WO2001082688A1 - Rab GDIα KNOCKOUT ANIMALS - Google Patents
Rab GDIα KNOCKOUT ANIMALS Download PDFInfo
- Publication number
- WO2001082688A1 WO2001082688A1 PCT/JP2000/008252 JP0008252W WO0182688A1 WO 2001082688 A1 WO2001082688 A1 WO 2001082688A1 JP 0008252 W JP0008252 W JP 0008252W WO 0182688 A1 WO0182688 A1 WO 0182688A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rab
- gene
- gdi
- gdia
- animal
- Prior art date
Links
- 241001465754 Metazoa Species 0.000 title claims abstract description 34
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 60
- 102000030782 GTP binding Human genes 0.000 claims abstract description 9
- 108091000058 GTP-Binding Proteins 0.000 claims abstract description 9
- 230000002950 deficient Effects 0.000 claims description 42
- 101150113130 Gdi1 gene Proteins 0.000 claims description 37
- 102100034335 Rab GDP dissociation inhibitor alpha Human genes 0.000 claims description 20
- 101710102264 Rab GDP dissociation inhibitor alpha Proteins 0.000 claims description 17
- 230000006870 function Effects 0.000 abstract description 13
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 5
- 238000012217 deletion Methods 0.000 abstract description 4
- 230000037430 deletion Effects 0.000 abstract description 4
- 201000010099 disease Diseases 0.000 abstract description 4
- 206010015037 epilepsy Diseases 0.000 abstract description 3
- 230000009456 molecular mechanism Effects 0.000 abstract description 3
- 230000001537 neural effect Effects 0.000 abstract description 3
- 238000002560 therapeutic procedure Methods 0.000 abstract description 2
- 102100022263 Disks large homolog 3 Human genes 0.000 abstract 1
- 101000902100 Homo sapiens Disks large homolog 3 Proteins 0.000 abstract 1
- 238000002405 diagnostic procedure Methods 0.000 abstract 1
- 241000699670 Mus sp. Species 0.000 description 41
- 108020004414 DNA Proteins 0.000 description 28
- 210000004027 cell Anatomy 0.000 description 28
- 238000000034 method Methods 0.000 description 18
- 108010003163 GDP dissociation inhibitor 1 Proteins 0.000 description 14
- 241000699666 Mus <mouse, genus> Species 0.000 description 14
- 230000000946 synaptic effect Effects 0.000 description 12
- 230000000638 stimulation Effects 0.000 description 10
- 230000008685 targeting Effects 0.000 description 9
- 239000012634 fragment Substances 0.000 description 8
- 230000001629 suppression Effects 0.000 description 8
- 239000013598 vector Substances 0.000 description 8
- 238000000692 Student's t-test Methods 0.000 description 7
- 230000035772 mutation Effects 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 210000001519 tissue Anatomy 0.000 description 7
- 238000002105 Southern blotting Methods 0.000 description 6
- 239000002299 complementary DNA Substances 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 210000000225 synapse Anatomy 0.000 description 6
- 238000012353 t test Methods 0.000 description 6
- 108700028369 Alleles Proteins 0.000 description 5
- 108700024394 Exon Proteins 0.000 description 5
- 208000012902 Nervous system disease Diseases 0.000 description 5
- 208000025966 Neurological disease Diseases 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 210000004556 brain Anatomy 0.000 description 5
- 210000000349 chromosome Anatomy 0.000 description 5
- 210000002569 neuron Anatomy 0.000 description 5
- 230000003518 presynaptic effect Effects 0.000 description 5
- 230000003956 synaptic plasticity Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 231100000433 cytotoxic Toxicity 0.000 description 4
- 230000001472 cytotoxic effect Effects 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 230000005062 synaptic transmission Effects 0.000 description 4
- 210000002504 synaptic vesicle Anatomy 0.000 description 4
- 230000028973 vesicle-mediated transport Effects 0.000 description 4
- 101100336436 Mus musculus Gdi1 gene Proteins 0.000 description 3
- 210000003050 axon Anatomy 0.000 description 3
- 230000002964 excitative effect Effects 0.000 description 3
- 210000004602 germ cell Anatomy 0.000 description 3
- 210000001320 hippocampus Anatomy 0.000 description 3
- 230000006801 homologous recombination Effects 0.000 description 3
- 238000002744 homologous recombination Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 210000000944 nerve tissue Anatomy 0.000 description 3
- 239000002858 neurotransmitter agent Substances 0.000 description 3
- 230000003252 repetitive effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- VOROEQBFPPIACJ-SCSAIBSYSA-N (2r)-2-amino-5-phosphonopentanoic acid Chemical compound OC(=O)[C@H](N)CCCP(O)(O)=O VOROEQBFPPIACJ-SCSAIBSYSA-N 0.000 description 2
- 206010001497 Agitation Diseases 0.000 description 2
- 206010010904 Convulsion Diseases 0.000 description 2
- 102000016607 Diphtheria Toxin Human genes 0.000 description 2
- 108010053187 Diphtheria Toxin Proteins 0.000 description 2
- 108091006027 G proteins Proteins 0.000 description 2
- 108010092964 Guanine Nucleotide Dissociation Inhibitors Proteins 0.000 description 2
- 101000579123 Homo sapiens Phosphoglycerate kinase 1 Proteins 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 238000002944 PCR assay Methods 0.000 description 2
- KJWZYMMLVHIVSU-IYCNHOCDSA-N PGK1 Chemical compound CCCCC[C@H](O)\C=C\[C@@H]1[C@@H](CCCCCCC(O)=O)C(=O)CC1=O KJWZYMMLVHIVSU-IYCNHOCDSA-N 0.000 description 2
- 102100028251 Phosphoglycerate kinase 1 Human genes 0.000 description 2
- 108091079902 Rab family Proteins 0.000 description 2
- 102000042022 Rab family Human genes 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000028023 exocytosis Effects 0.000 description 2
- 238000003209 gene knockout Methods 0.000 description 2
- 238000010363 gene targeting Methods 0.000 description 2
- 238000003205 genotyping method Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 210000005036 nerve Anatomy 0.000 description 2
- 230000003957 neurotransmitter release Effects 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- -1 rabphyrin 3 Proteins 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- 108020005065 3' Flanking Region Proteins 0.000 description 1
- QUTYKIXIUDQOLK-PRJMDXOYSA-N 5-O-(1-carboxyvinyl)-3-phosphoshikimic acid Chemical compound O[C@H]1[C@H](OC(=C)C(O)=O)CC(C(O)=O)=C[C@H]1OP(O)(O)=O QUTYKIXIUDQOLK-PRJMDXOYSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 241000272875 Ardeidae Species 0.000 description 1
- 241001432959 Chernes Species 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 230000009508 GABAergic inhibition Effects 0.000 description 1
- 102000001534 GDP dissociation inhibitor Human genes 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000016805 Guanine Nucleotide Dissociation Inhibitors Human genes 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 101000926083 Homo sapiens Rab GDP dissociation inhibitor beta Proteins 0.000 description 1
- 101000927796 Homo sapiens Rho guanine nucleotide exchange factor 7 Proteins 0.000 description 1
- 101000987315 Homo sapiens Serine/threonine-protein kinase PAK 3 Proteins 0.000 description 1
- 101000828537 Homo sapiens Synaptic functional regulator FMR1 Proteins 0.000 description 1
- 241000581650 Ivesia Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 208000036626 Mental retardation Diseases 0.000 description 1
- 206010028347 Muscle twitching Diseases 0.000 description 1
- 102000004868 N-Methyl-D-Aspartate Receptors Human genes 0.000 description 1
- 108090001041 N-Methyl-D-Aspartate Receptors Proteins 0.000 description 1
- 241001045988 Neogene Species 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 101710121290 Oligophrenin-1 Proteins 0.000 description 1
- 102100035592 Oligophrenin-1 Human genes 0.000 description 1
- 238000010222 PCR analysis Methods 0.000 description 1
- LHNKBXRFNPMIBR-UHFFFAOYSA-N Picrotoxin Natural products CC(C)(O)C1(O)C2OC(=O)C1C3(O)C4OC4C5C(=O)OC2C35C LHNKBXRFNPMIBR-UHFFFAOYSA-N 0.000 description 1
- 108010010469 Qa-SNARE Proteins Proteins 0.000 description 1
- 108020005067 RNA Splice Sites Proteins 0.000 description 1
- 102000012145 Rab GDI proteins Human genes 0.000 description 1
- 108050002695 Rab GDI proteins Proteins 0.000 description 1
- 102100034328 Rab GDP dissociation inhibitor beta Human genes 0.000 description 1
- 108050001276 Rab3 Proteins 0.000 description 1
- 102000011070 Rab3 Human genes 0.000 description 1
- 102100033200 Rho guanine nucleotide exchange factor 7 Human genes 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 102100023532 Synaptic functional regulator FMR1 Human genes 0.000 description 1
- 102100028706 Synaptophysin Human genes 0.000 description 1
- 108090001076 Synaptophysin Proteins 0.000 description 1
- 102000050389 Syntaxin Human genes 0.000 description 1
- 206010043376 Tetanus Diseases 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 210000001766 X chromosome Anatomy 0.000 description 1
- QPMSXSBEVQLBIL-CZRHPSIPSA-N ac1mix0p Chemical compound C1=CC=C2N(C[C@H](C)CN(C)C)C3=CC(OC)=CC=C3SC2=C1.O([C@H]1[C@]2(OC)C=CC34C[C@@H]2[C@](C)(O)CCC)C2=C5[C@]41CCN(C)[C@@H]3CC5=CC=C2O QPMSXSBEVQLBIL-CZRHPSIPSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000002459 blastocyst Anatomy 0.000 description 1
- 210000000625 blastula Anatomy 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000004656 cell transport Effects 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- IDGWYOYDRLQSAS-JJKGCWMISA-M cesium;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanoate Chemical compound [Cs+].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O IDGWYOYDRLQSAS-JJKGCWMISA-M 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000036461 convulsion Effects 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008260 defense mechanism Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 230000000763 evoking effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 238000012252 genetic analysis Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 210000002980 germ line cell Anatomy 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical class O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 1
- 230000037308 hair color Effects 0.000 description 1
- 230000000971 hippocampal effect Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000011813 knockout mouse model Methods 0.000 description 1
- 230000027928 long-term synaptic potentiation Effects 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000008722 morphological abnormality Effects 0.000 description 1
- 101150091879 neo gene Proteins 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 230000030363 nerve development Effects 0.000 description 1
- 210000001640 nerve ending Anatomy 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 102000013415 peroxidase activity proteins Human genes 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- VJKUPQSHOVKBCO-AHMKVGDJSA-N picrotoxin Chemical compound O=C([C@@]12O[C@@H]1C[C@]1(O)[C@@]32C)O[C@@H]3[C@H]2[C@@H](C(=C)C)[C@@H]1C(=O)O2.O=C([C@@]12O[C@@H]1C[C@]1(O)[C@@]32C)O[C@@H]3[C@H]2[C@@H](C(C)(O)C)[C@@H]1C(=O)O2 VJKUPQSHOVKBCO-AHMKVGDJSA-N 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 230000001242 postsynaptic effect Effects 0.000 description 1
- 108010046566 rab3A GTP Binding Protein Proteins 0.000 description 1
- 108010014186 ras Proteins Proteins 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000003977 synaptic function Effects 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000003656 tris buffered saline Substances 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K67/00—Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
- A01K67/027—New or modified breeds of vertebrates
- A01K67/0275—Genetically modified vertebrates, e.g. transgenic
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4722—G-proteins
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/05—Animals comprising random inserted nucleic acids (transgenic)
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01K—ANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
- A01K2217/00—Genetically modified animals
- A01K2217/07—Animals genetically altered by homologous recombination
- A01K2217/075—Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
Definitions
- the invention of this application relates to an animal lacking the Rab GDIa gene. More specifically, the invention of this application belong to the low molecular weight GTP-binding protein (G protein) Rab family one, Rab GDI alpha expressed genes nerve tissue singular manner is substituted in the function-deficient mutant gene gene gene
- the present invention relates to a knockout animal that does not have the ability to synthesize Rab GDIa in the body or has a low ability to synthesize Rab GDIa, and a recombinant ES cell that is indispensable for producing this animal. This gene-deficient animal is useful in fields such as drug development for neurological diseases and the like. Background art
- Neurotransmission is an extremely dynamic process involved in vesicle transport, association and fusion in the presynaptic plasma membrane. It plays a decisive role in synaptic plasticity, which is generally defined as a change in electrical activity dependent on the preceding stimulus (Reference 1). Short-term plasticity includes paired pulse facilitation (PPF), post-stimulation potentiation (PTP), and suppression, and duration ranges from tens of milliseconds to minutes (Ref. 2). PPF is a phenomenon in which the synaptic potential amplitude increases when synapses are activated by giving a pair of pulses at short intervals. The amount of response to the second stimulus usually increases depending on the interval between stimuli.
