WO2001085394A1 - Porous phenol resin grindstone and method for its preparation - Google Patents

Porous phenol resin grindstone and method for its preparation Download PDF

Info

Publication number
WO2001085394A1
WO2001085394A1 PCT/JP2001/003808 JP0103808W WO0185394A1 WO 2001085394 A1 WO2001085394 A1 WO 2001085394A1 JP 0103808 W JP0103808 W JP 0103808W WO 0185394 A1 WO0185394 A1 WO 0185394A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenolic resin
phenol resin
abrasive grains
curing
fluid mixture
Prior art date
Application number
PCT/JP2001/003808
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Nagata
Osamu Kanai
Original Assignee
Noritake Co., Limited
Asahi Organic Chemicals Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co., Limited, Asahi Organic Chemicals Industry Co., Ltd. filed Critical Noritake Co., Limited
Priority to JP2001582033A priority Critical patent/JPWO2001085394A1/en
Priority to AU52681/01A priority patent/AU5268101A/en
Publication of WO2001085394A1 publication Critical patent/WO2001085394A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • B24D3/32Resins or natural or synthetic macromolecular compounds for porous or cellular structure

Definitions

  • the present invention relates to a porous resin grindstone using a phenol resin as a resin binder, that is, a phenol resin porous grindstone and a method for producing the same, and more particularly to a phenol resin porous grindstone having an increased porosity in tissue. It is.
  • whetstones that use phenolic resin as a binder to bind the abrasive grains to each other are prepared by coating powdered phenolic resin on the abrasive grains, loading the powdered phenolic resin in a prescribed state in a dry powder state, and press molding. Being manufactured.
  • the grinding wheel in order to further improve the sharpness during grinding, that is, the grindability, it is required that the grinding wheel be made porous. Chips generated during grinding are trapped in the pores of the grindstone, so if the proportion of pores is large, clogging is likely to occur when the contact area is large or when grinding difficult-to-cut materials Since the clogging is also suitably prevented in the grinding process, the grindability is improved.
  • the phenol resin porous grindstone which can be produced by press molding has a porosity of about 50% as a limit, and when trying to produce a phenol resin porous grindstone having a porosity higher than that, aging deformation occurs. There was a problem that the shape could not be maintained largely.
  • a soft filler for example, synthetic force
  • the filler acts as a pore because the filler has the retreating property at the grinding point, so high grindability can be obtained.However, even with a soft filler, There is a problem in that there is resistance, and the filler may damage the work surface. Disclosure of the invention
  • the present invention has been made in view of the above circumstances, and its purpose is to provide a phenolic resin porous grinding wheel having high grinding performance by increasing the porosity without mixing the filler. And a method of manufacturing the same.
  • the gist of the first invention for achieving the above object is a phenolic resin porous whetstone in which abrasive grains are mutually bonded by a phenolic resin binder, wherein the phenolic resin binder is three-dimensional.
  • a number of minute continuous ventilation holes having a smaller diameter than the abrasive grains are formed.
  • the phenolic resin porous whetstone thus configured has a high porosity because the phenolic resin binder that binds the abrasive grains has a three-dimensional network structure.
  • High abrasiveness can be obtained because the protrusion of abrasive grains is easy to obtain.
  • the abrasive grains are held in the grindstone by a phenolic resin binder having a three-dimensional network structure innumerably forming micro communicating holes having a smaller diameter than the abrasive grains, the abrasive grains fall off with a relatively weak force. Therefore, it is difficult to damage the surface of the material to be ground.
  • the phenolic resin porous grindstone has a large number of independent pores having a diameter sufficiently larger than that of the rescue reaming vent.
  • the phenolic resin porous grinding wheel thus configured has a higher porosity because it has a large number of independent pores having a diameter sufficiently larger than the fine continuous pores. Since they are also trapped in independent pores, higher grindability can be obtained.
  • a second invention for achieving the above object is an invention of a method for producing the phenolic resin porous whetstone of the first invention, and the gist of the invention is that abrasive grains are mutually interlinked by a phenolic resin binder.
  • a method for producing a phenolic resin porous whetstone having a large number of pores in a structure formed by bonding to: (a-1) uniformly mixing and stirring abrasive grains, a phenolic resin aqueous solution, and a curing agent A mixing and stirring step of forming a fluid mixture, (b) a casting step of pouring the fluid mixture into a predetermined mold, (c) a curing step of curing the fluid mixture in the predetermined mold, (d) ) The cured molded body obtained by curing in the curing step is dried to remove moisture from the cured molded body. And the process.
  • the phenolic resin dissolved in the water of the fluid mixture poured into the predetermined mold in the pouring step is three-dimensionally cross-linked to form a rigid Erich molded article.
  • the phase is separated from water, and the hardened phenolic resin binds the abrasive grains as a binder, but the fluid mixture is formed by mixing the abrasive grains and the phenol resin aqueous solution in the mixing and stirring step.
  • the cured moldings have abrasive particles and water uniformly dispersed in the hardened phenolic resin binder.
  • water is removed from the cured molded body, and the portion becomes micro communicating pores.
  • the phenolic resin porous whetstone manufactured in this manner has a three-dimensional mesh of phenolic resin binder.
  • the method for producing a phenolic resin porous grindstone is the method according to the first invention. It is an invention of a method for producing a phenolic resin porous whetstone having a large number of independent pores having a diameter sufficiently larger than the minute interconnected pores, and the gist of the invention is that abrasive grains are mutually formed by a phenolic resin binder.
  • a method for producing a phenolic resin porous whetstone having a large number of pores in a bonded structure comprising: (a-2) abrasive grains, a phenolic resin aqueous solution, a hardener, and a surfactant
  • a-2 abrasive grains, a phenolic resin aqueous solution, a hardener, and a surfactant
  • the abrasive grains, the phenol resin aqueous solution, the curing agent and the surfactant are uniformly mixed, and a large number of air bubbles are created in the fluid mixture.
  • Mixing and stirring (b) pouring the fluid mixture into a predetermined mold, and (c) curing the fluid mixture by mixing a curing agent with the fluid mixture in the predetermined mold.
  • the phenolic resin is cured in the curing step, and the phenolic resin porous grindstone obtained by removing the moisture in the cured molded body in the drying step has the fine pores in addition to the fine communication holes. It has a number of independent pores that are sufficiently larger in diameter than the continuous vents.
  • the phenol resin aqueous solution is an alkaline aqueous solution
  • the curing agent is an organic ester curing agent. This has the advantage that the phenolic resin in the fluid mixture can be rapidly cured at a relatively low temperature of about room temperature by the organic ester curing agent.
  • the surfactant is an anionic or nonionic surfactant.
  • an anionic or nonionic surfactant is used as described above, so that there is an advantage that a grindstone having a higher porosity can be obtained.
  • FIG. 1 is an enlarged view of the surface of a phenolic resin porous grindstone of the present invention of the present invention.
  • FIG. 2 is a process chart showing a process for producing the phenolic resin porous stone of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is an enlarged view showing the surface of a phenolic resin porous grindstone 10 of the present invention.
  • the abrasive grains 12 are mutually bonded by a phenolic resin binder 14 having a network structure.
  • the phenolic resin binder 14 also has a three-dimensional network structure because the phenolic resin binder 14 has a network structure inside the phenolic resin porous grindstone 10.
  • the space formed between the meshes of the phenolic resin binder 14 Since the communication holes are the communication holes 16 and the network structure of the phenol resin binder 14 is three-dimensionally expanded, the micro communication holes 16 are also connected to each other three-dimensionally.
  • the independent pores 18 are sufficiently larger than the minute interconnected pores 16, and are distributed substantially uniformly in the tissue independently of each other.
  • the phenol resin porous grindstone 10 is manufactured, for example, according to the process shown in FIG.
  • the aqueous phenol resin solution used in step 1 is obtained by condensing phenols and aldehydes in water at normal pressure in the presence of an alkaline catalyst such as potassium hydroxide or sodium hydroxide. In such a case, the above-mentioned alkaline catalyst is further added.
  • the phenol resin contained in the phenol resin aqueous solution thus obtained is water-soluble, and has a weight average molecular weight Mw of 500 to 8,000.
  • the above phenols include, in addition to phenols, alkyl phenols such as cresol, 3,5-xylenol, nonylphenol, p-tert-butylphenol, isoprobenylphenol, phenylphenol, and the like, Polyphenols such as resorcinol, catechol, hydroquinone and phloroglysin may be used. In addition, a mixture of phenolic compounds such as power nut nut shell liquid, lignin and tannin can also be used as phenols. These various phenols can be used alone or in combination of two or more.
  • alkyl phenols such as cresol, 3,5-xylenol, nonylphenol, p-tert-butylphenol, isoprobenylphenol, phenylphenol, and the like
  • Polyphenols such as resorcinol, catechol, hydroquinone and phloroglysin may be used.
  • aldehydes for example, formaldehyde, paraformaldehyde, acetate aldehyde, furfural, dalioxal, etc. are used, and these can be used alone or in combination of two or more.
  • the aldehyde may be in the range of 1.0 to 5 times the mole of the phenol, especially in the range of 1.0 to 3.0 times, and more preferably in the range of 1.5 to 2.5 times the mole of the phenol. More preferred. If the aldehyde is less than 1.0 times the molar amount of the phenol, sufficient strength will not be exhibited after crosslinking, and if it exceeds 5.0 times the working environment may be degraded due to unreacted aldehyde. It is.
  • alkaline catalyst examples include, for example, alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, alone or in combination of two or more. used.
  • This alkaline catalyst is preferably used in a range of 0.01 to 2 times, more preferably in a range of 0.02 to 1.2 times, and more preferably in a range of 0.5 to 1.0 times the phenols. Good. If the amount of the alkaline catalyst is less than 0.01 times the molar amount of the phenols, it takes a long time to produce the resin, which is not sufficient.If the amount exceeds 2.0 times the molar amount, the curing agent is required in a large amount. This is because the working environment is not preferable.
  • the aqueous phenol resin solution is prepared so that the phenol resin component is 30 to 75% by mass.
  • a conventionally known silane coupling agent may be added to the aqueous phenol resin solution as another additive in order to improve the adhesiveness of the abrasive grains.
  • the silane coupling agent for example, an epoxy silane diaminosilane is preferable. Further, this silane coupling agent may be added in the mixing and stirring step of Step 1.
  • an organic ester curing agent As the curing agent used in step 1, an organic ester curing agent, an acid curing agent, or the like can be used.
  • organic ester curing agent those conventionally used as a curing agent for an aqueous solution of an alkaline phenol resin can be used.
  • methyl formate, ethyl formate, ethyl acetate, ethyl lactate, methyl sebacate ethylene Carboxylic acid esters derived from mono- or polyhydric alcohols having 1 to 10 carbon atoms, such as glycol diacetate, diacetin, and triacetin, and organic carboxylic acids having 1 to 10 carbon atoms, or abutyrolactone, a Lactones such as one strength prolactone, ⁇ -valerolactone, 6 one strength prolactone, i3-propiolactone, ⁇ -force prolactone, or ethylene carbonate, propylene strength one-piece, 4-ethylidene Oxolone, 4-butyldioxolone, 4,4-dimethyldioxolone, 4,5-dimethyldioxolone, etc.
  • Jo alkylene force one port ne one bets, etc. are exemplified.
  • the acid curing agent include inorganic acids such as sulfuric acid and phosphoric acid, organic acids such as phenolsulfonic acid, p-toluenesulfonic acid, and xylenesulfonic acid, and mixtures thereof.
  • the phenol resin aqueous solution, the abrasive grains, and the curing agent are charged into a stirring mixer, and if necessary, a surfactant is also charged into the stirring mixer, and the mixture is stirred and mixed for a predetermined time.
  • a surfactant is also mixed, the abrasive, the hardener and the surfactant are sequentially or simultaneously mixed with the aqueous phenol resin solution, but when these are sequentially mixed, the mixing order is first. May be. However, it is desirable to add the curing agent at the end of the mixing and stirring step to control the reaction, and then to stir for a predetermined time.
