WO2001083414A1 - Process for making a (3r,3'r)-zeaxanthin precursor - Google Patents

Process for making a (3r,3'r)-zeaxanthin precursor Download PDF

Info

Publication number
WO2001083414A1
WO2001083414A1 PCT/US2000/018810 US0018810W WO0183414A1 WO 2001083414 A1 WO2001083414 A1 WO 2001083414A1 US 0018810 W US0018810 W US 0018810W WO 0183414 A1 WO0183414 A1 WO 0183414A1
Authority
WO
WIPO (PCT)
Prior art keywords
epilutein
lutein
mixture
luteιn
ether
Prior art date
Application number
PCT/US2000/018810
Other languages
French (fr)
Inventor
Frederick Khachik
Original Assignee
University Of Maryland, College Park
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Maryland, College Park filed Critical University Of Maryland, College Park
Priority to AU2000262086A priority Critical patent/AU2000262086A1/en
Priority to US10/240,172 priority patent/US6818798B1/en
Publication of WO2001083414A1 publication Critical patent/WO2001083414A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C403/00Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone
    • C07C403/24Derivatives of cyclohexane or of a cyclohexene or of cyclohexadiene, having a side-chain containing an acyclic unsaturated part of at least four carbon atoms, this part being directly attached to the cyclohexane or cyclohexene or cyclohexadiene rings, e.g. vitamin A, beta-carotene, beta-ionone having side-chains substituted by six-membered non-aromatic rings, e.g. beta-carotene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/56Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by isomerisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Definitions

  • the invention is in the field of organic chemistry.
  • the invention relates in part to a process for conversion of (3R,3'R,6'R)-lutein to (3R,3'S,6'R)-lutein (3'-Epilutein), a carotenoid precursor for industrial production of naturally occurring (3R,3'R)-zeaxanthin.
  • U.S. Patent No. 5,523,494, European Patent Appl. 834536 and WO99/03830 describe the conversion of commercially available (3R,3'R,6'R)- lutem or crude mangold meal to (3R,3'S,me.r ⁇ )-zeaxan-h ⁇ n by base-catalyzed isomenzation.
  • (3R,3'S,me_sO)-Zeaxanthm is absent from foods and its stereochemistry is different from that of dietary (3R,3'R)-zeaxanthm.
  • WO97/31894 descnbes a process wherein (3R,3'R,6'R)-lute ⁇ n is first converted to (3R.3'S,meso)-zeaxanth ⁇ n and then is oxidized to ⁇ , ⁇ -carotene- 3,3'-d ⁇ one.
  • ⁇ , ⁇ -carotene-3,3'-d ⁇ one is reduced with sodium or potassium borohydnde to give a racemic mixture of (3R,3 R)- zeaxantmn, (3R,3'S,me._> ⁇ )-zeaxanth ⁇ n, and (3S,3'S)-zeaxanth ⁇ n (Scheme 1).
  • (3R,3'R,6'R)-lute ⁇ n can be epimenzed at C-3' in one convenient step using dilute acids to give a 1:1 diastereomenc mixture of 3 -ep ⁇ lute ⁇ n and (3R,3'R,6'R)-lute ⁇ n as shown in
  • a de of 54-90% can be accomplished by a) solvent extraction, b) preferential crystallization, c) Soxhlet extraction, d) enzymatic acylation, and e) supercntical extraction with carbon dioxide of either an about 1 1 mixture of (3R,3'R,6'R)-lute ⁇ n and 3 -ep ⁇ lute ⁇ n or the partially separated mixture (with ratio of 3 4 to 3 5) Only enzymatic acylation of the 1 1 diastereomenc mixture of 3'- epilutem and (3R,3'R,6'R)-lute ⁇ n, affords 3 -ep ⁇ lutem in 90% de whereas the other methods require additional punfication to increase de of this carotenoid
  • the partially separated mixture can be subjected to low temperature crystallization to crystallize most of the (3R,3'R,6'R)-lute ⁇ n and increase the de of 3 -ep ⁇ lute ⁇ n in the mother liquor of this crystallization Under these conditions, most of the (3R,3
  • the invention relates to a method of epimenzmg (3R,3'R,6'R)-lute ⁇ n to give a mixture of (3R,3'R,6'R)-lute ⁇ n and 3 -ep ⁇ lute ⁇ n, compnsmg reacting (3R,3'R,6'R)-lute ⁇ n in the presence of aqueous acid in a water miscible organic solvent to give a mixture of (3R,3'R,6'R)-lute ⁇ n and 3'- epilutem
  • the invention further relates to a method of punfying 3'-ep ⁇ lutem from a mixture of (3R,3'R,6'R)-lutem and 3 -ep ⁇ lute ⁇ n compnsing extracting the mixture of (3R,3'R,6'R)-lute ⁇ n and 3 -ep ⁇ lute ⁇ n with an organic solvent and recovenng the 3'-ep ⁇ lutem from the organic solvent
  • the invention further relates to a method of purifying 3'-epilutein from a mixture of (3R,3'R,6'R)-lutein and 3'-epilutein comprising low temperature crystallization of the mixture in a C M alcohol and recovering the 3'-epilutein from the alcohol.
  • the invention further relates to a method of purifying 3'-epilutein from a mixture of (3R,3'R,6'R)-lutein and 3'-epilutein comprising:
  • the invention further relates to a method of purifying 3'-epilutein from a mixture of (3R,3'R,6'R)-lutein and 3'-epilutein comprising extracting the mixture with supercritical carbon dioxide and evaporating the carbon dioxide to give purified 3'-epilutein.
  • the invention further relates to a method for producing 3'-epilutein comprising:
  • the invention further relates to a method for converting (3R,3'R,6'R)- lutein to a mixture of 3 '-epilutein and (3R,3'R,6'R)-lutein comprising:
  • the invention further relates to a method for the separation of 3'- epilutein from a mixture of 3'-epilutein and (3R,3'R,6'R)-lutein by enzymatic acylation, comprising reacting 3 '-epilutein with an acyl donor in the presence of a lipase in pentane, hexane or TBME at 36°C to convert 95% of 3 '-epilutein to 3 '-epilutein-3 '-acetate while (3R,3'R,6'R)-lutein remains unreacted; subjecting the resulting 3 '-epilutein-3 '-acetate to hydrolysis with alcoholic potassium or sodium hydroxide at ambient temperature; removing the base by extracting the product with water and an organic solvent; and evaporating the solvent to obtain diastereomeric luteins comprising 95% 3'-epilutein and 5% (3R,3'R,6'R)-lutein as
  • the invention further relates to a method of preparing 3 '-epilutein-3 '- acetate comprising reacting a mixture of (3R,3'R,6'R)-lutein and 3'-epilutein with an acyl donor in the presence of lipase PS from Pseudomonas cepacia or lipase AK from Pseudomonas fluorescens.
  • the invention further relates to a method for separating 3 '-epilutein from a diastereomenc mixture of 3 '-epilutein and (3R,3'R,6'R)-lute ⁇ n compnsmg extracting the diastereomenc mixture of lutems with carbon dioxide thereby extracting most of 3 -epilutein with carbon dioxide and leaving behind most of the (3R,3'R,6'R)-lute ⁇ n thus yielding a product consisting of 86% 3 -epilutein and 14% PR ⁇ R ⁇ TO-lutem.
  • the invention further relates to a method for separating 3 -epilutein from a diastereomenc mixture of 3'-ep ⁇ lute ⁇ n and (3R,3'R,6'R)-lute ⁇ n compnsmg low temperature crystallization with an alcohol at -70°C to crystallize most of the (3R,3'R,6'R)-lute ⁇ n and increasing the punty of 3 - epilute in the mother liquor of this crystallization; and evaporation of the alcohol; thus obtaining red crystals containing 94% 3 '-epilutein and 6% (3R,3'R,6'R)-lute ⁇ n.
  • the crude saponified extract of mangold flower containing (3R,3'R,6'R)-lute ⁇ n and several minor carotenoids may be prepared according to the process descnbed in WO99/20587. (3R,3'R,6'R)-Lute ⁇ n (97% punty) and several minor carotenoids may also be punfied from this extract according to this procedure.
  • Commercially available 70% pure (3R,3'R,6'R)-lute ⁇ n may be obtained from Kemin Industnes (Des Moines, Iowa).
  • the crude saponified extract from Mangold flowers as well as the 70% and 97% pure lutem may all be successfully employed as the starting matenals in the current invention.
  • Lipase AK from Pseudomonas fluorescens (“Amano” 20) and lipase PS from Pseudomonas cepacia (“Amano”) may be obtained from Amano Enzyme U.S.A. Co., Ltd. (Lombard, IL). Vinyl acetate (Aldrich Chemical Co., Milwaukee, WI) and all other commercial grade solvents were used without further purification.
  • the carotenoid composition of the 70% and 97% pure lutein is shown in Table 1. Purification of 70% lutein by crystallization results in the removal of other nutritionally important carotenoids which are present as minor constituents in marigold flowers. Therefore, the advantage of using the 70% pure lutein as starting material in this invention is that these minor carotenoids can be carried over and preserved in the final product. Alternatively, these minor carotenoids may be removed from the final product. (SR ⁇ .)- zeaxanthin, by crystallization.
  • a second method uses lmidate esters as potential replacements for diethyl azodicarboxylate and tnphenylphosphme m the Mitsunobu reaction (Barrett, et al., J. Org. Chem. 63:6273-6280 (1998)). While it has been possible to increase the yield of the Mitsunobu reaction to about 20% under carefully dned reaction conditions, the reaction of lmidate esters with lutein only resulted in elimination and the formation of lutein dehydration products.
  • the preparation of 3 -epilutein from (3R.3 ⁇ ,611)- lutein by the Mitsunobu reaction is not suitable for industrial scale production.
  • the present invention provides a convenient method for converting commercially available (3R,3'R,6'R)-lute ⁇ n to 3 '-epilutein.
  • This method compnses: 1) epimenzation of (3R,3'R,6'R)-lute ⁇ n to an about 1:1 mixture of (3R,3'R,6'R)-lute ⁇ n and 3 -epilutein and 2) at least partial separation of (3R,3'R,6'R)-lute ⁇ n from 3 '-epilutein.
  • the de of 3 '-epilutein may be increased to 88-90% by low temperature crystallization
  • 3 '-Epilutein may then be converted to (3R,3'R)- zeaxanthm by well known methods
  • Separation of 3 -epilutein from (3R,3'R,6'R)-lute ⁇ n may be accomplished by several methods These methods include a) solvent extraction, b) preferential crystallization, c) Soxhlet extraction, d) enzymatic acylation, and e) supercntical extraction with carbon dioxide It has been found that by employing an appropnate solvent, the partial separation of 3 - epilutein and (3R,3'R,6'R)-lute ⁇ n can be accomplished as part of the work-up of the epimenzation reaction by preferential crystallization of the (3R,3'R,6'R)- lutein
  • an about 1 1 mixture of 3 '-epilutein and (3R,3'R,6'R)-lute ⁇ n is separated by enzymatic acylation to give a 90% de of 3 - epilutein, thus dispensing the need for a separate partial separation
  • This reaction employs an aqueous acid to effect the epimenzation of (3R,3'R,6'R)-lute ⁇ n to an about 1 1 mixture of 3 '-epilutein and unchanged (3R,3'R,6'R)-lute ⁇ n at ambient temperature in almost quantitative yield
  • Prefened aqueous acids for performing this process include hydrochlonc, sulfunc, phosphonc acid, tnfluoroacetic acid (TFA) and the like
  • the reaction should be a single phase reaction.
  • the ratio of dilute aqueous acid to water miscible organic solvent that is used m such an expenment may vary.
  • enough water miscible organic solvent is added to dissolve (3R,3'R,6'R)-lute ⁇ n
  • the aqueous acid is then added in an amount that allows (3R,3'R,6'R)-lute ⁇ n to remain in solution.
  • the acid concentration used may be from about 0.2 N to about 1 N, most preferably about 0.3 N to 0.75 N
  • Preferred water miscible organic solvents for this reaction include tetrahydrofuran (THF), acetone and dimethylsulfoxide (DMSO).
  • THF tetrahydrofuran
  • DMSO dimethylsulfoxide
  • the organic solvents for this partition may be a lower dialkyl ether, a lower alkyl ester of acetic acid, methylene chlonde, chloroform, 1,2-d ⁇ chloroethane and carbon tetrachlonde.
  • Preferred ethers include dnsopropyl ether, tert-butyl methyl ether (TBME), diethyl ether and the like.
  • Prefened lower alkyl esters of acetic acid include ethyl acetate, methyl acetate, butyl acetate and the like.
  • the starting matenal for the epimenzation reaction can be crude saponified extracts of mangold flowers, 70% commercially available lutein or 97% pure lutein
  • substantial quantities of (3R,3'R,6'R)-lute ⁇ n preferentially precipitate or crystallize and can be removed by filtration.
  • the resulting filtrate from this simple work-up is ennched in 3 '-epilutein.
  • composition of carotenoids in the filtrate from work-up with TBME is: (3R,3'R,6'R)-lute ⁇ n (21%), 3 -epilutein (73%), (3R,3 T -zeaxantmn (1%), and other minor carotenoids (5%).
  • the composition of carotenoids in the solids from this work-up is: (3R,3'R,6'R)-lute ⁇ n (64%), 3 -epilutein (19%),
  • 3 '-Epilutein may be separated or purified from a mixture of 3 -epilutein and (3R,3'R,6'R)-lutein by any one of a number of methods described herein and combinations thereof. It is intended that the terms “separating” and “purifying” mean that at least a partial separation or purification is achieved.
  • Separation and removal of (3R,3'R,6'R)-lutein from 3'-epilutein according to the present invention can give a purity of up to 95% (90% de) of 3'-epilutein.
  • the starting material can be either an about 1: 1 mixture of (3R,3'R,6'R)-lutein and 3'-epilutein or the partially separated mixture of the two as described above. According to the present invention, at least a partial separation is achieved.
  • the 3'-epilutein has a de greater than 50%.
  • 3'-epilutein is slightly more soluble than (3R,3'R,6'R)-lutein in non-polar hydrocarbon solvents.
  • the enrichment of 3 '-epilutein in poorly separated mixtures may be further increased by low-temperature crystallization of (3R,3'R,6'R)-lutein from a C ⁇ - 4 alcohol.
  • Alcohols suitable for this crystallization include ethanol, methanol, propanol, 2-propanol and the like.
  • the temperature at which the crystallization may be performed is between about -80° C and about -40° C.
  • the crystallization is performed at about -70° C.
  • the mother liquor from this crystallization was shown to consist of up to 94% of 3'- epilutein and 6% (3R,3'R,6'R)-lutein.
  • the low solubility of 3'-epilutein in hexane is indicative of the large volumes of this solvent needed for the partial separation of 3'-epilutein from (3R,3'R,6'R)-lutein by virtue of their differential solubilities Therefore, a co-solvent may be employed to increase the solubility of 3 '-epilutein and at the same time reduce the volume of the hydrocarbon solvent.
  • a co-solvent may be employed to increase the solubility of 3 '-epilutein and at the same time reduce the volume of the hydrocarbon solvent.
  • Prefened ethers include diethyl ether, TBME, dnsopropyl ether and the like.
  • Prefened non-polar hydrocarbon solvents include pentane, hexane, heptane, petroleum ether and the like
  • the prefened petroleum ether is that fraction which boils at 35-60°C.
  • the ratio of non-polar hydrocarbon solvent (or petroleum ether) to ether may range from 4 1, to about 2: 1, more preferably, about 3.1
  • One of ordinary skill in the art may determine other ratios with no more than routine expenmentation
  • the mother liquor is then evaporated and subjected to low- temperature crystallization using an alcohol such as ethanol or methanol to further remove (3R,3R,6R)-lute ⁇ n
  • an alcohol such as ethanol or methanol to further remove (3R,3R,6R)-lute ⁇ n
  • the mother liquor from this crystallization consists of 3 -epilutein (94%) and (3R,3'R,6'R)-lute ⁇ n (6%).
  • an about 1:1 mixture of (3R,3'R,6'R)-lute ⁇ n and 3 -epilutein was stirred with an alcohol to evaluate the suitability of this single solvent for the partial separation of these carotenoids.
  • the above-mentioned extractions may be performed at a temperature between 15° C and 35° C.
  • the extractions are performed at room temperature.
  • the period of time required to perform the extraction may vary from about 15 minutes to several hours, most preferably 30 minutes to 1 hour.
  • One of ordinary skill in the art may determine the amount of time necessary for complete extraction with no more than routine experimentation.
  • the amount of solvent needed to separate a mixture of QR.S' ⁇ 'R)- lutein from 3'-epilutein may be defined in terms of milliliters of non-polar hydrocarbon solvent and milliliters of the ether, per gram of (3R,3'R,6'R)- lutein/3 '-epilutein mixture; or the milliliters of alcohol per gram of (3R,3'R,6'R)-lutein/3 '-epilutein mixture.
  • the amount of non-polar hydrocarbon solvent may be from about 80 to about 120 ml and the amount of ether may be from about 20 to about 60 ml.
  • the amount of non-polar hydrocarbon solvent is about 90 ml and the amount of ether is about 30 ml.
  • the amount of solvent may be from about
  • Preferential crystallization is another technique that may be used to separate 3 -epilutein from (3R,3'R,6'R)-lutein.
  • preferential crystallization takes advantage of the differential solubilities of 3'-epilutein and (3R,3R,6'R)- lutein.
  • a mixture of 3'-epilutein and (3R,3'R,6'R)-lutein may be completely dissolved in a solvent or mixture of solvents. Then, a second solvent may be added which will cause (3R,3R,6'R)-lutein to preferentially crystallize or precipitate out of solution.
  • the resulting solution, rich in 3 '-epilutein, may be separated from the precipitate, rich in (3R,3R,6'R)-lutein, by filtration.
  • the preferential crystallization technique is carried out as part of the workup from the epimerization reaction.
  • Soxhlet extraction of a 1: 1 diastereomeric mixture of (3R,31 ⁇ ,613.)- lutein and 3 '-epilutein with non-polar hydrocarbons allowed the partial separation of these carotenoids.
  • the penod of time required to perform the extraction may vary from about 3 to 8 hours, most preferably 4 to 6 hours.
  • One of ordinary skill in the art may determine the amount of time necessary for complete extraction with no more than routine expenmentation.
  • the amount of non-polar hydrocarbon solvent necessary to effect the partial separation of (3R,3'R,6'R)-lute ⁇ n from 3 -ep ⁇ lute ⁇ n is from 100 to about 500 ml per gram of mixture, more preferably about 200 to 400 ml per gram of mixture.
  • the non-polar hydrocarbon solvent used may be a single solvent or a mixture of two or more of the above-mentioned solvents
  • (3R,3'R,6'R)-Lute ⁇ n and 3'-ep ⁇ lutem can be best separated by enzymatic acylation m an organic solvent in the presence of a lipase and an acyl donor
  • Prefened hpases for the acylation include AK from Pseudomonas fluorescens ("Amano" 20) and lipase PS from Pseudomonas cepacia (“Amano")
  • Prefened organic solvents for the acylation include pentane, hexane, TBME, petroleum ether and the like.
  • Acyl donors include C 2 - 3 vinyl acetates.
  • Prefened C 2 - 3 vinyl acetates include vinyl acetate, isopropenyl acetate and the like.
  • the penod of time required to completely acylate 3'- epilutein may vary from about 36 to 96 hours, most preferably about 48 to 72 hours.
  • One of ordinary skill in the art may determine the amount of time necessary to complete the acylation reaction with no more than routine expenmentation
  • the weight of lipase needed to conduct the enzymatic acylation per gram of (3R,3'R,6'R)-lute ⁇ n/3'-ep ⁇ lute ⁇ n mixture may vary from about 0 1 to
  • Prefened ethers include diethyl ether, TBME, dnsopropyl ether and the like.
  • Preferred non- polar hydrocarbons include pentane, hexane, heptane and the like.
  • Prefened esters include ethyl acetate, methyl acetate, butyl acetate and the like.
  • an epimenc mixture of (3R,3'R,6'R)-lute ⁇ n and 3 -epilutein prepared from 97% pure lutein is acylated with vmyl acetate in the presence of lipase AK or PS at about 36°C in pentane or hexane. After 48 h with hpase AK, approximately 5% of 3 '-epilutein remains unreacted.
  • lipase PS react much more slowly than lipase AK and after 72 h, 10% of 3'-ep ⁇ lute ⁇ n is found unestenfied
  • an organic solvent e.g., THF, diethyl ether, TBME, dnsopropyl ether
  • the enzyme is removed by filtration, and the product is evaporated to dryness.
  • the residue is washed with pentane or hexane at about 0°C to remove 3 '-ep ⁇ lute ⁇ n-3 '-acetate, leaving behind (3R,3'R,6'R)-lute ⁇ n and (3R,3 ⁇ -zeaxanth ⁇ n.
  • the product After hydrolysis of the 3 - ep ⁇ lute ⁇ n-3 -acetate, for example with alcoholic alkali, the product consists of mainly 3 -epilutein and (3R,3R,6'R)-lute ⁇ n is only present as a minor diastereomer.
  • Prefened alkali for the hydrolysis of 3 -ep ⁇ lutem-3 '-acetate include potassium hydroxide, sodium hydroxide, calcium hydroxide, ammonium hydroxide, methanohc ammonia and the like.
  • the composition of carotenoids in the extracted fraction was: 3'-epilutein (83%), (3R,3R,6'R)-lutein (13%), Z-luteins (2%), and anhydrolutein (2%). Therefore, under these conditions, 3 '-epilutein can be obtained in 73% de.
  • 3 '-epilutein Based on the solubility difference between (3R,3R,6R)- lutein and 3'-epilutein, the use of a hydrocarbon (e.g., hexane, heptane) or an alcohol (e.g., ethanol, methanol) cosolvent facilitates the extraction of 3 - epilutein in large-scale operations.
  • the extraction with supercritical carbon dioxide is preferably performed at a pressure from about 300 to about 350 atmospheres.
  • the de of 3 -epilutein in these mixtures can be increased by low temperature crystallization of (SR ⁇ R ⁇ R)- lutein from a C ⁇ - alcohol.
  • Alcohols suitable for this crystallization include ethanol, methanol, propanol, 2-propanol and the like.
  • the temperature at which the crystallization may be performed is between -80° C and —40° C.
  • the crystallization is performed at about -70° C.
  • the crystallization is performed using the aforementioned prefened solvents in an amount from about 100 to 180 ml per gram of (3R,3'R,6'R)-lutein/3'-epilutein mixture, preferably from 130 to 150 ml per gram of (3R,3'R,6'R)-lutein/3'-epilutein mixture.
  • ethanol for example, nearly half of the 3'-epilutein with 94% purity remains soluble at low temperature and is removed by filtration.
  • the solids from this crystallization consists of a mixture of 3'-epilutein (80%) and (3R,3'R,6'R)-lutein (20%) which can be recycled and subjected to further purification by low temperature crystallization.
  • 3 -Epilutein obtained by the methods described above may subsequently be converted to (3R,3R')-zeaxanthin by base catalyzed isomerization (see Scheme 2) by the methods described in U.S. Patent No. 5,780,693 and European Patent Appl. 834536.
  • conversion of 3'- epilutein to (3R,3R')-zeaxanthin by base-catalyzed isomerization involves heating 3 '-epilutein in a mixture of aqueous alkali metal hydroxide solution in either dimethyl sulphoxide (DMSO) or a saturated aliphatic and/or aromatic hydrocarbon solvent, at temperatures above 50° C.
  • DMSO dimethyl sulphoxide
  • phase transfer catalyst a hydrocarbon solvent
  • Preferred hydrocarbon solvents include pentane, hexane, heptane, high boiling petroleum ether, benzene, toluene or mixtures thereof.
  • Prefened alkali metal hydroxides include sodium hydroxide and potassium hydroxide.
  • Phase transfer catalysts that may be used include tricaprylmethylammonium chloride, tetra-(n-butyl)-ammonium hydrogen sulfate, benzalkonium chloride, benzyl tri-(n-butyl)ammonium bromide, tri-(n-butyl)ammonium iodide and the like.
  • HPLC only 10% of 3'-epilutein had remained unesterified.
  • the HPLC analysis of the crude product showed the presence of 3 '-epilutein-3 -acetate (36.5%), (3R,3R,6R)-lutein (46.5%), 3'-epilutein (10%), (3R,3R)-zeaxanthin (5%), Z- luteins (1%), and anhydrolutein (1%).
  • THF (15 ml) was added and stirring continued for 5 minutes to dissolve all the carotenoids.
  • the enzyme was removed by filtration and the filtrate was evaporated to dryness.
  • the residue was stined with hexane (30 ml) for 5 minutes and filtered.
  • the hexane soluble fraction was shown by HPLC to consist of mostly 3 '-epilutein-3 '-acetate as well as minor quantities of (3R,3'R,6'R)- lutem, 3'-ep ⁇ lute ⁇ n, Z-lutems, and anhydrolutein
  • solvent e ⁇ aporat ⁇ on this fraction was re-dissolved in THF (10 ml) and treated with 10 ml of methanohc potassium hydroxide (10%) The mixture was stirred at room temperature for an hour and the product was partitioned between water (20 ml) and TBME (20 ml).
  • Step one used 100 g of carbon dioxide at 300 atmosphere and step two 50 g of carbon dioxide at 375 atmosphere. Total of 2 4 mg of carotenoids was extracted with this 150 g of carbon dioxide. The extracted carotenoids were shown by HPLC to consist of 3 '-epilutein
  • (3R,3R,6'R)-Lutein and (3R,3R)-zeaxanthin are two major dietary carotenoids which have been implicated in the prevention of AMD.
  • (3R,3R,6R)-lutein has been commercially available for a number of years, there are cunently no economically viable process for industrial production of dietary (3R,3R.)-zeaxanthin.
  • (3R,3R,6R)- lutein is converted to 3'-epilutein which, in turn, may be converted to (3R,3R)- zeaxanthin by methods well known in the art.
  • (3R,3R,6'R)-lutein is epimerized at C-3' in a mixture of a water miscible organic solvent and an aqueous acid at ambient temperature to give almost quantitatively an about 1:1 diastereomeric mixture of 3'-epilutein and (3R,3R,6R)-lutein.
  • Work-up of the crude product from this reaction can employ an appropriate solvent or solvent mixture to partially separate these diastereomers via preferential crystallization.
  • the ratio of 3 -epilutein to (3R,3R,6R.)-lutein may range from about 3.3 to 4.0.
  • a poorly separated mixture of diastereomenc luteins may be subjected to low temperature crystallization to obtain 3 '-epilutein in 88% de.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A process for the conversion of (3R,3'R,6'R)-lutein to 3'-epilutein, a carotenoid precursor for industrial production of naturally occurring (3R,3'R)-zeaxanthin, is disclosed.

Description

Process for Making a (3R,3'R)- Zeaxanthin Precursor
Background of the Invention
Field of the Invention
The invention is in the field of organic chemistry. The invention relates in part to a process for conversion of (3R,3'R,6'R)-lutein to (3R,3'S,6'R)-lutein (3'-Epilutein), a carotenoid precursor for industrial production of naturally occurring (3R,3'R)-zeaxanthin.
Related Art
As a result of a high intake of fruits and vegetables, 34 carotenoids and their metabolites are found in human serum and tissues at varying concentrations. Among these, only two dietary carotenoids, (3R,3'R,6'R)-lutein and (3R,3Ε.)-zeaxanthin, accumulate in the human retina. Epidemiological and experimental data suggest that the function of these carotenoids is to protect the photo-sensing cells in the human retina, and particularly macula, from exposure to short-wavelength blue light, and thus prevent age-related macular degeneration (AMD) (Bone, R.A., et al., Invest. Ophthalmol. Vis. Sci. 34:2033-2040 (1993); Seddon, J.M., et al., J. Am. Med. Assoc. 272: 1413-1420 (1994)).
While several patented processes for the industrial production of (3R,3'R,6'R)-lutein have been reported, (3R,3Ε.)-zeaxanthin is not commercially available. Currently the most promising route to this carotenoid is by chemical synthesis (Widmer et al., Helv. Chim. Acta 73:861-867 (1990)). However, the production of (3R,3'R)-zeaxanthin by total synthesis can be quite costly. Furthermore, the absence of possible residual contaminants in (3R,3R)- zeaxanthin prepared by synthesis must be established before this carotenoid can be safely used as a nutritional supplement or food coloring additive.
U.S. Patent No. 5,523,494, European Patent Appl. 834536 and WO99/03830 describe the conversion of commercially available (3R,3'R,6'R)- lutem or crude mangold meal to (3R,3'S,me.rø)-zeaxan-hιn by base-catalyzed isomenzation. (3R,3'S,me_sO)-Zeaxanthm is absent from foods and its stereochemistry is different from that of dietary (3R,3'R)-zeaxanthm.
WO97/31894 descnbes a process wherein (3R,3'R,6'R)-luteιn is first converted to (3R.3'S,meso)-zeaxanthιn and then is oxidized to β,β-carotene- 3,3'-dιone. In the final step of this process β,β-carotene-3,3'-dιone is reduced with sodium or potassium borohydnde to give a racemic mixture of (3R,3 R)- zeaxantmn, (3R,3'S,me._>σ)-zeaxanthιn, and (3S,3'S)-zeaxanthιn (Scheme 1).
Figure imgf000003_0001
Figure imgf000003_0002
Scheme 1. Commercially available lutein and various configurational isomers of zeaxanthin.
Therefore with the exception of total synthesis, the other reported procedures either prepare (3R,3'S,me5o)-zeaxanthιn, which is not the natural dietary form of this carotenoid, or use chemical reagents and additional steps to prepare a racemic mixture of (3R,3Ε.)-zeaxanthιn, (3R,3'S,mesø)- zeaxanthin, and (3S,3'S)-zeaxanthιn. The present invention seeks to produce a precursor to (3R,3'R)- zeaxanthm in high diastereomenc excess (de). The precursor may then be transformed to (3R,3Η.)-zeaxanthιn by methods that are well known in the art
Summary of the Invention
According to the present invention, (3R,3'R,6'R)-luteιn can be epimenzed at C-3' in one convenient step using dilute acids to give a 1:1 diastereomenc mixture of 3 -epιluteιn and (3R,3'R,6'R)-luteιn as shown in
Scheme 2.
Figure imgf000004_0001
Scheme 2. Conversion of (3R,3'R,6'R)-lutein to (3R,3'R)-zeaxanthin.
In the course of the work-up of the epimenzation reaction, most of the (3R,3Ps.,6'R)-lutem is removed from this 1: 1 mixture by filtration to produce a diastereomenc mixture in which the ratio of 3 -epιluteιn to (3R,3'R,6'R)-luteιn is in the range of 3.4 to 3.5. A de of 54-90% can be accomplished by a) solvent extraction, b) preferential crystallization, c) Soxhlet extraction, d) enzymatic acylation, and e) supercntical extraction with carbon dioxide of either an about 1 1 mixture of (3R,3'R,6'R)-luteιn and 3 -epιluteιn or the partially separated mixture (with ratio of 3 4 to 3 5) Only enzymatic acylation of the 1 1 diastereomenc mixture of 3'- epilutem and (3R,3'R,6'R)-luteιn, affords 3 -epιlutem in 90% de whereas the other methods require additional punfication to increase de of this carotenoid The partially separated mixture can be subjected to low temperature crystallization to crystallize most of the (3R,3'R,6'R)-luteιn and increase the de of 3 -epιluteιn in the mother liquor of this crystallization Under these conditions, most of the (3R,3'R,6'R)-luteιn is crystallized and can be recovered At any stage of these processes, the recovered solid which is predominantly ennched in (3R,3'R,6'R)-luteιn, can be recycled into the epimenzation reaction The isolated 3'-epιluteιn may then be directly converted to naturally occurnng (3R,3Tl)-zeaxanthιn by base-catalyzed isomenzation (vide supra) All of the above separation procedures can be readily implemented on industnal scale with the advantage that the recovered (3R,3'R,6'R)-luteιn can be recycled and epimenzed to 3'-epιlutem The present invention does not employ any reagents other than commonly used organic solvents and acids which can be safety handled under mild conditions
In particular the invention relates to a method of epimenzmg (3R,3'R,6'R)-luteιn to give a mixture of (3R,3'R,6'R)-luteιn and 3 -epιluteιn, compnsmg reacting (3R,3'R,6'R)-luteιn in the presence of aqueous acid in a water miscible organic solvent to give a mixture of (3R,3'R,6'R)-luteιn and 3'- epilutem
The invention further relates to a method of punfying 3'-epιlutem from a mixture of (3R,3'R,6'R)-lutem and 3 -epιluteιn compnsing extracting the mixture of (3R,3'R,6'R)-luteιn and 3 -epιluteιn with an organic solvent and recovenng the 3'-epιlutem from the organic solvent The invention further relates to a method of purifying 3'-epilutein from a mixture of (3R,3'R,6'R)-lutein and 3'-epilutein comprising low temperature crystallization of the mixture in a CM alcohol and recovering the 3'-epilutein from the alcohol. The invention further relates to a method of purifying 3'-epilutein from a mixture of (3R,3'R,6'R)-lutein and 3'-epilutein comprising:
(a) reacting a mixture of (3R,3'R,6'R)-lutein and 3'-epilutein with an acyl donor in the presence of lipase PS from Pseudomonas cepacia or lipase AK from Pseudomonas fluorescens in an first organic solvent; (b) adding a second organic solvent to dissolve the mixture and removing the enzyme by filtration to give a filtrate;
(c) concentrating the filtrate to give a residue;
(d) adding a C5.7 hydrocarbon or ether to the residue to give a solution in which 3'-epilutein and 3'-epilutein-3'-acetate are preferentially solubilized; (e) filtering the solution to give a filtrate;
(f) hydrolyzing the 3'-epilutein-3'-acetate contained in the filtrate to give 3'-epilutein; and
(g) recovering the 3'-epilutein; thereby obtaining purified 3'-epilutein. The invention further relates to a method of purifying 3'-epilutein from a mixture of (3R,3'R,6'R)-lutein and 3'-epilutein comprising extracting the mixture with supercritical carbon dioxide and evaporating the carbon dioxide to give purified 3'-epilutein.
The invention further relates to a method for producing 3'-epilutein comprising:
(a) epimerizing (3R,3'R,6'R)-lutein to 3'-epilutein in the presence of an aqueous acid in a water miscible organic solvent thereby giving a mixture of (3R,3'R,6'R)-lutein and 3'-epilutein; and
(b) separating 3'-epilutein from (3R,3'R,6'R)-lutein. The invention further relates to a method for converting (3R,3'R,6'R)- lutein to a mixture of 3 '-epilutein and (3R,3'R,6'R)-lutein comprising:
(a) reacting (3R,3'R,6'R)-lutein with an aqueous acid in a solvent at ambient temperature to obtain a crude1 product; (b) neutralizing the crude product with aqueous base; and
(c) removing the water by partitioning the crude product into a water immiscible organic solvent; thus obtaining a crude diastereomeric crystalline mixture of 3 '-epilutein and (3R,3'R,6'R)-lutein. The invention further relates to a method for the separation of 3'- epilutein from a mixture of 3'-epilutein and (3R,3'R,6'R)-lutein by enzymatic acylation, comprising reacting 3 '-epilutein with an acyl donor in the presence of a lipase in pentane, hexane or TBME at 36°C to convert 95% of 3 '-epilutein to 3 '-epilutein-3 '-acetate while (3R,3'R,6'R)-lutein remains unreacted; subjecting the resulting 3 '-epilutein-3 '-acetate to hydrolysis with alcoholic potassium or sodium hydroxide at ambient temperature; removing the base by extracting the product with water and an organic solvent; and evaporating the solvent to obtain diastereomeric luteins comprising 95% 3'-epilutein and 5% (3R,3'R,6'R)-lutein as red crystals. The invention further relates to a method of preparing 3 '-epilutein-3 '- acetate comprising reacting a mixture of (3R,3'R,6'R)-lutein and 3'-epilutein with an acyl donor in the presence of lipase PS from Pseudomonas cepacia or lipase AK from Pseudomonas fluorescens.
The invention further relates to a method for partial separation of 3'- epilutein from a diastereomeric mixture of 3 '-epilutein and (3R,3'R,6'R)-lutein obtained according to the present invention by extracting the crude crystalline mixture with pentane or petroleum ether (b.p. = 35-60°C) in a Soxhlet apparatus to obtain a pentane or petroleum ether soluble fraction comprising of a diastereomeric mixture of 3 '-epilutein (80%) and (3R,3'R,6'R)-lutein (20%), evaporating the solvents to obtain a crystalline mixture ennched in 3 - epilutem.
The invention further relates to a method for separating 3 '-epilutein from a diastereomenc mixture of 3 '-epilutein and (3R,3'R,6'R)-luteιn compnsmg extracting the diastereomenc mixture of lutems with carbon dioxide thereby extracting most of 3 -epilutein with carbon dioxide and leaving behind most of the (3R,3'R,6'R)-luteιn thus yielding a product consisting of 86% 3 -epilutein and 14% PR^R^TO-lutem.
The invention further relates to a method for separating 3 -epilutein from a diastereomenc mixture of 3'-epιluteιn and (3R,3'R,6'R)-luteιn compnsmg low temperature crystallization with an alcohol at -70°C to crystallize most of the (3R,3'R,6'R)-luteιn and increasing the punty of 3 - epilute in the mother liquor of this crystallization; and evaporation of the alcohol; thus obtaining red crystals containing 94% 3 '-epilutein and 6% (3R,3'R,6'R)-luteιn.
Detailed Description of the Invention
Reagents and starting materials
The crude saponified extract of mangold flower containing (3R,3'R,6'R)-luteιn and several minor carotenoids may be prepared according to the process descnbed in WO99/20587. (3R,3'R,6'R)-Luteιn (97% punty) and several minor carotenoids may also be punfied from this extract according to this procedure. Commercially available 70% pure (3R,3'R,6'R)-luteιn may be obtained from Kemin Industnes (Des Moines, Iowa). The crude saponified extract from Mangold flowers as well as the 70% and 97% pure lutem may all be successfully employed as the starting matenals in the current invention. Lipase AK from Pseudomonas fluorescens ("Amano" 20) and lipase PS from Pseudomonas cepacia ("Amano") may be obtained from Amano Enzyme U.S.A. Co., Ltd. (Lombard, IL). Vinyl acetate (Aldrich Chemical Co., Milwaukee, WI) and all other commercial grade solvents were used without further purification.
The carotenoid composition of the 70% and 97% pure lutein is shown in Table 1. Purification of 70% lutein by crystallization results in the removal of other nutritionally important carotenoids which are present as minor constituents in marigold flowers. Therefore, the advantage of using the 70% pure lutein as starting material in this invention is that these minor carotenoids can be carried over and preserved in the final product. Alternatively, these minor carotenoids may be removed from the final product. (SR^Ε.)- zeaxanthin, by crystallization.
Table 1. Carotenoid composition of 70% and 97% pure (3R,3'R,6'R)-lutein isolated from marigold flowers.
Figure imgf000009_0001
The terms all-E (trans) and Z (cis) refer to in-chain geometrical isomers of carotenoids.
Conversion of (3R,3'R,6'R)-Lutein to (3R,3'R)-Zeaxanthin via 3,-Epilutein
There are two critical steps in conversion of commercially available dietary (3R,3'R,6'R)-lutein to (3R,3Ε.)-zeaxanthin (dietary), these are: 1) inversion of stereochemistry of (3R,3'R,6'R)-lutein at C-3'; and 2) double bond isomerization of the ε-end group to β-end group. While double bond isomenzation has been studied extensively and as a result several patents for this transformation have been published, an economically viable method for the complete inversion of configuration of (3R,3'R,6'R)-luteιn at C-3' has not been reported previously. Therefore, it is believed that the existing technology, at best, can only convert lutein into a racemic mixture of (3RS,3Ε.S)- zeaxanthin.
There are two widely used chemical methods for the inversion of stereochemistry of secondary chiral alcohols. The first is known as the Mitsunobu reaction (Mitsunobu, Svnthesιs: l-2S (1981)), which employs diethyl azodicarboxylate, tnphenylphosphme and an appropnate carboxyhc acid to form a quaternary phosphomum salt. This is then allowed to react with a secondary chiral alcohol to cause the inversion of configuration The Mitsunobu reaction has been previously used to convert lutein to 3 '-epilutein in a very low isolated yield (Shwka and Liaaen-Jensen, Acta Chimica Scandinavica B4X.518-525 (1987)).
A second method uses lmidate esters as potential replacements for diethyl azodicarboxylate and tnphenylphosphme m the Mitsunobu reaction (Barrett, et al., J. Org. Chem. 63:6273-6280 (1998)). While it has been possible to increase the yield of the Mitsunobu reaction to about 20% under carefully dned reaction conditions, the reaction of lmidate esters with lutein only resulted in elimination and the formation of lutein dehydration products. Because of this low yield and the fact that diethyl azodicarboxylate is unstable and potentially explosive, the preparation of 3 -epilutein from (3R.3^,611)- lutein by the Mitsunobu reaction is not suitable for industrial scale production. The present invention provides a convenient method for converting commercially available (3R,3'R,6'R)-luteιn to 3 '-epilutein. This method compnses: 1) epimenzation of (3R,3'R,6'R)-luteιn to an about 1:1 mixture of (3R,3'R,6'R)-luteιn and 3 -epilutein and 2) at least partial separation of (3R,3'R,6'R)-luteιn from 3 '-epilutein. Immediately following the methods descnbed herein for the at least partial separation of (3R,3'R,6'R)-luteιn from 3 -epilutein, the de of 3 '-epilutein may be increased to 88-90% by low temperature crystallization 3 '-Epilutein may then be converted to (3R,3'R)- zeaxanthm by well known methods
Separation of 3 -epilutein from (3R,3'R,6'R)-luteιn may be accomplished by several methods These methods include a) solvent extraction, b) preferential crystallization, c) Soxhlet extraction, d) enzymatic acylation, and e) supercntical extraction with carbon dioxide It has been found that by employing an appropnate solvent, the partial separation of 3 - epilutein and (3R,3'R,6'R)-luteιn can be accomplished as part of the work-up of the epimenzation reaction by preferential crystallization of the (3R,3'R,6'R)- lutein
In a preferred embodiment, an about 1 1 mixture of 3 '-epilutein and (3R,3'R,6'R)-luteιn is separated by enzymatic acylation to give a 90% de of 3 - epilutein, thus dispensing the need for a separate partial separation
/) Epimerization of (3R,3'R,6'R)-Lutein to 3 '-Epilutein
This reaction employs an aqueous acid to effect the epimenzation of (3R,3'R,6'R)-luteιn to an about 1 1 mixture of 3 '-epilutein and unchanged (3R,3'R,6'R)-luteιn at ambient temperature in almost quantitative yield
Prefened aqueous acids for performing this process include hydrochlonc, sulfunc, phosphonc acid, tnfluoroacetic acid (TFA) and the like It has been previously shown that the treatment of (3R,3'R,6'R)-luteιn and/or 3 -epιluteιn with acid in the absence of water results in the formation of three lutein dehydration products which have been identified and charactenzed (Khachik, et al , J Chromatogr Biomed Application 670 219-233 (1995)) However, in dilute aqueous acids the epimenzation is nearly quantitative and only about 1% of the dehydration products of lutein are formed Similarly, only about 1% ln-chain isomenzation of all-E (trans)-lutem to its Z(cιs)-ιsomers is observed In a typical reaction, (3R,3'R,6'R)-luteιn is treated with a mixture of dilute aqueous acid and a water miscible organic solvent overnight at ambient temperature. The reaction should be a single phase reaction. The ratio of dilute aqueous acid to water miscible organic solvent that is used m such an expenment may vary. Typically, enough water miscible organic solvent is added to dissolve (3R,3'R,6'R)-luteιn The aqueous acid is then added in an amount that allows (3R,3'R,6'R)-luteιn to remain in solution. The acid concentration used may be from about 0.2 N to about 1 N, most preferably about 0.3 N to 0.75 N Preferred water miscible organic solvents for this reaction include tetrahydrofuran (THF), acetone and dimethylsulfoxide (DMSO). The acid is then neutralized and the product is partitioned into a second organic solvent. The organic solvents for this partition may be a lower dialkyl ether, a lower alkyl ester of acetic acid, methylene chlonde, chloroform, 1,2-dιchloroethane and carbon tetrachlonde. Preferred ethers include dnsopropyl ether, tert-butyl methyl ether (TBME), diethyl ether and the like. Prefened lower alkyl esters of acetic acid include ethyl acetate, methyl acetate, butyl acetate and the like.
The starting matenal for the epimenzation reaction can be crude saponified extracts of mangold flowers, 70% commercially available lutein or 97% pure lutein After the removal of the aqueous layer and partial evaporation of ethers, substantial quantities of (3R,3'R,6'R)-luteιn preferentially precipitate or crystallize and can be removed by filtration. The resulting filtrate from this simple work-up is ennched in 3 '-epilutein. For example, the composition of carotenoids in the filtrate from work-up with TBME is: (3R,3'R,6'R)-luteιn (21%), 3 -epilutein (73%), (3R,3 T -zeaxantmn (1%), and other minor carotenoids (5%). The composition of carotenoids in the solids from this work-up is: (3R,3'R,6'R)-luteιn (64%), 3 -epilutein (19%),
(3R,3'R)-zeaxanthιn (10%), and other minor carotenoids (7%); these recovered carotenoids can be recycled into the epimenzation step. If no attempt is made to partially separate (3R,3'R,6'R)-luteιn from 3 -epilutein dunng work-up, the composition of the crude products from epimenzation of 70% and 97% pure (3R,3'R,6'R)-luteιn is as follows (Table 2): Table 2. Carotenoid composition of the crude products from epimenzation of 70% and 97% pure (3R,3'R,6'R)-lutein with aqueous hydrochloric acid.a
Figure imgf000013_0001
aThe terms all-E (trans) and Z (cis) refer to in-chain geometrical isomers of carotenoids. bThe Z-isomers were: 9Z-lutein, 97_-lutein, 13Z-lutein, lS'Z-lutein,
13Z,13 -lutein.
2) Separation of (3R, 3 'R, 6 'R)- Lutein from 3 '-Epilutein
3 '-Epilutein may be separated or purified from a mixture of 3 -epilutein and (3R,3'R,6'R)-lutein by any one of a number of methods described herein and combinations thereof. It is intended that the terms "separating" and "purifying" mean that at least a partial separation or purification is achieved.
Separation and removal of (3R,3'R,6'R)-lutein from 3'-epilutein according to the present invention can give a purity of up to 95% (90% de) of 3'-epilutein. The starting material can be either an about 1: 1 mixture of (3R,3'R,6'R)-lutein and 3'-epilutein or the partially separated mixture of the two as described above. According to the present invention, at least a partial separation is achieved. Preferably, the 3'-epilutein has a de greater than 50%.
In the course of handling and work-up of the crude products from epimerization of (3R,3'R,6'R)-lutein, it was discovered that 3'-epilutein is slightly more soluble than (3R,3'R,6'R)-lutein in non-polar hydrocarbon solvents. Such solvents include pentane, hexane, heptane, cyclohexane, petroleum ether (b.p. = 35-60°C) and the like. Based on this difference in solubility behavior, a number of processes were developed which allowed the partial separation of 3 -epilutein from (3R,3'R,6'R)-lutein. These methods are a) solvent extraction, b) preferential crystallization, c) Soxhlet extraction, d) enzymatic acylation, and e) supercritical extraction with carbon dioxide. When each of these methods is applied separately to a 1: 1 mixture of (3R,3'R,6'R)- lutein and 3 '-epilutein, the partial separation of these carotenoids was accomplished and 3 '-epilutein was obtained in 77-95% enrichment. Among these, enzymatic acylation was found to be the most effective and afforded 3 - epilutein in 90% de. The enrichment of 3 '-epilutein in poorly separated mixtures may be further increased by low-temperature crystallization of (3R,3'R,6'R)-lutein from a Cι-4 alcohol. Alcohols suitable for this crystallization include ethanol, methanol, propanol, 2-propanol and the like. The temperature at which the crystallization may be performed is between about -80° C and about -40° C. Preferably, the crystallization is performed at about -70° C.
With the exclusion of the minor carotenoids, the mother liquor from this crystallization, in some cases, was shown to consist of up to 94% of 3'- epilutein and 6% (3R,3'R,6'R)-lutein.
a) Solvent Extraction/Preferential Crystallization
As pointed out above, the solubility of 3'-epilutein in solvents such as pentane, hexane, heptane, and petroleum ether (b.p. = 35-60°C) is much higher than that of (3R,3'R,6'R)-lutein. However, large scale separation with these non-polar hydrocarbons alone would require large volumes of solvents and is not practical. For example, the low solubility of 3'-epilutein in hexane (13 ml/mg) is indicative of the large volumes of this solvent needed for the partial separation of 3'-epilutein from (3R,3'R,6'R)-lutein by virtue of their differential solubilities Therefore, a co-solvent may be employed to increase the solubility of 3 '-epilutein and at the same time reduce the volume of the hydrocarbon solvent. Among a number of solvents examined, the combination of a C -6 ether and a C5 7 non-polar hydrocarbon solvent was found to be most effective. Prefened ethers include diethyl ether, TBME, dnsopropyl ether and the like. Prefened non-polar hydrocarbon solvents include pentane, hexane, heptane, petroleum ether and the like The prefened petroleum ether is that fraction which boils at 35-60°C. The ratio of non-polar hydrocarbon solvent (or petroleum ether) to ether may range from 4 1, to about 2: 1, more preferably, about 3.1 One of ordinary skill in the art may determine other ratios with no more than routine expenmentation
In a typical solvent extraction procedure, an about 1: 1 mixture of 3 - epilutem and (3R,3'R,6'R)-luteιn is stirred with a mixture of an ether and a non-polar hydrocarbon to dissolve most of the 3 '-epilutein in the mixture while (3R,3R,6'R)-luteιn, for the most part, remains as crystals and is removed by filtration The mother liquor from this solvent extraction is ennched in 3'- epilutem The ratio of 3 '-epilutein to (3R,3'R,6'R)-luteιn in the filtrate is in the range of 3.4 to 3.5. The mother liquor is then evaporated and subjected to low- temperature crystallization using an alcohol such as ethanol or methanol to further remove (3R,3R,6R)-luteιn With the exclusion of the minor carotenoids, the mother liquor from this crystallization consists of 3 -epilutein (94%) and (3R,3'R,6'R)-luteιn (6%). Based on this observation, an about 1:1 mixture of (3R,3'R,6'R)-luteιn and 3 -epilutein was stirred with an alcohol to evaluate the suitability of this single solvent for the partial separation of these carotenoids. It was revealed that either solvent can affect the partial separation of these carotenoids The ratio of 3 '-epilutein to (3R,3'R,6'R)-luteιn in the alcohol soluble fraction was 3.9/1 The solids were mostly ennched in lutein ((3R,3R,6 -R.)-luteιn/3 -epilutein = 5.2/1). The results of the partial separation of 3 -epilutein from (3R,3'R,6'R)-luteιn by solvent extraction are shown in Table 3. Preferred alcohols for the single solvent extraction include ethanol, methanol, propanol, 2-propanol and the like. In general, the above-mentioned extractions may be performed at a temperature between 15° C and 35° C. Preferably, the extractions are performed at room temperature. The period of time required to perform the extraction may vary from about 15 minutes to several hours, most preferably 30 minutes to 1 hour. One of ordinary skill in the art may determine the amount of time necessary for complete extraction with no more than routine experimentation.
The amount of solvent needed to separate a mixture of QR.S' ^'R)- lutein from 3'-epilutein may be defined in terms of milliliters of non-polar hydrocarbon solvent and milliliters of the ether, per gram of (3R,3'R,6'R)- lutein/3 '-epilutein mixture; or the milliliters of alcohol per gram of (3R,3'R,6'R)-lutein/3 '-epilutein mixture. When a mixture of a non-polar hydrocarbon solvent and an ether is used to effect the separation of (3R,3R,6'R)-lutein from 3'-epilutein, the amount of non-polar hydrocarbon solvent may be from about 80 to about 120 ml and the amount of ether may be from about 20 to about 60 ml. Preferably, the amount of non-polar hydrocarbon solvent is about 90 ml and the amount of ether is about 30 ml. When an alcohol is used as a single solvent to effect the partial separation of (3R,3'R,6'R)-lutein from 3 '-epilutein, the amount of solvent may be from about
60 to about 150 ml, more preferably about 90 to 110 ml.
Table 3. Carotenoid composition in solid and liquid fractions obtained from partial separation of an about 1 : 1 mixture of (3R,3'R,6'R)-lutein and 3'- epilutein by solvent extraction.
Figure imgf000017_0001
Preferential crystallization is another technique that may be used to separate 3 -epilutein from (3R,3'R,6'R)-lutein. As was the case with the above-mentioned solvent extraction, preferential crystallization takes advantage of the differential solubilities of 3'-epilutein and (3R,3R,6'R)- lutein. In this embodiment, a mixture of 3'-epilutein and (3R,3'R,6'R)-lutein may be completely dissolved in a solvent or mixture of solvents. Then, a second solvent may be added which will cause (3R,3R,6'R)-lutein to preferentially crystallize or precipitate out of solution. The resulting solution, rich in 3 '-epilutein, may be separated from the precipitate, rich in (3R,3R,6'R)-lutein, by filtration. In a prefened embodiment, the preferential crystallization technique is carried out as part of the workup from the epimerization reaction.
b) Soxhlet extraction
Soxhlet extraction of a 1: 1 diastereomeric mixture of (3R,31^,613.)- lutein and 3 '-epilutein with non-polar hydrocarbons allowed the partial separation of these carotenoids. Prefened C5.7 non-polar hydrocarbons and petroleum ether for this extraction include petroleum ether (b.p. = 35-60°), pentane, hexane, heptane and the like. The penod of time required to perform the extraction may vary from about 3 to 8 hours, most preferably 4 to 6 hours. One of ordinary skill in the art may determine the amount of time necessary for complete extraction with no more than routine expenmentation.
The amount of non-polar hydrocarbon solvent necessary to effect the partial separation of (3R,3'R,6'R)-luteιn from 3 -epιluteιn is from 100 to about 500 ml per gram of mixture, more preferably about 200 to 400 ml per gram of mixture. The non-polar hydrocarbon solvent used may be a single solvent or a mixture of two or more of the above-mentioned solvents
When Soxhlet extraction was earned out with hexane or heptane, the separation was quite poor and significant amounts of Z-isomers of diastereomenc lutems and (3R,3'R)-zeaxanthιn were found in the hydrocarbon soluble fractions. However, the best results were obtained by extraction of (3R,3'R,6'R)-luteιn and 3'-epιlutem with pentane (b.p. =36°C) or petroleum ether. After 4 hours, more than 90% of the 3 '-epilutein was extracted from the mixture by these solvents. These extracts were shown by HPLC to consist of 3 -epilutein (77%), (3R,3R,6'R)-luteιn (19%), total Z-lutems (2%), and anhydrolutem (2%) The remaining solid consisted of 3 '-epilutein (20%), (3R,3'R,6'R)-luteιn (70.5%), and zeaxanthin (9.5%). It appears that Z-luteins and anhydrolutem, which are present in the starting matenal, are completely removed by Soxhlet extraction in the non-polar hydrocarbon soluble fraction while (3R,3'R)-zeaxanthιn is not extracted and remains the solid phase.
c) Enzymatic acylation
(3R,3'R,6'R)-Luteιn and 3'-epιlutem can be best separated by enzymatic acylation m an organic solvent in the presence of a lipase and an acyl donor
Prefened hpases for the acylation include AK from Pseudomonas fluorescens ("Amano" 20) and lipase PS from Pseudomonas cepacia ("Amano") Prefened organic solvents for the acylation include pentane, hexane, TBME, petroleum ether and the like. Acyl donors include C2-3 vinyl acetates. Prefened C2-3 vinyl acetates include vinyl acetate, isopropenyl acetate and the like. The penod of time required to completely acylate 3'- epilutein may vary from about 36 to 96 hours, most preferably about 48 to 72 hours. One of ordinary skill in the art may determine the amount of time necessary to complete the acylation reaction with no more than routine expenmentation
The weight of lipase needed to conduct the enzymatic acylation per gram of (3R,3'R,6'R)-luteιn/3'-epιluteιn mixture may vary from about 0 1 to
0.6 g, preferably about 0.2 to 0.4 g. One of ordinary skill in the art may determine the weight of lipase necessary to conduct the enzymatic acylation per gram of (3R,311,6 'R)-luteιn/3 '-epilutein mixture with no more than routine expenmentation. While (3R,3'R,6'R)-luteιn and (3R,3'R)-zeaxanthιn are not acylated with lipase AK or lipase PS, 3'-epιlutem undergoes acylation at C-3' to give 3'- epιluteιn-3 '-acetate. As mentioned above, due to the difference in solubility between (3R,3R,6'R)-luteιn and 3 -epilutein, the enzymatic acylation can be readily earned out in the above-mentioned organic solvents. The product of this enzymatic reaction, 3 '-epιlutem-3 '-acetate, is highly soluble in the non- polar organic solvents and as a result can be effectively removed from (3R,3'R,6'R)-lutem by solvent extraction. This extraction is performed at a temperature between 0° C and room temperature. Preferably, the extraction is performed at 0 to 10° C Prefened organic solvents for the extraction include, but are not limited to, C4 6 ethers, lower alkyl esters of acetic acid, and C5- non-polar hydrocarbons or petroleum ether (b.p. = 35-60°). Prefened ethers include diethyl ether, TBME, dnsopropyl ether and the like. Preferred non- polar hydrocarbons include pentane, hexane, heptane and the like. Prefened esters include ethyl acetate, methyl acetate, butyl acetate and the like. When the enzymatic acylation was attempted on the diastereomenc mixture of (3R,3'R,6'R)-luteιn and 3 -epilutein prepared from 70% pure lutein, no reaction was observed. This is presumably due to the presence of impunties in 70% pure (3R,3R,6'R)-luteιn which may be earned over in the products of the epimenzation reaction. Therefore, pnor to enzymatic acylation, an about
1: 1 mixture of (3R,3R,6'R)-luteιn and 3 -epilutein prepared from 70% pure lutein, is punfied for example by flash column chromatography on a silica gel column using hexane and acetone as eluent and all the carotenoid fractions are combined and evaporated. Alternatively, if the diastereomenc mixture of (3R,3'R,6'R)-luteιn and 3'-epιlutem is prepared from the 97% pure
(3R,3R,6'R)-luteιn (Table 2), and this is then employed as the starting matenal for the enzymatic acylation, the reaction proceeds smoothly and no additional punfication is needed.
In a typical procedure, an epimenc mixture of (3R,3'R,6'R)-luteιn and 3 -epilutein prepared from 97% pure lutein is acylated with vmyl acetate in the presence of lipase AK or PS at about 36°C in pentane or hexane. After 48 h with hpase AK, approximately 5% of 3 '-epilutein remains unreacted. However, lipase PS react much more slowly than lipase AK and after 72 h, 10% of 3'-epιluteιn is found unestenfied At the end of these reactions, an organic solvent (e.g., THF, diethyl ether, TBME, dnsopropyl ether) is added to solubihze all the carotenoids, the enzyme is removed by filtration, and the product is evaporated to dryness. The residue is washed with pentane or hexane at about 0°C to remove 3 '-epιluteιn-3 '-acetate, leaving behind (3R,3'R,6'R)-luteιn and (3R,3Ϊ -zeaxanthιn. After hydrolysis of the 3 - epιluteιn-3 -acetate, for example with alcoholic alkali, the product consists of mainly 3 -epilutein and (3R,3R,6'R)-luteιn is only present as a minor diastereomer. Prefened alkali for the hydrolysis of 3 -epιlutem-3 '-acetate include potassium hydroxide, sodium hydroxide, calcium hydroxide, ammonium hydroxide, methanohc ammonia and the like. The results of the enzymatic acylation with lipase AK and PS and the de of 3 '-epilutein in the final product is summarized in Table 4.
Table 4. Carotenoid composition of the products separated from enzymatic acylation of an epimeric mixture of (3R,3'R,6'R)-lutein and 3 -epilutein.
Figure imgf000021_0001
Refers to de of 3'-epilutein in the mixture. bNot detected.
Enzymatic acylation with lipase AK and lipase PS affords 3 '-epilutein in 90% and 70% de, respectively. It is imperative to point out that while TBME could also be employed as solvent with these enzymes with nearly the same results, THF did not promote the acylation of 3 -epilutein.
d) Extraction with supercritical carbon dioxide
The partial separation of (3R,3R,6R)-lutein and 3 '-epilutein was also found to be quite feasible by the use of supercritical fluid extraction with carbon dioxide. When this experiment was conducted on a 5 mg scale, it was discovered that the solubility of 3 -epilutein in supercritical carbon dioxide was by far greater than that of (3R,3R,6'R)-lutein and (3R,3R)-zeaxanthin. Extraction with supercritical carbon dioxide resulted in extraction of 85% of the 3 -epilutein. The composition of carotenoids in the extracted fraction was: 3'-epilutein (83%), (3R,3R,6'R)-lutein (13%), Z-luteins (2%), and anhydrolutein (2%). Therefore, under these conditions, 3 '-epilutein can be obtained in 73% de. Based on the solubility difference between (3R,3R,6R)- lutein and 3'-epilutein, the use of a hydrocarbon (e.g., hexane, heptane) or an alcohol (e.g., ethanol, methanol) cosolvent facilitates the extraction of 3 - epilutein in large-scale operations.
The extraction with supercritical carbon dioxide is preferably performed at a pressure from about 300 to about 350 atmospheres.
3) Enrichment of 3 '-Epilutein in the Partially Separated Mixture by Low Temperature Crystallization of (3R,3'R,6'R)-Lutein
As described above, the initial separation of an epimeric mixture of (3R,3'R,6'R)-lutein and 3 -epilutein by one of the methods described above results in partial separation of these carotenoids. With the exception of enzymatic acylation, which resulted in the best separation of diastereomeric luteins, separation of these carotenoids by the other methods results only in partially separated mixtures. Therefore, depending on the separation method, the enrichment of 3'-epilutein in these mixtures is in the range of 77-86% and the remainder is (3R,3R,6'R)-lutein (14-23%). The de of 3 -epilutein in these mixtures can be increased by low temperature crystallization of (SR^R^R)- lutein from a Cι- alcohol. Alcohols suitable for this crystallization include ethanol, methanol, propanol, 2-propanol and the like. The temperature at which the crystallization may be performed is between -80° C and —40° C. Preferably, the crystallization is performed at about -70° C. The crystallization is performed using the aforementioned prefened solvents in an amount from about 100 to 180 ml per gram of (3R,3'R,6'R)-lutein/3'-epilutein mixture, preferably from 130 to 150 ml per gram of (3R,3'R,6'R)-lutein/3'-epilutein mixture. In ethanol, for example, nearly half of the 3'-epilutein with 94% purity remains soluble at low temperature and is removed by filtration. The solids from this crystallization consists of a mixture of 3'-epilutein (80%) and (3R,3'R,6'R)-lutein (20%) which can be recycled and subjected to further purification by low temperature crystallization.
4) Isomerization of 3 '-Epilutein to (3R,3'R)-Zeaxanthin
3 -Epilutein obtained by the methods described above may subsequently be converted to (3R,3R')-zeaxanthin by base catalyzed isomerization (see Scheme 2) by the methods described in U.S. Patent No. 5,780,693 and European Patent Appl. 834536. Briefly, conversion of 3'- epilutein to (3R,3R')-zeaxanthin by base-catalyzed isomerization involves heating 3 '-epilutein in a mixture of aqueous alkali metal hydroxide solution in either dimethyl sulphoxide (DMSO) or a saturated aliphatic and/or aromatic hydrocarbon solvent, at temperatures above 50° C. If a hydrocarbon solvent is used, the process is carried out in the presence of a phase transfer catalyst. Preferred hydrocarbon solvents include pentane, hexane, heptane, high boiling petroleum ether, benzene, toluene or mixtures thereof. Prefened alkali metal hydroxides include sodium hydroxide and potassium hydroxide. Phase transfer catalysts that may be used include tricaprylmethylammonium chloride, tetra-(n-butyl)-ammonium hydrogen sulfate, benzalkonium chloride, benzyl tri-(n-butyl)ammonium bromide, tri-(n-butyl)ammonium iodide and the like.
Having now generally described this invention, the same will be understood by reference to the following examples which are provided herein for purposes of illustration only and are not intended to be limiting unless otherwise specified.
Example 1
Epime zation of (3R,3'R,6'R)-Lutein to 3'-Epilutein with Aqueous
Hydrochloric Acid
In a typical process, 7 g of commercially available (3R,3'R,3'R)-lutein
(70% pure) in 600 ml of tetrahydrofuran (THF) is stirred with 250 ml of an aqueous solution of hydrochlonc acid (0 3 N, pH = 0.56 at 23°C) at ambient temperature under nitrogen. The course of the reaction is followed by High Performance Liquid Chromatography (HPLC) according to a published procedure (Khachik, et al., J Chromatogr. Bwmed. Application 552:153-166 (1992)). According to HPLC after 24 h, the crude product consists of a 1.1 diastereomenc mixture of (3R,3R,6'R)-luteιn and 3 '-epilutein. An aqueous solution of 5% sodium bicarbonate (100 ml) is added and the crude product is partitioned into 300 ml of TBME containing 1% (v/v) tnethylamme Instead of TBME other organic solvents such as diethyl ether or ethyl acetate can also be used with the same results. The aqueous layer is removed and the organic layer is washed with water (100 ml) and dned over sodium sulfate. The solvent is removed in vacuo below 40°C and the residue (6.7 g) is used without punfication in the next step Similarly, the 97% pure lutein was epimenzed at C-3' to a 1:1 diastereomenc mixture with identical results. An analytical sample of 3'-epιluteιn was separated from (SR^'R.β'R)- lutein by preparative HPLC from the crude product of epimenzation and its identity was confirmed by Ultraviolet- Visible (UV-Vis) spectrophotometry, mass spectrometry (MS), and nuclear magnetic resonance (NMR) spectroscopy according to a published procedure (Khachik, et al , J Chromatogr. Bwmed. Application 552: 153-166 (1992))
Example 2
Epimenzation of (3R,3'R,6'R)-Lutein to 3'-Epilutein with Aqueous
Sulfuric Acid
The epimenzation reaction of (3R,3R,6'R)-luteιn with aqueous sulfunc acid and phosphonc acids also produced identical results. Only the example using sulfunc acid is descnbed here.
(3R,3R,3'R)-Luteιn (3.0 g of 70% pure) in THF (250 ml) is stirred with 100 ml of an aqueous solution of sulfunc acid (0.75 N, pH = 044 at
23°C) at ambient temperature under nitrogen. According to HPLC the reaction is completed after 28 h. An aqueous solution of 5% sodium bicarbonate (50 ml) is added and the crude product is partitioned into 150 ml of TBME containing 1% (v/v) triethylamine. The aqueous layer is removed and the organic layer is washed with water (50 ml), dried over sodium sulfate, and evaporated to dryness under reduced pressure to give 2.80 g of an about 1: 1 mixture of (3R, 3'R, 6'R)-lutein and 3'-epilutein.
Example 3
Separation of 3 '-Epilutein from (3R,3'R,6'R)-Lutein by Solvent Extraction with TBME
0.100 g of an about 1: 1 mixture of 3'-epilutein and (3R,3'R,6'R)-lutein (prepared from 70% pure (3R,3'R,6'R)-lutein, Table 2) was suspended in TBME (3 ml) and hexane (9 ml) in a centrifuge tube. The mixture was stined at room temperature for 30 minutes and the tube was centrifuged. The solid was removed and evaporated under high vacuum to give dark orange crystals (54 mg) of a mixture of (3R,3'R,6'R)-lutein (64%), 3'-epilutein (19%), (3R,3'R)-zeaxanthin (10%), and other minor carotenoids (7%); the composition of these carotenoids in the mixture was determined by HPLC. The filtrate was evaporated to give 46 mg of a dark red residue which was shown by HPLC to consist of a mixture of 3'-epilutein (73%), (3R,3'R,6'R)- lutein (21%), (3R,3'R)-zeaxanthin (1%), and other minor carotenoids (5%).
Example 4 Separation of 3 '-Epilutein from (3R,3'R,6'R)-Lutein by Solvent Extraction with Diethyl Ether
0.106 g of an about 1:1 mixture of 3'-epilutein and (3R,3'R,6'R)-lutein
(prepared from 70% pure (3R,3'R,6'R)-lutein, Table 2) was suspended in diethyl ether (5 ml) and pentane (10 ml) in a centrifuge tube. The mixture was stined at room temperature for 30 minutes and the tube was centrifuged. The solid (56 mg) was shown by HPLC to consist of (3R,3'R,6'R)-lutein (64%), 3'- epilutein (23%), (3R,3R)-zeaxanthin (10%), and several other minor carotenoids (3%). The filtrate was evaporated to give 50 mg of a dark red solid which according to HPLC consisted of a mixture of 3 '-epilutein (72%), (3R,3'R,6'R)-lutein (21%), (3R,3R)-zeaxanthin (0.4%), and other minor carotenoids (6.6%).
Example 5
Separation of 3 '-Epilutein from (3R,3'R,6'R)-Lutein by Solvent Extraction with Ethanol
0.20 g of an about 1:1 mixture of 3 '-epilutein and (3R,3R,6R)-lutein (prepared from 70% pure (3R,3R,6R)-lutein, Table 2) was treated with ethanol (20 ml) in a centrifuge tube. The mixture was stined at room temperature for 30 minutes and the tube was centrifuged. The solid (94 mg) was shown by HPLC to consist of (3R,3'R,6,R)-lutein (73%), 3 '-epilutein
(14%), and (3R,3R)-zeaxanthin (8%). The filtrate was evaporated to dryness to give 106 mg of a dark solid which according to HPLC consisted of a mixture of 3 -epilutein (71%), (3R,3R,6R)-lutein (18%), (3R,3R)-zeaxanthin (4%), and other minor carotenoids (7%).
Example 6 Separation of 3 '-Epilutein from (3R,3'R,6'R)-Lutein by Soxhlet Extraction
0.10 g of an about 1: 1 mixture of (3R,3R,6R)-lutein and 3'-epilutein obtained from epimerization of a 97% pure (3R,3R,6R)-lutein (Table 2) was placed in a thimble (50 X 10 mm) inside a Micro-Soxhlet extractor (6 ml capacity). The mixture was extracted with 80 ml boiling pentane (b.p. = 36°C) for 4 h. Pentane soluble carotenoids (51 mg) were shown by HPLC to consist of 3'-epilutein (77%), (3R,3R,6R)-lutein (19%), total Z-luteins (2.0%), and anhydrolutein (2.0%). Approximately 49 mg of the carotenoids remained as solids in the thimble. This was shown by HPLC to consist of 3 '-epilutein (20.0%), (3R,3R,6'R)-lutein (70.5%), and (3R,3R)-zeaxanthin (9.5%). Nearly identical results were obtained when extraction was carried out with petroleum ether (b.p. = 35-60°).
Example 7
Separation of 3 '-Epilutein from (3R,3'R,6'R)-Lutein by Enzymatic Acylation with Lipase AK
Purification of Starting Material A 1 :1 epimeric mixture of (3R,3R,6R)-lutein and 3 '-epilutein (7 g) prepared from the 70% pure (3R,3R,6R)-lutein (Table 2) was purified by flash column chromatography on 150 g of n-silica gel (60-200 mesh size) using 2 liters of a mixture of hexane (70%) and acetone (30%). All the colored fractions were combined to give 5.75 g of a dark orange solid which was shown by HPLC to consist of 3'-epilutein (46.5%), lutein (46.5%), (3R,3R)- zeaxanthin (5%), total Z-luteins (1%), and anhydrolutein (1%).
0.10 g of this purified mixture of 3'-epilutein and (3R,3R,6R)-lutein was suspended in pentane (20 ml), lipase AK (30 mg) from Pseudomonas fluorescens ("Amano" 20) and vinyl acetate (50 μl) were added, and the mixture was heated under reflux (36°C) for 48 h under an atmosphere of nitrogen. After this time, according to HPLC approximately 5% of 3 '-epilutein had remained unesterified. The HPLC analysis of the crude product showed the presence of 3 '-epilutein-3 '-acetate (41.5%), (3R,3'R,6'R)-lutein (46.5%), 3'-epilutein (5%), (3R,3'R)-zeaxanthin (5%), Z-luteins (1%). and anhydrolutein (1%)- THF (15 ml) was added and stirring continued for 5 minutes to dissolve all the carotenoids. The enzyme was removed by filtration and the filtrate was evaporated to dryness. The residue was stined with pentane (30 ml) at 0°C for 30 minutes and filtered. The solids were washed with cold pentane (10 ml) and dried under high vacuum to give 51.2 mg of a mixture of (3R,3'R,6'R)-lutein (86%), 3'-epilutein (4.7%), and (3R,3'R)-zeaxanthin (9.3%). The pentane soluble fraction was shown by HPLC to consist of mostly 3 '-epilutein-3'- acetate as well as minor quantities of (3R,3R,6'R)-lutein, 3'-epilutein, Z- luteins, and anhydrolutein.
The solvent was evaporated and the pentane soluble fraction was dissolved in THE (10 ml) and treated with 10 ml of methanolic potassium hydroxide (10%). The mixture was stined at room temperature for an hour and the product was partitioned between water (20 ml) and TBME(20 ml). The water layer was removed and the organic layer was washed with water (2 X 10 ml), dried over sodium sulfate, and evaporated to dryness. This gave 48.3 mg of a dark red solid which was shown by HPLC to consist of 3 '-epilutein (91%), (3R,3R,6'R)-lutein (4.8%), Z-luteins (2%), and anhydrolutein (2%).
Example 8
Separation of 3 '-Epilutein from (3R,3'R,6'R)-Lutein by Enzymatic Acylation with Lipase PS
A 1: 1 epimeric mixture of (3R,3'R,6'R)-lutein and 3'-epilutein (90 mg) prepared from the 97% pure (3R,3R,6'R)-lutein (Table 2) was suspended in hexane (10 ml). Lipase PS (30 mg) from Pseudomonas cepacia ("Amano") and vinyl acetate (50 μl) were added and the mixture was heated under reflux (36°C) for 72 h under an atmosphere of nitrogen. After this time, according to
HPLC only 10% of 3'-epilutein had remained unesterified. The HPLC analysis of the crude product showed the presence of 3 '-epilutein-3 -acetate (36.5%), (3R,3R,6R)-lutein (46.5%), 3'-epilutein (10%), (3R,3R)-zeaxanthin (5%), Z- luteins (1%), and anhydrolutein (1%). THF (15 ml) was added and stirring continued for 5 minutes to dissolve all the carotenoids. The enzyme was removed by filtration and the filtrate was evaporated to dryness. The residue was stined with hexane (30 ml) for 5 minutes and filtered. The solids were washed with hexane (10 ml) and dried under high vacuum to give 41 mg of a mixture of (3R,3R,6R)-lutein (80%), 3'-epilutein (9%), and (3R,3R)- zeaxanthin (11%). The hexane soluble fraction was shown by HPLC to consist of mostly 3 '-epilutein-3 '-acetate as well as minor quantities of (3R,3'R,6'R)- lutem, 3'-epιluteιn, Z-lutems, and anhydrolutein After solvent e\ aporatιon, this fraction was re-dissolved in THF (10 ml) and treated with 10 ml of methanohc potassium hydroxide (10%) The mixture was stirred at room temperature for an hour and the product was partitioned between water (20 ml) and TBME (20 ml). The water layer was removed and the organic layer was washed with water (2 X 10 ml), dned over sodium sulfate, and evaporated to dryness. This gave 45 0 mg of a dark red solid which was shown b\ HPLC to consist of 3 -epilutein (82%), (3R,3R,6R)-lutem (14%), Z-lutems (2%), and anhydrolutein (2%)
Example 9
Separation of 3 '-Epilutein from (3R,3'R,6'R)-Lutein by Extraction with Supercritical Carbon Dioxide
5 mg of an epimenc mixture of (3R,3R,6R)-luteιn and 3 "-epilutein prepared from 97% pure (3R,3R,6'R)-lutem (Table 2) was mixed with 0.70 g of hydromatnx (mixture of silica gel and diatomaceous earth). This was extracted with carbon dioxide in a Model Prep-Master supercntical fluid extraction apparatus (Suprex-ISCO, Inc., Lincoln, Nebraska). The conditions were as follows, flow = 2ml/rmn, restnctor temperature = 50°C, desorb temperature = 10°C, oven temperature = 35°C. A two step gradient was employed for extraction of 3 -epιluteιn. Step one used 100 g of carbon dioxide at 300 atmosphere and step two 50 g of carbon dioxide at 375 atmosphere. Total of 2 4 mg of carotenoids was extracted with this 150 g of carbon dioxide. The extracted carotenoids were shown by HPLC to consist of 3 '-epilutein
(83%), (3R,3R,6R)-luteιn (13%), anhydrolutem (2%), and Z-lutems (2%) Approximately 2.5 mg of carotenoids remained in the hydromatnx; these were: (3R,3R,6ϊl)-luteιn (77%), 3 -epilutein (13%), and (3R,3R)-zeaxanthιn (10%) Example 10
Enrichment of 3 '-Epilutein in a Partially Separated Mixture by Low Temperature Crystallization of (3R,3'R,6'R)-Lutein
50 mg of a partially separated mixture of 3 '-epilutein (86%) and
(3R,3R,6R)-lutein (14%) containing approximately 2% of other minor carotenoids was dissolved in 7 ml of ethanol in a centrifuge tube. The solution was kept at -70°C for several hours until (3R,3R,6'R)-lutein crystallized. The tube was centrifuged and the filtrate was evaporated to dryness to give 21.27 mg of a red solid; this was shown by HPLC to consist of 3 -epilutein (94%) and (3R,3R,6'R)-lutein (6%). The ethanol insoluble fraction was dried under high vacuum to give 27.5 mg of an orange solid; the composition of the solid was determined by HPLC as: (3R,3R,6R)-lutein (20%) and 3 -epilutein (80%).
Summary
(3R,3R,6'R)-Lutein and (3R,3R)-zeaxanthin are two major dietary carotenoids which have been implicated in the prevention of AMD. While (3R,3R,6R)-lutein has been commercially available for a number of years, there are cunently no economically viable process for industrial production of dietary (3R,3R.)-zeaxanthin. According to the present invention, (3R,3R,6R)- lutein is converted to 3'-epilutein which, in turn, may be converted to (3R,3R)- zeaxanthin by methods well known in the art. In particular (3R,3R,6'R)-lutein is epimerized at C-3' in a mixture of a water miscible organic solvent and an aqueous acid at ambient temperature to give almost quantitatively an about 1:1 diastereomeric mixture of 3'-epilutein and (3R,3R,6R)-lutein. Work-up of the crude product from this reaction can employ an appropriate solvent or solvent mixture to partially separate these diastereomers via preferential crystallization. Depending on the nature of the solvent or solvent mixture, the ratio of 3 -epilutein to (3R,3R,6R.)-lutein may range from about 3.3 to 4.0. In addition to this preferential crystallization, several other methods have also been developed to effect the separation of 3 '-epilutein from (3R,3R,6R)- lutein. These methods include solvent extraction, Soxhlet extraction, enzymatic acylation, and supercntical extraction with carbon dioxide. While some of these methods only result in partial separation of diastereomenc lutems, enzymatic acylation is most effective and yields up to 90% de of 3 - epilutein. A summary of the results for partial separation of 3 '-epilutein from (3R,3R,6R)-lutem is presented in Table 5.
A poorly separated mixture of diastereomenc luteins may be subjected to low temperature crystallization to obtain 3 '-epilutein in 88% de.
Table 5. Summary of the results from partial separation of 3'-epiluteιn from (3R,3R,6R)-lutein by different methods
Figure imgf000031_0001
employed a 1:1 diastereomenc mixture prepared from 70% pure(3R,3R,6'R)-lutein, bemployed a 1:1 diastereomeric mixture prepared from 97% pure(3R,3'R,6'R)-lutein.
One of the advantages of developing these different methods of separation is the fact that for industrial-scale operations, a simplified combination of these procedures can be employed to improve the yield and punty of 3 '-epilutein. For example, the crude products from epimenzation of (3R,3R,6R)-luteιn can be simply ennched in 3 '-epilutein dunng the work-up by solvent manipulation or by preferential crystallization The resulting diastereomenc luteins, ennched in 3 '-epilutein, can then be either subjected to Soxhlet extraction or to enzymatic acylation to further separate this carotenoid from (3R,3R,6R)-luteιn The ready availability of dietary (3R,3Ε.)-zeaxanthm allows scientists to investigate the role and function of this carotenoid in the prevention of macular degeneration in clinical tnals involving patients at a high nsk for this disease In addition to the application of (3R,3R)-zeaxanthιn as a nutntional supplement, this carotenoid can be employed as colonng additives in foods or in animal feeds
From the foregoing descnption, one skilled in the art can easily ascertain the essential charactenstics of this invention, and without departing from the spmt and scope thereof, can make vanous changes and modifications of the invention to adapt it to vanous uses and conditions without undue expenmentation All patents, patent applications and publications cited herein are incorporated by reference in their entirety

Claims

What Is Claimed Is:
1. A method of epimerizing (3R,3R,6'R)-lutein to give a mixture of (3R,3R,6R)-lutein and 3 -epilutein, comprising reacting (3R,3R,6R)-lutein in the presence of aqueous acid in a water miscible organic solvent to give a mixture of (3R,3R,6R)-lutein and 3 -epilutein.
2. The method of claim 1, wherein the water miscible organic solvent is THF.
3. The method of claim 1, wherein the aqueous acid is aqueous hydrochloric, sulfuric or phosphoric acid.
4. A method of purifying 3 '-epilutein from a mixture of (3R,3R,6'R)-lutein and 3'-epilutein comprising extracting the mixture of
(3R,3R,6'R)-lutein and 3 '-epilutein with an organic solvent and recovering the 3 '-epilutein from the organic solvent.
5. The method of claim 4, wherein the mixture of (3R,3R,6R)- lutein and 3 -epilutein is an about 1:1 mixture of (3R,3R,6R)-lutein and 3 - epilutein.
6. The method of claim 4, wherein the organic solvent is a mixture of a non-polar hydrocarbon and an ether.
7. The method of claim 6, wherein the non-polar hydrocarbon is pentane, hexane, heptane or petroleum ether and the ether is diethyl ether, diisopropyl ether or TMBE.
8. The method of claim 4, wherein said extracting is by Soxhlet extraction.
9. A method of purifying 3 '-epilutein from a mixture of (3R,3'R,6'R)-lutein and 3'-epilutein comprising low temperature crystallization of the mixture in a CM alcohol and recovering the 3'-epilutein from the alcohol.
10. The method of claim 9, wherein the alcohol is methanol, ethanol, propanol or 2-propanol.
11. The method of claim 9, wherein the mixture of (3R,3'R,6'R)- lutein and 3'-epilutein is an about 1 :1 mixture of (3R,3'R,6'R)-lutein and 3'- epilutein.
12. A method of purifying 3'-epilutein from a mixture of (3R,3'R,6'R)-lutein and 3'-epilutein comprising:
(a) reacting a mixture of (3R,3'R,6'R)-lutein and 3'-epilutein with an acyl donor in the presence of lipase PS from Pseudomonas cepacia or lipase AK from Pseudomonas fluorescens in an first organic solvent;
(b) adding a second organic solvent to dissolve the mixture and removing the enzyme by filtration to give a filtrate;
(c) concentrating the filtrate to give a residue;
(d) adding a C5.7 hydrocarbon or ether to the residue to give a solution in which 3'-epilutein and 3 '-epilutein-3 '-acetate are preferentially solubilized;
(e) filtering the solution to give a filtrate;
(f) hydro lyzing the 3 '-epilutein-3 '-acetate contained in the filtrate to give 3 '-epilutein; and
(g) recovering the 3 '-epilutein; thereby obtaining purified 3'-epilutein.
13 The method of claim 12, wherein said hydrolyzmg is earned out by treating 3 '-epιluteιn-3 -acetate with alcoholic alkali
14 The method of claim 12, wherein the 3 '-epilutein is recovered by partitioning with water and TBME, separating the TBME from the water and evaporating the TBME
15 The method of claim 12, wherein the mixture of (3R, 3^,611)- lute and 3'-epιlutem is an about 1 1 a mixture of (3R,3R,6R)-luteιn and 3 - epilutein
16 The method of claim 12, wherein the first organic solvent is pentane, hexane, TMBE or petroleum ether
17 The method of claim 12, wherein the second organic solvent is
THF, diethyl ether, TBME or diisopropyl ether
18 The method of claim 12, wherein the hydrocarbon is pentane, hexane or heptane and the ether is THF, diethyl ether, TBME or diisopropyl ether
19 The method of claim 12, wherein the acyl donor is vinyl acetate or isopropenyl acetate
20 A method of punfying 3 -epilutein from a mixture of
(3R,3R.,6R)-luteιn and 3 '-epilutein compnsmg extracting the mixture with supercntical carbon dioxide and evaporating the carbon dioxide to give punfied 3 '-epilutein
21. The method of claim 20, wherein the mixture of (3R,3R,6R)- lutein and 3'-epιluteιn is an about 1: 1 mixture of (3R,3TR,6R)-lutem and 3 - epilutem.
22. A method for producing 3 '-epilutein compnsmg:
(a) epimenzmg (3R,3R,6R.)-luteιn to 3'-epιluteιn in the presence of an aqueous acid m a water miscible organic solvent thereby giving a mixture of (3R,3'R,6'R)-luteιn and 3 -epilutein; and
(b) separating 3 '-epilutein from (3R,3R,6R)-luteιn.
23. The method of claim 22, wherein said 3 '-epilutein has a de greater than 50%.
24. The method of claim 22, wherein the aqueous acid is aqueous hydrochlonc, sulfunc or phosphonc acid.
25 The method of claim 22, wherein the water miscible organic solvent is THF.
26. The method of claim 22, wherein 3 '-epilutein is separated from
(3R,3R,6R)-lutem by low temperature crystallization.
27. The method of claim 22, wherein the (3R,3R,6R)-luteιn is a crude saponified extract from mangold flowers.
28. The method of claim 22, wherein the (3R,3R,6R)-luteιn is 70% PR.S'R.ό'RHutein.
29 The method of claim 22, wherein the (3R,3R,6R)-luteιn is 97% pure and is obtained by crystallization of 70% (3R,3R,6R.)-lutem.
30. The method of claim 27, wherein the crude saponified extract from marigold flowers further comprises several minor carotenoids.
31. The method of claim 22, wherein 3'-epilutein is separated from (3R,3R,6R)-lutein by preferential crystallization.
32. The method of claim 22, wherein 3 '-epilutein is separated from (3R,3R,6'R)-lutein by solvent extraction.
33. The method of claim 22, wherein 3'-epilutein is separated from
(3R,3R,6rR)-lutein by Soxhlet extraction.
34. The method of claim 22, wherein 3 '-epilutein is separated from (3R,3R,6'R)-lutein by enzymatic acylation, separation of 3 '-epilutein-3 '-acetate from (3R,3R,6'R)-lutein, and alcoholic alkali hydrolysis to give 3'-epilutein.
35. The method of claim 22, wherein 3 -epilutein is separated from (3R,3R,6R)-lutein by extraction with supercritical carbon dioxide and evaporation of the carbon dioxide to give the 3'-epilutein.
36. The method of any one of claims 31, 32, 33, 34 or 35, wherein the 3 '-epilutein is further purified by low temperature crystallization.
37. The method of claim 31, wherein the preferential crystallization comprises:
(a) treating a mixture of 3'-epilutein and (3R,3R,6R)-lutein with a solvent or mixture of solvents giving a 3 -epilutein enriched solution and a (3R,3R,6R)-lutein enriched precipitate ;
(b) filtering the solution to give a filtrate; and (c) concentrating the filtrate to give 3 '-epilutein.
38. The method of claim 37, wherein the mixture of solvents consists of an ether and a non-polar hydrocarbon.
39. The method of claim 38, wherein the ether is diisopropyl ether, TBME or diethyl ether and the non-polar hydrocarbon is pentane, hexane, heptane or petroleum ether.
40. The method of claim 37, wherein the mixture of 3'-epilutein and (3R,3'R,6'R)-lutein is treated with an alcohol.
41. The method of claim 40, wherein the alcohol is ethanol, propanol, 2-propanol or methanol.
42. A method for converting (3R,3'R,6'R)-lutein to a mixture of 3'- epilutein and (3R,3'R,6'R)-lutein comprising:
(a) reacting (3R,3'R,6'R)-lutein with an aqueous acid in a solvent at ambient temperature to obtain a crude product;
(b) neutralizing the crude product; and
(c) removing the water; thus obtaining a crude diastereomeric crystalline mixture of 3 '-epilutein and
(3R,3'R,6'R)-lutein.
43. The method of claim 42, wherein the crude product is neutralized by adding aqueous base, and the water is removed by partitioning into an organic solvent, the water is separated and the solvent is evaporated to obtain the crude diastereomeric crystalline mixture of 3 '-epilutein and (3R,3'R,6'R)-lutein.
44 The method of claim 43, wherein the base is sodium bicarbonate
45 The method of claim 43, wherein the organic solvent is TBME, diethyl ether or ethyl acetate
46 The method of claim 42, further compnsmg
(d) extracting the crude diastereomenc crystalline mixture of 3'- epilutein and (3R,3'S,6'R)-luteιn at ambient temperature thereby precipitating and removing most of the (3R,3R,6R)-luteιn by filtration, thus obtaining a filtrate compnsmg 3 '-epilutein and (3R,3R,6'R)-luteιn
47 A method for partial separation of 3 -epilutein from a diastereomenc mixture of 3 -epilutein and (3R,3'R,6'R)-luteιn according to the method of claim 42 by extracting the crude crystalline mixture with pentane or petroleum ether (b p = 35-60°C) in a Soxhlet apparatus to obtain a pentane or petroleum ether soluble fraction compnsmg of a diastereomenc mixture of 3 - epilutein (80%) and (3R,3R,6R)-lutem (20%), evaporating the solvents to obtain a crystalline mixture ennched in 3 -epilutein
48 A method for the separation of 3 -epilutein from a mixture of 3 - epilutem and (3R,3R,6'R)-luteιn by enzymatic acylation, compnsmg reacting 3 -epilutein with vinyl acetate as an acyl donor in the presence of a lipase in pentane, hexane or TBME at 36°C to convert 95% of 3 -epilutein to 3 - epιlutem-3 -acetate while (3R,3R,6R)-lutem remains unreacted, subjecting the crude product to hydrolysis with alcoholic potassium or sodium hydroxide at ambient temperature, removing the base by extracting the product with water and an organic solvent, and evaporating the solvent to obtain diastereomenc luteins compnsmg 95% 3'-epιluteιn and 5% (3R,3R,6R)-lutem as red crystals
49. The method of claim 48, wherein the (3R,3'R,6'R)-lutein that remains unreacted is separated from 3'-epilutein and 3'-epilutein-3'-acetate by filtration prior to subjecting the crude product to hydrolysis.
50. A method for separating 3'-epilutein from a diastereomeric mixture of 3'-epilutein and (3R,3'R,6'R)-lutein comprising extracting the diastereomeric mixture of luteins with carbon dioxide thereby extracting most of 3 '-epilutein with carbon dioxide and leaving behind most of the (3R,3'R,6'R)-lutein thus yielding a product consisting of 86% 3'-epilutein and 14% (3R,3'R,6'R)-lutein.
51. A method for separating 3'-epilutein from a diastereomeric mixture of 3 '-epilutein and (3R,3'R,6'R)-lutein comprising low temperature crystallization with an alcohol at -70°C to crystallize most of the (3R,3'R,6'R)- lutein and increasing the purity of 3 '-epilutein in the mother liquor of this crystallization; and evaporation of the alcohol; thus obtaining red crystals containing 94% 3'-epilutein and 6% (3R,3'R,6'R)-lutein.
52. A method of preparing 3'-epilutein-3'-acetate comprising reacting a mixture of (3R,3'R,6'R)-lutein and 3'-epilutein with an acyl donor in the presence of lipase PS from Pseudomonas cepacia or lipase AK from Pseudomonas fluorescens.
53. The method of claim 52, wherein the acyl donor is vinyl acetate or isopropenyl acetate.
PCT/US2000/018810 2000-05-03 2000-07-11 Process for making a (3r,3'r)-zeaxanthin precursor WO2001083414A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2000262086A AU2000262086A1 (en) 2000-05-03 2000-07-11 Process for making a (3r,3'r)-zeaxanthin precursor
US10/240,172 US6818798B1 (en) 2000-05-03 2000-07-11 Process for making a (3R,3′R)-zeaxanthin precursor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US20170300P 2000-05-03 2000-05-03
US60/201,703 2000-05-03

Publications (1)

Publication Number Publication Date
WO2001083414A1 true WO2001083414A1 (en) 2001-11-08

Family

ID=22746946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/018810 WO2001083414A1 (en) 2000-05-03 2000-07-11 Process for making a (3r,3'r)-zeaxanthin precursor

Country Status (2)

Country Link
AU (1) AU2000262086A1 (en)
WO (1) WO2001083414A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002030769A1 (en) * 2000-10-10 2002-04-18 Industrial Organica, S.A. De C.V. Process for obtaining 3'-epilutein
WO2003066547A3 (en) * 2002-02-06 2003-10-16 Univ Maryland METHOD FOR PRODUCTION OF β-CRYPTOXANTHIN AND α-CRYPTOXANTHIN FROM COMMERCIALLY AVAILABLE LUTEIN
US6911564B2 (en) 2000-07-27 2005-06-28 University Of Maryland, College Park Method for production of rare carotenoids from commercially available lutein
WO2009019712A1 (en) * 2007-08-03 2009-02-12 Omniactive Health Technologies Pvt Ltd. Novel xanthophyll composition contaning (trans, meso) - zeaxanthin, and a process for its preparation
WO2011073205A1 (en) * 2009-12-14 2011-06-23 Gupron Gmbh Combination of carotenoids and epi-lutein
US8097762B2 (en) 2004-10-26 2012-01-17 University Of Maryland, College Park Process for the preparation of β- and α-cryptoxanthin
US8212063B2 (en) 2006-05-10 2012-07-03 Omniactive Health Technologies Limited Xanthophyll composition containing trans, meso-zeaxanthin, trans, R, R-zeaxanthin and trans, R, R-lutein useful for nutrition and health care and a process for its preparation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEEDON B.C.L.: "Synthesis and related polyenes", PURE AND APPL. CHEM., vol. 47, 1976, pages 161 - 171, XP002933442 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911564B2 (en) 2000-07-27 2005-06-28 University Of Maryland, College Park Method for production of rare carotenoids from commercially available lutein
WO2002030769A1 (en) * 2000-10-10 2002-04-18 Industrial Organica, S.A. De C.V. Process for obtaining 3'-epilutein
WO2003066547A3 (en) * 2002-02-06 2003-10-16 Univ Maryland METHOD FOR PRODUCTION OF β-CRYPTOXANTHIN AND α-CRYPTOXANTHIN FROM COMMERCIALLY AVAILABLE LUTEIN
US7115786B2 (en) 2002-02-06 2006-10-03 University Of Maryland, College Park Method for production of β-cryptoxanthin and α-cryptoxanthin from commercially available lutein
US8097762B2 (en) 2004-10-26 2012-01-17 University Of Maryland, College Park Process for the preparation of β- and α-cryptoxanthin
US8212063B2 (en) 2006-05-10 2012-07-03 Omniactive Health Technologies Limited Xanthophyll composition containing trans, meso-zeaxanthin, trans, R, R-zeaxanthin and trans, R, R-lutein useful for nutrition and health care and a process for its preparation
WO2009019712A1 (en) * 2007-08-03 2009-02-12 Omniactive Health Technologies Pvt Ltd. Novel xanthophyll composition contaning (trans, meso) - zeaxanthin, and a process for its preparation
WO2011073205A1 (en) * 2009-12-14 2011-06-23 Gupron Gmbh Combination of carotenoids and epi-lutein
JP2013513645A (en) * 2009-12-14 2013-04-22 グプロン ゲーエムベーハー Combination of carotenoids and epilutein
US9849178B2 (en) 2009-12-14 2017-12-26 Gupron Gmbh Combination of carotenoids and epi-lutein

Also Published As

Publication number Publication date
AU2000262086A1 (en) 2001-11-12

Similar Documents

Publication Publication Date Title
EP0979302B1 (en) Isolation of carotenoid crystals from microbial biomass
CA1065303A (en) Process for the separation of sterols
RU2256651C2 (en) Isolation of carotinoid crystals
CN109956983B (en) Method for extracting sucralose-6-ethyl ester
AU2010243214B2 (en) A process for isolation of lutein and zeaxanthin crystals from plant sources
US9682932B2 (en) Process for production of high purity beta-carotene and lycopene crystals from fungal biomass
US6818798B1 (en) Process for making a (3R,3′R)-zeaxanthin precursor
WO2001083414A1 (en) Process for making a (3r,3'r)-zeaxanthin precursor
Hynninen et al. Separation and isolation of chlorophylls a and b by multiple liquid-liquid partition
NO763474L (en)
EP1371641A1 (en) Process for the formation and isolation of carotenoid crystals
WO1998003480A1 (en) PROCESS FOR THE RECOVERY OF CRYSTALLINE β-CAROTENE FROM A NATURAL SOURCE
CN109232345B (en) Method for extracting and separating lutein crystal from vegetable oil resin containing lutein diester
CA2474646C (en) Method for production of .beta.-cryptoxanthin and .alpha.-cryptoxanthin from commercially available lutein
US7875751B2 (en) Method for the purification of carotenoids from plant extracts and the products so obtained
CN113354526B (en) Alkali purification method of coenzyme Q10
US2568202A (en) Process for recovering sterols from mixtures thereof
RU2658426C1 (en) Method for producing nicotinamide adenine dinucleotide (nad)
EP2196207B1 (en) Method for the purification of carotenoids from plant extracts and the products so obtained
CN109400621B (en) Preparation method of high-purity milbemycins
US1840756A (en) Production of sterols and other valuable substances from yeast and like micro-organisms
US2935520A (en) Recovery of steroids from fermentation broth
SU908356A1 (en) Method of producing arachidonic acid
KR20050016445A (en) Process for the formation and isolation of carotenoid crystals

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10240172

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP