WO2001079918A1 - Production method for spectacles-frame - Google Patents

Production method for spectacles-frame Download PDF

Info

Publication number
WO2001079918A1
WO2001079918A1 PCT/JP2000/002569 JP0002569W WO0179918A1 WO 2001079918 A1 WO2001079918 A1 WO 2001079918A1 JP 0002569 W JP0002569 W JP 0002569W WO 0179918 A1 WO0179918 A1 WO 0179918A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape model
shape
nose
ear
dimensional
Prior art date
Application number
PCT/JP2000/002569
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Aoyama
Original Assignee
Aoyama Gankyo Kabushikikaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aoyama Gankyo Kabushikikaisha filed Critical Aoyama Gankyo Kabushikikaisha
Priority to PCT/JP2000/002569 priority Critical patent/WO2001079918A1/en
Publication of WO2001079918A1 publication Critical patent/WO2001079918A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C13/00Assembling; Repairing; Cleaning
    • G02C13/003Measuring during assembly or fitting of spectacles

Definitions

  • the present invention relates to a method for manufacturing a spectacle frame that fits a customer's face in an optimal state using three-dimensional face data obtained using a three-dimensional face shape measuring apparatus.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a perfect fit to the customer's face even when a technician who can adjust the details of the spectacle frame is not at the store.
  • the processing control data generated based on the 3D facial shape data is input to a 3D shape model processing machine that processes the workpiece according to It is a method of manufacturing a spectacle frame that fits best to the subject by manufacturing and adjusting the spectacle frame to fit the three-dimensional face shape model.
  • the customer only needs to be present for a short period of time when the above-mentioned pattern is measured by the measuring device, and it is not necessary to wait a long time for adjusting the processing of the eyeglass frame. Even if there is no technician who adjusts the details of the eyeglass frame at the store, the 3D face shape data about the customer's face is acquired by the 3D face shape measurement device at the store, and this 3D face shape is obtained.
  • the data is sent to a recording medium on which the three-dimensional face shape data is recorded, or the three-dimensional face shape data is transmitted through a telecommunication line, and the technician receives the three-dimensional face.
  • shape data it is possible to manufacture eyeglasses that fit perfectly to the customer's face.
  • the eyeglass frame manufacturing method includes an eye and a nose of the three-dimensional face shape model.
  • the eye-nose shape model, the first right ear shape model, and the first left ear shape model are relative to each other between the eyes, roar, and both ears of the three-dimensional face shape model.
  • the eyeglass frame manufacturing method wherein the three-dimensional face shape measuring device is configured such that an inspection plate body including an inspection plate and an ear hook portion having one end fixed thereto is hung on both ears.
  • a 3D shape model processing machine that measures the examiner's face in three dimensions, generates 3D face shape data, processes the workpiece according to the processing control data, and manufactures a 3D shape.
  • the eye and nose data of the processing control data generated based on the three-dimensional face shape data is input to produce an eye and nose shape model including the eyes and the nose, and six degrees of freedom are provided in accordance with the operation control data.
  • the two right-hand ears processed into a shape following the shape of the ear hooks of the inspection plate body are attached to the two six-axis manual purifiers with the mounting parts operable in Attach the shape model and the second left ear shape model.
  • the eye-nose shape model is fixed in the middle of the second left ear shape model, and the shape of the back of the ear of the subject obtained from the position and inclination of the inspection plate body in the three-dimensional face shape data
  • the operation control data generated based on the data is inputted to the two 6-axis manual purifiers, and the mounting portion is moved and inclined with respect to the eye / nose shape model, and
  • the eye, nose and both ears of the examiner are brought into the same positional relationship as the relative positional relationship, and the eye / nose shape model, the second right ear shape model, and the second
  • This is a method of manufacturing a spectacle frame that fits best to the subject by adjusting and processing the spectacle frame to fit the left ear shape model, so that the second right And the left ear
  • FIG. 1 is a flowchart of an eyeglass frame manufacturing method according to the first embodiment.
  • FIG. 2 is a conceptual diagram of a configuration of a three-dimensional face shape measuring device.
  • FIG. 3 is a perspective view of the subject's ear with the inspection plate body hung.
  • FIG. 4 is a front view of the subject's ear with the inspection plate hanged thereon.
  • FIG. 5 is a perspective view of an eyeglass frame.
  • FIG. 6 is an explanatory diagram of an inward bending angle when the vine of the spectacle frame is viewed from directly above.
  • FIG. 7 is an explanatory view of a downward bending angle when the vine of the spectacle frame is viewed from the side.
  • FIG. 8 is an explanatory diagram of an inward bending angle when viewing the vine of the spectacle frame from directly behind.
  • FIG. 9 is a diagram showing a tilt when the inspection plate body is viewed from the front.
  • FIG. 10 is a diagram showing a tilt when the inspection plate is viewed from the side.
  • FIG. 11 is a diagram showing a tilt when the inspection plate is viewed from above.
  • FIG. 12 is a schematic front view of a six-axis manifold.
  • FIG. 13 is a schematic plan view of a six-axis manifold.
  • Fig. 14 is a schematic left side view of the 6 ⁇ Manipire overnight.
  • FIG. 15 is an explanatory diagram of the iris portion of the three-dimensional face shape data.
  • Fig. 16 is a schematic front view showing the state where the 6-axis manipulator and the eye, nose, right ear, and left ear shape models are attached to the workbench.
  • FIG. 17 is a schematic plan view showing a state in which a six-axis manipulator fixed on a workbench, and a model having eye, nose, right ear, and left ear parts are attached.
  • FIG. 18 is an explanatory diagram of a case where an eyeglass frame is attached to an eye-nose part, a right ear part, and a left ear part shape model and adjusted.
  • FIG. 19 is a perspective view showing a state where the divided type three-dimensional face shape model according to the second embodiment is fixed to a fixed base.
  • FIG. 20 is an explanatory diagram of a case in which an eyeglass frame is attached to the segmented three-dimensional face shape model according to the second embodiment and is adjusted.
  • the eyeglass frame manufacturing method comprises: 3D face model is generated by measuring the pattern of the face in three dimensions (S 1), and the workpiece is processed according to the processing control data to produce a three-dimensional shape.
  • the eye and nose data of the processing control data generated based on the three-dimensional face shape data is input to the processing machine to produce an eye / nose shape model including the eyes and nose (S2).
  • the mounting portions of the two 6-axis manual purses each having a mounting portion capable of operating with six degrees of freedom in accordance with the operation control data have a shape along the shape of the ear hook portion of the inspection plate body.
  • the second right ear shape model and the second left ear shape model previously processed Are attached, and the eye-nose part shape model is fixed between these.
  • the right and left ears of the operation control data generated based on the data on the shape of the back of the ear of the subject 2 obtained from the position and inclination of the inspection plate body in the three-dimensional face shape data Part data is input to each of the two 6-axis manual purifiers, and the mounting part is moved and inclined with respect to the eye-nose shape model, so that the eyes, nose and both sides of the subject 2 A state is established in which the same positional relationship as the relative positional relationship between the ears is established (S3).
  • the eyeglass frame is adjusted to fit the eye-nose shape model, the second right-ear shape model, and the second left-ear shape model in this state (S4).
  • the eyeglass frame that fits the subject 2 best is manufactured. The details will be described below.
  • the three-dimensional face shape measuring device 1 As the three-dimensional face shape measuring device 1, a device similar to the three-dimensional face shape measuring device disclosed in Japanese Patent Application Laid-Open No. HEI 5-117245 can be used. As shown in FIG. 2, the measuring device 1 includes a detection head 3, an image encoder 4, a scanner driver 5, a display device 6, a computer 7, and a keyboard 8.
  • the detection head 3 is provided with a CCD camera 9 for photographing the front of the face of the subject 2 at the center of the heart-shaped frame, and the laser slit light sources 10 and A carpano mirror 112 is provided for rotating and projecting the laser slit light to the front side of the face of the subject 2.
  • the computer 7 controls the image encoder 4 and the car controller 13 of the scanner driver 5, and the laser controller 14 is controlled by a shape calculation program built in the computer 7.
  • the laser slit light source 10 is controlled by a laser controller 14 and Carpano mirrors 1 and 2 are controlled by a carba controller 13.
  • the distortion of the laser slit light caused by the unevenness of the right side of the face is detected by the CCD camera. 9, and the image obtained here is processed by the image encoder 4 and the computer 7, which are image synthesizing devices, to measure the three-dimensional face shape of the front side of the subject 2.
  • the force for obtaining the three-dimensional facial shape data of the front side of the subject 2 at this time as shown in FIGS. 3 and 4, the force applied to both ears 15 of the subject 2
  • the three-dimensional face shape measuring device 1 By applying the three-dimensional face shape measuring device 1 to the projection plate 16 and measuring the inclination angle and the like of the surface of the projection plate 16 at the same time, the two balls shown in FIG. 5 are obtained.
  • the optimal shape of the eyeglass frame 22 consisting of the frame 17, the bridge 18, the nose pad 19, and the two temples 20, etc., specifically, as shown in FIGS.
  • the inspection plate body 16 includes a rectangular inspection plate 23 having a white surface and an ear hook 24 fixed at one end to the inspection plate 23. It is a thing. It is possible to obtain almost the same state as when the ear hook 24 is hung on the ear 15 and the temple 20 of the eyeglass frame 22 is hung on the ear 15.
  • the surface of the inspection plate 23 has various inclinations depending on the shape of the back of the ear of the subject 2. That is, as shown in FIG. 9, the inclination of the inspection plate 23 when viewed from the front, as shown in FIG. 10, the inclination of the inspection plate 23 when viewed from the side, As shown in the figure, it is a three-dimensional inclination such as the inclination of the inspection plate 23 when viewed from above.
  • the various inclinations and positions are calculated and analyzed by the computer 7 in accordance with a pre-installed program based on the data obtained by measuring the distance from the CCD camera 9 at a number of positions obtained by dividing the surface of the inspection plate 23 into a grid. It is required by doing.
  • a combination in which a predetermined conversion program is installed Based on the three-dimensional facial shape data of the front side of the subject 2 obtained as described above, based on the evening, a combination in which a predetermined conversion program is installed. Generates machining control data to control the operation.
  • the generation of the processing control data is executed by the computer 7 of the three-dimensional facial shape measuring device 1, but may be executed by another computer or the like.
  • the three-dimensional shape model processing machine processes a workpiece based on processing control data to produce a three-dimensional shape object.
  • the processing mode is not particularly limited, and examples thereof include a cutting process for cutting wax, plastic, and the like, and a process using an ultraviolet curing resin for irradiating a liquid workpiece with ultraviolet rays to cure the workpiece.
  • the 6-axis manifold can move independently in the X, ⁇ , and ⁇ axes directions and can rotate around these axes. Possible).
  • This degree of freedom of movement 6 is realized by providing joints that are independent from each other for direct motion in the X, ⁇ , and ⁇ axis directions and rotation about the X, ⁇ , and ⁇ axes.
  • a fixed seat plate 32 fixed to a work table 43 described later and a fixed seat plate 32 It is slidably provided in the axial direction (in FIG. 12, perpendicular to the paper surface).
  • the axial slide part 33 a and the Y-axis slide part 33 a in the X-axis direction In Fig.
  • the Z-axis direction slide portion 33c is provided so as to be rotatable around the X-axis, and the X-axis rotation portion 34a is rotatable around the Z-axis.
  • a Z-axis rotating section 34b provided rotatably about the Y-axis on the Z-axis rotating section 34b.
  • a linear motion guide such as a linear ball bearing guide 35 and a drive mechanism 36 for moving in each axis direction are provided between the directional slide portion 33b and the Z-axis direction slide portion 33c, respectively.
  • a ball bearing is provided between the X-axis rotation part 34a and the Z-axis rotation part 34b and between the Z-axis rotation part 34b and the Y-axis rotation part 34c.
  • the drive mechanism 36 includes, for example, an input terminal 36b to which operation control data is input via a cable 36a, a servo motor 36c operating according to the operation control data, and the servo motor.
  • the male screw part 36 e that outputs the driving force of 36 c through the reduction gear box 36 d, and the X, Y, and ⁇ axial direction slide parts 3 to which the male screw part 36 e is screwed. 3a, 33b, and 33c, and female screw portions 36f provided on the X, Y, and ⁇ axial slide portions 33a, 33b, and 33c. It is to be moved in the axial direction.
  • the rotation drive mechanism 37 includes, for example, an input terminal 37 b to which operation control data is input via a cable 37 a, a servomotor 37 c that operates according to the operation control data, and a servomotor 37. c output shaft 3 7 d and screw And the rotation driving force of the servomotor 37 c via the reduction gears and the like, the X, Y, and ⁇ axis rotation parts 34 a, 34 b, By transmitting them to 34c, they are rotated around the respective axes.
  • the three-dimensional face shape measuring device 1 generates a three-dimensional face shape image by performing three-dimensional pattern measurement on the face of the subject 2 with the inspection plate body 16 hung on both ears.
  • the eye 2 of the subject 2 absorbs the laser beam without reflecting the eye 2a power.
  • the 3D facial shape data is predicted and calculated from the white eye 2b portion of the 3D facial shape data to the black eye 2a portion within the computer according to a predetermined program. The iris of 2a is obtained.
  • processing control data for the three-dimensional shape model processing machine to manufacture the eye-nose part shape model is generated based on the three-dimensional face shape data.
  • the generation of the processing control data is executed by an operation of the computer 7 in which a predetermined conversion program is installed, but may be executed by another computer.
  • operation control data for operating the mounting portion 28 of the 6-axis manual pinion 29 is obtained from the three-dimensional face shape data, such as the position and inclination of the inspection plate 16.
  • the data on the shape of the back of the ear in this case is obtained based on the position and inclination of the inspection plate 16, and accordingly, the inspection plate placed on both ears of the subject 2 This corresponds to the position and inclination of the ear hook portion 24 of the body 16.
  • the eye and nose data of the processing control data is input to the three-dimensional shape model processing machine, and an eye and nose shape model including the eyes and nose is manufactured.
  • a seat plate 43a and an eye-nose-shaped model mounting plate 43b which is a plate material provided at right angles to the seat plate 43a, are provided.
  • the eye / nose shape model 40a is fixed to the surface of the eye / nose shape model mounting plate 43b of the work table 43 obtained.
  • the work table 43 is provided with two 6-axis manipulators 29 (symmetrically shaped).
  • the mounting portions 28 are opposed to each other, and these mounting portions 28 are provided.
  • the second right ear shape model 40b and the second left ear portion, each of which is partially processed into a shape that matches the inner peripheral shape of the curve of the ear hook portion of the inspection plate 16 Shape models 40c are mounted respectively.
  • the 6-axis manual model on the right side of the eye-nose shape model 40a has a second right-ear shape model 40b on the right side thereof, and the 6-axis manual model on the left side has the same shape. 29, a second left ear shape model 40c is attached.
  • the operation control data includes the positions of the two 6-axis manipulators 29 installed on the work table 43 and the eye-nose shape model mounting plate 43 b. It is generated in consideration of the relative position with respect to.
  • the operation control data is input to the two 6-axis manual switches 29.
  • the operation control data relating to the right ear is attached, and the second left ear shape model 40c is attached.
  • the other person inputs the operation control data for the right ear.
  • the two mounting portions 28 move and tilt, and the second right ear shape model 4 Ob and the second left ear shape model 40 c force
  • the eyes and nose With respect to the part shape model 40a, the same position as the relative positional relationship between the eyes, nose, and both ears of the subject 2 It is in a state of making a relationship.
  • the subject 2 adjusts the favorite eyeglass frame 22 selected in advance.
  • the spectacle frame 22 is worn on the eye / nose shape model 40a, the second right ear shape model 40b, and the second left ear shape model 40c.
  • the nose pad 19 and the vine 20 are fitted perfectly, and that the eyeball 42 and the eyeglass frame 22 are properly positioned. If not, adjust these nose pads 19 and 20.
  • an eyeglass frame 22 fitted to the eye / nose shape model 40a, the second right ear shape model 40b, and the second left ear shape model 40c is manufactured. This makes it possible to provide the subject 2 with the ophthalmic frame 22 that fits perfectly.
  • the support member of the nose pad 19 is bent and adjusted. If wobbling is provided in advance for adjustment, the adhesive is used after the adjustment. Fix this using something like If the nose pad 19 is to be cut and processed based on the three-dimensional face shape data, the nose pad 1 is fitted from the beginning to the nose of the eye-nose shape model 40a. The trouble of adjusting 9 can be saved. On the other hand, when the above-mentioned vine 20 is adjusted, for example, it is bent by hand so as to conform to the shape of the binaural shape model 40b, 40c, or by a predetermined tool. adjust.
  • the three-dimensional face shape measuring device 1 described above generates three-dimensional face shape data by three-dimensionally measuring the pattern of the face of the subject 2, By inputting the processing control data generated based on the three-dimensional facial shape data into the three-dimensional shape model processing machine, the workpiece is processed, and the front side of the subject 2 is represented.
  • Three dimensional There is also a method of manufacturing a spectacle frame that fits best to the subject 2 by manufacturing a facial shape model and adjusting the spectacle frame in the same manner as in the first embodiment.
  • the three-dimensional face shape model is an integral object, the parts required for fitting the above-mentioned eyeglass frame 22 are the eyes, the nose and the back of both ears of the three-dimensional face shape model. Therefore, in the second embodiment, instead of the three-dimensional face shape model, an eye / nose shape model 44 a including eyes and a nose of the three-dimensional face shape model, and a right ear part of the three-dimensional face shape model And a first left ear shape model 44c including the left ear portion of the three-dimensional face shape model. a, the right ear shape model 44b and the left ear shape model 44c form the same relative positional relationship between the eyes, nose, and both ears of the three-dimensional facial shape model. (Hereinafter, referred to as a divided three-dimensional face shape model 44) may be used.
  • the split type three-dimensional face shape model 44 is, for example, fixed on a fixed base 39 described later.
  • the fixing base 39 has a bottom plate 39a, a fixing portion 39b for eyes and nose connected to the bottom plate 39a at right angles to each other, and right and left ear portions.
  • Fixing portions 39c, 39d are provided, and the eye-nose, right-ear, and left-ear shape models 44a, 44b, 44c are fixed by positioning pins 41, respectively. ing.
  • These are fixed so as to have the same positional relationship as the relative positions of the eyes, the nose, and both ears of the three-dimensional face shape model of the front side of the subject 2 which is the above-described object. . Therefore, even when the divided three-dimensional face shape model fixed in this way is used, the eyeglass frame 22 is worn on the model as shown in FIG. By adjusting the eyeglass frame 22, the The eyeglass frames that fit the examiner most can be manufactured.
  • the manufactured divided three-dimensional face shape model 44 is a compact model having the necessary and sufficient parts of the eyes, nose, and both ears when manufacturing the eyeglass frame.
  • this is used, compared with the three-dimensional face shape model representing the entire front side of the face, there is an advantage that the processing time can be shortened, and also an advantage that the material can be saved.
  • the present invention is useful as a method for manufacturing a spectacle frame that fits in a state optimal for a customer's face using three-dimensional shape data of the face obtained by using a three-dimensional face shape measuring device.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

A production method for a spectacles-frame optimally fitted to the face of a customer by using 3-D profile data of the face obtained by using a 3-D face profile measuring device. A production method for a spectacles-frame, capable of providing for sale spectacles snugly fitted to the face of a customer and not keeping the customer waiting at the shop for a long time even when a specialist capable of fine-adjusting the spectacles-frame is not available at the shop. A production method for a spectacles-frame (22) optimally fitted to an examinee (2), wherein fabricating-control data generated based on 3-D face profile data is input to a 3-D profile model fabricating machine that uses a 3-D face profile measuring device (1) to pattern-measure the face of the examinee (2) three-dimensionally and generate the 3-D face profile data, and that fabricates a work according to the fabricating-control data to produce a 3-D profile product, to thereby produce a split-type 3-D face profile model (44) and adjust and fabricate the spectacles-frame (22) for fitting to the 3-D face profile model.