- PTP is a phenomenon in which the synaptic potential temporarily increases after a series of short stimuli. PTP is detected immediately after a series of stimuli, and decreases over the next few minutes. PPF and PTP result from increased probabilities of release of neurotransmitters from presynaptic nerve terminals triggered by increased intraterminal Ca 2+ , while repression of synapses after repeated actions is not complete, but not entirely. This is due to withdrawal of neurotransmitters that are easily released from the presynaptic nerve terminals. Synaptic suppression is a physiological defense mechanism against hyperexcitability, a potential cause of epileptic seizures.
- LTP and LTD long-term potentiation and suppression
- This plasticity is thought to be the basis of learning and memory (Ref. 3).
- Numerous biochemical processes Are known to be involved in vesicle release of neurotransmitters, but it remains unknown how these processes are involved in synaptic plasticity.
- Rab GDI regulates the recycling of all low-molecular-weight G proteins of the Rab family involved in intracellular vesicle trafficking (References 4-10).
- Rab GDI exists from yeast to mammals.
- Mammalian Rab GDI constitutes a family of at least three members: Rab GDI a, one and one r, while yeast has the only gene essential for cell viability.
- Rab GDI ⁇ is specifically expressed in neuronal tissues (Reference 11), and Rab GDI is expressed systemically.
- the tissue distribution of Rab GDI r has not yet been studied.
- Recent genetic analysis of X-linked non-specific mental retardation (XLMR) has shown that mutations in the Rab GDIa gene can cause this disease (Reference 12).
- Rab GDIa is localized to the distal portion of chromosome Xq28 (Ref. 16), and mutations in the chromosome in this region have recently been reported to cause symptomatic diseases of XLMR, including epileptic seizures. (Ref. 17).
- Rab3A a member of the Rab3 subfamily of Rab3A, 13B, 13C, and 3D, is a promising candidate protein that regulates neurotransmission through Rab GDI ⁇ (Reference 8).
- Rab3A-deficient mice in the CAI region of the hippocampus have yielded important findings on Rab3A function (Reference 18).
- PPF and PTP short-term synaptic plasticity
- the invention of this application has been made in view of the circumstances described above, and is an animal individual that is specifically expressed in nervous tissue and genetically deficient for Rab GDI ⁇ , which is a causative gene of XLMR for neuropsychiatric disorders.
- the challenge is to provide Disclosure of the invention
- This application provides the following inventions (1) to (5) as inventions for solving the above-mentioned problems.
- Rab GDI a a non-human animal individual that has generated totipotent cells in which the genomic gene encoding the low-molecular-weight GTP-binding protein Rab GDI ⁇ has been replaced by a mutant gene with a loss of function, and its descendants Gene-deficient animals.
- FIG. 1 shows the strategy for gene targeting of the Rab GDIa gene.
- a The top is the structure of the mouse Rab GDIa gene having 10 exons. Targeting vector is exon It was designed to remove a portion of 2 followed by exons 3-6. This construct contained a 4.4 kb 5 flanking sequence and a 4.8 kb 3 ′ flanking sequence.
- the MC1-neo cassette was inserted into the Sacl site inside exon 2, while the 5 'splice acceptor site remained intact.
- the diphtheria toxin DT-A cassette was inserted at the 3 'end. In the targeted allele, the MC1-Neo cassette replaces 2.4 kb of genomic DNA region.
- b Southern hybridization using Xbal digested DNA extracted from mouse tail and 3 ′ external probe shown in la. Mouse genotypes were identified by an 8.4 kb wild type (WT) and 5.5 kb mutant (MT) fragment.
- c Genotyping by PCR analysis of DNA extracted from 21-day-old littermates. PCR primers were selected to produce a 366 bp DNA product representing the wild-type (WT) allele or a 224 bp product from the targeted (MT) Rab GDIa allele.
- d ⁇ stamp lot analysis of proteins extracted from brain of each genotype. A 60 kD band of Rab GDIa protein was detected.
- e Western plot analysis of synaptic proteins extracted from the brains of wild-type and Rab GDI ⁇ -deficient mice.
- FIG. 2 shows the results of testing the reduction of synaptic suppression during repeated stimulation in Rab GDIa-deficient mice.
- a EPSC in response to repetitive stimulation (40 stimuli at 14 Hz) of the Scheffer minor axon Z commissure (SCC) tract was found to be wild-type (WT) in the presence of 50 ⁇ ⁇ D D—AP5.
- Rab GDI-deficient mice (KO) were recorded in CA1 neurons in slices obtained.
- EPSC amplitude was corrected for the amplitude of the first EPSC in the series of stimuli.
- Ten consecutive EPSCs were recorded every 30 seconds for each cell and averaged off-line. Differences between the two groups were significant at the time indicated by an asterisk (* P ⁇ 0.05, t-test).
- FIG. 3 shows the results of testing PPF enhancement in Rab GDI ⁇ -deficient mice.
- a Wild-type (WT, upper trace) and Rab GDI or responsive to counterstimuli delivered to the SCC tract at various interstimulus intervals (50-300 ms) in the presence of 50 mm D-AP5.
- EPSCs recorded in CA1 neurons of deficient mice (KO, lower trace).
- the genomic gene encoding the protein Rab GDI ⁇ that is specifically expressed in nerve tissue is replaced with a mutant gene having a loss of function. It is a gene knockout non-human animal that has developed totipotent cells. More specifically, the Rab GDI ⁇ gene-deficient animal of the present invention (1) is provided as a heterozygote or a homozygote in which the Rab GDIa gene on the somatic chromosome is substituted with a mutant sequence thereof.
- the Rab GDIa gene-deficient animal of the present invention (1) can be prepared by a known target gene recombination method (gene targeting method: Science 244: 1288-1292, 1989).
- ES embryonic stem cells and the like are used as totipotent cells.
- ES cells are mouse (Nature 292: 154-156, 1981), rat (Dev. Biol. 163 (1): 288-292, 1994), Sazore (Proc. Natl. Acad. Sci. USA 92 (17): 7844-7848, 1995) and Egret (Mol. Reprod. Dev. 45 (4): 439-443, 1996).
- EG embryonic germ
- the Rab GDIa gene-deficient animal of the present invention (1) can be produced for these animal species, and a mouse having a technique for producing a gene knockout animal is most suitable.
- the specific procedure of the production will be described below by taking the mouse of the invention (2) as an example.
- a genomic DNA fragment of the Rab GDI ⁇ gene is isolated, the DNA fragment is subjected to gene manipulation in a test tube, and the DNA fragment containing the initiation codon of the Rab GDI a gene is modified. Create a mutant DNA fragment that deletes the function of the a gene.
- isolation of the mouse genomic DNA library can be obtained by screening a mouse genomic DNA library using an oligonucleotide probe synthesized based on a known human Rab GDIa cDNA sequence (GenBnk Accession No. D45021) or the like.
- the target genomic DNA can also be obtained by PCR using a synthetic oligonucleotide corresponding to a part or both ends of the Rab GDI cDNA as a primer.
- the Rab GDI ⁇ gene of each animal is isolated by the above-mentioned method using the oligonucleotide synthesized based on the above cDNA sequence as a probe or primer. be able to.
- a targeting vector for modifying a part of the genomic DNA of the mouse Rab GDIa gene obtained by the method described above and introducing a mutation into the Rab GDIa gene of totipotent cells (ES cells) is known in the art. It is prepared according to a method (for example, Science 244: 1288-1292, 1989).
- a recombinant plasmid DNA having a mutant gene having a sequence homologous to the genomic DNA of Rab GDIa at both ends is prepared.
- a sequence such as a PGK1 promoter for controlling the expression and a PGK1 polyadenylation signal can be linked to the cytotoxic resistance gene.
- the genomic DNA region of the Rab GDI or gene replaced or inserted by the cytotoxic resistance gene is preferably a genomic DNA region including an exon region including an initiation codon.
- the targeting vector for introducing a mutation into a part of the genomic DNA of the Rab GDI ⁇ gene is not particularly limited except that it has a sequence homologous to the genomic DNA of the Rab GDI ⁇ gene. Such sequences as drug resistance gene, cell selection gene (for example, diphtheria toxin A gene or herpes virus thymidine kinase gene), promoter, and enhancer can be used in an appropriate combination.
- this targeting vector is introduced into mouse ES cells according to a known method.
- a known electric pulse method, ribosome method, calcium phosphate method, or the like can be used, but in view of the efficiency of homologous gene recombination of the introduced gene, an electric pulse method for ES cells is preferable.
- the DNA of each transfected ES cell is extracted and the homologous gene set between the wild-type Rab GDI a gene present on the chromosome and the introduced Rab GDI a mutant gene fragment is analyzed by Southern blot analysis, PCR assay, etc. Cells that have undergone a recombination and have a mutation in the Rab GDIa gene on the chromosome are selected.
- the ES cells having the mutated gene thus obtained are injected into blastocysts of wild-type mice, and then the chimeric embryo is transplanted into the uterus of a foster mother. After the offspring are reared and reared, chimeric animals in which the Rab GDIa mutant gene has entered germline cells are selected. Selection is performed by extracting DNA from hair color differences or a part of the body (for example, the tip of the tail), and performing Southern blot analysis or PCR assay.
- Invention (3) is a tissue or cell isolated from the Rab GDI ⁇ gene-deficient animal of the invention (1) or (2).
- Example 1 a central nervous system tissue of an animal, such as a hippocampal slice or a neuron thereof. These tissues and cells can be used as a screening system for therapeutic agents for neurological diseases.
- the present invention will be described in more detail and specifically with reference to Examples, but the present invention is not limited to the following Examples.
- Rab GDI or cDNA was isolated from the mouse brain cDNA library A TriplEx (Clonetch) using bacterial strains and manufacturer's protocol and sequenced using the ABI DNA sequencer. A cDNA fragment encoding the N-terminal half region of Rab GDIa was subcloned into an appropriate plasmid vector and used as a probe for homology screening of the 129SVJ mouse genomic library ⁇ FIXII (Stratagene). 1.2 Production of Rab GDI-deficient mice
- a targeting vector was prepared by replacing exon 2 and the subsequent 3 'half of exons 3 to 6 with a neo-resistance gene cassette, transfected into RW4 ES cells, and followed the procedure described in reference 21. Selected. Homologous recombination was confirmed by Southern hybridization using 5'- and 3'_ external probes and a neo-resistance gene probe. Rab GDIa-deficient ES cells were microinjected into E3.5 C57BL / 6J blastula and transferred to MCH pseudopregnant surrogates to produce chimeras, which were crossed with BDF1 mice for germline transmission. Mice carrying the mutant allele were also backcrossed to C57BL / 6 mice.
- Genotyping was performed using the Rab GDI o in which the primers in the neo gene (SEQ ID NOs: 1 and 2) were replaced; the primers in the gene (SEQ ID NOs: 3 and 4) were used for Southern hybridization and PCR.
- the PCR mixture was denatured at 95 ° C for 2 minutes and annealed at 55 ° C for 1 minute.
- the PCR was performed for 25 minutes at 72 ° C. for 2 minutes, at 95 ° C. for 30 seconds, and at 55 ° C. for 1 minute.
- the sample was extended at 72 ° C for an additional 5 minutes. PCR products were visualized on 4% NuSieve agarose (Takara) TAE (3: 1) gel.
- An anti-Rab GDIa antibody was prepared against the C-terminal region of Rab GDIa fused to the GST protein, that is, 365 to 447 amino acid residues.
- Mouse brain is in lysis buffer of 320mM sucrose, 20mM Tris-C1 pH 7.5s 2mM EDTA and 10mM phenylmethylsulfonyl fluoride Was homogenized. Proteins of 50 «g were separated by SDS-PAGE, transferred to Immobilon membrane (Millipore), and blocked for 1 hour in Tris-buffered saline containing 5% of serum albumin. After 1 hour incubation with anti-Rab GDIa antibody and then 1 hour with peroxidase conjugated secondary antibody, blots were developed using ECL (Amersham Pharmacia Biotech).
- Transhippocampal slices (0.3-0.4 mm thick) were prepared from wild-type and mutant mice (4-10 weeks of age).
- the composition of the external recording solution NaCl of 127 mM, 1.5 mM of KC and KH 2 P0 4 of 1.2 mM, MgSO 4 in 1.3 mM, and the NaHCO 3 and lOmM of glucose of CaCl 2, 26 mM of 2.4 mM.
- To this solution 95% 0 2 and 5% C0 2 was saturated.
- Electrical stimulation (test pulse at 0.1 Hz, duration of 0.1 ms, intensity of about 200 // A) was performed from concentric bipolar electrodes inserted into the radial layer in the CA1 region.
- Extracellular and whole cell patch clamp recordings were performed at room temperature (24-26 ° C).
- picrotoxin 100 ⁇ M was added to block GABAergic inhibition.
- a cut was made between the CA1 and CA2 regions to block the transmission of burst activity from the CA2 / 3 region.
- a patch pipette contains an internal solution (pH 7.2) containing 150 mM cesium gluconate, 0.2 mM EGTA, 8 mM NaCl, 10 mM HEPES, 2 mM Mg 2+ ATP and 5 mM QX-314 (Sigma). Filled. Recordings were made using an axopateh ID amplifier (Axon Instruments).
- the mouse Rab GDIa gene consists of 10 exons spanning a 6.8 kb DNA region.
- Rab GDI ⁇ -deficient ES cells contain four exons (exon 3 to exon) of the Rab GDI ⁇ gene.
- a targeting vector designed to delete the 2.3 kb genomic DNA containing the DNA (up to 6) homologous recombination was performed (Fig. 1a).
- the targeting vector was electroporated into RW4 ES cells, two G418-resistant colonies homozygous for the Rab GDIa gene were obtained because the Rab GDI gene is located on the X chromosome. The genotype of G418 resistant colonies was confirmed by Southern hybridization. Chimeric mice were produced using these ES clones. Since all Rab GDIa heterozygotes were female, male chimeric mice and female Rab GDIa heterozygotes were cross-bred to produce homozygous mutant progeny (FIGS. 1b and c).
- Rab GDIa-deficient mice Homozygous mice in which alleles were disrupted did not express any Rab GDI protein (Fig. 1d). Biochemical studies in Rab3A-deficient mice showed that labfilin 3 levels were selectively reduced to almost 30% of wild-type mice (Reference 18), whereas Rab GDIa-deficient mice had Rab3A, Rabll Other synaptic proteins, including rabphyrin 3, syntaxin, synabtotagmin I, synaptophysin and sinabsin I aZb, were normal (Fig. 1e). Rab GDIa-deficient mice were viable and fertile, and showed no morphological abnormalities in the brain, indicating that Rab GDI was not essential for nerve development.
- Rab GDIa alters synaptic transmission and activity-dependent plasticity at excitatory synapses in the CA1 region of the hippocampus. Tested. It has already been demonstrated that deletion of Rab3A in nerve endings accelerates synaptic suppression during repeated stimulation of the CA1 region (Reference 18). Therefore, changes in this form of presynaptic plasticity were tested. Repetitive stimulation at moderate frequencies (14 Hz) in wild-type mice elicited an initial enhancement of excitatory postsynaptic current (EPSC) amplitude, followed by a slight suppression (FIG. 2a, top trace).
- EPC excitatory postsynaptic current
- the invention of this application provides an animal individual that is specifically expressed in nerve tissue and has a genetic deficiency of Rab GDI ⁇ , which is a causative gene of a neurological XLMR. It is useful for elucidating molecular mechanisms related to memory and learning, or for diagnosing neurological diseases such as epilepsy and developing therapeutic methods and therapeutics. Further, the Rab GDI ⁇ gene-deficient animal of the present invention is also useful as a model animal for a neurological disease XLMR. References
- Oligophrenin-1 encodes a rhoGAP protein involved in X- linked mental retardation.Nature 392, 923-926 (1998).
- K. et al. K-ras is essential for the development of the mouse embryo.Oncogene 15, 1 151-1159 (1997).
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Environmental Sciences (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Animal Husbandry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Toxicology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Rab DGIα knockout animals which are a non-human individual, wherein a genomic gene encoding a low-molecular weight GTP-binding protein Rab GDIα has been substituted by a gene with the deletion of this function, and its offspring. These Rab DGIα knockout animals are useful in clarifying molecular mechanisms concerning memory and learning and developing diagnostic and therapeutic methods for neural diseases such as epilepsy, remedies therefor, etc. Moreover, these knockout animals are useful as model animals of neural disease XLMR.
Description
明細書 Specification
Rab GDI α;遺伝子欠損動物 技術分野 Rab GDI α; gene-deficient animal
この出願の発明は、 Rab GDI a遺伝子欠損動物に関するものである。さらに詳しくは、この 出願の発明は、低分子量 GTP結合蛋白質(G蛋白質) Rabファミリ一に属し、神経組織特 異的に発現する Rab GDI α遺伝子がその機能欠失型変異遺伝子に置換された遺伝子ノッ クアウト動物であって、体内において Rab GDI aを合成する能力を持たない、または合成能 が低い遺伝子欠損動物と、この動物の作成に不可欠な組換え ES細胞に関するものである。 この遺伝子欠損動物は、神経疾患等に対する医薬品開発等の分野において有用である。 背景技術 The invention of this application relates to an animal lacking the Rab GDIa gene. More specifically, the invention of this application belong to the low molecular weight GTP-binding protein (G protein) Rab family one, Rab GDI alpha expressed genes nerve tissue singular manner is substituted in the function-deficient mutant gene gene The present invention relates to a knockout animal that does not have the ability to synthesize Rab GDIa in the body or has a low ability to synthesize Rab GDIa, and a recombinant ES cell that is indispensable for producing this animal. This gene-deficient animal is useful in fields such as drug development for neurological diseases and the like. Background art
神経伝達はシナプス前部血漿膜における小胞の輸送、結合および融合に係わっている極 めて動的な過程である。これは、一般的には先行刺激に依存した電気的活性の変化として 定義されるシナプス可塑性に決定的な役割を果たしている(文献 1 )。短期可塑性には対合 パルス促通(PPF)、反復刺激後増強(PTP)および抑圧が含まれ、そしてその期間は数十ミ リ秒から数分までの範囲である(文献 2)。 PPF は、 1対のパルスを短い間隔で与えてシナプ スを活性化したとき、シナプス電位振幅が増大する現象である。 2回目の刺激に対する応答 量は通常、刺激間の間隔に依存して増加する。 PTPは短い一連の刺激後にシナプス電位が 一時的に増大する現象である。 PTP は一連の刺激直後に検出され、そしてその後数分間で 低下する。 PPFと PTPは、末端内 Ca2+の増加によって誘発されるシナプス前部神経末端 から神経伝達物質が放出される蓋然性の上昇から生じ、一方シナプスの反復作用後の抑圧 は、全部ではないが大部分、シナプス前部神経末端から容易に放出される神経伝達物質の 枯渴によるものである。シナプス抑圧は、てんかん発作の潜在的な原因である過興奮 (hyperexcitability)に対する生理学的な防御メカニズムである。海馬での興奮性シナプス における長期シナプス可塑性には長期増強および抑圧(LTPおよび LTD )が含まれ、そして この可塑性が学習と記憶の基礎であると考えられている(文献 3 )。多数の生化学的プロセス
が神経伝達物質の小胞放出に関係していることが知られているが、これらのプロセスがシナ ブス可塑性にどのように関与しているのかは依然として知られていない。 Neurotransmission is an extremely dynamic process involved in vesicle transport, association and fusion in the presynaptic plasma membrane. It plays a decisive role in synaptic plasticity, which is generally defined as a change in electrical activity dependent on the preceding stimulus (Reference 1). Short-term plasticity includes paired pulse facilitation (PPF), post-stimulation potentiation (PTP), and suppression, and duration ranges from tens of milliseconds to minutes (Ref. 2). PPF is a phenomenon in which the synaptic potential amplitude increases when synapses are activated by giving a pair of pulses at short intervals. The amount of response to the second stimulus usually increases depending on the interval between stimuli. PTP is a phenomenon in which the synaptic potential temporarily increases after a series of short stimuli. PTP is detected immediately after a series of stimuli, and decreases over the next few minutes. PPF and PTP result from increased probabilities of release of neurotransmitters from presynaptic nerve terminals triggered by increased intraterminal Ca 2+ , while repression of synapses after repeated actions is not complete, but not entirely. This is due to withdrawal of neurotransmitters that are easily released from the presynaptic nerve terminals. Synaptic suppression is a physiological defense mechanism against hyperexcitability, a potential cause of epileptic seizures. Long-term synaptic plasticity at excitatory synapses in the hippocampus includes long-term potentiation and suppression (LTP and LTD), and this plasticity is thought to be the basis of learning and memory (Ref. 3). Numerous biochemical processes Are known to be involved in vesicle release of neurotransmitters, but it remains unknown how these processes are involved in synaptic plasticity.
Rab GDIは、細胞内小胞輸送に関与している Rabファミリ一の全ての低分子量 Gタンパ ク質のリサイクリングを制御している(文献 4— 10)。 Rab GDI は酵母から哺乳動物までに 存在する。哺乳動物 Rab GDIは、少なくとも 3つのメンバ一: Rab GDI a、一 および一 r からなるファミリ一を構成しており、一方酵母は細胞生存性に必須の唯一の遺伝子を有して いる。上記 3つのメンバーのうち、 Rab GDI αはニューロン組織で特異的に発現し(文献 1 1 )、 Rab GDI は全身性に発現している。 Rab GDI rの組織分布は未だ研究されていない。 X 連鎖性非特異的精神遅滞 (XLMR)に関する最近の遺伝子分析によって、 Rab GDI a遺伝 子の突然変異がこの疾病を引き起こし得ることが明らかにされている(文献 12)。XLMR に 関連した遺伝子欠損は依然として殆ど知られていないが、これまでのところ、 FMR1、 PAK3、 ォリゴフレニンー 1および Rab GDI αに影響を与える 4つの突然変異が XLMRの原因であ ることが報告されている(文献 12— 15)。特に、 Rab GDI aは染色体 Xq28の遠位部分に 局在しており(文献 16)、そしてこの領域における上記染色体の突然変異はてんかん発作を 含む XLMR の症候性疾患を引き起こすことが最近報告されている(文献 17)。これらの観 察によって、過興奮の抑制制御に関係していると思われる Rab GDIなは、ニューロン細胞 の小胞輸送において特殊な機能を有していることが示唆される。 Rab3A、一 3B、一3C および一 3D からなる Rab3 サブファミリ一の 1メンバ一である Rab3A は、 Rab GDI αを介して神経伝達を制御している有望な候補タンパク質である(文 献 8)。海馬の CAI領域における Rab3A欠失マウスに関する研究によって、 Rab3A機能 に対する重要な知見が得られている(文献 1 8)。すなわち、 Rab3A欠失ニューロンにおいて はシナプスの枯渴が急速に進むが、短期シナプス可塑性の 2つの形態(PPFと PTP)は影響 されない。これらの知見によって、 Rab3Aはのェキソサイト一シスにおいて何らかの役割を果 たしていることが示唆される力 Rab GDI αの突然変異によって Rab3Aを介した XLMRの 長期間のてんかん発作がどのようにして引き起こされるのかについては未だ知られていなし、。
記憶や学習のメカニズム、あるいはてんかん等の神経疾患の原因を解明するためには、二 ユーロンのシナプス機能を分子レベルで解析する必要がある。そして、そのような分子機構を 理解するためには、関係する遺伝子の欠損の結果を個体レベルで解析することが不可欠で お 。 この出願の発明は、以上のとおりの事情に鑑みてなされたものであって、神経組織で特異 的に発現し、精神神経疾患 XLMR の原因遺伝子である Rab GDI αを遺伝的に欠損した 動物個体を提供することを課題としている。 発明の開示 Rab GDI regulates the recycling of all low-molecular-weight G proteins of the Rab family involved in intracellular vesicle trafficking (References 4-10). Rab GDI exists from yeast to mammals. Mammalian Rab GDI constitutes a family of at least three members: Rab GDI a, one and one r, while yeast has the only gene essential for cell viability. Among the above three members, Rab GDIα is specifically expressed in neuronal tissues (Reference 11), and Rab GDI is expressed systemically. The tissue distribution of Rab GDI r has not yet been studied. Recent genetic analysis of X-linked non-specific mental retardation (XLMR) has shown that mutations in the Rab GDIa gene can cause this disease (Reference 12). Little is known about the gene defects associated with XLMR, but so far four mutations affecting FMR1, PAK3, Oligophrenin-1 and Rab GDIα have been reported to be responsible for XLMR. (Refs. 12–15). In particular, Rab GDIa is localized to the distal portion of chromosome Xq28 (Ref. 16), and mutations in the chromosome in this region have recently been reported to cause symptomatic diseases of XLMR, including epileptic seizures. (Ref. 17). These observations suggest that Rab GDI, which appears to be involved in the control of hyperexcitation, has a special function in vesicle trafficking of neuronal cells. Rab3A, a member of the Rab3 subfamily of Rab3A, 13B, 13C, and 3D, is a promising candidate protein that regulates neurotransmission through Rab GDIα (Reference 8). Studies on Rab3A-deficient mice in the CAI region of the hippocampus have yielded important findings on Rab3A function (Reference 18). Thus, in Rab3A-deficient neurons, synaptic depletion progresses rapidly, but the two forms of short-term synaptic plasticity (PPF and PTP) are not affected. These findings suggest that Rab3A may play a role in exocytosis. It is not known yet whether it will be. In order to elucidate the mechanisms of memory and learning, or the causes of neurological disorders such as epilepsy, it is necessary to analyze the synaptic function of two eurons at the molecular level. In order to understand such molecular mechanisms, it is indispensable to analyze the results of deletion of related genes at the individual level. The invention of this application has been made in view of the circumstances described above, and is an animal individual that is specifically expressed in nervous tissue and genetically deficient for Rab GDI α, which is a causative gene of XLMR for neuropsychiatric disorders. The challenge is to provide Disclosure of the invention
この出願は、前記の課題を解決するための発明として、以下の (1)〜(5)の発明を提供する。 This application provides the following inventions (1) to (5) as inventions for solving the above-mentioned problems.
(1) 低分子量 GTP結合蛋白質 Rab GDI αをコードするゲノム遺伝子がその機能欠失型 変異遺伝子に置換されている分化全能性細胞を発生させた非ヒト動物個体およびその子孫 動物である Rab GDI a遺伝子欠損動物。 (1) Rab GDI a, a non-human animal individual that has generated totipotent cells in which the genomic gene encoding the low-molecular-weight GTP-binding protein Rab GDI α has been replaced by a mutant gene with a loss of function, and its descendants Gene-deficient animals.
(2) 非ヒト動物が、マウスである前記発明(1)の Rab GDI o!遺伝子欠損動物。 (2) The Rab GDI o! Gene-deficient animal according to the invention (1), wherein the non-human animal is a mouse.
(3) 前記発明 (1)または (2)の動物由来の組織または細胞。 (3) The animal-derived tissue or cell according to the invention (1) or (2).
(4) 低分子量 GTP結合蛋白質 Rab GDIなをコードするゲノム遺伝子がその機能欠失型 変異遺伝子に置換されている ES細胞。 (4) ES cells in which the genomic gene encoding the low molecular weight GTP-binding protein Rab GDI has been replaced by a mutant gene lacking its function.
(5) マウス由来である前記発明 (4)の ES細胞。 図面の簡単な説明 (5) The ES cell according to the invention (4), which is derived from a mouse. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 Rab GDI a遺伝子のジーンターゲティングの戦略を示す。 a :最上部は 10 個の ェキソンを有するマウス Rab GDI a遺伝子の構造である。タ一ゲティングベクタ一はェキソン
2の一部分とこれに続くェキソン 3〜6を除去するように設計した。このコンストラクトは 4.4kb の 5フランキング配列と 4.8kbの 3 'フランキング配列を含有していた。 MC1—ネオ一カセット はェキソン 2内部の Sacl部位に挿入したが、 5'スプライス受容部位は無傷のまま保持した。 ジフテリア毒素 DT—Aカセットは 3 '末端に挿入した。標的化対立遺伝子では、 MC1—ネオ カセットがゲノム DNA領域の 2.4kbを置換している。相同的組換えは制限フラグメントおよ びプローブを使用して確認した。 b :マウス尾部から抽出した Xbal 消化 DNAおよび図 la に示した 3'外部プローブを使用したサザンハイブリダィゼ一シヨン。マウス遺伝子型は 8.4kb の野生型(WT)と 5.5kbの変異(MT)フラグメントによって同定した。 c: 21 日齢の同腹マウ スから抽出した DNAの PCR分析による遺伝子型決定。 PCRプライマ一を選択して、野生 型(WT)対立遺伝子を示す 366bpの DNA産生物または標的化(MT) Rab GDI a対立遺 伝子による 224bpの産生物を産生させた。 d :各遺伝子型の脳から抽出したタンパク質のゥ エスタンプロット分析。 Rab GDI aタンパク質の 60kD のバンドが検出された。 e :野生型お よび Rab GDI α欠失マウスの脳から抽出したシナプスタンパク質のウェスタンプロット分析。 FIG. 1 shows the strategy for gene targeting of the Rab GDIa gene. a: The top is the structure of the mouse Rab GDIa gene having 10 exons. Targeting vector is exon It was designed to remove a portion of 2 followed by exons 3-6. This construct contained a 4.4 kb 5 flanking sequence and a 4.8 kb 3 ′ flanking sequence. The MC1-neo cassette was inserted into the Sacl site inside exon 2, while the 5 'splice acceptor site remained intact. The diphtheria toxin DT-A cassette was inserted at the 3 'end. In the targeted allele, the MC1-Neo cassette replaces 2.4 kb of genomic DNA region. Homologous recombination was confirmed using restriction fragments and probes. b: Southern hybridization using Xbal digested DNA extracted from mouse tail and 3 ′ external probe shown in la. Mouse genotypes were identified by an 8.4 kb wild type (WT) and 5.5 kb mutant (MT) fragment. c: Genotyping by PCR analysis of DNA extracted from 21-day-old littermates. PCR primers were selected to produce a 366 bp DNA product representing the wild-type (WT) allele or a 224 bp product from the targeted (MT) Rab GDIa allele. d: ゥ stamp lot analysis of proteins extracted from brain of each genotype. A 60 kD band of Rab GDIa protein was detected. e: Western plot analysis of synaptic proteins extracted from the brains of wild-type and Rab GDIα-deficient mice.
図 2は、 Rab GDI a欠失マウスにおける反復刺激中のシナプス抑制の低下を試験した結 果である。 a :シェ一ファー副軸索 Z交連(SCC)路の反復刺激(14Hzで 40回の刺激)に対 して応答した EPSCは、 50 Λ< Μの D— AP5の存在下で野生型(WT)および Rab GDI 欠 失マウス(KO )から得たスライス中の CA1 ニューロンで記録した。 b :野生型(白丸、 n = 13)および Rab GDI a欠失マウス(黒丸、 n= 16)における反復刺激中の刺激数の関数とし てプロットした EPSCの振幅。 EPSCの振幅は一連の刺激の 1回目の EPSCの振幅に対し て補正した。各細胞で 30秒毎に EPSCの連続を 10回記録し、オフラインで平均した。 2つ の群間の差異は星印で示した時点で有意であった( * P< 0.05、 t検定)。 FIG. 2 shows the results of testing the reduction of synaptic suppression during repeated stimulation in Rab GDIa-deficient mice. a: EPSC in response to repetitive stimulation (40 stimuli at 14 Hz) of the Scheffer minor axon Z commissure (SCC) tract was found to be wild-type (WT) in the presence of 50 Λ <D D—AP5. ) And Rab GDI-deficient mice (KO) were recorded in CA1 neurons in slices obtained. b: Amplitude of EPSC plotted as a function of number of stimuli during repeated stimuli in wild type (open circles, n = 13) and Rab GDIa deficient mice (solid circles, n = 16). EPSC amplitude was corrected for the amplitude of the first EPSC in the series of stimuli. Ten consecutive EPSCs were recorded every 30 seconds for each cell and averaged off-line. Differences between the two groups were significant at the time indicated by an asterisk (* P <0.05, t-test).
図 3は、 Rab GDI α欠失マウスにおける PPF増強を試験した結果である。 a : 50 Μの D -AP5の存在下で種々の刺激間間隔(50〜300ミリ秒)で SCC路に送達した対合刺激 に応答した野生型(WT、上部トレ一ス)および Rab GDI or欠失マウス(KO、下部トレース) の CA1ニューロンで記録した EPSC。 b : PPFの大きさ。野生型(白丸、 n= 17)および Rab GDI a欠失マウス(黒丸、 n = 15 )における 2回目対 1回目の EPSC 振幅の割合が刺激間 間隔の関数としてプロットされている。 50ミリ秒と 70ミリ秒での PPFは上記 2つの群間で異 なっていた( * P< 0.05、 t検定)。
図 4は、野生型および Rab GDI a欠失マウスにおける SCC— CA1 シナプスでの LTP。 LTPは、 20秒あけて適用した 100Hzで、 2回の 1秒間強縮によって誘導した。野生型(白 丸、 n = 9 )と Rab GDI α欠失マウス(黒丸、 n = 7 ; P>0.7、 t検定)間では、強縮後 60分目 に測定した LTPに有意な差異はなかった。 発明を実施するための最良の形態. FIG. 3 shows the results of testing PPF enhancement in Rab GDI α-deficient mice. a: Wild-type (WT, upper trace) and Rab GDI or responsive to counterstimuli delivered to the SCC tract at various interstimulus intervals (50-300 ms) in the presence of 50 mm D-AP5. EPSCs recorded in CA1 neurons of deficient mice (KO, lower trace). b: PPF size. The ratio of the second versus first EPSC amplitude in wild-type (open circles, n = 17) and Rab GDIa-deficient mice (solid circles, n = 15) is plotted as a function of interstimulus interval. The PPF at 50 ms and 70 ms was different between the two groups (* P <0.05, t-test). FIG. 4 shows LTP at SCC-CA1 synapse in wild-type and Rab GDIa-deficient mice. LTP was induced by two 1-second twitches at 100 Hz applied 20 seconds apart. There is no significant difference in LTP measured at 60 minutes post-tetanus between wild type (open circles, n = 9) and Rab GDIα-deficient mice (solid circles, n = 7; P> 0.7, t-test) Was. Best mode for carrying out the invention.
この出願によって提供される前記発明(1)の Rab GDI a遺伝子欠損動物は、神経組織で 特異的に発現するタンパク質 Rab GDI αをコードするゲノム遺伝子がその機能欠失型変異 遺伝子に置換されている分化全能性細胞発生させた遺伝子ノックアウト非ヒト動物である。さ らに詳しくは、この発明(1)の Rab GDI α遺伝子欠損動物は、体細胞染色体の Rab GDI a 遺伝子がその変異配列に置換されているヘテロ接合体、あるいはホモ接合体として提供され る。 この発明 (1)の Rab GDI a遺伝子欠損動物は、公知の標的遺伝子組換え法(ジーンター ゲティング法: Science 244: 1288-1292, 1989 )により作製することができる。この標的遺 伝子組換え法では、分化全能性細胞として ES (embryonic stem)細胞等を使用する。 ES 細胞は、マウス(Nature 292: 154- 156, 1981 )、ラット(Dev. Biol. 163(1):288-292, 1994 )、 サゾレ(Proc. Natl. Acad. Sci. U.S.A. 92(17):7844-7848, 1995 )、ゥサギ (Mol. Reprod. Dev. 45(4):439-443, 1996)で確立している。また、ブタについては EG (embryonic germ)細胞力確立してし、る(Biol. Reprod 57(5): 1089- 1095, 1997)。従 つてこの発明(1)の Rab GDI a遺伝子欠損動物は、これらの動物種を対象に作製すること ができるが、特に遺伝子ノックアウト動物の作製に関して技術が整っているマウスが最適で ある。作製の具体的手続を、前記発明 (2)のマウスを例にとって説明すれば以下のとおりであ る。 先ず、 Rab GDI α遺伝子のゲノム DNA断片を単離し、その DNA断片を試験管内にて遺 伝子操作し、 Rab GDI a遺伝子の開始コドンを含む DNA断片に対して改変を施すなどの、 Rab GDI a遺伝子の機能を欠失させるような変異 DNA断片を作製する。 Rab GDI aゲノ
ム DNAの単離は、例えば、公知のヒト Rab GDI aの cDNA配列(GenBnk Accession No. D45021 )等に基づいて合成されたオリゴヌクレオチドプローブを用いてマウスゲノム DNAライブラリ一をスクリーニングすることにより得られる。また、この Rab GDI cDNAの 一部または両端に相当する合成オリゴヌクレオチドをプライマーとする PCR法によっても目 的とするゲノム DNAを得ることができる。なお、マウス以外の動物を対象とする場合にも、前 記の cDNA配列に基づいて合成されたオリゴヌクレオチドをプローブまたはプライマ一とする 前記の方法により、各動物の Rab GDI α遺伝子を単離することができる。 上記のとおりの方法によって得られたマウス Rab GDI a遺伝子のゲノム DNA の一部を 改変し、全能性細胞(ES細胞)の Rab GDI a遺伝子に変異を導入するためのターゲティン グベクタ一を、公知の方法(例えば、 Science 244: 1288- 1292 , 1989 )に準じて作製する。 例えば、 Rab GDI α遺伝子のゲノム DNAの一部を G418等の細胞毒に対する耐性遺伝 子(例えば、ネオマイシン耐性遺伝子)に置換することにより、もしくは細胞毒に対する耐性遺 伝子を Rab GDI a遺伝子のゲノム DNAの一部に揷入することで、 Rab GDI aのゲノム DNAと相同な配列を両端に有する変異遺伝子を保有する組換えプラスミド DNA、すなわち ターゲティングベクタ一を作製する。なお、細胞毒に対する耐性遺伝子には、その発現を制御 するための PGK1プロモ一ター等の配列および PGK1ポリアデニレ一シヨンシグナル等を連 結することもできる。また、細胞毒に対する耐性遺伝子により置換、または挿入される Rab GDI or遺伝子のゲノム DNA部位は、開始コドンを含んだェクソン領域を含むゲノム DNA 領域であることが好ましい。 上記 Rab GDI α遺伝子のゲノム DNAの一部に変異を導入するためのターゲテイングべ クタ一には、 Rab GDI α遺伝子のゲノム DNA に相同な配列を有すること以外には特に制 限はなく、他の薬剤耐性遺伝子や、細胞選択用遺伝子(例えば、ジフテリア毒素 A遺伝子や ヘルぺスウィルスのサイミジンキナーゼ遺伝子)、プロモーター、ェンハンサ一等の配列を適 宜に組み合わせて使用することができる。 次に、このターゲティングベクターを、公知の方法に準じてマウス ES細胞に導入する。この
ような遺伝子導入法としては、公知の電気パルス法、リボソーム法、リン酸カルシウム法等も 利用できるが、導入遺伝子の相同遺伝子組換え効率を勘案した場合、 ES細胞への電気パ ルス法が好ましい。 遺伝子導入された各 ES細胞の DNAを抽出し、サザンブロット分析や PCRアツセィ等に より、染色体上に存在する野生型 Rab GDI a遺伝子と導入した Rab GDI a変異遺伝子 断片の間で正しく相同遺伝子組換えが起こり、染色体上の Rab GDI a遺伝子に変異が移 つた細胞を選択する。 こうして得た変異遺伝子を持つ ES 細胞を野生型マウスのブラストシストに注入し、つづい てこのキメラ胚を仮親の子宮に移植する。出生した動物を里親につけて飼育させた後、 Rab GDI a変異遺伝子が生殖系細胞に入ったキメラ動物を選別する。選別は毛色の違い、また は体の一部(例えば尾部先端)から DNAを抽出し、サザンブロット分析や PCRアツセィ等 により行う。 Rab GDI α変異遺伝子が生殖系細胞に入ったキメラ動物と野生型動物の交配 により得られる子孫について、さらに体の一部(例えば尾部先端)からの抽出 DNAを材料と した、サザンプロット分析や PCRアツセィ等を行い、 Rab GDI α変異遺伝子が導入されたへ テロ接合体を同定する。作出された Rab GDI a変異遺伝子を保有するへテロ接合体は生 殖細胞および体細胞のすべてに安定的に Rab GDI o;遺伝子変異を保有しており、交配等 により、効率よくその変異を子孫動物に伝達することができる。 発明 (3)は、前記発明(1)または (2)の Rab GDI α遺伝子欠損動物から単離した組織また は細胞である。具体的には、動物の中枢神経系組織であり、これは例えば海馬切片やその ニューロン等である。これらの組織や細胞は、神経疾患の治療薬等のスクリーニング系として 利用できる。 以下、実施例を示してこの発明についてさらに詳細かつ具体的に説明するが、この発明は 以下の例に限定されるものではない。
実施例 In the Rab GDIa gene-deficient animal of the invention (1) provided by this application, the genomic gene encoding the protein Rab GDIα that is specifically expressed in nerve tissue is replaced with a mutant gene having a loss of function. It is a gene knockout non-human animal that has developed totipotent cells. More specifically, the Rab GDIα gene-deficient animal of the present invention (1) is provided as a heterozygote or a homozygote in which the Rab GDIa gene on the somatic chromosome is substituted with a mutant sequence thereof. The Rab GDIa gene-deficient animal of the present invention (1) can be prepared by a known target gene recombination method (gene targeting method: Science 244: 1288-1292, 1989). In this target gene recombination method, ES (embryonic stem) cells and the like are used as totipotent cells. ES cells are mouse (Nature 292: 154-156, 1981), rat (Dev. Biol. 163 (1): 288-292, 1994), Sazore (Proc. Natl. Acad. Sci. USA 92 (17): 7844-7848, 1995) and Egret (Mol. Reprod. Dev. 45 (4): 439-443, 1996). For pigs, EG (embryonic germ) cell strength has been established (Biol. Reprod 57 (5): 1089-1095, 1997). Therefore, the Rab GDIa gene-deficient animal of the present invention (1) can be produced for these animal species, and a mouse having a technique for producing a gene knockout animal is most suitable. The specific procedure of the production will be described below by taking the mouse of the invention (2) as an example. First, a genomic DNA fragment of the Rab GDI α gene is isolated, the DNA fragment is subjected to gene manipulation in a test tube, and the DNA fragment containing the initiation codon of the Rab GDI a gene is modified. Create a mutant DNA fragment that deletes the function of the a gene. Rab GDI a Geno For example, isolation of the mouse genomic DNA library can be obtained by screening a mouse genomic DNA library using an oligonucleotide probe synthesized based on a known human Rab GDIa cDNA sequence (GenBnk Accession No. D45021) or the like. . The target genomic DNA can also be obtained by PCR using a synthetic oligonucleotide corresponding to a part or both ends of the Rab GDI cDNA as a primer. In the case of targeting animals other than mice, the Rab GDIα gene of each animal is isolated by the above-mentioned method using the oligonucleotide synthesized based on the above cDNA sequence as a probe or primer. be able to. A targeting vector for modifying a part of the genomic DNA of the mouse Rab GDIa gene obtained by the method described above and introducing a mutation into the Rab GDIa gene of totipotent cells (ES cells) is known in the art. It is prepared according to a method (for example, Science 244: 1288-1292, 1989). For example, by replacing a part of the genomic DNA of the Rab GDI α gene with a cytotoxic resistance gene such as G418 (eg, neomycin resistance gene), or by replacing the cytotoxic resistance gene with the Rab GDIa gene genome By inserting a part of the DNA, a recombinant plasmid DNA having a mutant gene having a sequence homologous to the genomic DNA of Rab GDIa at both ends, that is, a targeting vector is prepared. In addition, a sequence such as a PGK1 promoter for controlling the expression and a PGK1 polyadenylation signal can be linked to the cytotoxic resistance gene. Further, the genomic DNA region of the Rab GDI or gene replaced or inserted by the cytotoxic resistance gene is preferably a genomic DNA region including an exon region including an initiation codon. The targeting vector for introducing a mutation into a part of the genomic DNA of the Rab GDI α gene is not particularly limited except that it has a sequence homologous to the genomic DNA of the Rab GDI α gene. Such sequences as drug resistance gene, cell selection gene (for example, diphtheria toxin A gene or herpes virus thymidine kinase gene), promoter, and enhancer can be used in an appropriate combination. Next, this targeting vector is introduced into mouse ES cells according to a known method. this As such a gene transfer method, a known electric pulse method, ribosome method, calcium phosphate method, or the like can be used, but in view of the efficiency of homologous gene recombination of the introduced gene, an electric pulse method for ES cells is preferable. The DNA of each transfected ES cell is extracted and the homologous gene set between the wild-type Rab GDI a gene present on the chromosome and the introduced Rab GDI a mutant gene fragment is analyzed by Southern blot analysis, PCR assay, etc. Cells that have undergone a recombination and have a mutation in the Rab GDIa gene on the chromosome are selected. The ES cells having the mutated gene thus obtained are injected into blastocysts of wild-type mice, and then the chimeric embryo is transplanted into the uterus of a foster mother. After the offspring are reared and reared, chimeric animals in which the Rab GDIa mutant gene has entered germline cells are selected. Selection is performed by extracting DNA from hair color differences or a part of the body (for example, the tip of the tail), and performing Southern blot analysis or PCR assay. Southern plot analysis and PCR using progeny obtained by crossing a wild-type animal with a chimeric animal in which a Rab GDI α mutant gene has entered a germline cell and using DNA extracted from a part of the body (for example, the end of the tail) as a material Perform Atsusei et al. To identify heterozygotes into which the Rab GDIα mutant gene has been introduced. The heterozygote containing the created Rab GDIa mutant gene stably carries the Rab GDI o; gene mutation in all of the cultured cells and somatic cells, and the offspring can efficiently transfer the mutation by mating etc. Can be transmitted to animals. Invention (3) is a tissue or cell isolated from the Rab GDIα gene-deficient animal of the invention (1) or (2). Specifically, it is a central nervous system tissue of an animal, such as a hippocampal slice or a neuron thereof. These tissues and cells can be used as a screening system for therapeutic agents for neurological diseases. Hereinafter, the present invention will be described in more detail and specifically with reference to Examples, but the present invention is not limited to the following Examples. Example
1. 方法 1. Method
1.1 DNAライブラリ一スクリーニング 1.1 DNA library screening
Rab GDI or cDNAは、細菌株および製造者のプロトコ一ルを使用してマウス脳 cDNAラ イブラリー A TriplEx( Clonetch)から単離し、 ABI DNA シークェンサ一を使用して配列を 決定した。 Rab GDI aの N末端の半領域をコードしている cDNAフラグメントを適当なブラ スミドベクタ一中にサブクロ一ニングし、 129SVJ マウスゲノムライブラリ一 λ FIXII (Stratagene)の相同性スクリーニング用プローブとして使用した。 1.2 Rab GDI 欠失マウスの産生 Rab GDI or cDNA was isolated from the mouse brain cDNA library A TriplEx (Clonetch) using bacterial strains and manufacturer's protocol and sequenced using the ABI DNA sequencer. A cDNA fragment encoding the N-terminal half region of Rab GDIa was subcloned into an appropriate plasmid vector and used as a probe for homology screening of the 129SVJ mouse genomic library λ FIXII (Stratagene). 1.2 Production of Rab GDI-deficient mice
ェキソン 2とこれに続くェキソン 3〜6の 3 '半分をネオ耐性遺伝子カセットで置換してタ一ゲ ティングベクタ一を作成し、 RW4 ES細胞にトランスフエクシヨンして、文献 21 の記載に従つ て選択した。相同的組換えは 5 '—および 3'_外部プローブとネオ耐性遺伝子プローブを使用 するサザンハイブリダィゼ一シヨンによって確認した。 Rab GDI a欠失 ES 細胞を E3.5 C57BL/6J 胞胚中に微量注入し、 MCH 偽妊娠代理母に移してキメラを産生させ、これを 生殖系列を伝達させるために BDF1 マウスと交配した。突然変異対立遺伝子を有するマウ スも C57BL/6 マウスと戻し交配した。遺伝子型決定は、ネオ遺伝子中のプライマ一 (配列 番号 1および 2)と置換した Rab GDI o;遺伝子中のプライマ一 (配列番号 3および 4 )を使用 してサザンハイブリダィゼ一シヨンおよび PCRにより行った。 PCR混合物を 95°Cで 2分間変 性させ、 55°Cで 1分間アニーリングした。 PCRは、 72°Cで 2分間の伸張、 95°Cで 30秒の変 性および 55°Cで 1分間のアニーリングを 25回実施した。試料は 72°Cでさらに 5分間伸張さ せた。 PCR産生物は 4%の NuSieveァガロース(Takara) TAE( 3: 1 )ゲル上で視覚化し た。 1.3 ウェスタンプロット分析 A targeting vector was prepared by replacing exon 2 and the subsequent 3 'half of exons 3 to 6 with a neo-resistance gene cassette, transfected into RW4 ES cells, and followed the procedure described in reference 21. Selected. Homologous recombination was confirmed by Southern hybridization using 5'- and 3'_ external probes and a neo-resistance gene probe. Rab GDIa-deficient ES cells were microinjected into E3.5 C57BL / 6J blastula and transferred to MCH pseudopregnant surrogates to produce chimeras, which were crossed with BDF1 mice for germline transmission. Mice carrying the mutant allele were also backcrossed to C57BL / 6 mice. Genotyping was performed using the Rab GDI o in which the primers in the neo gene (SEQ ID NOs: 1 and 2) were replaced; the primers in the gene (SEQ ID NOs: 3 and 4) were used for Southern hybridization and PCR. Was performed. The PCR mixture was denatured at 95 ° C for 2 minutes and annealed at 55 ° C for 1 minute. The PCR was performed for 25 minutes at 72 ° C. for 2 minutes, at 95 ° C. for 30 seconds, and at 55 ° C. for 1 minute. The sample was extended at 72 ° C for an additional 5 minutes. PCR products were visualized on 4% NuSieve agarose (Takara) TAE (3: 1) gel. 1.3 Western plot analysis
GSTタンパク質に融合した Rab GDI aの C末端領域、即ち 365〜447アミノ酸残基に 対して抗 Rab GDI a抗体を作成した。マウス脳は 320mMスクロース、 20mMトリス一 C1 pH7.5s 2mM EDTA および 10mM フエ二ルメチルスルホニルフルオリドの溶解緩衝液中
にホモジネートした。 50 A« g のタンパク質が SDS— PAGE で分離され、このタンパク質を Immobilon膜(Millipore)に移し、 5%のゥシ血清アルブミンを含有するトリス緩衝生理食 塩液中で 1時間ブロッキングした。抗 Rab GDI a抗体と共に 1時間そしてその後ペルォキシ ダ一ゼ抱合二次抗体と共に 1時間インキュベートした後、 ECL ( Amersham Pharmacia Biotech)を使用してブロットを発色させた。 An anti-Rab GDIa antibody was prepared against the C-terminal region of Rab GDIa fused to the GST protein, that is, 365 to 447 amino acid residues. Mouse brain is in lysis buffer of 320mM sucrose, 20mM Tris-C1 pH 7.5s 2mM EDTA and 10mM phenylmethylsulfonyl fluoride Was homogenized. Proteins of 50 «g were separated by SDS-PAGE, transferred to Immobilon membrane (Millipore), and blocked for 1 hour in Tris-buffered saline containing 5% of serum albumin. After 1 hour incubation with anti-Rab GDIa antibody and then 1 hour with peroxidase conjugated secondary antibody, blots were developed using ECL (Amersham Pharmacia Biotech).
1.4 電気生理学的分析 1.4 Electrophysiological analysis
海馬横断スライス(厚さ 0.3〜0.4mm)を野生型および突然変異マウス(4〜10 週齢)か ら作製した。外部記録溶液の組成は: 127mM の NaCl、 1.5mM の KCし 1.2mM の KH2P04、 1.3mMの MgS04、 2.4mMの CaCl2、 26mMの NaHC03および lOmMのグ ルコースとした。この溶液に 95%の 02および 5%の C02を飽和させた。電気刺激(0.1Hz での試験パルス、 0.1ミリ秒の持続、約 200 // Aの強度)は、 CA1 領域の放射状層内に揷 入された同心二極電極から行った。細胞外記録および全細胞パッチクランプ記録は室温( 24 〜26°C)で実施した。全細胞実験では、ピクロトキシン(100 Λί Μ)を添加して GABA作動性 阻害を遮断した。 CA2/3領域からの突発活性の伝達を遮断するために CA1と CA2領域 間を切断した。パッチピペットには、 150mM のグルコン酸セシウム、 0.2mM の EGTA、 8mM の NaCl、 10mM の HEPES、 2mM の Mg2+ATP および 5mM の QX— 314 ( Sigma)を含有する内部溶液(pH7.2 )を満たした。記録は axopateh ID 増幅器(Axon Instruments)を使用して行った。シグナルは 2kHzでフィルタ一にかけ、 10kHz でデジタ ル化し、 pClainpソフトウェア(Axon Instruments)を使用して分析した。 EPSCの振幅ま たはフィールド EPSPの初期スロープを測定し、これらのデータは平均土 S.E.M.として、バ一 スラインに対するパーセントとして表した。統計的分析はスチューデントの t検定を使用し、 P< 0.05を統計的有意水準とした。 2. 結果 Transhippocampal slices (0.3-0.4 mm thick) were prepared from wild-type and mutant mice (4-10 weeks of age). The composition of the external recording solution: NaCl of 127 mM, 1.5 mM of KC and KH 2 P0 4 of 1.2 mM, MgSO 4 in 1.3 mM, and the NaHCO 3 and lOmM of glucose of CaCl 2, 26 mM of 2.4 mM. To this solution 95% 0 2 and 5% C0 2 was saturated. Electrical stimulation (test pulse at 0.1 Hz, duration of 0.1 ms, intensity of about 200 // A) was performed from concentric bipolar electrodes inserted into the radial layer in the CA1 region. Extracellular and whole cell patch clamp recordings were performed at room temperature (24-26 ° C). In whole cell experiments, picrotoxin (100 μM) was added to block GABAergic inhibition. A cut was made between the CA1 and CA2 regions to block the transmission of burst activity from the CA2 / 3 region. A patch pipette contains an internal solution (pH 7.2) containing 150 mM cesium gluconate, 0.2 mM EGTA, 8 mM NaCl, 10 mM HEPES, 2 mM Mg 2+ ATP and 5 mM QX-314 (Sigma). Filled. Recordings were made using an axopateh ID amplifier (Axon Instruments). The signal was filtered at 2 kHz, digitized at 10 kHz and analyzed using pClainp software (Axon Instruments). EPSC amplitude or field EPSP initial slope was measured and these data were expressed as mean soil SEM as a percentage of the baseline. Statistical analysis used Student's t-test, with P <0.05 as the statistical significance level. 2. Result
2.1 Rab GDI α欠失マウスの産出 2.1 Production of Rab GDI α-deficient mice
マウス Rab GDI a遺伝子は 6.8kbの DNA領域に及ぶ 10個のェキソンからなっている。 Rab GDI α欠失 ES細胞は、 Rab GDI α遺伝子の 4個のェキソン(ェキソン 3からェキソン
6まで)を含む 2.3kb のゲノム DNAを欠失するように設計したターゲテイングべクタ一を使 用し、相同的組換えで作成した(図 1 a)。ターゲテイングべクタ一を RW4 ES細胞内にエレク トロポレー卜したとき、 Rab GDIな遺伝子は X染色体に位置しているので、 Rab GDI a遺伝 子とホモ接合した 2つの G418耐性コロニーを得た。 G418耐性コロニーの遺伝子型はサザ ンハイブリダィゼ一シヨンで確認した。これらの ES クローンを用いてキメラマウスを産出させ た。 Rab GDI aヘテロ接合体は全て雌であったので、雄キメラマウスと雌 Rab GDI aヘテロ 接合体を異種交配させて、ホモ接合型変異体子孫を産出させた(図 1 bおよび c)。 The mouse Rab GDIa gene consists of 10 exons spanning a 6.8 kb DNA region. Rab GDI α-deficient ES cells contain four exons (exon 3 to exon) of the Rab GDI α gene. Using a targeting vector designed to delete the 2.3 kb genomic DNA containing the DNA (up to 6), homologous recombination was performed (Fig. 1a). When the targeting vector was electroporated into RW4 ES cells, two G418-resistant colonies homozygous for the Rab GDIa gene were obtained because the Rab GDI gene is located on the X chromosome. The genotype of G418 resistant colonies was confirmed by Southern hybridization. Chimeric mice were produced using these ES clones. Since all Rab GDIa heterozygotes were female, male chimeric mice and female Rab GDIa heterozygotes were cross-bred to produce homozygous mutant progeny (FIGS. 1b and c).
対立遺伝子が分断されているホモ接合マウスは Rab GDIなタンパク質を全く発現しなかつ た(図 1 d)。Rab3A欠失マウスにおける生化学試験で、ラブフィリン 3 値が野生型マウスの ほぼ 30%まで選択的に低下することが示された(文献 1 8)が、 Rab GDI a欠失マウスでは Rab3A、 Rab l l、ラブフィリン 3、シンタキシン、シナブトタグミン I、シナプトフイシンおよびシ ナブシン I aZbを含む他のシナプスタンパク質は正常値であった(図 1 e)。 Rab GDI a欠失 マウスは生存可能で且つ生殖能力があり、脳では形態学的異常を示さなかったので、 Rab GDI が神経発育に必須でないことが示された。 Homozygous mice in which alleles were disrupted did not express any Rab GDI protein (Fig. 1d). Biochemical studies in Rab3A-deficient mice showed that labfilin 3 levels were selectively reduced to almost 30% of wild-type mice (Reference 18), whereas Rab GDIa-deficient mice had Rab3A, Rabll Other synaptic proteins, including rabphyrin 3, syntaxin, synabtotagmin I, synaptophysin and sinabsin I aZb, were normal (Fig. 1e). Rab GDIa-deficient mice were viable and fertile, and showed no morphological abnormalities in the brain, indicating that Rab GDI was not essential for nerve development.
2.2 Rab GDI α欠失マウスにおける反復刺激中のシナプス抑制の低下 2.2 Reduced synaptic depression during repeated stimulation in Rab GDI α-deficient mice
中枢神経系のシナプス伝達制御における Rab GDIなの生理学的機能を調べるために、 Rab GDI aの欠失が、シナプス伝達並びに海馬の CA1領域の興奮性シナプスにおける活 性依存的可塑性を変化させるかどうかを試験した。神経末端における Rab3A の欠失が CA1領域の反復刺激中にシナプス抑制を加速させることは既に証明されている(文献 18)。 それ故、この形態のシナプス前部可塑性における変化を試験した。野生型マウスにおける中 程度の周波数(14Hz)での反復刺激は興奮性シナプス後電流(EPSC)振幅の初期促進、 その後の僅かな抑制を誘発した(図 2a、上部トレース)。対照的に、突然変異シナプスは殆ど 全く抑制を示さず、この連続刺激中に大きな促進が集積された(図 2a、下部トレース)。野生 型と変異マウスの両方における 14Hzでの 40回の刺激によって誘発された EPSC振幅の 時間経過を要約した(図 2b)。連続刺激終了時の相対的 EPSC振幅は、野生型および変異 マウスにおける最初の EPSCのそれぞれ 148 ± 13%( π= 13)および 207±23% ( η = 16 ) であった。 2つの群間の差異は全ての時間点で有意であった(Ρく 0.05、 t検定)(図 2b、星
印で示されている)。この Rab GDIa欠失マウスの表現型は明らかに Rab3A 欠失マウス の表現型とは正反対である(文献 18)ので、 Rab3Aの提案されている機能、即ち反復刺激 中におけるェキソサイ! ^一シスのためのシナプス小胞の補充が、 Rab GDI α欠失マウスでは 増強されることが示唆される。 To investigate the physiological function of Rab GDI in controlling synaptic transmission in the central nervous system, it was investigated whether deletion of Rab GDIa alters synaptic transmission and activity-dependent plasticity at excitatory synapses in the CA1 region of the hippocampus. Tested. It has already been demonstrated that deletion of Rab3A in nerve endings accelerates synaptic suppression during repeated stimulation of the CA1 region (Reference 18). Therefore, changes in this form of presynaptic plasticity were tested. Repetitive stimulation at moderate frequencies (14 Hz) in wild-type mice elicited an initial enhancement of excitatory postsynaptic current (EPSC) amplitude, followed by a slight suppression (FIG. 2a, top trace). In contrast, the mutant synapse showed little or no suppression, and a large enhancement was accumulated during this continuous stimulation (FIG. 2a, lower trace). The time course of EPSC amplitude evoked by 40 stimuli at 14 Hz in both wild type and mutant mice was summarized (Figure 2b). The relative EPSC amplitude at the end of the sequential stimulation was 148 ± 13% (π = 13) and 207 ± 23% (η = 16) of the first EPSC in wild-type and mutant mice, respectively. The difference between the two groups was significant at all time points (p <0.05, t-test) (Figure 2b, star ). Since the phenotype of this Rab GDIa-deficient mouse is clearly opposite to the phenotype of Rab3A-deficient mouse (Ref. 18), the proposed function of Rab3A, namely, exocytosis during repeated stimulation! Suggests that synaptic vesicle recruitment is enhanced in Rab GDIα-deficient mice.
2.3 Rab GDI a欠失マウスにおける PPFの増強 2.3 Enhancement of PPF in Rab GDIa-deficient mice
Rab3A欠失マウスの場合には、連続的な EPSC振幅は最初の 12回の刺激では野生型 と変異マウス間で実質的に同一であり(文献 18)、 Rab3Aが 13回目の刺激後にだけ小胞 補充に関与することが示されている。対照的に、この試験では 2回目の刺激からであっても 差異は有意であった(図 2b)。これによつて、シナプス促通は Rab GDI α?欠失マウスでも変 化する可能性が高くなつた。この可能性を試験するために、シナプス前部の可塑性のもう 1つ の形態、 PPFを試験した。図 2bの結果から予想されるように、 PPFの振幅は野生型マウス より Rab GDIa欠失マウスの方が大きかった(図 3a)。 50 ミリ秒の刺激間間隔における 2 回目対 1回目の EPSC振幅の割合は野生型および変異マウスでそれぞれ 186±6%(n = 17)および 216±7%(n=15)であった(図 3b)。 2つの群間の差異は 50ミリ秒および 70 ミリ秒の間隔で有意であった( *P<0.05、 t検定)。他方、より長い間隔(100ミリ秒、 200ミ リ秒および 300ミリ秒)での PPFはこれら 2つの群間で異なっていなかった。変異マウスにお ける PPFの増強はその時間経過中の変化と関係がないという上記の結果は、神経伝達物 質放出の増加が単に Ca2+イオンの形成によるものだけではなぐ Rab GDIaの不存在下 でのシナプス小胞の固有の特性の変化によるものでもあることを示している。この結果は、反 復刺激中のシナプス抑制の低下と共に、この形態の短期可塑性の基礎となっているメカニズ ムは Rab3A介在性シナプス小胞輸送に依存している可能性があることを示唆している。 In the case of Rab3A-deficient mice, the continuous EPSC amplitude was virtually identical between wild-type and mutant mice during the first 12 stimuli (Ref. 18), and Rab3A was vesicular only after the 13th stimulus. It has been shown to be involved in replenishment. In contrast, the difference was significant in this study, even from the second stimulus (Figure 2b). This increased the likelihood that synaptic facilitation was altered in Rab GDI α? -Deficient mice. To test this possibility, another form of presynaptic plasticity, PPF, was tested. As expected from the results in Figure 2b, the amplitude of PPF was greater in Rab GDIa-deficient mice than in wild-type mice (Figure 3a). The ratio of EPSC amplitude at the second time to the first time at the 50 ms interval was 186 ± 6% (n = 17) and 216 ± 7% (n = 15) in wild-type and mutant mice, respectively (Fig. 3b). Differences between the two groups were significant at intervals of 50 ms and 70 ms (* P <0.05, t-test). On the other hand, PPF at longer intervals (100 ms, 200 ms and 300 ms) was not different between these two groups. The above result that PPF enhancement in mutant mice was not related to changes over time indicates that the increase in neurotransmitter release was not solely due to the formation of Ca2 + ions.The absence of Rab GDIa It is also due to changes in the intrinsic properties of the synaptic vesicles below. This result, together with reduced synaptic suppression during repetitive stimulation, suggests that the mechanism underlying this form of short-term plasticity may be dependent on Rab3A-mediated synaptic vesicle trafficking. I have.
2.4 野生型マウスと Rab GDIa欠失マウス間には LTPに関して有意差無し 2.4 No significant difference in LTP between wild-type and Rab GDIa-deficient mice
最後に、 CA1 領域内の LTP、即ちシナプス可塑性の NMDA レセプター依存性形態が Rab GDI α欠失マウスで改変されているかどうかを試験した。 LTP は 2つの群で本質的に 同一であった。すなわち、野生型は誘導 60分後にベースラインの 148±11%(η = 9)であ リ、ノックアウトマウスは、 155±19%であった(n = 7;P>0.7、 t検定)(図 4)。 CA1 領域の
LTPは、文献 18によれば Rab3A欠失マウスでは影響を受けなかったので、この形態の長 期可塑性は本来的に Rab3A機能とは無関係であると思われる。 産業上の利用可能性 Finally, it was tested whether LTP in the CA1 region, an NMDA receptor-dependent form of synaptic plasticity, was altered in Rab GDIα-deficient mice. LTP was essentially identical in the two groups. That is, the wild type was 148 ± 11% (η = 9) of the baseline 60 minutes after induction, and the knockout mouse was 155 ± 19% (n = 7; P> 0.7, t-test) (Fig. Four). CA1 area Since LTP was not affected in Rab3A-deficient mice according to reference 18, this form of long-term plasticity appears to be essentially independent of Rab3A function. Industrial applicability
以上詳しく説明したとお y、この出願の発明によって、神経組織で特異的に発現し、神経疾 患 XLMRの原因遺伝子である Rab GDI αを遺伝的に欠損した動物個体が提供される。記 憶や学習に関係する分子メカニズムの解明、あるいはてんかん等の神経疾患の診断やその 治療法、治療薬等の開発に有用である。また、この発明の Rab GDI α遺伝子欠損動物は、 神経疾患 XLMRのモデル動物としても有用である。 参考文献 As described in detail above, the invention of this application provides an animal individual that is specifically expressed in nerve tissue and has a genetic deficiency of Rab GDIα, which is a causative gene of a neurological XLMR. It is useful for elucidating molecular mechanisms related to memory and learning, or for diagnosing neurological diseases such as epilepsy and developing therapeutic methods and therapeutics. Further, the Rab GDI α gene-deficient animal of the present invention is also useful as a model animal for a neurological disease XLMR. References
1. Von Gersdorff, H. & Matthews, G. ElectrotJhysiology of synaptic vesicle cycling. Annu. Rev. Physiol. 61 , 725-752 ( 1999). 1. Von Gersdorff, H. & Matthews, G. Electrot Jhysiology of synaptic vesicle cycling. Annu. Rev. Physiol. 61, 725-752 (1999).
2. Zucker, R. S. Short-term synaptic plasticity. Annu. Rev. Neurosci. 12, 13- 31 (1989). 2. Zucker, R.S.Short-term synaptic plasticity. Annu. Rev. Neurosci. 12, 13-31 (1989).
3. Bliss, T. V. P. & collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31-39 ( 1993). 3. Bliss, T.V.P. & collingridge, G.L.A synaptic model of memory: long-term potentiation in the hippocampus.Nature 361, 31-39 (1993).
4. Sasaki, T. et al. purification and characterization from bovine brain cytosol of a protein inhibiting the dissociation of GDP from and the subsequent binding of GTP to smg p25A, a ras p21-like GTP- omding protein. J. Biol. Chem. 265, 2333-2337 (1990). 4.Sasaki, T. et al. Purification and characterization from bovine brain cytosol of a protein inhibiting the dissociation of GDP from and the subsequent binding of GTP to smg p25A, a ras p21-like GTP- omding protein.J. Biol. Chem. 265, 2333-2337 (1990).
5. Matsui, Y. et al. Molecular cloning and characterization of a novel ty e of regulatory protein (GDI) for smg p25A, a ras p21-like GTP- binding protein. Mol. Cell. Biol. 10, 41 16-4122 (1990). 5. Matsui, Y. et al. Molecular cloning and characterization of a novelty e of regulatory protein (GDI) for smg p25A, a ras p21-like GTP-binding protein. Mol. Cell. Biol. 10, 41 16-4122 (1990).
6. Araki, S. et al. Regulation of reversible binding of smg 25A, a ras p21- like GTP-omding protein, to synaptic membranes and vesicles by its specific regulatory protein, GDP dissociation inhibitor. J. Biol. Chem. 265, 13007- 13015 (1990).
7. Pfeffer, S. R., Dirac-Svejstrup , A. B. & Soldati, T. Rab GDP dissociation inhibitor: putting Rab GTPase in the right place. J. Biol. Chem. 270, 17057- 17059 ( 1995). 6. Araki, S. et al. Regulation of reversible binding of smg 25A, a ras p21- like GTP-omding protein, to synaptic membranes and vesicles by its specific regulatory protein, GDP dissociation inhibitor. J. Biol. Chem. 265, 13007- 13015 (1990). 7. Pfeffer, SR, Dirac-Svejstrup, AB & Soldati, T. Rab GDP dissociation inhibitor: putting Rab GTPase in the right place. J. Biol. Chem. 270, 17057-17059 (1995).
8. Takai, Y', Sasaki, Τ·, Shirataki, H. & Nakanishi, H. Rab3A small GTP- omding protein in Ca2 "-dependent exocytosis. Genes Cells 1, 615-6328. Takai, Y ', Sasaki, Τ, Shirataki, H. & Nakanishi, H. Rab3A small GTP- omding protein in Ca 2 "-dependent exocytosis. Genes Cells 1, 615-632
( 1996). (1996).
9. Wu, S-K. , Zeng, Κ·, Wilson, I. A. & Balch, W. EStructural insights into the function of the Rab GDI superfamily. Trends Biochem. Sci, 21, 472-476 (1996). 9. Wu, S-K., Zeng, Κ, Wilson, I.A. & Balch, W. EStructural insights into the function of the Rab GDI superfamily. Trends Biochem. Sci, 21, 472-476 (1996).
10. Novick, P. & Zerial, M. The diversity of Rab proteins in vesicle transport. 10. Novick, P. & Zerial, M. The diversity of Rab proteins in vesicle transport.
Curr. Opin. Cell Biol. 9, 496-504 (1997). Curr. Opin. Cell Biol. 9, 496-504 (1997).
1 1. Bachner, D. et al. Expression patterns of two human genes coding for different rab GDP- dissociation inhibitors (GDIs) , extremely conserved proteins involved in cellular transport. Hum. Mol. Genet. 4, 701 -708 ( 1995). 1 1. Bachner, D. et al. Expression patterns of two human genes coding for different rab GDP- dissociation inhibitors (GDIs), extremely conserved proteins involved in cellular transport.Hum. Mol. Genet. 4, 701-708 (1995) .
12. D 'Adamo, P. et al. Mutations in GDI l are responsible for X-linked nonspecific mental retardation. Nat. Genet. 19, 134- 139 ( 1998). 12. D'Adamo, P. et al. Mutations in GDI l are responsible for X-linked nonspecific mental retardation. Nat. Genet. 19, 134-139 (1998).
13. Verkerk, A. J. et al. Identification of a gene (FMR- 1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905-914 (1991). 13. Verkerk, A. J. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome.Cell 65, 905-914 (1991).
14. Allen, K. M. et al. PAK3 mutation in nonsyndromic X-linked mental retardation. Nat. Genet. 20, 25-30 (1998) . 14. Allen, K.M. et al. PAK3 mutation in nonsyndromic X-linked mental retardation. Nat. Genet. 20, 25-30 (1998).
15. Billuart, P. et al. Oligophrenin- 1 encodes a rhoGAP protein involved in X- linked mental retardation. Nature 392 , 923-926 ( 1998). 15. Billuart, P. et al. Oligophrenin-1 encodes a rhoGAP protein involved in X- linked mental retardation.Nature 392, 923-926 (1998).
16. Sedlacek, Z. et al. Evolutionary conservation and genomic organization of XAP - 4, an Xq28 located gene coding for a human rab GDP- dissociation inhibitor (GDI) . Mamm. Genome 5, 633-639 (1994). 16. Sedlacek, Z. et al. Evolutionary conservation and genomic organization of XAP-4, an Xq28 located gene coding for a human rab GDP- dissociation inhibitor (GDI). Mamm. Genome 5, 633-639 (1994).
17. Armfield, K. et al. X-linked mental retardation syndrome with short
stature, small hands and feet, seizures, cleft palate, and glaucoma is linked to Xq28. Am. J. Med. Genet. 85, 236-242 (1999). 17. Armfield, K. et al. X-linked mental retardation syndrome with short stature, small hands and feet, seizures, cleft palate, and glaucoma is linked to Xq28. Am. J. Med. Genet. 85, 236-242 (1999).
Geppert. M. et al. The role of Rab3A in neurotransmitter release. Nature 369, 493-497 (1994). Geppert. M. et al. The role of Rab3A in neurotransmitter release.Nature 369, 493-497 (1994).
Luan, P. Balch, W. Ε. ' Emr, S. D. & Burd, C. G. Molecular dissection of guanine nucleotide dissociation inhibitor function in vivo. J. Biol. Chern. 274, 14806- 14817 (1999). Luan, P. Balch, W. Ε. 'Emr, S. D. & Burd, C. G. Molecular dissection of guanine nucleotide dissociation inhibitor function in vivo.J. Biol. Chern. 274, 14806-14817 (1999).
Traub, R. D. , Miles, R. & Wong, R. K. S. Model of the origin of rhythmic population oscillations in the hippocampal slice. Science 243, 1319- 1325 (1989). Traub, R.D., Miles, R. & Wong, R.K.S.Model of the origin of rhythmic population oscillations in the hippocampal slice.Science 243, 1319-1325 (1989).
Koera, K. et al. K-ras is essential for the development of the mouse embryo. Oncogene 15, 1 151 - 1159 (1997).
Koera, K. et al. K-ras is essential for the development of the mouse embryo.Oncogene 15, 1 151-1159 (1997).
Claims
1. 低分子量 GTP結合蛋白質 Rab GDI αをコードするゲノム遺伝子がその機能欠失 型変異遺伝子に置換されている分化全能性細胞を発生させた非ヒト動物個体およびその子 孫動物である Rab GDI α遺伝子欠損動物。 1. Rab GDI α gene, which is a non-human animal that has generated totipotent cells in which the genomic gene encoding the low molecular weight GTP-binding protein Rab GDI α has been replaced by a mutant gene with a loss of function, and its progeny Deficient animal.
2. 非ヒト動物が、マウスである請求項 1の Rab GDI a遺伝子欠損動物。 2. The Rab GDIa gene-deficient animal according to claim 1, wherein the non-human animal is a mouse.
3. 請求項 1または 2の動物由来の組織または細胞。 3. A tissue or cell derived from the animal of claim 1 or 2.
4. 低分子量 GTP結合蛋白質 Rab GDI orをコードするゲノム遺伝子がその機能欠失 型変異遺伝子に置換されている ES細胞。 4. ES cells in which the genomic gene encoding the low-molecular-weight GTP-binding protein Rab GDI or has been replaced by a mutant gene lacking its function.
5. マウス由来である請求項 4の ES細胞。
5. The ES cell according to claim 4, which is derived from a mouse.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000131256A JP2001309734A (en) | 2000-04-28 | 2000-04-28 | ANIMAL DEFICIENT IN Rab GDIalpha ENCODED GENE |
JP2000/13125620000428 | 2000-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001082688A1 true WO2001082688A1 (en) | 2001-11-08 |
Family
ID=18640181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2000/008252 WO2001082688A1 (en) | 2000-04-28 | 2000-11-22 | Rab GDIα KNOCKOUT ANIMALS |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2001309734A (en) |
WO (1) | WO2001082688A1 (en) |
-
2000
- 2000-04-28 JP JP2000131256A patent/JP2001309734A/en active Pending
- 2000-11-22 WO PCT/JP2000/008252 patent/WO2001082688A1/en not_active Application Discontinuation
Non-Patent Citations (6)
Title |
---|
Bienvenu T. et al., Human Mol. Gen., Vol. 7, No. 8, pages 1311-1315 (1998). * |
D'Adamo P. et al., Nature Genetics, Vol. 19, pages 134-139 (1998). * |
Ishizaki H. et al., Proc. Natl. Acad. Sci. USA., Vol. 97, No. 21, pages 11587-11592 (2000). * |
Kenichi YAMAMURA, Idenshi Igaku, Vol. 2, No. 4, pages 612-617 (1998). * |
Nishijima N. et al., Cancer Res., Vol. 55, pages 5445-5450 (1995). * |
Nishijima N. et al., J. Biol. Chem., Vol. 269, No. 19, pages 14191-14198 (1994). * |
Also Published As
Publication number | Publication date |
---|---|
JP2001309734A (en) | 2001-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6187992B1 (en) | Transgenic mouse having a disrupted amyloid precursor protein gene | |
Lin et al. | Genetic exploration of the role of acid-sensing ion channels | |
Von Koch et al. | Generation of APLP2 KO mice and early postnatal lethality in APLP2/APP double KO mice | |
US20200359610A1 (en) | Humanized transgenic animal | |
Cai et al. | ALS2/alsin knockout mice and motor neuron diseases | |
US6452065B2 (en) | Transgenic mouse expressing non-native wild-type and familial Alzheimer's Disease mutant presenilin 1 protein on native presenilin 1 null background | |
CN112292030A (en) | Rodent model of progressive ossified fibrodysplasia | |
US5750826A (en) | Bradykinin B2 receptor modified transgenic non-human animals | |
EP3811777A1 (en) | Genetically modified non-human animals humanised for protein c | |
WO2001082688A1 (en) | Rab GDI&alpha; KNOCKOUT ANIMALS | |
JP5083820B2 (en) | Hairless transgenic animal | |
Mendez et al. | [11] Functional study of rhodopsin phosphorylation in vivo | |
Balu et al. | Behavioral and physiological characterization of PKC-dependent phosphorylation in the Grin2a∆ PKC mouse | |
Avenarius | The Glutaredoxin-like Cystein-rich family of genes, Grxcr1 and Grxcr2, in stereocilia development and function | |
US20090007283A1 (en) | Transgenic Rodents Selectively Expressing Human B1 Bradykinin Receptor Protein | |
JP2007000028A (en) | New non-human animal | |
US7151200B2 (en) | Histamine receptor H3 modified transgenic mice | |
WO2006015453A1 (en) | Modified dynorphin expression in animals and identification of compounds for treatment of obesity and diabetes | |
JP6323876B2 (en) | Knock-in mouse | |
EP1483962A2 (en) | Transgenic animal model for Glyt1 function | |
US20050026292A1 (en) | GLYT1 conditional knock-out mice | |
Vasiliou et al. | Generation of a transgenic model to address regulation and function of the human neurokinin 1 receptor (NK1R) | |
JP2006325452A (en) | Tzf/tzf-l gene knockout non-human mammal, method for preparation of the same and method for using the same | |
Mayford et al. | Conditional and inducible gene targeting in the nervous system | |
Hayward et al. | Techniques for Mutagenesis of the Murine Opioid System in Vivo |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WA | Withdrawal of international application |