  • the mixing and stirring step only needs to obtain a fluid mixture in which the aqueous phenol resin solution, the granulated particles, the hardener, and the surfactant are mixed if necessary, the aqueous phenol resin solution is prepared in advance.
  • the water-soluble phenolic resin, water, alkali metal hydroxide, abrasive grains, hardener, and, if necessary, a surfactant are mixed in any order.
  • a flowable mixture may be prepared.
  • a resin strength improver such as hexamine, a stabilizer such as adipic dihydrazide (AADH), a viscosity modifier such as aerosil, etc. may be appropriately mixed.
  • the stirring is performed with sufficient stirring intensity and time to uniformly disperse the abrasive grains 12 in the aqueous phenol resin solution. Good, but if the surfactant is mixed in the flowable mixture, the abrasive is used because the surfactant is mixed to generate uniform air bubbles in the flowable mixture.
  • the stirring intensity and time are set to a value sufficient to uniformly disperse 12 and generate the desired amount of bubbles.
  • the average pore diameter of the bubbles generated here is 50 m or more.
  • anionic surfactants As the above-mentioned surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants (nonionic surfactants) and the like can be used, and preferably anionic surfactants or nonionic surfactants are used.
  • Use agent examples include fatty acid salts such as sodium laurate, sodium stearate, and sodium oleate, sodium lauryl sulfate, triethanolamine lauryl sulfate, ammonium sulfate, sodium polyoxyethylene lauryl ether sulfate sodium phenyl ether sulfate.
  • the cationic surfactant include higher alkylamine salts such as laurylamine chloride, dihydroxyethylstearylamine, lauryltrimethylammonium chloride, mothates of triethanolamine monostearate, and stearamidethylethyl.
  • Amine acetates amine salts of higher fatty acids such as decenyl-hydroxyethyl imidazoline, etc., amine salts of higher alkyl halides such as cetyl pyridinium chloride, steaamide methyl pyridinium chloride, etc.
  • An ammonium salt such as an amine salt of a higher aliphatic amide, a sulfonium salt or a phosphonium salt similar thereto, and the like can be used.
  • amphoteric surfactants include N-alkyltriglycine, dimethylalkylbetaine, N-alkyloxymethyl-N, N-getylbetaine, alkylbetaine, N-alkyl- ⁇ -aminopropionate , Alkyldi (aminoethyl) glycine hydrochloride, ⁇ -alkyltaurine salt, aminoethylimidazoline organic acid salt and the like.
  • Nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, poly Xyethylenealkylnaphthyl ether, polyoxyethylenated castor oil, boroxyshethylene aviethyl alcohol, polyoxyethylene alkylthioether, polyoxyethylene alkylamide, polyoxyethylene-polyoxypropylene glycol, polyoxyethylene Polyoxypropylene glycol allylene diamine, polyoxyethylene monofatty acid ester, polyoxyethylene difatty acid ester, polyoxyethylene propylene glycol fatty acid ester, polyoxyethylene sorbitan monofatty acid ester, polyoxyethylene sorbitan trifatty acid ester And other polyoxyethylene surfactants, ethylene glycol monofatty acid ester, propylene glycol monofatty acid ester, diethylene glycol monofatty acid ester Polyhydric alcohols such as ter, glycerin mono fatty acid ester, pen erythrit fatty acid ester, sorbitan
  • alkylolamide surfactants polyoxyethylene alkylamine, N-alkylpropylene diamine, N-alkyl polyethylene polyamine, N-alkyl polyethylene polyamine dimethyl sulfate, alkyl biguanide, amine such as long chain amine oxide Type surfactants can be used.
  • the fluid mixture sufficiently mixed and stirred in the step 1 is poured into a mold having an inner surface shape corresponding to the shape of the phenol resin porous grindstone 10.
  • the fluidity mixture poured into the mold is left for a predetermined period of time, or the fluidity mixture poured into the mold is heated to a predetermined temperature.
  • the phenolic resin in the mixture is cured or crosslinked.
  • the flowable mixture becomes a cured molded article having the above-described inner shape.
  • the phenol resin is hardened into a three-dimensional network shape, and the hardened phenol resin acts as a binder 14 to bind the abrasive grains 12 to each other.
  • the mechanism by which the phenolic resin crosslinks into a three-dimensional network shape is not necessarily clear, but can be considered as follows. Note that the present invention is not limited by this mechanism.
  • the water-soluble phenolic resin dissolved in water first loses its fluidity without being phase-separated from water (gelation). In this state, the appearance is transparent. As the reaction proceeds further, the cohesive force of the molecular chains acts and separates into a resin phase (solid phase) and an aqueous phase (solvent phase), resulting in a three-dimensional network shape. In this state, the appearance becomes opaque.
  • the size of the three-dimensional mesh (the portion becomes the minute interconnected pores 16 when water is removed) is determined by the ratio of water-soluble phenol resin to water. The size of the mesh increases as the amount of water relative to the water-soluble phenol resin increases.
  • the size of the minute interconnected pores 16 can be changed within a range of 5 or less.
  • the diameter must be smaller than 1 and 2. This is because the phenolic resin binder 14 cannot support the abrasive grains 12 when the fine continuous air holes 16 have a larger diameter than the abrasive grains 12.
  • a surfactant When a surfactant is added, it is considered that the function of the surfactant makes the pore diameter of the micropores uniform.
  • the cured molded body is dried to remove moisture in the cured molded body.
  • the moisture is removed from the hardened molded body, the water that has filled the space between the three-dimensional networks is replaced with air to form an infinite number of minute communication holes 16. It is made porous.
  • the phenol resin porous grindstone 10 is manufactured by the above-mentioned drying step, but a heat treatment step may be provided to improve the strength, and the phenol resin porous grindstone 10 may be further heated.
  • step 1 an alkaline phenol resin aqueous solution (HP 830 L (solid content: 48% by mass, average molecular weight: 200,000) manufactured by Asahi Organic Materials Co., Ltd.) was added by 40% by mass and an anionic surfactant was used. 5% by mass, 45% by mass of gay carbide # 3000 as abrasive, and 10% by mass of lactone ester curing agent were added to the mixer in the following order in the following order and mixed and stirred. .
  • HP 830 L solid content: 48% by mass, average molecular weight: 200,000
  • an anionic surfactant was used.
  • 5% by mass, 45% by mass of gay carbide # 3000 as abrasive, and 10% by mass of lactone ester curing agent were added to the mixer in the following order in the following order and mixed and stirred. .
  • the mixer used was a TK homomixer manufactured by Tokushu Kagaku Kogyo Co., Ltd., and the stirring blades used were Edge Juicer bottles of the company, with a stirring rotation speed of 500 to 1500 rpm.
  • the charging order is as follows. First, the mixture of the alkaline phenolic luster aqueous solution and the surfactant is stirred for 5 minutes to generate air bubbles. Subsequently, a predetermined amount of hexamine is added and mixed and stirred for 2 minutes. Add a predetermined amount of stabilizing agent (AAD H), mix and stir for 1 minute, then add a predetermined amount of aerosil, mix and stir for 1 minute, then add abrasive grains and mix and stir for 4 minutes. Finally, a predetermined amount of the lactone ester curing agent was added, and the mixture was further mixed and stirred for 1.5 minutes. As a result, a fluid mixture in which bubbles were uniformly dispersed was obtained.
  • AAD H stabilizing agent
  • the fluid mixture obtained in the step 1 is poured into a polypropylene container having a predetermined shape to obtain a phenol resin porous grindstone 10 having a diameter of 300 30020 ⁇ 127.
  • the fluid mixture poured into the container was left at room temperature for 12 hours to obtain a cured molded body.
  • the cured molded body obtained in the above step 3 is continuously heated from 60 ° C. to 60 ° C. for 48 hours, and then to 150 ° C. after 6 hours. By keeping the temperature at 150 ° C. for 1 to 2 hours, a phenol resin porous grindstone 10 having a porosity of 73% was obtained.
  • Comparative Example 1 an attempt was made to manufacture a grindstone using only abrasive grains and powdered phenolic resin (resin pounds) by a conventional press molding method. During the heat treatment in C, the shrinkage increased, resulting in a porosity of 50% or less, and the shape could not be maintained.
  • the pound ratio is the ratio of phenolic resin.
  • Wheel rotation speed (upper wheel) 15 r. P. M. (Lower wheel) 45 r. P. M.
  • the fluidity poured into a predetermined mold in the pouring step (step 2)
  • the phenolic resin dissolved in the water in the mixture cross-links three-dimensionally to form a cured molded body and separates from the water, and the cured phenolic resin is used as a binder 14 as abrasive particles 1 2 are connected to each other, but the above-mentioned fluid mixture is mixed in the mixing and stirring step (step 1).
  • the hardened molded product contains the abrasive grains 12 and water evenly in the hardened phenol resin binder 14. Is dispersed. Then, in the drying step (step 4), moisture is removed from the cured molded body, and the portion becomes micro communicating holes 16.
  • the phenolic resin porous grindstone 10 manufactured in this manner is Since the phenolic resin binder 14 has a three-dimensional network structure, the phenolic resin binder 14 has a structure in which micro communicating holes 16 smaller in diameter than the abrasive grains 12 are formed innumerably.
  • the phenolic resin porous whetstone 10 of the present embodiment has a high porosity and a high calorific value because the phenolic resin binder 14 that combines the abrasive grains 12 has a three-dimensional network structure.
  • the abrasive grains 12 easily protrude from the grinding surface of the grindstone 10, high grindability can be obtained.
  • the abrasive grains 1 2 are held in the grindstone 10 by the phenolic resin binder 14 having a three-dimensional network structure in which the microscopic continuous air holes 16 having a smaller diameter than the abrasive grains 12 are formed innumerably. Therefore, the abrasive grains 12 fall off with a relatively weak force, so that the surface of the aluminum hard disk plate is not easily damaged.
  • the fluid mixture in which the abrasive grains 12, the aqueous alkaline phenol resin solution, the lactone ester hardener, and the anionic surfactant were mixed was stirred.
  • the abrasive grains 12, the aqueous phenolic resin solution, the lactone ester curing agent, and the anionic surfactant are uniformly mixed, and a large number of air bubbles are entrained in the fluid mixture, causing the fluid to flow.
  • the foaming action and foam-regulating action of the anionic surfactant contained in the ionic mixture generate uniform air bubbles and maintain the state for a long time, so that the pouring step (step 2) In the process of being poured into the mold at the time of, and in the process of being hardened in the curing step (step 3), most of the created bubbles are maintained. Therefore, the phenol resin is hardened in the curing step (step 3), and the phenol resin porous grindstone 10 obtained by removing the moisture in the cured molded body in the drying step (step 4) is obtained. Has a large number of independent pores 18 having a diameter sufficiently larger than that of the small continuous air holes 16 in addition to the small continuous air holes 16.
  • the phenolic resin porous grinding wheel 10 of the present embodiment is the same as the fine continuous air holes 16. It has a higher porosity because it has a large number of independent pores 18 with a sufficiently large diameter, and is even higher because the chips generated during grinding are also trapped in the independent pores 18 Grindability S is obtained.
  • the phenol resin aqueous solution is an alkaline aqueous solution
  • the curing agent is a lactone ester curing agent. Therefore, the lactone ester curing agent allows the phenol resin in the fluid mixture at room temperature. It has the advantage of being cured quickly.
  • an anionic surfactant is used as a surfactant, there is an advantage that a grindstone having a higher porosity can be obtained by a high foaming action of the anionic surfactant.
  • the curing time was 12 hours, but the curing time may be about 20 minutes at room temperature. That level is sufficient to cure the fluid mixture to such a degree that it maintains a certain form.
  • the fluid mixture may be heated in order to more securely cure the mixture in a short time. For example, curing may be performed by heating at 60 ° C. for 1 hour.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

A porous phenol resin grindstone (10) having a phenol resin binder (14) and abrasive grains (12) connected with one another by the resin, characterized in that the phenol resin binder (14) has a three-dimensional network structure and an extremely large number of fine through pores (16) having a diameter less than that of the abrasive grain. The grindstone (10) has a high porosity and is prone to have protrusions of abrasive grains on its abrasive surface, due to the three-dimensional network structure of the phenol resin binder, and thus exhibits excellent grinding characteristics. Further, the abrasive grain (12) being held in the phenol resin binder (14) of three-dimensional network structure having the above fine through pores (16) drops out by a relatively week force and thus is less prone to damage the surface of the material to be abraded.

Description

明細書 フエノール樹脂多孔質砥石およびその製造方法 技術分野  Description Porous phenolic resin grindstone and method for producing the same
本発明は、 樹脂結合剤としてフエノール樹脂を用いた多孔質レジノィド砥石す なわちフエノール樹脂多孔質砥石およびその製造方法に関し、 特に、 組織中の気 孔率を増加させたフエノール樹脂多孔質砥石に関するものである。 技術背景  The present invention relates to a porous resin grindstone using a phenol resin as a resin binder, that is, a phenol resin porous grindstone and a method for producing the same, and more particularly to a phenol resin porous grindstone having an increased porosity in tissue. It is. Technology background
従来、 砥粒を相互に結合させる結合剤としてフエノール樹脂を用いた砥石は、 粉末状のフエノール樹脂を砥粒にコ一ティングし、 それを乾粉状態で所定の型に 装填しプレス成形する方法により製造されている。  Conventionally, whetstones that use phenolic resin as a binder to bind the abrasive grains to each other are prepared by coating powdered phenolic resin on the abrasive grains, loading the powdered phenolic resin in a prescribed state in a dry powder state, and press molding. Being manufactured.
一方、 より研削時の切れ味すなわち研削性を向上させるため、 砥石の多孔質化 が求められている。 研削加工中に発生した切り粉は砥石の気孔内に捕捉されるこ とから、 気孔の割合が大きくされていると接触面積が大きい場合や難削材の研削 加工のように目詰まりが生じ易い研削加工においてもその目詰まりが好適に防止 されるため、 研削性が向上するのである。 しかしながら、 上記のようにプレス成 形により製造できるフェノール樹脂多孔質砥石は気孔率 5 0 %程度が限界であり 、 それ以上の気孔率を有するフエノール樹脂多孔質砥石を製造しょうとすると、 熟成変形が大きく形状を維持できないなどの問題があった。  On the other hand, in order to further improve the sharpness during grinding, that is, the grindability, it is required that the grinding wheel be made porous. Chips generated during grinding are trapped in the pores of the grindstone, so if the proportion of pores is large, clogging is likely to occur when the contact area is large or when grinding difficult-to-cut materials Since the clogging is also suitably prevented in the grinding process, the grindability is improved. However, as described above, the phenol resin porous grindstone which can be produced by press molding has a porosity of about 50% as a limit, and when trying to produce a phenol resin porous grindstone having a porosity higher than that, aging deformation occurs. There was a problem that the shape could not be maintained largely.
また、 気孔率を高くする目的で、 研削の邪魔をしにくい軟質のフィラー (たと えば合成マイ力など) を砥石中に混入することがある。 そのようにフイラ一を混 入した砥石では、 フィラーが研削ポイントにおいて後退性を持つことによりその 部分が気孔の機能を果たすため、 高い研削性が得られるが、 軟質のフィラーであ つても若干の抵抗があり、 そのフィラーがワーク表面に傷をつけてしまうことが あるという問題があった。 発明の開示 Also, in order to increase the porosity, a soft filler (for example, synthetic force) that does not hinder grinding may be mixed into the grindstone. In such a grindstone containing a filler, the filler acts as a pore because the filler has the retreating property at the grinding point, so high grindability can be obtained.However, even with a soft filler, There is a problem in that there is resistance, and the filler may damage the work surface. Disclosure of the invention
本発明は、 以上の事情を背景として為されたものであって、 その目的とすると ころは、 フイラ一を混入しないで高い気孔率とすることで、 研削性能の高いフエ ノール樹脂多孔質砥石を提供すること、 およびその製造方法を提供することにあ る。  The present invention has been made in view of the above circumstances, and its purpose is to provide a phenolic resin porous grinding wheel having high grinding performance by increasing the porosity without mixing the filler. And a method of manufacturing the same.
上記目的を達成するための第 1発明の要旨とするところは、 砥粒がフエノール 樹脂結合剤によつて相互に結合させられたフエノール樹脂多孔質砥石であつて、 前記フエノール樹脂結合剤が三次元網目構造を有することにより、 前記砥粒より も小径の微小連通気孔が無数に構成されていることを特徴とする。  The gist of the first invention for achieving the above object is a phenolic resin porous whetstone in which abrasive grains are mutually bonded by a phenolic resin binder, wherein the phenolic resin binder is three-dimensional. By having a network structure, a number of minute continuous ventilation holes having a smaller diameter than the abrasive grains are formed.
このように構成されたフエノール樹脂多孔質砥石は、 砥粒を相互に結合させる フエノ一ル樹脂結合剤が三次元網目構造を有することから、 その気孔率が高く、 加えて、 砥石の研削面において砥粒の突出しが得られ易いので、 高い研削性が得 られる。 さらに、 砥粒がその砥粒よりも小径の微小連通気孔を無数に構成する三 次元網目構造のフエノール樹脂結合剤により砥石中に保持されていることから、 砥粒は比較的弱い力で脱落するので、 被研削材の表面を傷つけにくい。  The phenolic resin porous whetstone thus configured has a high porosity because the phenolic resin binder that binds the abrasive grains has a three-dimensional network structure. High abrasiveness can be obtained because the protrusion of abrasive grains is easy to obtain. Furthermore, since the abrasive grains are held in the grindstone by a phenolic resin binder having a three-dimensional network structure innumerably forming micro communicating holes having a smaller diameter than the abrasive grains, the abrasive grains fall off with a relatively weak force. Therefore, it is difficult to damage the surface of the material to be ground.
ここで、 好適には、 前記フエノール樹脂多孔質砥石は、 前記 ί救小連通気孔より も十分に大径の独立気孔を多数有するものである。 このように構成されたフエノ —ル樹脂多孔質砥石は、 微小連通気孔よりも十分に大径の独立気孔を多数有する ことから一層高い気孔率を有し、 研削加工中に発生した切り粉がその独立気孔内 にも捕捉されることから、 一層高い研削性が得られる。  Here, preferably, the phenolic resin porous grindstone has a large number of independent pores having a diameter sufficiently larger than that of the rescue reaming vent. The phenolic resin porous grinding wheel thus configured has a higher porosity because it has a large number of independent pores having a diameter sufficiently larger than the fine continuous pores. Since they are also trapped in independent pores, higher grindability can be obtained.
また、 前記目的を達成するための第 2発明は、 前記第 1発明のフエノール樹脂 多孔質砥石を製造する方法の発明であり、 その要旨とするところは、 砥粒がフエ ノール樹脂結合剤によって相互に結合されてなる組織中に多数の気孔を有するフ エノール樹脂多孔質砥石の製造方法であって、 (a-1) 砥粒、 フエノール樹脂水溶 液、 および硬化剤を均一に混合 ·攪拌して流動性混合物とする混合攪拌工程と、 (b) その流動性混合物を所定の型内に流し込む流し込み工程と、 (c) その所定の 型内で前記流動性混合物を硬化させる硬化工程と、 (d) その硬化工程で硬化させ て得られた硬化成形体を乾燥させて、 その硬化成形体から水分を除去する乾燥ェ 程とを、 含むことにある。 Further, a second invention for achieving the above object is an invention of a method for producing the phenolic resin porous whetstone of the first invention, and the gist of the invention is that abrasive grains are mutually interlinked by a phenolic resin binder. A method for producing a phenolic resin porous whetstone having a large number of pores in a structure formed by bonding to: (a-1) uniformly mixing and stirring abrasive grains, a phenolic resin aqueous solution, and a curing agent A mixing and stirring step of forming a fluid mixture, (b) a casting step of pouring the fluid mixture into a predetermined mold, (c) a curing step of curing the fluid mixture in the predetermined mold, (d) ) The cured molded body obtained by curing in the curing step is dried to remove moisture from the cured molded body. And the process.
このようにすれば、 硬化工程では、 流し込み工程において所定の型内に流し込 まれた流動性混合物中の水に溶解しているフエノール樹脂が三次元的に架橋する ことにより硬ィヒ成形体となって水から相分離するとともに、 その硬化させられた フエノ一ル樹脂が結合剤として砥粒を相互に結合するが、 上記流動性混合物は、 混合攪拌工程において砥粒およびフェノ一ル樹脂水溶液が均一に混合させられて いるので、 硬化成形体には、 硬ィヒさせられたフエノール樹脂結合剤中に砥粒およ び水が均一に分散している。 そして、 乾燥工程において、 その硬化成形体から水 分が除去されて、 その部分が微小連通気孔となるので、 このようにして製造され たフエノール樹脂多孔質砥石は、 フエノール樹脂結合剤が三次元網目構造を有す ることにより、 砥粒よりも小径の微小連通気孔が無数に構成された構造を有する ここで、 好適には、 前記フエノール樹脂多孔質砥石の製造方法は、 前記第 1発 明において前記微小連通気孔よりも十分に大径の独立気孔を多数有するフエノー ル樹脂多孔質砥石を製造する方法の発明であり、 その要旨とするところは、 砥粒 がフエノール樹脂結合剤によつて相互に結合されてなる組織中に多数の気孔を有 するフエノール樹脂多孔質砥石の製造方法であって、 (a- 2) 砥粒、 フエノール樹 脂水溶液、 硬化剤、 および界面活性剤を混合した流動性混合物を攪拌することに より、 その砥粒、 そのフエノール樹脂水溶液、 その硬化剤およびその界面活性剤 を均一に混合するとともに、 その流動性混合物中に多数の気泡を創成させる混合 攪拌工程と、 (b) その流動性混合物を所定の型内に流し込む流し込み工程と、 (c ) その所定の型内で前記流動性混合物に硬化剤を混合することによりその流動性 混合物を硬化させる硬化工程と、 (d) その硬化工程で硬化させて得られた硬化成 形体を乾燥させて、 その硬化成形体から水分を除去する乾燥工程とを、 含むこと にある。 このようにすれば、 混合攪拌工程において、 砥粒、 フエノール樹脂水溶 液、 硬化剤、 および界面活性剤が混合された流動性混合物が攪拌されることによ つて、 砥粒、 フエノール樹脂水溶液、 硬化剤、 および界面活性剤が均一に混合さ れるとともに、 流動性混合物の内部に多数の気泡が卷き込まれ、 流動性混合物に 含まれる界面活性剤の起泡作用および整泡作用によって、 均一な気泡が発生し且 つその状態が長時間に亘つて維持されるため、 流し込み工程において型内に流し 込まれ、 更に硬ィヒ工程において硬化させられる過程においても、 その創成された 気泡の殆どが維持される。 そのため、 硬化工程においてフエノール樹脂が硬化さ せられ、 更に、 乾燥工程において硬化成形体中の水分が除去されて得られたフエ ノール樹脂多孔質砥石には、 前記微小連通気孔に加えて、 その微小連通気孔より も十分に大径の多数の独立気孔を有する。 In this way, in the curing step, the phenolic resin dissolved in the water of the fluid mixture poured into the predetermined mold in the pouring step is three-dimensionally cross-linked to form a rigid Erich molded article. And the phase is separated from water, and the hardened phenolic resin binds the abrasive grains as a binder, but the fluid mixture is formed by mixing the abrasive grains and the phenol resin aqueous solution in the mixing and stirring step. Because of the uniform mixing, the cured moldings have abrasive particles and water uniformly dispersed in the hardened phenolic resin binder. Then, in the drying step, water is removed from the cured molded body, and the portion becomes micro communicating pores. Thus, the phenolic resin porous whetstone manufactured in this manner has a three-dimensional mesh of phenolic resin binder. By having a structure, it has a structure in which micro communicating holes having a smaller diameter than abrasive grains are formed innumerably. Preferably, the method for producing a phenolic resin porous grindstone is the method according to the first invention. It is an invention of a method for producing a phenolic resin porous whetstone having a large number of independent pores having a diameter sufficiently larger than the minute interconnected pores, and the gist of the invention is that abrasive grains are mutually formed by a phenolic resin binder. A method for producing a phenolic resin porous whetstone having a large number of pores in a bonded structure, comprising: (a-2) abrasive grains, a phenolic resin aqueous solution, a hardener, and a surfactant By stirring the fluid mixture containing the mixing agent, the abrasive grains, the phenol resin aqueous solution, the curing agent and the surfactant are uniformly mixed, and a large number of air bubbles are created in the fluid mixture. Mixing and stirring, (b) pouring the fluid mixture into a predetermined mold, and (c) curing the fluid mixture by mixing a curing agent with the fluid mixture in the predetermined mold. And (d) drying the cured molded body obtained by curing in the curing step to remove moisture from the cured molded body. In this way, in the mixing and stirring step, the abrasive particles, the aqueous phenol resin solution, the hardener, and the fluid mixture in which the surfactant is mixed are agitated, so that the abrasive particles, the aqueous phenol resin solution, The surfactant and the surfactant are mixed uniformly, and a number of air bubbles are trapped inside the fluid mixture, resulting in the fluid mixture. Due to the foaming action and foam-regulating action of the contained surfactant, uniform air bubbles are generated and the state is maintained for a long time, so that they are poured into the mold in the pouring step and further hardened. Most of the created bubbles are maintained during the curing process. Therefore, the phenolic resin is cured in the curing step, and the phenolic resin porous grindstone obtained by removing the moisture in the cured molded body in the drying step has the fine pores in addition to the fine communication holes. It has a number of independent pores that are sufficiently larger in diameter than the continuous vents.
また、 好適には、 前記フエノール樹脂水溶液はアルカリ性水溶液であり、 且つ 、 前記硬化剤は有機エステル硬化剤である。 このようにすれば、 有機エステル硬 化剤により、 流動性混合物中のフエノール樹脂が常温程度の比較的低い温度で迅 速に硬化させられる利点がある。  Preferably, the phenol resin aqueous solution is an alkaline aqueous solution, and the curing agent is an organic ester curing agent. This has the advantage that the phenolic resin in the fluid mixture can be rapidly cured at a relatively low temperature of about room temperature by the organic ester curing agent.
また、 好適には、 前記界面活性剤はァニオン性或いは非イオン性界面活性剤で ある。 このようにァニオン性或いは非イオン性界面活性剤を用いると、 それらァ 二オン性或いは非イオン性界面活性剤は起泡効果が高いので、 一層気孔率の高い 砥石が得られる利点がある。 図面の簡単な説明  Preferably, the surfactant is an anionic or nonionic surfactant. When an anionic or nonionic surfactant is used as described above, the anionic or nonionic surfactant has a high foaming effect, so that there is an advantage that a grindstone having a higher porosity can be obtained. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の本発明のフエノ一ル樹脂多孔質砥石の表面を拡大して示す図 である。  FIG. 1 is an enlarged view of the surface of a phenolic resin porous grindstone of the present invention of the present invention.
図 2は、 図 1のフエノ一ノレ樹脂多孔質 石の製造工程を示す工程図である。 発明を実施するための最良の形態  FIG. 2 is a process chart showing a process for producing the phenolic resin porous stone of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を図面を参照して詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図 1は、 本発明のフエノール樹脂多孔質砥石 1 0の表面を拡大して示す図であ る。 図 1に示すように、 砥粒 1 2が、 網目構造のフエノール樹脂結合剤 1 4によ り相互に結合させられている。 なお、 フエノール樹脂多孔質砥石 1 0の内部にお いてもフエノ一ル樹脂結合剤 1 4は網目構造であるので、 三次元網目構造となつ ている。 そのフエノール樹脂結合剤 1 4の網と網との間に形成される空間が微小 連通気孔 1 6であり、 フエノール樹脂結合剤 1 4の網目構造が三次元的に広がつ ていることから、 この微小連通気孔 1 6も三次元的に相互に連通させられている 。 また、 独立気孔 1 8は、 上記微小連通気孔 1 6よりも十分に大きく、 且つ相互 に互いに独立して組織中に略均一に分散して存在している。 FIG. 1 is an enlarged view showing the surface of a phenolic resin porous grindstone 10 of the present invention. As shown in FIG. 1, the abrasive grains 12 are mutually bonded by a phenolic resin binder 14 having a network structure. Note that the phenolic resin binder 14 also has a three-dimensional network structure because the phenolic resin binder 14 has a network structure inside the phenolic resin porous grindstone 10. The space formed between the meshes of the phenolic resin binder 14 Since the communication holes are the communication holes 16 and the network structure of the phenol resin binder 14 is three-dimensionally expanded, the micro communication holes 16 are also connected to each other three-dimensionally. In addition, the independent pores 18 are sufficiently larger than the minute interconnected pores 16, and are distributed substantially uniformly in the tissue independently of each other.
上記フエノール樹脂多孔質砥石 1 0は、 たとえば、 図 2に示す工程に従って製 造される。 工程 1で用いるフエノール樹脂水溶液は、 水酸化カリウムや水酸化ナ トリウム等のアルカリ性触媒の存在下で、 フエノ一ル類とアルデヒド類とを常圧 において水中で縮合させて得られるものであり、 必要な場合には更に上記アル力 リ性触媒が追加される。 このようにして得られたフエノール樹脂水溶液中に含ま れるフエノール樹脂は水溶性であり、 その重量平均分子量 Mwは 500 〜8000であ る。  The phenol resin porous grindstone 10 is manufactured, for example, according to the process shown in FIG. The aqueous phenol resin solution used in step 1 is obtained by condensing phenols and aldehydes in water at normal pressure in the presence of an alkaline catalyst such as potassium hydroxide or sodium hydroxide. In such a case, the above-mentioned alkaline catalyst is further added. The phenol resin contained in the phenol resin aqueous solution thus obtained is water-soluble, and has a weight average molecular weight Mw of 500 to 8,000.
上記フエノール類には、 フエノールの他、 たとえば、 クレゾ一ル、 3, 5-キシレ ノール、 ノニルフエノール、 p-ter t—ブチルフエノ一ル、 イソプロべニルフエノ ール、 フエニルフエノール等のアルキルフエノールや、 レゾルシノール、 カテコ ール、 ハイドロキノン、 フロログリシン等の多価フエノールでもよい。 また、 力 シユーナッツ殻液、 リグニン、 タンニンのようなフエノ一ル系化合物の混合物よ りなるものも、 フエノール類として使用することができる。 これら各種のフエノ 一ル類を単独で、 または 2種以上を混合して使用することもできる。  The above phenols include, in addition to phenols, alkyl phenols such as cresol, 3,5-xylenol, nonylphenol, p-tert-butylphenol, isoprobenylphenol, phenylphenol, and the like, Polyphenols such as resorcinol, catechol, hydroquinone and phloroglysin may be used. In addition, a mixture of phenolic compounds such as power nut nut shell liquid, lignin and tannin can also be used as phenols. These various phenols can be used alone or in combination of two or more.
上記アルデヒド類としては、 たとえば、 ホルムアルデヒド、 パラホルムアルデ ヒド、 ァセ卜アルデヒド、 フルフラ一ル、 ダリオキザール等が用いられ、 それら を単独で、 または 2種以上混合して使用することもできる。 このアルデヒド類は 、 フエノール類に対して 1. 0 〜5 倍モルの範囲であれば良く、 特に 1. 0 〜3. 0 倍 の範囲が良く、 さらに、 1. 5 〜2. 5 倍モルがより好ましい。 アルデヒド類がフエ ノール類に対して 1. 0 倍モル未満では架橋後に十分な強度を発現せず、 逆に 5. 0 倍モルを越えると未反応アルデヒドによる作業環境の悪化などが懸念されるから である。  As the above aldehydes, for example, formaldehyde, paraformaldehyde, acetate aldehyde, furfural, dalioxal, etc. are used, and these can be used alone or in combination of two or more. The aldehyde may be in the range of 1.0 to 5 times the mole of the phenol, especially in the range of 1.0 to 3.0 times, and more preferably in the range of 1.5 to 2.5 times the mole of the phenol. More preferred. If the aldehyde is less than 1.0 times the molar amount of the phenol, sufficient strength will not be exhibited after crosslinking, and if it exceeds 5.0 times the working environment may be degraded due to unreacted aldehyde. It is.
上記アルカリ性触媒としては、 たとえば、 水酸化リチウム、 水酸化ナトリウム 、 水酸化カリウム等のアルカリ金属水酸化物が単独で、 または 2種以上混合して 使用される。 このアルカリ性触媒はフエノール類に対して 0. 01〜2 倍モルの範囲 が良く、 特に 0. 02〜1. 2倍の範囲が良く、 さらに、 0. 5 〜1. 0倍モルの範囲が好 ましい。 アルカリ性触媒がフエノール類に対して 0. 01倍モル未満では樹脂の製造 に多大な時間がかかるため不十分であり、 逆に 2. 0倍モルを越えると硬化剤が大 量に必要となり、 また、 作業環境上好ましくないからである。 Examples of the alkaline catalyst include, for example, alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, alone or in combination of two or more. used. This alkaline catalyst is preferably used in a range of 0.01 to 2 times, more preferably in a range of 0.02 to 1.2 times, and more preferably in a range of 0.5 to 1.0 times the phenols. Good. If the amount of the alkaline catalyst is less than 0.01 times the molar amount of the phenols, it takes a long time to produce the resin, which is not sufficient.If the amount exceeds 2.0 times the molar amount, the curing agent is required in a large amount. This is because the working environment is not preferable.
上記フエノ一ル樹脂水溶液は、 フエノ一ル樹脂成分が 3 0〜 7 5質量%に調製 される。 なお、 このフエノール樹脂水溶液には、 その他の添加剤として、 砥粒の 接着性向上のために、 従来より公知であるシランカップリング剤を添加してもよ い。 このシランカツプリング剤としては、 たとえば、 エポキシ系シランゃァミノ シランなどが好ましい。 また、 このシランカップリング剤は、 工程 1の混合攪拌 工程において添加してもよい。  The aqueous phenol resin solution is prepared so that the phenol resin component is 30 to 75% by mass. In addition, a conventionally known silane coupling agent may be added to the aqueous phenol resin solution as another additive in order to improve the adhesiveness of the abrasive grains. As the silane coupling agent, for example, an epoxy silane diaminosilane is preferable. Further, this silane coupling agent may be added in the mixing and stirring step of Step 1.
工程 1で用いる硬化剤には、 有機エステル硬化剤、 酸硬化剤等を用いることが できる。 有機エステル硬化剤としては、 従来よりアルカリ性フエノール樹脂水溶 液の硬化剤として用いられているものを使用することができ、 例えば、 ギ酸メチ ル、 ギ酸ェチル、 酢酸ェチル、 乳酸エヂル、 セバシン酸メチル、 エチレングリコ ールジアセテート、 ジァセチン、 トリァセチン等の炭素数 1〜 1 0の一価もしく は多価アルコールと炭素数 1〜 1 0の有機カルボン酸とから誘導されるカルボン 酸エステ 類、 又はァーブチロラクトン、 ァ一力プロラクトン、 δ—バレロラク トン、 6一力プロラクトン、 i3—プロピオラクトン、 ε—力プロラクトン等のラ クトン類、 又はエチレンカーポネ一ト、 プロピレン力一ポネ一ト、 4ーェチルジ ォキソロン、 4一ブチルジォキソロン、 4, 4-ジメチルジォキソロン、 4, 5-ジメチ ルジォキソロン等の環状アルキレン力一ポネ一ト類等が挙げられる。 中でも、 臭 気や引火性の問題を解決する目的で ァープチロラクトン、 ァ一力プロラクトン 、 δ—バレロラクトン、 δ—力プロラクトン、 ]3—プロピオラクトン、 ε—力プ ロラクトン等のラクトン類を特に好ましく使用することができる。 また、 酸硬化 剤としては、 たとえば、 硫酸、 リン酸などの無機酸、 フエノールスルホン酸、 ρ 一トルエンスルホン酸、 キシレンスルホン酸などの有機酸、 および、 これらの混 合物が挙げられる。 工程 1の混合攪拌工程では、 上記フエノール樹脂水溶液、 砥粒および硬化剤を 攪拌混合機中に投入し、 必要な場合には界面活性剤もその攪拌混合機中に投入し 、 所定時間攪拌 ·混合する。 界面活性剤も混合する場合には、 フエノール樹脂水 溶液に対して、 砥粒、 硬化剤および界面活性剤を順次或いは同時に混合するが、 それらを順次混合する場合は、 その混合順序は何れが先でもよい。 ただし、 硬化 剤は、 反応を制御する上で混合攪拌工程の最後に添加し、 その後、 所定時間攪拌 することが望ましい。 また、 この混合攪拌工程により、 フヱノ一ル樹脂水溶液、 延粒、 硬化剤および必要な場合には界面活性剤が混合された流動性混合物が得ら れればよいので、 フエノール樹脂水溶液を予め調製せず、 この混合攪拌工程にお いて、 水溶性フエノ一ル樹脂、 水、 アルカリ金属水酸化物、 砥粒、 硬化剤、 およ び必要な場合は界面活性剤を任意の順番で混合することにより流動性混合物を調 製してもよい。 さらに、 へキサミン等の樹脂強度向上剤、 アジピン酸ジヒドラジ ド (AAD H) 等の安定化剤、 ァエロジル等の粘度調節剤等を適宜混合してもよ レ^ As the curing agent used in step 1, an organic ester curing agent, an acid curing agent, or the like can be used. As the organic ester curing agent, those conventionally used as a curing agent for an aqueous solution of an alkaline phenol resin can be used. For example, methyl formate, ethyl formate, ethyl acetate, ethyl lactate, methyl sebacate, ethylene Carboxylic acid esters derived from mono- or polyhydric alcohols having 1 to 10 carbon atoms, such as glycol diacetate, diacetin, and triacetin, and organic carboxylic acids having 1 to 10 carbon atoms, or abutyrolactone, a Lactones such as one strength prolactone, δ-valerolactone, 6 one strength prolactone, i3-propiolactone, ε-force prolactone, or ethylene carbonate, propylene strength one-piece, 4-ethylidene Oxolone, 4-butyldioxolone, 4,4-dimethyldioxolone, 4,5-dimethyldioxolone, etc. Jo alkylene force one port ne one bets, etc. are exemplified. Among them, for the purpose of solving odor and flammability problems, such as arptyrolactone, aprolactone, δ-valerolactone, δ-force prolactone,] 3-propiolactone, ε-force prolactone, etc. Are particularly preferably used. Examples of the acid curing agent include inorganic acids such as sulfuric acid and phosphoric acid, organic acids such as phenolsulfonic acid, p-toluenesulfonic acid, and xylenesulfonic acid, and mixtures thereof. In the mixing and stirring step of step 1, the phenol resin aqueous solution, the abrasive grains, and the curing agent are charged into a stirring mixer, and if necessary, a surfactant is also charged into the stirring mixer, and the mixture is stirred and mixed for a predetermined time. I do. When a surfactant is also mixed, the abrasive, the hardener and the surfactant are sequentially or simultaneously mixed with the aqueous phenol resin solution, but when these are sequentially mixed, the mixing order is first. May be. However, it is desirable to add the curing agent at the end of the mixing and stirring step to control the reaction, and then to stir for a predetermined time. In addition, since the mixing and stirring step only needs to obtain a fluid mixture in which the aqueous phenol resin solution, the granulated particles, the hardener, and the surfactant are mixed if necessary, the aqueous phenol resin solution is prepared in advance. In this mixing and stirring step, the water-soluble phenolic resin, water, alkali metal hydroxide, abrasive grains, hardener, and, if necessary, a surfactant are mixed in any order. A flowable mixture may be prepared. Further, a resin strength improver such as hexamine, a stabilizer such as adipic dihydrazide (AADH), a viscosity modifier such as aerosil, etc. may be appropriately mixed.
上記攪拌は、 流動性混合物中に界面活性剤が混合されていない場合には、 フエ ノ一ル樹脂水溶液中に砥粒 1 2を均一に分散させるのに十分な攪拌強度および時 間であればよいが、 界面活性剤は流動性混合物内に均一な気泡を一様に発生させ るために混合されているので、 流動性混合物中に界面活性剤が混合されている場 合には、 砥粒 1 2が均一に分散し、 且つ所望量の気泡を発生させるのに十分な攪 拌強度および時間に設定される。 なお、 ここで発生させられる気泡の平均気孔径 は 5 0 m以上となる。  When the surfactant is not mixed in the fluid mixture, the stirring is performed with sufficient stirring intensity and time to uniformly disperse the abrasive grains 12 in the aqueous phenol resin solution. Good, but if the surfactant is mixed in the flowable mixture, the abrasive is used because the surfactant is mixed to generate uniform air bubbles in the flowable mixture. The stirring intensity and time are set to a value sufficient to uniformly disperse 12 and generate the desired amount of bubbles. The average pore diameter of the bubbles generated here is 50 m or more.
上記界面活性剤としては、 ァニオン界面活性剤、 カチオン界面活性剤、 両性界 面活性剤、 非イオン界面活性剤 (ノニオン界面活性剤) 等が使用できるが、 好ま しぐはァニオン或いは非イオン界面活性剤を用いる。 ァニオン界面活性剤として は、 ラウリン酸ナトリウム、 ステアリン酸ナトリウム、 ォレイン酸ナトリウム等 の脂肪酸塩、 ラウリル硫酸ナトリウム、 ラウリル硫酸トリエタノールァミン、 ラ ゥリル硫酸アンモニゥム、 ポリオキシエチレンラウリルエーテル硫酸ナトリウム ェニルエーテル硫酸ナトリゥム等の硫酸エステ ル塩、 ドデシルベンゼンスルホン酸ナトリウム、 アルキルジフエニルエーテルジ スルホン酸ナトリゥム、 アルキルナフタレンスルホン酸ナトリゥム等のスルホン 酸塩、 高級アルコールリン酸モノエステルジナトリウム塩、 アルキルリン酸ナト リゥム塩、 ジアルキルジチオリン酸亜鉛等のリン酸エステル塩が使用できる。 カチオン界面活性剤としては、 ラウリルァミンク口ライド、 ジヒドロキシェチ ルステアリルァミン、 ラウリルトリメチルアンモニゥムクロライド等の高級アル キルアミン塩、 トリエタノールアミンモノステアレートの蛾酸塩、 ステアラミド ェチルジェチルアミンの酢酸塩、 2一ヘプ夕デセニルーヒドロキシェチルイミダ ゾリンなどの高級脂肪酸のアミン塩、 セチルピリジニゥムクロライドなどの高級 アルキルハラィドのァミン塩、 ステアラミドメチルピリジニゥムクロライドなど の高級脂肪族アミドのァミン塩といったアンモニゥム塩や、 これらに類するスル ホニゥム塩又はホスホニゥム塩等が使用できる。 As the above-mentioned surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, nonionic surfactants (nonionic surfactants) and the like can be used, and preferably anionic surfactants or nonionic surfactants are used. Use agent. Examples of anionic surfactants include fatty acid salts such as sodium laurate, sodium stearate, and sodium oleate, sodium lauryl sulfate, triethanolamine lauryl sulfate, ammonium sulfate, sodium polyoxyethylene lauryl ether sulfate sodium phenyl ether sulfate. Sulfate Este Sodium salt, sodium dodecylbenzenesulfonate, sodium alkyldiphenylether disulfonic acid, sodium alkylnaphthalenesulfonic acid, disodium salt of higher alcohol phosphate monoester, sodium phosphate alkyl phosphate, zinc dialkyldithiophosphate Etc. can be used. Examples of the cationic surfactant include higher alkylamine salts such as laurylamine chloride, dihydroxyethylstearylamine, lauryltrimethylammonium chloride, mothates of triethanolamine monostearate, and stearamidethylethyl. Amine acetates, amine salts of higher fatty acids such as decenyl-hydroxyethyl imidazoline, etc., amine salts of higher alkyl halides such as cetyl pyridinium chloride, steaamide methyl pyridinium chloride, etc. An ammonium salt such as an amine salt of a higher aliphatic amide, a sulfonium salt or a phosphonium salt similar thereto, and the like can be used.
両性界面活性剤としては、 N-アルキルトリグリシン、 ジメチルアルキルべタイ ン、 N-アルキルォキシメチル - N, N- ジェチルベタイン、 アルキルべタイン、 N-ァ ルキル- β - ァミノプロピオン酸塩、 アルキルジ (アミノエチル) グリシン塩酸 塩、 Ν-アルキルタウリン塩、 アミノエチルイミダゾリン有機酸塩等が使用できる 非イオン界面活性剤としては、 ポリオキシエチレンアルキルエーテル、 ポリオ キシエチレンアルキルフエニルエーテル、 ポリォキシエチレンアルキルナフチル エーテル、 ポリオキシエチレン化ヒマシ油、 ボリォキシェチレンァビエチルアル コール、 ポリオキシエチレンアルキルチオエーテル、 ポリオキシエチレンアルキ ルアミド、 ポリオキシエチレン一ポリオキシプロピレングリコオール、 ポリオキ シエチレン一ポリオキシプロピレングリコオールェチレンジァミン、 ポリオキシ エチレンモノ脂肪酸エステル、 ポリオキシエチレンジ脂肪酸エステル、 ポリオキ シエチレンプロピレングリコール脂肪酸エステル、 ポリオキシエチレンソルビ夕 ンモノ脂肪酸エステル、 ポリオキシエチレンソルビタントリ脂肪酸エステル等の ポリオキシエチレン型界面活性剤、 エチレングリコールモノ脂肪酸エステル、 プ ロピレンダリコールモノ脂肪酸エステル、 ジエチレングリコールモノ脂肪酸エス テル、 グリセリンモノ脂肪酸エステル、 ペン夕エリスリット脂肪酸エステル、 ソ ルビタンモノ脂肪酸エステル、 ソルビタンセスキ脂肪酸エステル、 ソルビタント リ脂肪酸エステル、 ショ糖脂肪酸エステル、 脂肪酸モノエタノールアミド、 脂肪 酸モノイソプロパノールアミド等の多価アルコール型及びアルキロールアミド型 界面活性剤、 ポリオキシエチレンアルキルァミン、 N-アルキルプロピレンジアミ ン、 N-アルキルポリエチレンポリアミン、 N-アルキルポリエチレンポリアミンジ メチル硫酸塩、 アルキルビグアニド、 長鎖アミンォキシド等のアミン型界面活性 剤が使用できる。 Examples of amphoteric surfactants include N-alkyltriglycine, dimethylalkylbetaine, N-alkyloxymethyl-N, N-getylbetaine, alkylbetaine, N-alkyl-β-aminopropionate , Alkyldi (aminoethyl) glycine hydrochloride, Ν-alkyltaurine salt, aminoethylimidazoline organic acid salt and the like. Nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, poly Xyethylenealkylnaphthyl ether, polyoxyethylenated castor oil, boroxyshethylene aviethyl alcohol, polyoxyethylene alkylthioether, polyoxyethylene alkylamide, polyoxyethylene-polyoxypropylene glycol, polyoxyethylene Polyoxypropylene glycol allylene diamine, polyoxyethylene monofatty acid ester, polyoxyethylene difatty acid ester, polyoxyethylene propylene glycol fatty acid ester, polyoxyethylene sorbitan monofatty acid ester, polyoxyethylene sorbitan trifatty acid ester And other polyoxyethylene surfactants, ethylene glycol monofatty acid ester, propylene glycol monofatty acid ester, diethylene glycol monofatty acid ester Polyhydric alcohols such as ter, glycerin mono fatty acid ester, pen erythrit fatty acid ester, sorbitan mono fatty acid ester, sorbitan sesqui fatty acid ester, sorbitan tri fatty acid ester, sucrose fatty acid ester, fatty acid monoethanolamide, fatty acid monoisopropanolamide, etc. And alkylolamide surfactants, polyoxyethylene alkylamine, N-alkylpropylene diamine, N-alkyl polyethylene polyamine, N-alkyl polyethylene polyamine dimethyl sulfate, alkyl biguanide, amine such as long chain amine oxide Type surfactants can be used.
続く工程 2の流し込み工程においては、 前記フエノール樹脂多孔質砥石 1 0の 形状に対応する内面形状を備えた型内に、 前記工程 1で十分に混合 ·攪拌された 流動性混合物を流し込む。  In the pouring step of the subsequent step 2, the fluid mixture sufficiently mixed and stirred in the step 1 is poured into a mold having an inner surface shape corresponding to the shape of the phenol resin porous grindstone 10.
続く工程 3の硬ィヒ工程においては、 型内に流し込んだ流動性混合物を所定時間 放置することにより、 或いは、 型内に流し込んだ流動性混合物を所定の温度に加 熱することにより、 流動性混合物中のフエノール樹脂を硬化すなわち架橋させる 。  In the subsequent step 3 of the curing step, the fluidity mixture poured into the mold is left for a predetermined period of time, or the fluidity mixture poured into the mold is heated to a predetermined temperature. The phenolic resin in the mixture is cured or crosslinked.
流動性混合物中のフエノール樹脂が硬化させられると、 流動性混合物は上記型 の内形を有する硬化成形体となる。 このとき、 フエノール樹脂は三次元網目形状 に硬ィ匕し、 この硬化したフエノール樹脂が結合剤 1 4として働き、 砥粒 1 2を相 互に結合する。 このようにフエノール樹脂が三次元網目形状に架橋していくメカ 二ズムは必ずしも明らかではないが、 以下のように考察できる。 なお、 本発明は このメカニズムに拘束されるものではない。  When the phenolic resin in the flowable mixture is cured, the flowable mixture becomes a cured molded article having the above-described inner shape. At this time, the phenol resin is hardened into a three-dimensional network shape, and the hardened phenol resin acts as a binder 14 to bind the abrasive grains 12 to each other. The mechanism by which the phenolic resin crosslinks into a three-dimensional network shape is not necessarily clear, but can be considered as follows. Note that the present invention is not limited by this mechanism.
すなわち、 硬化剤の添加等によりフエノール樹脂が硬化していく過程において 、 水に溶けている水溶性フエノール樹脂は、 まず、 水と相分離しない状態で流動 性が消失する (ゲル化) 。 なお、 この状態では外観上は透明である。 さらに反応 が進行すると、 分子鎖の凝集力が働き、 樹脂相 (固相) と水相 (溶媒相) に分離 するため、 三次元網目形状となると考えられる。 なお、 この状態では外観が不透 明になる。 また、 この三次元網目形状の網目 (この部分は水分が除去されること により微小連通気孔 1 6となる) の大きさは、 水溶性フエノール樹脂と水との比 を変えることにより変化し、 水溶性フヱノール樹脂に対して水が多いほど網目の 大きさが大きくなる。 このようにして水溶性フエノール樹脂と水との比を変える ことにより、 微小連通気孔 1 6の大きさを 5 以下の範囲で変化させることが できるが、 微小連通気孔 1 6の大きさは砥粒 1 2よりも小径である必要がある。 砥粒 1 2よりも微小連通気孔 1 6が大径の場合にはフエノール樹脂結合剤 1 4は 砥粒 1 2を支持することができないからである。 また、 界面活性剤が配合されて いる場合は、 その界面活性剤の働きにより、 微小連通気孔の気孔径が均一化され ると考えられる。 That is, in the process of hardening the phenolic resin by the addition of a hardener, the water-soluble phenolic resin dissolved in water first loses its fluidity without being phase-separated from water (gelation). In this state, the appearance is transparent. As the reaction proceeds further, the cohesive force of the molecular chains acts and separates into a resin phase (solid phase) and an aqueous phase (solvent phase), resulting in a three-dimensional network shape. In this state, the appearance becomes opaque. The size of the three-dimensional mesh (the portion becomes the minute interconnected pores 16 when water is removed) is determined by the ratio of water-soluble phenol resin to water. The size of the mesh increases as the amount of water relative to the water-soluble phenol resin increases. By changing the ratio of the water-soluble phenolic resin to water in this way, the size of the minute interconnected pores 16 can be changed within a range of 5 or less. The diameter must be smaller than 1 and 2. This is because the phenolic resin binder 14 cannot support the abrasive grains 12 when the fine continuous air holes 16 have a larger diameter than the abrasive grains 12. When a surfactant is added, it is considered that the function of the surfactant makes the pore diameter of the micropores uniform.
また、 前記流動性混合物中に界面活性剤が混合されている場合には、 混合攪拌 工程において起泡させられた流動性混合物は、 界面活性剤を含んでいることから 、 流し込みおよび硬化の過程においても気泡が消失せず、 攪拌終了時の発泡状態 を保っている。 そのため、 硬ィ匕終了時において、 その硬ィ匕成形体中には、 図 1に 示す、 気泡に由来する互いに独立した多数の独立気孔 1 8が形成されるので、 多 孔質成形体が得られる。 これら多数の独立気孔 1 8は、 流動性混合物およびそれ が硬化させられた硬化成形体に何ら圧力が加えられていないことから、 上記の混 合攪拌工程において発生させられた気泡そのままの形状に形成されている。 なお 、 これら独立気孔 1 8のないフエノ一ル樹脂多孔質砥石を製造するため、 前記流 動性混合物中に界面活性剤を混合しない場合でも、 攪拌の機械的作用によりに若 干の気泡が混入するが、 それら若干の独立気孔 1 8は研削性能に悪影響を与えな い限りあえて除去する必要はない。  When a surfactant is mixed in the fluid mixture, since the fluid mixture foamed in the mixing and stirring step contains a surfactant, the mixture is poured and cured in the process. No bubbles disappeared, and the foaming state at the end of stirring was maintained. For this reason, at the end of the stake, a large number of independent pores 18 derived from air bubbles are formed in the stake molded product as shown in FIG. Can be Since many pressures are not applied to the fluid mixture and the cured molded product obtained by curing the fluid mixture, the large number of closed pores 18 are formed in the shape of the bubbles generated in the mixing and stirring step. Have been. In order to produce a phenolic resin porous grindstone having no independent pores 18, even when a surfactant is not mixed into the fluid mixture, some bubbles are mixed due to mechanical action of stirring. However, it is not necessary to remove some of the independent pores 18 as long as the grinding performance is not adversely affected.
続く工程 4の乾燥工程では、 上記硬化成形体を乾燥させ、 その硬化成形体中の 水分を除去する。 硬ィヒ成形体から水分が除去されると、 三次元網目構造間を満た していた水が空気に置換されて無数の微小連通気孔 1 6が形成され、 この微小連 通気孔 1 6によっても多孔質化される。 上記乾燥工程によりフエノール樹脂多孔 質砥石 1 0が製造されるが、 強度を向上させるため、 熱処理工程を設け、 そのフ ェノ一ル樹脂多孔質砥石 1 0をさらに加熱処理してもよい。  In the subsequent drying step 4, the cured molded body is dried to remove moisture in the cured molded body. When the moisture is removed from the hardened molded body, the water that has filled the space between the three-dimensional networks is replaced with air to form an infinite number of minute communication holes 16. It is made porous. The phenol resin porous grindstone 10 is manufactured by the above-mentioned drying step, but a heat treatment step may be provided to improve the strength, and the phenol resin porous grindstone 10 may be further heated.
次に、 フエノール樹脂多孔質砥石 1 0の製造方法の一実施例を説明する。 なお 、 フエノール樹脂多孔質砥石 1 0の寸法は、 Φ 300 X 20 X 127 とした。 まず、 工程 1では、 アルカリ性フエノール樹脂水溶液 (旭有機材工業株式会社 製 H P 8 3 0 0 L (固形分 4 8質量%、 平均分子量 2 0 0 0 ) ) を 4 0質量%、 ァニオン界面活性剤を 5質量%、 砥粒として炭化ゲイ素 #3000 を 4 5質量%、 ラ クトン系エステル硬化剤を 1 0質量%使用し、 それらを混合器に以下の順で順次 投入して混合 '攪拌した。 混合器には、 特殊機械化工業株式会社製 T Kホモミ キサーを使用し、 攪拌羽根には、 同社のエッジ夕一ビンを使用し、 攪拌の回転速 度は 500 〜1500r. p. m.とした。 投入順序は、 まず前記アルカリ性フエノール樹月旨 水溶液と界面活性剤との混合物を 5分間攪拌して気泡を発生させ、 続いて、 へキ サミンを所定量添加して 2分間混合攪拌し、 続いて安定化剤 (AAD H) を所定 量添加して 1分間混合攪拌し、 続いてァエロジルを所定量添加して 1分間混合攪 拌し、 続いて、 砥粒を投入して 4分間混合攪拌し、 最後に上記ラクトン系エステ ル硬化剤を所定量投入してさらに 1. 5 分間混合攪拌した。 これにより、 気泡が均 一に分散した流動性混合物を得た。 Next, an embodiment of a method for manufacturing the phenol resin porous grindstone 10 will be described. The dimensions of the phenolic resin porous grindstone 10 were Φ300 × 20 × 127. First, in step 1, an alkaline phenol resin aqueous solution (HP 830 L (solid content: 48% by mass, average molecular weight: 200,000) manufactured by Asahi Organic Materials Co., Ltd.) was added by 40% by mass and an anionic surfactant was used. 5% by mass, 45% by mass of gay carbide # 3000 as abrasive, and 10% by mass of lactone ester curing agent were added to the mixer in the following order in the following order and mixed and stirred. . The mixer used was a TK homomixer manufactured by Tokushu Kagaku Kogyo Co., Ltd., and the stirring blades used were Edge Juicer bottles of the company, with a stirring rotation speed of 500 to 1500 rpm. The charging order is as follows. First, the mixture of the alkaline phenolic luster aqueous solution and the surfactant is stirred for 5 minutes to generate air bubbles. Subsequently, a predetermined amount of hexamine is added and mixed and stirred for 2 minutes. Add a predetermined amount of stabilizing agent (AAD H), mix and stir for 1 minute, then add a predetermined amount of aerosil, mix and stir for 1 minute, then add abrasive grains and mix and stir for 4 minutes. Finally, a predetermined amount of the lactone ester curing agent was added, and the mixture was further mixed and stirred for 1.5 minutes. As a result, a fluid mixture in which bubbles were uniformly dispersed was obtained.
続く工程 2では、 工程 1で得た流動性混合物を、 Φ 300 Χ 20 Χ 127 のフエノ —ル樹脂多孔質砥石 1 0を得るための所定の形状のポリプロピレン製の容器に流 し込み、 続く工程 3では、 その容器内に流し込んだ流動性混合物を常温にて 1 2 時間放置して硬化成形体を得た。  In the following step 2, the fluid mixture obtained in the step 1 is poured into a polypropylene container having a predetermined shape to obtain a phenol resin porous grindstone 10 having a diameter of 300 30020Χ127. In 3, the fluid mixture poured into the container was left at room temperature for 12 hours to obtain a cured molded body.
続く工程 4の乾燥工程では、 上記工程 3で得た硬化成形体を 6 0 °Cで 4 8時間 、 次いで、 6時間後に 150 °Cとなるように 6 0 °Cから連続的に昇温し、 150 °Cを 1〜2時間保持して気孔率 7 3 %のフエノール樹脂多孔質砥石 1 0を得た。  In the subsequent drying step 4, the cured molded body obtained in the above step 3 is continuously heated from 60 ° C. to 60 ° C. for 48 hours, and then to 150 ° C. after 6 hours. By keeping the temperature at 150 ° C. for 1 to 2 hours, a phenol resin porous grindstone 10 having a porosity of 73% was obtained.
比較例 1として、 従来からのプレス成形方法によって、 砥粒、 粉末フエノール 樹脂 (樹脂ポンド) のみで砥石を製造しょうとしたが、 気孔率 5 0 %が限界であ り、 それを越えると 150 °Cでの熱処理時に収縮率が大きくなつてしまい、 結局、 気孔率が 5 0 %以下となり、 また、 形状の維持もできなかった。  As Comparative Example 1, an attempt was made to manufacture a grindstone using only abrasive grains and powdered phenolic resin (resin pounds) by a conventional press molding method. During the heat treatment in C, the shrinkage increased, resulting in a porosity of 50% or less, and the shape could not be maintained.
比較例 2として、 上記実施例のフエノール樹脂多孔質砥石 1 0と同様の砥粒を 使用し、 且つ、 フィラーを使用することにより比較的気孔率を高くした砥石を製 造した。 なお、 フィラー材には研削の邪魔をしにくいとされる合成マイ力を使用 した。 前述の実施例のフエノール樹脂多孔質砥石 1 0と比較例 2の砥石との研削試験 結果を比較した。 結果を以下に示す。 As Comparative Example 2, a grindstone having the same porosity as the phenolic resin porous grindstone 10 of the above example and having a relatively high porosity by using a filler was produced. For the filler material, synthetic force was used, which would not interfere with grinding. The grinding test results of the phenolic resin porous grindstone 10 of the above-described example and the grindstone of Comparative Example 2 were compared. The results are shown below.
(表 1 ) 砥石構造 ― _  (Table 1) Whetstone structure-_
砥粒率 (%) ボンド率 (%) フィラー率 (%) 気孔率 (%) 実施例 1 3 1 6 なし 7 3  Abrasive grain rate (%) Bond rate (%) Filler rate (%) Porosity (%) Example 1 3 1 6 None 7 3
比較例 2 _ 1 3 1 7 2 1 4 9  Comparative Example 2 _ 1 3 1 7 2 1 4 9
(なお、 ポンド率とは、 フエノール樹脂の割合である。 )  (The pound ratio is the ratio of phenolic resin.)
(表 2 ) 研削条件 (Table 2) Grinding conditions
研削盤 両頭平面研削盤 (キャリャ板径 5インチ) Grinding machine Double-sided surface grinder (Carrier plate diameter 5 inches)
ワーク材質 アルミハードディスク板 Work material Aluminum hard disk plate
加工時間 1 0分 Processing time 10 minutes
加工圧力 100 g/cm2 Processing pressure 100 g / cm 2
砥石回転速度 (上砥石) 15 r. p. m. (下砥石) 45 r. p. m. Wheel rotation speed (upper wheel) 15 r. P. M. (Lower wheel) 45 r. P. M.
研削液 カネボウ株式会社製 ベルク一ラント #3001 50倍希釈 Grinding fluid Kanebo Co., Ltd. Berg-Iland # 3001 50-fold dilution
(表 3 ) 研削結果 ヮ一ク面粗さ 篡の有無 研磨レー卜 実施例 7 0 nmRa スクラッチなし 3 /2 m/mi n (Table 3) Grinding result ク Surface roughness 篡 Polishing rate Example 7 0 nmRa No scratch 3/2 m / min
比較例 2 1 2 0 nmRa 傷あり 1 m/mi n  Comparative Example 2 1 2 0 nmRa Scratched 1 m / min
(なお、 Raは算術平均粗さである。 ) 上述のように、 本実施例によれば、 硬化工程 (工程 3 ) では、 流し込み工程 ( 工程 2 ) において所定の型内に流し込まれた流動性混合物中の水に溶解している フエノール樹脂が三次元的に架橋することにより硬化成形体となつて水から相分 離するとともに、 その硬化させられたフエノール樹脂が結合剤 1 4として砥粒 1 2を相互に結合するが、 上記流動性混合物は、 混合攪拌工程 (工程 1 ) において 砥粒 1 2およびアル力リ性フエノール樹脂水溶液が均一に混合させられているの で、 硬化成形体には、 硬化させられたフエノール樹脂結合剤 1 4中に砥粒 1 2お よび水が均一に分散している。 そして、 乾燥工程 (工程 4 ) において、 その硬化 成形体から水分が除去されて、 その部分が微小連通気孔 1 6となるので、 このよ うにして製造されたフエノール樹脂多孔質砥石 1 0は、 フエノール樹脂結合剤 1 4が三次元網目構造を有することにより、 砥粒 1 2よりも小径の微小連通気孔 1 6が無数に構成された構造を有する。 (Note that Ra is the arithmetic average roughness.) As described above, according to the present embodiment, in the curing step (step 3), the fluidity poured into a predetermined mold in the pouring step (step 2) The phenolic resin dissolved in the water in the mixture cross-links three-dimensionally to form a cured molded body and separates from the water, and the cured phenolic resin is used as a binder 14 as abrasive particles 1 2 are connected to each other, but the above-mentioned fluid mixture is mixed in the mixing and stirring step (step 1). Since the abrasive grains 12 and the aqueous phenol resin aqueous solution are uniformly mixed, the hardened molded product contains the abrasive grains 12 and water evenly in the hardened phenol resin binder 14. Is dispersed. Then, in the drying step (step 4), moisture is removed from the cured molded body, and the portion becomes micro communicating holes 16. Thus, the phenolic resin porous grindstone 10 manufactured in this manner is Since the phenolic resin binder 14 has a three-dimensional network structure, the phenolic resin binder 14 has a structure in which micro communicating holes 16 smaller in diameter than the abrasive grains 12 are formed innumerably.
すなわち、 本実施例のフエノール樹脂多孔質砥石 1 0は、 砥粒 1 2を相互に 合させるフエノ一ル樹脂結合剤 1 4が三次元網目構造を有することから、 その気 孔率が高く、 カロえて、 砥石 1 0の研削面において砥粒 1 2の突出しが得られ易い ので、 高い研削性が得られる。 さらに、 砥粒 1 2がその砥粒 1 2よりも小径の微 小連通気孔 1 6を無数に構成する三次元網目構造のフエノール樹脂結合剤 1 4に より砥石 1 0中に保持されていることから、 砥粒 1 2は比較的弱い力で脱落する ので、 アルミハードディスク板の表面を傷つけにくい。  That is, the phenolic resin porous whetstone 10 of the present embodiment has a high porosity and a high calorific value because the phenolic resin binder 14 that combines the abrasive grains 12 has a three-dimensional network structure. In addition, since the abrasive grains 12 easily protrude from the grinding surface of the grindstone 10, high grindability can be obtained. Further, the abrasive grains 1 2 are held in the grindstone 10 by the phenolic resin binder 14 having a three-dimensional network structure in which the microscopic continuous air holes 16 having a smaller diameter than the abrasive grains 12 are formed innumerably. Therefore, the abrasive grains 12 fall off with a relatively weak force, so that the surface of the aluminum hard disk plate is not easily damaged.
また、 本実施例によれば、 混合攪拌工程 (工程 1 ) において、 砥粒 1 2、 アル カリ性フエノール樹脂水溶液、 ラクトン系エステル硬化剤、 およびァニオン界面 活性剤が混合された流動性混合物が攪拌されることによって、 砥粒 1 2、 アル力 リ性フエノーリレ樹脂水溶液、 ラクトン系エステル硬化剤およびァニオン界面活性 剤が均一に混合されるとともに、 流動性混合物の内部に多数の気泡が巻き込まれ 、 流動性混合物に含まれるァニオン界面活性剤の起泡作用および整泡作用によつ て、 均一な気泡が発生し且つその状態が長時間に亘つて維持されるため、 流し込 み工程 (工程 2 ) において型内に流し込まれ、 更に硬化工程 (工程 3 ) において 硬ィ匕させられる過程においても、 その創成された気泡の殆どが維持される。 その ため、 硬化工程 (工程 3 ) においてフエノール樹脂が硬ィ匕させられ、 更に、 乾燥 工程 (工程 4 ) において硬化成形体中の水分が除去されて得られたフエノール樹 脂多孔質砥石 1 0には、 微小連通気孔 1 6に加えて、 その微小連通気孔 1 6より も十分に大径の多数の独立気孔 1 8を有する。  Further, according to this embodiment, in the mixing and stirring step (step 1), the fluid mixture in which the abrasive grains 12, the aqueous alkaline phenol resin solution, the lactone ester hardener, and the anionic surfactant were mixed was stirred. As a result, the abrasive grains 12, the aqueous phenolic resin solution, the lactone ester curing agent, and the anionic surfactant are uniformly mixed, and a large number of air bubbles are entrained in the fluid mixture, causing the fluid to flow. The foaming action and foam-regulating action of the anionic surfactant contained in the ionic mixture generate uniform air bubbles and maintain the state for a long time, so that the pouring step (step 2) In the process of being poured into the mold at the time of, and in the process of being hardened in the curing step (step 3), most of the created bubbles are maintained. Therefore, the phenol resin is hardened in the curing step (step 3), and the phenol resin porous grindstone 10 obtained by removing the moisture in the cured molded body in the drying step (step 4) is obtained. Has a large number of independent pores 18 having a diameter sufficiently larger than that of the small continuous air holes 16 in addition to the small continuous air holes 16.
すなわち、 本実施例のフエノール樹脂多孔質砥石 1 0は、 微小連通気孔 1 6よ りも十分に大径の独立気孔 1 8を多数有することから一層高い気孔率を有し、 研 削加工中に発生した切り粉がその独立気孔 1 8内にも捕捉されることから、 一層 高い研削性力 S得られる。 That is, the phenolic resin porous grinding wheel 10 of the present embodiment is the same as the fine continuous air holes 16. It has a higher porosity because it has a large number of independent pores 18 with a sufficiently large diameter, and is even higher because the chips generated during grinding are also trapped in the independent pores 18 Grindability S is obtained.
また、 本実施例によれば、 フエノール樹脂水溶液はアルカリ性水溶液であり、 硬化剤はラクトン系エステル硬化剤であることから、 そのラクトン系エステル硬 化剤により、 流動性混合物中のフエノール樹脂が常温で迅速に硬化させられる利 点がある。  Further, according to this example, the phenol resin aqueous solution is an alkaline aqueous solution, and the curing agent is a lactone ester curing agent. Therefore, the lactone ester curing agent allows the phenol resin in the fluid mixture at room temperature. It has the advantage of being cured quickly.
また、 本実施例では界面活性剤としてァニオン性界面活性剤を用いていること から、 そのァニオン性界面活性剤の高い起泡作用により一層気孔率の高い砥石が 得られる利点がある。  Further, in this embodiment, since an anionic surfactant is used as a surfactant, there is an advantage that a grindstone having a higher porosity can be obtained by a high foaming action of the anionic surfactant.
以上、 本発明の一実施例を図面に基づいて説明したが、 本発明は上記実施例と は別の態様においても実施できる。  As described above, one embodiment of the present invention has been described with reference to the drawings. However, the present invention can be implemented in another mode different from the above embodiment.
たとえば、 前述の実施例では硬化時間を 1 2時間としたが、 硬化時間は常温で 2 0分程度でもよい。 前記流動性混合物が一定の形態を維持する程度の硬さまで 硬化させるには、 その程度でも十分なのである。 また、 短時間でより確実に硬ィ匕 させるために前記流動性混合物を加温してもよい。 たとえば、 6 0 °Cで 1時間加 温することにより硬化させてもよい。  For example, in the above-described embodiment, the curing time was 12 hours, but the curing time may be about 20 minutes at room temperature. That level is sufficient to cure the fluid mixture to such a degree that it maintains a certain form. In addition, the fluid mixture may be heated in order to more securely cure the mixture in a short time. For example, curing may be performed by heating at 60 ° C. for 1 hour.
以上に説明したものはあくまでも本発明の一実施例であり、 本発明はその主旨 を逸脱しない範囲において種々変更が加えられ得るものである。  What has been described above is merely an embodiment of the present invention, and the present invention can be variously modified without departing from the gist thereof.
4 Four

Claims

請求の範囲 The scope of the claims
1. 砥粒がフエノール樹脂結合剤によつて相互に結合させられたフエノ一ル樹脂 多孔質砥石であって、 1. A phenolic resin porous whetstone in which abrasive grains are mutually bonded by a phenolic resin binder,
前記フエノール樹脂結合剤が三次元網目構造を有することにより、 前記砥粒よ りも小径の微小連通気孔が無数に構成されていることを特徴とするフエノール樹 脂多孔質砥石。  A phenol resin porous whetstone, characterized in that the phenol resin binder has a three-dimensional network structure so that a number of minute interconnected pores smaller in diameter than the abrasive grains are formed.
2 . 前記微小連通気孔よりも十分に大径の独立気孔を多数有することを特徴とす る請求項 1記載のフヱノール樹脂多孔質砥石。  2. The phenolic resin porous grindstone according to claim 1, characterized by having a large number of independent pores having a diameter sufficiently larger than the minute interconnected pores.
3 . 砥粒がフエノール樹脂結合剤によって相互に結合されてなる組織中に多数の 気孔を有するフエノ一ル樹脂多孔質砥石の製造方法であって、 3. A method for producing a phenolic resin porous whetstone having a large number of pores in a structure in which abrasive grains are mutually bonded by a phenolic resin binder,
砥粒、 フエノール樹脂水溶液及び硬化剤を均一に混合 ·攪拌して流動性混合物 とする混合攪拌工程と、  A mixing and stirring step of uniformly mixing and stirring the abrasive grains, the aqueous phenol resin solution and the curing agent to form a fluid mixture,
該流動性混合物を所定の型内に流し込む流し込み工程と、  A pouring step of pouring the fluid mixture into a predetermined mold,
該所定の型内で前記流動性混合物を硬化させる硬化工程と、  A curing step of curing the fluid mixture in the predetermined mold,
該硬化工程で硬化させて得られた硬化成形体を乾燥させて、 該硬化成形体から 水分を除去する乾燥工程と  A drying step of drying the cured molded article obtained by curing in the curing step, and removing water from the cured molded article;
を、 含むことを特徴とするフエノール樹脂多孔質砥石の製造方法。  A method for producing a phenolic resin porous grindstone, comprising:
4 . 砥粒がフエノール樹脂結合剤によって相互に結合されてなる組織中に多数の 気孔を有するフエノール樹脂多孔質砥石の製造方法であつて、 4. A method for producing a phenolic resin porous whetstone having a large number of pores in a structure in which abrasive grains are mutually bonded by a phenolic resin binder,
砥粒、 フエノ一ル樹脂水溶液、 硬化剤、 および界面活性剤を混合した流動性混 合物を攪拌することにより、 該砥粒、 該フエノール樹脂水溶液、 該硬化剤および 該界面活性剤を均一に混合するとともに、 該流動性混合物中に多数の気泡を創成 させる混合攪拌工程と、  By stirring the fluid mixture obtained by mixing the abrasive grains, the aqueous phenol resin solution, the hardener, and the surfactant, the abrasive grains, the aqueous phenol resin solution, the hardener, and the surfactant are uniformly dispersed. Mixing and agitating to create a number of bubbles in the fluid mixture;
該流動性混合物を所定の型内に流し込む流し込み工程と、  A pouring step of pouring the fluid mixture into a predetermined mold,
該所定の型内で前記流動性混合物を硬化させる硬化工程と、  A curing step of curing the fluid mixture in the predetermined mold,
該硬化工程で硬化させて得られた硬化成形体を乾燥させて、 該硬化成形体から 水分を除去する乾燥工程と を、 含むことを特徴とするフエノ一ル樹脂多孔質砥石の製造方法。 A drying step of drying the cured molded article obtained by curing in the curing step, and removing water from the cured molded article; A method for producing a phenolic resin porous whetstone, comprising:
5 . 前記フエノール樹脂水溶液がアルカリ性水溶液であり、 且つ、 前記硬化剤が 有機エステル硬化剤である請求項 3または 4記載のフエノール樹脂多孔質砥石の 製造方法。  5. The method according to claim 3, wherein the aqueous phenol resin solution is an alkaline aqueous solution, and the curing agent is an organic ester curing agent.
6 . 前記界面活性剤がァニオン性或いは非イオン性界面活性剤である請求項 4記 載のフエノ一ル樹脂多孔質砥石の製造方法。  6. The method for producing a phenolic resin porous grindstone according to claim 4, wherein the surfactant is an anionic or nonionic surfactant.
PCT/JP2001/003808 2000-05-10 2001-05-02 Porous phenol resin grindstone and method for its preparation WO2001085394A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001582033A JPWO2001085394A1 (en) 2000-05-10 2001-05-02 Phenolic resin porous whetstone and method for producing the same
AU52681/01A AU5268101A (en) 2000-05-10 2001-05-02 Porous phenol resin grindstone and method for its preparation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-137083 2000-05-10
JP2000137083 2000-05-10

Publications (1)

Publication Number Publication Date
WO2001085394A1 true WO2001085394A1 (en) 2001-11-15

Family

ID=18644922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003808 WO2001085394A1 (en) 2000-05-10 2001-05-02 Porous phenol resin grindstone and method for its preparation

Country Status (3)

Country Link
JP (1) JPWO2001085394A1 (en)
AU (1) AU5268101A (en)
WO (1) WO2001085394A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554811A (en) * 2010-12-31 2012-07-11 东莞市常晋凹版模具有限公司 Method for preparing grinding wheel according to wet method
JP2013154424A (en) * 2012-01-27 2013-08-15 Tokyo Seimitsu Co Ltd Cutting blade and method for manufacturing the same
JP2013154425A (en) * 2012-01-27 2013-08-15 Tokyo Seimitsu Co Ltd Cutting blade
US9266220B2 (en) 2011-12-30 2016-02-23 Saint-Gobain Abrasives, Inc. Abrasive articles and method of forming same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04256581A (en) * 1991-02-08 1992-09-11 Kanebo Ltd Composite grinding wheel
JPH0639732A (en) * 1992-11-27 1994-02-15 Kanebo Ltd Manufacture of synthetic grinding wheel
JPH10138149A (en) * 1996-11-05 1998-05-26 Noritake Co Ltd Manufacture of porous resinoid grinding wheel
JPH10329031A (en) * 1997-05-29 1998-12-15 Hitachi Chem Co Ltd Semiconductor element polishing method and manufacture of resin grinding wheel used therefor
EP0963813A1 (en) * 1997-11-28 1999-12-15 Noritake Co., Limited Resinoid grinding wheel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04256581A (en) * 1991-02-08 1992-09-11 Kanebo Ltd Composite grinding wheel
JPH0639732A (en) * 1992-11-27 1994-02-15 Kanebo Ltd Manufacture of synthetic grinding wheel
JPH10138149A (en) * 1996-11-05 1998-05-26 Noritake Co Ltd Manufacture of porous resinoid grinding wheel
JPH10329031A (en) * 1997-05-29 1998-12-15 Hitachi Chem Co Ltd Semiconductor element polishing method and manufacture of resin grinding wheel used therefor
EP0963813A1 (en) * 1997-11-28 1999-12-15 Noritake Co., Limited Resinoid grinding wheel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102554811A (en) * 2010-12-31 2012-07-11 东莞市常晋凹版模具有限公司 Method for preparing grinding wheel according to wet method
CN102554811B (en) * 2010-12-31 2014-04-16 东莞市常晋凹版模具有限公司 Method for preparing grinding wheel according to wet method
US9266220B2 (en) 2011-12-30 2016-02-23 Saint-Gobain Abrasives, Inc. Abrasive articles and method of forming same
JP2013154424A (en) * 2012-01-27 2013-08-15 Tokyo Seimitsu Co Ltd Cutting blade and method for manufacturing the same
JP2013154425A (en) * 2012-01-27 2013-08-15 Tokyo Seimitsu Co Ltd Cutting blade

Also Published As

Publication number Publication date
JPWO2001085394A1 (en) 2004-01-08
AU5268101A (en) 2001-11-20

Similar Documents

Publication Publication Date Title
US8546457B2 (en) Method for the production of abrasive foams
JP4854269B2 (en) Resinoid grinding wheel manufacturing method
JP2009542878A (en) Method for cutting open-cell foams based on aminoplastics and method for producing flocs or particles
KR100287609B1 (en) Abrasive articles containing abrasive aids dispersed in a polymer mixture binder
EP3359588A1 (en) Epoxy-functional silane coupling agents, surface-modified abrasive particles, and bonded abrasive articles
JP2005171063A (en) Resin complex
AU2008302173A1 (en) Phenolic resin formulation and coatings for abrasive products
TWI523909B (en) Liquid resin composition for abrasive articles
JP2007223004A (en) Resinoid grinding wheel manufacturing method
CN1481296A (en) Compostie abrasive particles and method of manufacture
CA1074044A (en) Spray-dried phenolic adhesives
JPH0459806A (en) Production of macroporous-type spherical phenol-formaldehyde resin
CN101883801B (en) Alkanolamine-modified phenolic resin formulation and coatings for abrasive products
WO2001085394A1 (en) Porous phenol resin grindstone and method for its preparation
JP3958041B2 (en) Phenol resin porous grinding wheel manufacturing method
US3177056A (en) Process for making a porous abrasive body and product thereof
JP2004337986A (en) Cylindrical resin grindstone and method of manufacturing the same
EP0057392A2 (en) Abrasive articles
KR20070046748A (en) A method for producing resinoid grinding wheel
JP6216637B2 (en) Self-hardening mold manufacturing method, mold binder kit, and mold composition
JPH0687170A (en) Production of reclaimed polyurethane foam molded product
JP2007217517A (en) Rotor for rotary film-forming apparatus and method of manufacturing the same
JP2005029603A (en) Foamed molded article and method for producing the same
JP2696776B2 (en) Synthetic whetstone and method of manufacturing the same
WO2005072236A2 (en) Compostion and process for inhibiting the movement of free flowing particles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 582033

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase