WO2001088631A1 - Printer and method of fixing - Google Patents

Printer and method of fixing Download PDF

Info

Publication number
WO2001088631A1
WO2001088631A1 PCT/JP2000/003092 JP0003092W WO0188631A1 WO 2001088631 A1 WO2001088631 A1 WO 2001088631A1 JP 0003092 W JP0003092 W JP 0003092W WO 0188631 A1 WO0188631 A1 WO 0188631A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
printer
fixing device
temperature
toner
Prior art date
Application number
PCT/JP2000/003092
Other languages
French (fr)
Japanese (ja)
Inventor
Takahiro Kashikawa
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2001584962A priority Critical patent/JP4517562B2/en
Priority to PCT/JP2000/003092 priority patent/WO2001088631A1/en
Publication of WO2001088631A1 publication Critical patent/WO2001088631A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2007Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using radiant heat, e.g. infrared lamps, microwave heaters
    • G03G15/201Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using radiant heat, e.g. infrared lamps, microwave heaters of high intensity and short duration, i.e. flash fusing

Definitions

  • the present invention relates to a printer apparatus for printing characters, images, and the like on recording paper using an electrophotographic process and a fixing method thereof, and particularly to a printer apparatus for performing preheating in a stage preceding an optical fixing device and a fixing method thereof.
  • electrophotography methods used in copiers, laser printers, and the like generally apply a uniform electrostatic charge to a photoconductive insulator layer and irradiate a light image onto the insulator layer. As a result, an electrostatic charge is partially removed to form an electrostatic latent image. Next, a fine powder called toner is adhered to the remaining portion of the electrostatic charge to form a toner image in which the latent image is visible (development). The toner image is transferred onto a recording paper and then fixed. Obtain a print.
  • preheating is performed using a heating wire or ceramic heater as a heat medium.
  • a heating wire or ceramic heater as a heat medium.
  • the response time is long, when the paper jam occurs, the temperature of the pre-heating section suddenly increases. There is a problem that the paper may be ignited.
  • the UV ink which is often used for form printing
  • the temperature of the optical fixing unit rises, which may cause damage to the optical fixing unit.
  • the optical fixing device which is the main heat source in the printer, becomes abnormally heated, the temperature inside the printer rises, causing toner photoconductor filming (toner sticking) and toner fusion in the developing device. Etc. are more likely to occur.
  • An object of the present invention is to provide a printer device and a fixing method for the same that maintain stable toner fixability by pre-heating and enable fine temperature control in preheating in light fixing when an electrophotographic process is used.
  • the present invention relates to an electrophotographic unit that develops an electrostatic latent image formed on a photoreceptor with toner and then transfers the developed image onto a sheet of paper, and a toner image that is transferred onto a sheet of toner by irradiating strong light.
  • a printer device comprising: an optical fixing device that is fixed by melting, wherein a preheating unit using a Peltier element as a heating medium is provided at a stage preceding the optical fixing device. Since the present invention uses the Peltier element as the heating medium of the preheat unit, the fixing property of the optical fixing device can be improved by preheating the paper using the waste heat of the Peltier element.
  • the temperature control of the Peltier element is determined by the value of the current flowing through the Peltier element, and the response time is as fast as 2 ° CZ seconds (25 ° d ”environment). maintain.
  • the preheating temperature due to the waste heat of the Peltier element is set in the range of 50 ° C to 100 ° C.
  • the air cooled by the heat absorption of the Peltier device is used. It has a cooling unit to be ordered.
  • the cooling unit is connected to the chamber that is in contact with the heat absorbing surface of And a cooling system that introduces the air into the champer, cools the air, and then passes the air through the optical fixing device.
  • the air cooled by the cooling unit is used for cooling the power supply unit of the device and the control circuit.
  • the waste heat surface of the Peltier element is placed at the bottom of the paper transport with the paper surface facing and the paper is preheated, and at the same time, a cooling air chamber is arranged on the heat absorption surface of the Peltier element to create cooled air, and the optical fuser By using it for cooling, the damage of the optical fixing device due to abnormal heating can be reliably prevented, and the power supply unit / control circuit can be cooled.
  • the present invention is characterized in that a preheating unit is provided for preheating the Bertier element of the preheat unit using waste heat generated in the optical fixing device.
  • This residual heat unit includes a chamber arranged on the heat absorbing surface of the Peltier element via a residual heat space, and a residual heat system for introducing external air to the champer through the optical fixing device by suction by the profiling unit to perform residual heat.
  • the preheat unit may further use the waste heat generated from the power unit control-circuit to preheat the Peltier element of the preheat unit.
  • the preheat unit has a structure in which a plurality of rectangular sheet-shaped Peltier elements are arranged on a plate surface.
  • the present invention also provides a fixing method for a printer device for developing an electrostatic latent image formed on a photoreceptor by an electrophotographic unit with a toner, transferring the electrostatic latent image onto paper, and then fixing the image.
  • the fixing method is characterized in that before the toner is melted by irradiating strong light with an optical fixing device to fix a toner image on paper, preheating is performed using a Peltier element as a heating medium.
  • the pre-heat temperature due to the waste heat of the Peltier element is set in the range of 50 ° C to 100 ° C.
  • the optical fixing device is cooled using air cooled by the heat absorption of the Peltier device.
  • the Peltier device is preheated using waste heat generated by the optical fixing device. Other details are the same as those of the device. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is an explanatory diagram of the internal structure of a printer device of the present invention that performs preheating and cooling using a Peltier device;
  • FIG. 2 is an explanatory view of the photosensitive drum and the developing unit of FIG. 1;
  • Figure 3 is an illustration showing the pelchenit and cooling mechanism of Figure 1;
  • FIG. 4 is an illustration of the perforunit of FIG. 3;
  • Figure 5 is a diagram illustrating the principle of the Belch II device
  • FIG. 6 is an explanatory view of the internal structure of the printer device of the present invention for preheating the perchenite
  • Fig. 7 is an explanatory drawing of the peltu-unit and the preheating system of Fig. 6;
  • Figure 8 is an illustration of the preheating chamber of Figure 7;
  • FIG. 9 is a characteristic diagram of the preheating temperature and the toner fixing rate in the present invention.
  • FIG. 10 is a characteristic diagram of the optical fixing device temperature with respect to the number of prints in the first embodiment
  • FIG. 11 is a characteristic diagram of the optical fixing device temperature with respect to the number of prints in Comparative Examples 1 and 2.
  • FIG. 12 is a comparison of the toner fixing property and the presence or absence of damage of the optical fixing device in Examples 1 to 4 of the present invention. Explanatory diagram shown with 5;
  • FIG. 13 is a flowchart of temperature control using the perunit of the present invention.
  • FIG. 1 shows an embodiment of a printer device using an electrophotographic process to which the present invention is applied, taking a line printer as an example.
  • the line printer 10 stores the continuous paper 12 in the hopper 14, and the continuous paper 12 pulled out from the hopper 14 is sent to the stat force 34 through the paper transport path 24.
  • a photosensitive drum 16 is provided in the middle of the paper transport path 24, and a developing unit 18 is provided for the photosensitive drum 16.
  • the photosensitive drum 16 and the developing unit 18 form a main part of the electrophotographic process of the present invention.
  • the photosensitive drum 16 forms an electrostatic latent image on a light-leak insulating layer formed on the drum surface by scanning a light beam such as an LED print head.
  • the developer unit 18 for the image is the developer After the toner image is transferred by the transfer unit 22 onto the continuous paper 1 2 which is fed through the paper transport path 24, the toner image is then transferred to the optical fixing device 28. Print by fixing and fixing.
  • FIG. 2 shows a detailed structure of the photosensitive drum 16 and the developing unit 18 of FIG.
  • the photosensitive drum .16 is rotated counterclockwise at a constant speed by a motor (not shown).
  • a motor not shown
  • two pre-chargers 64, 66 are arranged on the upper left side to uniformly charge the surface of the photosensitive drum 16.
  • an LED print head 68 is provided.
  • the LED print head 68 uses an LED array in which a number of LEDs are arranged in the longitudinal direction of the drum, and the printing pattern is exposed by driving the LED array to emit light in accordance with the printing information.
  • An electrostatic latent image is formed on the surface.
  • the electrostatic latent image formed on the photosensitive drum 16 is developed by a toner component of a two-component developer containing a carrier and a toner at a position of the developing unit 18 to form a toner image.
  • continuous paper for printing is sent to the transfer position of the photosensitive drum 16 by the paper transport unit 20.
  • a transfer charger 22-1 is arranged to face the photosensitive drum 16, and the toner image on the photosensitive drum 16 is transferred onto the paper.
  • the toner image transferred onto the paper is fixed in the optical fixing device 28 shown in FIG.
  • the optical fixing device 28 has, for example, four flash lamps 30 arranged in the paper transport direction inside the optical fixing device 28, and emits strong light due to the emission horse motion of the flash lamps 30. By absorbing the toner, the toner itself is melted and fixed on paper.
  • a perheating unit 26 is provided in front of the optical fixing unit 28 in the present invention as a preheating unit, and preheating for heating the continuous paper 12 in front of the optical fixing unit 28 is performed.
  • the pellet unit 26 is disposed with the waste heat surface facing the paper transport path 24 side, and the lower side is a heat absorbing surface.
  • a cooling chamber 36 is arranged on the heat absorbing surface side of Pelchenit 26. Cooling champ 36 is installed at the bottom.
  • the air blower 52 receives the air, and the air sucked by the cooling chamber 36 facing the heat absorption surface of the pel- tine unit 26 is cooled. Cooling by sending order air. That is, the cooling chamber 36 has an air inlet 38 on the right side, and cooling air passing through the cooling chamber 36 is provided with a duct opening 42 in the optical fuser 28 through a duct from the outlet 40, From here, cooling air is introduced into the optical fuser 28. Further, the optical fixing device 28 is provided with a suction port 44, passes through the duct 46, reaches the dash filter 48, and further passes through the duct 50, and is sucked by the air blower 52.
  • the Peltier unit 26 preheats the continuous paper 12 fed into the optical fixing device 28 by the waste heat, and at the same time, when the air sucked by the air pro 52 passes through the cooling chamber 36, the Peltier unit 26 The air is cooled by the heat absorption of the optical fuser, and the cooled air is passed through the optical fuser 28 to cool the optical fuser 28.
  • a temperature sensor 45-1 which detects the preheat temperature
  • a temperature sensor 45_2 which measures the cooling temperature
  • Temperature sensor 45_3 is provided for the temperature control by the Peltier unit 26 .
  • the line printer 10 is provided with a control unit 54 and a power supply unit 56.
  • a duct 55 is connected to the control unit 54 and the power supply unit 56 from the cooling chamber 36, and the cooling air is fed by suction by the air pro 52 to cool the unit.
  • FIG. 3 is an enlarged view of the part of the line printer 10 shown in FIG.
  • the pelchenit 26 has its waste heat surface 74 disposed toward the paper transport path 24, and after the heat from the waste heat surface 74 heats the continuous paper 12 passing along the transport path 24, , So that it enters the optical fuser 28.
  • the lower side of the perchenite 26 is a heat absorbing surface 76, and the cooling chamber 36 is arranged in contact with the heat absorbing surface 76.
  • FIG. 4 shows the Peltier unit 26 of FIG. 3 in a plan view.
  • Each of the Peltier elements 26-1 to 26-40 has the following specifications. Become.
  • the number of Peltier elements used for the pel-unit 26 is determined so as to have an appropriate size exceeding the width of the paper transport path 24 for the line printer 10 shown in FIG.
  • FIG. 5 shows a structure of a peltier element 26-11 used in the pelunit 26 of FIG. 4, in which different types of metal N and metal P are joined together and connected to a DC power supply 27 to allow current to flow. .
  • the following equation is generally known as an equation expressing heat generation by the Peltier effect.
  • is the thermal conductivity
  • E is a vector indicating the magnitude of the electric field ⁇
  • I is a vector that indicates the magnitude of the current.
  • gradT is the temperature gradient
  • the vector amount E which indicates the magnitude of the electric field when there is no temperature gradient, is a value obtained by the well-known Ohm's law.
  • the vector amount E which indicates the magnitude of the electric field when there is a temperature gradient, is such that electrons in a place with a high temperature have a large momentum, so electrons flow from a higher temperature to a lower temperature, and It has a positive potential and the lower temperature has a negative potential. In the case of holes, the opposite is true, and the (S-gradT) of the two terms on the right-hand side corresponding to that value is added to ⁇ I) of the one term on the right-hand side.
  • the power supply 27 is connected to the Peltier element 26—11, in which different types of metal N and metal P are joined as shown in Fig. 5, and the current I does not flow through the power supply 27, the magnitude of the electric field can be calculated by equation (1).
  • thermoelectric generator When a temperature difference of (Tl-T2) is given by metals P and N, a potential difference of (VI-V2) is generated. This is the principle of a thermoelectric generator.
  • thermoelectric material a figure of merit for judging the quality of thermoelectric material
  • T c is the temperature of the cold junction
  • Th is the temperature of the hot junction
  • Tm is the average temperature of the cooling element.
  • the actual Peltier element is based on these values, such as B i (bismuth), Sb 2 (antimony), Te 3 (tellurium), B i + Te (bismuth + tellurium), etc. It is made using metal.
  • the temperature control is determined by the current flowing through the Peltier element, and the response time is as fast as 2 ° C / sec (both cooling and overheating in a 25 ° C environment), so fine temperature control is achieved by simple feedback control. Is possible.
  • FIG. 6 shows a line printer according to another embodiment of the present invention in which a pel-unit 26 provided as a pre-heat unit is pre-heated by using waste heat from an optical fixing device 28.
  • a preheating chamber 82 is provided below the luminaire 26 provided in front of the optical fixing device 28, and the preheating chamber 82 is externally passed through the optical fixing device 28 by suction using an air filter 52.
  • Pelchenit 26 is preheated by passing the introduced air through. That is, the optical fuser 28 is The air introduced from outside by the air blower 52 is cooled by passing through the inside of the optical fixing device 28, and is sent from the inlet 86 to the preheating chamber 82.
  • the air heated by the waste heat by the light emission drive of the flash lamp 30 of the optical fixing device 28 is sent to the preheating chamber 82.
  • a perchenit .26 is provided in the preheating space 86 above the preheating chamber 82.
  • a control unit 54 and a power supply unit 56 are connected to the suction side of the residual heat chamber 82 by a duct 94. For this reason, the preheated chamber 82 is also fed with air that has been warmed up by the porcelain unit 54 and the power supply unit 56 to preheat the pel chenit 26 and at the same time as the control unit 54 and the power supply unit. 5 6 Chill out!].
  • FIG. 7 is an enlarged view of the Peltier unit 26 and the optical fuser 28 in Fig. 6.
  • the waste heat surface 74 is arranged toward the paper transport path 24, and the lower heat absorption surface 76 is arranged in the preheated space 102 above the preheat chamber 82.
  • the preheating chamber .82 includes an introduction section 88, a champ section 96,98,100, and a discharge section 90.
  • the chamber section 96 on the introduction section 88 side and the chamber section 100 on the discharge section 90 side face the paper transport path 24 side. Therefore, the paper from the chamber sections 96 and 100 is heated by the heat from the chamber sections 96 and 100.
  • the pre-heating of the continuous paper 12 passing along the transport path 24 is performed.
  • the chamber section 98 faces the preheating space 102, where the heat absorbing surface 76 of the velcher unit 26 is located, so that the preheating from the chamber section 98 causes the heat absorption of the pelchenit 26.
  • Preheating is performed to raise the temperature of the surface 76.o
  • the temperature of the heat absorbing surface 76 of the perforated unit 26 is increased by the preheating chamber 82 in this manner, the cooling effect on the right side of the cooling effect coefficient COP of the above equation (4) is obtained.
  • the contact temperature Tc is increased, thereby increasing the cooling effect coefficient COP, so that the temperature of the waste heat surface 74 in the Berch II unit 26 can be made higher.
  • the waste heat of the optical fuser 28 is used for the preheating chamber 82, the effect of cooling the optical fuser 28 by the flow of air passing through the optical fuser 28 for this preheating is obtained. can get.
  • FIG. 8 shows the preheating chamber 82 of FIG.
  • the preheating chamber 82 has a box-shaped hollow space 102 in the upper part, and a multi-unit 26 is fitted and fixed in the upper part of the preheating space 102.
  • Perunit 26 is shown in Figure 4.
  • 40 Peltier elements 26-1 to 26-40 are arranged in a 40 ⁇ 4 array.
  • An introduction section 88 and a discharge section 90 are provided at almost diagonal positions of the preheating chamber 82, and the air heated by the waste heat of the optical fixing device 28 introduced from the introduction section 88 is supplied to the inside of the preheating chamber 82. After passing through, the air is sucked from the discharge section 90 with an air blower.
  • the Bellchenit 26 having the configuration shown in FIG. 4 is mounted on the line printer 10 shown in FIG. In this case, it is assumed that a 5000 LPM (second / minute) line pudding is installed as the line pudding 10.
  • a flash voltage of 1950 volts is applied as a 5000 LPM line pudding light fixing device 28 equipped with a belt tune 26
  • the toner fixing ratio (%) of the light fixing device 28 with respect to the preheating temperature by the pel tune 26 is The characteristic shown in FIG. 9 is obtained.
  • the pre-heating temperature exceeds the target fixing rate of 80% when the preheating temperature exceeds 40 ° C, and thereafter, the fixing rate of 85% is maintained at about 50 ° C.
  • Example 1 and Example 2 are performed for the line printer of FIG.
  • a flash voltage of 1950 volts was applied to the optical fuser 28, and from the relationship between the preheating temperature and the fixing rate in Fig. 9, the temperature of the waste heat surface of the Peltier element in Peltunit was 90 ° C.
  • the cooling surface temperature is set to 135 ° C. as described above, and cooling air is supplied to the optical fixing device 28 in lm 3 Z.
  • the temperature of the optical fuser rises only to about 70 ° C with an increase in the number of printed sheets, and the internal temperature of the optical fuser 28 is sufficiently low that the optical fuser is damaged. Etc. did not occur.
  • the line printer of FIG. 1 lower the flash voltage to 1500 volt, conditions other than that their is a result of printing in the same as in Example 1, good toner adhesion amount on the paper even 0. 9 mgZ cm 2 The fixing property was shown.
  • the flash voltage was set to 1500 port as in the second embodiment, and the optical fuser 28, control unit 54, and power supply
  • good fixability was exhibited even when the toner adhesion amount on the paper was 0.9 mgZcm2.
  • the flash voltage was set to 1950 volts, and the preheating was performed using the waste heat of the optical fuser 28, controller unit 54, and power supply unit 56 under the same conditions as in Example 3.
  • the toner showed good fixability even when the toner adhesion amount on the paper was 0.9 mg / cm 2 , and the optical fixing device 28 was not damaged by the temperature rise. .
  • Example 2 Using a ceramic panel heater as the pre-unit, printing was performed under the same conditions as in Example 1. As a result, the toner adhesion amount on the paper was 0.9 mg / cm 2 in the initial stage when the temperature of the optical fuser was low. Characteristics of Fig. 11 As shown in 108, the temperature of the optical fixing device was increased by continuous printing, and the flash lamp 30 as the light source of the optical fixing device 28 was damaged.
  • the line printer in Fig. 6 was printed under the same conditions as in Example 3 except that preheating was not performed.As a result, the toner adhesion amount on the paper was 0.9 mg / cm 2 to 0.4 mg gZ cm 2. The fixing amount occurred at the toner adhesion amount up to.
  • the line printer of FIG. 6, L such perform preheating and preheating, except result of printing the same conditions as in Example 4, the amount of adhered toner 0. 9 m gZ cm 2 in satisfactory fixability on paper
  • the temperature of the optical fixing device 26 increased during continuous printing, and the flash lamp 30 as the light source of the optical fixing device 26 was damaged.
  • FIG. 13 is a flowchart of the pre-heat temperature control of the pel-unit 26 by the control unit 54 provided in the line printer 10 of FIGS.
  • step S10 the control current flowing through the Peltier element is reduced to lower the temperature. If the temperature is low, increase the control current flowing through the Peltier element in step S11. To increase the temperature. As a result, the pre-print temperature by the pel-unit 26 is maintained at the set temperature in a standby state before the start of printing.
  • the pre-heat temperature is set in step S3.
  • the preheat set temperature is, for example, 90 ° C.
  • the preheat temperature is measured by the temperature sensor in step S4, and is compared with the set temperature in step S5. If the temperature matches the set temperature, printing is started in step S6, and steps S4 and S5 are repeated during printing. If the preheat measurement temperature does not match the set temperature in step S5, the preheat temperature setting control 1 12 in steps S12 to S17 is performed.
  • step S12 printing is stopped in step S12, the preheat temperature is compared with the set temperature in step S13, and if the temperature is high, the applied current to the Peltier element is reduced by, for example, 10 mA in step S14.
  • step S15 the preheat temperature is measured, and in step S17, it is checked whether or not the temperature matches the preheat set temperature. If the temperature is still high, the process returns to step S14 again, and further reduces the current flowing to the .1 O mA Peltier element.In step S10, until the measured temperature matches the set temperature, the process proceeds to step S12. , S13, S14, S15, and SI7 are repeated.
  • step S13 the applied current to the Peltier element is increased by 1 O mA in step S16. Then, the preheat temperature is measured in step S15, and the set temperatures are compared in step S17. Steps S12, S13, S16 are performed until the measured temperature matches the set temperature. , S 15 and S 17 are repeated.
  • the printing apparatus of the present invention by performing preheating for warming the paper at a stage before the optical fixing device by the waste heat of the Peltier element, even if the flash voltage of the optical fixing device is lowered, the toner fixing property can be reduced. Can be stably maintained. Also Peltier By preheating the paper using the waste heat of the device and simultaneously cooling and supplying air to the optical fuser using the heat absorption of the Berch II device, the temperature rise of the optical fuser can be sufficiently suppressed, and Damage due to rise in temperature of the vessel can be reliably prevented.
  • the optical fuser can be used. Even if the flash voltage is lowered, good fixability is maintained without impairing the fixability of the toner, and at the same time, the inside of the optical fixing device, the power supply unit control circuit, and the like can be cooled.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fixing For Electrophotography (AREA)

Abstract

A printer comprises an electronic photograph unit, which uses toner to develop an electrostatic latent image formed on a photosensitive member and transfers it to a sheet of paper, and an optical fixing device that fuses the toner image on the paper using intense radiation to fix the image. A preheating unit using a Peltier unit as a heat medium is arranged in a stage preceding the optical fixing device, and the paper and the passage are preheated by the waste heat from the Peltier unit to improve the performance of the optical fixing device. Cooled air from the Peltier unit is used to cool the optical fixing device and other units.

Description

明 細 書 プリン夕装置及びその定着方法 技術分野  Technical Field Printing device and fixing method
本発明は、 電子写真プロセスを用いて文字、 画像等を記録紙上に印刷するプリ ンタ装置とその定着方法に関し、 特に、光定着器の前段でプレヒートを行うプリ ンタ装置及びその定着方法に関する。 背景技術  The present invention relates to a printer apparatus for printing characters, images, and the like on recording paper using an electrophotographic process and a fixing method thereof, and particularly to a printer apparatus for performing preheating in a stage preceding an optical fixing device and a fixing method thereof. Background art
従来、複写機やレーザプリンタなどにおいて採用されている電子写真法は、一 般には、光導電性の絶縁体層上に一様な静電荷を与え、 この絶縁体層上に光像を 照射することにより、静電荷を部分的に除去して静電潜像を形成する。次に、 静 電荷の残った部分にトナーと呼ばれる微粉末を付着させて潜像を可視ィ匕したトナ 一画像を形成 (現像) し、 このトナー画像を記録紙に転写したの後に定着して印 刷物を得る。  Conventionally, electrophotography methods used in copiers, laser printers, and the like generally apply a uniform electrostatic charge to a photoconductive insulator layer and irradiate a light image onto the insulator layer. As a result, an electrostatic charge is partially removed to form an electrostatic latent image. Next, a fine powder called toner is adhered to the remaining portion of the electrostatic charge to form a toner image in which the latent image is visible (development). The toner image is transferred onto a recording paper and then fixed. Obtain a print.
一般に、電子写真プロセスにおいて良好な定着性を得るためには、定着工程に おいて用紙上に転写されたトナーを効率良く熱溶融させ、.用紙上に固着させるこ と力重要となる。 この定着方法として従来の光定着器を使用した非接触の定着方 法力 <知られており、 フラッシュランプによる強力な光をトナーに吸収させること でトナーそのものを溶融させる定着を行いっている。 しかし、光定着方法は、 紙 の厚さや用紙の搬送速度、 あるいは環境温湿度等の条件により十分な定着性が得 られず定着不良が発生する場合がある。 また、 昨今の省エネルギ化の観点からも 、 フラッシュ電圧を上昇させることは不可能に近く、 プリンタの高速化によるフ ラッシュエネルギ不足で発生するトナー定着不良等を回避するためには、 プレヒ ートを用いる必要がある。  In general, in order to obtain good fixability in an electrophotographic process, it is important to efficiently melt the toner transferred on the paper in the fixing step and fix the toner on the paper. As a fixing method, a non-contact fixing method using a conventional optical fixing device is known. The fixing is performed by melting the toner itself by absorbing the strong light from the flash lamp into the toner. However, with the optical fixing method, sufficient fixing properties cannot be obtained due to conditions such as the thickness of the paper, the speed at which the paper is conveyed, and the temperature and humidity of the environment. Also, from the viewpoint of energy saving in recent years, it is almost impossible to increase the flash voltage, and in order to avoid a toner fixing failure caused by a shortage of flash energy due to an increase in the speed of the printer, a pre-heating is required. Must be used.
従来、 プレヒートは、 熱媒体として電熱線やセラミックヒータを用いてプレヒ ートを行っている。 しかし、 これらの熱媒体では細かな温度制御が難しい。 また 、 応答時間が長いため、 用紙ジャム力発生した際に、 プレヒート部の温度を急激 に下げることができず、 用紙が発火に至る可能性がある等の問題がある。 Conventionally, preheating is performed using a heating wire or ceramic heater as a heat medium. However, it is difficult to perform fine temperature control with these heating media. Also, since the response time is long, when the paper jam occurs, the temperature of the pre-heating section suddenly increases. There is a problem that the paper may be ignited.
またトナー定着不良等を回避するために光定着器の出力を上げようとした場合 、 フォーム印刷に多く用いられる U Vインクが変色し、 '印刷不良になる問題も多 く発生する。 さらに、 定着器の出力を上げると、 光定着器の温度が上昇し、光 定着器の破損を招く場合があり、 また、対向する用紙搬送路の異常加熱が発生す る問題がある。 更にプリンタにおける主熱源である光定着器が異常加熱するよう な状態になった場合、 プリンタ装置内の温度も上昇し、 トナーの感光体フィール ミング (トナーのこびり付き) や現像器内のトナー溶融固着等の障害が発生しや すくなる。  Also, when an attempt is made to increase the output of the optical fixing device in order to avoid a toner fixing defect, the UV ink, which is often used for form printing, is discolored, which often causes a problem of poor printing. Further, when the output of the fixing unit is increased, the temperature of the optical fixing unit rises, which may cause damage to the optical fixing unit. In addition, there is a problem that abnormal heating of the opposing paper conveyance path occurs. Furthermore, if the optical fixing device, which is the main heat source in the printer, becomes abnormally heated, the temperature inside the printer rises, causing toner photoconductor filming (toner sticking) and toner fusion in the developing device. Etc. are more likely to occur.
本発明の目的は、電子写真プロセスを用いた場合の光定着において、 プレヒ一 トによって安定したトナーの定着性を維持すると共にプレヒートにおける細かな 温度制御を可能とするプリンタ装置及びその定着方法を提供することを目的とす  SUMMARY OF THE INVENTION An object of the present invention is to provide a printer device and a fixing method for the same that maintain stable toner fixability by pre-heating and enable fine temperature control in preheating in light fixing when an electrophotographic process is used. Aim to
発明の開示 'DISCLOSURE OF THE INVENTION ''
. この目的を達成するため本発明は次のように構成する。 本発明は、感光体上に 形成された静電潜像をトナーにより現像した後に用紙上に転写する電子写真ュニ ットと、用紙上に転写されたトナー画像を強い光の照射によるトナーの溶融で定 着する光定着器とを備えたプリンタ装置であって、 ペルチヱ素子を加熱媒体に用 いたプレヒートユニットを光定着器の前段に設けたことを特徴とする。 このよう プレヒートュニットの発熱媒体に本発明はペルチヱァ素子を用いたことで、 ペル チェ素子の廃熱を利用した用紙のプリヒートによつて光定着器の定着性を向上さ せることができる。 またペルチヱ素子の温度制御は、 ペルチェ素子に流す電流値 によって決まり、 応答時間も例えば 2 °CZ秒 (2 5 °d "環境) と早いため、 より細 かな温度制御でき、安定したトナー定着性を維持する。 In order to achieve this object, the present invention is configured as follows. The present invention relates to an electrophotographic unit that develops an electrostatic latent image formed on a photoreceptor with toner and then transfers the developed image onto a sheet of paper, and a toner image that is transferred onto a sheet of toner by irradiating strong light. What is claimed is: 1. A printer device comprising: an optical fixing device that is fixed by melting, wherein a preheating unit using a Peltier element as a heating medium is provided at a stage preceding the optical fixing device. Since the present invention uses the Peltier element as the heating medium of the preheat unit, the fixing property of the optical fixing device can be improved by preheating the paper using the waste heat of the Peltier element. In addition, the temperature control of the Peltier element is determined by the value of the current flowing through the Peltier element, and the response time is as fast as 2 ° CZ seconds (25 ° d ”environment). maintain.
ここでベルチェ素子の廃熱によるプレヒート温度を 5 0 °C乃至 1 0 0 °Cの範囲 に設定する。 またペルチヱ素子の吸熱により冷却された空気を用.いて光定着器の ?令却する冷却ュニッ .トを設けたことを特徴とする。 この冷却ュニットは、 ベルチ ェ素子の吸熱面に接触配置されたチャンバと、 プロワファンによる吸引で装置内 の空気をチャンパに導入して冷却した後に光定着器内を通過させる冷却系統とを 備える。 更に冷却ュニットで冷却された空気を装置の電源ュニット及び制御回路 の冷却に用いる。 このようにペルチェ素子の廃熱面を用紙面に向け用紙搬送下部 に設置してプレヒートすると同時に、 ペルチェ素子の吸熱面に冷却エア用のチヤ ンバを配置して冷却した空気を作り、光定着器の冷却に用いることで、 異常加熱 による光定着器の破損を確実に防止し、 更に電源ュニットゃ制御回路を冷却する こともできる。 Here, the preheating temperature due to the waste heat of the Peltier element is set in the range of 50 ° C to 100 ° C. In addition, the air cooled by the heat absorption of the Peltier device is used. It has a cooling unit to be ordered. The cooling unit is connected to the chamber that is in contact with the heat absorbing surface of And a cooling system that introduces the air into the champer, cools the air, and then passes the air through the optical fixing device. Furthermore, the air cooled by the cooling unit is used for cooling the power supply unit of the device and the control circuit. In this way, the waste heat surface of the Peltier element is placed at the bottom of the paper transport with the paper surface facing and the paper is preheated, and at the same time, a cooling air chamber is arranged on the heat absorption surface of the Peltier element to create cooled air, and the optical fuser By using it for cooling, the damage of the optical fixing device due to abnormal heating can be reliably prevented, and the power supply unit / control circuit can be cooled.
また本発明は、 光定着器で発生する廃熱を用いてプレヒートュニッ卜のベルチ ェ素子を予熱する余熱ュニットを設けたことを特徴とする。 この余熱ュニットは 、 ペルチェ素子の吸熱面に余熱空間を介して配置されたチャンバと、 プロヮファ ンによる吸引で外部の空気を光定着器内を通してチャンパに導入して余熱させる 余熱系統とを備える。 この余熱ュニットは更に電源ュニットゃ制御—回路から発生 する廃熱を用いてプレヒートュニットのペルチヱ素子を予熱するようにしてもよ い。 このように装置から得られる廃熱をペルチェ素子及び印刷媒体の余熱に使用 することで、 ペルチェ素子の吸熱面の冷接点温度を上げ、 廃熱面の高接点温度を 高くして効率良くプリヒ一トすることができる。 同時に、外部から取込んだ空気 を光定着器、電源ュニット、 制御回路等を冷却した後にペルチェ素子の余熱に利 用することで、 装置内の温度上昇を抑制でき、 フラッシュ電圧を高くした場合の 光定着器の破損等を確実に防止する。 またプレヒートュニットは、 矩形シート状 のペルチェ素子をプレート面の複数並べた構造をとる。  Further, the present invention is characterized in that a preheating unit is provided for preheating the Bertier element of the preheat unit using waste heat generated in the optical fixing device. This residual heat unit includes a chamber arranged on the heat absorbing surface of the Peltier element via a residual heat space, and a residual heat system for introducing external air to the champer through the optical fixing device by suction by the profiling unit to perform residual heat. The preheat unit may further use the waste heat generated from the power unit control-circuit to preheat the Peltier element of the preheat unit. By using the waste heat obtained from the apparatus as the residual heat of the Peltier element and the print medium, the cold junction temperature of the heat absorbing surface of the Peltier element is raised, and the high contact temperature of the waste heat surface is raised, thereby efficiently pre-heating the Peltier element. Can be At the same time, the air taken in from outside is used for the residual heat of the Peltier device after cooling the optical fuser, power supply unit, control circuit, etc. The damage of the optical fixing device is surely prevented. The preheat unit has a structure in which a plurality of rectangular sheet-shaped Peltier elements are arranged on a plate surface.
また本発明は、 電子写真ュニットにより感光体上に形成された静電潜像をトナ 一で現像した後に用紙上に転写した後に定着するプリンタ装置の定着方法を提供 するものであり、 このプリンタ装置の定着方法として、光定着器による強い光の 照射でトナーの溶融して用紙上にトナー画像を定着する前に、 ペルチヱ素子を加 熱媒体に用いてプレヒートすることを特徴とする。 このペルチェ素子の廃熱によ るプレヒ一ト温度を 5 0 °C乃至 1 0 0 °Cの範囲に設定する。 またペルチヱ素子の 吸熱により冷却された空気を用いて光定着器の冷却する。 さらに、光定着器で発 生する廃熱を用いてペルチェ素子を予熱する。 これ以外の点の詳細は、装置の場 合と同じになる。 図面の簡単な説明 The present invention also provides a fixing method for a printer device for developing an electrostatic latent image formed on a photoreceptor by an electrophotographic unit with a toner, transferring the electrostatic latent image onto paper, and then fixing the image. The fixing method is characterized in that before the toner is melted by irradiating strong light with an optical fixing device to fix a toner image on paper, preheating is performed using a Peltier element as a heating medium. The pre-heat temperature due to the waste heat of the Peltier element is set in the range of 50 ° C to 100 ° C. The optical fixing device is cooled using air cooled by the heat absorption of the Peltier device. Furthermore, the Peltier device is preheated using waste heat generated by the optical fixing device. Other details are the same as those of the device. BRIEF DESCRIPTION OF THE FIGURES
図 1はペルチェ素子を用いてプリヒートと冷却を行う本発明のプリンタ装置の内 部構造の説明図; FIG. 1 is an explanatory diagram of the internal structure of a printer device of the present invention that performs preheating and cooling using a Peltier device;
図 2は図 1の感光体ドラムと現像機ュットの説明図; FIG. 2 is an explanatory view of the photosensitive drum and the developing unit of FIG. 1;
図 3は図 1のペルチェュニットと冷却機構を取出した説明図; Figure 3 is an illustration showing the pelchenit and cooling mechanism of Figure 1;
図 4は図 3のペルチヱュニットの説明図; FIG. 4 is an illustration of the perforunit of FIG. 3;
図 5はベルチヱ素子の原理説明図; Figure 5 is a diagram illustrating the principle of the Belch II device;
図 6は図 1はペルチェュニットを余熱する本発明のプリンタ装置の内部構造の説 明図; FIG. 6 is an explanatory view of the internal structure of the printer device of the present invention for preheating the perchenite;
図 7は図 6のペルチヱュニットと余熱系統を取出した説明図; Fig. 7 is an explanatory drawing of the peltu-unit and the preheating system of Fig. 6;
図 8は図 7の余熱用チヤンバーの説明図; Figure 8 is an illustration of the preheating chamber of Figure 7;
図 9は本発明におけるプレヒート温度とトナー定着率の特性図; FIG. 9 is a characteristic diagram of the preheating temperature and the toner fixing rate in the present invention;
図 1 0は実施例 1における印刷枚数に対する光定着器温度の特性図; FIG. 10 is a characteristic diagram of the optical fixing device temperature with respect to the number of prints in the first embodiment;
図 1 1は比較例 1, 2における印刷枚数に対する光定着器温度の特性図; 図 1 2は本発明の実施例 1乃至 4のトナー定着性と光定着器の破損の有無を比較 例 1乃至 5と共に示した説明図; FIG. 11 is a characteristic diagram of the optical fixing device temperature with respect to the number of prints in Comparative Examples 1 and 2. FIG. 12 is a comparison of the toner fixing property and the presence or absence of damage of the optical fixing device in Examples 1 to 4 of the present invention. Explanatory diagram shown with 5;
図 1 3は本発明のペルチヱュニットを用いた温度制御のフローチャート ; 発明を実施するための最良の形態 FIG. 13 is a flowchart of temperature control using the perunit of the present invention;
図 1は本発明が適用される電子写真プロセスを用いたプリンタ装置の実施形態 であり、 ラインプリンタを例にとっている。 ラインプリンタ 1 0はホッパ 1 4に 連続用紙 1 2を収納しており、 ホッパ 1 4から引き出された連続用紙 1 2は用紙 搬送路 2 4を通ってスタツ力 3 4に送られる。 用紙搬送路 2 4の途中には感光ド ラム 1 6力設けられ、 感光ドラム 1 6に対しては現像器ュニット 1 8が設けられ ている。 この感光ドラム 1 6及び現像器ュニット 1 8により、 本発明の電子写真 プロセスの主要部を構成している。 感光ドラム 1 6は L E Dプリントへッド等の 光ビームの走査により、 ドラム表面に形成された光漏電性絶縁体層上に静電潜像 を形成し、 この感光ドラム 1 6上の静電潜像に対し現像器ュニット 1 8が現像剤 としてトナーを使用して現像を行 ^ゝ、 その後に用紙搬送路 2 4を通って送られて くる連続用紙 1 2上に転写ュニット 2 2でトナー像を転写した後、 光定着器 2 8 で定着固定することで印刷する。 FIG. 1 shows an embodiment of a printer device using an electrophotographic process to which the present invention is applied, taking a line printer as an example. The line printer 10 stores the continuous paper 12 in the hopper 14, and the continuous paper 12 pulled out from the hopper 14 is sent to the stat force 34 through the paper transport path 24. A photosensitive drum 16 is provided in the middle of the paper transport path 24, and a developing unit 18 is provided for the photosensitive drum 16. The photosensitive drum 16 and the developing unit 18 form a main part of the electrophotographic process of the present invention. The photosensitive drum 16 forms an electrostatic latent image on a light-leak insulating layer formed on the drum surface by scanning a light beam such as an LED print head. The developer unit 18 for the image is the developer After the toner image is transferred by the transfer unit 22 onto the continuous paper 1 2 which is fed through the paper transport path 24, the toner image is then transferred to the optical fixing device 28. Print by fixing and fixing.
図 2は、 図 1の感光ドラム 1 6と現像器ュニット 1 8の詳細構造を取り出して いる。 感光ドラム.1 6は図示しないモータにより一定速度で反時計回りに回転駆 動される。 感光ドラム 1 6の周囲には上部左側に 2台の前帯電器 6 4, 6 6力配 置され、感光ドラム 1 6の表面を一様に帯電させる。 続いて L E Dプリントへッ ド 6 8が設けられる。 L E Dプリントヘッド 6 8にはドラム長手方向に多数の L E Dを配置した L E Dアレイを使用しており、 印刷情報に応じた L E Dアレイの 発光駆動により印刷バタ一ンの露光を行って感光ドラム 1 6上に静電潜像を形成 する。 感光ドラム 1 6上に形成されこ静電潜像は、現像器ュニット 1 8の位置で キヤリアとトナーを含む 2成分現像剤のトナー成分により現像されてトナー像と なる。 一方、 印刷を行うための連続用紙は、用紙搬送ュニット 2 0により感光ド ラム 1 6の転写位置に送られている。 この転写位置には感光ドラム 1 6に対向し て転写帯電器 2 2 - 1が配置され、 感光ドラム 1 6上のトナ一像が用紙上に転写 される。 用紙上に転写されたトナー像は図 1に示す光定着器 2 8において定着さ れる。 転写帯電器 2 2 - 1により用紙に対するトナー像の転写が済んだ感光ドラ ム 1 6上には転写されずに残った残留トナーがあり、 残留トナーを除去するため にクリーニングブラシ 5 8とクリーニングプレード 6 0を設け、機械的に感光ド ラム 1 6上の残留トナーを除去している。.続いて除電 L E Dが設けられ、 感光ド ラム 1 6上の電位を 0ボルトに戻す除電を行う。  FIG. 2 shows a detailed structure of the photosensitive drum 16 and the developing unit 18 of FIG. The photosensitive drum .16 is rotated counterclockwise at a constant speed by a motor (not shown). Around the photosensitive drum 16, two pre-chargers 64, 66 are arranged on the upper left side to uniformly charge the surface of the photosensitive drum 16. Subsequently, an LED print head 68 is provided. The LED print head 68 uses an LED array in which a number of LEDs are arranged in the longitudinal direction of the drum, and the printing pattern is exposed by driving the LED array to emit light in accordance with the printing information. An electrostatic latent image is formed on the surface. The electrostatic latent image formed on the photosensitive drum 16 is developed by a toner component of a two-component developer containing a carrier and a toner at a position of the developing unit 18 to form a toner image. On the other hand, continuous paper for printing is sent to the transfer position of the photosensitive drum 16 by the paper transport unit 20. At this transfer position, a transfer charger 22-1 is arranged to face the photosensitive drum 16, and the toner image on the photosensitive drum 16 is transferred onto the paper. The toner image transferred onto the paper is fixed in the optical fixing device 28 shown in FIG. After the transfer of the toner image onto the paper by the transfer charger 2 2-1, there is residual toner remaining on the photosensitive drum 16 without being transferred, and a cleaning brush 58 and a cleaning blade are used to remove the residual toner. 60 is provided to mechanically remove the residual toner on the photosensitive drum 16. Subsequently, a static elimination LED is provided, and static elimination is performed to return the potential on the photosensitive drum 16 to 0 volt.
再び図 1を参照するに、光定着器 2 8は内部に例えば 4本のフラッシュランプ 3 0を用紙搬送方向に並べて配置しており、 このフラッシュランプ 3 0の発光馬区 動による強力な光をトナーに吸収させることで、' トナーそのものを溶融させて用 紙上に定着させている。 光定着器 2 8の手前には、 本発明にあってはプレヒート ュニットとしてペルチェュニット 2 6を設け、 光定着器 2 8の前で連続用紙 1 2 を温めるプレヒートを行っている。 ペルチヱュニット 2 6は廃熱面を用紙搬送路 2 4側に向けて配置され、下側が吸熱面となる。 ペルチェュニット 2 6の吸熱面 側にほ冷却チヤンバ 3 6力配置されている。 冷却チャンパ 3 6は、下部に設置さ れたェアブロワ 5 2による空気の吸い込みを受け、 ペルチヱュニット 2 6の吸熱 面に対向した冷却チヤンバ 3 6によつて吸入した空気を冷却し、光定着器 2 8に ?令却空気を送り込んで冷却している。 即ち冷却チャンバ 3 6は、 空気導入口 3 8 を右側に持ち、 冷却チヤンバ 3 6を逋つた冷却空気は排出口 4 0からダクトを通 つて光定着器 2 8内にダクト開口 4 2を設け、 ここから冷却空気を光定着器 2 8 内に入れている。 また光定着器 2 8には吸込み口 4 4が設けられ、 ダクト 4 6を 通ってダッシュフィルタ 4 8に至り、更にダクト 5 0を通ってェアブロワ 5 2に より吸引される。 このためペルチェユニット 2 6は、 その廃熱によって光定着器 2 8に送り込む連続用紙 1 2を温めるプレヒートを行うと同時に、 エアプロヮ 5 2で吸引した空気が冷却チャンバ 3 6を通るときにペルチヱュニット 2 6の吸熱 により空気を冷却し、 冷却した空気を光定着器 2 8を通すことで光定着器 2 8の 冷却を行っている。 ここでペルチヱユニット 2 6による温度制御のため、 プレヒ ―ト温度を検出する温度センサ 4 5— 1、冷却温度を測定する温度センサ 4 5 _ 2、更に光定着器 2 8の内部温度を測定する温度センサ 4 5 _ 3を設けている。 更にラインプリンタ 1 0にはコントロールュニット 5 4と電源ュニット 5 6力設 けられている。 このコントロールュニット 5 4と電源ュニット 5 6に対しても冷 却チヤンバ 3 6からダクト 5 5が接続され、 エアプロヮ 5 2による吸引で冷却空 気を送りの込んで冷却している。 Referring again to FIG. 1, the optical fixing device 28 has, for example, four flash lamps 30 arranged in the paper transport direction inside the optical fixing device 28, and emits strong light due to the emission horse motion of the flash lamps 30. By absorbing the toner, the toner itself is melted and fixed on paper. In the present invention, a perheating unit 26 is provided in front of the optical fixing unit 28 in the present invention as a preheating unit, and preheating for heating the continuous paper 12 in front of the optical fixing unit 28 is performed. The pellet unit 26 is disposed with the waste heat surface facing the paper transport path 24 side, and the lower side is a heat absorbing surface. A cooling chamber 36 is arranged on the heat absorbing surface side of Pelchenit 26. Cooling champ 36 is installed at the bottom. The air blower 52 receives the air, and the air sucked by the cooling chamber 36 facing the heat absorption surface of the pel- tine unit 26 is cooled. Cooling by sending order air. That is, the cooling chamber 36 has an air inlet 38 on the right side, and cooling air passing through the cooling chamber 36 is provided with a duct opening 42 in the optical fuser 28 through a duct from the outlet 40, From here, cooling air is introduced into the optical fuser 28. Further, the optical fixing device 28 is provided with a suction port 44, passes through the duct 46, reaches the dash filter 48, and further passes through the duct 50, and is sucked by the air blower 52. For this reason, the Peltier unit 26 preheats the continuous paper 12 fed into the optical fixing device 28 by the waste heat, and at the same time, when the air sucked by the air pro 52 passes through the cooling chamber 36, the Peltier unit 26 The air is cooled by the heat absorption of the optical fuser, and the cooled air is passed through the optical fuser 28 to cool the optical fuser 28. Here, for the temperature control by the Peltier unit 26, a temperature sensor 45-1, which detects the preheat temperature, a temperature sensor 45_2, which measures the cooling temperature, and also measures the internal temperature of the optical fuser 28 Temperature sensor 45_3 is provided. Further, the line printer 10 is provided with a control unit 54 and a power supply unit 56. A duct 55 is connected to the control unit 54 and the power supply unit 56 from the cooling chamber 36, and the cooling air is fed by suction by the air pro 52 to cool the unit.
図 3は、 図 1のラインプリンタ 1 0のペルチェュニット 2 6及び光定着器 2 8 の部分を取り出して拡大している。 ペルチェュニット 2 6は、 その廃熱面 7 4を 用紙搬送路 2 4側に向けて配置し、廃熱面 7 4からの熱によって搬送路 2 4に沿 つて通過する連続用紙 1 2を温めた後に、光定着器 2 8に入るようにしている。 ペルチェュニット 2 6の下側は吸熱面 7 6であり、 この吸熱面 7 6に接触して冷 却チャンバ 3 6を配置している。  FIG. 3 is an enlarged view of the part of the line printer 10 shown in FIG. The pelchenit 26 has its waste heat surface 74 disposed toward the paper transport path 24, and after the heat from the waste heat surface 74 heats the continuous paper 12 passing along the transport path 24, , So that it enters the optical fuser 28. The lower side of the perchenite 26 is a heat absorbing surface 76, and the cooling chamber 36 is arranged in contact with the heat absorbing surface 76.
図 4は図 3のペルチヱユニット 2 6を取り出して平面で示している。 このペル チェユニット 2 6ほ M a r 1 o w I n d a s t r i e s I n c . 製であり、 縦 X横 = 3 8 mm X 3 O mmサイズの薄型矩形のペルチェ素子 2 6 - 1— 2 6 - 4 Όを、搬送方向に ¾:行する方向に 1 0個、搬送方向に 4個の合計 4 0個並べて 配置している。 このペルチヱ素子 2 6— 1〜2 6— 4 0のそれぞれは次の仕様と なる。 FIG. 4 shows the Peltier unit 26 of FIG. 3 in a plan view. This Peltier unit 26 is made of Mar 1 ow Indastries Inc. and has a thin rectangular Peltier element 2 6-1-2 6-4 mm of vertical X horizontal = 38 mm X 3 O mm size.に in the transport direction: 10 pieces in the row direction and 4 pieces in the transport direction, for a total of 40 pieces. Each of the Peltier elements 26-1 to 26-40 has the following specifications. Become.
最大熱量 1 1 0W  Maximum heat 1 1 0W
9 5。C  9 5. C
最大冷却能力 - 3 6°C  Maximum cooling capacity-36 ° C
応答速度 . 1 0°C/分 (25 °C環境で冷却, 加熱共に)  Response speed .10 ° C / min (both cooling and heating at 25 ° C)
となる。 もちろんペルチヱュニット 2 6に使用するペルチェ素子の数は、 図 1に 示したラインプリンタ 1 0の用.紙搬送路 24の横幅を越える適宜のサイズとなる ように枚数を決める。 Becomes Of course, the number of Peltier elements used for the pel-unit 26 is determined so as to have an appropriate size exceeding the width of the paper transport path 24 for the line printer 10 shown in FIG.
図 5は、 図 4のペルチヱュニット 2 6に使用したペルチヱ素子 26— 1 1の構 造であり、 異種の金属 Nと金属 Pを接合し、 直流電源 27に接続して電流を流す ようにしている。 このペルチェ素子 0詳細を説明すると、 ペルチェ効果による発 熱を現わす式として、通常、 次式が知られている。  FIG. 5 shows a structure of a peltier element 26-11 used in the pelunit 26 of FIG. 4, in which different types of metal N and metal P are joined together and connected to a DC power supply 27 to allow current to flow. . To explain the details of the Peltier element 0, the following equation is generally known as an equation expressing heat generation by the Peltier effect.
E = · I +S · g'radT (1)E = I + Sg'radT (1)
Q =π · I— a ' gradT, TT = S · T (2)Q = π · I— a 'gradT, TT = S · T (2)
QO =て · I · gradT, て =T · (d S/dT) (3) 但し、 Sはそれぞれゼ一ベック係数 QO = T · I · gradT, T = T · (d S / dT) (3) where S is the Seebeck coefficient
7Γはペルチェ係数  7Γ is the Peltier coefficient
てはトムソン係数  Is the Thomson coefficient
κはそれぞれ熱伝導率、  κ is the thermal conductivity,
Pは電気抵抗率  P is electrical resistivity
Eは電界の大きさを示すベクトル ί  E is a vector indicating the magnitude of the electric field ί
Iは電流の大きさを示すべクトル』  I is a vector that indicates the magnitude of the current. "
Q0 は熱の吸収率 Q0 is the heat absorption rate
Τは温度  Τ is temperature
gradTは温度勾配 (1) 式では、 温度勾配が無い時の電界の大きさを示すべクトル量 Eは、 通常 良く知られているオームの法則によつて求められた値 gradT is the temperature gradient In Eq. (1), the vector amount E, which indicates the magnitude of the electric field when there is no temperature gradient, is a value obtained by the well-known Ohm's law.
E = p ' I  E = p 'I
に等しくなる。 温度勾配がある時の電界の大きさを示すべクトル量 Eは、 温度の 高い場所の電子は大きな運動量を持つので、電子は温度の高い方から低い方へ流 れ込み、温度が高い方が正の電位を持ち、温度の低い方が負の電位を持つように なる。 正孔の時はその逆となって、 その値に相当する右辺 2項の (S - gradT) が右辺 1項の · I) に加算される。 した力つて、 図 5の異種の金属 Nと金属 Pを接合したペルチェ素子 26— 1 1に電源 27を接続し、 電源 27力、ら電流 I を流さない場合、 (1) 式によって電界の大きさを示すベクトル量は Is equal to The vector amount E, which indicates the magnitude of the electric field when there is a temperature gradient, is such that electrons in a place with a high temperature have a large momentum, so electrons flow from a higher temperature to a lower temperature, and It has a positive potential and the lower temperature has a negative potential. In the case of holes, the opposite is true, and the (S-gradT) of the two terms on the right-hand side corresponding to that value is added to · I) of the one term on the right-hand side. When the power supply 27 is connected to the Peltier element 26—11, in which different types of metal N and metal P are joined as shown in Fig. 5, and the current I does not flow through the power supply 27, the magnitude of the electric field can be calculated by equation (1). The vector quantity indicating
E = S · gradT  E = SgradD
となり、金属 P, Nによって (Tl -T2 ) の温度差を与えると、 その結果、 ( VI -V2 ) の電位差を生じる。 これが熱電発生器の原理である。 When a temperature difference of (Tl-T2) is given by metals P and N, a potential difference of (VI-V2) is generated. This is the principle of a thermoelectric generator.
(2) 式では、 温度勾配がなく、電流 Iを流した時の熱量は  In equation (2), the amount of heat when there is no temperature gradient and current I flows is
Q = · I  Q = I
となる。 これは低いエネルギを持った電子を有する物質から高いエネルギを持つ た電子を有する物質へ電子を引き出すと、 エネルギの高い電子のみが出てくるた めに、 後には低いエネルギを持った電子が残ることになる。 その際の熱量を考え る.と、 両物質に熱量の差力生じることになつて低いエネルギを持つ電子を有する 物質では温度が下がる。 これがペルチヱ効果である。 このときペルチェ熱 Qは、 電流 Iの方向と同じ方向に運ばれること力、ら、 ペルチヱ係数 は電流 Iの方向に よって正負の符号をとる。 ペルチェ素子 26—1 1に電源によって電流 Iを流す と、 ペルチェ素子 26—1 1の金属 Nの領域では Becomes This is because when electrons are extracted from a substance having electrons with low energy to a substance having electrons with high energy, only electrons with high energy come out, so electrons with low energy remain behind Will be. Considering the calorific value at that time, the temperature drops in a substance that has electrons with low energy, resulting in a difference in calorific value between both substances. This is the Peltier effect. At this time, the Peltier heat Q is a force that is carried in the same direction as the direction of the current I, and the Peltier coefficient has a positive or negative sign depending on the direction of the current I. When a current I is applied to the Peltier element 26-11 by the power supply, in the region of the metal N of the Peltier element 26-11,
Qn = 7Γ η · I  Qn = 7Γ η
の熱量が流れ、 金属 Nと異なる種類の金属 Pの領域では Heat flows in the region of metal P, which is different from metal N
Qp =π p · I  Qp = π pI
の熱量が流れる。 このため金属 Nと Pの接合部のところでは Heat flow. Therefore, at the junction of metal N and P
π τι一 π ρ~) · I  π τι 一 π ρ ~) I
の熱量の差が出てくる。 この熱量は、接合部の一方で熱を発生し、 もう一方では 熱を吸収するが、 その差が接合部分の温度を変えるので、 これが負のとき電子冷 却の原理となる。 このためペルチェ素子 26—11の金属 P側が吸熱面 76とな り、金属 N側が廃熱面 74となる。 The difference in the amount of heat comes out. This amount of heat generates heat on one side of the joint and on the other side It absorbs heat, but the difference changes the temperature of the junction, so when this is negative, it becomes the principle of electronic cooling. Therefore, the metal P side of the Peltier element 26-11 becomes the heat absorbing surface 76, and the metal N side becomes the waste heat surface 74.
ここで、熱電効率の良いペルチヱ素子を作るには、 負荷から奪われる熱と消費 した電力の比、 即ち次式に示す冷却効果係数 (COP : Coefficient of Perform ance of a refrigerator ) を大さくす ま、良 l<、0 np— Tc (4) リ Th— Tc (1+Z'Tm + l s2 Here, in order to make a Peltier device with good thermoelectric efficiency, the ratio of the heat taken from the load to the consumed power, that is, the cooling effect coefficient (COP) shown in the following equation, is increased. , Good l <, 0 np — Tc (4) Re Th — Tc (1 + Z'Tm + ls 2
Z=  Z =
κρ (5) 但し、 Zは熱電材料の良否を判断するための性能指数  κρ (5) where Z is a figure of merit for judging the quality of thermoelectric material
T cは冷接点の温度  T c is the temperature of the cold junction
Thは高温接点の温度  Th is the temperature of the hot junction
Tmは冷却素子の平均温度 実際のペルチヱ素子は、 これらの値を元に、 B i (ビスマス) 、 Sb2 (アン チモン) 、 Te3 (テルル) 、 B i +Te (ビスマス +テルル) などの金属を用 いられて作られている。 また、温度制御は、 ペルチェ素子に流す電流値によって 決まり、応答時間も例えば 2°C/秒 (25°C環境で冷却、過熱共に) と速いため 、簡単なフィ一ドバック制御により細かな温度制御が可能である。 Tm is the average temperature of the cooling element. The actual Peltier element is based on these values, such as B i (bismuth), Sb 2 (antimony), Te 3 (tellurium), B i + Te (bismuth + tellurium), etc. It is made using metal. The temperature control is determined by the current flowing through the Peltier element, and the response time is as fast as 2 ° C / sec (both cooling and overheating in a 25 ° C environment), so fine temperature control is achieved by simple feedback control. Is possible.
図 6はプレヒートュニットとして設けたペルチヱュニット 26を光定着器 28 からの廃熱を利用して予熱するようにした本発明の他の実施形態のラインプリン 夕である。 このラインプリンタ 10にあっては、 光定着器 28の手前に設けたぺ ルチェュニット 26の下側に予熱チャンバ 82を設け、予熱チャンバ 82にエア プ ϋヮ 52による吸引で光定着器 28を通して外部から導入した空気を通すこと でペルチェュニット 26を予熱している。 即ち光定着器 28は外気導入口 84を 有し、 ェアブロワ 5 2により外部から導入された空気は光定着器 2 8の内部を通 過して冷却し、 導入口 8 6から予熱チャンバ 8 2に送られる。 このため予熱チヤ ンパ 8 2には、光定着器 2 8のフラッシュランプ 3 0の発光駆動による廃熱で温 められた空気カ送り込まれる。 予熱チヤンバ 8 2の上部の予熱空間 8 6の中には ペルチェュニット.2 6が設けられている。 FIG. 6 shows a line printer according to another embodiment of the present invention in which a pel-unit 26 provided as a pre-heat unit is pre-heated by using waste heat from an optical fixing device 28. In the line printer 10, a preheating chamber 82 is provided below the luminaire 26 provided in front of the optical fixing device 28, and the preheating chamber 82 is externally passed through the optical fixing device 28 by suction using an air filter 52. Pelchenit 26 is preheated by passing the introduced air through. That is, the optical fuser 28 is The air introduced from outside by the air blower 52 is cooled by passing through the inside of the optical fixing device 28, and is sent from the inlet 86 to the preheating chamber 82. For this reason, the air heated by the waste heat by the light emission drive of the flash lamp 30 of the optical fixing device 28 is sent to the preheating chamber 82. In the preheating space 86 above the preheating chamber 82, a perchenit .26 is provided.
さらに余熱チャンバ 8 2の吸込側にはダクト 9 4によってコントロールュニッ ト 5 4と電源ユニット 5 6が接続される。 このため予熱チャンバ 8 2には、 更に とろ一ねゆにつと 5 4や電源ュニット 5 6で温められた空気も送り込まれ、 ペル チェュニット 2 6を余熱すると同時に、 コントロールュニット 5 4と電源ュニッ ト 5 6の冷去!]を行う。  Further, a control unit 54 and a power supply unit 56 are connected to the suction side of the residual heat chamber 82 by a duct 94. For this reason, the preheated chamber 82 is also fed with air that has been warmed up by the porcelain unit 54 and the power supply unit 56 to preheat the pel chenit 26 and at the same time as the control unit 54 and the power supply unit. 5 6 Chill out!].
' 図 7は、 図 6のペルチヱユニット 2 6と光定着器 2 8の部分を取り出して拡大 している。 ペルチェュニット 2 6は廃熱面 7 4を用紙搬送路 2 4に向けて配置し 、下側の吸熱面 7 6を予熱チヤンバ 8 2の上部の仕切られた予熱空間 1 0 2に配 置している。予熱チャンバ.8 2は、導入部 8 8、 チャンパ部 9 6, 9 8 , 1 0 0 、 更に排出部 9 0を備えている。 導入部 8 8側のチヤンバ部 9 6と排出部 9 0側 のチヤンバ部 1 0 0は用紙搬送路 2 4側に面しており、 このためチヤンバ部 9 6 , 1 0 0からの熱によって用紙搬送路 2 4に沿って通過する連続用紙 1 2のプレ ヒートを行う。 チャンバ部 9 8は予熱空間 1 0 2に面しており、 ここにはベルチ ェユニット 2 6の吸熱面 7 6が位置していることから、 チヤンバ部 9 8からの予 熱によってペルチェュニット 2 6の吸熱面 7 6の温度を上げる予熱を行っている o このように予熱チヤンバ 8 2によってペルチヱュニット 2 6の吸熱面 7 6の温 度が上がると、前記 (4) 式の冷却効果係数 C O Pの右辺における冷接点温度 T cが高くなり、 これによつて冷却効果係数 C O Pを高め、 ベルチヱユニット 2 6 における廃熱面 7 4の温度をより高温にすることができる。 同時に、予熱チャン バ 8 2に光定着器 2 8の廃熱を利用しているため、 この予熱のための光定着器 2 8を通す空気の流れによって、光定着器 2 8を冷却する効果が得られる。 'Fig. 7 is an enlarged view of the Peltier unit 26 and the optical fuser 28 in Fig. 6. In the Pelchenit 26, the waste heat surface 74 is arranged toward the paper transport path 24, and the lower heat absorption surface 76 is arranged in the preheated space 102 above the preheat chamber 82. . The preheating chamber .82 includes an introduction section 88, a champ section 96,98,100, and a discharge section 90. The chamber section 96 on the introduction section 88 side and the chamber section 100 on the discharge section 90 side face the paper transport path 24 side. Therefore, the paper from the chamber sections 96 and 100 is heated by the heat from the chamber sections 96 and 100. The pre-heating of the continuous paper 12 passing along the transport path 24 is performed. The chamber section 98 faces the preheating space 102, where the heat absorbing surface 76 of the velcher unit 26 is located, so that the preheating from the chamber section 98 causes the heat absorption of the pelchenit 26. Preheating is performed to raise the temperature of the surface 76.o When the temperature of the heat absorbing surface 76 of the perforated unit 26 is increased by the preheating chamber 82 in this manner, the cooling effect on the right side of the cooling effect coefficient COP of the above equation (4) is obtained. The contact temperature Tc is increased, thereby increasing the cooling effect coefficient COP, so that the temperature of the waste heat surface 74 in the Berch II unit 26 can be made higher. At the same time, since the waste heat of the optical fuser 28 is used for the preheating chamber 82, the effect of cooling the optical fuser 28 by the flow of air passing through the optical fuser 28 for this preheating is obtained. can get.
図 8は図 7の予熱チヤンバ 8 2を取り出している。 予熱チヤンバ 8 2は上部に 箱型にくりぬいた予熟空間 1 0 2を持っており、 この予熱空間 1 0 2の上部にぺ ルチヱュニット 2 6を嵌込み固定している。 ペルチヱュニット 2 6は図 4に示し たように、 例えば 40枚のペルチヱ素子 26— 1〜26— 40を 4X10の 40 枚配列している。 予熱チヤンバ 82のほぼ対角となる位置には導入部 88と排出 部 90が設けられており、導入部 88から導入した光定着器 28の廃熱で温めら れた空気を、予熱チヤンバ 82内を通した後、排出部 90からエアプロワで吸引 するようにしている。 FIG. 8 shows the preheating chamber 82 of FIG. The preheating chamber 82 has a box-shaped hollow space 102 in the upper part, and a multi-unit 26 is fitted and fixed in the upper part of the preheating space 102. Perunit 26 is shown in Figure 4. As described above, for example, 40 Peltier elements 26-1 to 26-40 are arranged in a 40 × 4 array. An introduction section 88 and a discharge section 90 are provided at almost diagonal positions of the preheating chamber 82, and the air heated by the waste heat of the optical fixing device 28 introduced from the introduction section 88 is supplied to the inside of the preheating chamber 82. After passing through, the air is sucked from the discharge section 90 with an air blower.
次に本発明の具体的な実施形態を説明する。 図 4の構成をもつベルチェュニッ ト 26を、 図 1のラインプリンタ 10に搭載する。 この場合、 ラインプリン夕 1 0として 5000 LPM (秒/分) のラインプリン夕の搭載を例にとる。 ベルチ ェュニット 26を搭載した 5000 LPMのラインプリン夕の光定着器 28とし て 1950ボルトのフラッシュ電圧を印加した場合、 ペルチェュニット 26によ るプレヒート温度に対する光定着器 28によるトナーの定着率 (%) として、 図 9の特性が得られる。 ここで光定着器 28を用いた場合の目標定着率を 80%と すると、 プレヒート温度が 40°Cを越えると目標定着率 80%を上回り、 その後 、 50°C付近で定着率 85%力維持され、更にプレヒ一ト温度が上昇すると定着 率は 90%まで上昇するが、 プレヒート温度が 100°Cを越えると定着率力低下 するようになる。 そこで本発明で使用するペルチヱュニット 26によるプレヒー ト温度としては、 図 9の特性から使用下限温度を T 1 = 50°C、上限温度を T 2 =100°Cとし、 Tl = 50°C〜T2 = 100°Cの範囲にプレヒ一ト温度を設定 すれば良い。  Next, specific embodiments of the present invention will be described. The Bellchenit 26 having the configuration shown in FIG. 4 is mounted on the line printer 10 shown in FIG. In this case, it is assumed that a 5000 LPM (second / minute) line pudding is installed as the line pudding 10. When a flash voltage of 1950 volts is applied as a 5000 LPM line pudding light fixing device 28 equipped with a belt tune 26, the toner fixing ratio (%) of the light fixing device 28 with respect to the preheating temperature by the pel tune 26 is The characteristic shown in FIG. 9 is obtained. Here, assuming that the target fixing rate when the optical fixing unit 28 is used is 80%, the pre-heating temperature exceeds the target fixing rate of 80% when the preheating temperature exceeds 40 ° C, and thereafter, the fixing rate of 85% is maintained at about 50 ° C. When the preheat temperature further rises, the fixing rate rises to 90%, but when the preheat temperature exceeds 100 ° C, the fixing rate power decreases. Therefore, as the preheat temperature by the peltunit 26 used in the present invention, the lower limit temperature of use is T1 = 50 ° C, the upper limit temperature is T2 = 100 ° C, and Tl = 50 ° C to T2 = The preheat temperature should be set in the range of 100 ° C.
ここで図 1のラインプリンタについて、次の実施例 1と実施例 2を行う。  Here, the following Example 1 and Example 2 are performed for the line printer of FIG.
[実施例 1]  [Example 1]
図 1のラインプリンタについて、光定着器 28に 1950ボルトのフラッシュ 電圧を印加し、 図 9におけるプレヒート温度と定着率の関係から、 ペルチヱュニ ットにおけるペルチェ素子の廃熱面温度が 90 °Cとなるように冷却面温度を一 3 5°Cに設定し、 更に光定着器 28に冷却用エアを lm3 Z分で供給する。 この条 件によるプレヒートと定着器冷却を用いて 500 OL PMの印刷を行った結果、 用紙上のトナー付着量が 0. 9mgZcm2 でも な定着性を示した。 また連 続印刷においても、 図 10のように印刷枚数の増加に対し光定着器温度は 70°C 程度までしか上昇せず、光定着器 28の内部温度は十分に低く、光定着器の破損 等は発生しなかった。 For the line printer in Fig. 1, a flash voltage of 1950 volts was applied to the optical fuser 28, and from the relationship between the preheating temperature and the fixing rate in Fig. 9, the temperature of the waste heat surface of the Peltier element in Peltunit was 90 ° C. The cooling surface temperature is set to 135 ° C. as described above, and cooling air is supplied to the optical fixing device 28 in lm 3 Z. As a result of printing at 500 OLPM using preheating and fixing unit cooling under these conditions, it showed excellent fixability even when the toner adhesion amount on paper was 0.9 mgZcm 2 . Also, in continuous printing, as shown in Fig. 10, the temperature of the optical fuser rises only to about 70 ° C with an increase in the number of printed sheets, and the internal temperature of the optical fuser 28 is sufficiently low that the optical fuser is damaged. Etc. did not occur.
[実施例 2]  [Example 2]
図 1のラインプリンタについて、 フラッシュ電圧を 1500ボルトに下げ、 そ れ以外の条件は実施例 1と同じにして印刷を行った結果、 用紙上のトナー付着量 が 0. 9 mgZ cm2 でも良好な定着性を示した。 The line printer of FIG. 1, lower the flash voltage to 1500 volt, conditions other than that their is a result of printing in the same as in Example 1, good toner adhesion amount on the paper even 0. 9 mgZ cm 2 The fixing property was shown.
[実施例 3]  [Example 3]
図 6の光定着器 28の廃熱を利用したペルチヱユニット 26の予熱を行うライ ンプリンタについて、 フラッシュ電圧は実施例 2と同様 1500ポルトとし、光 定着器 28、 コントロールュニット 54、更に電源ュニット 56で発生する熱を ペルチェュニット 26の予熱に用いて印刷を行った結果、 用紙上のトナー付着量 が 0. 9mgZcm2でも良好な定着性を示した。  For the line printer that preheats the Peltier unit 26 using the waste heat of the optical fuser 28 in Fig. 6, the flash voltage was set to 1500 port as in the second embodiment, and the optical fuser 28, control unit 54, and power supply As a result of printing using the heat generated in the unit 56 for preheating the pelchenit 26, good fixability was exhibited even when the toner adhesion amount on the paper was 0.9 mgZcm2.
[実施例 4]  [Example 4]
図 6のラインプリン夕 10について、 フラッシュ電圧を 1950ボルトに設定 し、 実施例 3と同じ条件で光定着器 28、 コント口一ルュ二ット 54及び電源ュ ニット 56の廃熱を利用した予熱を行った状態で印刷を行った結果、用紙上の上 のトナー付着量が 0. 9mg/cm2 でも良好な定着性を示し、 また温度上昇に よる光定着器 28の破損は発生しなかった。 For the line printer 10 in Fig. 6, the flash voltage was set to 1950 volts, and the preheating was performed using the waste heat of the optical fuser 28, controller unit 54, and power supply unit 56 under the same conditions as in Example 3. As a result of printing, the toner showed good fixability even when the toner adhesion amount on the paper was 0.9 mg / cm 2 , and the optical fixing device 28 was not damaged by the temperature rise. .
このような実施例 1〜 4の有効性を明確にするため、 次の比較例 1〜 5の印刷 を行った。  To clarify the effectiveness of Examples 1 to 4, the following Comparative Examples 1 to 5 were printed.
[比較树 1]  [Comparison 树 1]
図 1のラインプリン夕について、 ペルチェュニット 26によるプレヒ一ト及び 光定着器 28の冷却を行わずに、 実施例 1と同じ条件で印刷を行った結果、 用紙 上のトナー付着量が 0. 9mgZcm2 では満足な定着性が得られず、 また図 1 1の特性 106のように、 連続印刷において光定着器 28の温度が上昇し、光定 着器 28の光源であるフラッシュランプ 30が破損した。 As for the line printing shown in FIG. 1, printing was performed under the same conditions as in Example 1 without performing pre-printing by the pelchenit 26 and cooling the optical fixing device 28. As a result, the amount of toner adhering to the paper was 0.9 mgZcm 2. Thus, satisfactory fixability could not be obtained, and as shown by the characteristic 106 in FIG. 11, the temperature of the optical fixing device 28 increased during continuous printing, and the flash lamp 30 as the light source of the optical fixing device 28 was damaged.
[比較例 2]  [Comparative Example 2]
プレヒ一トュニットとしてセラミックパネルヒータを用いて、 実施例 1と同じ 条件により印刷を行った結果、光定着器の温度が低い初期段階では用紙上のトナ 一付着量が 0. 9mg/cm2 で満足な定着性が得られるものの、 図 11の特性 1 0 8のように、 連続印刷により光定着器の温度が上昇し、光定着器 2 8の光源 であるフラッシュランプ 3 0が破損した。 Using a ceramic panel heater as the pre-unit, printing was performed under the same conditions as in Example 1. As a result, the toner adhesion amount on the paper was 0.9 mg / cm 2 in the initial stage when the temperature of the optical fuser was low. Characteristics of Fig. 11 As shown in 108, the temperature of the optical fixing device was increased by continuous printing, and the flash lamp 30 as the light source of the optical fixing device 28 was damaged.
[比較例 3 ]  [Comparative Example 3]
図 1のラインプリンタについて、 プレヒートを行わずに実施例 2と同様な条件 により印刷を行った結果、用紙上のトナー付着量が 0. S m gZ c m2 〜0. 4 m g/ c m2 までのトナー付着量において定着量が発生した。 The line printer of FIG. 1, as a result of printing in the same conditions as in Example 2 without preheating, the amount of toner deposited on the paper is 0. S m gZ cm 2 ~0. Up to 4 mg / cm 2 A fixing amount occurred in the toner adhesion amount.
[比較例 4]  [Comparative Example 4]
図 6のラインプリンタについて、 プレヒートを行わなかつた以外は実施例 3と 同じ条件により印刷を行つた結果、 用紙上のトナ一付着量が 0. 9 m g/ c m2 〜0. 4 m gZ c m2 までのトナー付着量において定着量が発生した。 The line printer in Fig. 6 was printed under the same conditions as in Example 3 except that preheating was not performed.As a result, the toner adhesion amount on the paper was 0.9 mg / cm 2 to 0.4 mg gZ cm 2. The fixing amount occurred at the toner adhesion amount up to.
[比較例 5]  [Comparative Example 5]
図 6のラインプリンタについて、 プレヒート及び予熱を行わな L、以外は実施例 4と同じ条件により印刷を行った結果、用紙上のトナー付着量が 0. 9 m gZ c m2 では満足な定着性が得.られず、 ま こ図 1 1の特性 1 0.6の場合と同様、 連続 印刷において光定着器 2 6の温度が上昇し、 光定着器 2 6の光源であるフラッシ ュランプ 3 0を破損した。 The line printer of FIG. 6, L such perform preheating and preheating, except result of printing the same conditions as in Example 4, the amount of adhered toner 0. 9 m gZ cm 2 in satisfactory fixability on paper As in the case of the characteristic 10.6 in Fig. 11, the temperature of the optical fixing device 26 increased during continuous printing, and the flash lamp 30 as the light source of the optical fixing device 26 was damaged.
以上の実施例 1〜4及び比較例 1〜 5をまとめると、 図 1 2の表のようになる o  The above Examples 1 to 4 and Comparative Examples 1 to 5 are summarized as shown in the table of FIG.
図 1 3は、 図 1及び図 6のラインプリンタ 1 0に設けたコントロールュニット 5 4によるペルチェュニット 2 6に対するプレヒ一ト温度制御のフローチャート である。 ラインプリンタの電源投入等により装置スタートを行うと、 ステップ S 1で装置スタンバイ状態の有無をチェックし、 スタンバイ状態でなければ、 ステ ップ S 2で印刷開始の有無をチェックする。 印刷開始が行われるまではステップ S 7〜S 1 1の待機温度設定制御 1 1 0力行われている。 即ちステップ S 7でプ レヒート待機温度設定が行われ、 ステップ S 8で温度センサによる検出温度がプ レヒ一ト設定温度に一致したか否かチエックし、一致しなければステツプ S 9で 測定温度がプレヒート設定温度より高いか低いかチェックする。 高い場合にはス テツプ S 1 0で、 ペルチェ素子に流している制御電流を下げて温度を下げる。 温 度が低い場合にはステップ S 1 1で、 ペルチェ素子に流している制御電流を上げ て温度を高くする。 これによつて印刷開始前の待機状態でペルチヱュニット 2 6 によるプレヒ一ト温度は設定温度に維持される。 FIG. 13 is a flowchart of the pre-heat temperature control of the pel-unit 26 by the control unit 54 provided in the line printer 10 of FIGS. When the apparatus is started by turning on the power of the line printer or the like, the presence or absence of the apparatus standby state is checked in step S1, and if not, the presence or absence of the printing start is checked in step S2. Until the start of printing, the standby temperature setting control 110 of steps S7 to S11 is performed. That is, the preheat standby temperature is set in step S7, and it is checked in step S8 whether the temperature detected by the temperature sensor matches the preset temperature.If not, the measured temperature is set in step S9. Check if it is higher or lower than the preheat set temperature. If it is higher, in step S10, the control current flowing through the Peltier element is reduced to lower the temperature. If the temperature is low, increase the control current flowing through the Peltier element in step S11. To increase the temperature. As a result, the pre-print temperature by the pel-unit 26 is maintained at the set temperature in a standby state before the start of printing.
ステップ S 2で印刷開始が判断されると、 ステップ S 3でプレヒ一ト温度設定 を行う。 この実施形態にあっては、 プレヒート設定温度を例えば 9 0 °Cとしてい る。 続いてステップ S 4で温度センサによってプレヒート温度を測定し、 ステツ プ S 5で設定温度と比較する。 設定温度に一致していれば、 ステップ S 6で印刷 スタートを行い、 印刷中においてはステップ S 4, S 5の処理を繰り返す。 ステ ップ S 5でプレヒート測定温度が設定温度に一致していない場合には、 ステップ S 1 2〜S 1 7のプレヒ一ト温度設定制御 1 1 2を行う。 即ちステップ S 1 2で 印刷ストップを行い、 ステップ S 1 3でプレヒート温度を設定温度と比較し、 温 度が高い場合にはステップ S 1 4で、 ペルチヱ素子に流す印加電流を例えば 1 0 mA下げ、 ステップ S 1 5でプレヒート温度を測定し、 ステップ S 1 7でプレヒ 一ト設定温度に一致したか否かチヱックする。 それでも温度力高ければ再びステ ップ S 1 4に戻って、 更に.1 O mAペルチェ素子に流す電流をダウンし、 ステツ プ S 1 0で測定温度が設定温度に一致するまで、 ステップ S 1 2, S 1 3 , S 1 4, S 1 5, S I 7の処理を繰り返す。  When the start of printing is determined in step S2, the pre-heat temperature is set in step S3. In this embodiment, the preheat set temperature is, for example, 90 ° C. Subsequently, the preheat temperature is measured by the temperature sensor in step S4, and is compared with the set temperature in step S5. If the temperature matches the set temperature, printing is started in step S6, and steps S4 and S5 are repeated during printing. If the preheat measurement temperature does not match the set temperature in step S5, the preheat temperature setting control 1 12 in steps S12 to S17 is performed. That is, printing is stopped in step S12, the preheat temperature is compared with the set temperature in step S13, and if the temperature is high, the applied current to the Peltier element is reduced by, for example, 10 mA in step S14. In step S15, the preheat temperature is measured, and in step S17, it is checked whether or not the temperature matches the preheat set temperature. If the temperature is still high, the process returns to step S14 again, and further reduces the current flowing to the .1 O mA Peltier element.In step S10, until the measured temperature matches the set temperature, the process proceeds to step S12. , S13, S14, S15, and SI7 are repeated.
一方、 ステップ S 1 3で測定温度がプレヒ一ト設定温度より低かった場合には 、 ステップ S 1 6でペルチェ素子に対する印加電流を 1 O mAアップする。 そし てステップ S 1 5でプレヒ一ト温度を測定して、 ステップ S 1 7で設定温度を比 較し、 測定温度が設定温度に一致するまで、 ステップ S 1 2 , S 1 3, S 1 6 , S 1 5, S 1 7の処理を繰り返す。  On the other hand, if the measured temperature is lower than the preheat set temperature in step S13, the applied current to the Peltier element is increased by 1 O mA in step S16. Then, the preheat temperature is measured in step S15, and the set temperatures are compared in step S17. Steps S12, S13, S16 are performed until the measured temperature matches the set temperature. , S 15 and S 17 are repeated.
尚、 本発明は上記の実施形態に限定されず、 その目的と利点を損なわない適宜 の変形を含む。 更に本発明は、上記の実施形態に示した数値による限定は受けな い。  Note that the present invention is not limited to the above-described embodiment, and includes appropriate modifications that do not impair the objects and advantages thereof. Further, the present invention is not limited by the numerical values shown in the above embodiments.
【産業上の利用可能性】 [Industrial applicability]
このように本発明のプリン夕装置にあっては、 ペルチヱ素子の廃熱によって光 定着器前の段階で用紙を温めるプレヒートを行うことで、光定着器のフラッシュ 電圧を下げてもトナーの定着性を安定して維持することができる。 またペルチェ 素子の廃熱を利用した用紙のプレヒートと同時にベルチヱ素子の吸熱を利用して 光定着器にエアを冷却して供給することで、光定着器の温度上昇を十分に抑える ことができ、光定着器の温度上昇による破損を確実に防止できる。 As described above, in the printing apparatus of the present invention, by performing preheating for warming the paper at a stage before the optical fixing device by the waste heat of the Peltier element, even if the flash voltage of the optical fixing device is lowered, the toner fixing property can be reduced. Can be stably maintained. Also Peltier By preheating the paper using the waste heat of the device and simultaneously cooling and supplying air to the optical fuser using the heat absorption of the Berch II device, the temperature rise of the optical fuser can be sufficiently suppressed, and Damage due to rise in temperature of the vessel can be reliably prevented.
またペルチェ素子の廃熱による光定着器前での用紙のプレヒートと同時に光定 着器や電源ュニッ.ト制御回路等の廃熱を利用してペルチヱュニット及び用紙を予 熱することで、光定着器のフラッシュ電圧を下げてもトナーの定着性を損なわず 良好な定着性を維持し、 同時に光定着器、電源ュニット制御回路等の内部の冷却 を行うこともできる。  Also, by preheating the paper in front of the optical fuser due to the waste heat of the Peltier element and using the waste heat from the optical fixer and power supply unit control circuit to preheat the pelunit and the paper, the optical fuser can be used. Even if the flash voltage is lowered, good fixability is maintained without impairing the fixability of the toner, and at the same time, the inside of the optical fixing device, the power supply unit control circuit, and the like can be cooled.
更にベルチェ素子に流す電流によつて温度に対する高い応答性力得られる点を 利用し、 より細かで正確なプレヒートの温度制御ができ、安定した定着正を得る ことができる。  Furthermore, utilizing the point that high responsiveness to temperature can be obtained by the current flowing through the Peltier element, finer and more accurate preheating temperature control can be performed, and stable fixing can be obtained.

Claims

請求の範囲 The scope of the claims
1. プリンタ装置に於いて、 1. In the printer device,
感光体上に形成された静電潜像をトナーにより現像した後に用紙上に転写する 電子写真ュニッ卜と、  An electrophotographic unit that develops an electrostatic latent image formed on a photoreceptor with toner and then transfers the developed image onto paper;
用紙上に転写されたトナー画像を強い光の照射によるトナーの溶融で定着する 光定着器と、  An optical fixing device for fixing the toner image transferred on the paper by melting the toner by irradiating strong light;
前記光定着器の前段に設けられ、 ペルチェ素子を加熱媒体に用いたプレヒ一ト ュニットと、  A pre-unit that is provided at a stage preceding the optical fixing device and uses a Peltier element as a heating medium;
を備えたことを特徴とするプリンタ装置。 A printer device comprising:
2. 請求の範囲 1のプリンタ装置に於いて、前記ペルチェ素子の廃熱によるプレ ヒート温度を 5 0 °C乃至 1 0 0 °Cの範囲に設定したことを特徴とするプリンタ装 2. The printer according to claim 1, wherein the preheating temperature of the Peltier element due to waste heat is set in a range of 50 ° C to 100 ° C.
3. 請求の範囲 1のプリンタ装置に於いて、前記ペルチェ素子の吸熱により冷却 された空気を用いて前記光定着器の冷却する冷却ュニットを設けたをことを特徴 とするプリンタ装置。 3. The printer device according to claim 1, further comprising a cooling unit for cooling the optical fixing device using air cooled by heat absorption of the Peltier device.
4, 請求の範囲 3のプリンタ装置に於いて、 前記冷却ュニットは、 4. The printer according to claim 3, wherein the cooling unit comprises:
前記ペルチェ素子の吸熱面に接触配置されたチヤンバと、  A chamber arranged in contact with the heat absorbing surface of the Peltier element;
装置内の空気を前記チャンバに導入して冷却した後に前記光定着器内を通過さ せる冷却系統と、  A cooling system that introduces air in the apparatus into the chamber, cools the air, and then passes the air through the optical fixing device;
を備えたことを特徴とするプリンタ装置。 A printer device comprising:
5. 請求の範囲 3のプリンタ装置に於いて、前記冷却ュニットは冷却された空気 を更に装置の電源ュニット及び制御ュニッ卜の冷却に用いることを特徵とするプ リン夕装置。 5. The printer according to claim 3, wherein the cooling unit further uses the cooled air for cooling a power supply unit and a control unit of the apparatus.
6. 請求の範囲 1のプリンタ装置に於いて、前記光定着器で発生する廃熱を用い て前記プレヒートュニットのペルチヱ素子を予熱する余熱ュニットを設けたこと を特徴とするプリンタ装置。 6. The printer device according to claim 1, further comprising a residual heat unit for preheating the Peltier element of the preheat unit using waste heat generated in the optical fixing device.
7. 請求の範囲 6のプリンタ装置に於いて、前記余熱ュニットは、 7. The printer device according to claim 6, wherein the residual heat unit includes:
前記ベルチェ素子の吸熱面に余熱空間を介して配置されたチャンバと、 外部の空気を光定着器内を通して前記チヤンパに導入して余熱させる余熱系統 と、  A chamber disposed on a heat absorbing surface of the Peltier element via a residual heat space, and a residual heat system for introducing external air into the champer through an optical fixing device and residual heat;
を備えたことを特徴とするプリンタ装置。 A printer device comprising:
8. 請求の範囲 6のプリン夕装置に於いて、前記余熱ュニットは更に電源ュニッ トゃ制御ュニットから発生する廃熱を用いて前記プレヒートュニットのペルチェ 素子を予熱することを特徴とするプリンタ装置。 8. The printing apparatus according to claim 6, wherein the residual heat unit further preheats the Peltier element of the preheat unit using waste heat generated from a power supply unit and a control unit. .
9. 電子写真ュニットにより感光体上に形成された静電潜像をトナーで現像した 後に用紙上に転写した後に定着するプリンタ装置の定着方法に於いて、 9. In a fixing method of a printer device, an electrostatic latent image formed on a photoreceptor by an electrophotographic unit is developed with toner, and then transferred onto paper and then fixed.
光定着器による強い光の照射でトナーの溶融して用紙上にトナー画像を定着す る前に、 ペルチヱ素子を加熱媒体に用いてプレヒートすることを特徴とするプリ ンタ装置の定着方法。 .  A fixing method for a printer apparatus, comprising: performing preheating using a Peltier element as a heating medium before melting a toner by irradiating strong light with an optical fixing device to fix a toner image on paper. .
1 0. 請求の範囲 9プリン夕装置の定着方法に於いて、前記ペルチェ素子の廃熱 によるプレヒ一ト温度を 5 0°C乃至 1 0 0 °Cの範囲に設定したことを特徴とする プリンタ装置の定着方法。 10. A printer according to claim 9, wherein the pre-heating temperature of the Peltier device due to waste heat is set in a range of 50 ° C to 100 ° C. Device fixing method.
1 1. 請求の範囲 1 0のプリンタ装置の定着方法に於いて、前記ペルチェ素子の 吸熱により冷却された空気を用いて前記光定着器の冷却することを特徴とするプ リン夕装置の定着方法。 11. The fixing method for a printer device according to claim 10, wherein the optical fixing device is cooled by using air cooled by heat absorption of the Peltier device. .
1 2. 請求の範囲 1 0のプリンタ装置の定着方法に於いて、前記光定着器で発生 する廃熱を用いて前記ペルチヱ素子を予熱することを特徴とするプリンタ装置の 低癩方法。 12. The method according to claim 10, wherein the Peltier element is preheated using waste heat generated in the optical fixing device.
PCT/JP2000/003092 2000-05-15 2000-05-15 Printer and method of fixing WO2001088631A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001584962A JP4517562B2 (en) 2000-05-15 2000-05-15 Printer apparatus and fixing method thereof
PCT/JP2000/003092 WO2001088631A1 (en) 2000-05-15 2000-05-15 Printer and method of fixing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/003092 WO2001088631A1 (en) 2000-05-15 2000-05-15 Printer and method of fixing

Publications (1)

Publication Number Publication Date
WO2001088631A1 true WO2001088631A1 (en) 2001-11-22

Family

ID=11736027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003092 WO2001088631A1 (en) 2000-05-15 2000-05-15 Printer and method of fixing

Country Status (2)

Country Link
JP (1) JP4517562B2 (en)
WO (1) WO2001088631A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030415A (en) * 2004-07-13 2006-02-02 Nagano Japan Radio Co Paper ejection mechanism for printing device
JP2008244223A (en) * 2007-03-28 2008-10-09 Nec Corp Optical direct amplifier for wdm optical transmission
JP2019144495A (en) * 2018-02-23 2019-08-29 京セラドキュメントソリューションズ株式会社 Image forming apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022098726A (en) * 2020-12-22 2022-07-04 ブラザー工業株式会社 Image forming apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50161244A (en) * 1974-06-17 1975-12-27
JPS55116353U (en) * 1979-02-07 1980-08-16
JPS5895372A (en) * 1981-11-30 1983-06-06 Matsushita Graphic Commun Syst Inc Flash fixation device
JPS6161188A (en) * 1984-08-31 1986-03-28 Nec Corp Fixing device
JPS6459257A (en) * 1987-08-31 1989-03-06 Toshiba Corp Cooling device for electronic office equipment
JPH01115719U (en) * 1988-01-29 1989-08-03
JPH01266557A (en) * 1988-04-19 1989-10-24 Toshiba Corp Image forming device
JPH11305637A (en) * 1998-04-24 1999-11-05 Canon Inc Image forming device
JP2000098861A (en) * 1998-09-24 2000-04-07 Fuji Xerox Co Ltd Image forming device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172981A (en) * 1987-12-28 1989-07-07 Toshiba Corp Form cooling device for electronic copying machine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50161244A (en) * 1974-06-17 1975-12-27
JPS55116353U (en) * 1979-02-07 1980-08-16
JPS5895372A (en) * 1981-11-30 1983-06-06 Matsushita Graphic Commun Syst Inc Flash fixation device
JPS6161188A (en) * 1984-08-31 1986-03-28 Nec Corp Fixing device
JPS6459257A (en) * 1987-08-31 1989-03-06 Toshiba Corp Cooling device for electronic office equipment
JPH01115719U (en) * 1988-01-29 1989-08-03
JPH01266557A (en) * 1988-04-19 1989-10-24 Toshiba Corp Image forming device
JPH11305637A (en) * 1998-04-24 1999-11-05 Canon Inc Image forming device
JP2000098861A (en) * 1998-09-24 2000-04-07 Fuji Xerox Co Ltd Image forming device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006030415A (en) * 2004-07-13 2006-02-02 Nagano Japan Radio Co Paper ejection mechanism for printing device
JP4614702B2 (en) * 2004-07-13 2011-01-19 長野日本無線株式会社 Paper discharge mechanism of printing device
JP2008244223A (en) * 2007-03-28 2008-10-09 Nec Corp Optical direct amplifier for wdm optical transmission
JP2019144495A (en) * 2018-02-23 2019-08-29 京セラドキュメントソリューションズ株式会社 Image forming apparatus

Also Published As

Publication number Publication date
JP4517562B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
US7483664B2 (en) Fusing apparatus having a segmented external heater
US7457557B2 (en) High precision-heating and fusing apparatus
US20230400803A1 (en) Heater including a plurality of heat generation members, fixing apparatus, and image forming apparatus
JP4991809B2 (en) Laser fixing device, image forming apparatus, and fixing device design method
US7899353B2 (en) Method and apparatus for fusing toner onto a support sheet
US7412181B2 (en) Multivariate predictive control of fuser temperatures
US5436712A (en) Power control for instant-on-integral resistive heating belt fuser
JP4540928B2 (en) Fixing apparatus and image forming apparatus
US20080138102A1 (en) Rapid warm-up and cool-down pressure roll assembly and a fusing apparatus including same
US6185389B1 (en) Control of thermal heating in a belt fuser
US5890033A (en) Developer housing heater using a centrally heated mixing auger
WO2001088631A1 (en) Printer and method of fixing
JP2003107956A (en) Thermal fixing device and image forming device
JP2004010243A (en) Record medium cooling device of recording device
US20120020697A1 (en) method of fixing a heat curable toner to a carrier
JPH02162382A (en) Image forming device
JP2009186752A (en) Image forming apparatus
JP4227349B2 (en) Image forming apparatus
JPH06100873B2 (en) Image forming device
JP2008268730A (en) Heating device for image forming apparatus
JP2003282219A (en) Heater and image forming device
JPH08202183A (en) Fixing device
JPH10333491A (en) Fixing device
JP2003167463A (en) Fixing unit and image forming device
KR200342232Y1 (en) Fixture for Electrophotographic Processor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 584962

Kind code of ref document: A

Format of ref document f/p: F