Description

明 細 書 眼鏡枠製造方法 技術分野  Description Eyeglass frame manufacturing method Technical field
本発明は、 3次元顔面形状計測装置を使用して得られる顔面の 3次元 形状データを利用して、 顧客の顔面に最適の状態でフィ ッ トする眼鏡枠 を製造する方法に関する。 背景技術  The present invention relates to a method for manufacturing a spectacle frame that fits a customer's face in an optimal state using three-dimensional face data obtained using a three-dimensional face shape measuring apparatus. Background art
眼鏡枠の細部の調整ができる技術者が店頭にいない場合、 顧客に対し て眼鏡枠を加工、 調整等することができないため、 顧客の顔面に最もフ イ ツ 卜する眼鏡を販売提供することができない。 したがって、 少なく と も一人の前記技術者が店頭に待機しなければならなかった。  If there is no technician who can adjust the details of the spectacle frame at the store, it will not be possible to process and adjust the spectacle frame for the customer, so it is possible to sell and provide the most fit eyeglasses to the customer's face Can not. Therefore, at least one technician had to wait at the store.
また、 前記技術者が店頭に居る場合でも、 顧客にフイ ツ 卜する眼鏡枠 を提供するために、 この眼鏡枠を調整加工する間中ずつと、 顧客に店に 居てもらう必要があり、 この間の時間は、 顧客にとって無駄なものであ つた ο  Further, even when the technician is at the store, it is necessary to have the customer stay at the store every time while adjusting and processing the eyeglass frame in order to provide the customer with the eyeglass frame to be fitted. Time was wasted on customers ο
本発明は、上記の課題に鑑みてなされたものであり、本発明の目的は、 眼鏡枠の細部の調整ができる技術者が店頭にいない場合であっても、 顧 客の顔面にピッタリとフィ ッ 卜する眼鏡を販売提供することができ、 か つ、 顧客を店に長時間待たせる必要のない眼鏡枠製造方法を提供するこ とである。 発明の開示 請求の範囲第 1項記載の眼鏡枠製造方法は、 3次元顔面形状計測装置 によって、 被検者の顔面を 3次元的にパタ一ン計測して 3次元顔面形状 データを生成し、 加工制御データに従い被加工物を加工して 3次元形状 物を製造する 3次元形状モデル加工機に、 前記 3次元顔面形状デ一夕に 基づいて生成された加工制御データを入力して 3次元顔面形状モデルを 製造し、 該 3次元顔面形状モデルにフイ ツ 卜するように眼鏡枠を調整加 ェすることにより、 前記被検者に最もフィッ トする眼鏡枠を製造する方 法であるので、 3次元顔面形状計測装置によつて上記パターン計測する 短時間の間だけ顧客に居てもらえればよく、 眼鏡枠の加工調整のために 長時間待たせることがなくなる。 又、 眼鏡枠の細部の調整をする技術者 が店頭にいない場合でも、 店頭にある 3次元顔面形状計測装置によって 顧客の顔面についての 3次元顔面形状デ一タを取得し、 この 3次元顔面 形状データを前記技術者のいる場所に前記 3次元顔面形状データを記録 した記録媒体を送り、 又は、 電気通信回線を通じて前記 3次元顔面形状 データを送信し、 前記技術者が、 受け取った前記 3次元顔面形状データ を使って、 前記顧客の顔にピッタリとフイツ 卜する眼鏡を製造すること ができる。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a perfect fit to the customer's face even when a technician who can adjust the details of the spectacle frame is not at the store. An object of the present invention is to provide a method for manufacturing spectacle frames that can sell and provide glasses to be cut and that does not require customers to wait for a long time in a store. Disclosure of the invention The eyeglass frame manufacturing method according to claim 1, wherein the three-dimensional face shape measuring device generates a three-dimensional face shape data by measuring the face of the subject three-dimensionally, and the processing control data. The processing control data generated based on the 3D facial shape data is input to a 3D shape model processing machine that processes the workpiece according to It is a method of manufacturing a spectacle frame that fits best to the subject by manufacturing and adjusting the spectacle frame to fit the three-dimensional face shape model. The customer only needs to be present for a short period of time when the above-mentioned pattern is measured by the measuring device, and it is not necessary to wait a long time for adjusting the processing of the eyeglass frame. Even if there is no technician who adjusts the details of the eyeglass frame at the store, the 3D face shape data about the customer's face is acquired by the 3D face shape measurement device at the store, and this 3D face shape is obtained. The data is sent to a recording medium on which the three-dimensional face shape data is recorded, or the three-dimensional face shape data is transmitted through a telecommunication line, and the technician receives the three-dimensional face. Using the shape data, it is possible to manufacture eyeglasses that fit perfectly to the customer's face.
請求の範囲第 2項記載の眼鏡枠製造方法は、 請求の範囲第 1項の眼鏡 枠製造方法において、 前記 3次元顔面形状モデルが、 前記 3次元顔面形 状モデルの目及び鼻部を含む目鼻部形状モデル、 前記 3次元顔面形状モ デルの右耳部を含む第 1の右耳部形状モデル及び前記 3次元顔面形状モ デルの左耳部を含む第 1の左耳部形状モデルとからなり、 かつ、 これら 目鼻部形状モデル、 第 1の右耳部形状モデル及び第 1の左耳部形状モデ ルが前記 3次元顔面形状モデルの目、 轟及び両耳部のそれぞれの間にお ける相対位置関係と同じ位置関係を成して固定された分割型 3次元顔面 形状モデルである方法であるので、 請求の範囲第 1項記載の眼鏡枠製造 方法と同様の効果を有すると共に、 3次元顔面形状モデルの加工時間を 短縮することができ、 更には、 材料費用を節約できる利点をも有する。 請求の範囲第 3項記載の眼鏡枠製造方法は、 3次元顔面形状計測装置 によって、 検写板とこれに一端を固定した耳掛部とを備えた検写板体を 両耳に掛けた被検者の顔面を、 3次元的にバタ―ン計測して 3次元顔面 形状データを生成し、 加工制御データに従い被加工物を加工して 3次元 形状物を製造する 3次元形状モデル加工機に、 前記 3次元顔面形状デ一 夕に基づいて生成された加工制御データの目及び鼻部のデータを入力し て目及び鼻部を含む目鼻部形状モデルを製造し、 作動制御データに従い 6自由度で動作可能な取付部を備えた 2台の 6軸マ二ュピュレ一夕の前 記取付部に、 前記検写板体の耳掛部形状に沿つた形状に加工された第 2 の右耳部形状モデル及び第 2の左耳部形状モデルをそれぞれ取付け、 こ れら第 2の右耳部形状モデルと第 2の左耳部形状モデルの中間に前記目 鼻部形状モデルを固定し、 前記 3次元顔面形状データのうち前記検写板 体の位置及び傾きにより得られる前記被検者の耳裏形状のデータに基づ いて生成された作動制御データを前記 2台の 6軸マ二ュピュレ一夕に入 力して、 前記目鼻部形状モデルに対して、 前記取付部を移動及び傾斜さ せ、 前記被検者の目、 鼻及び両耳部のそれぞれの間における相対位置関 係と同じ位置関係を成す状態にし、 この状態における前記目鼻部形状モ デル、 第 2の右耳部形状モデル及び第 2の左耳部形状モデルにフィッ ト するように眼鏡枠を調整加工することにより、 前記被検者に最もフィ ッ 卜する眼鏡枠を製造する方法であるので、 異なる被検者において前記第 2の右及び左耳部形状モデルを共用することができることから、 これら は 1セッ 卜のみあればよく、 前記第 2の右及び左耳部形状モデルを被検 者毎に製造する必要がないことから、 請求の範囲第 2項記載の眼鏡枠製 造方法と同様の効果を有するのみならず、 さらに加工時間を短縮するこ とができ且つ材料費用を節約できる利点を有する。 図面の簡単な説明 3. The eyeglass frame manufacturing method according to claim 2, wherein the three-dimensional face shape model includes an eye and a nose of the three-dimensional face shape model. A first right ear shape model including a right ear of the three-dimensional face shape model, and a first left ear shape model including a left ear of the three-dimensional face shape model. And the eye-nose shape model, the first right ear shape model, and the first left ear shape model are relative to each other between the eyes, roar, and both ears of the three-dimensional face shape model. A divided 3D face fixed in the same positional relationship as the positional relationship Since the method is a shape model, the method has the same effect as the eyeglass frame manufacturing method according to claim 1 and can reduce the processing time of the three-dimensional face shape model. It also has the advantage of saving money. The eyeglass frame manufacturing method according to claim 3, wherein the three-dimensional face shape measuring device is configured such that an inspection plate body including an inspection plate and an ear hook portion having one end fixed thereto is hung on both ears. A 3D shape model processing machine that measures the examiner's face in three dimensions, generates 3D face shape data, processes the workpiece according to the processing control data, and manufactures a 3D shape. The eye and nose data of the processing control data generated based on the three-dimensional face shape data is input to produce an eye and nose shape model including the eyes and the nose, and six degrees of freedom are provided in accordance with the operation control data. The two right-hand ears processed into a shape following the shape of the ear hooks of the inspection plate body are attached to the two six-axis manual purifiers with the mounting parts operable in Attach the shape model and the second left ear shape model. The eye-nose shape model is fixed in the middle of the second left ear shape model, and the shape of the back of the ear of the subject obtained from the position and inclination of the inspection plate body in the three-dimensional face shape data The operation control data generated based on the data is inputted to the two 6-axis manual purifiers, and the mounting portion is moved and inclined with respect to the eye / nose shape model, and The eye, nose and both ears of the examiner are brought into the same positional relationship as the relative positional relationship, and the eye / nose shape model, the second right ear shape model, and the second This is a method of manufacturing a spectacle frame that fits best to the subject by adjusting and processing the spectacle frame to fit the left ear shape model, so that the second right And the left ear shape model can be shared. From Rukoto, they may, if only one set Bok, the test of the second right and left ear portion shape model Since there is no need to manufacture for each user, not only the same effects as in the eyeglass frame manufacturing method described in claim 2 can be obtained, but also the processing time can be further reduced and material costs can be saved. Has advantages. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 第 1の実施の形態に係る眼鏡枠製造方法のフローチヤ一 ト である。  FIG. 1 is a flowchart of an eyeglass frame manufacturing method according to the first embodiment.
第 2図は、 3次元顔面形状計測装置の構成概念図である。  FIG. 2 is a conceptual diagram of a configuration of a three-dimensional face shape measuring device.
第 3図は、 被検者の耳に検写板体を掛けた斜視図である。  FIG. 3 is a perspective view of the subject's ear with the inspection plate body hung.
第 4図は、 被検者の耳に検写板体を掛けた正面図である。  FIG. 4 is a front view of the subject's ear with the inspection plate hanged thereon.
第 5図は、 眼鏡枠の斜視図である。  FIG. 5 is a perspective view of an eyeglass frame.
第 6図は、 眼鏡枠のつるを真上から見た場合の内側への曲がり角度の 説明図である。  FIG. 6 is an explanatory diagram of an inward bending angle when the vine of the spectacle frame is viewed from directly above.
第 7図は、 眼鏡枠のつるを真横から見た場合の下側への曲がり角度の 説明図である。  FIG. 7 is an explanatory view of a downward bending angle when the vine of the spectacle frame is viewed from the side.
第 8図は、 眼鏡枠のつるを真裏から見た場合の内側への曲がり角度の 説明図である。  FIG. 8 is an explanatory diagram of an inward bending angle when viewing the vine of the spectacle frame from directly behind.
第 9図は、 検写板体を正面から見た場合の傾きを示す図である。  FIG. 9 is a diagram showing a tilt when the inspection plate body is viewed from the front.
第 1 0図は、 検写板体を側面から見た場合の傾きを示す図である。 · 第 1 1図は、 検写板体を上面から見た場合の傾きを示す図である。 第 1 2図は、 6軸マ二ュピレ一夕の概略正面図である。  FIG. 10 is a diagram showing a tilt when the inspection plate is viewed from the side. · FIG. 11 is a diagram showing a tilt when the inspection plate is viewed from above. FIG. 12 is a schematic front view of a six-axis manifold.
第 1 3図は、 6軸マ二ュピレ一夕の概略平面図である。  FIG. 13 is a schematic plan view of a six-axis manifold.
第 1 4図は、 6翱マニュピレ一夕の概略左側面図である。  Fig. 14 is a schematic left side view of the 6 翱 Manipire overnight.
第 1 5図は、 3次元顔面形状データの黒目部分についての説明図であ 第 1 6図は、 作業台上に固定された 6軸マニュピレー夕と、 目鼻部、 右耳部及び左耳部形状モデルが取付けられた状態を示す概略正面図であ o FIG. 15 is an explanatory diagram of the iris portion of the three-dimensional face shape data. Fig. 16 is a schematic front view showing the state where the 6-axis manipulator and the eye, nose, right ear, and left ear shape models are attached to the workbench.
第 1 7図は、 作業台上に固定された 6軸マニュピレー夕と、 目鼻部、 右耳部及び左耳部形状モデルが取付けられた状態を示す概略平面図であ る。  FIG. 17 is a schematic plan view showing a state in which a six-axis manipulator fixed on a workbench, and a model having eye, nose, right ear, and left ear parts are attached.
第 1 8図は、 目鼻部、 右耳部及び左耳部形状モデルに、 眼鏡枠を取付 けてこれを調整加工する場合の説明図である。  FIG. 18 is an explanatory diagram of a case where an eyeglass frame is attached to an eye-nose part, a right ear part, and a left ear part shape model and adjusted.
第 1 9図は、 第 2の実施形態に係る分割型 3次元顔面形状モデルが固 定台に固定されたところを示す斜視図である。  FIG. 19 is a perspective view showing a state where the divided type three-dimensional face shape model according to the second embodiment is fixed to a fixed base.
第 2 0図は、 第 2の実施形態に係る分割型 3次元顔面形状モデルに眼 鏡枠を取付てこれを調整加工する場合の説明図である。 発明を実施するための最良の形態  FIG. 20 is an explanatory diagram of a case in which an eyeglass frame is attached to the segmented three-dimensional face shape model according to the second embodiment and is adjusted. BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の第 1の実施の形態について、図面に基づいて説明する。 本発明の実施の形態に係る眼鏡枠製造方法は、 第 1図及び第 2図に示す 'ように、 3次元顔面形状計測装置 1によって、 検写板体を両耳に掛けた 被検者 2の顔面を、 3次元的にパターン計測して 3次元顔面形状デ一夕 を生成し (S 1 ) 、 加工制御データに従い被加工物を加工して 3次元形 状物を製造する 3次元形状モデル加工機に、 前記 3次元顔面形状データ に基づいて生成された加工制御データの目及び鼻部のデータを入力して、 目及び鼻部を含む目鼻部形状モデルを製造する (S 2 ) 。 そして、 作動 制御デ一夕に従い 6自由度で動作可能な取付部を備えた 2台の 6軸マ二 ュピュレ一夕の前記取付部に、 前記検写板体の耳掛部形状に沿った形状 に予め加工された第 2の右耳部形状モデル及び第 2の左耳部形状モデル をそれぞれ取付け、 これらの中間に前記目鼻部形状モデルを固定する。 次に、 前記 3次元顔面形状データのうち前記検写板体の位置及び傾きに より得られる前記被検者 2の耳裏形状のデータに基づいて生成された作 動制御データの右及び左耳部のデータを前記 2台の 6軸マ二ュピュレ一 夕にそれぞれ入力して、 前記目鼻部形状モデルに対して、 前記取付部を 移動及び傾斜させ、 前記被検者 2の目、 鼻及び両耳部のそれぞれの間に おける相対位置関係と同じ位置関係を成す状態とする (S 3 )。最後に、 この状態における前記目鼻部形状モデル、 第 2の右耳部形状モデル及び 第 2の左耳部形状モデルにフィ ッ 卜するように眼鏡枠を調整加工する ( S 4 ) ことにより、 前記被検者 2に最もフィ ッ 卜する眼鏡枠を製造す る。 以下、 詳細に説明する。 Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. As shown in FIGS. 1 and 2, the eyeglass frame manufacturing method according to the embodiment of the present invention comprises: 3D face model is generated by measuring the pattern of the face in three dimensions (S 1), and the workpiece is processed according to the processing control data to produce a three-dimensional shape. The eye and nose data of the processing control data generated based on the three-dimensional face shape data is input to the processing machine to produce an eye / nose shape model including the eyes and nose (S2). Then, the mounting portions of the two 6-axis manual purses each having a mounting portion capable of operating with six degrees of freedom in accordance with the operation control data have a shape along the shape of the ear hook portion of the inspection plate body. The second right ear shape model and the second left ear shape model previously processed Are attached, and the eye-nose part shape model is fixed between these. Next, the right and left ears of the operation control data generated based on the data on the shape of the back of the ear of the subject 2 obtained from the position and inclination of the inspection plate body in the three-dimensional face shape data Part data is input to each of the two 6-axis manual purifiers, and the mounting part is moved and inclined with respect to the eye-nose shape model, so that the eyes, nose and both sides of the subject 2 A state is established in which the same positional relationship as the relative positional relationship between the ears is established (S3). Finally, the eyeglass frame is adjusted to fit the eye-nose shape model, the second right-ear shape model, and the second left-ear shape model in this state (S4). The eyeglass frame that fits the subject 2 best is manufactured. The details will be described below.
まず、 前記 3次元顔面形状計測装置 1について説明する。 前記 3次元 顔面形状計測装置 1 としては、 特開平 5— 1 7 2 5 4 5号公報に開示さ れている 3次元顔面形状計測装置と同様のものを使用することができる < 3次元顔面形状計測装置 1は、 第 2図に示すように、 検出へッ ド 3、 ィ メ一ジエンコーダ 4、 スキャナドライバ 5、 ディスプレイ装置 6、 コン ピュー夕 7及びキ一ボ一ド 8から構成される。  First, the three-dimensional face shape measuring device 1 will be described. As the three-dimensional face shape measuring device 1, a device similar to the three-dimensional face shape measuring device disclosed in Japanese Patent Application Laid-Open No. HEI 5-117245 can be used. As shown in FIG. 2, the measuring device 1 includes a detection head 3, an image encoder 4, a scanner driver 5, a display device 6, a computer 7, and a keyboard 8.
検出へッ ド 3はくの字型の枠体の中心部に被検者 2の顔面正面を撮影 する C C Dカメラ 9を具備し、 2つの先端にはそれぞれレ一ザスリ ッ ト 光源 1 0及びこのレーザスリッ ト光を被検者 2の顔面正側面に回転しつ っ投光するカルパノ ミラ一 1 2が設けられている。 コンピュータ 7によ つてイメージエンコーダ 4及びスキャナドライノく 5のカルバコントロ一 ラ 1 3が制御され、 又、 コンピュータ 7に内蔵されている形状演算プロ グラムによってレーザコントローラ 1 4が制御されている。 前記レーザ スリ ッ ト光源 1 0はレーザコントロ一ラ 1 4によって制御されると共に- カルパノ ミラ一 1 2はカルバコントロ一ラ 1 3によって制御される。 今、 被検者 2に一方のレーザスリッ ト光源 1 0からカルパノミラ一 1 2を介してレーザスリッ ト光が照射されると、 顔面正側面の凹凸によつ て生じるレーザスリ ッ ト光の歪みを C C Dカメラ 9で撮影し、 ここで得 られた画像を画像合成装置であるイメージエンコーダ 4及びコンピュー 夕 7での処理によって、 被検者 2の顔面正側面の 3次元顔面形状を計測 する。 The detection head 3 is provided with a CCD camera 9 for photographing the front of the face of the subject 2 at the center of the heart-shaped frame, and the laser slit light sources 10 and A carpano mirror 112 is provided for rotating and projecting the laser slit light to the front side of the face of the subject 2. The computer 7 controls the image encoder 4 and the car controller 13 of the scanner driver 5, and the laser controller 14 is controlled by a shape calculation program built in the computer 7. The laser slit light source 10 is controlled by a laser controller 14 and Carpano mirrors 1 and 2 are controlled by a carba controller 13. Now, when the subject 2 is irradiated with laser slit light from one of the laser slit light sources 10 via the calpanomirror 112, the distortion of the laser slit light caused by the unevenness of the right side of the face is detected by the CCD camera. 9, and the image obtained here is processed by the image encoder 4 and the computer 7, which are image synthesizing devices, to measure the three-dimensional face shape of the front side of the subject 2.
このようにして、 被検者 2の顔面正側面の 3次元顔面形状デー夕を得 る力、 このとき、 第 3図、 第 4図に示すように、 被検者 2の両耳 1 5に 検写板体 1 6を掛けて、 この検写板体 1 6の表面の傾き角度等を同時に 3次元顔面形状計測装置 1によつて計測しておく ことによって、 第 5図 に示す 2つの玉枠 1 7、 プリッジ 1 8、 鼻パッ ト 1 9及び 2つのつる 2 0等からなる眼鏡枠 2 2のつる 2 0の最適形状、 具体的には、 第 6図乃 至第 8図に示すように、 被検者 2に最もフィッ トする曲げ角度 X 1、 X 2、 X 3を得るための基礎データに使用することができ、 こうして得ら れた曲げ角度 X I、 X 2、 X 3は前記 3次元顔面形状モデルの耳裏部の 形状に反映される。 この検写板体 1 6は、 第 3図に表れているように、 矩形状で表面が白色の検写板 2 3及び該検写板 2 3に一端を固定した耳 掛部 2 4を備えたものである。 耳掛部 2 4を耳 1 5に掛けてほぼ眼鏡枠 2 2のつる 2 0を耳 1 5に掛けたのと同様の状態を得ることができる。 そして、 これを被検者 2の両耳 1 5に掛けると、 その被検者 2の耳裏 形状によって検写板 2 3の表面が種々の傾きを持つ。 すなわち、 第 9図 に示すように、 正面から見た場合の検写板 2 3の傾き、 第 1 0図に示す ように、 横から見た場合の検写板 2 3の傾き、 第 1 1図に示すように、 上から見た場合の検写板 2 3の傾き等の 3次元的傾きである。 これらの 諸傾きや位置は、 検写板 2 3の表面を格子状に分割した多数の位置にお ける C C Dカメラ 9との距離を測定したデ一夕を、 あらかじめ組み込ん でいるプログラムに従ってコンピュータ 7で演算解析することによって 求められる。 In this way, the force for obtaining the three-dimensional facial shape data of the front side of the subject 2 at this time, as shown in FIGS. 3 and 4, the force applied to both ears 15 of the subject 2 By applying the three-dimensional face shape measuring device 1 to the projection plate 16 and measuring the inclination angle and the like of the surface of the projection plate 16 at the same time, the two balls shown in FIG. 5 are obtained. The optimal shape of the eyeglass frame 22 consisting of the frame 17, the bridge 18, the nose pad 19, and the two temples 20, etc., specifically, as shown in FIGS. 6 to 8 In addition, the bending angles X1, X2, and X3 that best fit the subject 2 can be used for basic data, and the bending angles XI, X2, and X3 obtained in this manner are as described above. This is reflected in the shape of the back of the ear in the 3D facial shape model. As shown in FIG. 3, the inspection plate body 16 includes a rectangular inspection plate 23 having a white surface and an ear hook 24 fixed at one end to the inspection plate 23. It is a thing. It is possible to obtain almost the same state as when the ear hook 24 is hung on the ear 15 and the temple 20 of the eyeglass frame 22 is hung on the ear 15. When this is applied to both ears 15 of the subject 2, the surface of the inspection plate 23 has various inclinations depending on the shape of the back of the ear of the subject 2. That is, as shown in FIG. 9, the inclination of the inspection plate 23 when viewed from the front, as shown in FIG. 10, the inclination of the inspection plate 23 when viewed from the side, As shown in the figure, it is a three-dimensional inclination such as the inclination of the inspection plate 23 when viewed from above. these The various inclinations and positions are calculated and analyzed by the computer 7 in accordance with a pre-installed program based on the data obtained by measuring the distance from the CCD camera 9 at a number of positions obtained by dividing the surface of the inspection plate 23 into a grid. It is required by doing.
上記のようにして得られた被検者 2の顔面正側面の 3次元顔面形状デ —夕に基づいて、 所定の変換プログラムがィンストールされたコンビュ —夕等によって、 前記 3次元形状モデル加工機の動作を制御する加工制 御データを生成する。 この加工制御データの生成は、 前記 3次元顔面形 状計測装置 1のコンピュータ 7において実行されるが、 他のコンビュ一 夕等で実行されてもよい。  Based on the three-dimensional facial shape data of the front side of the subject 2 obtained as described above, based on the evening, a combination in which a predetermined conversion program is installed. Generates machining control data to control the operation. The generation of the processing control data is executed by the computer 7 of the three-dimensional facial shape measuring device 1, but may be executed by another computer or the like.
前記 3次元形状モデル加工機は、 加工制御データに基づいて被加工物 を加工して 3次元形状物を製造するものである。 この加工態様について は特に限定されず、 例えば、 ろうやプラスチックなどを切削する切削加 ェ、 液状の被加工物に紫外線を照射して硬化させる紫外線硬化樹脂を利 用したもの等がある。  The three-dimensional shape model processing machine processes a workpiece based on processing control data to produce a three-dimensional shape object. The processing mode is not particularly limited, and examples thereof include a cutting process for cutting wax, plastic, and the like, and a process using an ultraviolet curing resin for irradiating a liquid workpiece with ultraviolet rays to cure the workpiece.
前記 6軸マ二ュピレ一夕 2 9は、第 1 2図に示すように、独立して X、 Υ、 Ζ軸方向に移動可能に且つこれらの軸回りに回転可能 (動作自由度 6で動作可能) な取付部 2 8を備えている。 この動作自由度 6は、 X、 Υ、 Ζ軸方向への直動及び X、 Υ、 Ζ軸回りの回転について互いに独立 したジョイントを具備することにより実現されるものである。 具体的に は、 第 1 2図乃至第 1 4図に示すように、 その最下部に、 後述する作業 台 4 3に固定された固定座板 3 2と、 該固定座板 3 2上に Υ軸方向 (第 1 2図においては、 紙面に対して垂直方向) に滑動可能に設けられた Υ 軸方向スライ ド部 3 3 aと、 該 Y軸方向スライ ド部 3 3 a上に X軸方向 (第 1 2図においては、 左右方向) に滑動可能に設けられた X軸方向ス ライ ド部 3 3 bと、 前記 X軸方向スライ ド部 3 3 bに Z軸方向 (第 1 2 図においては、 上下方向) に滑動可能に設けられた Z軸方向スライ ド部 3 3 cと、 該 Z軸方向スライ ド部 3 3 cに X軸回りに回転可能に設けら れた X軸回り回転部 3 4 aと、 該 X軸回り回転部 3 4 aに Z軸回りに回 転可能に設けられた Z軸回り回転部 3 4 bと、 該 Z軸回り回転部 3 4 b に Y軸回りに回転可能に設けられた Z軸回り回転部 3 4 cとを備えてい る。 そして、 前記固定座板 3 2と前記 Y軸方向スライ ド部 3 3 aの間、 前記 Y軸方向スライ ド部 3 3 aと前記 X軸方向スライ ド部 3 3 bの間、 及び前記 X軸方向スライ ド部 3 3 bと前記 Z軸方向スライ ド部 3 3 cの 間には、 リニアボールベアリングガイ ド 3 5などの直動案内及び当該各 軸方向へ移動させる駆動機構 3 6がそれぞれ設けられている。 さらに、 前記 X軸回り回転部 3 4 aと前記 Z軸回り回転部 3 4 bの間及び前記 Z 軸回り回転部 3 4 bと前記 Y軸回り回転部 3 4 cの間には、 ボールベア リングなどの軸受け及び各軸回りで回転させる回転駆動機構 3 7が設け られている。 As shown in Fig. 12, the 6-axis manifold can move independently in the X, Υ, and Ζ axes directions and can rotate around these axes. Possible). This degree of freedom of movement 6 is realized by providing joints that are independent from each other for direct motion in the X, Υ, and Ζ axis directions and rotation about the X, Υ, and Ζ axes. Specifically, as shown in FIGS. 12 to 14, a fixed seat plate 32 fixed to a work table 43 described later and a fixed seat plate 32 It is slidably provided in the axial direction (in FIG. 12, perpendicular to the paper surface). 紙 The axial slide part 33 a and the Y-axis slide part 33 a in the X-axis direction (In Fig. 12, right and left direction) A slide portion 33 b and a Z-axis direction slide portion 33 c slidably provided in the X-axis direction slide portion 33 b in the Z-axis direction (in the vertical direction in FIG. 12). The Z-axis direction slide portion 33c is provided so as to be rotatable around the X-axis, and the X-axis rotation portion 34a is rotatable around the Z-axis. And a Z-axis rotating section 34b provided rotatably about the Y-axis on the Z-axis rotating section 34b. And, between the fixed seat plate 32 and the Y-axis direction slide part 33a, between the Y-axis direction slide part 33a and the X-axis direction slide part 33b, and the X-axis A linear motion guide such as a linear ball bearing guide 35 and a drive mechanism 36 for moving in each axis direction are provided between the directional slide portion 33b and the Z-axis direction slide portion 33c, respectively. Have been. Furthermore, a ball bearing is provided between the X-axis rotation part 34a and the Z-axis rotation part 34b and between the Z-axis rotation part 34b and the Y-axis rotation part 34c. And a rotation drive mechanism 37 for rotating around each axis.
前記駆動機構 3 6は、 例えば、 ケーブル 3 6 aを介して作動制御デ一 夕が入力される入力端子 3 6 bと、 該作動制御データに従って作動する サ一ボモータ 3 6 cと該サ一ボモ一夕 3 6 cの駆動力を減速ギヤボック ス 3 6 dを介して出力する雄ねじ部 3 6 eと、 該雄ねじ部 3 6 eが螺合 された前記 X、 Y、 Ζ軸方向スライ ド部 3 3 a、 3 3 b、 3 3 cに設け られた雌ねじ部 3 6 f とを具備したものであり、 X、 Y、 Ζ軸方向スラ イ ド部 3 3 a、 3 3 b , 3 3 cを当該軸方向に移動させるものである。 前記回転駆動機構 3 7は、 例えば、 ケーブル 3 7 aを介して作動制御 データが入力される入力端子 3 7 bと、 該作動制御データに従って作動 するサーボモータ 3 7 cと、 該サーボモータ 3 7 cの出力軸 3 7 dと螺 合された減速歯車等を具備したものであり、 前記サ一ボモータ 3 7 cの 回転駆動力を前記減速歯車等を介して前記 X、 Y、 Ζ軸回り回転部 3 4 a、 3 4 b、 3 4 cに伝達させることで、 これらを当該各軸回りに回転 させるものである。 The drive mechanism 36 includes, for example, an input terminal 36b to which operation control data is input via a cable 36a, a servo motor 36c operating according to the operation control data, and the servo motor. The male screw part 36 e that outputs the driving force of 36 c through the reduction gear box 36 d, and the X, Y, and Ζ axial direction slide parts 3 to which the male screw part 36 e is screwed. 3a, 33b, and 33c, and female screw portions 36f provided on the X, Y, and 方向 axial slide portions 33a, 33b, and 33c. It is to be moved in the axial direction. The rotation drive mechanism 37 includes, for example, an input terminal 37 b to which operation control data is input via a cable 37 a, a servomotor 37 c that operates according to the operation control data, and a servomotor 37. c output shaft 3 7 d and screw And the rotation driving force of the servomotor 37 c via the reduction gears and the like, the X, Y, and Ζ axis rotation parts 34 a, 34 b, By transmitting them to 34c, they are rotated around the respective axes.
以下、本実施の形態の眼鏡枠製造方法の手順について説明する。まず、 3次元顔面形状計測装置 1によって、 前記検写板体 1 6を両耳に掛けた 被検者 2の顔面を 3次元的にパターン計測して 3次元顔面形状デ一夕を 生成する。 この 3次元顔面形状データを取得するに際しては、 第 1 5図 に示すように、 被検者 2の眼球の黒目 2 a力 レーザ光を反射せずに吸 収することから、 この部分の計測をすることができないときは、 前記 3 次元顔面形状データの白目 2 bの部分から前記黒目 2 aの部分を前記コ ンピュ一夕内で所定のプログラムに従つて予測計算し、 前記 3次元顔面 形状データの黒目 2 aの部分を得るようになっている。  Hereinafter, the procedure of the eyeglass frame manufacturing method of the present embodiment will be described. First, the three-dimensional face shape measuring device 1 generates a three-dimensional face shape image by performing three-dimensional pattern measurement on the face of the subject 2 with the inspection plate body 16 hung on both ears. When acquiring the three-dimensional face shape data, as shown in Fig. 15, the eye 2 of the subject 2 absorbs the laser beam without reflecting the eye 2a power. If it is not possible, the 3D facial shape data is predicted and calculated from the white eye 2b portion of the 3D facial shape data to the black eye 2a portion within the computer according to a predetermined program. The iris of 2a is obtained.
次に、 前記 3次元形状モデル加工機が前記目鼻部形状モデルを製造す るための加工制御デ一夕を、 前記 3次元顔面形状データに基づいて生成 する。 この加工制御データの生成は、 所定の変換プログラムがインス ト —ルされた前記コンピュータ 7の演算等によって実行されるが、 他のコ ンピュー夕等によって実行されてもよい。  Next, processing control data for the three-dimensional shape model processing machine to manufacture the eye-nose part shape model is generated based on the three-dimensional face shape data. The generation of the processing control data is executed by an operation of the computer 7 in which a predetermined conversion program is installed, but may be executed by another computer.
また、 前記 6軸マニュピユレ一夕 2 9の前記取付部 2 8を作動させる ための作動制御データを、 前記 3次元顔面形状データのうち前記検写板 体 1 6の位置及び傾き等の状態により得られる被検者 2の耳裏形状のデ —夕に基づいて生成する。なお、 この場合における耳裏形状のデータは、 前記検写板体 1 6の位置及び傾斜に基づいて得られるものであり、 従つ て前記被検者 2の両耳に掛けられた検写板体 1 6の耳掛部 2 4の位置及 び傾きに相当するものである。 次に、 前記加工制御データの目及び鼻部のデータを前記 3次元形状モ デル加工機に入力して、目及び鼻部を含む目鼻部形状モデルを製造する。 次に、 第 1 6図及び第 1 7図に示すように、 座板 4 3 aと該座板 4 3 aに直角に設けられた板材である目鼻部形状モデル取付板 4 3 bとを備 えた作業台 4 3の前記目鼻部形状モデル取付板 4 3 bの表面に前記目鼻 部形状モデル 4 0 aを固定する。 この作業台 4 3には、 2台の前記 6軸 マニュピユレ一夕 2 9 (対称形状のものを使用している。 ) 、 互いの 取付部 2 8を対向させて設置され、 これら取付部 2 8には、 前記検写板 体 1 6の耳掛部のカーブの内周側形状に合致する形状に一部が加工され た第 2の右耳部形状モデル 4 0 bと第 2の左耳部形状モデル 4 0 cがそ れぞれ取付けられている。 なお、 当然ながら、 前記目鼻部形状モデル 4 0 aに対して右側の 6軸マニュピユレ一夕 2 9には、 第 2の右耳部形状 モデル 4 0 bが、 左側の 6軸マ二ュピュレ一タ 2 9には、 第 2の左耳部 形状モデル 4 0 cが取付けられている。 又、 前記作動制御データは、 上 記した 2台の前記 6軸マ二ュピュレ一タ 2 9の前記作業台 4 3に設置さ れたそれぞれの位置と、 前記目鼻部形状モデル取付板 4 3 bとの相対位 置を考慮した上で生成されている。 Further, operation control data for operating the mounting portion 28 of the 6-axis manual pinion 29 is obtained from the three-dimensional face shape data, such as the position and inclination of the inspection plate 16. Generated based on the shape of the back of the ear of subject 2 The data on the shape of the back of the ear in this case is obtained based on the position and inclination of the inspection plate 16, and accordingly, the inspection plate placed on both ears of the subject 2 This corresponds to the position and inclination of the ear hook portion 24 of the body 16. Next, the eye and nose data of the processing control data is input to the three-dimensional shape model processing machine, and an eye and nose shape model including the eyes and nose is manufactured. Next, as shown in FIGS. 16 and 17, a seat plate 43a and an eye-nose-shaped model mounting plate 43b, which is a plate material provided at right angles to the seat plate 43a, are provided. The eye / nose shape model 40a is fixed to the surface of the eye / nose shape model mounting plate 43b of the work table 43 obtained. The work table 43 is provided with two 6-axis manipulators 29 (symmetrically shaped). The mounting portions 28 are opposed to each other, and these mounting portions 28 are provided. The second right ear shape model 40b and the second left ear portion, each of which is partially processed into a shape that matches the inner peripheral shape of the curve of the ear hook portion of the inspection plate 16 Shape models 40c are mounted respectively. Naturally, the 6-axis manual model on the right side of the eye-nose shape model 40a has a second right-ear shape model 40b on the right side thereof, and the 6-axis manual model on the left side has the same shape. 29, a second left ear shape model 40c is attached. The operation control data includes the positions of the two 6-axis manipulators 29 installed on the work table 43 and the eye-nose shape model mounting plate 43 b. It is generated in consideration of the relative position with respect to.
次に、 前記作動制御データを前記 2台の 6軸マニュピユレ一夕 2 9に 入力する。 当然に、 前記第 2の右耳部形状モデル 4 0 bが取付けられた 方には、 右耳部に関する作動制御デ一夕を、 前記第 2の左耳部形状モデ ル 4 0 cが取付けられた方には、 右耳部に関する作動制御データを入力 する。すると、双方の前記取付部 2 8力^前記作動制御データに従って、 移動及び傾斜し、 前記第 2の右耳部形状モデル 4 O bと第 2の左耳部形 状モデル 4 0 c力 前記目鼻部形状モデル 4 0 aに対して、 前記被検者 2の目、 鼻及び両耳部のそれぞれの間における相対位置関係と同じ位置 関係を成す状態となる。 Next, the operation control data is input to the two 6-axis manual switches 29. Naturally, to the side where the second right ear shape model 40b is attached, the operation control data relating to the right ear is attached, and the second left ear shape model 40c is attached. The other person inputs the operation control data for the right ear. Then, according to the operation control data, the two mounting portions 28 move and tilt, and the second right ear shape model 4 Ob and the second left ear shape model 40 c force The eyes and nose With respect to the part shape model 40a, the same position as the relative positional relationship between the eyes, nose, and both ears of the subject 2 It is in a state of making a relationship.
最後に、被検者 2が予め選択した好みの眼鏡枠 2 2の調整加工を行う。 第 1 8図に示すように、前記眼鏡枠 2 2を前記目鼻部形状モデル 4 0 a、 第 2の右耳部形状モデル 4 0 b及び第 2の左耳部形状モデル 4 0 cに着 用させて、 鼻パッ ト 1 9やつる 2 0の部分がピッタリとフィ ッ トしてい るかどう力、、 眼球 4 2と眼鏡枠 2 2の玉枠 1 7の位置が適切かどうか等 を確認し、 そうでない場合は、 これら鼻パッ 卜 1 9やつる 2 0を調整加 ェする。 このようにして、 前記目鼻部形状モデル 4 0 a、 第 2の右耳部 形状モデル 4 0 b及び第 2の左耳部形状モデル 4 0 cにフィ ッ 卜する眼 鏡枠 2 2を製造することで、 当該被検者 2にピッタリとフイツ 卜する眼 鏡枠 2 2を提供することができる。  Finally, the subject 2 adjusts the favorite eyeglass frame 22 selected in advance. As shown in FIG. 18, the spectacle frame 22 is worn on the eye / nose shape model 40a, the second right ear shape model 40b, and the second left ear shape model 40c. Check that the nose pad 19 and the vine 20 are fitted perfectly, and that the eyeball 42 and the eyeglass frame 22 are properly positioned. If not, adjust these nose pads 19 and 20. In this way, an eyeglass frame 22 fitted to the eye / nose shape model 40a, the second right ear shape model 40b, and the second left ear shape model 40c is manufactured. This makes it possible to provide the subject 2 with the ophthalmic frame 22 that fits perfectly.
上記鼻パッ ト 1 9の部分を調整加工する場合は、 例えば、 鼻パッ ト 1 9の支持部材を曲げて調整し、 調整のために予めぐらつきが設けられて いる場合には、 調整後に接着剤等を使ってこれを固定する。 鼻パッ ト 1 9が 3次元顔面形状データに基づいて切削加工等されたものを調整加工 する場合は、 前記目鼻部形状モデル 4 0 aの鼻に最初からフィ ッ 卜する ため、 鼻パッ ト 1 9を調整加工する手間を省くことができる。 一方、 上 記つる 2 0の部分を調整加工する場合は、 例えば、 前記両耳部形状モデ ル 4 0 b、 4 0 cの形状に沿うように手で曲げて、 或いは所定の道具で 曲げて調整する。  When the nose pad 19 is to be adjusted, for example, the support member of the nose pad 19 is bent and adjusted. If wobbling is provided in advance for adjustment, the adhesive is used after the adjustment. Fix this using something like If the nose pad 19 is to be cut and processed based on the three-dimensional face shape data, the nose pad 1 is fitted from the beginning to the nose of the eye-nose shape model 40a. The trouble of adjusting 9 can be saved. On the other hand, when the above-mentioned vine 20 is adjusted, for example, it is bent by hand so as to conform to the shape of the binaural shape model 40b, 40c, or by a predetermined tool. adjust.
第 2の実施の形態として、 上記にて説明した 3次元顔面形状計測装置 1によって、 被検者 2の顔面を 3次元的にパターン計測して 3次元顔面 形状データを生成し、 上記にて説明した 3次元形状モデル加工機に、 こ の 3次元顔面形状デー夕に基づいて生成された加工制御デー夕を入力し て被加工物を加工することで、 被検者 2の顔面正側面を表わした 3次元 顔面形状モデルを製造し、 そして、 第 1の実施の形態と同様の眼鏡枠の 調整加工を行うことにより、 前記被検者 2に最もフィッ 卜する眼鏡枠を 製造する方法もある。 As a second embodiment, the three-dimensional face shape measuring device 1 described above generates three-dimensional face shape data by three-dimensionally measuring the pattern of the face of the subject 2, By inputting the processing control data generated based on the three-dimensional facial shape data into the three-dimensional shape model processing machine, the workpiece is processed, and the front side of the subject 2 is represented. Three dimensional There is also a method of manufacturing a spectacle frame that fits best to the subject 2 by manufacturing a facial shape model and adjusting the spectacle frame in the same manner as in the first embodiment.
また、 前記 3次元顔面形状モデルは一体物であるが、 上記した眼鏡枠 2 2のフイツティ ングに必要な箇所は、 該 3次元顔面形状モデルの目、 鼻及び両耳裏部である。 そこで、 第 2の実施形態において、 前記 3次元 顔面形状モデルの代わりに、 前記 3次元顔面形状モデルの目及び鼻部を 含む目鼻部形状モデル 4 4 a、 前記 3次元顔面形状モデルの右耳部を含 む第 1の右耳部形状モデル 4 4 b及び前記 3次元顔面形状モデルの左耳 部を含む第 1の左耳部形状モデル 4 4 cで構成し、 これら目鼻部形状モ デル 4 4 a、 右耳部形状モデル 4 4 b及び左耳部形状モデル 4 4 cが前 記 3次元顔面形状モデルの目、 鼻及び両耳部のそれぞれの間における相 対位置関係と同じ位置関係を成して固定されたもの (以下、 分割型 3次 元顔面形状モデル 4 4という。 ) を使用してもよい。  Although the three-dimensional face shape model is an integral object, the parts required for fitting the above-mentioned eyeglass frame 22 are the eyes, the nose and the back of both ears of the three-dimensional face shape model. Therefore, in the second embodiment, instead of the three-dimensional face shape model, an eye / nose shape model 44 a including eyes and a nose of the three-dimensional face shape model, and a right ear part of the three-dimensional face shape model And a first left ear shape model 44c including the left ear portion of the three-dimensional face shape model. a, the right ear shape model 44b and the left ear shape model 44c form the same relative positional relationship between the eyes, nose, and both ears of the three-dimensional facial shape model. (Hereinafter, referred to as a divided three-dimensional face shape model 44) may be used.
前記分割型 3次元顔面形状モデル 4 4は、 例えば後記の固定台 3 9に 固定されたものである。 第 1 9図に示すように、 この固定台 3 9には、 底板 3 9 aと該底板 3 9 aに互いに直角に接続された目鼻部用固定部 3 9 b並びに右耳部及び左耳部用固定部 3 9 c、 3 9 dが設けられ、 前記 目鼻部、 右耳部及び左耳部形状モデル 4 4 a、 4 4 b , 4 4 cがそれぞ れ位置決めピン 4 1にて固定されている。 そしてこれらは、 前記した一 体物である被検者 2の顔面正側面の 3次元顔面形状モデルの目、 鼻及び 両耳のそれぞれの相対位置関係と同じ位置関係をなすように固定されて いる。 従って、 このように固定された分割型 3次元顔面形状モデルを使 用しても、 第 2 0図に示すようにこれに眼鏡枠 2 2を着用させて、 第 1 の実施の形態と同様の眼鏡枠 2 2の調整加工を行うことにより、 前記被 検者に最もフィ ッ 卜する眼鏡枠を製造することができる。 The split type three-dimensional face shape model 44 is, for example, fixed on a fixed base 39 described later. As shown in FIG. 19, the fixing base 39 has a bottom plate 39a, a fixing portion 39b for eyes and nose connected to the bottom plate 39a at right angles to each other, and right and left ear portions. Fixing portions 39c, 39d are provided, and the eye-nose, right-ear, and left-ear shape models 44a, 44b, 44c are fixed by positioning pins 41, respectively. ing. These are fixed so as to have the same positional relationship as the relative positions of the eyes, the nose, and both ears of the three-dimensional face shape model of the front side of the subject 2 which is the above-described object. . Therefore, even when the divided three-dimensional face shape model fixed in this way is used, the eyeglass frame 22 is worn on the model as shown in FIG. By adjusting the eyeglass frame 22, the The eyeglass frames that fit the examiner most can be manufactured.
上記のようにして、 製造された分割型 3次元顔面形状モデル 4 4は、 眼鏡枠を製造するに際して、 必要かつ十分な部分である目鼻及び両耳部 を具備したコンパク 卜なものであるので、 これを使用すれば、 顔面の正 側面全体を表わした前記 3次元顔面形状モデルと比較して、 加工時間を 短縮できる利点を有すると共に、 材料を節約できる利点をも有する。 産業上の利用可能性  As described above, the manufactured divided three-dimensional face shape model 44 is a compact model having the necessary and sufficient parts of the eyes, nose, and both ears when manufacturing the eyeglass frame. When this is used, compared with the three-dimensional face shape model representing the entire front side of the face, there is an advantage that the processing time can be shortened, and also an advantage that the material can be saved. Industrial applicability
本発明は、 3次元顔面形状計測装置を使用して得られる顔面の 3次元 形状データを利用して、 顧客の顔面に最適の状態でフィ ッ 卜する眼鏡枠 を製造する方法として有用である。  INDUSTRIAL APPLICABILITY The present invention is useful as a method for manufacturing a spectacle frame that fits in a state optimal for a customer's face using three-dimensional shape data of the face obtained by using a three-dimensional face shape measuring device.

Claims

請 求 の 範 囲 The scope of the claims
1 . 3次元顔面形状計測装置によって、 被検者の顔面を 3次元的にパタ ―ン計測して 3次元顔面形状デ一夕を生成し、 1. Using a three-dimensional facial shape measuring device, the subject's face is measured three-dimensionally to generate a three-dimensional facial shape
加工制御データに従い被加工物を加工して 3次元形状物を製造する 3 次元形状モデル加工機に、 前記 3次元顔面形状データに基づいて生成さ れた加工制御データを入力して 3次元顔面形状モデルを製造し、  The processing control data generated based on the 3D face shape data is input to a 3D shape model processing machine that manufactures a 3D shape object by processing the workpiece according to the processing control data. Manufacturing the model,
該 3次元顔面形状モデルにフィ ッ 卜するように眼鏡枠を調整加工する ことにより、 前記被検者に最もフィッ トする眼鏡枠を製造することを特 徴とする眼鏡枠製造方法。  An eyeglass frame manufacturing method characterized by manufacturing an eyeglass frame that fits the subject most by adjusting and processing an eyeglass frame so as to fit the three-dimensional facial shape model.
2 . 前記 3次元顔面形状モデルが、 前記 3次元顔面形状モデルの目及び 鼻部を含む目鼻部形状モデル、 前記 3次元顔面形状モデルの右耳部を含 む第 1の右耳部形状モデル及び前記 3次元顔面形状モデルの左耳部を含 む第 1の左耳部形状モデルとからなり、かつ、これら目鼻部形状モデル、 第 1の右耳部形状モデル及び第 1の左耳部形状モデルが前記 3次元顔面 形状モデルの目、 鼻及び両耳部のそれぞれの間における相対位置関係と 同じ位置関係を成して固定された分割型 3次元顔面形状モデルであるこ とを特徴とする請求の範囲第 1項記載の眼鏡枠製造方法。  2. The three-dimensional facial shape model includes: an eye-nose shape model including eyes and a nose of the three-dimensional facial shape model; a first right ear shape model including a right ear of the three-dimensional facial shape model; A first left ear shape model including a left ear portion of the three-dimensional face shape model, and an eye / nose shape model, a first right ear shape model, and a first left ear shape model. Is a divided three-dimensional facial shape model fixed in the same positional relationship as the relative positional relationship between the eyes, nose, and both ears of the three-dimensional facial shape model. 2. The method for manufacturing an eyeglass frame according to claim 1, wherein
3 . 3次元顔面形状計測装置によって、 検写板とこれに一端を固定した 耳掛部とを備えた検写板体を両耳に掛けた被検者の顔面を、 3次元的に パターン計測して 3次元顔面形状デ一タを生成し、  3. Using a three-dimensional face shape measuring device, three-dimensional pattern measurement of the subject's face with both sides covered by a projection plate with a projection plate and ear hooks with one end fixed to it To generate 3D facial shape data,
加工制御データに従い被加工物を加工して 3次元形状物を製造する 3 次元形状モデル加工機に、 前記 3次元顔面形状データに基づいて生成さ れた加工制御データの目及び鼻部のデータを入力して目及び鼻部を含む 目鼻部形状モデルを製造し、 作動制御デー夕に従い 6 自由度で動作可能な取付部を備えた 2台の 6 軸マ二ュピュレ一夕の前記取付部に、 前記検写板体の耳掛部形状に沿つ た形状に加工された第 2の右耳部形状モデル及び第 2の左耳部形状モデ ルをそれぞれ取付け、 The eye and nose data of the processing control data generated based on the three-dimensional face shape data is sent to a three-dimensional shape model processing machine that manufactures a three-dimensional shape object by processing a workpiece according to the processing control data. Input to produce eye / nose shape model including eyes and nose, According to the operation control data, the attachment parts of two 6-axis manual purses equipped with attachment parts operable with six degrees of freedom were processed into the shape along the ear hook shape of the inspection plate Attach the second right ear shape model and the second left ear shape model
これら第 2の右耳部形状モデルと第 2の左耳部形状モデルの中間に前 記目鼻部形状モデルを固定し、  The eye nose shape model is fixed between the second right ear shape model and the second left ear shape model,
前記 3次元顔面形状デ一夕のうち前記検写板体の位置及び傾きにより 得られる前記被検者の耳裏形状のデータに基づいて生成された作動制御 データを前記 2台の 6軸マニュピユレ一夕に入力して、 前記目鼻部形状 モデルに対して、 前記取付部を移動及び傾斜させ、 前記被検者の目、 鼻 及び両耳部のそれぞれの間における相対位置関係と同じ位置関係を成す 状態にし、  The operation control data generated based on the data on the shape of the back of the subject's ear obtained from the position and the inclination of the inspection plate body in the three-dimensional facial shape data is used for the two six-axis manual operation. In the evening, the mounting portion is moved and tilted with respect to the eye-nose shape model, and the same positional relationship as the relative positional relationship between the subject's eyes, nose, and both ears is formed. State,
この状態における前記目鼻部形状モデル、 第 2の右耳部形状モデル及 び第 2の左耳部形状モデルにフィッ トするように眼鏡枠を調整加工する ことにより、 前記被検者に最もフィッ 卜する眼鏡枠を製造することを特 徴とする眼鏡枠製造方法。  In this state, the eyeglass frame is adjusted and fitted to fit the eye-nose shape model, the second right-ear shape model, and the second left-ear shape model, so that the subject is best fitted. Frame manufacturing method characterized by manufacturing a spectacle frame to be manufactured.
PCT/JP2000/002569 2000-04-19 2000-04-19 Production method for spectacles-frame WO2001079918A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/002569 WO2001079918A1 (en) 2000-04-19 2000-04-19 Production method for spectacles-frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/002569 WO2001079918A1 (en) 2000-04-19 2000-04-19 Production method for spectacles-frame

Publications (1)

Publication Number Publication Date
WO2001079918A1 true WO2001079918A1 (en) 2001-10-25

Family

ID=11735939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002569 WO2001079918A1 (en) 2000-04-19 2000-04-19 Production method for spectacles-frame

Country Status (1)

Country Link
WO (1) WO2001079918A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008049173A1 (en) 2006-10-26 2008-05-02 Carl Zeiss Vision Australia Holdings Limited Ophthalmic lens dispensing method and system
WO2015101738A3 (en) * 2014-01-02 2015-09-17 Essilor International (Compagnie Generale D'optique) Method for fitting an actual predetermined glasses frame for the use thereof by a given wearer
US9804410B2 (en) 2013-03-12 2017-10-31 Adi Ben-Shahar Method and apparatus for design and fabrication of customized eyewear
US10031350B2 (en) 2013-08-22 2018-07-24 Bespoke, Inc. Method and system to create custom, user-specific eyewear
US10685457B2 (en) 2018-11-15 2020-06-16 Vision Service Plan Systems and methods for visualizing eyewear on a user

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172545A (en) * 1991-09-30 1993-07-09 Aoyama Megane Kk Spectacle-frame manufacturing system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172545A (en) * 1991-09-30 1993-07-09 Aoyama Megane Kk Spectacle-frame manufacturing system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2076814A1 (en) * 2006-10-26 2009-07-08 Carl Zeiss Vision Australia Holdings Ltd. Ophthalmic lens dispensing method and system
EP2076814A4 (en) * 2006-10-26 2011-04-06 Carl Zeiss Vision Au Holding Ophthalmic lens dispensing method and system
CN101548220B (en) * 2006-10-26 2011-12-14 卡尔蔡司视觉澳大利亚控股有限公司 Ophthalmic lens dispensing method and system
WO2008049173A1 (en) 2006-10-26 2008-05-02 Carl Zeiss Vision Australia Holdings Limited Ophthalmic lens dispensing method and system
US9164299B2 (en) 2006-10-26 2015-10-20 Carl Zeiss Vision Australia Holdings Limited Ophthalmic lens dispensing method and system
US9804410B2 (en) 2013-03-12 2017-10-31 Adi Ben-Shahar Method and apparatus for design and fabrication of customized eyewear
US10222635B2 (en) 2013-08-22 2019-03-05 Bespoke, Inc. Method and system to create custom, user-specific eyewear
US11428958B2 (en) 2013-08-22 2022-08-30 Bespoke, Inc. Method and system to create custom, user-specific eyewear
US10031350B2 (en) 2013-08-22 2018-07-24 Bespoke, Inc. Method and system to create custom, user-specific eyewear
US10031351B2 (en) 2013-08-22 2018-07-24 Bespoke, Inc. Method and system to create custom, user-specific eyewear
US11914226B2 (en) 2013-08-22 2024-02-27 Bespoke, Inc. Method and system to create custom, user-specific eyewear
US10451900B2 (en) 2013-08-22 2019-10-22 Bespoke, Inc. Method and system to create custom, user-specific eyewear
US10459256B2 (en) 2013-08-22 2019-10-29 Bespoke, Inc. Method and system to create custom, user-specific eyewear
US11867979B2 (en) 2013-08-22 2024-01-09 Bespoke, Inc. Method and system to create custom, user-specific eyewear
US11428960B2 (en) 2013-08-22 2022-08-30 Bespoke, Inc. Method and system to create custom, user-specific eyewear
US10698236B2 (en) 2013-08-22 2020-06-30 Bespoke, Inc. Method and system to create custom, user-specific eyewear
WO2015101738A3 (en) * 2014-01-02 2015-09-17 Essilor International (Compagnie Generale D'optique) Method for fitting an actual predetermined glasses frame for the use thereof by a given wearer
US10488679B2 (en) 2014-01-02 2019-11-26 Essilor International Method for fitting a predetermined glasses frame for the use thereof by a given wearer
CN105992966A (en) * 2014-01-02 2016-10-05 埃西勒国际通用光学公司 Method for fitting an actual predetermined glasses frame for the use thereof by a given wearer
US10685457B2 (en) 2018-11-15 2020-06-16 Vision Service Plan Systems and methods for visualizing eyewear on a user

Similar Documents

Publication Publication Date Title
CN103885167B (en) Lens barrel for surgical operation microscope
CN100566933C (en) The manufacture method of lens
US7861626B2 (en) Lens surface cutting apparatus and lens surface cutting method for spectacle lens, and spectacle lens
JP5013930B2 (en) Glasses wearing parameter measuring apparatus and glasses wearing parameter measuring method
US10175507B2 (en) Loupe mounting position determination method in binocular loupe device, and system
JP4699243B2 (en) Layout setting device for spectacle lens peripheral processing and spectacle lens peripheral processing system
JPWO2006046558A1 (en) Spectacle lens measurement processing apparatus, measurement processing method thereof, spectacle lens manufacturing method, and spectacle manufacturing method
Hsu et al. Design, fabrication, and metrology of ultra-precision optical freeform surface for progressive addition lens with B-spline description
CN112008234B (en) Laser marking method and marking system for invisible appliance production
US20060101629A1 (en) Computer-controlled milling machine for producing lenses for clip-on accessory
WO2001079918A1 (en) Production method for spectacles-frame
JPH106199A (en) Curved surface polishing method and curved surface polishing device
WO2020230341A1 (en) Lens optical characteristic measurement device, lens optical characteristic measurement method, program, and recording medium
JP3072398B2 (en) Eyeglass frame manufacturing system
US6382790B1 (en) Method for producing a multifocal correction lens, and system for implementing same
WO2002032604A1 (en) Method and device for machining spectacle lens
KR100956545B1 (en) 3-dimensional automatic eyeglass frame/pattern form measuring method
JP6338042B2 (en) Glasses parameter calculation device, glasses parameter calculation program
WO2020261585A1 (en) Lens holding device and lens optical characteristic measuring device
US20220004020A1 (en) Method for producing at least one nose pad of view detection glasses
CN216647000U (en) Adjusting device for spectacle frame
WO2020161878A1 (en) Negative-strength eyeglass lens blank, eyeglass lens, and method of processing negative-strength eyeglass lens blank
JP2849569B2 (en) Lens meter
WO2015120167A1 (en) Methods and apparatuses for providing laser scanning applications
JP7143652B2 (en) Eyeglass measurement system and eyeglass measurement program

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase