the heat capacity increases.
外枠部 1 1、 遮熱板 1 6合計重量、 即ち支持容器 1 0の重量 M ( k g ) は、 セラミック基板 4 1の直径 L (mm) の関数で、 M≤ 2 0 0である。 Mが L/200を超えると、 熱容量が大きくなり、 外枠部 1 1、 遮熱板 1 6から輻 射熱が発生してしまい、 セラミック基板 41に照り返しが発生し、 セラミック 基板 41の温度低下を阻害する。 The total weight of the outer frame 11 and the heat shield 16, that is, the weight M (kg) of the support container 10 is a function of the diameter L (mm) of the ceramic substrate 41, and M ≦ 200. M is If it exceeds L / 200, the heat capacity will increase, and radiant heat will be generated from the outer frame 11 and the heat shield 16, causing the ceramic substrate 41 to shine and prevent the ceramic substrate 41 from lowering in temperature. I do.
ここで、 セラミック基板 41の冷却時間は、 外枠部 1 1と遮熱板 1 6との重 量 Mで略決まるものである。  Here, the cooling time of the ceramic substrate 41 is substantially determined by the weight M of the outer frame portion 11 and the heat shield plate 16.
これは、 冷媒供給管 (冷却媒体供給口) 19、 ポルト 1 8、 固定金具 1 7等 の付属部品は、 冷媒により急速冷却されてしまい、 また、 断熱リング 1 5は蓄 熱しにくいものであるため、 これらの重量が大きくても冷却時間には影響が少 なく、 その熱容量を略無視することができるからである。  This is because accessories such as the refrigerant supply pipe (cooling medium supply port) 19, port 18 and fixing bracket 17 are rapidly cooled by the refrigerant, and the heat insulating ring 15 is difficult to store heat. However, even if these weights are large, the cooling time has little effect and the heat capacity thereof can be almost ignored.
' しかしながら、 外枠部 1 1、 遮熱板 16の重量 Mに上記付属部品の重量を加 えた総重量 TM (k g) は、 セラミック基板 41の直径 L (mm) の関数で、 TM≤ 3 (L/200) 2 であることが望ましい。 TMが 3 (L/200) 2 を 超えると、 断熱リング (断熱材) 5や上記付属部品からの輻射熱が無視でき なくなり、 測温素子が正確に温度測定できなくなり、 リカバリー時間が長くな つたり、 オーバーシュート温度が高くなり過ぎてしまう場合がある。 'However, the total weight TM (kg) of the weight M of the outer frame 11 and the heat shield 16 plus the weight of the accessory parts is a function of the diameter L (mm) of the ceramic substrate 41, and TM ≤ 3 ( L / 200) 2 is desirable. If TM exceeds 3 (L / 200) 2 , radiant heat from the insulation ring (insulation material) 5 and the above-mentioned accessories cannot be ignored, and the temperature measuring element cannot measure the temperature accurately, and the recovery time will be longer. However, the overshoot temperature may be too high.
すなわち、 セラミック基板 41の直径 Lが 8ィンチ (L = 200 mm) では、 M= l k g、 TM= 3 k gが上限であり、 Lが 1 2インチ (L= 300mm) では、 Mは、 1. 5 k g、 TMは、 6. 75 k gが上限である。  That is, when the diameter L of the ceramic substrate 41 is 8 inches (L = 200 mm), the upper limit is M = lkg and TM = 3 kg. When L is 12 inches (L = 300 mm), M is 1.5 For kg and TM, the upper limit is 6.75 kg.
遮熱板 16の投影面積 S A (即ち、 開口 16 aがなかったとした場合の底部 の面積) および上記板状体に設けられた開口 16 aの合計面積 Sの関係は、 0. 03 SZSAである。  The relationship between the projected area SA of the heat shield plate 16 (that is, the area of the bottom when there is no opening 16a) and the total area S of the openings 16a provided in the plate-like body is 0.03 SZSA. .
開口面積の合計が 3%未満では、 セラミック基板 41と接触して熱交換した 冷却媒体を排出しにくくなり、 また、 遮熱板の熱容量も大きくなるからである。  If the total opening area is less than 3%, it is difficult to discharge the cooling medium that has contacted with the ceramic substrate 41 and exchanged heat, and the heat capacity of the heat shield plate also becomes large.
1つの開口 1 6 aの直径 (楕円や方形の場合は平均直径または 1辺の長さ) は、 1〜 5 Ommが望ましい。 開口 16 aの直径が 1 mm未満では、 冷却媒体 を排出しにくく、 5 Ommを超えると遮熱板として機能することができないか らである。 開口 16 aは、 図 1 (b) に示すように遮熱板 16に均等に配置し ておくことが望ましい。  The diameter of one opening 16a (average diameter or length of one side in the case of an ellipse or square) is preferably 1 to 5 Omm. If the diameter of the opening 16a is less than 1 mm, it is difficult to discharge the cooling medium, and if it exceeds 5 Omm, it cannot function as a heat shield. The openings 16a are desirably arranged evenly on the heat shield plate 16, as shown in FIG. 1 (b).
また、 開口 1 6 aは、 直径の異なるもの (例えば、 30mm、 10mm、 8 mm) であることが望ましい。 開口 1 6 aに伴う遮熱板 1 6の歪みを最小限度 に抑えることができるからである。 開口 1 6 aが大きなものばかりであると、 遮熱板 1 6の剛性が低下し、 歪んでしまうが、 大きな開口と小さな開口とを共 存させることで遮熱板 1 6の剛性低下を防止し、 歪みを最小限度にすることが できる。 Also, the openings 16a have different diameters (for example, 30mm, 10mm, 8mm). mm). This is because distortion of the heat shield plate 16 due to the opening 16a can be minimized. If the openings 16a are only large, the rigidity of the heat shield plate 16 will decrease and be distorted.However, the rigidity of the heat shield plate 16 is prevented from decreasing by coexisting the large and small openings. And distortion can be minimized.
なお、 遮熱板 1 6が歪むと熱が均一に反射されないため、 セラミック基板 4 1に熱分布が発生してシリコンウェハの均一加熱を実現できないと考えられる。 本発明の半導体製造 ·検査装置 (ホットプレート) では、 上記したように底 面に抵抗発熱体 4 2が設けられているが、 これらの抵抗発熱体端部 4 2 aには、 外部端子 4 3が半田層を介して接続され、 この外部端子 4 3に導電線 4 8を有 するソケット 4 9が取り付けられている。 また、 セラミック基板 4 1の中央に 近い部分には、 リフターピン (図示せず) を挿入するための貫通孔 4 5が形成 されるとともに貫通孔 4 5と連通するガイド管 1 2が遮熱板 1 6に設置されて いる。  If the heat shield plate 16 is distorted, the heat is not reflected uniformly, so that it is considered that heat distribution occurs in the ceramic substrate 41 and uniform heating of the silicon wafer cannot be realized. In the semiconductor manufacturing / inspection apparatus (hot plate) of the present invention, the resistance heating elements 42 are provided on the bottom surface as described above. Are connected via a solder layer, and a socket 49 having a conductive wire 48 is attached to the external terminal 43. A through hole 45 for inserting a lifter pin (not shown) is formed in a portion near the center of the ceramic substrate 41, and a guide tube 12 communicating with the through hole 45 is provided with a heat shield plate. It is installed in 16.
支持容器 1 0は、 略円筒形状の外枠部 1 1と、 外枠部 1 1の内側に設けられ た円環形状の基板受け部 1 3とから構成され、 これらは一体に形成されている。 また、 外枠部 1 1の底面には、 有底円筒形状の遮熱部材 (遮熱板 1 6 ) が設置 されている。  The supporting container 10 includes a substantially cylindrical outer frame portion 11 and an annular substrate receiving portion 13 provided inside the outer frame portion 11, and these are integrally formed. . Further, on the bottom surface of the outer frame 11, a bottomed cylindrical heat shield member (heat shield plate 16) is installed.
そして、 基板受け部 1 3は、 断熱リング 1 5を介して嵌め込まれたセラミツ ク基板 4 1を支持している。  The substrate receiving portion 13 supports the ceramic substrate 41 fitted via the heat insulating ring 15.
また、 遮熱板 1 6には、 冷媒供給管 1 9が設けられており、 セラミック基板 4 1を冷却する際に、 冷却エアー等の冷却媒体を導入することができるように なっており、 さらに、 冷却エアーを排出するための開孔 1 6 aが多数設けられ ている。 従って、 セラミック基板 4 1を加熱した後、 冷却媒体を冷媒供給管 1 9より供給し、 開口 1 6 aより排出させながら、 セラミック基板 4 1を冷却す ることにより、 セラミック基板 4 1を迅速に冷却することができる。  The heat shield plate 16 is provided with a refrigerant supply pipe 19 so that a cooling medium such as cooling air can be introduced when cooling the ceramic substrate 41. A number of apertures 16a are provided for discharging cooling air. Therefore, after the ceramic substrate 41 is heated, a cooling medium is supplied from the refrigerant supply pipe 19 and is discharged from the opening 16a while cooling the ceramic substrate 41, whereby the ceramic substrate 41 is quickly cooled. Can be cooled.
断熱リング 1 5は、 ポリイミ ド樹脂、 フッ素樹脂、 ベンゾイミダゾール樹脂 から選ばれる少なくとも 1種以上の樹脂、 あるいは繊維補強した樹脂で構成さ れていることが望ましい。 繊維捕強した樹脂としては、 ガラス繊維のファイバ 一が分散した樹脂などを挙げることができる。 繊維補強樹脂は、 昇温しても軟 化してセラミック基板が傾かないため、 シリコンウェハを加熱面から保持して 加熱する場合に、 離間距離を精度よく確保できる。 The heat insulating ring 15 is desirably made of at least one resin selected from polyimide resin, fluorine resin, and benzimidazole resin, or a fiber-reinforced resin. Fiber-reinforced resin is glass fiber Resins in which one is dispersed can be cited. Since the fiber-reinforced resin softens even when the temperature rises and the ceramic substrate does not tilt, the separation distance can be accurately secured when the silicon wafer is heated from the heating surface.
本発明の半導体製造 ·検査装置 (ホットプレート) を作動させると、 抵抗発 熱体 4 2は発熱し、 セラミック基板 4 1は昇温するが、 セラミック基板 4 1の 内部に埋設された測温素子 4 7により、 セラミック基板 4 1の温度が測定され、 測定データがリード線 4 6を通じて制御機器にインプットされ、 印加電圧 (電 流) 量が制御されるので、 セラミック基板 4 1の温度は一定値にコントロール される。  When the semiconductor manufacturing / inspection apparatus (hot plate) of the present invention is operated, the resistance heating element 42 generates heat and the temperature of the ceramic substrate 41 rises, but the temperature measuring element buried inside the ceramic substrate 41. 4 7 measures the temperature of the ceramic substrate 41, the measured data is input to the control device through the lead wire 46, and the applied voltage (current) is controlled, so that the temperature of the ceramic substrate 41 is constant. Is controlled by
図 3 ( a ) は、 別の実施形態に係るホットプレートを示した断面図であり、 ( b ) は、 (a ) に示した遮熱板を模式的に示した斜視図であるが、 このホッ トプレート 3 0に示すように、 支持容器 2 0の下部に、 放熱フィン 2 2 dを取 り付けた円筒部 2 2が延設されていてもよい。 このように放熱フィン 2 2 dを 設けることにより、 ホットプレート 3 0をより迅速に冷却することができる。 なお、 この場合の総重量 T Mは、 放熱フィン 2 2 dを含めた外枠部 2 1と底 板 (遮熱板 2 6 ) 、 冷媒供給ポート 1 9、 スリーブ (ガイ ド管 1 2 ) 、 断熱リ ング 1 5の合計重量となる。  FIG. 3 (a) is a cross-sectional view showing a hot plate according to another embodiment, and (b) is a perspective view schematically showing the heat shield plate shown in (a). As shown in the hot plate 30, a cylindrical portion 22 to which the radiation fins 22d are attached may be extended below the support container 20. By providing the radiation fins 22 d in this manner, the hot plate 30 can be cooled more quickly. In this case, the total weight TM includes the outer frame 21 including the radiating fins 22 d, the bottom plate (heat shield 26), the refrigerant supply port 19, the sleeve (guide tube 12), the heat insulation Total weight of ring 15
また、 図 3に示した装置では、 支持容器 2 0の下部に設けられた円筒部 2 2 の外径は、 丁度放熱フィンに嵌め込むことができる大きさとなっているので、 制御機器や電源が収納された制御装置上に放熱フィン 2 2 dを介してホットプ レート 3 0を据えつけることができる。 そして、 放熱フィン 2 2 dの働きによ り、 下部の制御装置が高温にならず、 常温に近い温度に保たれる。 なお、 図 3 に示したホットプレート 3 0の構成については、 後で詳しく説明する。  Further, in the device shown in FIG. 3, the outer diameter of the cylindrical portion 22 provided at the lower portion of the support container 20 is large enough to fit into the radiation fin, so that the control device and the power supply are not required. The hot plate 30 can be installed on the housed control device via the radiation fins 22d. Then, by the action of the radiation fins 22 d, the temperature of the lower control device does not become high, but is kept close to room temperature. The configuration of the hot plate 30 shown in FIG. 3 will be described later in detail.
図 1 1 ( a ) は、 その内部に中底板 (遮熱板) を有するホットプレートを模 式的に示した断面図であり、 (b ) は、 (a ) に示した中底板を模式的に示す 斜視図である。  Fig. 11 (a) is a cross-sectional view schematically showing a hot plate having an insole plate (heat shield plate) inside, and (b) is a schematic view of the insole plate shown in (a). It is a perspective view shown in FIG.
このホットプレート 1 1 0は、 支持容器 1 0の内部に中底板 1 1 6を備えて いるほかは、 図 1に示したホットプレート 4 0と同様の構成をしている。  This hot plate 110 has the same configuration as the hot plate 40 shown in FIG. 1 except that an inner bottom plate 116 is provided inside the support container 10.
中底板 1 1 6は、 コパールなどの金属板パネ 1 1 2で外枠部 1 1と非接触で 支持されており、 金属板パネ 1 1 2は遮熱板 (底板) 1 6にネジで固定されて いる。 このようにして支持された中底板 1 1 6は、 熱膨張で外枠部 1 1に接触 して外枠部 1 1を歪ませることがない。 The midsole plate 1 1 6 is made of metal plate panel 1 1 2 The metal plate panel 1 1 2 is fixed to the heat shield plate (bottom plate) 16 with screws. The midsole plate 116 supported in this way does not contact the outer frame portion 11 due to thermal expansion and does not distort the outer frame portion 11.
また、 中底板 1 1 6は、 遮熱板として機能する。 中底板 1 1 6には、 複数の 開口 1 1 7が形成されており、 開口 1 1 7は、 熱交換した冷媒を排気させる役 割を果すとともに、 中底板 1 1 6の熱容量を低減させる役割も果している。 開口 1 1 7は、 図示したように、 直径の異なるもの (例えば、 3 0 mm、 1 O mm、 8 mm) であることが望ましい。 開口 1 1 7を大きなものばかりにす ると、 中底板 1 1 6の剛性が低下し、 歪んでしまう力 大きな開口と小さな開 口とを共存させることで中底板 1 1 6の剛性低下を防止して歪みを最小限度に することができる。  Also, the midsole plate 1 16 functions as a heat shield plate. A plurality of openings 1 17 are formed in the midsole plate 1 16, and the openings 1 17 serve to exhaust the heat-exchanged refrigerant and to reduce the heat capacity of the midsole plate 1 16. Has also been fulfilled. The openings 117 are desirably of different diameters (for example, 30 mm, 10 mm, 8 mm) as shown. If the openings 1 17 are made too large, the rigidity of the midsole plate 1 16 will be reduced, and the distortion will occur.The coexistence of a large opening and a small opening prevents the rigidity of the midsole plate 1 16 from decreasing. To minimize distortion.
なお、 中底板 1 1 6が歪むと熱が均一に反射されないため、 セラミック基板 4 1に熱分布が発生してシリコンウェハの均一加熱を実現できないと考えられ る。  If the midsole plate 116 is distorted, heat is not reflected uniformly, so that it is considered that heat distribution occurs in the ceramic substrate 41 and uniform heating of the silicon wafer cannot be realized.
なお、 このホッ トプレート 1 1 0では、 総重量 T Mは、 外枠部 1 1、 遮熱板 (底板) 1 6、 冷媒供給管 (冷媒供給ポート) 1 9、 スリープ (ガイド管 1 2 ) 、 断熱リング 1 5、 中底板 1 1 6および金属板パネ 1 1 2の合計重量となる。 図 1 2 ( a ) は、 底板にサーモスタッ ト、 冷媒排気管 (冷媒排気ポート) お よび冷媒供給管 (冷媒供給ポート) を兼ね備えたホッ トプレートを模式的に示 した断面図であり、 (b ) は、 (a ) に示した底板を模式的に示した斜視図で あり、 (c ) は、 サーモスタッ トを開口中に固定する様子を示した説明図であ る。  In this hot plate 110, the gross weight TM is the outer frame portion 11, the heat shield plate (bottom plate) 16, the refrigerant supply pipe (refrigerant supply port) 19, the sleep (guide pipe 12), It is the total weight of the insulating ring 15, the midsole plate 1 16 and the metal plate panel 1 1 2. Fig. 12 (a) is a cross-sectional view schematically showing a hot plate having a thermostat, a refrigerant exhaust pipe (refrigerant exhaust port), and a refrigerant supply pipe (refrigerant supply port) on the bottom plate. () Is a perspective view schematically showing the bottom plate shown in (a), and (c) is an explanatory view showing how the thermostat is fixed in the opening.
このホッ トプレート 1 2 0は、 遮熱板 1 6に形成された開口 1 6 a中にサー モスタツト 1 2 1、 および、 遮熱板 1 6に冷媒排気管 (冷媒排気ポート) 1 2 4が形成されているほかは、 図 1に示したホットプレート 4 0とほぼ同様に構 成されている。  The hot plate 120 has a thermostat 121 in an opening 16 a formed in the heat shield plate 16, and a refrigerant exhaust pipe (refrigerant exhaust port) 124 in the heat shield plate 16. Other than being formed, it is configured almost similarly to the hot plate 40 shown in FIG.
図 1 2 ( c ) に示した通り、 サーモスタツト 1 2 1は、 支持板 1 2 2上に配 設され、 サーモスタツト 1 2 1を配設した支持板 1 2 '2が遮熱板 (底板) 1 6 の開口部分にネジ 1 2 3でネジ止めされて固定されている。 このようなホットプレート 1 2 0では、 遮熱板 (底板) 1 6にサーモスタツ ト 1 2 1が配設されているため、 測温素子 4 7や制御装置に何らかの故障が発 生して、 セラミック基板 4 1の温度が急激に昇温しかけた場合においても、 電 源と抵抗発熱体 4 2との間の回路を遮断することにより、 セラミック基板 4 1 の過熱を防止することができる。 As shown in FIG. 12 (c), the thermostat 12 1 is disposed on the support plate 12 2, and the support plate 1 2 ′ 2 on which the thermostat 12 1 is disposed is a heat shield plate (bottom plate). The screw is fixed to the opening of 16 with screws 1 2 3. In such a hot plate 120, since the thermostat 121 is provided on the heat shield plate (bottom plate) 16, some trouble occurs in the temperature measuring element 47 or the control device, and the ceramic plate is not used. Even when the temperature of the substrate 41 suddenly rises, the circuit between the power supply and the resistance heating element 42 can be cut off to prevent the ceramic substrate 41 from overheating.
なお、 このホットプレート 1 2 0では、 総重量 T Mは、 外枠部 1 1、 遮熱板 (底板) 1 6、 冷媒供給管 (冷媒供給ポート) 1 9、 冷媒排気管 (冷媒排気ポ 一ト) 、 スリーブ (ガイド管 1 2 ) 、 断熱リング 1 5およびサーモスタツト 1 2 1の合計重量となる。  In this hot plate 120, the total weight TM is the outer frame portion 11, the heat shield plate (bottom plate) 16, the refrigerant supply pipe (refrigerant supply port) 19, and the refrigerant exhaust pipe (refrigerant exhaust port). ) The total weight of the sleeve (guide tube 1 2), insulation ring 15 and thermostat 12 1.
ホットプレート等の本発明の半導体製造 ·検査装置において、 セラミック基 板に埋設される抵抗発熱体は、 貴金属 (金、 銀、 白金、 パラジウム) 、 タンダ ステン、 モリプデン、 ニッケル等の金属、 または、 タングステン、 モリブデン の炭化物等の導電性セラミックからなるものであることが望ましい。 抵抗値を 高くすることが可能となり、 断線等を防止する目的で厚み自体を厚くすること ができるとともに、 酸化しにくく、 熱伝導率が低下しにくいからである。 これ らは、 単独で用いてもよく、 2種以上を併用してもよい。  In the semiconductor manufacturing / inspection apparatus of the present invention such as a hot plate, the resistance heating element embedded in the ceramic substrate is made of a metal such as a noble metal (gold, silver, platinum, palladium), tanda stainless steel, molybdenum, nickel, or tungsten. It is desirable to be made of a conductive ceramic such as carbide of molybdenum. This is because the resistance value can be increased, the thickness itself can be increased for the purpose of preventing disconnection, etc., and it is not easily oxidized, and the thermal conductivity is not easily reduced. These may be used alone or in combination of two or more.
また、 抵抗発熱体は、 セラミック基板全体の温度を均一にする必要があるこ とから、 図 2に示すような同心円形状のパターンや同心円形状のパターンと屈 曲線形状のパターンとを組み合わせたものが好ましい。 また、 抵抗発熱体の厚 さは、 1〜 5 0 μ mが望ましく、 その幅は、 5〜 2 O mmが好ましい。  In addition, since the resistance heating element needs to make the temperature of the entire ceramic substrate uniform, a concentric pattern as shown in FIG. 2 or a combination of a concentric pattern and a curved pattern is preferable. . Further, the thickness of the resistance heating element is desirably 1 to 50 μm, and the width thereof is desirably 5 to 20 mm.
抵抗発熱体の厚さや幅を変化させることにより、 その抵抗値を変化させるこ とができるが、 この範囲か最も実用的だからである。 抵抗発熱体の抵抗値は、 薄く、 また、 細くなるほど大きくなる。  The resistance value can be changed by changing the thickness and width of the resistance heating element, but this range is the most practical. The resistance value of the resistance heating element becomes thinner and becomes larger as it becomes thinner.
なお、 抵抗発熱体を図 3のように、 内部に設けると、 加熱面 3 1 aと抵抗発 熱体 3 2との距離が近くなり、 表面の温度の均一性が低下するため、 抵抗発熱 体 3 2自体の幅を広げる必要がある。 また、 セラミック基板 3 1の内部に抵抗 発熱体 3 2を設けるため、 窒化物セラミック等との密着性を考慮する必要性が なくなる。 また、 抵抗発熱体 4 2を表面 (底面 4 l b ) に設けると、 加熱面 4 1 aと抵抗発熱体 4 2との距離が遠くなり、 表面の温度の均一性を向上させる ことができる。 また、 冷却媒体を直接抵抗体に接触させて熱交換できるため、 急速降温を実現できる。 If a resistance heating element is provided inside as shown in Fig. 3, the distance between the heating surface 31a and the resistance heating element 32 will be short, and the uniformity of the surface temperature will be reduced. 3 2 It is necessary to increase the width of itself. Further, since the resistance heating element 32 is provided inside the ceramic substrate 31, it is not necessary to consider the adhesion to the nitride ceramic or the like. Also, if the resistance heating element 42 is provided on the surface (bottom 4 lb), the distance between the heating surface 41a and the resistance heating element 42 becomes longer, and the uniformity of the surface temperature is improved. be able to. In addition, since the heat exchange can be performed by bringing the cooling medium into direct contact with the resistor, rapid temperature reduction can be achieved.
抵抗発熱体は、 断面が方形、 楕円形、 紡錘形、 蒲鉢形状のいずれでもよいが、 偏平なものであることが望ましい。 偏平の方が加熱面に向かって放熱しやすい ため、 加熱面への熱伝搬量を多くすることができ、 加熱面の温度分布ができに くいからである。  The resistance heating element may have a rectangular, elliptical, spindle-shaped or kettle-shaped cross section, but is preferably flat. This is because the flattened surface tends to radiate heat toward the heated surface, so that the amount of heat transmitted to the heated surface can be increased, and the temperature distribution on the heated surface is difficult.
なお、 抵抗発熱体は螺旋形状でもよい。  Note that the resistance heating element may have a spiral shape.
また、 抵抗発熱体は、 底面から厚さ方向に 5 0 %までの領域に形成すること が望ましい。 加熱面に温度分布が発生するのを防止し、 シリ コンウェハを均一 に加熱するためである。  Further, it is desirable that the resistance heating element be formed in an area of up to 50% in the thickness direction from the bottom surface. This is to prevent the occurrence of temperature distribution on the heating surface and to uniformly heat the silicon wafer.
セラミック基板の底面または内部に抵抗発熱体を形成するためには、 金属や 導電性セラミックからなる導電ペーストを用いることが好ましい。  In order to form a resistance heating element on the bottom or inside of the ceramic substrate, it is preferable to use a conductive paste made of metal or conductive ceramic.
即ち、 セラミック基板の底面に抵抗発熱体を形成する場合には、 通常、 焼成 を行って、 セラミック基板を製造した後、 その表面に上記導体ペースト層を形 成し、 焼成することより、 抵抗発熱体を形成する。 一方、 図 1に示すようにセ ラミック基板の内部に抵抗発熱体 3 2を形成する場合には、 グリーンシート上 に上記導電ペースト層を形成した後、 グリーンシートを積層、 焼成することに より、 内部に抵抗発熱体を形成する。  That is, when a resistance heating element is formed on the bottom surface of a ceramic substrate, usually, after firing, a ceramic substrate is manufactured, and then the above-mentioned conductor paste layer is formed on the surface of the ceramic substrate, followed by firing. Form the body. On the other hand, when the resistance heating element 32 is formed inside the ceramic substrate as shown in FIG. 1, after forming the conductive paste layer on the green sheet, the green sheet is laminated and fired. A resistance heating element is formed inside.
上記導体ペーストとしては特に限定されないが、 導電性を確保するため金属 粒子または導電性セラミック粒子が含有されているほか、 樹脂、 溶剤、 増粘剤 などを含むものが好ましい。  The conductive paste is not particularly limited, but preferably contains not only metal particles or conductive ceramic particles for ensuring conductivity, but also a resin, a solvent, a thickener, and the like.
上記金属粒子や導電性セラミック粒子の材料としては、 上述したものが挙げ られる。 これら金属粒子または導電性セラミック粒子の粒径は、 0 . 1〜1 0 Ο μ ΐηが好ましい。 0 . 1 /z m未満と微細すぎると、 酸化されやすく、 一方、 1 0 0 μ mを超えると、 焼結しにくくなり、 抵抗値が大きくなるからである。 上記金属粒子の形状は、 球状であっても、 リン片状であってもよい。 これら の金属粒子を用いる場合、 上記球状物と上言己リン片状物との混合物であってよ い。  Examples of the material of the metal particles and the conductive ceramic particles include those described above. The particle size of these metal particles or conductive ceramic particles is preferably from 0.1 to 10Ομΐη. If it is too small, less than 0.1 / zm, it is liable to be oxidized. On the other hand, if it exceeds 100 μm, sintering becomes difficult and the resistance value becomes large. The shape of the metal particles may be spherical or scaly. When these metal particles are used, the metal particles may be a mixture of the above-mentioned spherical particles and the above-mentioned scaly particles.
上記金属粒子がリン片状物、 または、 球状物とリン片状物との混合物の場合 は、 金属粒子間の金属酸化物を保持しやすくなり、 抵抗発熱体とセラミック基 板との密着性を確実にし、 かつ、 抵抗値を大きくすることができるため有利で ある。 When the metal particles are flakes or a mixture of spheroids and flakes This is advantageous because the metal oxide between metal particles can be easily held, the adhesion between the resistance heating element and the ceramic substrate can be ensured, and the resistance value can be increased.
上記導体ペース トに使用される樹脂としては、 例えば、 アク リル樹脂、 ェポ キシ樹脂、 フエノール樹脂等が挙げられる。 また、 溶剤としては、 例えば、 ィ ソプロピルアルコール等が挙げられる。 増粘剤としては、 セルロース等が挙げ られる。  Examples of the resin used for the conductor paste include an acrylic resin, an epoxy resin, and a phenol resin. Examples of the solvent include isopropyl alcohol. Examples of the thickener include cellulose and the like.
抵抗発熱体用の導体ペーストをセラミック基板の表面に形成する際には、 上 記導体ペースト中に上記金属粒子のほかに金属酸化物を添加し、 上記金属粒子 および上記金属酸化物を焼結させたものとすることが好ましい。 このように、 金属酸化物を金属粒子とともに焼結させることにより、 セラミック基板と金属 粒子とをより密着させることができる。  When forming a conductor paste for a resistance heating element on the surface of a ceramic substrate, a metal oxide is added to the conductor paste in addition to the metal particles, and the metal particles and the metal oxide are sintered. It is preferable to use In this way, by sintering the metal oxide together with the metal particles, the ceramic substrate and the metal particles can be more closely adhered.
上記金属酸化物を混合することにより、 セラミック基板との密着性が改善さ れる理由は明確ではないが、 金属粒子表面や非酸化物からなるセラミック基板 の表面は、 その表面がわずかに酸化されて酸化膜が形成されており、 この酸化 膜同士が金属酸化物を介して焼結して一体化し、 金属粒子とセラミックとが密 着するのではないかと考えられる。 また、 セラミック基板を構成するセラミツ クが酸化物の場合は、 当然に表面が酸化物からなるので、 密着性に優れた導体 層が形成される。  It is not clear why mixing the above metal oxides improves the adhesion to the ceramic substrate, but the surface of metal particles and the surface of non-oxide ceramic substrates are slightly oxidized. It is considered that an oxide film is formed, and the oxide films are sintered and integrated via the metal oxide, and the metal particles and the ceramic adhere to each other. Also, when the ceramic constituting the ceramic substrate is an oxide, the surface is naturally made of an oxide, so that a conductor layer having excellent adhesion is formed.
上記金属酸化物としては、 例えば、 酸化鉛、 酸化亜鉛、 シリカ、 酸化ホウ素 ( B 2 03 ) 、 アルミナ、 イットリアおよびチタユアからなる群から選ばれる少 なくとも 1種が好ましい。 The metal oxide, for example, lead oxide, zinc oxide, silica, boron oxide (B 2 0 3), alumina, even without less selected from the group consisting of yttria and Chitayua one is preferred.
これらの酸化物は、 抵抗発熱体の抵抗値を大きくすることなく、 金属粒子と セラミック基板との密着性を改善することができるからである。  These oxides can improve the adhesion between the metal particles and the ceramic substrate without increasing the resistance value of the resistance heating element.
上記酸化鉛、 酸化亜鉛、 シリカ、 酸化ホウ素 (B 2 O3 ) 、 アルミナ、 イット リア、 チタユアの割合は、 金属酸化物の全量を 1 0 0重量部とした場合、 重量 比で、 酸化鉛が 1〜 1 0、 シリカが 1〜 3 0、 酸化ホゥ素が 5〜 5 0、 酸化亜 鉛が 2 0 ~ 7 0、 アルミナが 1〜: L 0、 イットリアが 1〜5 0、 チタユアが 1 〜 5 0であって、 その合計が 1 0 0重量部を超えない範囲で調整されているこ とが好ましい。 The ratio of the lead oxide, zinc oxide, silica, boron oxide (B 2 O 3 ), alumina, yttria, and titaure is as follows, when the total amount of metal oxide is 100 parts by weight, 1 ~ 10, silica 1 ~ 30, boron oxide 5 ~ 50, zinc oxide 20 ~ 70, alumina 1 ~: L0, yttria 1 ~ 50, titaure 1 ~ 50 and the total is adjusted so as not to exceed 100 parts by weight. Is preferred.
これらの範囲で、 これらの酸化物の量を調整することにより、 特にセラミツ ク基板との密着性を改善することができる。  By adjusting the amounts of these oxides in these ranges, the adhesion to the ceramic substrate can be particularly improved.
上記金属酸化物の金属粒子に対する添加量は、 0 . 1重量%以上 1 0重量% 未満が好ましい。 また、 このような構成の導体ペーストを使用して抵抗発熱体 を形成した際の面積抵抗率は、 1〜4 5 πι Ω /口が好ましい。  The amount of the metal oxide added to the metal particles is preferably 0.1% by weight or more and less than 10% by weight. The area resistivity when the resistance heating element is formed using the conductor paste having such a configuration is preferably 1 to 45 πιΩ / port.
面積抵抗率が 4 5 Π1 Ω Ζ口を超えると、 印加電圧量に対して発熱量は大きく なりすぎて、 表面に抵抗発熱体を設けた半導体装置用セラミック基板では、 そ の発熱量を制御しにくいからである。 なお、 金属酸化物の添加量が 1 0重量% 以上であると、 面積抵抗率が 5 Ο πι Ω Ζ口を超えてしまい、 発熱量が大きくな りすぎて温度制御が難しくなり、 温度分布が生ずるようになる。  If the area resistivity exceeds 45 Π1 Ω, the amount of heat generated will be too large for the applied voltage, and in a ceramic substrate for a semiconductor device provided with a resistive heating element on the surface, the amount of heat generated will be controlled. Because it is difficult. If the addition amount of the metal oxide is 10% by weight or more, the sheet resistivity exceeds 5ΟπιΩΩΖ, and the calorific value becomes too large, so that the temperature control becomes difficult and the temperature distribution becomes poor. Will occur.
抵抗発熱体がセラミック基板の表面に形成される場合には、 抵抗発熱体の表 面部分に、 金属被覆層が形成されていることが好ましい。 内部の金属焼結体が 酸化されて抵抗値が変化するのを防止するためである。 形成する金属被覆層の 厚さは、 0 . 1〜 1 0 μ mが好ましい。  When the resistance heating element is formed on the surface of the ceramic substrate, a metal coating layer is preferably formed on the surface of the resistance heating element. This is to prevent the resistance value from changing due to oxidation of the internal metal sintered body. The thickness of the metal coating layer to be formed is preferably 0.1 to 10 μm.
上記金属被覆層を形成する際に使用される金属は、 非酸化性の金属であれば 特に限定されないが、 具体的には、 例えば、 金、 銀、 パラジウム、 白金、 ニッ ケル等が挙げられる。 これらは、 単独で用いてもよく、 2種以上を併用しても よい。 これらのなかでは、 ニッケルが好ましい。  The metal used for forming the metal coating layer is not particularly limited as long as it is a non-oxidizing metal, and specific examples include gold, silver, palladium, platinum, nickel, and the like. These may be used alone or in combination of two or more. Of these, nickel is preferred.
なお、 抵抗発熱体をセラミック基板の内部に形成する場合には、 抵抗発熱体 表面が酸化されることがないため、 被覆は不要である。  When the resistance heating element is formed inside the ceramic substrate, no coating is required because the surface of the resistance heating element is not oxidized.
このように、 上記した半導体製造■検査装置 (ホットプレート) を構成する セラミック基板には、 抵抗発熱体が設けられており、 ヒータとしての機能を有 し、 半導体ウェハ等の被加熱物を所定の温度に加熱することができる。  As described above, the ceramic substrate that constitutes the above-described semiconductor manufacturing / inspection apparatus (hot plate) is provided with a resistance heating element, has a function as a heater, and is capable of heating a target to be heated such as a semiconductor wafer. Can be heated to temperature.
なお、 以上の説明では、 上記導体層として、 抵抗発熱体が設けられたセラミ ック基板を例にとって説明したが、 導体層は、 抵抗発熱体に限定されず、 ゥェ ハプローバでは、 セラミック基板の表面にチャック トップ導体層、 内部にガー ド電極、 グランド電極が形成される。 また、 静電チャックでは、 セラミック基 板の内部に静電電極や R F電極が形成される。 本発明の半導体製造 ·検査装置を構成するセラミック基板 3 1の材料は特に 限定されないが、 例えば、 窒化物セラミック、 炭化物セラミック、 酸化物セラ ミック等が挙げられる。 In the above description, a ceramic substrate provided with a resistance heating element has been described as an example of the conductor layer. However, the conductor layer is not limited to the resistance heating element. A chuck top conductor layer is formed on the surface, and a guard electrode and ground electrode are formed inside. In an electrostatic chuck, electrostatic electrodes and RF electrodes are formed inside a ceramic substrate. The material of the ceramic substrate 31 constituting the semiconductor manufacturing / inspection apparatus of the present invention is not particularly limited, and examples thereof include a nitride ceramic, a carbide ceramic, and an oxide ceramic.
上記窒化物セラミックとしては、 金属窒化物セラミック、 例えば、 窒化アル ミニゥム、 窒化ケィ素、 窒化ホウ素等が挙げられる。  Examples of the nitride ceramic include metal nitride ceramics, for example, aluminum nitride, silicon nitride, boron nitride, and the like.
また、 上記炭化物セラミックとしては、 金属炭化物セラミック、 例えば、 炭 化ケィ素、 炭化ジルコニウム、 炭化タンタル等が挙げられる。  Examples of the carbide ceramic include metal carbide ceramics, for example, silicon carbide, zirconium carbide, tantalum carbide, and the like.
上記酸化物セラミックとしては、 金属酸化物セラミック、 例えば、 アルミナ、 ジルコユア、 コージェライ ト、 ムライ ト等が挙げられる。  Examples of the oxide ceramic include metal oxide ceramics, for example, alumina, zirconia, cordierite, and mullite.
これらのセラミックは単独で用いてもよく、 2種以上を併用してもよい。 これらのセラミックの中では、 窒化物セラミック、 炭化物セラミックの方が 酸化物セラミックに比べて望ましい。 熱伝導率が高いからである。  These ceramics may be used alone or in combination of two or more. Among these ceramics, nitride ceramics and carbide ceramics are more preferable than oxide ceramics. This is because the thermal conductivity is high.
また、 窒化物セラミックの中では窒化アルミニウムが最も好適である。 熱伝 導率が 1 8 0 W/m · Kと最も高いからである。  Aluminum nitride is the most preferable among the nitride ceramics. This is because the thermal conductivity is the highest at 180 W / m · K.
また、 上記セラミック材料は、 焼結助剤を含有していてもよい。 上記焼結助 剤としては、 例えば、 アルカリ金属酸化物、 アルカリ土類金属酸化物、 希土類 酸化物等が挙げられる。 これらの焼結助剤のなかでは、 C a O、 Y2 03 、 N a 2 0、 L i 2 0、 R b 2 Oが好ましい。 これらの含有量としては、 0 . 1〜 1 0 重量%が好ましい。 また、 アルミナを含有していてもよい。 Further, the ceramic material may contain a sintering aid. Examples of the sintering aid include alkali metal oxides, alkaline earth metal oxides, and rare earth oxides. Among these sintering aids, C a O, Y 2 0 3, N a 2 0, L it 2 0, R b 2 O is preferred. Their content is preferably 0.1 to 10% by weight. Further, it may contain alumina.
本発明にかかる半導体装置用セラミック基板は、 明度が J I S Z 8 7 2 1の規定に基づく値で N 6以下のものであることが望ましい。 このような明度 を有するものが輻射熱量、 隠蔽性に優れるからである。 また、 このようなセラ ミック基板は、 サーモビユアにより、 正確な表面温度測定が可能となる。  The ceramic substrate for a semiconductor device according to the present invention preferably has a brightness of N6 or less as a value based on the provisions of JIS Z8721. This is because those having such brightness have excellent radiation heat quantity and concealability. In addition, such a ceramic substrate can accurately measure the surface temperature by means of a thermoviewer.
ここで、 明度の Nは、 理想的な黒の明度を 0とし、 理想的な白の明度を 1 0 とし、 これらの黒の明度と白の明度との間で、 その色の明るさの知覚が等歩度 となるように各色を 1 0分割し、 N 0〜N 1 0の記号で表示したものである。 そして、 実際の測定は、 N O〜N 1 0に対応する色票と比較して行う。 この 場合の小数点 1位は 0または 5とする。  Where N is the ideal black lightness, 0 is the ideal white lightness, and 10 is the perceived brightness of the color between these black lightness and white lightness. Each color is divided into 10 so as to have a uniform rate, and is indicated by symbols N0 to N10. The actual measurement is performed by comparing the color charts corresponding to NO to N10. In this case, the first decimal place is 0 or 5.
このような特性を有するセラミック基板は、 セラミック基板中にカーボンを 5 0〜5 0 0 0 p p m含有させることにより得られる。 カーボンには、 非晶質 のものと結晶質のものとがあり、 非晶質のカーボンは、 セラミック基板の高温 における体積抵抗率の低下を抑制することでき、 結晶質のカーボンは、 セラミ ック基板の高温における熱伝導率の低下を抑制することができるため、 その製 造する基板の目的等に応じて適宜カーボンの種類を選択することができる。 非晶質のカーボンとしては、 例えば、 C、 H、 Oだけからなる炭化水素、 好 ましくは、 糖類を、 空気中で焼成することにより得ることができ、 結晶質の力 一ボンとしては、 グラフアイ ト粉末等を用いることができる。 Ceramic substrates having such characteristics include carbon in the ceramic substrate. It is obtained by containing 50 to 500 ppm. There are two types of carbon, amorphous and crystalline. Amorphous carbon can suppress a decrease in the volume resistivity of a ceramic substrate at high temperatures, and crystalline carbon can be a ceramic. Since the decrease in the thermal conductivity of the substrate at a high temperature can be suppressed, the type of carbon can be appropriately selected according to the purpose of the substrate to be manufactured. As amorphous carbon, for example, hydrocarbons consisting only of C, H, and O, preferably, saccharides can be obtained by calcining in air. Graphite powder or the like can be used.
また、 アクリル系樹脂を不活性雰囲気 (窒化ガス、 アルゴンガス) 下で熱分 解させた後、 加熱加圧することによりカーボンを得ることができるが、 このァ クリル系樹脂の酸価を変化させることにより、 結晶性 (非晶性) の程度を調整 することができる。  In addition, carbon can be obtained by thermally decomposing the acrylic resin in an inert atmosphere (nitriding gas, argon gas) and then heating and pressurizing it. However, the acid value of the acrylic resin must be changed. Thus, the degree of crystallinity (amorphousness) can be adjusted.
本発明の半導体装置用セラミック基板は、 円板形状が好ましく、 直径 2 0 0 mm以上が望ましく、 2 5 0 m m以上が最適である。  The ceramic substrate for a semiconductor device of the present invention preferably has a disk shape, preferably has a diameter of 200 mm or more, and most preferably 250 mm or more.
円板形状の半導体装置用セラミック基板は、 温度の均一性が要求されるが、 直径の大きな基板ほど、 温度が不均一になりやすいからである。  Disc-shaped ceramic substrates for semiconductor devices are required to have uniform temperature, but the larger the diameter of the substrate, the more likely the temperature will be non-uniform.
本発明の半導体装置用セラミック基板の厚さは、 5 0 mm以下が好ましく、 2 0 m m以下がより好ましい。 また、 1〜 1 0 mmが最適である。  The thickness of the ceramic substrate for a semiconductor device of the present invention is preferably 50 mm or less, more preferably 20 mm or less. Also, 1 to 10 mm is optimal.
厚みは、 薄すぎると高温での反りが発生しやすく、 厚すぎると熱容量が大き くなり過ぎて昇温降温特性が低下するからである。  If the thickness is too small, warping at high temperatures is likely to occur, and if the thickness is too large, the heat capacity becomes too large and the temperature rise / fall characteristics deteriorate.
また、 本発明の半導体装置用セラミック基板の気孔率は、 0または 5 %以下 が望ましい。 高温での熱伝導率の低下、 反りの発生を抑制できるからである。 本発明の半導体装置用セラミック基板は、 2 0 0 °C以上で使用することがで きる。  The porosity of the ceramic substrate for a semiconductor device of the present invention is desirably 0 or 5% or less. This is because a decrease in thermal conductivity at high temperatures and the occurrence of warpage can be suppressed. The ceramic substrate for a semiconductor device of the present invention can be used at 200 ° C. or higher.
本発明の半導体製造 ·検査装置では、 図 1に示したように、 セラミック基板 に形成された有底孔に熱電対を埋め込んでおくことが望ましい。 熱電対により 抵抗発熱体の温度を測定し、 そのデータをもとに電圧、 電流量を変えて、 温度 を制御することができるからである。  In the semiconductor manufacturing / inspection apparatus of the present invention, as shown in FIG. 1, it is desirable to embed a thermocouple in a bottomed hole formed in a ceramic substrate. This is because the temperature of the resistance heating element can be measured with a thermocouple, and the temperature can be controlled by changing the voltage and current based on the data.
上記熱電対の金属線の接合部位の大きさは、 各金属線の素線径と同一か、 も しくは、 それよりも大きく、 かつ、 0 . 5 mm以下がよい。 このような構成に よって、 接合部分の熱容量が小さくなり、 温度が正確に、 また、 迅速に電流値 に変換されるのである。 このため、 温度制御性が向上して半導体ウェハの加熱 面の温度分布が小さくなるのである。 The size of the junction of the above-mentioned thermocouple metal wires is the same as the strand diameter of each metal wire. It is better to be larger and less than 0.5 mm. With such a configuration, the heat capacity of the junction is reduced, and the temperature is accurately and quickly converted to a current value. For this reason, the temperature controllability is improved, and the temperature distribution on the heated surface of the semiconductor wafer is reduced.
上記熱電対としては、 例えば、 J I S— C— 1 6 0 2 ( 1 9 8 0 ) に挙げら れるように、 K型、 R型、 B型、 E型、 J型、 T型熱電対が挙げられる。  Examples of the thermocouple include K-type, R-type, B-type, E-type, J-type, and T-type thermocouples, as described in JIS-C-162 (1980). Can be
図 3 ( a ) は、 本発明の半導体製造 .検査装置の一例であるホットプレート の別の実施形態を模式的に示した断面図であり、 (b ) は、 支持容器を構成す る遮熱板を模式的に示した斜視図である。  FIG. 3 (a) is a cross-sectional view schematically showing another embodiment of a hot plate which is an example of a semiconductor manufacturing / inspection apparatus of the present invention, and FIG. 3 (b) is a heat shield constituting a support container. It is the perspective view which showed the board typically.
このホットプレート 3 0は、 セラミック基板 3 1と支持容器 2 0とからなり、 セラミック基板 3 1では、 内部に抵抗発熱体 3 2が形成されており、 抵抗発熱 体 3 2の端部の直下にスルーホール 3 9が形成され、 スルーホール 3 9を露出 させる袋孔 3 8に緩衝部材であるヮッシヤー 2 9が嵌め込まれ、 ろう材等で固 定されている。 また、 ワッシャー 2 9の中心孔には、 導電線 3 3が挿入され、 ろう材等で等で固定されている。  The hot plate 30 is composed of a ceramic substrate 31 and a supporting container 20. The ceramic substrate 31 has a resistance heating element 32 formed therein, and is provided directly below an end of the resistance heating element 32. A through hole 39 is formed, and a cushion 29 as a cushioning member is fitted into a blind hole 38 that exposes the through hole 39, and is fixed with a brazing material or the like. A conductive wire 33 is inserted into the center hole of the washer 29, and is fixed with a brazing material or the like.
そして、 このような構成のセラミック基板 3 1が断熱リング 1 5を介して、 支持容器 2 0の上部に嵌め込まれている。  The ceramic substrate 31 having such a configuration is fitted to the upper portion of the support container 20 via the heat insulating ring 15.
支持容器 2 0は、 略円筒形状の外枠部 2 1と、 外枠部 2 1の内側上部および 下部にそれぞれ設けられた共に円環形状の基板受け部 2 3および遮熱板受け部 2 4とを有し、 これらは一体に形成されている。 一方、 外枠部 2 1の底面には、 上部円環状部 2 2 bと下部円環状部 2 2 cとが、 放熱フイン 2 2 dを有する中 間部 2 2 aを介して連結された円筒部 2 2が存在し、 中間部 2 2 aの円筒部分 の直径は、 外枠部 2 1よりも小さい。 また、 円筒部 2 2は、 外枠部 2 1等とは 分離され、 取り外し可能な状態で延設されており、 そのため、 この円筒部 2 2 は、 遮熱板 2 6とともに、 ボルト等の連結部材 2 7を介して、 遮熱板受け部 2 4に支持、 固定されている。 ·  The support container 20 includes a substantially cylindrical outer frame portion 21, and a ring-shaped substrate receiving portion 23 and a heat-shielding plate receiving portion 24 provided on the inner upper and lower portions of the outer frame portion 21, respectively. And these are integrally formed. On the other hand, on the bottom surface of the outer frame 21, an upper annular portion 2 2 b and a lower annular portion 22 c are connected via a middle portion 22 a having a heat radiation fin 22 d. The part 22 is present, and the diameter of the cylindrical part of the intermediate part 22 a is smaller than that of the outer frame part 21. Further, the cylindrical portion 22 is separated from the outer frame portion 21 and the like, and is extended so as to be detachable. Therefore, the cylindrical portion 22 is connected with bolts and the like together with the heat shield plate 26. It is supported and fixed to the heat shield plate receiving portion 24 via the member 27. ·
遮熱板 2 6の内部の構造や配線等は、 図 1に示したホットプレート 4 0と略 同様であるが、 開口 2 6 aは、 図 1に示したホットプレートよりも大きく設定 している。 なお、 放熱フィン 2 2 dを有する円筒部 2 2の下方には制御装置が 存在し、 この制御装置内の制御機器に導電線 3 3とリード線 3 6とが接続され るようになっている。 The internal structure, wiring, etc. of the heat shield plate 26 are substantially the same as those of the hot plate 40 shown in FIG. 1, but the opening 26 a is set larger than the hot plate shown in FIG. . A control device is provided below the cylindrical portion 22 having the radiation fins 2 2 d. A conductive wire 33 and a lead wire 36 are connected to a control device in the control device.
このホットプレート 4 0を作動させると、 抵抗発熱体 3 2は発熱し、 セラミ ック基板 3 1は昇温するが、 セラミック基板 3 1内に埋設された測温素子 3 7 により、 セラミック基板 3 1の温度が測定され、 測定データが制御機器にイン プットされ、 印加電圧 (電流) 量が制御されるので、 セラミック基板 3 1の温 度は一定値にコントロールされる。  When the hot plate 40 is operated, the resistance heating element 32 generates heat and the temperature of the ceramic substrate 31 rises. However, the ceramic substrate 31 is embedded by the temperature measuring element 37 embedded in the ceramic substrate 31. The temperature of 1 is measured, the measured data is input to the control device, and the amount of applied voltage (current) is controlled, so that the temperature of the ceramic substrate 31 is controlled to a constant value.
また、 円筒部 2 2は、 制御機器に取り付けることができるようになつている ので、 制御機器や電源が収納され、 制御装置上に本発明の半導体製造 ·検査装 置を据えつけることができ、 上記放熱フィンの働きにより、 下部の制御装置を ほぼ常温に保つことができる。  In addition, since the cylindrical portion 22 can be attached to a control device, the control device and the power supply are housed, and the semiconductor manufacturing / inspection device of the present invention can be installed on the control device. By the action of the heat radiation fins, the lower control device can be kept at almost normal temperature.
また、 直径の小さな円筒部を装置本体に嵌合すればよいので、 嵌合部分を大 きくする必要もなく、 装置を大型化する必要もない。  In addition, since a small-diameter cylindrical portion only needs to be fitted to the apparatus main body, there is no need to increase the size of the fitting portion and to increase the size of the apparatus.
また、 ステージ基板を大型化しても、 嵌合部分は従来と同じ大きさのものを 使用することができるため、 装置本体は、 そのままでよい。  Even if the size of the stage substrate is increased, the size of the fitting portion can be the same as that of the conventional one, so that the apparatus main body may be left as it is.
さらに、 遮熱板 2 6には、 開口 2 6 aが多数設けられているため、 板状体の 熱容量を小さくすることができるとともに、 冷却媒体が排出しやすくなり、 冷 却速度を向上させることができる。  Furthermore, since the heat shield plate 26 has a large number of openings 26a, the heat capacity of the plate-like body can be reduced, and the cooling medium can be easily discharged, thereby improving the cooling speed. Can be.
以上、 本発明の本半導体製造 '検査装置として、 ホットプレートを例にとつ て説明した。 本発明の半導体製造■検査装置の具体例としては、 上記ホットプ レートのほかに、 例えば、 静電チャック、 ウェハプローバ、 サセプタ等が挙げ られる。  The hot plate has been described as an example of the semiconductor manufacturing and inspection apparatus of the present invention. Specific examples of the semiconductor manufacturing / inspection apparatus of the present invention include, in addition to the above hot plate, an electrostatic chuck, a wafer prober, a susceptor, and the like.
上記ホットプレート (セラミックヒータ) は、 セラミック基板の表面または 内部に抵抗発熱体のみが設けられた装置であり、 これにより、 半導体ウェハ等 の被加熱物を所定の温度に加熱することができる。  The hot plate (ceramic heater) is a device in which only a resistance heating element is provided on the surface or inside of a ceramic substrate, and can heat an object to be heated such as a semiconductor wafer to a predetermined temperature.
一方、 本発明の半導体製造■検査装置を構成するセラミック基板の内部に導 電層として静電電極を設けた場合には、 静電チヤックとして機能する。  On the other hand, when an electrostatic electrode is provided as a conductive layer inside a ceramic substrate constituting the semiconductor manufacturing / inspection apparatus of the present invention, it functions as an electrostatic check.
上記静電電極に用いる金属としては、 例えば、 貴金属 (金、 銀、 白金、 パラ ジゥム) 、 タングステン、 モリブデン、 ニッケルなどが好ましい。 また、 上記 導電性セラミックとしては、 例えば、 タングステン、 モリブデンの炭化物など が挙げられる。 これらは、 単独で用いてもよく、 2種以上を併用してもよい。 図 4 ( a ) は、 静電チャックに用いられるセラミック基板を模式的に示す縦 断面図であり、 (b ) は、 (a ) に示したセラミック基板の A— A線断面図で ある。 この静電チャック用のセラミック基板では、 セラミック基板 6 1の内部 にチャック正負電極層 6 2、 6 3が埋設され、 それぞれスルーホール 6 8 0と 接続され、 その電極上にセラミック誘電体膜 6 4が形成されている。 As the metal used for the electrostatic electrode, for example, noble metals (gold, silver, platinum, and palladium), tungsten, molybdenum, nickel, and the like are preferable. Also, Examples of the conductive ceramic include carbides of tungsten and molybdenum. These may be used alone or in combination of two or more. FIG. 4A is a longitudinal sectional view schematically showing a ceramic substrate used for an electrostatic chuck, and FIG. 4B is a sectional view taken along line AA of the ceramic substrate shown in FIG. In this ceramic substrate for an electrostatic chuck, chuck positive and negative electrode layers 62 and 63 are buried inside the ceramic substrate 61 and connected to through holes 680 respectively, and a ceramic dielectric film 64 is formed on the electrode. Are formed.
—方、 セラミック基板 6 1の内部には、 抵抗発熱体 6 6とスルーホール 6 8 とが設けられ、 シリコンウェハ 2 9等の被加熱物を加熱することができるよう になっている。 なお、 セラミック基板 6 1には、 必要に応じて、 R F電極が埋 設されていてもよい。  On the other hand, inside the ceramic substrate 61, a resistance heating element 66 and a through hole 68 are provided so that an object to be heated such as a silicon wafer 29 can be heated. Note that an RF electrode may be embedded in the ceramic substrate 61 as necessary.
また、 (b ) に示したように、 セラミック基板 6 1は、 通常、 平面視円形状 に形成されており、 セラミック基板 6 1の内部に (b ) に示した半円弧状部 6 Also, as shown in (b), the ceramic substrate 61 is usually formed in a circular shape in plan view, and the semi-circular portion 6 shown in (b) is formed inside the ceramic substrate 61.
2 aと櫛歯部 6 2 bとからなるチャック正極静電層 6 2と、 同じく半円弧状部 6 3 aと櫛歯部 6 3 bとからなるチヤック負極静電層 6 3と力 互いに櫛歯部The chuck positive electrode electrostatic layer 6 2 composed of 2 a and the comb tooth part 6 2 b, and the chuck negative electrode electrostatic layer 6 3 also composed of the semicircular part 6 3 a and the comb tooth part 6 3 b Tooth
6 2 b、 6 3 bを交差するように対向して配置されている。 They are arranged to face each other so as to intersect 6 2 b and 6 3 b.
このような構成のセラミック基板が図 1に示した支持容器 1 0と略同じ構造 および機能を有する支持容器に嵌め込まれ、 静電チャックとして動作する。 こ の際、 チャック正極静電層 6 2とチャック負極静電層 6 3とに制御装置内の直 流電源から延びた配線の +側と一側を接続し、 直流電圧を印加する。  The ceramic substrate having such a configuration is fitted into a support container having substantially the same structure and function as the support container 10 shown in FIG. 1, and operates as an electrostatic chuck. At this time, the plus side and one side of the wiring extending from the DC power supply in the control device are connected to the chuck positive electrode electrostatic layer 62 and the chuck negative electrode electrostatic layer 63, and a DC voltage is applied.
これにより、 この静電チャック上に載置された半導体ウェハが静電的に吸着 され、 半導体ウェハに種々の加工を施すことが可能となる。  As a result, the semiconductor wafer mounted on the electrostatic chuck is electrostatically attracted and various processing can be performed on the semiconductor wafer.
図 5およぴ図 6は、 他の静電チヤックを構成するセラミック基板の静電電極 を模式的に示した水平断面図であり、 図 5に示す静電チャック用のセラミック 基板では、 セラミック基板 2 1 1の内部に半円形状のチャック正極静電層 2 1 2とチャック負極静電層 2 1 3が形成されており、 図 6に示す静電チャック用 のセラミック基板では、 セラミック基板 2 2 1の内部に円を 4分割した形状の チャック正極静電層 2 2 2 a、 2 2 2 bとチャック負極静電層 2 2 3 a、 2 2 FIGS. 5 and 6 are horizontal cross-sectional views schematically showing electrostatic electrodes of a ceramic substrate constituting another electrostatic chuck. In the ceramic substrate for an electrostatic chuck shown in FIG. 5, a ceramic substrate is used. A semi-circular chuck positive electrode electrostatic layer 2 1 2 and a chuck negative electrode electrostatic layer 2 13 are formed inside 2 1 1. The ceramic substrate for the electrostatic chuck shown in FIG. Chuck positive electrode electrostatic layer 2 2 2a, 2 2 b and chuck negative electrode electrostatic layer 2 2 3a, 2 2
3 bとが形成されている。 また、 2枚の正極静電層 2 2 2 a、 2 2 2 bおよび 2枚のチャック負極静電層 2 2 3 a、 2 2 3 bは、 それぞれ交差するように形 成されている。 3b is formed. In addition, two positive electrode electrostatic layers 2 2 2a, 2 2 2b and The two chuck negative electrode electrostatic layers 223a and 223b are formed so as to cross each other.
なお、 円形等の電極が分割された形態の電極を形成する場合、 その分割数は 特に限定されず、 5分割以上であってもよく、 その形状も.扇形に限定されない。 本発明の半導体製造■検査装置を構成するセラミック基板の表面にチヤック トップ導体層を設け、 内部の導体層として、 ガード電極やグランド電極を設け た場合には、 ウェハプローパとして機能する。  In the case of forming an electrode in which a circular electrode or the like is divided, the number of divisions is not particularly limited, and may be five or more, and the shape is not limited to a sector. When a check conductor layer is provided on the surface of a ceramic substrate constituting a semiconductor manufacturing / inspection apparatus of the present invention, and a guard electrode or a ground electrode is provided as an internal conductor layer, it functions as a wafer proper.
図 7は、 本発明にかかるウェハプローバを構成するセラミック基板の一実施 形態を模式的に示した断面図であり、 図 8は、 その平面図であり、 図 9は、 図 7に示したウェハプローバにおける A— A線断面図である。  FIG. 7 is a cross-sectional view schematically showing one embodiment of a ceramic substrate constituting the wafer prober according to the present invention, FIG. 8 is a plan view thereof, and FIG. 9 is a plan view of the wafer shown in FIG. FIG. 3 is a sectional view taken along line AA in the prober.
このウェハプローバでは、 平面視円形状のセラミック基板 3の表面に同心円 形状の溝 8が形成されるとともに、 溝 8の一部にシリコンウェハを吸引するた めの複数の吸引孔 9が設けられており、 溝 8を含むセラミック基板 3の大部分 にシリコンウェハの電極と接続するためのチヤック トップ導体層 2が円形状に 形成されている。  In this wafer prober, concentric grooves 8 are formed on the surface of a ceramic substrate 3 having a circular shape in plan view, and a plurality of suction holes 9 for sucking a silicon wafer are provided in a part of the grooves 8. The check conductor layer 2 for connecting to the electrode of the silicon wafer is formed in a circular shape on most of the ceramic substrate 3 including the groove 8.
一方、 セラミック基板 3の底面には、 シリコンウェハの温度をコントロール するために、 平面視同心円形状の抵抗発熱体 5 1が設けられている。 抵抗発熱 体 5 1の両端には、 図示はしていないが、 外部端子が接続、 固定されている。 また、 セラミック基板 3の内部には、 ストレイキャパシタゃノイズを除去す るために図 9に示したような格子形状のガード電極 6とグランド電極 7 (図示 せず) とが設けられている。 なお、 符号 5 2は、 電極非形成部を示している。 このような矩形状の電極非形成部 5 2をガード電極 6の内部に形成しているの は、 ガード電極 6を挟んだ上下のセラミック基板 3をしつかりと接着させるた めである。  On the other hand, on the bottom surface of the ceramic substrate 3, a resistance heating element 51 having a concentric circular shape in a plan view is provided in order to control the temperature of the silicon wafer. Although not shown, external terminals are connected and fixed to both ends of the resistance heating element 51. Further, inside the ceramic substrate 3, a guard electrode 6 and a ground electrode 7 (not shown) having a lattice shape as shown in FIG. 9 are provided in order to remove a stray capacitor noise. Reference numeral 52 indicates an electrode non-formed portion. The reason why such a rectangular electrode non-formed portion 52 is formed inside the guard electrode 6 is that the upper and lower ceramic substrates 3 sandwiching the guard electrode 6 are firmly bonded.
このような構成のセラミック基板が図 1に示したものと略同様の構造の支持 容器に嵌め込まれ、 ウェハプローバとして動作する。  The ceramic substrate having such a configuration is fitted into a support container having a structure substantially similar to that shown in FIG. 1, and operates as a wafer prober.
このウェハプローバでは、 セラミック基板 3の上に集積回路が形成されたシ リコンウェハを载置した後、 このシリコンウェハにテスタピンを持つプローブ カードを押しつけ、 加熱、 冷却しながら電圧を印加して導通テストを行うこと ができる。 In this wafer prober, after placing a silicon wafer having an integrated circuit formed on a ceramic substrate 3, a probe card having tester pins is pressed against the silicon wafer, and a voltage is applied while heating and cooling to conduct a continuity test. What to do Can be.
次に、 本発明の半導体製造 ·検査装置の製造方法の一例として、 ホットプレ ートの製造方法について説明する。  Next, a method of manufacturing a hot plate will be described as an example of a method of manufacturing a semiconductor manufacturing / inspection apparatus of the present invention.
図 1 0 ( a ) 〜 (d ) は、 本発明の半導体製造 ·検査装置を構成するセラミ ック基板の内部に抵抗発熱体を有するセラミック基板の製造工程を模式的に示 した断面図である。  FIGS. 10 (a) to (d) are cross-sectional views schematically showing steps of manufacturing a ceramic substrate having a resistance heating element inside a ceramic substrate constituting a semiconductor manufacturing / inspection apparatus of the present invention. .
( 1 ) セラミック基板の作製工程  (1) Manufacturing process of ceramic substrate
まず、 窒化物セラミックの粉末をバインダ、 溶剤等と混合してペース トを調 製し、 これを用いてグリーンシートを作製する。  First, a paste is prepared by mixing nitride ceramic powder with a binder, a solvent, and the like, and a green sheet is prepared using the paste.
上述したセラミック粉末としては、 窒化アルミニウム等を使用することがで き、 必要に応じて、 イットリア等の焼結助剤を加えてもよい。 また、 グリーン シートを作製する際、 結晶質や非晶質のカーボンを添加してもよい。  As the above-mentioned ceramic powder, aluminum nitride or the like can be used, and if necessary, a sintering aid such as yttria may be added. Further, when producing a green sheet, crystalline or amorphous carbon may be added.
また、 バインダとしては、 アクリル系バインダ、 ェチルセルロース、 プチル セロソルブ、 ポリビエルアルコールから選ばれる少なくとも 1種が望ましい。 さらに溶媒としては、 α—テルビネオール、 グリコールから選ばれる少なく とも 1種が望ましい。  Further, as the binder, at least one selected from an acrylic binder, ethyl cellulose, butyl cellosolve, and polyvinyl alcohol is desirable. Further, as the solvent, at least one selected from α-terbineol and glycol is desirable.
これらを混合して得られるペーストをドクターブレード法でシート状に成形 してグリーンシート 5 0を作製する。  A paste obtained by mixing these is formed into a sheet by a doctor blade method to produce a green sheet 50.
グリーンシート 5 0の厚さは、 0 . 1 ~ 5 m mが好ましい。  The thickness of the green sheet 50 is preferably 0.1 to 5 mm.
次に、 得られたグリーンシートに、 必要に応じて、 シリ コンウェハを支持す るための支持ピンを挿入する貫通孔となる部分、 熱電対などの測温素子を埋め 込むための有底孔となる部分、 抵抗発熱体と外部端子とを接続するためのスル 一ホールとなる部分 3 9 0等を形成する。 後述するグリーンシート積層体を形 成した後に、 上記加工を行ってもよく、 焼結体とした後に、 上記加工を行って もよい。  Next, the obtained green sheet is provided, as necessary, with a portion serving as a through hole for inserting a support pin for supporting a silicon wafer, and a bottomed hole for embedding a temperature measuring element such as a thermocouple. And a portion 390 serving as a through hole for connecting the resistance heating element to the external terminal is formed. The above-described processing may be performed after forming a green sheet laminate described later, or the above-described processing may be performed after forming a sintered body.
( 2 ) グリーンシート上に導体ペーストを印刷する工程  (2) Process of printing conductive paste on green sheet
グリーンシート 5 0上に、 金属ペーストまたは導電性セラミックを含む導体 ペーストを印刷し、 導体ペースト層 3 2 0を形成する。  A conductive paste containing a metal paste or a conductive ceramic is printed on the green sheet 50 to form a conductive paste layer 320.
これらの導体ペースト中には、 金属粒子または導電性セラミック粒子が含ま れている。 These conductive pastes contain metal particles or conductive ceramic particles. Have been.
上記金属粒子であるタングステン粒子またはモリブデン粒子等の平均粒子径 は、 0. 1〜5 μπιが好ましい。 平均粒子が 0. l /zm未満である力、 5 μ m を超えると、 導体ペーストを印刷しにくいからである。  The average particle diameter of the metal particles such as tungsten particles or molybdenum particles is preferably 0.1 to 5 μπι. If the average particle size is less than 0.1 l / zm or more than 5 μm, it is difficult to print the conductive paste.
このような導体ペーストとしては、 例えば、 金属粒子または導電性セラミッ ク粒子 8 5~ 8 7重量部;アタリノレ系、 ェチノレセノレロース、 ブチルセロソノレプ、 ポリビュルアルコールから選ばれる少なくとも 1種のバインダー 1. 5〜 1 0 重量部;および、 α—テルビネオール、 グリコールから選ばれる少なくとも 1 種の溶媒を 1. 5〜1 0重量部を混合した組成物 (ペース ト) が挙げられる。 As such a conductive paste, for example, 85 to 87 parts by weight of metal particles or conductive ceramic particles; at least one kind selected from atarinole-based, etinoresenorelose, butylcellosonolep, and polybutyl alcohol 1.5 to 10 parts by weight of a binder; and 1.5 to 10 parts by weight of a composition (paste) in which at least one solvent selected from α -terbineol and glycol is mixed.
(3) グリーンシートの積層工程  (3) Green sheet lamination process
上記 (1) の工程で作製した導体ペース トを印刷していないグリーンシート 50を、 上記 (2) の工程で作製した導体ペース ト層 3 20を印刷したダリー ンシート 50の上下に積層する (図 1 0 (a) ) 。  The green sheet 50 not printed with the conductor paste manufactured in the above step (1) is laminated on and under the dull sheet 50 printed with the conductor paste layer 320 formed in the above step (2) (see FIG. 10 (a)).
このとき、 上側に積層するグリ一ンシート 5 0の数を下側に積層するグリ一 ンシート 50の数よりも多くして、 抵抗発熱体 32の形成位置を底面の方向に 偏芯させる。  At this time, the number of green sheets 50 stacked on the upper side is made larger than the number of green sheets 50 stacked on the lower side, and the formation position of the resistance heating element 32 is eccentric toward the bottom.
具体的には、 上側のダリ一ンシート 50の積層数は 20〜50枚が、 下側の グリーンシート 5 0の積層数は 5〜 20枚が好ましい。  Specifically, it is preferable that the number of stacked upper dust sheets 50 is 20 to 50, and the number of stacked lower green sheets 50 is 5 to 20.
(4) グリーンシート積層体の焼成工程  (4) Green sheet laminate firing process
グリーンシート積層体の加熱、 加圧を行い、 グリーンシート 50および内部 の導体ペース トを焼結させ、 セラミック基板 3 1を作製する (図 1 0 (b) ) 。 加熱温度は、 1 000〜 2000°Cが好ましく、 加圧の圧力は、 1 0〜20 MP a (100〜200 k g/cm2 ) が好ましい。 加熱は、 不活性ガス雰囲気 中で行う。 不活性ガスとしては、 例えば、 アルゴン、 窒素などを使用すること ができる。 The green sheet laminate is heated and pressurized to sinter the green sheet 50 and the conductive paste therein to produce a ceramic substrate 31 (FIG. 10 (b)). The heating temperature is preferably from 1,000 to 2000 ° C., and the pressure is preferably from 10 to 20 MPa (100 to 200 kg / cm 2 ). Heating is performed in an inert gas atmosphere. As the inert gas, for example, argon, nitrogen, and the like can be used.
得られたセラミック基板 3 1に、 測温素子を揷入するための有底孔 (図示せ ず) や、 外部端子を揷入するための袋孔 3 8等を設ける (図 10 (c) ) 。 有 底孔およぴ袋孔 38は、 表面研磨後に、 ドリル加工やサンドブラストなどのブ ラスト処理を行うことにより形成することができる。 次に、 袋孔 3 8より露出したスルーホール 3 8に導電性セラミック等からな るワッシャー 2 9を嵌め込み、 導電線 3 3を金ろう等を用いて接続する (図 1 0 ( d ) ) 。 The obtained ceramic substrate 31 is provided with a bottomed hole (not shown) for inserting a temperature measuring element and a blind hole 38 for inserting an external terminal (FIG. 10 (c)). . The bottomed hole and the blind hole 38 can be formed by blasting such as drilling or sand blasting after surface polishing. Next, a washer 29 made of conductive ceramic or the like is fitted into the through hole 38 exposed from the blind hole 38, and the conductive wire 33 is connected using a gold solder or the like (FIG. 10 (d)).
なお、 加熱温度は、 半田処理の場合には 9 0〜4 5 0 °Cが好適であり、 ろう 材での処理の場合には、 9 0 0〜 1 1 0 0 °Cが好適である。 さらに、 測温素子 としての熱電対などを耐熱性樹脂で封止し、 ホットプレート用のセラミック基 板とする。  The heating temperature is preferably from 90 to 450 ° C. in the case of soldering, and from 900 to 110 ° C. in the case of processing with brazing material. In addition, a thermocouple as a temperature measuring element is sealed with a heat-resistant resin to make a ceramic substrate for a hot plate.
この後、 得られたセラミック基板を断熱リング 1 5を介して図 3に示したよ うな構造の支持容器 2 0に嵌め込み、 この熱電対等の測温素子 3 7や抵抗発熱 体 3 2からの配線を設け、 円筒部等を放熱フィンを備えた制御装置の放熱フィ ンに嵌め込むか、 制御装置に取り付け、 その下の制御機器との配線を接続する。 なお、 支持容器の遮熱板 2 6は、 金属で円板等を形成した後、 パンチングで擊 ち抜いて開口を形成しておく。  Thereafter, the obtained ceramic substrate is fitted through a heat insulating ring 15 into a support container 20 having a structure as shown in FIG. 3, and wiring from the temperature measuring element 37 such as a thermocouple and the resistance heating element 32 is connected. Then, fit the cylindrical part, etc. into the heat radiation fin of the control device equipped with the heat radiation fin, or attach it to the control device, and connect the wiring with the control device below. The heat shield plate 26 of the support container is formed by forming a circular plate or the like with a metal and then punching out the same to form an opening.
このホッ トプレートでは、 その上にシリコンウェハ等を載置するか、 または、 シリコンウェハ等を支持ピンで保持させた後、 シリコンウェハ等の被加熱物の 加熱を行うとともに、 種々の操作を行うことができる。  In this hot plate, a silicon wafer or the like is placed on the hot plate, or after the silicon wafer or the like is held by support pins, an object to be heated such as a silicon wafer is heated and various operations are performed. be able to.
上記ホットプレート用のセラミック基板を製造する際に、 セラミック基板の 内部に静電電極を設けることにより静電チヤック用セラミック基板を製造する ことができ、 また、 加熱面にチャックトップ導体層を設け、 セラミック基板の 内部にガード電極やグランド電極を設けることによりウェハプローバ用セラミ ック基板を製造することができる。  When manufacturing the ceramic substrate for the hot plate, a ceramic substrate for electrostatic chuck can be manufactured by providing an electrostatic electrode inside the ceramic substrate, and a chuck top conductor layer is provided on a heating surface, By providing a guard electrode and a ground electrode inside a ceramic substrate, a ceramic substrate for a wafer prober can be manufactured.
セラミック基板の内部に電極を設ける場合には、 抵抗発熱体を形成する場合 と同様にグリーンシートの表面に導体ペース ト層を形成すればよい。 また、 セ ラミック基板の表面に導体層を形成する場合には、 スパッタリング法やめつき 法を用いることができ、 これらを併用してもよい。 発明を実施するための最良の形態  When the electrodes are provided inside the ceramic substrate, a conductive paste layer may be formed on the surface of the green sheet as in the case of forming the resistance heating element. When a conductor layer is formed on the surface of the ceramic substrate, a sputtering method or a plating method can be used, and these may be used in combination. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明をさらに詳細に説明する。  Hereinafter, the present invention will be described in more detail.
(実施例 1〜4、 6、 9 ) ホッ トプレートの製造 (1) 窒化アルミニウム粉末 (トクャマ社製、 平均粒径 1. l m) 1 00 重量部、 酸化ィットリウム (Y2 03 :イツトリァ、 平均粒径: 0. 4 μ m) 4 重量部、 アクリル系樹脂バインダー 1 1. 5重量部おょぴアルコールからなる 組成物のスプレードライを行い、 顆粒状の粉末を作製した。 (Examples 1-4, 6, 9) Production of hot plate (1) the aluminum nitride powder (Tokuyama Corp., average particle size 1. lm) 1 00 parts by weight, oxide Ittoriumu (Y 2 0 3: Itsutoria, average particle size: 0. 4 μ m) 4 parts by weight, an acrylic resin Binder 1. A composition comprising 1.5 parts by weight of alcohol was spray-dried to produce a granular powder.
(2) 次に、 この顆粒状の粉末を断面が六角形状の金型に入れ、 六角形の平 板状に成形して生成形体 (グリーン) を得た。  (2) Next, this granular powder was placed in a mold having a hexagonal cross section, and formed into a hexagonal flat plate to obtain a green body (green).
(3) 加工処理の終わった生成形体を温度: 1 800°C、 圧力: 2 OMP a (200 k g/cm2 ) でホットプレスし、 厚さが 3 mmの窒化アルミニウム焼 結体を得た。 (3) The processed green compact was hot-pressed at a temperature of 1800 ° C. and a pressure of 2 OMPa (200 kg / cm 2 ) to obtain a 3 mm thick aluminum nitride sintered body.
次に、 この焼結体から直径 2 1 Ommの円板体を切り出し、 セラミック製の 板状体 (セラミック基板) とした。  Next, a disk having a diameter of 21 Omm was cut out from the sintered body to obtain a ceramic plate (ceramic substrate).
次に、 この板状体にドリル加工を施し、 半導体ウェハの支持ピンを挿入する 貫通孔となる部分、 熱電対を埋め込むための有底孔となる部分 (直径: 1. 1 mm、 深さ : 2mm) を形成した。  Next, this plate is drilled to form a through hole for inserting the support pins of the semiconductor wafer and a bottomed hole for embedding the thermocouple (diameter: 1.1 mm, depth: 2 mm).
(4) 上記 (3) で得た焼結体の底面に、 スクリーン印刷にて導体ペース ト を印刷した。 印刷パターンは、 同心円状とした。  (4) A conductor paste was printed by screen printing on the bottom surface of the sintered body obtained in (3) above. The printing pattern was concentric.
導体ペーストとしては、 プリント配線板のスルーホール形成に使用されてい る徳カ化学研究所製のソルべスト P S 6 0 3 Dを使用した。  As the conductive paste, Solvent PS603D manufactured by Tokuka Chemical Laboratory, which is used to form through holes in printed wiring boards, was used.
この導体ペース トは、 銀一鉛ペース トであり、 銀 100重量部に対して、 酸 化鉛 (5重量%) 、 酸化亜鉛 (5 5重量%) 、 シリカ (1 0重量%) 、 酸化ホ ゥ素 (25重量%) およびアルミナ (5重量%) からなる金属酸化物を 7. 5 重量部含むものであった。 また、 銀粒子は、 平均粒径が 4. 5 μπιで、 リン片 状のものであった。  This conductor paste is a silver-lead paste, and based on 100 parts by weight of silver, lead oxide (5% by weight), zinc oxide (55% by weight), silica (10% by weight), It contained 7.5 parts by weight of a metal oxide consisting of nitrogen (25% by weight) and alumina (5% by weight). The silver particles had a mean particle size of 4.5 μπι and were scaly.
(5) 次に、 導体ペース トを印刷したセラミック基板を 780°Cで加熱、 焼 成して、 導体ペース ト中の銀、 鉛を焼結させるとともに焼結体に焼き付け、 抵 抗発熱体を形成した。 銀一鉛の抵抗発熱体 3 2は、 厚さが 5 μπι、 幅 2. 4m m、 面積抵抗率が 7. 7πιΩ/口であった。  (5) Next, the ceramic substrate on which the conductor paste is printed is heated and baked at 780 ° C to sinter the silver and lead in the conductor paste and bake them on a sintered body, thereby forming a resistance heating element. Formed. The silver-lead lead resistance heating element 32 had a thickness of 5 μπι, a width of 2.4 mm, and a sheet resistivity of 7.7πιΩ / port.
(6) 硫酸ニッケル 80 gZ 1、 次亜リン酸ナトリウム 24 g/ l、 酢酸ナ トリウム 1 2 g/ l、 ほう酸 8 gZ l、 塩化アンモニゥム 6 g/ 1の濃度の水 溶液からなる無電解ニッケルめっき浴に上記 (5) で作製した焼結体を浸漬し、 銀一鉛の抵抗発熱体 3 2の表面に厚さ 1 μπιの金属被覆層 (ニッケル層) を析 出させた。 (6) Water with a concentration of nickel sulfate 80 gZ1, sodium hypophosphite 24 g / l, sodium acetate 12 g / l, boric acid 8 gZl, ammonium chloride 6 g / 1 The sintered body prepared in (5) above is immersed in an electroless nickel plating bath composed of a solution, and a 1 μπι thick metal coating layer (nickel layer) is deposited on the surface of the silver-lead lead resistance heating element 32. I let it.
(7) 電源との接続を確保するための外部端子を取り付ける部分に、 スク リ ーン印刷により、 銀一鉛半田ペース ト (田中貴金属社製) を印刷して半田ぺー スト層を形成した。  (7) Silver-lead solder paste (manufactured by Tanaka Kikinzoku Co., Ltd.) was printed by screen printing on the part where external terminals for securing connection to the power supply were to be formed, forming a solder paste layer.
ついで、 半田ペース ト層の上にコバール製の外部端子を载置して、 420°C で加熱リフローし、 外部端子を抵抗発熱体の表面に取り付け、 続いて導電線を 有するソケットを外部端子に取り付けた。  Next, an external terminal made of Kovar is placed on the solder paste layer, heated and reflowed at 420 ° C, the external terminal is attached to the surface of the resistance heating element, and then a socket having a conductive wire is connected to the external terminal. Attached.
(8) 温度制御のための熱電対を有底孔に揷入し、 ポリイミ ド樹脂を充填し、 (8) Insert a thermocouple for temperature control into the bottomed hole, fill with polyimide resin,
1 90°Cで 2時間硬化させ、 ホットプレート用のセラミック基板の製造を終了 した。 この後、 この抵抗発熱体を有するセラミック基板を図 1に示したような 構成の支持容器 1 0に嵌め込み、 測温素子 (熱電対) からのリード線および抵 抗発熱体の端部からの導電線を図 1に示したように配設した。 1. Curing was performed at 90 ° C for 2 hours, and the production of ceramic substrates for hot plates was completed. Thereafter, the ceramic substrate having the resistance heating element is fitted into a supporting container 10 having a structure as shown in FIG. 1, and the lead wire from the temperature measuring element (thermocouple) and the conduction from the end of the resistance heating element are applied. The lines were arranged as shown in FIG.
この支持容器において、 外枠部、 遮熱板は、 直径 220mm、 厚さ 1. 5 m m、 のステンレス製であり、 断熱リング 1 5は、 ガラス繊維で補強されたフッ 素樹脂である。 また、 ポルト 1 8、 固定金具 1 7、 冷媒供給管 1 9もステンレ ス製である。 また、 遮熱板 1 6には、 直径 1 0〜4 Ommの開口を設け、 開口 の面積比率を 1 5% (実施例 1) 、 30% (実施例 2) 、 50% (実施例 3) 、 8 % (実施例 4) 、 3% (実施例 6) とした。 また、 支持容器と付属部品を含 めた総重量 (外枠部 1 1、 遮熱板 1 6、 断熱リング 1 5、 スリーブ (ガイド管 1 2) 、 冷媒供給管 1 9の合計) TMは、 それぞれ、 0. 96 k g (実施例 1 ) 、 0. 86 k g (実施例 2 ) 、 0. 7 8 k g (実施例 3 ) 、 0. 9 9 k g ( 実施例 4) 、 1. 03 k g (実施例 6) 、 1. 05 k g (実施例 9) とした。 実施例 9では、 外枠部 11に冷媒排気管 (排気ポート) を形成した。 支持容器 の重量等詳細は、 表 1に記载する。  In this supporting container, the outer frame portion and the heat shield plate are made of stainless steel having a diameter of 220 mm and a thickness of 1.5 mm, and the heat insulating ring 15 is made of a fluorine resin reinforced with glass fiber. Porto 18, fixture 17 and refrigerant supply pipe 19 are also made of stainless steel. Further, the heat shield plate 16 is provided with an opening having a diameter of 10 to 4 Omm, and the area ratio of the opening is 15% (Example 1), 30% (Example 2), 50% (Example 3). , 8% (Example 4) and 3% (Example 6). In addition, the total weight including the support container and accessories (total of the outer frame 11, heat shield plate 16, heat insulation ring 15, sleeve (guide pipe 12), and refrigerant supply pipe 19) TM 0.96 kg (Example 1), 0.86 kg (Example 2), 0.78 kg (Example 3), 0.99 kg (Example 4), 1.03 kg (Example Example 6) and 1.05 kg (Example 9). In Example 9, a refrigerant exhaust pipe (exhaust port) was formed in the outer frame portion 11. Details such as the weight of the support container are shown in Table 1.
(実施例 5、 7、 8) ホッ トプレートの製造  (Examples 5, 7, 8) Production of hot plate
実施例 5は、 基本的には実施例 1と略同様であるが、 開口の直径が 2 Omm (実施例 5) 、 1 0mm (実施例 7、 8) であり、 遮熱板 1 6の開口の面積比 率が 30% (実施例 5) 、 5% (実施例 7、 8) であり、 遮熱板の厚さが 3m mである点が異なる。 また、 実施例 7では図 1 1に示すような開口 (直径 30 mm、 1 Omm, 8mm) を持つ中底板を使用した。 本実施例では、 遮熱板の 厚さを 3mmとしたため、 支持容器と付属部品を含めた総重量 (外枠部 1 1、 遮熱板 1 6、 中底板 (実施例 7のみ) 、 断熱リング 1 5、 スリーブ (ガイド管 1 2) 、 冷媒供給管 1 9の合計) は 1. 42 k g (実施例 5 ) 、 2. 5 7 k g (実施例 7) 、 3. 7 2 k g (実施例 8) と重くなつた。 支持容器の重量等詳 細は、 表 1に記載する。 Example 5 is basically similar to Example 1, except that the diameter of the opening is 2 Omm (Example 5) and 10 mm (Examples 7 and 8), and the opening of the heat shield plate 16 is Area ratio of The difference is that the ratio is 30% (Example 5) and 5% (Examples 7 and 8), and the thickness of the heat shield is 3 mm. In Example 7, an insole plate having openings (diameter 30 mm, 1 Omm, 8 mm) as shown in FIG. 11 was used. In this embodiment, since the thickness of the heat shield plate was 3 mm, the total weight including the supporting container and accessories (the outer frame portion 11, the heat shield plate 16, the midsole plate (only in the seventh embodiment), the heat insulating ring) 1,5, sleeve (guide tube 1 2) and refrigerant supply tube 19 total 1.42 kg (Example 5), 2.57 kg (Example 7), 3.72 kg (Example 8) ) And became heavy. Details of the weight of the supporting container are shown in Table 1.
(比較例 1) 遮熱板に開口が形成されていないホットプレートの製造 基本的には実施例 1と同様であるが、 開口を全く設けず、 外枠部に排気ポー トを形成した。 重量 (外枠部 1 1、 遮熱板 1 6、 断熱リング 1 5、 スリープ、 排気ポート、 冷媒供給管 1 9の合計) は 3. 70 k gとなった。  (Comparative Example 1) Manufacture of a hot plate in which an opening was not formed in a heat shield plate Basically, it was the same as in Example 1, except that no opening was provided and an exhaust port was formed in an outer frame portion. Weight (total of outer frame part 11, heat shield plate 16, heat insulation ring 15, sleep, exhaust port, refrigerant supply pipe 19) was 3.70 kg.
(比較例 2) 放冷  (Comparative Example 2) Cooling
実施例 1と同様のホットプレートを製造した後、 このホットプレートの支持 容器に冷媒を全く導入せず、 自然放冷した。  After the same hot plate as that of Example 1 was manufactured, the hot plate was naturally cooled without introducing any refrigerant into the supporting container of the hot plate.
(実施例 1 0〜 1 7 )  (Examples 10 to 17)
この実施例では、 実施例 1と同様であるがセラミック基板の直径を 3 1 Om mとした。 また、 支持容器において、 外枠部、 遮熱板は、 直径 3 20mm、 厚 さ 1. 5mm、 のステンレス製であり、 断熱リング 1 5は、 ガラス繊維で補強 されたフッ素樹脂である。 また、 冷媒供給管 1 9、 排気ポートもステンレス製 である。 また、 遮熱板 1 6には、 直径 8〜 3 Ommの開口を設け、 開口の面積 比率を、 10% (実施例 1 0) 、 3 1 % (実施例 1 1) 、 5 1 % (実施例 1 2 ) 、 8 % (実施例 1 3) 、 3% (実施例 14) 、 5% (実施例 1 5、 1 6) 、 0% (実施例 1 7) とした。  In this example, it is the same as Example 1, except that the diameter of the ceramic substrate is 31 Omm. In the supporting container, the outer frame portion and the heat shield plate are made of stainless steel having a diameter of 320 mm and a thickness of 1.5 mm, and the heat insulating ring 15 is made of a fluororesin reinforced with glass fiber. The refrigerant supply pipe 19 and the exhaust port are also made of stainless steel. The heat shield plate 16 is provided with an opening having a diameter of 8 to 3 Omm, and the area ratio of the opening is 10% (Example 10), 31% (Example 11), 51% (Example Examples 12), 8% (Example 13), 3% (Example 14), 5% (Examples 15 and 16), and 0% (Example 17).
なお、 実施例 1 5では、 図 1 1に示すような開口を持つ中底板を使用した。 また、 開口は図 1 2に示すように、 直径の異なる複数の開口を形成した。 また、 支持容器と付属部品を含めた総重量 (外枠部 1 1、 遮熱板 1 6、 断熱 リング 1 5、 スリーブ、 冷媒供給管 1 9、 排気冷却管の合計) は、 それぞれ、 2. 3 1 k g (実施例 1 0) 、 1. 76 k g (実施例 1 1) 、 1. 50 k g ( 実施例 1 2) 、 2. 76 k g (実施例 1 3) 、 2. 91 k g (実施例 17) 、 7. O O k g (実施例 1 5) 、 7. 80 k g (実施例 16) 、 3. 0 1 k g ( 実施例 1 7) とした。 また、 実施例 17では、 外枠部に排気ポートを形成した。 比較例 3は、 外枠部および遮熱板の厚さを 2. Ommとしたほかは、 実施例 1 7と同様にした。 支持容器の重量等詳細は、 表 1に記載する。 In Example 15, an inner bottom plate having an opening as shown in FIG. 11 was used. Further, as shown in FIG. 12, a plurality of openings having different diameters were formed. In addition, the total weight including the support container and accessories (total of the outer frame part 11, heat shield plate 16, heat insulation ring 15, sleeve, refrigerant supply pipe 19, and exhaust cooling pipe) is 2. 3 1 kg (Example 10), 1.76 kg (Example 11), 1.50 kg (Example 1) Example 12), 2.76 kg (Example 13), 2.91 kg (Example 17), 7.OO kg (Example 15), 7.80 kg (Example 16), 3. 0 1 kg (Example 17). In Example 17, an exhaust port was formed in the outer frame portion. Comparative Example 3 was the same as Example 17 except that the thickness of the outer frame portion and the heat shield plate was set to 2. Omm. Details such as the weight of the supporting container are described in Table 1.
評価方法  Evaluation method
(1) 降温時間  (1) Cooling time
200°Cから 25 °Cまで降温するのに要する時間を測定した。  The time required to decrease the temperature from 200 ° C to 25 ° C was measured.
(2) リカバリー時間  (2) Recovery time
140°Cに加熱した状態で 25°Cのシリ コンウェハを載置し、 シリ コンゥェ ハの温度が 140°Cまで回復するまでの時間を測定した。  A silicon wafer at 25 ° C was placed in a state where the silicon wafer was heated to 140 ° C, and the time until the temperature of the silicon wafer recovered to 140 ° C was measured.
(3) オーバーシユート温度  (3) Overshoot temperature
200°Cに昇温した際、 最高温度が設定温度の 200°Cよりどれだけ高くな るかを測定した。 When the temperature was raised to 200 ° C, we measured how much the maximum temperature was higher than the set temperature of 200 ° C.
厚さ 開口率 開口直径 支持容 重 リカバリー時間 オーバーシュ—ト (πιπι) 開口個数 L 200 支持容器重量 Thickness Opening ratio Opening diameter Supporting weight Recovery time Overshooting (πιπι) Number of openings L 200 Weight of supporting container
3 (L/200) 2 降温時間 (分) 3 (L / 200) 2 Cooling time (min)
W \Vf) ίΆΆ. しノ 実删 1 1.5 15 10 73 1.05 0.44 3.31 0.96 2 35 0.3 実施例 2 1.5 30 20 36 1.05 0.39 3.31 0.86 2 35 0.3 実施例 3 1.5 50 40 15 1,05 0.35 3.31 0.78 2 35 0.3 実施例 4 1.5 8 10 39 1.05 0.45 3.31 0.99 3 35 0.3 実施例 5 3.0 30 20 36 1.05 0.65 3.31 1.42 5 35 0.3 実施例 6 1.5 3 10 20 1.05 0.48 3.31 1.03 3 35 0.3 実細 7 3.0 5 10 20 丄.05 0.81 3.31 2.57 3 35 0.3 実施例 8 3.0 5 10 20 1. OS 0.81 3.31 3.72 5 60 1.0 実施例 9 1.5 0 0 0 1.05 0.49 3.31 1.05 5 35 0.4 実施辦 1.5 10 30 δ 1.55 1.3δ 7.21 2.31 2 35 0.3 W \ V f ) ίΆΆ. Shino Actual 1 1.5 15 10 73 1.05 0.44 3.31 0.96 2 35 0.3 Example 2 1.5 30 20 36 1.05 0.39 3.31 0.86 2 35 0.3 Example 3 1.5 50 40 15 1,05 0.35 3.31 0.78 2 35 0.3 Example 4 1.5 8 10 39 1.05 0.45 3.31 0.99 3 35 0.3 Example 5 3.0 30 20 36 1.05 0.65 3.31 1.42 5 35 0.3 Example 6 1.5 3 10 20 1.05 0.48 3.31 1.03 3 35 0.3 Fine 7 3.0 5 10 20 丄 .05 0.81 3.31 2.57 3 35 0.3 Example 8 3.0 5 10 20 1.OS 0.81 3.31 3.72 5 60 1.0 Example 9 1.5 0 0 0 1.05 0.49 3.31 1.05 5 35 0.4 Example 辦 1.5 10 30 δ 1.55 1.3δ 7.21 2.31 2 35 0.3
10 10  10 10
8 80  8 80
実施例 11 1.5 31 30 15 1.55 1.03 7.21 1.76 2 35 0.3 Example 11 1.5 31 30 15 1.55 1.03 7.21 1.76 2 35 0.3
10 30  10 30
8 ?.40  8? .40
実施例 12 1.5 51 50 10 1.55 0.73 7.21 1.50 2 35 0.3 Example 12 1.5 51 50 10 1.55 0.73 7.21 1.50 2 35 0.3
30 30  30 30
実施例 13 1.5 8 30 5 1.55 1.38 7.21 2.76 3 35 0.3 Example 13 1.5 8 30 5 1.55 1.38 7.21 2.76 3 35 0.3
10 10  10 10
8 45  8 45
実施例 14 Ι.δ 3 10 32 1.55 1.15 7.21 2.91 3 35 0.3 実施例 15 1.5 5 10 51 1.55 1.45 7.21 7.00 3 40 0.4 実施例 16 1.5 5 10 51 1.55 1.45 7.21 7.80 δ 60 1.0 Example 14 Ι.δ 3 10 32 1.55 1.15 7.21 2.91 3 35 0.3 Example 15 1.5 5 10 51 1.55 1.45 7.21 7.00 3 40 0.4 Example 16 1.5 5 10 51 1.55 1.45 7.21 7.80 δ 60 1.0
¾施例 17 1.5 0 0 0 1.55 1.51 7.21 3.01 5 35 0.4 比較例 1 4.5 0 0 0 1.05 1.26 3· 31 3.70 10 60 1.0 比較例 2 1.5 15 10 73 i.05 0.44 3.31 0.96 240 35 0.3 比較例 3 2.0 0 0 0 1.55 1.99 7.21 7.80 10 60 1.0 ¾Example 17 1.5 0 0 0 1.55 1.51 7.21 3.01 5 35 0.4 Comparative Example 1 4.5 0 0 0 1.05 1.26 3 31 3.70 10 60 1.0 Comparative Example 2 1.5 15 10 73 i.05 0.44 3.31 0.96 240 35 0.3 Comparative Example 3 2.0 0 0 0 1.55 1.99 7.21 7.80 10 60 1.0
表 1に示した結果より明らかなように、 200°Cから 25°Cまで降温するの に要する時間は、 実施例 1〜3では、 いずれの場合も、 2分であり、 実施例 4、 6、 7では、 3分であり、 実施例 5、 8、 9では 5分であり、 いずれの実施例 でも降温時間は比較的短い。 As is clear from the results shown in Table 1, the time required to lower the temperature from 200 ° C to 25 ° C was 2 minutes in each of Examples 1 to 3, and in Examples 4 and 6, In Examples 7, 8, and 9, the time was 3 minutes, and in Examples 5, 8, and 9, the time was 5 minutes.
これに対し、 遮熱板に開口が形成されていない比較例 1では、 側面に排気ポ ートが形成されていても降温に 10分と長時間を要した、 比較例 1では、 支持 容器の重さが L/200 (k g) を超え、 また、 支持容器と付属部品を加えた 総重量が、 3 (L/200) 2 を超えており、 リカバリー時間、 オーバーシユー ト温度も高くなる。 On the other hand, in Comparative Example 1 in which no opening was formed in the heat shield plate, it took as long as 10 minutes for the temperature to decrease even when the exhaust port was formed on the side surface. The weight exceeds L / 200 (kg), and the total weight including the supporting container and accessories exceeds 3 (L / 200) 2 , and the recovery time and overshoot temperature are high.
また、 実施例 6と実施例 9とを比較すると理解できるように、 底板 (遮熱板 ) に 3 %以上の開口を形成することで降温時間を 5分から 3分にすることがで きる。 また、 実施例 7から、 遮熱板 (中底板) の存在により、 降温時間を早く できることが理解される。  Further, as can be understood by comparing Example 6 and Example 9, the temperature reduction time can be reduced from 5 minutes to 3 minutes by forming an opening of 3% or more in the bottom plate (heat shield plate). In addition, it can be understood from Example 7 that the heat-fall time can be shortened by the presence of the heat shield plate (middle bottom plate).
また、 実施例 7と 8との比較から、 支持容器自体の重量と付属部品の重量が 3 (L/200) 2 を超えると、 リカバリー時間やオーバーシュート温度に影響 を与えることが判る。 さらに、 実施例 9と比較例 1とから、 支持容器の重量が L/200を超えると開口の有無にかかわりなく、 冷却速度が低下する。 つま り、 冷却速度の支配要因は、 開口というよりも支持容器の重量と言える。 Also, a comparison between Examples 7 and 8 shows that if the weight of the supporting container itself and the weight of the accessory exceed 3 (L / 200) 2 , the recovery time and the overshoot temperature are affected. Further, from Example 9 and Comparative Example 1, when the weight of the support container exceeds L / 200, the cooling rate is reduced regardless of the presence or absence of the opening. In other words, the dominant factor in the cooling rate is not the opening but the weight of the supporting vessel.
比較例 2では、 240分とさらに長時間を要した。  In Comparative Example 2, an even longer time was required, which was 240 minutes.
同様の現象は、 実施例 10~ 17でも理解される。 実施例 1 7と実施例 14 とを比較すると、 開口率 3%以上で、 降温速度を向上させることができること が判る。 また、 実施例 1 5から、 中底板が降温速度を改善する効果を持つこと が判る。  The same phenomenon is understood in Examples 10 to 17. Comparing Example 17 with Example 14, it can be seen that at an aperture ratio of 3% or more, the temperature drop rate can be improved. Example 15 also shows that the midsole plate has the effect of improving the cooling rate.
さらに、 実施例 16と 1 7との比較から、 支持容器自体の重量と付属部品の 重量とが 3 (LZ200) 2 を超えると、 リカバリー時間やオーバーシュート温 度に影響を与えることが判る。 さらに、 実施例 17と比較例 3とから、 支持容 器の重量が LZ 200を超えると開口の有無にかかわりなく、 冷却速度が低下 する。 つまり、 冷却速度の支配要因は、 開口というよりも支持容器の重量と言 える。 . また、 実施例 1 0と実施例 1 6とについて、 セラミック基板の反り量を形状 測定装置 (ネクシプ) にて調べたところ、 実施例 1 0では、 9 mであり、 実 施例 1 6では、 1 5 /x niであった。 底板の開口率は、 実施例 1 0の方が高いに もかかわらず、 実施例 1 6の方が反り量は大きい。 これは、 実施例 1 0では複 数の直径の開口を形成しているため、 底板の歪みが少なく、 結果的に支持容器 の歪みを防止できているためであると推定している。 Further, from a comparison between Examples 16 and 17, it can be seen that when the weight of the supporting container itself and the weight of the accessory parts exceed 3 (LZ200) 2 , the recovery time and the overshoot temperature are affected. Further, from Example 17 and Comparative Example 3, when the weight of the supporting container exceeds LZ 200, the cooling rate is reduced regardless of the presence or absence of the opening. In other words, the controlling factor of the cooling rate is not the opening but the weight of the supporting container. . In addition, the warpage of the ceramic substrate of Examples 10 and 16 was measured using a shape measuring device (Nexip), and it was 9 m in Example 10 and was 9 m in Example 16. 15 / x ni. Although the opening ratio of the bottom plate is higher in the tenth embodiment, the amount of warpage is larger in the sixteenth embodiment. This is presumed to be because in Example 10, the openings having a plurality of diameters were formed, so that the distortion of the bottom plate was small, and as a result, the distortion of the supporting container could be prevented.
このことから、 冷却速度を決定する主因子は、 支持容器の重量であり、 開口 率は副次的要因であると推定される。 ただし、 全く開口がない場合は、 冷却速 度の著しい低下が見られる。 このように本発明では、 開口や支持容器の重量の 制御だけで、 降温速度を向上させることができ、 簡単な構造でかつ低コストの 装置が得られる。 また、 リカバリー時間やオーバーシュート温度は、 支持容器 と付属部品との総重量が影響を与えており、 これらの総重量を小さくすること で、 温度制御性を向上させることが可能である。 産業上の利用の可能性  From this, it is estimated that the main factor that determines the cooling rate is the weight of the supporting vessel, and the opening ratio is a secondary factor. However, when there is no opening, the cooling rate is significantly reduced. As described above, according to the present invention, the temperature reduction rate can be improved only by controlling the weight of the opening and the supporting container, and a device having a simple structure and low cost can be obtained. In addition, the recovery time and the overshoot temperature are affected by the total weight of the supporting container and the accessory parts, and it is possible to improve the temperature controllability by reducing the total weight. Industrial applicability
以上説明したように本発明の支持容器および半導体製造 ·検査装置によれば、 高速降温を実現することができる。  As described above, according to the support container and the semiconductor manufacturing / inspection apparatus of the present invention, high-speed temperature reduction can be realized.

Claims

請求の範囲 The scope of the claims
1. セラミック基板を支持する支持容器であって、 板状体を具備し、 該板状 体に複数の開口が形成されていることを特徴とする支持容器。 1. A support container for supporting a ceramic substrate, comprising a plate-like body, wherein a plurality of openings are formed in the plate-like body.
2. セラミック基板を支持する支持容器であって、 略円筒形状の外枠部およ び板状体を具備し、 前記板状体には複数の開口が形成されていることを特徴と する支持容器。 2. A support container for supporting a ceramic substrate, comprising a substantially cylindrical outer frame portion and a plate-like body, wherein the plate-like body has a plurality of openings formed therein. container.
3. 前記板状体は、 前記略円筒形状の外枠部に連結固定されている請求の範 囲 2に記載の支持容器。 3. The support container according to claim 2, wherein the plate-like body is connected and fixed to the substantially cylindrical outer frame portion.
4. 前記複数の開口は、 直径が異なる 2種類以上の開口の混成である請求の 範囲 1〜 3のいずれか 1に記載の支持容器。 4. The support container according to any one of claims 1 to 3, wherein the plurality of openings are a mixture of two or more types of openings having different diameters.
5. 前記板状体の投影面積 S Aおよび前記板状体に設けられた開口の合計面 積 Sの関係は、 0. 03≤S/SAである請求の範囲 1〜4のいずれか 1に記 載の支持容器。 5. The relationship between the projected area SA of the plate-like body and the total area S of the openings provided in the plate-like body is 0.03≤S / SA, according to any one of claims 1 to 4. Support container.
6. 前記外枠部の内側に設けられ、 断熱リングを介して嵌め込まれた前記セ ラミック基板を支持する円環形状の基板受け部を有する請求の範囲 2〜 5のい ずれか 1に記載の支持容器。 6. The ring according to any one of claims 2 to 5, further comprising: a ring-shaped substrate receiving portion provided inside the outer frame portion and supporting the ceramic substrate fitted through a heat insulating ring. Support container.
7. 前記板状体には、 冷却媒体供給口が形成されてなる請求の範囲 1〜6の いずれか 1に記載の支持容器。 7. The support container according to any one of claims 1 to 6, wherein a cooling medium supply port is formed in the plate-like body.
8. 前記支持容器の重量 M (k g) およびセラミック基板の直径 L (mm) の関係は、 M≤LZ200である請求の範囲 1〜7のいずれか 1に記載の支持 8. The support according to any one of claims 1 to 7, wherein the relationship between the weight M (kg) of the support container and the diameter L (mm) of the ceramic substrate is M≤LZ200.
9. 付属部品を具備し、 前記支持容器と付属部品との総重量 TM (k g) お よびセラミック基板の直径 L (mm) の関係は、 TM≤3 (L/200) 2 であ る請求の範囲 1〜 8のいずれか 1に記載の支持容器。 9. Claims are provided, wherein the relationship between the total weight TM (kg) of the supporting container and the accessories and the diameter L (mm) of the ceramic substrate is TM≤3 (L / 200) 2 . The support container according to any one of ranges 1 to 8.
10. 請求の範囲 1〜 9のいずれか 1に記載の支持容器にセラミック基板が 支持固定されてなることを特徴とする半導体製造 ·検査装置。 10. A semiconductor manufacturing / inspection apparatus, wherein a ceramic substrate is supported and fixed on the support container according to any one of claims 1 to 9.
1 1. 前記セラミック基板には抵抗発熱体が設けられてなる請求の範囲 10 に記載の半導体製造 ·検査装置。 1 1. The semiconductor manufacturing / inspection apparatus according to claim 10, wherein a resistance heating element is provided on the ceramic substrate.
1 2. セラミック基板を支持する支持容器であって、 板状体を具備し、 前記 支持容器の重量 M (k g) およびセラミック基板の直径 L (mm) の関係は、 M≤ L/200であることを特徴とする支持容器。 1 2. A support container for supporting a ceramic substrate, comprising a plate-like body, wherein the relationship between the weight M (kg) of the support container and the diameter L (mm) of the ceramic substrate is M≤L / 200. A support container characterized by the above-mentioned.
1 3. セラミック基板を支持する支持容器であって、 板状体とともに付属部 品を具備し、 前記支持容器と付属部品との総重量 TM (k g) およびセラミツ ク基板の直径 L (mm) の関係は、 TM 3 (L/200) 2 であることを特徴 とする支持容器。 1 3. A supporting container for supporting a ceramic substrate, comprising a plate-shaped body and accessories, and having a total weight TM (kg) of the supporting container and the accessories and a diameter L (mm) of the ceramic substrate. The support vessel is characterized in that the relationship is TM 3 (L / 200) 2 .
14. セラミック基板を支持する支持容器であって、 略円筒形状の外枠部お よぴ板状体を具備し、 前記支持容器の重量 M (k g) およびセラミック基板の 直径し (mm) の関係は、 M LZ200であることを特徴とする支持容器。 14. A support container for supporting a ceramic substrate, comprising a substantially cylindrical outer frame portion or a plate-like body, and a relationship between a weight M (kg) of the support container and a diameter (mm) of the ceramic substrate. A support container characterized by being MLZ200.
1 5. セラミック基板を支持する支持容器であって、 略円筒形状の外枠部、 板状体および付属部品を具備し、 前記支持容器と付属部品との総重量 TM (k g) およびセラミック基板の直径 L (mm) の関係は、 TM≤ 3 (L/200 ) 2 であることを特徴とする支持容器。 1 5. A support container for supporting a ceramic substrate, comprising a substantially cylindrical outer frame portion, a plate-like body and accessories, the total weight TM (kg) of the support container and the accessories and the ceramic substrate A support container characterized in that the relationship between the diameters L (mm) is TM≤3 (L / 200) 2 .
1 6. 前記板状体は、 前記略円筒形状の外枠部に連結固定されている請求の 範囲 1 4または 1 5に記載の支持容器。 16. The support container according to claim 14 or 15, wherein the plate-like body is connected and fixed to the substantially cylindrical outer frame portion.
1 7. 前記板状体には複数の開口が形成されている請求の範囲 1 2〜 1 6に 記載の支持容器。 17. The support container according to any one of claims 12 to 16, wherein a plurality of openings are formed in the plate-like body.
1 8. 前記支持容器を構成する部材の厚さは、 0. l〜5mmである請求の 範囲 1 2 ~ 1 7のいずれか 1に記載の支持容器。 18. The support container according to any one of claims 12 to 17, wherein a thickness of a member constituting the support container is 0.1 to 5 mm.
1 9. 請求の範囲 1 2〜 1 8のいずれか 1に記載の支持容器にセラミック基 板が支持固定されてなることを特徴とする半導体製造 ·検査装置。 1 9. A semiconductor manufacturing / inspection apparatus, wherein a ceramic substrate is supported and fixed to the support container according to any one of claims 12 to 18.
20. 前記セラミック基板には抵抗発熱体が設けられてなる請求の範囲 1 9 に記載の半導体製造■検査装置。 20. The semiconductor manufacturing / inspection apparatus according to claim 19, wherein the ceramic substrate is provided with a resistance heating element.
PCT/JP2001/004822 2000-06-07 2001-06-07 Supporting container and semiconductor manufacturing and inspecting device WO2001095388A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-170453 2000-06-07
JP2000170453 2000-06-07
JP2000-292837 2000-09-26
JP2000292837A JP2002064133A (en) 2000-03-30 2000-09-26 Support container and semiconductor manufacturing- inspection device

Publications (1)

Publication Number Publication Date
WO2001095388A1 true WO2001095388A1 (en) 2001-12-13

Family

ID=26593477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004822 WO2001095388A1 (en) 2000-06-07 2001-06-07 Supporting container and semiconductor manufacturing and inspecting device

Country Status (1)

Country Link
WO (1) WO2001095388A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335200A (en) * 1992-06-01 1993-12-17 Canon Inc Substrate support device
JPH07130830A (en) * 1993-11-05 1995-05-19 Sony Corp Semiconductor manufacturing appartatus
JPH0917849A (en) * 1995-06-28 1997-01-17 Ngk Insulators Ltd Semiconductor wafer holding device, its manufacture and its use method
WO1998045875A1 (en) * 1997-04-07 1998-10-15 Komatsu Ltd. Temperature control device
JP2001189276A (en) * 1999-12-27 2001-07-10 Kyocera Corp Wafer heating apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335200A (en) * 1992-06-01 1993-12-17 Canon Inc Substrate support device
JPH07130830A (en) * 1993-11-05 1995-05-19 Sony Corp Semiconductor manufacturing appartatus
JPH0917849A (en) * 1995-06-28 1997-01-17 Ngk Insulators Ltd Semiconductor wafer holding device, its manufacture and its use method
WO1998045875A1 (en) * 1997-04-07 1998-10-15 Komatsu Ltd. Temperature control device
JP2001189276A (en) * 1999-12-27 2001-07-10 Kyocera Corp Wafer heating apparatus

Similar Documents

Publication Publication Date Title
JP3381909B2 (en) Ceramic heater for semiconductor manufacturing and inspection equipment
WO2001087018A1 (en) Hot plate unit
WO2001097264A1 (en) Hot plate
WO2002019399A1 (en) Ceramic substrate for semiconductor production and inspection
WO2002003434A1 (en) Ceramic heater for semiconductor manufacturing/testing apparatus
JP2002064133A (en) Support container and semiconductor manufacturing- inspection device
WO2001078455A1 (en) Ceramic board
WO2001080307A1 (en) Ceramic substrate
JP2003059789A (en) Connection structure and semiconductor manufacturing and inspecting apparatus
JP2002373846A (en) Ceramic heater and hot plate unit for semiconductor manufacturing and inspection apparatus
WO2002003452A1 (en) Apparatus for producing and inspecting semiconductor
JP2001257200A (en) Ceramic substrate for semiconductor manufacturing and checking device
JP2005026585A (en) Ceramic joined body
WO2001095388A1 (en) Supporting container and semiconductor manufacturing and inspecting device
JP2002372351A (en) Supporting container and semiconductor manufacturing/ inspecting equipment
JP2001135684A (en) Wafer prober device
JP2001085144A (en) Ceramic heater
JP2004253799A (en) Semiconductor manufacturing/inspecting device
JP2001319964A (en) Semiconductor manufacturing and inspection device
JP2001130982A (en) Ceramic plate for semiconductor manufacturing apparatus
JP2002252270A (en) Hot plate unit
JP2001237304A (en) Ceramic substrate for semiconductor manufacturing/ inspecting device
JP2001358205A (en) Apparatus for manufacturing and inspecting semiconductor
JP2005050820A (en) Hot plate
JP2003100818A (en) Support container and semiconductor-manufacturing/ inspecting apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase