WO2001079482A1 - Gene mapping method - Google Patents

Gene mapping method Download PDF

Info

Publication number
WO2001079482A1
WO2001079482A1 PCT/JP2000/007621 JP0007621W WO0179482A1 WO 2001079482 A1 WO2001079482 A1 WO 2001079482A1 JP 0007621 W JP0007621 W JP 0007621W WO 0179482 A1 WO0179482 A1 WO 0179482A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
microsatellite
protein
antibody
mapping
Prior art date
Application number
PCT/JP2000/007621
Other languages
French (fr)
Japanese (ja)
Inventor
Hidetoshi Inoko
Original Assignee
Hidetoshi Inoko
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hidetoshi Inoko filed Critical Hidetoshi Inoko
Priority to JP2001577465A priority Critical patent/JPWO2001079482A1/en
Publication of WO2001079482A1 publication Critical patent/WO2001079482A1/en
Priority to US10/674,124 priority patent/US7510834B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention relates to a method for mapping a gene using a microsatellite marker.
  • mapping a disease-causing gene When mapping a disease-causing gene, it is generally divided into two groups, patients and healthy individuals, to determine whether there is a difference in the frequency of a particular allele. If there is no difference in the frequency of a particular allele, the causative gene is considered not to be close to that allele; if there is a difference in the frequency of a particular allele, the causative gene is not present in that allele. It is thought that it exists near the gene.
  • SNPs single nucleotide polymorphisms
  • microsatellite genetic polymorphism markers are known. SNPs are single nucleotide substitutions in the genome and generally have only two alleles. It is said that SNPs show a correlation only with some SNPs existing within 5 to 10 kb from the disease-causing gene. Therefore, when genome mapping is performed using SNPs as markers, an enormous number of SNPs must be set as markers, and a great deal of labor must be spent.
  • the microsatellite genetic polymorphism is characterized by a large number of alleles and a correlation even at a certain distance from the disease-causing gene.
  • the present invention provides a method for efficiently mapping genes using microsatellite markers.
  • microsatellite markers in the region of the human leukocyte antigen (HLA) locus in psoriasis vulgaris as an example.
  • HLA human leukocyte antigen
  • c psoriasis vulgaris was carried out to search for disease-causing genes used (psoriasis vulgaris; MIM 177900) is a high skin diseases frequently characterized by a hyperproliferation of inflammatory cell infiltration and epidermal cells. Nearly 2% of the Caucasian population suffers from the disease, but it has long been known that the disease has a familial nature.
  • the HLA locus is considered to be one of the major genetic factors predisposing to this disease. It is well known that psoriasis vulgaris correlates with several serologically defined HLA class I antigens such as HLA-B13, -B17, -B39, -B57, -Cw6, and -Cw7. This has been confirmed in many populations around the world, including Caucasians and Japanese (Brenner, W. et al. (1978) Arch. Dermatol. Res., 28, 337-339; Tiilikainen, A. (1980) Br. J. Dermatol., 102, 179-184; Ozawa, A. et al. (1981) J. Am. Acad.
  • HLA-Cw6 has the most consistently significant correlation. However, the correlation is stronger as the correlation between HLA-B27 and ankylosing spondylitis (MIM 106300), which is likely to be the true cause in this case because all patients have this allele equal to 100% No (Moller, E. and Olhagen, B. (1975) Tissue Antigens, 6, 237-246).
  • the present inventors have recently completed the sequence analysis of the entire 1.8 Mb HLA class I region from MICB (major histocompatibility complex class I chain-related gene B) to HLA-F, and over 40 new genes (1997) Genomics, 42, 55-66; Shiina, T. et al. (1998) Genomics, 47, 372-382; Shiina, T. et al. (1999) Immunol. Rev., 167, 193-199).
  • microsatellite markers that were present at regular intervals throughout the 1060 kb region around the HLA-C locus were selected, and their correlation analysis was performed. This is presumed to be the one with a density of 96.7 kb. Using these microsatellite markers, A statistical analysis was performed on the distribution of allele frequencies and deviations from Hardy-Weinberg equilibrium.
  • the virulence gene for psoriasis vulgaris is located within a narrow section of lllkb that extends from 89 to 200 kb on the telomere side of the HLA-C gene.
  • RT-PCR analysis using keratinocyte mRNA within this important region defined for psoriasis vulgaris, P0U5F1 (0TF3;
  • helix coiled-coil rod homologue including SPR1 ⁇ skin specinc proline rich gene 1), SEEK1 (specific expressed gene in epidermal keratinocytes 1), and STG (skin specific telomeric gene) (AB029331, AB031480, AB031479, and AB031481) . This identifies seven genes that contribute to susceptibility to psoriasis vulgaris.
  • the S gene is clearly a candidate for psoriasis vulgaris because it encodes corneodesmosin, a 52-56 kDa protein expressed in differentiating epidermal keratinocytes.
  • one of the four new genes located in the important region of lllkb for psoriasis vulgaris is expressed in most tissues examined, including keratinocytes, and has a plectin with a helicoid coiled-coil import domain. Encodes a protein. It has been hypothesized that plectin provides mechanical strength to cells and tissues by acting as a cross-linking component of the cytoskeleton (Liu, CG et al. Natl. Acad. Sci. USA, 30, 4278-4283) 0 Furthermore, it is of particular interest that the plectin gene is responsible for the development of simple congenital epidermolysis bullosa.
  • the present invention relates to a gene mapping method characterized by using a microsatellite genetic polymorphism marker substantially set at a ratio of about 1 per 100 kb, more specifically,
  • the microsatellite genetic polymorphism marker is characterized in that the average number of alleles is 5 or more and the average heterozygosity is 60% or more.
  • mapping method according to any of (1) to (7), wherein the analysis of the genetic polymorphism marker of the microsatellite is performed using a DNA chip and mass spectrometry.
  • a polynucleotide comprising at least 15 nucleotides complementary to one strand of the gene according to (10) or a complementary strand thereof.
  • the gene isolated by the method of the present invention a protein encoded by the gene, an antibody against the protein, and / or a polynucleotide comprising at least 15 nucleotides complementary to one strand of the gene or a complementary strand thereof are the following: It can be used for testing and gene therapy.
  • a disease-causing gene isolated by the method of the present invention a protein encoded by the gene, an antibody against the protein, and / or a polynucleotide containing at least 15 nucleotides complementary to one strand of the gene or its complementary strand. Pide can be used for testing, preventing, and / or treating the disease.
  • the method for mapping a gene according to the present invention is characterized by using a genetic polymorphism marker of a microsatellite substantially set at a ratio of about one per 100 kb.
  • a genetic polymorphism marker of a microsatellite substantially set at a ratio of about one per 100 kb.
  • the target gene to be mapped There is no particular limitation on the target gene to be mapped.
  • a gene associated with a genetic factor-related disease or a disease suspected of involving a genetic factor is a target gene to be mapped by the present invention.
  • diseases involving genetic factors Includes monogenic diseases caused by a single genetic abnormality, and polygenic diseases caused by the additive effects of multiple genetic factors and / or environmental factors.
  • Polygenic diseases are represented by the so-called “co thighs on diseases”, such as diabetes, hypertension, rheumatoid arthritis, gout, hyperlipidemia, arteriosclerosis, schizophrenia, cancer, and heart disease. , Cerebral infarction, azoospermia, etc., including most lifestyle-related diseases, and autism, manic depression, epilepsy, etc., are also subject to the disease-causing gene mapping of the present invention.
  • the disease-causing gene includes not only the gene alone causing the disease, but also a plurality of genes and genes involved in the onset and progression of the disease along with environmental factors.
  • the disease-causing gene also includes a gene that regulates drug sensitivity in the treatment of a certain disease.
  • the present invention provides identification of a causative gene (group) of a disease and analysis of its molecular mechanism. Other available, diagnostics of the diseases, drug discovery, and its application to the prevention expected.
  • the gene mapping method of the present invention is not limited to mapping of a disease-causing gene, but may be applied to human phenotypes having all genetic factors (eg, height, weight, beautiful skin, skin color, hair color, intelligence, memory, personality, etc.).
  • the present invention can also be applied to mapping of a causative gene involved, and therefore, a gene showing a detectable phenotype is a target gene in the present invention.
  • the gene mapping method of the present invention is not limited to humans, and can be applied to all animals including mammals, birds, and the like.
  • a microsatellite genetic polymorphism marker is used.
  • the genetic polymorphism means that there are two or more types of alleles at a specific locus and the frequency is 1% or more.
  • the locus may be any region on the genome, and is not limited to a gene region to be expressed.
  • the mouth mouth satellite refers to a sequence in which 2 to 6 bases are repeated. It is known that microsatellite exists in the genome at a frequency of one per 2-3 kb. The number of repetitions of each microsatellite may vary between individuals. This variation in the number of repeats forms a polymorphism called STE (Short Tandem Repeat). Microsatellite polymorphism is generally determined by the number of repetitions. A typical example of such a microsatellite is the CA repeat (Dib, C. et al., 1996, Nature 380: 152-154).
  • one microsatellite with a two-base repeat is about every 8.9 kb, and a microsatellite with a three base repeat is one at about 12.9 kb, and four base repeats Microsatellite was found at about 6.6 kb, microsatellite with 5 base repeats was found at about 12.6 kb, and these microsatellites were combined at about 2.4 kb (Shi ina, T). et al., 1999, Proc. Natl. Acad. Sci. USA 96: 13282-13287).
  • microsatellites can be appropriately selected from these microsatellites and used as genetic polymorphism markers.
  • microsatellites are substantially set at a ratio of about 100 kb in the genomic region to be searched.
  • microsatellites located within 100 kb to 200 kb from the target gene show linkage disequilibrium among these markers.
  • the correlation with the type is detected, and the region of the target gene can be specified. In other words, 100k from the causative gene!
  • microsatellite polymorphisms show linkage disequilibrium, so it is possible to detect the correlation without overlooking the causative gene and to determine the most effective causal gene mapping that minimizes the effort required.
  • This can be done by using a microsatellite polymorphic marker set at a ratio of about 1 per 100kb.
  • the ratio of "one in about 100 kb" generally means, on average, 50 kb or more: one in 50 kb, preferably one in 80 kb to 120 kb, more preferably 90 kb to 110 kb on average. It is the ratio of one piece.
  • substantially set at a ratio of about lOOkb at one refers to not only the case where the marker is set at a ratio of about lOOkb at the entire region where the marker is set, but also This includes the case where the ratio is set to about 100kb for one part. For example, even if one marker is set at a rate of about 100kb in one area and a marker is set at a different frequency in another area, it may not fit the rate of ⁇ one in about 100kb '' as a whole. As long as the marker is set at a ratio of about 100 kb in the region, it corresponds to "substantially set at a ratio of about 1 kb" in the present invention.
  • the number of markers for calculating the ratio can be calculated as long as three or more markers are set, but it is preferably five or more, more preferably seven or more, and still more preferably ten or more. .
  • the marker frequency in each analysis is One in 200 kb, but it is substantially the same as the case where one is set in lOOkb, and falls under “substantially set in one in about 100 kb” of the present invention. .
  • the “substantially set at a ratio of about 100 kb” in the present invention means that in each step, even if the marker is not set at a ratio of about 100 kb at each stage, it is intermediate or This includes the case where one is finally set to about 100kb.
  • the genetic polymorphism marker of microsatellite used for the mapping has a high information amount in the analysis. For example, the more alleles (alleles) and the higher the heterozygosity, the greater the amount of information in the analysis.
  • the “number of alleles” is the number of alleles of a gene (genome sequences with different nucleotide sequences at a certain locus are said to be in an “allele” relationship to each other, corresponding to a genotype).
  • “Average number of alleles” is the average number of alleles for all microsatellite used in the mapping method of the present invention. The number of alleles of the lth to nth microsatellites, respectively! ! ⁇ ⁇ !! ⁇ , 1 ⁇ ! ! The average number of alleles for the n microsatellites up to the number is given by:
  • heterozygosity refers to the state in a diploid organism such as a human in which two chromosomes have different gene alleles
  • heterozygosity refers to the degree of heterozygosity. Represent.
  • a X-th micro Satera wells allele number m x, when the frequency and the respective FMI Fnix of each allele, the micro Satera wells "heterozygosity (h x)" is:
  • h x 1 - (Fm 1 2 + Fm 2 2 + Fm 3 2 + ⁇ ⁇ - + Fm x 2)
  • a genetic polymorphism marker having an average number of alleles of 5 or more, preferably 8 or more, and an average of heterozygosity of 60% or more, preferably 65% or more, and more preferably 70% or more.
  • the mapping of the gene of the present invention is usually performed by comparing the frequency of polymorphic markers in microsatellites between a control healthy subject and a randomly selected disease patient. That is, the frequency of each microsatellite allele of a healthy control person and the frequency of each microsatellite allele of a randomly selected disease patient are compared by correlation analysis.
  • “randomly selected” does not mean that the patients must be related to each other (siblings or parents).
  • the patient population has no kinship (siblings or parents) between the patients. If the microsatellite is within 100-200 kb from the disease-causing gene, the frequency of each allele of the microsatellite is statistically different between healthy and diseased patients.
  • the correlation analysis can be performed according to a known method (Yasuharu Nishimura: Statistical Use of Polymorphism, Latest Medicine 46: 909-923, 1991; Oka, A. et al., Hum. Mol. Genetics 8). : 2165-2170 (1999); Ota, M. et al., Am. J. Hum. Genet. 64: 1406-1410 (1999); Ozawa, A.
  • the microsatellite portion is amplified by PCR using a primer pair designed to sandwich the microsatellite, followed by electrophoresis on a high-resolution gel such as a DNA sequencer, and the amplified fragment This can be done by measuring the length. More simply, it can be performed using a DNA chip and mass spectrometry.
  • microsatellite is spotted on the chip, ionized by irradiating a single laser beam, and the molecular weight is measured using the distance traveled in a vacuum tube as an index, whereby the number of microsatellite repetitions, That is, polymorphisms can be easily and quickly measured (Braun, A. et al., Genomics 46: 18-23 (1997)).
  • DNA MassArray TM MS chip
  • MS chip Sequenom Co. LTD, Sandiego, CA, USA
  • PE Biosystems Co. LTD Foster City, CA, USA
  • the target gene can be further narrowed down or specified by another mapping.
  • analysis using SNP is effective. SNPs exist in the genome at a rate of one in 300 to 500 base pairs, and have a high appearance frequency approaching several hundred times the appearance frequency of microsatellites. Applying angular analysis is expected to exert a powerful force in identifying target genes.
  • the SNP polymorphism frequency in the region where the target gene is supposed to exist is compared between the patient group and the healthy subject group by correlation analysis, for example, and the haplotype SNP markers in linkage disequilibrium detected by the analysis are detected through linkage disequilibrium analysis.
  • SNP single nucleotide polymorphism
  • microsatellite with 5 or more alleles showed significant correlation for all microsatellites located within about 200 kb from the target gene, while for SNP, Only very close SNPs within about 5 kb of the target gene, and only some of them, were found to show significant correlation. The reason is that, as mentioned above, the number of alleles (alleles) of SNPs is generally only 2 and the heterozygosity is 50% or less (usually 17%), and the power of SNP mapping is low. It is thought to be possible.
  • the most effective strategy for genome mapping is to first perform mapping with about 30,000 genome-wide polymorphic microsatellites (density of about 100 k per 100 k) to obtain a target gene candidate region. It is thought that the target gene is identified by performing SNP analysis after narrowing down to 100 kb. To identify the target gene from the determined sequence, for example, (ffiAIL
  • HLA human leukocyte antigen
  • the HLA region is expected to contain causative genes related to various diseases.
  • the gene mapping method of the present invention to map the causative genes of these diseases.
  • Specific diseases for which the causative gene is expected to be present in the HLA region include, in addition to psoriasis, for example, rheumatism, Behcet's disease, juvenile diabetes, Graves' disease, cardiomyopathy, diffuse panbronchiolitis, Bajaja Disease, Takayasu disease, narcolepsy, sarcoidosis, Harada disease, myasthenia gravis, multiple sclerosis and the like.
  • the method of the present invention can be applied to areas other than the HLA region.
  • the nucleotide sequence of the human genome was almost determined. If this nucleotide sequence information is used, the method of the present invention can be applied to all human genomic regions, that is, all diseases having genetic factors. It can also be applied to the mapping of causative genes involved in human phenotypes with all genetic factors (eg height, weight, beautiful skin, skin color, hair color, intelligence, memory, personality, etc.) as well as diseases. it can. For example, if the method of the present invention is applied to a population of a tall person and a population of a short person, a gene relating to height can be mapped.
  • the gene can be used for disease inspection, disease prevention and treatment.
  • Genes involved in phenotypes other than disease can also be used for tests such as genetic diagnosis and gene therapy.
  • Cloning of the gene can be performed by a method known to those skilled in the art. For example, it can be prepared by preparing a cDNA library from cells expressing the gene and performing hybridization using the gene fragment identified by mapping as a probe.
  • the cDNA library may be prepared, for example, by the method described in the literature (Sambrook, J. et al, Molecular Clonings Cold Spring Harbor Laboratory Press (1989)), or a commercially available DNA library may be used.
  • RNA is prepared from cells in which the gene is expressed, cDNA is synthesized by a reverse transcriptase, oligo DNA is synthesized based on the gene sequence (or fragment), and this is used as a primer. It can also be prepared by amplifying cDNA by performing a PCR reaction.
  • the translation region encoded by the gene By determining the base sequence of the full length of the target gene, the translation region encoded by the gene can be determined, and the amino acid sequence of the protein encoded by the gene can be obtained.
  • Genomic DNA can be isolated by screening the genomic DNA library using the obtained cDNA as a probe.
  • the gene includes cDNA and genomic MA.
  • Genomic DNA includes the genes exon, intron, promoter and enhansa. Also includes alleles and variants.
  • the cloning of the target gene may be performed, for example, as follows.
  • mRNA is isolated from cells, tissues, and organs in which the gene is expressed. Isolation of ⁇ can be performed by a known method, for example, guanidine ultracentrifugation (Chirgwin, JM et al., Biochemistry (1979) 18, 5294-5299) ⁇ AGPC method (Chomczynski, P. and Sacchi, N., Anal. Prepare total RNA using Biochem. (1987) 162, 156-159) and purify mRNA from total RNA using mRNA Purification Kit (Pharmacia). Alternatively, mRNA can be directly prepared using the QuickPrep mRNA Purification Kit (Pharmacia).
  • CDNA is synthesized from the obtained mRNA using reverse transcriptase.
  • Synthesis of cDNA can also be performed using AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (Shi-Dai-gaku Kogyo) or the like.
  • AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (Shi-Dai-gaku Kogyo) or the like.
  • PCR polymerase chain reaction
  • -RACE method Frohman, Natl. Acad. Sci. USA (1988) 85, 8998-9002
  • a desired MA fragment is prepared from the obtained PCR product, and ligated to the vector DNA.
  • the nucleotide sequence of the target DNA can be confirmed by a known method, for example, the didequinone nucleoside chain polymerization method.
  • the isolated gene is inserted into a vector as appropriate.
  • the vector one, for example, in the case of Escherichia coli as a host, the vector one E. coli (e.g., JM109, DH5 shed, HB101 S XLl-Blue) for mass prepared by mass amplified, etc., it is amplified in E. coli And a transformed gene selected from Escherichia coli (for example, a drug resistance gene that can be distinguished by any drug (ampicillin, tetracycline, kanamycin, chloramphenicol)).
  • a transformed gene selected from Escherichia coli for example, a drug resistance gene that can be distinguished by any drug (ampicillin, tetracycline, kanamycin, chloramphenicol)
  • Examples of vectors include M13 vectors, pUC vectors, pBR322, pBluescript and pCR-Script.
  • pGEM-T ⁇ DIRECT for the purpose of subcloning and excision of cDNA, pGEM-T ⁇ DIRECT, pT7, etc. may be mentioned in addition to the above vectors.
  • an expression vector is particularly useful.
  • the expression vector is intended for expression in Escherichia coli, in addition to having the above characteristics such that the vector can be amplified in Escherichia coli, the host can be used for JM109, DH5, HB101, XLl-Blue. in case of the E. coli, such as a promoter that allows efficient expression in E.
  • lacZ flop Romo - evening - (Ward, ⁇ ⁇ s et al (1989) Nature 341, 544-546;.. Ward, ES (1992) FASEB J. 6, 2422-2427), araB Promo Ichiichi (Better, M. et al. (1988) Science 240, 1041-1043), or T7 Promo.
  • Such vectors include pGEX-5X-1 (Pharmacia),
  • QIAexpress systemj Qiagen
  • pEGFP pEGFP
  • pET pET
  • the host is preferably BL21 expressing T7 MA polymerase
  • the vector may also include a signal sequence for polypeptide secretion.
  • a signal sequence for protein secretion the pelB signal sequence (Lei, SP et al J. Bacterid. (1987) 169, 4379) may be used when produced in E. coli periplasm.
  • the introduction of the vector into the host cell can be performed using, for example, a calcium chloride method or an electroporation method.
  • vectors for producing proteins include mammalian expression vectors (for example, pcDNA3 (manufactured by Invitrogen)) and pEF-BOS (Nucleic Acids. Res. 1990, 18 (17) , p5322), pEF, pCDM8), insect cell-derived expression vectors (eg, “BAC-T0-BAC Baculovirus Expression Systems j (manufactured by Gibco BRL), pBacPAK8), and plant-derived expression vectors (eg, ⁇ 1, p H2), expression vector derived from animal virus
  • retrovirus-derived expression vectors eg, pZIPneo
  • yeast-derived expression vectors eg, “Pichia Expression Kit” (manufactured by Invitrogen), pNVll, SP- Q01
  • expression vectors derived from Bacillus subtilis eg, pPL608, PKTH50.
  • a promoter necessary for expression in cells for example, SV40 promoter
  • MMLV-LTR Promo Overnight EFla promoter (Mizushima, S. and Nagata, S. (1990) Nucleic Acids Res. 18, 5322) It is essential to have a CMV promoter, etc., and if it has a gene for selection of cell transformation (for example, a drug resistance gene that can be identified by a drug (neomycin, G418, etc.)) preferable.
  • a gene for selection of cell transformation for example, a drug resistance gene that can be identified by a drug (neomycin, G418, etc.
  • vectors having such properties include, but are not limited to, p band, pDR2, pBK-RSV, pB-CMV, pOPRSV, p0P13 And the like.
  • a vector having a DHFR gene complementary to a CH0 cell lacking a nucleic acid synthesis pathway may be introduced and amplified with methotrexate (MTX) .
  • MTX methotrexate
  • COS cells are used to transform with a vector (such as pcD) having an SV40 origin of replication.
  • the expression vector is used as a selection marker, such as aminoglycoside transferase (APH) gene, thymidine kinase (TK) gene, and Escherichia coli xanthinguanine phosphoribosyltransferase ( Ecogpt) gene and dihydrofolate reductase (dhfr) gene.
  • APH aminoglycoside transferase
  • TK thymidine kinase
  • Ecogpt Escherichia coli xanthinguanine phosphoribosyltransferase
  • dhfr dihydrofolate reductase
  • the gene is incorporated into an appropriate vector and, for example, a retrovirus method, a ribosome method, a cationic liposome method, an adenovirus method, etc.
  • a retrovirus method for example, a ribosome method, a cationic liposome method, an adenovirus method, etc.
  • a method for introduction This makes it possible to carry out gene therapy or the like for a phenotype such as a disease caused by mutation or polymorphism of the gene.
  • the vector used include, but are not limited to, an adenovirus vector (for example, pAdexlcw) and a retrovirus vector (for example, pZIPneo).
  • the host cell into which the vector is introduced is not particularly limited, and for example, Escherichia coli and various animal cells can be used.
  • Host cells for example, protein production And a production system for expression.
  • Production systems for protein production include in vitro and in vivo production systems. Examples of the in vitro production system include a production system using eukaryotic cells and a production system using prokaryotic cells.
  • animal cells include mammalian cells, such as CH0, COS, 3T3, myeloma, BHK (baby hamster kidney), HeLa, Vero, amphibian cells, such as African Megafrog oocytes (Valle, et al., Nature (1981). ) 291, 358-340) or insect cells such as Sf9, Sf21 and Tn5.
  • CH0 cells include DHFR-deficient CH0 cells such as dhfr-CHO (Urlaub, G. and Chasin, LA (1980) Proc. Natl. Acad. Sci.
  • the vector can be introduced into a host cell by, for example, a calcium phosphate method, a DEAE dextran method, a method using Cationic ribosome D0TAP (manufactured by Boehringer Mannheim), an electoral poration method, or a lipofection method. It is.
  • a cell derived from Nicotiana tabacum is known as a protein production system, and it may be callus cultured.
  • Fungal cells include yeast, for example, the genus Saccharomyces, for example, Saccharomyces cerevisiae N filamentous fungi, for example, the genus Aspergillus, for example, Aspergillus niger. ing.
  • E. coli Escherichia coli
  • JM109 JM109
  • DH5 DH5
  • HB101 Bacillus subtilis
  • the protein can be obtained by culturing in vitro.
  • the culture can be performed according to a known method.
  • DMEM, MEM, RPMI1640, IMDM can be used as a culture solution of animal cells.
  • a serum replacement solution such as fetal calf serum (FCS) can be used together, or serum-free culture may be performed.
  • FCS fetal calf serum
  • the pH during culturing is preferably about 6-8. Culture is usually performed at about 30 to 40 ° C for about 15 to 200 hours, and if necessary, the medium is replaced, aerated, and stirred.
  • examples of a system for producing a protein in vivo include a production system using animals and a production system using plants.
  • the target DNA is introduced into these animals or plants, and proteins are produced and recovered in the animals or plants.
  • the “host” in the present invention includes these animals and plants.
  • mice When using animals, there are production systems using mammals or insects. As mammals, goats, bushes, ovines, mice, and mice can be used (Vicki Glaser, SPECTRUM Biotechnology Applications, 1993). When a mammal is used, a transgenic animal can be used.
  • the target DNA is prepared as a fusion gene with a gene encoding a protein that is specifically produced in milk, such as goat casein.
  • the MA fragment containing the fusion gene is then injected into a goat embryo and the embryo is transferred to a female goat.
  • the target protein can be obtained from milk produced by the transgenic goat born from the goat that has received the embryo or its progeny.
  • Hormones may be used in transgenic goats as appropriate to increase the amount of milk containing proteins produced by transgenic goats (Ebert, KM et al., Bio / Technology (1994) 12, 699-702).
  • silkworms can be used as insects, for example.
  • the target protein can be obtained from the body fluid of the silkworm by infecting the silkworm with a baculovirus into which DNA encoding the target protein has been introduced (Susumu, M. et al., Nature (1985) 315, 592-594).
  • tobacco when using a plant, for example, tobacco can be used.
  • tobacco when used, DNA encoding the desired protein is introduced into a plant expression vector, for example, pMON530, and this vector is introduced into a bacterium such as Agrobacterium tumefaciens.
  • This bacterium is infected to tobacco, for example, Nicotiana tabacum, and the desired polypeptide can be obtained from the tobacco leaves (Ma, JK et al. (1994) Eur. J. Immunol. 24, 131-138).
  • the protein thus obtained can be isolated from the inside or outside of the host cell (such as a medium) and purified as a substantially pure and homogeneous protein.
  • the separation and purification of the protein may be carried out by using the separation and purification methods used in ordinary protein purification, and is not limited at all. For example, chromatography column, filter, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, recrystallization, etc. If selected and combined, proteins can be separated and purified.
  • chromatography examples include affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration, reversed-phase chromatography, and adsorption chromatography.
  • chromatography methods are liquid phase chromatography, for example, liquid phase chromatography such as HPLC and FPLC. Can be performed. Using these purification methods, highly purified proteins can be obtained.
  • the protein can be arbitrarily modified or partially removed by reacting the protein with an appropriate protein modifying enzyme before or after purification.
  • an appropriate protein modifying enzyme for example, trypsin, chymotrypsin, lysylendopeptidase, protein kinase, dalcosidase and the like are used.
  • Antibodies can be prepared.
  • the form of the antibody is not particularly limited, and includes a monoclonal antibody in addition to a polyclonal antibody. Also included are antisera obtained by immunizing immunized animals such as rabbits with the protein, polyclonal antibodies and monoclonal antibodies of all classes, as well as human antibodies and humanized antibodies obtained by genetic recombination.
  • the protein used as a sensitizing antigen for obtaining an antibody is not limited to the animal species from which it is derived, but is preferably a protein derived from a mammal, for example, a human, a mouse or a rat, and particularly preferably a protein derived from a human.
  • the protein used as the sensitizing antigen may be a complete protein or a partial peptide of the protein.
  • the partial peptide of the protein include an amino group (N) terminal fragment and a carboxy (C) terminal fragment of the protein.
  • antibody refers to an antibody that reacts with the full length or fragment of a protein.
  • a target gene or a fragment thereof is introduced into a known expression vector system, the vector is used to transform a host cell described in the present specification, and a target protein or a target protein is introduced from inside or outside the host cell.
  • the fragment may be obtained by a known method, and these may be used as a sensitizing antigen.
  • a cell expressing the protein, a lysate thereof, or a chemically synthesized protein may be used as the sensitizing antigen.
  • the short peptide is appropriately bound to a carrier protein such as keyhole limpet hemocyanin, pepsin albumin, and ovalbumin to form an antigen.
  • the mammal to be immunized with the sensitizing antigen is not particularly limited, but is preferably selected in consideration of compatibility with the parent cell used for cell fusion. In general, rodents are used. Eyes, egrets, and primates are used.
  • mice for example, mice, rats, hamsters and the like are used.
  • a heronoid animal for example, a heron is used.
  • monkeys are used as primates.
  • monkeys with lower nose old world monkey
  • cynomolgus monkeys, rhesus monkeys, baboons, chimpanzees, etc. are used.
  • Immunization of an animal with a sensitizing antigen is performed according to a known method.
  • a sensitizing antigen is injected intraperitoneally or subcutaneously into a mammal.
  • the sensitizing antigen is diluted and suspended in an appropriate amount with PBS (Phosphate-Buffered Saline), physiological saline, or the like, and then mixed with an appropriate amount of a normal adjuvant, for example, Freund's complete adjuvant, if desired. After emulsification, it is administered to mammals. Thereafter, it is preferable to administer the sensitizing antigen mixed with an appropriate amount of incomplete Freund's adjuvant several times every 4 to 21 days.
  • a suitable carrier can be used at the time of immunization with the sensitizing antigen.
  • a polyclonal antibody confirm that the level of the desired antibody in the serum has increased, and then sensitize the antigen.
  • the serum is separated from this blood by a known method.
  • a serum containing the polyclonal antibody may be used.
  • a fraction containing the polyclonal antibody may be further isolated from this serum and used. For example, using an affinity column in which a protein encoded by the target gene is coupled, a fraction that recognizes only the protein is obtained, and this fraction is further purified using Protein A or Protein G column.
  • immunoglobulin G or M can be prepared.
  • the immune cells may be removed from the mammal and subjected to cell fusion.
  • preferred immune cells used for cell fusion include splenocytes, in particular.
  • the other parent cell to be fused with the immune cell is preferably a mammalian myeloma cell, and more preferably a myeloma cell that has acquired the properties for selecting fused cells by a drug.
  • Cell fusion of the immune cells and myeloma cells is basically a known method, for example, The method can be performed according to the method of Milstein et al. (Galfre, G. and Milstein, C., Methods Enzymol. (1981) 73, 3-46).
  • the hybridoma obtained by cell fusion is selected by culturing it in a normal selective culture medium, for example, a HAT culture medium (a culture medium containing hypoxanthine, aminopterin and thymidine). Culturing in the HAT culture solution is continued for a time sufficient to kill cells other than the target hybridoma (non-fused cells), usually for several days to several weeks. Next, a conventional limiting dilution method is performed to screen and clone a hybridoma producing the desired antibody.
  • a normal selective culture medium for example, a HAT culture medium (a culture medium containing hypoxanthine, aminopterin and thymidine). Culturing in the HAT culture solution is continued for a time sufficient to kill cells other than the target hybridoma (non-fused cells), usually for several days to several weeks.
  • a conventional limiting dilution method is performed to screen and clone a hybridoma producing the desired antibody.
  • human lymphocytes for example, human lymphocytes infected with EB virus
  • sensitized lymphocytes can be fused with human-derived myeloma cells capable of permanent division, for example, U266, to obtain a hybridoma that produces a desired human antibody having protein binding activity (Japanese Patent Application Laid-Open No. -No. 17688).
  • the obtained hybridoma was transplanted into the peritoneal cavity of a mouse, ascites was recovered from the mouse, and the obtained monoclonal antibody was subjected to, for example, ammonium sulfate precipitation, protein A, protein G force ram, DEAE ion exchange chromatography, It can be prepared by purifying the protein encoded by the target gene using a coupled affinity column or the like.
  • the prepared antibody is used not only for purification and detection of the protein encoded by the target gene, but also as a candidate for the agonist-ian gonist of the protein. It is also conceivable to apply this antibody to antibody therapy for diseases.
  • a human antibody or a humanized antibody is preferable in order to reduce immunogenicity.
  • a transgenic animal having a repertoire of human antibody genes is immunized with a protein serving as an antigen, a protein-expressing cell or a lysate thereof to obtain antibody-producing cells, and a hybridoma obtained by fusing this with myeloma cells is used.
  • a protein serving as an antigen for example, a protein-expressing cell or a lysate thereof to obtain antibody-producing cells, and a hybridoma obtained by fusing this with myeloma cells is used.
  • a hybridoma obtained by fusing this with myeloma cells.
  • Against protein Human antibodies can be obtained (see International Publication Nos. W092--03918, W093-2227, W094-02602, W094-25585, W096-33735 and W096-34096).
  • cells in which immune cells such as sensitized lymphocytes producing antibodies have been immortalized with oncogenes may be used.
  • the monoclonal antibody thus obtained can also be obtained as a recombinant antibody produced using a gene recombination technique (for example, Borrebaeck, CA and Larrick, JW, THERAPEUTIC MONOCLONAL ANTIBODIES, Published in the United Kingdom by MCMILLAN PUBLISHERS LTD, 1990).
  • Recombinant antibodies are produced by cloning the DNA encoding them from immune cells such as hybridomas or sensitized lymphocytes producing the antibodies, inserting them into an appropriate vector, and introducing them into a host to produce them. .
  • the present invention includes this recombinant antibody.
  • the antibody may be an antibody fragment or a modified antibody thereof as long as it binds to the protein encoded by the target gene.
  • Fab, F (ab,) 2 Fv or a single chain Fv (scFv) obtained by linking an Fv of an H chain and an L chain with an appropriate linker (Huston, JS et al.,? Roc. Natl. Acad. Sci. USA (1988) 85, 5879-5883).
  • an antibody is treated with an enzyme, for example, papain or pepsin, to generate antibody fragments, or a gene encoding these antibody fragments is constructed and introduced into an expression vector.
  • an antibody bound to various molecules such as polyethylene glycol (PEG) can be used.
  • PEG polyethylene glycol
  • antibody includes these modified antibodies. Included. Such a modified antibody can be obtained by subjecting the obtained antibody to chemical modification. These methods are already established in this field.
  • the antibody may be a chimeric antibody composed of a variable region derived from a non-human antibody and a constant region derived from a human antibody, or a CDR (complementarity determining region) derived from a non-human antibody and a human antibody. It can be obtained as a humanized antibody consisting of FR (framework region) and constant region derived from it.
  • the antibody obtained as described above can be purified to homogeneity.
  • the separation and purification of the antibody used in the present invention may be performed by the separation and purification methods used for ordinary proteins.
  • antibodies can be separated by appropriately selecting and combining chromatographic columns such as affinity chromatography, filters, ultrafiltration, salting out, dialysis, SDS polyacrylamide gel electrophoresis, isoelectric focusing, etc. can this the force s purifying (Antibodies:. a Laboratory Manual Ed Harlow and David Lane, Cold Spring Harbor Laboratory, 1988) is not intended to be limited thereto.
  • the concentration of the antibody obtained as described above can be measured by measuring absorbance or enzyme-linked immunosorbent assay (ELISA).
  • Columns used for affinity chromatography include Protein A column and Protein G column.
  • columns using a protein A column include Hyper D, POROS, Sepharose FF (Pharmacia) and the like.
  • Examples of chromatography other than affinity chromatography include, for example, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, and adsorption chromatography (Strategies for Protein Purification and Characterization: A Laboratory). (Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996) 0 These chromatography methods can be carried out using liquid phase chromatography such as HPLC and FPLC.
  • Methods for measuring the antigen-binding activity of antibodies include, for example, measurement of absorbance, enzyme-linked immunosorbent assay (EUSA), EIA (enzyme immunoassay), and RIA (radioimmunoassay). Measurement method) or a fluorescent antibody method.
  • EUSA enzyme-linked immunosorbent assay
  • EIA enzyme immunoassay
  • RIA radioimmunoassay
  • Measurement method or a fluorescent antibody method.
  • a secondary antibody that recognizes an enzyme for example, an antibody labeled with alkaline phosphatase
  • an enzyme substrate such as p-nitrophenyl folic acid
  • the antigen binding activity can be evaluated.
  • a protein fragment for example, a fragment comprising the C-terminus or a fragment comprising the N-terminus may be used.
  • BIAcore Pieracia
  • the antibody is brought into contact with a sample expected to contain the protein encoding the target gene contained in the sample, and an immunocomplex of the antibody and the protein is detected or measured.
  • the method for detecting or measuring the protein encoded by the gene can be carried out. Since this measurement method can specifically detect or measure the protein encoded by the gene, it is useful for various experiments, tests, diagnoses, and the like using the protein.
  • the present invention also provides a polynucleotide comprising at least 15 nucleotides complementary to one strand of the target gene or its complementary strand.
  • the term “complementary strand” refers to one strand of a two-membered nucleic acid consisting of A: T (U for RNA) and G: C base pairs with respect to the other strand.
  • the term “complementary” is not limited to a completely complementary sequence in at least 15 contiguous nucleotide regions, but is at least 70%, preferably at least 80%, more preferably 90%, and still more preferably 95%. What is necessary is that they have homology on the base sequence of at least%. To determine the homology of proteins, the algorithm described in the literature (Wilbur, WJ and Lipman, DJ Proc. Natl. Acad. Sci. USA (1983) 80, 726-730) may be used.
  • nucleic acids include probes and primers used for detection and amplification of a target gene, probes and primers for detecting the expression of the gene, nucleotides or nucleotide derivatives for controlling the expression of the gene (for example, antisense Oligonucleotides, ribozymes, or DNA encoding them).
  • the detection of a gene includes the detection of a mutation in the gene.
  • Such a nucleic acid can also be used for producing a DNA chip.
  • the region on the 3 ′ side may be complementary, and a tag for a restriction enzyme recognition sequence may be added to the 5 ′ side.
  • Antisense oligonucleotides include, for example, antisense oligonucleotides that hybridize at any point in the coding region of a protein.
  • the antisense oligonucleotide is preferably an antisense oligonucleotide for at least 15 consecutive nucleotides in the coding region of the protein. More preferably, at least 15 or more consecutive nucleotides are an antisense oligonucleotide containing a translation initiation codon.
  • the antisense oligonucleotide derivatives and modifications thereof can be used.
  • the modified product include a modified lower alkyl phosphonate such as a methyl phosphonate type or an ethyl phosphonate type, a phosphorothioate modified product, a phosphoroamidate modified product, and the like.
  • Antisense oligonucleotides include not only those whose nucleotides corresponding to the nucleotides constituting the predetermined region of DNA or mRNA are all complementary sequences, but also those whose oligonucleotides specifically target DNA or RNA encoding the target gene. Hybridization Includes one or more nucleotide mismatches wherever possible o
  • the antisense oligonucleotide derivative of the present invention acts on a cell that produces a protein encoded by a target gene and binds to DNA or mRNA encoding the protein, thereby inhibiting its transcription or translation, or Or promote the decomposition of By suppressing the expression of white matter, it has the effect of suppressing the action of the protein as a result.
  • the antisense oligonucleotide derivative of the present invention can be made into an external preparation such as a coating agent or a patch by mixing with an appropriate base material which is inactive against the derivative.
  • excipients may be added to tablets, splinters, granules, capsules, ribosome capsules, It can be a lyophilized agent such as a propellant, a liquid, a nasal drop and the like. These can be prepared according to a conventional method.
  • the antisense oligonucleotide derivative of the present invention is applied directly to the affected area of the patient, or is applied to the patient so as to be able to reach the affected area as a result of intravenous administration or the like.
  • an antisense-encapsulated material that enhances durability and membrane permeability can be used.
  • ribosome, poly-L-lysine, lipid, cholesterol, lipofectin or derivatives thereof can be mentioned.
  • the dosage of the antisense oligonucleotide derivative of the present invention can be appropriately adjusted according to the condition of the patient, and a preferred amount can be used. For example, it can be administered in the range of 0.1 to 100 mg / kg, preferably 0.1 to 50 mg / kg.
  • the antisense oligonucleotide of the present invention inhibits the expression of the protein encoded by the target gene and is therefore useful in suppressing the biological activity of the protein. Further, the expression inhibitor containing the antisense oligonucleotide of the present invention is useful in that it can suppress the biological activity of the protein.
  • the mutation or expression of the gene or protein can be tested using an antibody against the protein encoded by the target gene or a polynucleotide containing at least 15 nucleotides complementary to one strand of the gene or its complementary strand.
  • the antibody or the polynucleotide can be used to test for the disease.
  • the examination of the disease includes not only the examination of a patient who has developed the symptoms of the disease due to the mutation of the disease-causing gene, To assess whether the disease-causing gene is susceptible to the disease due to abnormal expression of the disease-causing gene or mutation in the gene, and also to test for mutations in the gene. included.
  • the risk of the disease is extremely high. It is considered that the number has increased.
  • Testing of a disease or the like using an antibody includes, for example, a method including a step of detecting a protein encoded by a causative gene in a test sample. If the causative gene is
  • the test using an antibody against the protein to be loaded includes, specifically, (a) a step of bringing the antibody into contact with a test sample, (b) a step of detecting the binding of the antibody to the test sample, including.
  • the protein can be detected by immunoprecipitation using an antibody, Western blot, immunohistochemistry, ELISA, or the like.
  • the nucleotide sequence of the transcript of the gene or its cDNA the nucleotide sequence of the genomic DNA sequence (including the endogenous transcription control sequence), or a polynucleotide complementary to its complementary strand ( Probes and primers).
  • the mutation test also includes a test to identify “carriers” with a mutation in one allele of the allele.
  • the polynucleotide When used as a primer, the polynucleotide is usually between 15 bp and: LOObp, preferably between 17 bp and 30 bp.
  • the primer may be any primer that can amplify at least a part of the target gene or a region that regulates its expression. Examples of such a region include an exon region, an intron region, a promoter region, and an enhancer region of a gene.
  • a polynucleotide as a probe generally has a chain length of at least 15 bp or more if it is a synthetic polynucleotide.
  • Combine into vectors such as plasmid DNA It is also possible to use a double-stranded MA obtained from the cloned clone as a probe.
  • the probe may be any probe as long as it is complementary to the base sequence of at least a part of the gene or a region that regulates its expression or a complementary strand thereof. Examples of the region to which the probe hybridizes include an exon region, an intron region, a promoter region, and an enhancer region of a gene.
  • the polynucleotide or double-stranded DNA is used after being appropriately labeled.
  • Labeling methods include, for example, labeling by phosphorylating the 5 'end of the polynucleotide with 32 P using T4 polynucleotide kinase, or random hexamer oligonucleotide using a DNA polymerase such as Klenow II enzyme.
  • a primer as a primer, a method of incorporating a substrate base labeled with an isotope such as 32 P, a fluorescent dye, or biotin (such as a random prime method) can be used.
  • One of the testing methods using an antibody against the protein encoded by the target gene or a polynucleotide containing at least 15 nucleotides complementary to one strand of the gene or its complementary strand is a transcript of the target gene in a test sample.
  • This is a method that includes the step of detecting includes a method comprising: (a) contacting the above-mentioned polynucleotide with a test sample; and (b) detecting the binding of the polynucleotide to mRNA in the test sample. included.
  • Such a test can be performed, for example, by Northern hybridization—RT-PCR.
  • Inspection using RT-PCR includes the following steps: (a) a step of synthesizing cDNA from mRNA in a test sample; (b) a step of synthesizing the synthesized cDNA and a primer of the polynucleotide of the present invention. Performing a polymerase chain reaction; and (c) detecting DNA amplified by the polymerase chain reaction.
  • Northern hybridization—RT-PCR can be performed by known genetic engineering techniques. Detection by DNA chip or DNA microarray is also possible.
  • testing for a disease or the like may be performed by detecting a mutation or polymorphism in a target gene. That is, the coding region or transcriptional regulation of the target gene
  • the test can be performed by detecting a mutation or polymorphism in the control region.
  • One embodiment of such a test method is a method for directly determining the nucleotide sequence of a target gene of a subject. For example, a part or all of the target gene (for example, exon, intron, or the like) of the subject can be determined by PCR (Polymerase Chain Reaction) method or the like using the above nucleotide as a primer and DNA isolated from the subject as type III. The region containing the promoter and enhancer is amplified and its base sequence is determined. A test can be performed by comparing this with the sequence of the gene of a control person (for example, a healthy person or the like).
  • One embodiment is (a) a step of preparing an MA sample from a subject, (b) a step of amplifying DNA from the subject using the polynucleotide of the present invention as a primer, and (c) amplified DNA. (D) separating the dissociated single-stranded DNA on a nondenaturing gel, and (e) controlling the mobility of the separated single-stranded DNA on the gel. Comparing with the case of.
  • PCR-SSCP Single-strand conformation polymorphism, Single-strand conformation polymorphism
  • PCR-SSCP Single-strand conformation polymorphism
  • This method has advantages such as relatively simple operation and small sample size, and is particularly suitable for screening a large number of DNA samples.
  • the principle is as follows. When a double-stranded DNA fragment is dissociated into single strands, each strand forms a unique higher-order structure depending on its base sequence. This dissociated MA chain is denatured without polyacrylic When electrophoresed in an amide gel, single-stranded DNAs of the same complementary length move to different positions according to the differences in their higher-order structures. The single-stranded substitution also changes the higher-order structure of this single-stranded DNA, indicating different mobilities in polyacrylamide gel electrophoresis.
  • the target gene is amplified by PCR or the like.
  • the range to be amplified usually, a length of about 200 to 400 bp is preferable.
  • the region to be amplified includes not only all the exons and all the introns of the gene, but also the gene promoter and the enhancer.
  • the DNA fragment synthesized by adding the labeled substrate base and performing PCR is labeled.
  • labeling can also be performed by adding an isotope such as 32 P or a substrate base labeled with a fluorescent dye or biotin to the synthesized DNA fragment using Klenow enzyme after the PCR reaction.
  • the thus obtained labeled DNA fragment is denatured by applying heat or the like, and electrophoresis is performed on a polyacrylamide gel containing no denaturing agent such as urea.
  • the conditions for separation of MA fragments can be improved by adding a suitable amount of glycerol (about 5 to 10%) to polyacrylamide gel.
  • the electrophoresis conditions vary depending on the properties of each DNA fragment.
  • the mobility is detected and analyzed by autoradiography using X-ray film or a scanner that detects fluorescence, etc. If a band with a difference in mobility is detected, this band is directly analyzed from the gel. Excision, re-amplification by PCR, and direct sequencing can confirm the presence of the mutation. Le The band can be detected by staining the DNA with ethidium mouth silver silver staining method or the like.
  • test method of the present invention include: (a) a step of preparing a DNA sample from a subject; (b) a step of amplifying DNA from the subject using the polynucleotide of the present invention as a primer; (C) a step of cleaving the amplified DNA, (d) a step of separating the DNA fragment according to its size, and (e) a detectable labeled polynucleotide of the present invention is added to the separated DNA fragment. And (f) comparing the size of the detected DNA fragment with that of a control.
  • Examples of such a method include a method using restriction fragment length polymorphism (RFLP) and a PCR-RFLP method.
  • Restriction enzymes are usually used as enzymes that cut DNA. Specifically, when a mutation or polymorphism is present at the recognition site of the restriction enzyme, or when there is a base insertion or deletion in the DNA fragment generated by the restriction enzyme treatment, the size of the fragment generated after the restriction enzyme treatment Varies compared to controls (eg, in healthy individuals). By amplifying the portion containing this mutation or polymorphism by PCR and treating with each restriction enzyme, these mutations or polymorphism can be detected as a difference in the mobility of the band after electrophoresis. .
  • the presence or absence of a mutation or polymorphism can be detected by treating the chromosomal MA with these restriction enzymes, electrophoresing, and performing Southern plotting using the polynucleotide as a probe.
  • the restriction enzyme to be used can be appropriately selected according to each test site.
  • RNA prepared from a subject can be converted into cDNA with a reverse transcriptase, which can be directly cut with a restriction enzyme and then subjected to Southern blotting.
  • a part or all of the target gene can be amplified by PCR and cut with restriction enzymes, and then the difference in mobility can be examined.
  • RNA can be performed in the same manner by using RNA instead of DNA prepared from the subject.
  • a method includes the steps of (a) preparing an RNA sample from a subject; (C) a step of hybridizing the isolated RNA with the detectable-labeled oligonucleotide of the present invention as a probe, and (d) the detected RNA. Comparing the size of the control with the control.
  • RNA prepared from a subject is subjected to electrophoresis, and Northern blotting is performed using the above-described polynucleotide as a probe to detect a difference in mobility.
  • test method include: (a) a step of preparing a DNA sample from a subject;) amplifying MA from the subject using the polynucleotide of the present invention as a primer; and (c) amplifying the amplified DNA. Separating on a gel in which the concentration of the DNA denaturing agent is gradually increased, and (d) comparing the mobility of the separated DNA on the gel with that of a control.
  • Examples of such a method include denaturant gradient gel electrophoresis (DGGE).
  • DGGE denaturant gradient gel electrophoresis
  • a part or all of the target gene is amplified by PCR using the above primers, etc., and this is amplified in a polyacrylamide gel where the concentration gradually increases as the concentration of denaturant such as urea moves. Run the sample and compare it with a control (eg, a healthy subject).
  • a control eg, a healthy subject.
  • the MA fragment becomes single-stranded at a lower denaturant concentration and the migration speed becomes extremely slow.
  • the presence or absence of a mutation or polymorphism can be detected by detecting this difference in mobility. Can be detected.
  • the Allele Specific Oligonucleotide (ASO) hybridization method can be used for the purpose of detecting only a mutation at a specific position.
  • ASO Allele Specific Oligonucleotide
  • the efficiency of hybridization decreases when the mutation is present. This can be detected by the Southern plot method or a method utilizing the property of quenching by a special fluorescent reagent being applied to the hybrid gap in a single step.
  • Ribonuclea It can also be detected by the A-Masemachi cutting method.
  • the target gene is amplified by PCR or the like, and the target gene is hybridized with a labeled RNA prepared from a target gene fragment or the like incorporated in a plasmid vector or the like. Since the hybrid has a single-stranded structure in the portion where the mutation exists, it is possible to detect the presence of the mutation by cleaving this portion with ribonuclease A and detecting this by autoradiography. it can.
  • FIG. 1 shows the P values obtained by the correlation test and the Hardy-Weinberg ratio exact test, together with the positions of the microsatellite markers used for the gene mapping of psoriasis vulgaris.
  • a Gene map showing the location of each gene in the HLA class I region from IkBL to HLA-L.
  • White and black boxes represent HLA class I genes and non-HLA genes, respectively. Arrows indicate the direction of the gene.
  • b Statistical analysis by case-control correlation test and exact test of Hardy-Weinberg ratio. The curves were drawn after smooth fitting based on the two-point moving average in each test.
  • the white circles connected by a solid line indicate the Pc values obtained by the Fisher's exact probability test in the case-control analysis, and the white squares connected by the broken line indicate the deviation from the Hardy-Weinberg ratio.
  • the P value obtained by the exact probability test (probability test), the solid square connecting the solid squares to the P value obtained by the exact probability test for heterozygous reduction on the null hypothesis of Hardy-Weinberg equilibrium in patients. Indicates a value.
  • the distance (kb) from the HLA-C locus to each microsatellite is shown in parentheses along with the position of the e microsatellite car.
  • the centromeric MICB gene was converted to the telomere HLA-F gene (Mizuki, N. et al. (1997) Genomics, 42, 55-66; Shiina, T et al. (1998) Genomics, 47, 372-382; Shiina, T. et al. (1999) Immunol. Rev., 167, 193-199; Tamiya, G. et al. (1998) Tissue Antigens, 51 , 337-346), 758 microsatellite loci ranging from 2- to 5-nucleotide repeats were identified in the 1.8 Mb HLA class I region containing the HLA-B and HLA-C genes. .
  • HLA class I-related diseases such as psoriasis vulgaris, Behcet's disease (MIM 109650), acute pancreatitis and ulcerative colitis (MIM 191390).
  • correlation analysis was performed using 11 out of the 38 repeat sites described above to determine the clear position of the causative gene for psoriasis vulgaris within the HLA class I region.
  • the selected microsatellites are densely distributed around the HLA-C locus at a resolution of approximately 1 microsatellite per lOOkb (C and 2_A, 232kb centromere side; Cl_4_l, 91kb centromere side; C15, 191 ⁇ Centromeric side 1_4-3, 29kb telomere side; G13 1, C1-2-1.6, 89kb T-mail side; C3-2, 143kb Telo-mail side; C2-4-1-4, 200kb T-mail side; C4-212, 457kb T-mail Side; C4 1-2-25, 618 kb telomere side; and C3-2 ”1 ⁇ 831 kb telomere side) (Fig. 1).
  • microsatellite C in c 11 species synthesized 2_A, Cl_4- 1, Cl-2_5 , Cl_4- 3, Cl_3_l, C and 2- 6, Cl_3_2, C2_4- 4, C4_2_12, C4_2_25 , C3_2_ll) are shown in Table 1.
  • the PCR reaction mixture consisted of 50 ng of genomic DNA, dNTPs (2.5 mM each) 2j 10 x buffer (100 mM Tris-HCl, pH 8.3, 500 mM KC1, 15 niM MgCl 2 ) 21 and 20 pmol of forward and reverse primers, and Evening Recombinant Taq Polymerase (Takara Shuzo, Kyoto, Japan) 0.5U is included in total 201. After initial denaturation at 96 ° C for 5 minutes, 30 cycles of 96 ° C for 1 minute, 55 ° C for 30 seconds, and 72 ° C for 45 seconds were performed using an automatic thermal cycler (Takara Shuzo). This was followed by a final extension at 72 ° C for 4 minutes.
  • the amplification product was denatured at 100 ° C for 5 minutes, mixed with a stop buffer containing formamide, applied to each lane with the size standard marker of GS500 Tamra (PE Biosystems), and placed in an automated DNA sequencer. Separation was performed on a 4% polyacrylamide denaturing sequencing gel containing 8M urea. Fragment size was automatically determined using GeneScan software (PE Biosystems). Table 1 Microsatellite markers used for correlation analysis Microsatellite Position Repeat unit PCR primer
  • TTTC T ATCTACTTATAGTCTATCACGG
  • the repeat units were determined from the sequence data determined by the inventors (Shi ina, T. et al. (1999) Immunol. Rev., 167, 193-199). All markers were established by Tamiya et al. (Tamiya, G. et al.
  • the Markov chain method has the advantage that a complete calculation for testing the Hardy-Weinberg ratio can be made for small numbers of alleles and samples. When the number of alleles was ⁇ 5, the exact probability (exact P-value) was calculated by the complete calculation method. The level of P ⁇ 0.1 was considered statistically significant for the Hardy-Weinberg equilibrium.
  • Deviation from Hardy-Weinberg ratio probability test
  • heterozygous reduction for the null hypothesis of Hardy-Weinberg equilibrium (Raymond, M. and Rous set, F. (1995) J. Hered., 86, 248 -249; Rousset, F. and Raymond, M. (1995) Genetics, 140, 1413-1419) using the Markov chain method (Guo, SW and Thompson, EA (1992) Biometrics, 48, 361-372).
  • Exact tests of Hardy-Weinberg ratios for 11 microsatellite markers were also performed. As expected, all 11 markers examined followed the Hardy-Weinberg equilibrium in healthy controls (P> 0.25).
  • a gene mapping method characterized by using a microsatellite genetic polymorphism marker substantially set at a ratio of about 1 per 100 kb. This enables efficient mapping of the disease-causing gene. Further, the method of the present invention is also useful for mapping genes involved in any phenotype having a genetic factor, other than the causative gene of a disease.

Abstract

A method for gene mapping. It is found out that gene mapping can be efficiently carried out by using microsatellite genetic polymorphism markers substantially designed at a ratio of 1 per about 100 kb. By using this method, genes causative of diseases and genes participating in various phenotypes with hereditary factors can be specified.

Description

遺伝子マッピング法 技術分野  Gene Mapping Method Technical Field
本発明はマイクロサテライトマーカーを用いる遺伝子のマッピング方法に関す る。 背景技術  The present invention relates to a method for mapping a gene using a microsatellite marker. Background art
疾患原因遺伝子のマッピングを行う場合、一般に患者と健常人の 2つのグループ に分け、 特定の対立遺伝子の頻度に差異があるかどうかを調べる。 特定の対立遺 伝子頻度に差異がない場合は、 原因遺伝子はその対立遺伝子の近くには存在して いないと考えられ、 特定の対立遺伝子頻度に差異がある場合は、 原因遺伝子はそ の対立遺伝子の近くに存在していると考えられる。  When mapping a disease-causing gene, it is generally divided into two groups, patients and healthy individuals, to determine whether there is a difference in the frequency of a particular allele. If there is no difference in the frequency of a particular allele, the causative gene is considered not to be close to that allele; if there is a difference in the frequency of a particular allele, the causative gene is not present in that allele. It is thought that it exists near the gene.
ゲノムマヅビングを行う際の遺伝多型マ一力一としては、 single nucleotide polymorphisms (SNPs; 単一ヌクレオチド多型)とマイクロサテライトの遺伝多型 マーカ一が知られている。 SNPsはゲノム上の一塩基置換であり、 対立遺伝子数は 一般に 2個のみである。 SNPsは、疾患原因遺伝子から 5kb以内〜 10kb以内に存在す る一部の SNPsしか相関を示さないと言われている。 その為、 SNPsをマーカーとし てゲノムマヅビングを行う場合には、 膨大な数の SNPsをマーカ一として設定する 必要があり、 多大な労力を費やす必要がある。 マイクロサテライトの遺伝多型マ 一力一は対立遺伝子数が多く、 疾患原因遺伝子からある程度離れた位置にあつて も相関を示すという特徴がある。 しかしながら、 マイクロサテライトをマーカ一 として設定する場合、マーカーの数が多すぎると多大な労力を費やす必要があり、 又、 数が少なすぎると相関が検出されず、 原因遺伝子を見落とす可能性がある。 このように、 マイクロサテライトマ一力一を用いた効率的な遺伝子マッピング法 は確立されていない。 発明の開示 As genetic polymorphisms at the time of genome mapping, single nucleotide polymorphisms (SNPs; single nucleotide polymorphisms) and microsatellite genetic polymorphism markers are known. SNPs are single nucleotide substitutions in the genome and generally have only two alleles. It is said that SNPs show a correlation only with some SNPs existing within 5 to 10 kb from the disease-causing gene. Therefore, when genome mapping is performed using SNPs as markers, an enormous number of SNPs must be set as markers, and a great deal of labor must be spent. The microsatellite genetic polymorphism is characterized by a large number of alleles and a correlation even at a certain distance from the disease-causing gene. However, when setting a microsatellite as a marker, if the number of markers is too large, a great deal of labor must be spent, and if the number is too small, no correlation is detected and the causative gene may be overlooked. Thus, an efficient gene mapping method using micro satellites Has not been established. Disclosure of the invention
本発明はマイクロサテライトマーカーを利用して効率的に遺伝子のマッピング を行うための方法を提供する。  The present invention provides a method for efficiently mapping genes using microsatellite markers.
マイクロサテライトの遺伝多型マー力一を用いた効率的な遺伝子マッピング方 法を確立するため、 本発明者は、 尋常性乾癬を例にヒト白血球抗原 (HLA)遺伝子 座の領域のマイクロサテライトマーカーを用いた疾患原因遺伝子の探索を行った c 尋常性乾癬 (psoriasis vulgaris; MIM 177900) は、 炎症性細胞浸潤と表皮細 胞の過剰増殖とを特徴とする頻度の高い皮膚疾患である。白人人口の 2%近くが本 症に罹患するが、 本症に家族性発症の性質があることは以前から知られている。 しかし、 日本人での発生率はこれよりも低く (0.1%)、 尋常性乾癬の症例の大部 分は散発性である。 以上の事実は、 尋常性乾癬が多因子疾患であり、 特定の遺伝 的背景をもつ個人に何らかの環境因子が加わることによって誘発されることを明 確に示している。 事実、 ゲノム全体に及ぶ連鎖研究により、 染色体 6p21.3 [ヒト 白血球抗原(HLA)]、 17q25、 および 4q、 ならびに他の数多くの部位で感受性遺伝 子座がいくつか同定されている (Tomfohrde, J. et al. (1994) Science, 20, 1141-1145; Matthews, D. et al . (1996) Nature Genetリ 14, 231-233; Nair, R.P. et al . (1997) Hum. Mol . Genet. , 6, 1349-1356; Trembath, R.C. et al . (1997) Hum. Mol . Genet. , 6, 813-820)。 In order to establish an efficient gene mapping method using the genetic polymorphism marker of microsatellite, the present inventor used microsatellite markers in the region of the human leukocyte antigen (HLA) locus in psoriasis vulgaris as an example. c psoriasis vulgaris was carried out to search for disease-causing genes used (psoriasis vulgaris; MIM 177900) is a high skin diseases frequently characterized by a hyperproliferation of inflammatory cell infiltration and epidermal cells. Nearly 2% of the Caucasian population suffers from the disease, but it has long been known that the disease has a familial nature. However, the incidence in Japanese is lower (0.1%), and most cases of psoriasis vulgaris are sporadic. These facts clearly show that psoriasis vulgaris is a multifactorial disease, triggered by the addition of some environmental factor to individuals with a particular genetic background. In fact, genome-wide linkage studies have identified several susceptible loci on chromosome 6p21.3 [human leukocyte antigen (HLA)], 17q25, and 4q, and many other sites (Tomfohrde, J et al. (1994) Science, 20, 1141-1145; Matthews, D. et al. (1996) Nature Genet, 14, 231-233; Nair, RP et al. (1997) Hum. Mol. Genet., 6, 1349-1356; Trembath, RC et al. (1997) Hum. Mol. Genet., 6, 813-820).
中でも、 HLA遺伝子座は本症の素因となる主要な遺伝因子の一つであると考えら れている。尋常性乾癬は HLA- B13、 -B17、 - B39、 - B57、 -Cw6、 および- Cw7といった 血清学的に定義されたいくつかの HLAクラス I抗原と相関することがよく知られて いる。 このことは白色人種および日本人を含む世界中の多くの集団で確認されて いる(Brenner, W. et al . (1978) Arch. Dermatol. Res. , 28, 337-339; Tiilikainen, A. et al . (1980) Br. J. Dermatol. , 102, 179-184; Ozawa, A. et al . (1981) J. Am. Acad. Dermatol . , 4, 205-230; Cao, K. et al . (1993) Chin. Med. Jつ 106, 132-135; Schmitt- Egenolf, M. et al . (1996) J. Invest. Dermatol . , 106, 711-714)。 以上のアレルのうち、 最も一貫して著明な相関が認められるものが HLA-Cw6である。 しかし、 この相関は、 HLA-B27と強直性脊椎炎 (MIM 106300) と の相関(この場合にはこのアレルを 100%に匹敵する患者が有するため真の原因で ある可能性が高い) ほど強くはない (Moller, E. and Olhagen, B. (1975) Tissue Antigens, 6, 237-246)。 実際には、 HLA-Cw6アレルを有する尋常性乾癬患者はわ ずか 10% (日本人)から 45% (白色人種)に過ぎない(Tiilikainen, A. et al . (1980) Br. J. Dermatol . , 102, 179-184; Asahina, A. et al . (1991) J. Invest. Dermatol., 97, 254-258)。 このため、 HLA-C遺伝子自体が尋常性乾癬の原因となる主要な遺伝 子座ではなく、 付近に位置する他の遺伝子 (群) に真の病原性変異/アレルが存 在して HLA-Cw6と強い連鎖不平衡を示すという可能性も明らかに考えられる。この 点に関しては、 HLA-C遺伝子の周囲に位置する高分解能遺伝マーカーを用いて、感 受性遺伝子座と推定されるこの部分の詳細なマッピングを行うことが明らかに必 要である。 In particular, the HLA locus is considered to be one of the major genetic factors predisposing to this disease. It is well known that psoriasis vulgaris correlates with several serologically defined HLA class I antigens such as HLA-B13, -B17, -B39, -B57, -Cw6, and -Cw7. This has been confirmed in many populations around the world, including Caucasians and Japanese (Brenner, W. et al. (1978) Arch. Dermatol. Res., 28, 337-339; Tiilikainen, A. (1980) Br. J. Dermatol., 102, 179-184; Ozawa, A. et al. (1981) J. Am. Acad. Dermatol., 4, 205-230; Cao, K. et al. (1993) Chin. Med. J 106, 132-135; Schmitt-Egenolf, M. et al. (1996) J. Invest Dermatol., 106, 711-714). Of these alleles, HLA-Cw6 has the most consistently significant correlation. However, the correlation is stronger as the correlation between HLA-B27 and ankylosing spondylitis (MIM 106300), which is likely to be the true cause in this case because all patients have this allele equal to 100% No (Moller, E. and Olhagen, B. (1975) Tissue Antigens, 6, 237-246). In fact, only 10% (Japanese) to 45% (Caucasian) of the psoriasis vulgaris with the HLA-Cw6 allele (Tiilikainen, A. et al. (1980) Br. J. Dermatol., 102, 179-184; Asahina, A. et al. (1991) J. Invest. Dermatol., 97, 254-258). Because of this, the HLA-Cw6 gene is not the major locus responsible for psoriasis vulgaris, but rather a true pathogenic variant / allele in another gene (s) located nearby. It is clearly possible to show strong linkage disequilibrium. In this regard, it is clearly necessary to use a high-resolution genetic marker located around the HLA-C gene to perform a detailed mapping of this putative susceptibility locus.
本発明者らは最近、 MICB (主要組織適合遺伝子複合体クラス I鎖関連遺伝子 B) から HLA- Fまでの 1.8Mbの HLAクラス I領域全体の配列解析を完了し、 40種を上回る 新たな遺伝子をこの区域内で同定した (Mizuki, N. et al . (1997) Genomics, 42, 55-66; Shiina, T. et al . (1998) Genomics, 47, 372-382; Shiina, T. et al. (1999) Immunol . Rev. , 167, 193-199)。 そこで、 本発明者は、 主要組織適合遺伝 子複合体(MHC) と連鎖した「乾癬遺伝子」 と推定される遺伝子の日本人の尋常性 乾癬患者における高分解能マッピングを行うために、 この断片に対象を絞って、 HLA- C遺伝子座周囲の 1060kb区域の全体にわたって一定間隔で存在する合計 11種 の多型性に富む新規マイクロサテライトマ一力一を選択し、 その相関分析を行つ た。これは、 96.7kbに 1個の密度でマ一力一を配置したと見積られるものである。 これらのマイクロサテライトマーカーを用いて、 各マイクロサテライト座での アレル頻度の分布およびハーディ-ワインベルグ平衡からの偏差に関する統計解 析を行った。その結果、尋常性乾癬に関する病原性遺伝子が HLA-C遺伝子のテロメ ァ側 89〜200kbにわたる lllkbの狭い区間内に位置することを特定するに至った。 ケラチノサイト mRNAを用いた RT-PCR解析によれば、 尋常性乾癬に関して規定され たこの重要な領域内には、 これまでに P0U5F1 (0TF3;ォクタマー転写因子 3)The present inventors have recently completed the sequence analysis of the entire 1.8 Mb HLA class I region from MICB (major histocompatibility complex class I chain-related gene B) to HLA-F, and over 40 new genes (1997) Genomics, 42, 55-66; Shiina, T. et al. (1998) Genomics, 47, 372-382; Shiina, T. et al. (1999) Immunol. Rev., 167, 193-199). In order to perform high-resolution mapping in Japanese patients with psoriasis vulgaris, a gene putatively linked to the major histocompatibility complex (MHC), the present inventor has determined that this fragment Then, a total of 11 novel polymorphic microsatellite markers that were present at regular intervals throughout the 1060 kb region around the HLA-C locus were selected, and their correlation analysis was performed. This is presumed to be the one with a density of 96.7 kb. Using these microsatellite markers, A statistical analysis was performed on the distribution of allele frequencies and deviations from Hardy-Weinberg equilibrium. As a result, they have identified that the virulence gene for psoriasis vulgaris is located within a narrow section of lllkb that extends from 89 to 200 kb on the telomere side of the HLA-C gene. According to RT-PCR analysis using keratinocyte mRNA, within this important region defined for psoriasis vulgaris, P0U5F1 (0TF3;
(Takeda, J. et al . (1991) Nucleic Acids Res. , 20, 4613-4620; Krishnan, B.R. et al . (1995) Genomics, 30, 53-58)、 TCF19 (SCI;細胞増殖調節性遺伝子)(Takeda, J. et al. (1991) Nucleic Acids Res., 20, 4613-4620; Krishnan, B.R. et al. (1995) Genomics, 30, 53-58), TCF19 (SCI; cell growth regulatory gene)
(Krishnan, B.R. et al. (1995) Genomics, 30, 53-58; Ku, D.H. et al . (1991) Cell Growth Differ. , 2, 179-186) および S (コルネオデスモシン遺伝子) (Zhou, Y. and Chaplin, D.D. (1993) Proc. Natl . Acad. Sci. USA, 90, 9470-9474; Ishihara, M. et al . (1996) Tissue Antigens, 48, 182-186; Tazi Ahnini, R. et al . (1999) Hum. Mol . Genet. , 8, 1135-1140; Allen, M.H. et al. (1999) Lancet, 353, 1599-1590) という既知の 3つの遺伝子に加えて、 HLAクラス I領域全体のゲノ ムシ一クェンシングを通じて同定された 4つの新たな発現型遺伝子、すなわち HCR(Krishnan, BR et al. (1995) Genomics, 30, 53-58; Ku, DH et al. (1991) Cell Growth Differ., 2, 179-186) and S (corneodesmosin gene) (Zhou, Y Acad. Sci. USA, 90, 9470-9474; Ishihara, M. et al. (1996) Tissue Antigens, 48, 182-186; Tazi Ahnini, R. et al. and Chaplin, DD (1993) Proc. Natl. (1999) Hum. Mol. Genet., 8, 1135-1140; Allen, MH et al. (1999) Lancet, 353, 1599-1590), as well as the entire HLA class I region. Four new phenotyped genes identified through genome sequencing: HCR
(helix coiled - coil rod homologue)、 SPR1 ^skin specinc proline rich gene 1)、 SEEK1 (specific expressed gene in epidermal keratinocytes 1)、 および STG (skin specific telomeric gene) (AB029331、 AB031480, AB031479、 および AB031481)を含む。 これにより、尋常性乾癬に対する感受性に閧与する 7つの遺伝 子が特定される。 (helix coiled-coil rod homologue), including SPR1 ^ skin specinc proline rich gene 1), SEEK1 (specific expressed gene in epidermal keratinocytes 1), and STG (skin specific telomeric gene) (AB029331, AB031480, AB031479, and AB031481) . This identifies seven genes that contribute to susceptibility to psoriasis vulgaris.
中でも S遺伝子は、 分化中の表皮ケラチノサイトで発現される 52〜56kDa蛋白質 であるコルネオデスモシンをコードすることから、 明らかに尋常性乾癬に関与す る候補である。 また、 尋常性乾癬に関する lllkbの重要な領域に位置する 4つの新 規遺伝子のうち 1つは、ケラチノサイトをはじめとして検討した組織の大部分で発 現しており、 ひヘリヅクス性コイルドコイル口ヅドドメインを有するプレクチン 様蛋白質をコードする。 プレクチンは細胞骨格の架橋成分として働くことによつ て細胞および組織に機械的強度を与えるとの仮説が提唱されている (Liu, C.G. et al . (1996) Proc. Natl . Acad. Sci. USA, 30, 4278-4283) 0 さらに、 プレクチン 遺伝子が単純型先天性表皮水疱症の発生の原因となることは特に興味深いAbove all, the S gene is clearly a candidate for psoriasis vulgaris because it encodes corneodesmosin, a 52-56 kDa protein expressed in differentiating epidermal keratinocytes. In addition, one of the four new genes located in the important region of lllkb for psoriasis vulgaris is expressed in most tissues examined, including keratinocytes, and has a plectin with a helicoid coiled-coil import domain. Encodes a protein. It has been hypothesized that plectin provides mechanical strength to cells and tissues by acting as a cross-linking component of the cytoskeleton (Liu, CG et al. Natl. Acad. Sci. USA, 30, 4278-4283) 0 Furthermore, it is of particular interest that the plectin gene is responsible for the development of simple congenital epidermolysis bullosa.
(Pulkkinen, L. et al. (1996) Hum. Mol. Genet. , 5, 1539-1546)。 これ以外の 3つの新規遺伝子は DNAデータべ一ス中の既知の遺伝子のいずれとも相同性がなか つたが、 そのすべてがケラチノサイトおよび皮膚組織で特異的に発現されること は注目に値する。 このため、 S遺伝子に加えて、 以上の 4つの新規遺伝子も、 発現 パターンおよび/または予想される機能の点からみて尋常性乾癬の特に有力な候 補遺伝子である。 このように、 本発明者は、 マイクロサテライトの遺伝多型マー 力一を約 lOOkbに 1個の割合で実質的に設定することにより、遺伝子のマッピング を効率よく行うことが可能であることを実証するに至った。 本発明の方法は、 疾 患原因遺伝子のマッピングのみならず、 全ての遺伝要因を持つ表現型に対しても 適用することが可能である。 (Pulkkinen, L. et al. (1996) Hum. Mol. Genet., 5, 1539-1546). It is noteworthy that the other three new genes were not homologous to any of the known genes in the DNA database, but all were specifically expressed in keratinocytes and skin tissues. Thus, in addition to the S gene, these four novel genes are also particularly potent candidate genes for psoriasis vulgaris in terms of expression patterns and / or expected functions. Thus, the present inventors have demonstrated that gene mapping can be performed efficiently by setting the genetic polymorphism marker of microsatellites substantially at a ratio of one per 100 kb. I came to. The method of the present invention can be applied not only to mapping of disease-causing genes but also to phenotypes having all genetic factors.
本発明は、約 lOOkbに 1個の割合で実質的に設定されたマイクロサテライトの遺 伝多型マーカーを用いることを特徴とする遺伝子のマッピング方法に関し、 より 具体的には、  The present invention relates to a gene mapping method characterized by using a microsatellite genetic polymorphism marker substantially set at a ratio of about 1 per 100 kb, more specifically,
( 1 )平均で 50kb〜; L50kbに 1個の割合で実質的に設定されたマイクロサテライ ト の遺伝多型マーカーを用いることを特徴とする遺伝子マッピング方法、  (1) an average of 50 kb or more; a gene mapping method characterized by using a microsatellite genetic polymorphism marker substantially set at one L50 kb,
( 2 )平均で 80kb〜120kbに 1個の割合で実質的に設定されたマイクロサテライト の遺伝多型マ一カーを用いることを特徴とする遺伝子マヅビング方法、  (2) a gene mapping method, characterized by using a microsatellite genetic polymorphism marker substantially set at a ratio of one per 80 kb to 120 kb on average,
( 3 )平均で 90kb〜110kbに 1個の割合で実質的に設定されたマイクロサテライ ト の遺伝多型マ一力一を用いることを特徴とする遺伝子マッピング方法、  (3) a gene mapping method characterized by using a genetic polymorphism of a microsatellite substantially set at a ratio of one per 90 to 110 kb on average,
( 4 )遺伝子が疾患原因遺伝子である、 (1 )〜(3 )のいずれかに記載のマツピ ング方法、  (4) the mapping method according to any one of (1) to (3), wherein the gene is a disease-causing gene;
( 5 ) マイクロサテライトの遺伝多型マ一カーが、 対立遺伝子数の平均が 5個以 上であり、 かつへテロ接合度の平均が 6 0 %以上であることを特徴とする、 (1 ) 〜 (4 ) のいずれかに記載のマヅビング方法、 (6) マッピング領域が HLA領域である、 (1) 〜 (5) のいずれかに記載のマヅ ビング方法、 (5) The microsatellite genetic polymorphism marker is characterized in that the average number of alleles is 5 or more and the average heterozygosity is 60% or more. (1) (4) The method according to any one of (4), (6) the mapping method according to any one of (1) to (5), wherein the mapping area is an HLA area;
( 7 ) 対照健常者と無作為に選んだ疾患患者の多型マ一カーの頻度を比較するこ とを特徴とする、 (1) 〜 (6) のいずれかに記載のマヅビング方法、  (7) The method according to any one of (1) to (6), wherein the frequency of polymorphism markers is compared between a control healthy person and a randomly selected disease patient.
(8) マイクロサテライトの遺伝多型マ一カーの解析を DN Aチップと質量分析 法とを用いて行うことを特徴とする、 (1)〜(7)のいずれかに記載のマヅピン グ方法、  (8) The mapping method according to any of (1) to (7), wherein the analysis of the genetic polymorphism marker of the microsatellite is performed using a DNA chip and mass spectrometry.
(9) (1)〜(8)のいずれかに記載のマッピング方法により絞り込まれた領域 の SNPを解析することにより、 標的遺伝子を特定する方法、  (9) A method for identifying a target gene by analyzing SNPs in a region narrowed down by the mapping method according to any one of (1) to (8),
(10) (1) 〜 (9) のいずれかに記載の方法により特定された遺伝子、 (10) a gene identified by the method according to any one of (1) to (9),
(11) (10) に記載の遺伝子がコードする蛋白質、 (11) a protein encoded by the gene according to (10),
(12) (11) に記載の蛋白質に対する抗体、  (12) an antibody against the protein according to (11),
(13) (10)に記載の遺伝子の一方の鎖またはその相補鎖に相補的な少なくと も 15ヌクレオチドを含むポリヌクレオチド、 を提供するものである。  (13) A polynucleotide comprising at least 15 nucleotides complementary to one strand of the gene according to (10) or a complementary strand thereof.
本発明の方法により単離される遺伝子、 該遺伝子がコードする蛋白質、 該蛋白 質に対する抗体、および/または該遺伝子の一方の鎖またはその相補鎖に相補的な 少なくとも 15ヌクレオチドを含むポリヌクレオチドは、 遺伝子検査や遺伝子治療 などに利用され得る。 また本発明の方法により単離される疾患原因遺伝子、 該遺 伝子がコードする蛋白質、該蛋白質に対する抗体、および/または該遺伝子の一方 の鎖またはその相補鎖に相補的な少なくとも 15ヌクレオチドを含むポリヌクレオ チドは、 該疾患の検査、 予防、 および/または治療のために用いることができる。 本発明における遺伝子のマッピング方法は、約 lOOkbに 1個の割合で実質的に設 定されたマイクロサテライトの遺伝多型マーカ一を用いることを特徴とする。 マ ッビングの対象となる標的遺伝子としては特に制限はない。 例えば、 遺伝因子が 関与する疾患および遺伝因子が関与することが疑われる疾患の原因遺伝子などは、 本発明のマッピングの対象となる標的遺伝子である。 遺伝因子が関与する疾患に は、 単一の遺伝子の異常により発症する単一遺伝子疾患(monogenic diseases)、 および複数の遺伝因子の相加的効果および/または環境因子によって発症する多 遺伝子性疾患 (polygenic diseases) が含まれる。 多遺伝子性疾患は、 いわゆる 「ありふれた病気 (co腿 on diseases)j に代表され、 例えば糖尿病、 高血圧、 慢 性関節リウマチ、 痛風、 高脂血症、 動脈硬化、 精神分裂病、 癌、 心疾患、 脳梗塞、 無精子病などが挙げられ、 大部分の生活習慣病が含まれる。 また、 自閉症、 躁鬱 病、 てんかんなども本発明の疾患原因遺伝子のマッピングの対象となる。 本発明 において疾患原因遺伝子には、 その遺伝子が単独で該疾患の原因となっているも ののみならず、 複数の遺伝子や環境要因などと共に該疾患の発症や進展に関与し ている遺伝子が含まれる。 また、 本発明において疾患原因遺伝子には、 ある疾患 に対する治療において薬剤感受性を規定している遺伝子も含まれる。 本発明は、 疾患の原因遺伝子 (群)の特定とその分子機構の解明に利用できる他、 該疾患の診 断、 創薬、 予防法の開発への応用も期待される。 The gene isolated by the method of the present invention, a protein encoded by the gene, an antibody against the protein, and / or a polynucleotide comprising at least 15 nucleotides complementary to one strand of the gene or a complementary strand thereof are the following: It can be used for testing and gene therapy. In addition, a disease-causing gene isolated by the method of the present invention, a protein encoded by the gene, an antibody against the protein, and / or a polynucleotide containing at least 15 nucleotides complementary to one strand of the gene or its complementary strand. Pide can be used for testing, preventing, and / or treating the disease. The method for mapping a gene according to the present invention is characterized by using a genetic polymorphism marker of a microsatellite substantially set at a ratio of about one per 100 kb. There is no particular limitation on the target gene to be mapped. For example, a gene associated with a genetic factor-related disease or a disease suspected of involving a genetic factor is a target gene to be mapped by the present invention. For diseases involving genetic factors Includes monogenic diseases caused by a single genetic abnormality, and polygenic diseases caused by the additive effects of multiple genetic factors and / or environmental factors. Polygenic diseases are represented by the so-called “co thighs on diseases”, such as diabetes, hypertension, rheumatoid arthritis, gout, hyperlipidemia, arteriosclerosis, schizophrenia, cancer, and heart disease. , Cerebral infarction, azoospermia, etc., including most lifestyle-related diseases, and autism, manic depression, epilepsy, etc., are also subject to the disease-causing gene mapping of the present invention. The disease-causing gene includes not only the gene alone causing the disease, but also a plurality of genes and genes involved in the onset and progression of the disease along with environmental factors. In the present invention, the disease-causing gene also includes a gene that regulates drug sensitivity in the treatment of a certain disease.The present invention provides identification of a causative gene (group) of a disease and analysis of its molecular mechanism. Other available, diagnostics of the diseases, drug discovery, and its application to the prevention expected.
また、 本発明の遺伝子マッピング方法は、 疾患原因遺伝子のマッピングに限定 されず、 全ての遺伝要因を持つヒト表現型 (例えば身長、 体重、 美肌、 肌色、 髪 色、 知能、 記憶、 性格等) に関与する原因遺伝子のマッピングにも適用すること ができる、 従って、 検出可能な表現型を示す遺伝子は、 本発明における標的遺伝 子となる。 また、 本発明の遺伝子マッピング方法は、 ヒトだけに限定されず、 哺 乳類、 鳥類等を含む全ての動物に適用することができる。  Further, the gene mapping method of the present invention is not limited to mapping of a disease-causing gene, but may be applied to human phenotypes having all genetic factors (eg, height, weight, beautiful skin, skin color, hair color, intelligence, memory, personality, etc.). The present invention can also be applied to mapping of a causative gene involved, and therefore, a gene showing a detectable phenotype is a target gene in the present invention. Further, the gene mapping method of the present invention is not limited to humans, and can be applied to all animals including mammals, birds, and the like.
本発明のマヅビングにおいては、 マイクロサテライトの遺伝多型マ一カーが利 用される。 ここで遺伝多型とは、 特定の遺伝子座の対立遺伝子の種類が 2種類以 上存在し、 その頻度が 1 %以上であることを指す。 また遺伝子座とはゲノム上の いずれかの領域であればよく、 発現される遺伝子領域に限定されない。 また、 マ イク口サテライ トとは、 2塩基から 6塩基が繰り返した配列を言う。ゲノム内には、 マイクロサテライトが 2〜3kbに 1個の頻度で存在していることが知られている。 それぞれのマイクロサテライトの繰り返しの回数は個人間で異なる場合がある。 この繰り返し数のばらつきが、 STE (Short Tandem Repeat: 短塩基縦列繰り返し 配列) と呼ばれる多型を形成している。 マイクロサテライトの多型は、 一般にこ の繰り返し数により決定される。 このようなマイクロサテライトの代表例は CAリ ピートである (Dib, C. et al ., 1996, Nature 380: 152-154)。 In the mapping of the present invention, a microsatellite genetic polymorphism marker is used. Here, the genetic polymorphism means that there are two or more types of alleles at a specific locus and the frequency is 1% or more. The locus may be any region on the genome, and is not limited to a gene region to be expressed. In addition, the mouth mouth satellite refers to a sequence in which 2 to 6 bases are repeated. It is known that microsatellite exists in the genome at a frequency of one per 2-3 kb. The number of repetitions of each microsatellite may vary between individuals. This variation in the number of repeats forms a polymorphism called STE (Short Tandem Repeat). Microsatellite polymorphism is generally determined by the number of repetitions. A typical example of such a microsatellite is the CA repeat (Dib, C. et al., 1996, Nature 380: 152-154).
例えば本発明者らによるヒト HLA領域のマイクロサテライトの解析によれば、 2塩基繰り返しのマイクロサテライトは 約 8.9kbに 1つ、 3塩基繰り返しのマイ クロサテライトは 約 12.9kbに 1つ、 4塩基繰り返しのマイクロサテライトは 約 6.6kbに 1つ、 5塩基繰り返しのマイクロサテライトは 約 12.6kbに 1つ、 これら のマイクロサテライトを併せると、約 2.4kbに 1つの割合で見出された(Shi ina, T. et al ., 1999, Proc. Natl . Acad. Sci . USA 96 : 13282-13287)。 本発明において は、 これらのマイクロサテライトから適宜選択して、 遺伝多型マーカーとして利 用することができる。 これらのマイクロサテライトの中から、 検索しょうとする ゲノム領域においてマイクロサテライトマーカーを約 lOOkbに 1個の割合で実質 的に設定する。約 lOOkbに 1個の割合でマイクロサテライトマーカーを設定するこ とにより、 これらのマーカーのうち、 標的遺伝子から 100kb〜200kb以内に位置 するマイクロサデライトが連鎖不平衡を示し、 マッピングにより疾患などの表現 型との相関が検出され、標的遺伝子の領域を特定することが可能となる。つまり、 原因遺伝子から 100k!)〜 200kb以内に位置するマイクロサテライトの多型が連鎖不 平衡を示すため、 原因遺伝子を見落とすことなく確実に相関を検出し、 且つ費や す労力を最小に抑える最も効果的な原因遺伝子マッピングを行うには、 約 lOOkb に 1個の割合で設定されたマイクロサテライトの多型マーカ一を用いればよい。 本発明において「約 lOOkbに 1個」の割合とは、通常、 平均で 50kb〜: L50kbに 1 個の割合、好ましくは平均で 80kb〜120kbに 1個の割合、さらに好ましくは平均で 90kb〜110kbに 1個の割合である。  For example, according to the analysis of the microsatellite of the human HLA region by the present inventors, one microsatellite with a two-base repeat is about every 8.9 kb, and a microsatellite with a three base repeat is one at about 12.9 kb, and four base repeats Microsatellite was found at about 6.6 kb, microsatellite with 5 base repeats was found at about 12.6 kb, and these microsatellites were combined at about 2.4 kb (Shi ina, T). et al., 1999, Proc. Natl. Acad. Sci. USA 96: 13282-13287). In the present invention, these can be appropriately selected from these microsatellites and used as genetic polymorphism markers. From these microsatellites, microsatellite markers are substantially set at a ratio of about 100 kb in the genomic region to be searched. By setting microsatellite markers at a ratio of about 100 kb, microsatellites located within 100 kb to 200 kb from the target gene show linkage disequilibrium among these markers. The correlation with the type is detected, and the region of the target gene can be specified. In other words, 100k from the causative gene! ) ~ 200 kb microsatellite polymorphisms show linkage disequilibrium, so it is possible to detect the correlation without overlooking the causative gene and to determine the most effective causal gene mapping that minimizes the effort required. This can be done by using a microsatellite polymorphic marker set at a ratio of about 1 per 100kb. In the present invention, the ratio of "one in about 100 kb" generally means, on average, 50 kb or more: one in 50 kb, preferably one in 80 kb to 120 kb, more preferably 90 kb to 110 kb on average. It is the ratio of one piece.
本発明において「約 lOOkbに 1個の割合で実質的に設定された」とは、 マーカ一 を設定した領域全体で、約 lOOkbに 1個の割合で設定されている場合だけでなく、 部分的に約 lOOkbに 1個の割合で設定されている場合も含む。例えば、ある領域で 約 lOOkbに 1個の割合でマーカ一を設定し、別の領域で異なる頻度でマーカーを設 定し、 全体として「約 lOOkbに 1個」の割合に当てはまらなくなる場合でも、 ある 領域で約 lOOkbに 1個の割合でマーカーを設定してある限り、 本発明の 「約 lOOkb に 1個の割合で実質的に設定された」 に該当する。 割合を算出する際のマーカー 数は、 マーカ一が 3個以上設定されていれば算出可能であるが、 好ましくは 5個 以上、 さらに好ましくは 7個以上、 さらに好ましくは 1 0個以上で算定する。 ま た、例えば、 マーカ一をまず 200kbおきに設定して解析を行い、次に同じ領域にお いて異なるマ カーを 200kbおきに設定して解析を行った場合、各解析においては マーカーの頻度は 200kbに 1個であるが、 実質的に、 lOOkbに 1個の割合で設定し た場合と同じであり、本発明の「約 lOOkbに 1個の割合で実質的に設定された」に 該当する。 このように本発明の「約 lOOkbに 1個の割合で実質的に設定された」に は、各段階ではマーカ一を約 lOOkbに 1個の割合で設定されていなくても、中間的 にあるいは最終的に約 lOOkbに 1個の割合で設定された場合が含まれる。 In the present invention, "substantially set at a ratio of about lOOkb at one" refers to not only the case where the marker is set at a ratio of about lOOkb at the entire region where the marker is set, but also This includes the case where the ratio is set to about 100kb for one part. For example, even if one marker is set at a rate of about 100kb in one area and a marker is set at a different frequency in another area, it may not fit the rate of `` one in about 100kb '' as a whole. As long as the marker is set at a ratio of about 100 kb in the region, it corresponds to "substantially set at a ratio of about 1 kb" in the present invention. The number of markers for calculating the ratio can be calculated as long as three or more markers are set, but it is preferably five or more, more preferably seven or more, and still more preferably ten or more. . For example, if a marker is set at every 200 kb first and then analyzed, and then a different marker is set at every 200 kb in the same region and analyzed, the marker frequency in each analysis is One in 200 kb, but it is substantially the same as the case where one is set in lOOkb, and falls under “substantially set in one in about 100 kb” of the present invention. . As described above, the “substantially set at a ratio of about 100 kb” in the present invention means that in each step, even if the marker is not set at a ratio of about 100 kb at each stage, it is intermediate or This includes the case where one is finally set to about 100kb.
マヅビングに用いられるマイクロサテライトの遺伝多型マーカ一は、 解析にお ける情報量が高いものが好ましい。 例えば、 対立遺伝子数 (アレル数) が多いほ ど、 またへテロ接合度 (heterozygosity) が高いほど、 解析における情報量は高 くなる。  It is preferable that the genetic polymorphism marker of microsatellite used for the mapping has a high information amount in the analysis. For example, the more alleles (alleles) and the higher the heterozygosity, the greater the amount of information in the analysis.
「対立遺伝子数」 とは、 ある遺伝子の対立遺伝子 (ある遺伝子座の塩基配列が 異なるゲノム配列を互いに 「対立遺伝子」 の関係にあると言う。 遺伝子型に相当 する。) の数である。 「対立遺伝子数の平均」 は、 本発明のマッピング方法で用い るマイクロサテライト全てについての対立遺伝子数の平均である。 l〜n番目の マイクロサテライトの対立遺伝子数を、 それぞれ!!^〜!!^とすると、 1〜!!番目 までの n個のマイクロサテライトについての対立遺伝子数の平均は次式で表され る:  The “number of alleles” is the number of alleles of a gene (genome sequences with different nucleotide sequences at a certain locus are said to be in an “allele” relationship to each other, corresponding to a genotype). “Average number of alleles” is the average number of alleles for all microsatellite used in the mapping method of the present invention. The number of alleles of the lth to nth microsatellites, respectively! ! ^ ~ !! ^, 1 ~! ! The average number of alleles for the n microsatellites up to the number is given by:
対立遺伝子数の平均:(11^ + 1112 + 1113 + · · · + mn) /n また、 「ヘテロ接合性」とは、 ヒトのような 2倍体の生物において、 2本の染色 体が遺伝子の対立遺伝子が異なる状態を言い、 「ヘテロ接合度」はへテロ接合性の 度合いを表す。 X番目のマイクロサテライ トの対立遺伝子数が mxであり、 各対 立遺伝子の頻度をそれぞれ Fmi Fnixとするとき、 そのマイクロサテライ トの 「ヘテロ接合度 (hx)」 は: Average number of alleles: (11 ^ + 1112 + 1113 + · · · + m n ) / n The term “heterozygosity” refers to the state in a diploid organism such as a human in which two chromosomes have different gene alleles, and the “heterozygosity” refers to the degree of heterozygosity. Represent. A X-th micro Satera wells allele number m x, when the frequency and the respective FMI Fnix of each allele, the micro Satera wells "heterozygosity (h x)" is:
hx= 1 - (Fm1 2 + Fm2 2 + Fm3 2+ · · - +Fmx 2) h x = 1 - (Fm 1 2 + Fm 2 2 + Fm 3 2 + · · - + Fm x 2)
そこで、 n個のマイクロサテライトの 「ヘテロ接合度の平均」 は、 次式で表さ れる :  Thus, the “average of heterozygosity” for n microsatellites is given by:
ヘテロ接合度の平均:(!^ +!^ +!^十 · · · +hn) /n Average heterozygosity: (! ^ +! ^ +! ^ 10 · · · + h n ) / n
対立遺伝子数の平均が 5個以上、 好ましくは 8個以上であり、 かつへテロ接合 度の平均が 60 %以上、 好ましくは 65 %以上、 さらに好ましくは 70 %以上で ある遺伝多型マーカーを用いることで、 より効率的なマヅピングが可能になる。 本発明の遺伝子のマッピングにおいては、 通常、 対照健常者と無作為に選んだ 疾患患者のマイクロサテライ卜の多型マ一カーの頻度を比較することにより行う。 すなわち、 対照健常者のマイクロサテライトの各対立遺伝子の頻度と、 無作為に 選んだ疾患患者のマイクロサテライトの各対立遺伝子の頻度を、 相関解析で比較 する。 ここでいう 「無作為に選ぶ」 とは、 患者同士が血縁関係(兄弟または親子) であることを条件としないことをいう。 好ましくは、 患者間に血縁関係 (兄弟ま たは親子) がない患者集団である。 もしマイクロサテライトが疾患原因遺伝子か ら 100〜200kb以内であれば、健常者と疾患患者との間で、そのマイクロサテライ トの各対立遺伝子の頻度が統計的に異なる。 相関解析は、 公知の方法に従って行 うことができる(西村泰治:多型の統計学的利用法、最新医学 46: 909-923, 1991; Oka, A. et al., Hum. Mol. Genetics 8: 2165-2170 (1999); Ota, M. et al., Am. J. Hum. Genet. 64: 1406-1410 (1999); Ozawa, A. et al., Tissue Antigens 53: 263-268 (1999))。 また、疾患に限らず任意の遺伝要因を持つ表現型に対しても、 例えば目的とする表現型を持つ個体と対照個体を無作為に選び、 その間のマイク ロサテライ トの多型マーカ一の頻度を比較することにより、 その表現型に関与す る原因遺伝子のマッピングを行うことができる。 Use a genetic polymorphism marker having an average number of alleles of 5 or more, preferably 8 or more, and an average of heterozygosity of 60% or more, preferably 65% or more, and more preferably 70% or more. This enables more efficient mapping. The mapping of the gene of the present invention is usually performed by comparing the frequency of polymorphic markers in microsatellites between a control healthy subject and a randomly selected disease patient. That is, the frequency of each microsatellite allele of a healthy control person and the frequency of each microsatellite allele of a randomly selected disease patient are compared by correlation analysis. Here, “randomly selected” does not mean that the patients must be related to each other (siblings or parents). Preferably, the patient population has no kinship (siblings or parents) between the patients. If the microsatellite is within 100-200 kb from the disease-causing gene, the frequency of each allele of the microsatellite is statistically different between healthy and diseased patients. The correlation analysis can be performed according to a known method (Yasuharu Nishimura: Statistical Use of Polymorphism, Latest Medicine 46: 909-923, 1991; Oka, A. et al., Hum. Mol. Genetics 8). : 2165-2170 (1999); Ota, M. et al., Am. J. Hum. Genet. 64: 1406-1410 (1999); Ozawa, A. et al., Tissue Antigens 53: 263-268 (1999) )). In addition, for phenotypes with arbitrary genetic factors, not only diseases, for example, individuals with the desired phenotype and control individuals are randomly selected, and By comparing the frequency of a polymorphic marker of rosatellite, it is possible to map a causal gene involved in the phenotype.
マイクロサテライ ト多型の検出は、 例えばマイクロサテライトを挟みこむよう に設計したプライマー対によりマイクロサテライト部分を PCRで増幅し、 DNAシ一 クェンサ一などの分解能が高いゲルで電気泳動を行い、 増幅断片の長さを測定す ることにより行うことができる。より簡便には、 DNAチップと質量分析法を用いて 行うことも可能である。すなわち、チップ上に例えば 1000個以上のマイクロサテ ライトをスポットし、 レーザ一光を照射してイオン化させ、 真空管を飛行する距 離を指標にして分子量を測定することにより、マイクロサテライトの繰り返し数、 すなわち多型を容易に、 かつ短時間に測定することが可能である (Braun, A. et al . , Genomics 46 : 18-23 ( 1997))。 具体的には、 例えば DNA MassArray™ (MS チヅプ) (Sequenom Co. LTD, Sandiego, CA, USA; PE Biosystems Co. LTD, Foster City, CA, USA) を利用することができる。  For detection of microsatellite polymorphism, for example, the microsatellite portion is amplified by PCR using a primer pair designed to sandwich the microsatellite, followed by electrophoresis on a high-resolution gel such as a DNA sequencer, and the amplified fragment This can be done by measuring the length. More simply, it can be performed using a DNA chip and mass spectrometry. That is, for example, 1000 or more microsatellite is spotted on the chip, ionized by irradiating a single laser beam, and the molecular weight is measured using the distance traveled in a vacuum tube as an index, whereby the number of microsatellite repetitions, That is, polymorphisms can be easily and quickly measured (Braun, A. et al., Genomics 46: 18-23 (1997)). Specifically, for example, DNA MassArray ™ (MS chip) (Sequenom Co. LTD, Sandiego, CA, USA; PE Biosystems Co. LTD, Foster City, CA, USA) can be used.
本発明のマイクロサテライ卜の遺伝多型マーカ一を用いるマッピングにより標 的遺伝子の位置が絞り込まれたら、 これを別のマッビングによりさらに標的遺伝 子を絞り込んだり、特定したりすることができる。 このためには、例えば SNPを用 いる解析が有効である。 SNPはゲノム上で 300〜500塩基対に 1つの割合で存在し、 マイクロサテライトマ一力一の出現頻度の数百倍にまで迫る高い出現頻度を示す ため、本発明のマッピング方法に続いて SNP角军析を適用することで、標的遺伝子の 特定に強力な力を発揮すると考えられる。 具体的には、 マイクロサテライトマ一 カーで解析を行った後、標的遺伝子が存在すると思われる領域の SNPの多型頻度を、 例えば相関解析などにより患者集団と健常者集団等で比較し、 ハプロタイプ解析 により検出された連鎖不平衡にある SNPマーカーを連鎖不平衡解析を通して検出 する。  When the position of the target gene is narrowed down by mapping using the genetic polymorphism marker of the microsatellite of the present invention, the target gene can be further narrowed down or specified by another mapping. For this purpose, for example, analysis using SNP is effective. SNPs exist in the genome at a rate of one in 300 to 500 base pairs, and have a high appearance frequency approaching several hundred times the appearance frequency of microsatellites. Applying angular analysis is expected to exert a powerful force in identifying target genes. Specifically, after analyzing with a microsatellite marker, the SNP polymorphism frequency in the region where the target gene is supposed to exist is compared between the patient group and the healthy subject group by correlation analysis, for example, and the haplotype SNP markers in linkage disequilibrium detected by the analysis are detected through linkage disequilibrium analysis.
世界的に進行しょうとしている SNP解析によるヒトゲノム多様性プロジェクト は、 SNP(single nucleotide polymorphism:単一ヌクレオチド多型;遺伝子内の 一塩基置換、欠失、挿入による差異にもとづく多型)をゲノムワイドに 30万個ほど 収集し、 これを遺伝多型マーカーとして疾患の原因遺伝子などをマッピングしょ うとする試みである。 その背景には、 いわゆる生活習慣病をはじめとする多因子 性疾患は、 SNP多型によることが考えられたためである。 しかしながら、 SNPは一 般的には、対立遺伝子の数が 2個のみであることから、マッピングのパワーが低いThe human genome diversity project based on SNP analysis, which is about to proceed worldwide, is called SNP (single nucleotide polymorphism). This is an attempt to collect about 300,000 genome-wide polymorphisms based on differences due to single nucleotide substitutions, deletions, and insertions, and use these as genetic polymorphism markers to map disease-causing genes. This is because multifactorial diseases, including so-called lifestyle-related diseases, were thought to be caused by SNP polymorphisms. However, SNPs typically have only two alleles and therefore have low mapping power.
(Kruglyak, L. , Nature Genetics 17: 21-24, 1999)。 実際、 本発明者の解析に より、 対立遺伝子の数が 5個以上のマイクロサテライ トは、 標的遺伝子から約 200kb以内に位置するマイクロサテライト全てが有意な相関を示したが、 一方 SNP については、標的遺伝子の約 5 kb以内という非常に密接した SNPの、 しかもそれら の一部のみしか有意な相関を示さないことが判明した。その理由は先述のように、 SNPの対立遺伝子 (al lele)の数が一般的には 2個のみであり、ヘテロ接合度が 50% 以下(通常 17% )と、 SNPのマヅビングのパワーが低いことによると考えられる。従 つて、 ゲノムマッピングで最も有効な戦略は、 本発明の方法に従い、 まずゲノム ワイドな多型マイクロサテライト 約 30, 000個 (約 100 k に一個の密度) でマヅ ビング行い、標的遺伝子候補領域を 100 kbに絞り込んだのち、 SNP解析を行うこと により、 標的遺伝子を同定することであると考えられる。 一 また、 決定された配列から標的遺伝子を特定するには、 例えば (ffiAIL(Kruglyak, L., Nature Genetics 17: 21-24, 1999). In fact, according to our analysis, microsatellite with 5 or more alleles showed significant correlation for all microsatellites located within about 200 kb from the target gene, while for SNP, Only very close SNPs within about 5 kb of the target gene, and only some of them, were found to show significant correlation. The reason is that, as mentioned above, the number of alleles (alleles) of SNPs is generally only 2 and the heterozygosity is 50% or less (usually 17%), and the power of SNP mapping is low. It is thought to be possible. Therefore, according to the method of the present invention, the most effective strategy for genome mapping is to first perform mapping with about 30,000 genome-wide polymorphic microsatellites (density of about 100 k per 100 k) to obtain a target gene candidate region. It is thought that the target gene is identified by performing SNP analysis after narrowing down to 100 kb. To identify the target gene from the determined sequence, for example, (ffiAIL
(Uberbacher, E.C. and Mural , R.J. , Pro Natl . Acad. Sci . U S A 88 : 11261-5 (1991)) または GENSCAN (Burge, C. and Karl in, S., J. Mol . Biol . 268: 78- 94 ( 1997))などのコンピュータープログラムを用いて発現している可能性のある ェクソン領域を予測したり、 繰り返し配列を除いた塩基配列を EST (expressed sequence tag) データベースに対して相同性検索を行うことによって予測するこ とができる。 これらの結果を基に、 PCRプライマーやプローブを作成し、 RT-PCR やノーザンハイブリダィゼーシヨンにより、細胞内で発現される断片を特定する。 発現断片が得られれば、 さらに、 5' RACEおよび 3' RACE等により cDNA全長を得るこ とが可能である。 または、 遺伝子断片をプローブとした cDNAライブラリーのスク リーニング、 CapSiteライブラリーのスクリ一ニングなどにより cDNAを単離するこ ともできる。 (Uberbacher, EC and Mural, RJ, Pro Natl. Acad. Sci. USA 88: 11261-5 (1991)) or GENSCAN (Burge, C. and Karl in, S., J. Mol. Biol. 268: 78-). 94 (1997)), and perform a homology search on the EST (expressed sequence tag) database using the EST (expressed sequence tag) database. Can be predicted. Based on these results, PCR primers and probes are prepared, and fragments expressed in cells are identified by RT-PCR or Northern hybridization. If an expression fragment can be obtained, the full-length cDNA can be obtained by 5 ′ RACE, 3 ′ RACE, and the like. Alternatively, a cDNA library screen using gene fragments as probes CDNA can also be isolated by leaning, screening of CapSite library, and the like.
本発明者らはこれまでに、 ヒト白血球抗原 (HLA)遺伝子座の大規模な配列解析 を通して、 多数の遺伝子と共に、 マヅビングに用いることが可能なマイクロサテ ライトを同定している (Mizuki, N. et al . (1997) Genomics, 42, 55-66; Shiina, T. et al . (1998) Genomics, 47, 372-382; Shiina, T. et al. (1999) Immunol . Rev. , 167, 193-199)。 本発明の遺伝子マッピング方法は、 この HLA領域に好適に 適用され得る。 本発明において 「HLA領域」 とは、 セントロメァ側 HSET遺伝子か ら、 テロメァ側 HLA- F遺伝子までの 3.6 Mb領域である。 HLA領域には、 これま で述べた乾癬以外にも、 様々な疾患に関連する原因遺伝子が存在すると予想され る。本発明の遺伝子マッピング方法を HLA領域に対して適用することにより、 これ ら疾患の原因遺伝子のマッビングを行うことが可能である。 HLA領域に原因遺伝子 が存在することが予想される具体的な疾患としては、 乾癬以外に、 例えばリウマ チ、 ベーチヱット病、 若年性糖尿病、 バセドウ病、 心筋症、 びまん性汎細気管支 炎、 バージャ一病、 高安病、 ナルコレプシ一、 サルコイドーシス、 原田病、 重症 性筋無力症、 多発性硬化症などが挙げられる。  We have previously identified microsatellite that can be used for mapping, along with a large number of genes, through extensive sequence analysis of the human leukocyte antigen (HLA) locus (Mizuki, N. et al. (1997) Genomics, 42, 55-66; Shiina, T. et al. (1998) Genomics, 47, 372-382; Shiina, T. et al. (1999) Immunol. Rev., 167, 193 -199). The gene mapping method of the present invention can be suitably applied to this HLA region. In the present invention, the “HLA region” is a 3.6 Mb region from the centromeric HSET gene to the telomeric HLA-F gene. In addition to the previously mentioned psoriasis, the HLA region is expected to contain causative genes related to various diseases. By applying the gene mapping method of the present invention to the HLA region, it is possible to map the causative genes of these diseases. Specific diseases for which the causative gene is expected to be present in the HLA region include, in addition to psoriasis, for example, rheumatism, Behcet's disease, juvenile diabetes, Graves' disease, cardiomyopathy, diffuse panbronchiolitis, Bajaja Disease, Takayasu disease, narcolepsy, sarcoidosis, Harada disease, myasthenia gravis, multiple sclerosis and the like.
勿論、本発明の方法は HLA領域以外にも適用することができる。 2000年 5月には、 ヒトゲノムの塩基配列がほぼ決定される。 この塩基配列情報を利用すれば、 全て のヒトゲノム領域、 すなわち遺伝要因を持つ全ての疾患に本発明の方法を適用し 得る。 また、 疾患だけでなく、 全ての遺伝要因を持つヒト表現型 (例えば身長、 体重、 美肌、 肌色、 髪色、 知能、 記憶、 性格等) に関与する原因遺伝子のマツピ ングにも適用することができる。 例えば、 身長の高い人の集団と身長の低い人の 集団に対して本発明の方法を適用すれば、 身長に関与する遺伝子のマッピングを 行うことができる。  Of course, the method of the present invention can be applied to areas other than the HLA region. In May 2000, the nucleotide sequence of the human genome was almost determined. If this nucleotide sequence information is used, the method of the present invention can be applied to all human genomic regions, that is, all diseases having genetic factors. It can also be applied to the mapping of causative genes involved in human phenotypes with all genetic factors (eg height, weight, beautiful skin, skin color, hair color, intelligence, memory, personality, etc.) as well as diseases. it can. For example, if the method of the present invention is applied to a population of a tall person and a population of a short person, a gene relating to height can be mapped.
本発明のマツビング方法を利用して疾患の原因遺伝子が特定されれば、 該遺伝 子を疾患の検査、 疾患の予防および治療に利用することが可能である。 また、 疾 患以外の表現型に関与する遺伝子も、 遺伝子診断などの検査や遺伝子治療などへ 利用することが可能である。 遺伝子のクローニングは、 当業者に公知の方法によ り行なうことができる。 例えば、 該遺伝子が発現している細胞より cDNAライブラ リーを作製し、 マッピングにより同定された遺伝子断片をプローブにしてハイプ リダイゼ一シヨンを行うことにより調製できる。 cDNAラィブラリ一は、 例えば、 文献 (Sambrook, J. et al " Molecular Clonings Cold Spring Harbor Laboratory Press (1989)) に記載の方法により調製してもよいし、 市販の DNAライブラリー を用いてもよい。 また、 該遺伝子が発現している細胞より RNAを調製し、 逆転写酵 素により cDNAを合成した後、遺伝子配列(または断片) に基づいてオリゴ DNAを合 成し、これをプライマ一として用いて PCR反応を行い cDNAを増幅させることにより 調製することも可能である。 If the causative gene of a disease is identified using the method of the present invention, the gene can be used for disease inspection, disease prevention and treatment. In addition, Genes involved in phenotypes other than disease can also be used for tests such as genetic diagnosis and gene therapy. Cloning of the gene can be performed by a method known to those skilled in the art. For example, it can be prepared by preparing a cDNA library from cells expressing the gene and performing hybridization using the gene fragment identified by mapping as a probe. The cDNA library may be prepared, for example, by the method described in the literature (Sambrook, J. et al, Molecular Clonings Cold Spring Harbor Laboratory Press (1989)), or a commercially available DNA library may be used. In addition, RNA is prepared from cells in which the gene is expressed, cDNA is synthesized by a reverse transcriptase, oligo DNA is synthesized based on the gene sequence (or fragment), and this is used as a primer. It can also be prepared by amplifying cDNA by performing a PCR reaction.
標的遺伝子全長の塩基配列を決定することにより、 それがコードする翻訳領域 を決定でき、 該遺伝子がコードする蛋白質のアミノ酸配列を得ることができる。 また、得られた cDNAをプローブとしてゲノム DNAライブラリーをスクリ一ニングす ることにより、 ゲノム DNAを単離することができる。  By determining the base sequence of the full length of the target gene, the translation region encoded by the gene can be determined, and the amino acid sequence of the protein encoded by the gene can be obtained. Genomic DNA can be isolated by screening the genomic DNA library using the obtained cDNA as a probe.
本発明において遺伝子とは、 cDNAおよびゲノム MAが含まれる。ゲノム DNAには、 遺伝子のェクソン、 イントロン、 プロモー夕一およびェンハンサ一が含まれる。 また、 対立遺伝子およびバリアントが含まれる。  In the present invention, the gene includes cDNA and genomic MA. Genomic DNA includes the genes exon, intron, promoter and enhansa. Also includes alleles and variants.
標的遺伝子のクローニングは、具体的には例えば次のようにすればよい。まず、 該遺伝子が発現している細胞、 組織、 臓器から mRNAを単離する。 ιηϋΝΑの単離は、 公知の方法、 例えば、 グァニジン超遠心法(Chirgwin, J. M. et al. , Biochemistry (1979) 18, 5294-5299)ヽ AGPC法 (Chomczynski, P. and Sacchi, N., Anal . Biochem. (1987) 162, 156-159) 等によ り全 RNAを調製し、 mRNA Purification Kit (Pharmacia) 等を使用して全 RNAから mRNAを精製する。 また、 Qui ckPrep mRNA Purification Kit (Pharmacia) を用いることにより mRNAを直接調製することもで きる。 得られた mRNAから逆転写酵素を用いて cDNAを合成する。 cDNAの合成は、 AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (生ィ匕学工業) 等を用 いて行うこともできる。 また、 標的遺伝子の部分配列をプライマーに用いて、 5, -Ampli FINDER RACE Kit (Clontech製)およびポリ メ ラ一ゼ連鎖反応 (polymerase chain reaction ; PCR) を用いた 5, -RACE法 (Frohman, M. A. et al. , Proc. Natl. Acad. Sci. U.S.A. (1988) 85, 8998-9002 ; Belyavsky, A. et al. , Nucleic Acids Res. (1989) 17, 2919-2932) にしたがい、 cDNAの合成および増幅 を行うことができる。 得られた PCR産物から目的とする MA断片を調製し、 ベクタ 一 DNAと連結する。 目的とする DNAの塩基配列は、 公知の方法、 例えば、 ジデ才キ シヌクレオチドチヱイン夕一ミネーシヨン法により確認することができる。 Specifically, the cloning of the target gene may be performed, for example, as follows. First, mRNA is isolated from cells, tissues, and organs in which the gene is expressed. Isolation of ιηϋΝΑ can be performed by a known method, for example, guanidine ultracentrifugation (Chirgwin, JM et al., Biochemistry (1979) 18, 5294-5299) ヽ AGPC method (Chomczynski, P. and Sacchi, N., Anal. Prepare total RNA using Biochem. (1987) 162, 156-159) and purify mRNA from total RNA using mRNA Purification Kit (Pharmacia). Alternatively, mRNA can be directly prepared using the QuickPrep mRNA Purification Kit (Pharmacia). CDNA is synthesized from the obtained mRNA using reverse transcriptase. Synthesis of cDNA can also be performed using AMV Reverse Transcriptase First-strand cDNA Synthesis Kit (Shi-Dai-gaku Kogyo) or the like. Using the partial sequence of the target gene as a primer, 5, -Ampli FINDER RACE Kit (Clontech) and the polymerase chain reaction (PCR) 5, -RACE method (Frohman, Natl. Acad. Sci. USA (1988) 85, 8998-9002; cDNA synthesis according to Belyavsky, A. et al., Nucleic Acids Res. (1989) 17, 2919-2932). And amplification can be performed. A desired MA fragment is prepared from the obtained PCR product, and ligated to the vector DNA. The nucleotide sequence of the target DNA can be confirmed by a known method, for example, the didequinone nucleoside chain polymerization method.
単離された遺伝子は、 適宜ベクターに挿入される。ベクタ一としては、例えば、 大腸菌を宿主とする場合には、 ベクタ一を大腸菌 (例えば、 JM109、 DH5ひ、 HB101S XLl-Blue) などで大量に増幅させ大量調製するために、 大腸菌で増幅されるため の「ori」 をもち、 さらに形質転換された大腸菌の選抜遺伝子 (例えば、 なんらか の薬剤 (アンピシリンやテトラサイクリン、 カナマイシン、 クロラムフエニコー ル) により判別できるような薬剤耐性遺伝子) を有すれば特に制限はない。 べク 夕一の例としては、 M13系ベクター、 pUC系べクタ一、 pBR322、 pBluescript pCR-Scriptなどが挙げられる。 また、 cDNAのサブクロ一ニング、 切り出しを目的 とした場合、 上記ベクターの他に、 例えば、 pGEM-Tヽ DIRECT, pT7などが挙げら れる。 遺伝子がコードする蛋白質を生産する目的においてベクターを使用する場 合には、 特に、 発現ベクターが有用である。 発現ベクターとしては、 例えば、 大 腸菌での発現を目的とした場合は、 ベクタ一が大腸菌で増幅されるような上記特 徴を持つほかに、 宿主を JM109、 DH5ひ、 HB101、 XLl-Blueなどの大腸菌とした場合 においては、 大腸菌で効率よく発現できるようなプロモーター、 例えば、 lacZプ ロモ—夕— (WardΕ· s. et al . (1989) Nature 341, 544-546; Ward, E. S. (1992) FASEB J. 6, 2422-2427)、 araBプロモ一夕一 (Better, M. et al . (1988) Science 240, 1041-1043)、 または T7プロモー夕一などを持っていることが不可欠である。 このようなベクタ一としては、上記べクタ一の他に pGEX- 5X- 1(ファルマシァ社製)、The isolated gene is inserted into a vector as appropriate. The vector one, for example, in the case of Escherichia coli as a host, the vector one E. coli (e.g., JM109, DH5 shed, HB101 S XLl-Blue) for mass prepared by mass amplified, etc., it is amplified in E. coli And a transformed gene selected from Escherichia coli (for example, a drug resistance gene that can be distinguished by any drug (ampicillin, tetracycline, kanamycin, chloramphenicol)). There are no particular restrictions. Examples of vectors include M13 vectors, pUC vectors, pBR322, pBluescript and pCR-Script. In addition, for the purpose of subcloning and excision of cDNA, pGEM-T ヽ DIRECT, pT7, etc. may be mentioned in addition to the above vectors. When a vector is used for the purpose of producing a protein encoded by a gene, an expression vector is particularly useful. For example, when the expression vector is intended for expression in Escherichia coli, in addition to having the above characteristics such that the vector can be amplified in Escherichia coli, the host can be used for JM109, DH5, HB101, XLl-Blue. in case of the E. coli, such as a promoter that allows efficient expression in E. coli, for example, lacZ flop Romo - evening - (Ward, Ε · s et al (1989) Nature 341, 544-546;.. Ward, ES (1992) FASEB J. 6, 2422-2427), araB Promo Ichiichi (Better, M. et al. (1988) Science 240, 1041-1043), or T7 Promo. Such vectors include pGEX-5X-1 (Pharmacia),
「QIAexpress systemj (キアゲン社製)、 pEGFP、または pET (この場合、宿主は T7 MA ポリメラ一ゼを発現している BL21が好ましい)などが挙げられる。 "QIAexpress systemj (Qiagen), pEGFP, or pET (in this case, the host is preferably BL21 expressing T7 MA polymerase).
また、 ベクターには、 ポリペプチド分泌のためのシグナル配列が含まれていて もよい。 蛋白質分泌のためのシグナル配列としては、 大腸菌のペリブラズムに産 生させる場合、 pelBシグナル配列 (Lei , S. P. et al J. Bacterid . ( 1987) 169, 4379 ) を使用すればよい。 宿主細胞へのベクタ一の導入は、 例えば塩化カルシゥ ム法、 エレクトロポレーシヨン法を用いて行うことができる。  The vector may also include a signal sequence for polypeptide secretion. As a signal sequence for protein secretion, the pelB signal sequence (Lei, SP et al J. Bacterid. (1987) 169, 4379) may be used when produced in E. coli periplasm. The introduction of the vector into the host cell can be performed using, for example, a calcium chloride method or an electroporation method.
大腸菌以外にも、 例えば蛋白質を製造するためのベクターとしては、 哺乳動物 由来の発現べクタ一(例えば、 pcDNA3 (ィンビトロゲン社製)や、 pEF-BOS (Nucleic Acids. Res.1990, 18(17) , p5322)、 pEF、 pCDM8)、昆虫細胞由来の発現べクタ一(例 えば「BAC-T0- BAC Baculovirus Expression Systems j (ギブコ BRL社製)、 pBacPAK8)、 植物由来の発現ベクター(例えば ρΜΗ1、 p H2)、 動物ウィルス由来の発現ベクター In addition to E. coli, for example, vectors for producing proteins include mammalian expression vectors (for example, pcDNA3 (manufactured by Invitrogen)) and pEF-BOS (Nucleic Acids. Res. 1990, 18 (17) , p5322), pEF, pCDM8), insect cell-derived expression vectors (eg, “BAC-T0-BAC Baculovirus Expression Systems j (manufactured by Gibco BRL), pBacPAK8), and plant-derived expression vectors (eg, ρΜΗ1, p H2), expression vector derived from animal virus
(例えば、 pHSV、 pMV、 pAdexLcw), レトロウィルス由来の発現べクタ一 (例えば、 pZIPneo)、 酵母由来の発現べクタ一 (例えば、 「Pichia Expression Kit」 (インビ トロゲン社製)、 pNVll、 SP-Q01), 枯草菌由来の発現ベクター (例えば、 pPL608、 PKTH50) が挙げられる。 (Eg, pHSV, pMV, pAdexLcw), retrovirus-derived expression vectors (eg, pZIPneo), yeast-derived expression vectors (eg, “Pichia Expression Kit” (manufactured by Invitrogen), pNVll, SP- Q01), and expression vectors derived from Bacillus subtilis (eg, pPL608, PKTH50).
また、 CH0細胞、 COS細胞、 NIH3T3細胞等の動物細胞での発現を目的とした場合 には、 細胞内で発現させるために必要なプロモーター、 例えば SV40プロモーター For expression in animal cells such as CH0 cells, COS cells, and NIH3T3 cells, a promoter necessary for expression in cells, for example, SV40 promoter
(Mulligan, R. G. et al . (1979) Nature 277, 108-114)、 MMLV- LTRプロモ一夕 一、 EFl aプロモーター (Mizushima, S. and Nagata, S. ( 1990) Nucleic Acids Res. 18, 5322)、 CMVプロモーター等を持っていることが不可欠であり、 細胞への形質 転換を選抜するための遺伝子 (例えば、 薬剤 (ネオマイシン、 G418等) により判 別できるような薬剤耐性遺伝子) を有すればさらに好ましい。 このような特性を 有するベクターとしては、例えば、 p匪、 pDR2、 pBK- RSV、 pB -CMV, pOPRSV, p0P13 等が挙げられる。 (Mulligan, RG et al. (1979) Nature 277, 108-114), MMLV-LTR Promo Overnight, EFla promoter (Mizushima, S. and Nagata, S. (1990) Nucleic Acids Res. 18, 5322) It is essential to have a CMV promoter, etc., and if it has a gene for selection of cell transformation (for example, a drug resistance gene that can be identified by a drug (neomycin, G418, etc.)) preferable. Examples of vectors having such properties include, but are not limited to, p band, pDR2, pBK-RSV, pB-CMV, pOPRSV, p0P13 And the like.
さらに、 細胞内でのコピー数の増幅を目的とした宿主べクタ一系においては、 安定産生細胞株を得る場合は、核酸合成経路を欠損した CH0細胞にそれを相補する DHFR遺伝子を有するベクター(例えば、 pCHOIなど) を導入し、 メトトレキセート (MTX) により増幅させる方法が挙げられ、 また、遺伝子の一過性の発現を目的と する場合には、 SV40 T抗原を発現する遺伝子を染色体上に持つ COS細胞を用いて SV40の複製起点を持つベクタ一(pcDなど)で形質転換する方法が挙げられる。複 製開始点としてはまた、 ポリオ一マウィルス、 アデノウイルス、 ゥシパピローマ ウィルス (BPV)等に由来するものを用いることもできる。 さらに、 宿主細胞系で 遺伝子コピー数増幅のため、 発現べクタ一は選択マーカ一として、 アミノグリコ シドトランスフェラ一ゼ (APH)遺伝子、 チミジンキナーゼ (TK)遺伝子、 大腸菌 キサンチングァニンホスホリボシルトランスフェラーゼ (Ecogpt) 遺伝子、 ジヒ ドロ葉酸還元酵素 (dhfr) 遺伝子等を含むことができる。  Furthermore, in a host vector system for the purpose of amplifying the copy number in a cell, in order to obtain a stable production cell line, a vector having a DHFR gene complementary to a CH0 cell lacking a nucleic acid synthesis pathway ( For example, pCHOI) may be introduced and amplified with methotrexate (MTX) .For transient expression of a gene, a gene that expresses the SV40 T antigen is present on the chromosome. There is a method in which COS cells are used to transform with a vector (such as pcD) having an SV40 origin of replication. As a replication starting point, those derived from poliovirus, adenovirus, sipapiroma virus (BPV) and the like can also be used. Furthermore, in order to amplify the gene copy number in the host cell system, the expression vector is used as a selection marker, such as aminoglycoside transferase (APH) gene, thymidine kinase (TK) gene, and Escherichia coli xanthinguanine phosphoribosyltransferase ( Ecogpt) gene and dihydrofolate reductase (dhfr) gene.
一方、 動物の生体内で遺伝子を発現させる方法としては、 該遺伝子を適当なベ クタ一に組み込み、 例えば、 レトロウイルス法、 リボソーム法、 カチォニックリ ポソ一ム法、 アデノウイルス法などにより生体内に導入する方法などが挙げられ る。 これにより、 該遺伝子の変異または多型に起因する疾患等の表現型に対する 遺伝子治療等を行うことが可能である。 用いられるベクタ一としては、 例えば、 アデノウイルスベクター (例えば pAdexlcw) やレトロウイルスベクター(例えば pZIPneo) などが挙げられるが、 これらに制限されない。 ベクタ一への MA断片の 挿入などの一般的な遺伝子操作は、常法に従って行うことが可能である(Sambrook, J. et al. (1989) Molecular Cloning 2nd ed., 5.61-5.63, Cold Spring Harbor Lab. press)0 生体内への投与は、 ex vivo法であっても、 in vivo法であってもよ い。 On the other hand, as a method for expressing a gene in the living body of an animal, the gene is incorporated into an appropriate vector and, for example, a retrovirus method, a ribosome method, a cationic liposome method, an adenovirus method, etc. There is a method for introduction. This makes it possible to carry out gene therapy or the like for a phenotype such as a disease caused by mutation or polymorphism of the gene. Examples of the vector used include, but are not limited to, an adenovirus vector (for example, pAdexlcw) and a retrovirus vector (for example, pZIPneo). General gene manipulation such as insertion of the MA fragment into the vector can be performed according to a conventional method (Sambrook, J. et al. (1989) Molecular Cloning 2nd ed., 5.61-5.63, Cold Spring Harbor). Lab. Press) 0 Administration into a living body may be an ex vivo method or an in vivo method.
ベクターが導入される宿主細胞としては特に制限はなく、例えば、大腸菌や種々 の動物細胞などを用いることが可能である。 宿主細胞は、 例えば、 蛋白質の製造 や発現のための産生系として使用することができる。 蛋白質製造のための産生系 は、 in vitroおよび in vivo の産生系がある。 in vitroの産生系としては、 真核 細胞を使用する産生系や原核細胞を使用する産生系が挙げられる。 The host cell into which the vector is introduced is not particularly limited, and for example, Escherichia coli and various animal cells can be used. Host cells, for example, protein production And a production system for expression. Production systems for protein production include in vitro and in vivo production systems. Examples of the in vitro production system include a production system using eukaryotic cells and a production system using prokaryotic cells.
真核細胞を使用する場合、 例えば、 動物細胞、 植物細胞、 真菌細胞を宿主に用 いることができる。 動物細胞としては、 哺乳類細胞、 例えば、 CH0、 COS, 3T3、 ミ エローマ、 BHK (baby hamster kidney )、 HeLa、 Vero、 両生類細胞、 例えばァフ リカヅメガエル卵母細胞 (Valle, et al ., Nature (1981) 291, 358-340 )、 ある いは昆虫細胞、 例えば、 Sf9、 Sf21、 Tn5が知られている。 CH0細胞としては、 特 に、 DHFR遺伝子を欠損した CH0細胞である dhfr-CHO (Urlaub, G. and Chasin, L. A. (1980) Proc. Natl . Acad. Sci . USA 77, 4216-4220) や CHO K-l (Kao, F. T. and Puck, T. T. (1968) Proc. Natl . Acad. Sci . USA 60, 1275-1281) を好適に 使用することができる。 動物細胞において、 大量発現を目的とする場合には特に CH0細胞が好ましい。宿主細胞へのベクターの導入は、例えば、 リン酸カルシウム 法、 DEAEデキストラン法、 カチォニックリボソーム D0TAP (ベーリンガーマンハイ ム社製) を用いた方法、 エレクト口ポーレーシヨン法、 リポフエクシヨンなどの 方法で行うことが可能である。  When eukaryotic cells are used, for example, animal cells, plant cells, and fungal cells can be used as hosts. Animal cells include mammalian cells, such as CH0, COS, 3T3, myeloma, BHK (baby hamster kidney), HeLa, Vero, amphibian cells, such as African Megafrog oocytes (Valle, et al., Nature (1981). ) 291, 358-340) or insect cells such as Sf9, Sf21 and Tn5. Examples of CH0 cells include DHFR-deficient CH0 cells such as dhfr-CHO (Urlaub, G. and Chasin, LA (1980) Proc. Natl. Acad. Sci. USA 77, 4216-4220) and CHO Kl. (Kao, FT and Puck, TT (1968) Proc. Natl. Acad. Sci. USA 60, 1275-1281) can be preferably used. In animal cells, when large-scale expression is intended, CH0 cells are particularly preferred. The vector can be introduced into a host cell by, for example, a calcium phosphate method, a DEAE dextran method, a method using Cationic ribosome D0TAP (manufactured by Boehringer Mannheim), an electoral poration method, or a lipofection method. It is.
植物細胞としては、 例えば、 ニコチアナ '夕バカム (Nicotiana tabacum) 由来 の細胞が蛋白質生産系として知られており、 これをカルス培養すればよい。 真菌 細胞としては、 酵母、 例えば、 サヅカロミセス (Saccharomyces ) 属、 例えば、 サヅカロミセス 'セレビシェ (Saccharomyces cerevisiae)N 糸状菌、 例えば、 ァ スペルギルス (Aspergillus)属、例えば、 ァスペルギルス ·二ガー(Aspergillus niger) が知られている。 As a plant cell, for example, a cell derived from Nicotiana tabacum is known as a protein production system, and it may be callus cultured. Fungal cells include yeast, for example, the genus Saccharomyces, for example, Saccharomyces cerevisiae N filamentous fungi, for example, the genus Aspergillus, for example, Aspergillus niger. ing.
原核細胞を使用する場合、細菌細胞を用いる産生系がある。細菌細胞としては、 大腸菌 (E. coli )、 例えば、 JM109、 DH5ひ、 HB101等が挙げられ、 その他、 枯草 菌が知られている。  When using prokaryotic cells, there is a production system using bacterial cells. Examples of the bacterial cells include Escherichia coli (E. coli) such as JM109, DH5 and HB101, and Bacillus subtilis.
これらの細胞を目的とする DNAにより形質転換し、 形質転換された細胞を in vitroで培養することにより蛋白質が得られる。培養は、公知の方法に従い行うこ とができる。 例えば、 動物細胞の培養液として、 例えば、 DMEM、 MEM , RPMI1640, IMDMを使用することができる。その際、 牛胎児血清(FCS)等の血清補液を併用す ることもできるし、 無血清培養してもよい。 培養時の pHは、 約 6〜8であるのが好 ましい。培養は、通常、約 30〜40°Cで約 15〜200時間行い、 必要に応じて培地の交 換、 通気、 攪抻を加える。 These cells are transformed with the desired DNA, and the transformed cells are The protein can be obtained by culturing in vitro. The culture can be performed according to a known method. For example, DMEM, MEM, RPMI1640, IMDM can be used as a culture solution of animal cells. At that time, a serum replacement solution such as fetal calf serum (FCS) can be used together, or serum-free culture may be performed. The pH during culturing is preferably about 6-8. Culture is usually performed at about 30 to 40 ° C for about 15 to 200 hours, and if necessary, the medium is replaced, aerated, and stirred.
一方、 in vivo で蛋白質を産生させる系としては、 例えば、 動物を使用する産 生系や植物を使用する産生系が挙げられる。 これらの動物又は植物に目的とする DNAを導入し、 動物又は植物の体内で蛋白質を産生させ、 回収する。本発明におけ る 「宿主」 とは、 これらの動物、 植物を包含する。  On the other hand, examples of a system for producing a protein in vivo include a production system using animals and a production system using plants. The target DNA is introduced into these animals or plants, and proteins are produced and recovered in the animals or plants. The “host” in the present invention includes these animals and plants.
動物を使用する場合、 哺乳類動物、 または昆虫を用いる産生系がある。 哺乳類 動物としては、 ャギ、 ブ夕、 ヒヅジ、 マウス、 ゥシを用いることができる (Vicki Glaser, SPECTRUM Biotechnology Applications, 1993)。 また、 哺乳類動物を用 いる場合、 トランスジヱニック動物を用いることができる。  When using animals, there are production systems using mammals or insects. As mammals, goats, bushes, ovines, mice, and mice can be used (Vicki Glaser, SPECTRUM Biotechnology Applications, 1993). When a mammal is used, a transgenic animal can be used.
例えば、 目的とする DNAを、ャギ ?カゼィンのような乳汁中に固有に産生される 蛋白質をコードする遺伝子との融合遺伝子として調製する。 次いで、 この融合遺 伝子を含む MA断片をャギの胚へ注入し、この胚を雌のャギへ移植する。胚を受容 したャギから生まれるトランスジエニックャギ又はその子孫が産生する乳汁から、 目的の蛋白質を得ることができる。 トランスジエニックャギから産生される蛋白 質を含む乳汁量を増加させるために、 適宜ホルモンをトランスジヱニックャギに 使用してもよい (Ebert, K.M. et al ., Bio/Technology (1994) 12, 699-702 )。 また、 昆虫としては、 例えばカイコを用いることができる。 カイコを用いる場 合、目的の蛋白質をコードする DNAを揷入したバキュロウィルスをカイコに感染さ せることにより、このカイコの体液から目的の蛋白質を得ることができる(Susumu, M. et al., Nature (1985) 315, 592-594)。  For example, the target DNA is prepared as a fusion gene with a gene encoding a protein that is specifically produced in milk, such as goat casein. The MA fragment containing the fusion gene is then injected into a goat embryo and the embryo is transferred to a female goat. The target protein can be obtained from milk produced by the transgenic goat born from the goat that has received the embryo or its progeny. Hormones may be used in transgenic goats as appropriate to increase the amount of milk containing proteins produced by transgenic goats (Ebert, KM et al., Bio / Technology (1994) 12, 699-702). In addition, silkworms can be used as insects, for example. When a silkworm is used, the target protein can be obtained from the body fluid of the silkworm by infecting the silkworm with a baculovirus into which DNA encoding the target protein has been introduced (Susumu, M. et al., Nature (1985) 315, 592-594).
さらに、 植物を使用する場合、 例えばタバコを用いることができる。 タバコを 用いる場合、 目的とする蛋白質をコードする DNAを植物発現用ベクター、 例えば pMON 530に揷入し、 このベクターをァグロバクテリゥム · ヅメファシエンス (Agrobacterium tumefaciens ) のようなバクテリアに導入する。 このバクテリ ァをタバコ、 例えば、 ニコチアナ '夕バカム (Nicotiana tabacum ) に感染させ、 本タバコの葉より所望のポリペプチドを得ることができる (Ma, J. K. et al . (1994) Eur. J. Immunol . 24, 131-138)。 Furthermore, when using a plant, for example, tobacco can be used. Tobacco When used, DNA encoding the desired protein is introduced into a plant expression vector, for example, pMON530, and this vector is introduced into a bacterium such as Agrobacterium tumefaciens. This bacterium is infected to tobacco, for example, Nicotiana tabacum, and the desired polypeptide can be obtained from the tobacco leaves (Ma, JK et al. (1994) Eur. J. Immunol. 24, 131-138).
これにより得られた蛋白質は、 宿主細胞内または細胞外 (培地など) から単離 し、 実質的に純粋で均一な蛋白質として精製することができる。 蛋白質の分離、 精製は、通常の蛋白質の精製で使用されている分離、精製方法を使用すればよく、 何ら限定されるものではない。例えば、 クロマトグラフィ一カラム、 フィルタ一、 限外濾過、 塩析、 溶媒沈殿、 溶媒抽出、 蒸留、 免疫沈降、 SDS-ポリアクリルアミ ドゲル電気泳動、 等電点電気泳動法、 透析、 再結晶等を適宜選択、 組み合わせれ ば蛋白質を分離、 精製することができる。  The protein thus obtained can be isolated from the inside or outside of the host cell (such as a medium) and purified as a substantially pure and homogeneous protein. The separation and purification of the protein may be carried out by using the separation and purification methods used in ordinary protein purification, and is not limited at all. For example, chromatography column, filter, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, recrystallization, etc. If selected and combined, proteins can be separated and purified.
クロマトグラフィーとしては、 例えばァフィ二ティークロマトグラフィー、 ィ オン交換ク口マトグラフィー、 疎水性ク口マトグラフィ一、 ゲル濾過、 逆相ク口 マトグラフィー、 吸着ク口マトグラフィ一等が挙げられる (Strategies for Protein Purification and Characterization: A Laboratory Course Manual . Ed Daniel R. Marshak et al. , Cold Spring Harbor Laboratory Press, 1996)D こ れらのクロマトグラフィーは、 液相クロマトグラフィー、 例えば HPLC、 FPLC等の 液相クロマトグラフィーを用いて行うことができる。 これらの精製方法を用い、 高度に精製された蛋白質を得ることができる。 Examples of the chromatography include affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration, reversed-phase chromatography, and adsorption chromatography. (Strategies for Protein) Purification and Characterization: A Laboratory Course Manual.Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996) D These chromatography methods are liquid phase chromatography, for example, liquid phase chromatography such as HPLC and FPLC. Can be performed. Using these purification methods, highly purified proteins can be obtained.
なお、 蛋白質を精製前又は精製後に適当な蛋白質修飾酵素を作用させることに より、 任意に修飾を加えたり部分的にペプチドを除去することもできる。 蛋白質 修飾酵素としては、 例えば、 トリプシン、 キモトリプシン、 リシルェンドぺプチ ダーゼ、 プロテインキナーゼ、 ダルコシダ一ゼなどが用いられる。  The protein can be arbitrarily modified or partially removed by reacting the protein with an appropriate protein modifying enzyme before or after purification. As the protein-modifying enzyme, for example, trypsin, chymotrypsin, lysylendopeptidase, protein kinase, dalcosidase and the like are used.
このようにして得た蛋白質を用いれば、 標的遺伝子がコードする蛋白質に対す る抗体を調製することができる。 抗体の形態には、 特に制限はなく、 ポリクロー ナル抗体の他、 モノクローナル抗体も含まれる。 また、 ゥサギなどの免疫動物に 該蛋白質を免疫して得た抗血清、 すべてのクラスのポリクローナル抗体およびモ ノクローナル抗体、 さらにヒト抗体や遺伝子組み換えによるヒト型化抗体も含ま れ 。 By using the protein obtained in this way, the protein encoded by the target gene can be used. Antibodies can be prepared. The form of the antibody is not particularly limited, and includes a monoclonal antibody in addition to a polyclonal antibody. Also included are antisera obtained by immunizing immunized animals such as rabbits with the protein, polyclonal antibodies and monoclonal antibodies of all classes, as well as human antibodies and humanized antibodies obtained by genetic recombination.
抗体取得の感作抗原として使用される蛋白質は、 その由来となる動物種に制限 されないが哺乳動物、 例えばヒト、 マウス又はラット由来の蛋白質が好ましく、 特にヒト由来の蛋白質が好ましい。  The protein used as a sensitizing antigen for obtaining an antibody is not limited to the animal species from which it is derived, but is preferably a protein derived from a mammal, for example, a human, a mouse or a rat, and particularly preferably a protein derived from a human.
本発明において、 感作抗原として使用される蛋白質は、 完全な蛋白質であって もよいし、 また、 蛋白質の部分ペプチドであってもよい。 蛋白質の部分ペプチド としては、 例えば、 蛋白質のアミノ基 (N) 末端断片やカルボキシ (C) 末端断片 が挙げられる。 本明細書で述べる 「抗体」 とは蛋白質の全長又は断片に反応する 抗体を意味する。  In the present invention, the protein used as the sensitizing antigen may be a complete protein or a partial peptide of the protein. Examples of the partial peptide of the protein include an amino group (N) terminal fragment and a carboxy (C) terminal fragment of the protein. As used herein, “antibody” refers to an antibody that reacts with the full length or fragment of a protein.
抗体を調製するには、 標的遺伝子またはその断片を公知の発現べクタ一系に揷 入し、 該ベクターで本明細書で述べた宿主細胞を形質転換させ、 該宿主細胞内外 から目的の蛋白質又はその断片を公知の方法で得て、 これらを感作抗原として用 いればよい。 また、 蛋白質を発現する細胞又はその溶解物あるいは化学的に合成 した蛋白質を感作抗原として使用してもよい。 短いペプチドは、 キーホールリン ペットへモシァニン、 ゥシ血清アルブミン、 卵白アルブミンなどのキャリア蛋白 質と適宜結合させて抗原とすることが好ましい。  To prepare an antibody, a target gene or a fragment thereof is introduced into a known expression vector system, the vector is used to transform a host cell described in the present specification, and a target protein or a target protein is introduced from inside or outside the host cell. The fragment may be obtained by a known method, and these may be used as a sensitizing antigen. Alternatively, a cell expressing the protein, a lysate thereof, or a chemically synthesized protein may be used as the sensitizing antigen. It is preferable that the short peptide is appropriately bound to a carrier protein such as keyhole limpet hemocyanin, pepsin albumin, and ovalbumin to form an antigen.
感作抗原で免疫される哺乳動物としては、 特に限定されるものではないが、 細 胞融合に使用する親細胞との適合性を考慮して選択するのが好ましく、 一般的に は、 げっ歯目、 ゥサギ目、 霊長目の動物が使用される。  The mammal to be immunized with the sensitizing antigen is not particularly limited, but is preferably selected in consideration of compatibility with the parent cell used for cell fusion. In general, rodents are used. Eyes, egrets, and primates are used.
げっ歯目の動物としては、 例えば、 マウス、 ラット、 ハムスター等が使用され る。 ゥサギ目の動物としては、 例えば、 ゥサギが使用される。 霊長目の動物とし ては、 例えば、 サルが使用される。サルとしては、 狭鼻下目のサル(旧世界ザル)、 例えば、 力二クイザル、 ァカゲザル、 マントヒヒ、 チンパンジー等が使用される。 感作抗原を動物に免疫するには、 公知の方法にしたがって行われる。 一般的方 法としては、 感作抗原を哺乳動物の腹腔内又は皮下に注射する。 具体的には、 感 作抗原を PBS (Phosphate-Buffered Saline) や生理食塩水等で適当量に希釈、 懸 濁したものに対し、 所望により通常のアジュバント、 例えば、 フロイント完全ァ ジュバントを適量混合し、 乳化後、 哺乳動物に投与する。 さらに、 その後、 フロ ィント不完全アジュバントに適量混合した感作抗原を、 4〜21日毎に数回投与する ことが好ましい。 また、 感作抗原免疫時に適当な担体を使用することができる。 このように免疫し、 血清中に所望の抗体レベルが上昇するのを常法により確認す ポリクローナル抗体を得るには、 血清中の所望の抗体レベルが上昇したことを 確認した後、 抗原を感作した哺乳動物の血液を取り出す。 この血液から公知の方 法により血清を分離する。 ポリクローナル抗体としては、 ポリクローナル抗体を 含む血清を使用してもよいし、 必要に応じこの血清からポリクローナル抗体を含 む画分をさらに単離して、 これを使用してもよい。 例えば、 標的遺伝子がコード する蛋白質をカツプリングさせたァフィ二ティーカラムを用いて、 該蛋白質のみ を認識する画分を得て、 さらにこの画分をプロティン Aあるいはプロティン Gカラ ムを利用して精製することにより、 免疫グロプリン Gあるいは Mを調製することが できる。 As rodent animals, for example, mice, rats, hamsters and the like are used.動物 As an heronoid animal, for example, a heron is used. For example, monkeys are used as primates. As monkeys, monkeys with lower nose (old world monkey), For example, cynomolgus monkeys, rhesus monkeys, baboons, chimpanzees, etc. are used. Immunization of an animal with a sensitizing antigen is performed according to a known method. As a general method, a sensitizing antigen is injected intraperitoneally or subcutaneously into a mammal. Specifically, the sensitizing antigen is diluted and suspended in an appropriate amount with PBS (Phosphate-Buffered Saline), physiological saline, or the like, and then mixed with an appropriate amount of a normal adjuvant, for example, Freund's complete adjuvant, if desired. After emulsification, it is administered to mammals. Thereafter, it is preferable to administer the sensitizing antigen mixed with an appropriate amount of incomplete Freund's adjuvant several times every 4 to 21 days. In addition, a suitable carrier can be used at the time of immunization with the sensitizing antigen. Immunize in this way and confirm that the level of the desired antibody in the serum increases by a conventional method.To obtain a polyclonal antibody, confirm that the level of the desired antibody in the serum has increased, and then sensitize the antigen. Remove the mammal's blood. The serum is separated from this blood by a known method. As the polyclonal antibody, a serum containing the polyclonal antibody may be used. If necessary, a fraction containing the polyclonal antibody may be further isolated from this serum and used. For example, using an affinity column in which a protein encoded by the target gene is coupled, a fraction that recognizes only the protein is obtained, and this fraction is further purified using Protein A or Protein G column. Thus, immunoglobulin G or M can be prepared.
モノクローナル抗体を得るには、 上記抗原を感作した哺乳動物の血清中に所望 の抗体レベルが上昇するのを確認した後に、 哺乳動物から免疫細胞を取り出し、 細胞融合に付せばよい。この際、細胞融合に使用される好ましい免疫細胞として、 特に脾細胞が挙げられる。 前記免疫細胞と融合される他方の親細胞としては、 好 ましくは哺乳動物のミエローマ細胞、 より好ましくは、 薬剤による融合細胞選別 のための特性を獲得したミエ口一マ細胞が挙げられる。  To obtain a monoclonal antibody, after confirming that the desired antibody level is increased in the serum of the mammal sensitized with the antigen, the immune cells may be removed from the mammal and subjected to cell fusion. In this case, preferred immune cells used for cell fusion include splenocytes, in particular. The other parent cell to be fused with the immune cell is preferably a mammalian myeloma cell, and more preferably a myeloma cell that has acquired the properties for selecting fused cells by a drug.
前記免疫細胞とミエローマ細胞の細胞融合は基本的には公知の方法、 例えば、 ミルスティンらの方法(Galfre, G. and Mil stein, C., Methods Enzymol . (1981) 73, 3-46) 等に準じて行うことができる。 Cell fusion of the immune cells and myeloma cells is basically a known method, for example, The method can be performed according to the method of Milstein et al. (Galfre, G. and Milstein, C., Methods Enzymol. (1981) 73, 3-46).
細胞融合により得られたハイプリ ドーマは、 通常の選択培養液、 例えば、 HAT 培養液 (ヒポキサンチン、 アミノプテリンおよびチミジンを含む培養液) で培養 することにより選択される。当該 HAT培養液での培養は、 目的とするハイプリ ドー マ以外の細胞 (非融合細胞) が死滅するのに十分な時間、 通常、 数日〜数週間継 続して行う。 次いで、 通常の限界希釈法を実施し、 目的とする抗体を産生するハ イブリ ドーマのスクリーニングおよびクローニングを行う。  The hybridoma obtained by cell fusion is selected by culturing it in a normal selective culture medium, for example, a HAT culture medium (a culture medium containing hypoxanthine, aminopterin and thymidine). Culturing in the HAT culture solution is continued for a time sufficient to kill cells other than the target hybridoma (non-fused cells), usually for several days to several weeks. Next, a conventional limiting dilution method is performed to screen and clone a hybridoma producing the desired antibody.
また、 ヒト以外の動物に抗原を免疫して上記ハイプリ ドーマを得る他に、 ヒト リンパ球、 例えば EBウィルスに感染したヒトリンパ球を in vitroで蛋白質、 蛋白 質発現細胞又はその溶解物で感作し、 感作リンパ球をヒト由来の永久分裂能を有 するミエローマ細胞、 例えば U266と融合させ、 蛋白質への結合活性を有する所望 のヒト抗体を産生するハイプリ ドーマを得ることもできる (特開昭 63- 17688号公 報)。  In addition to immunizing non-human animals with antigen to obtain the above-mentioned hybridomas, human lymphocytes, for example, human lymphocytes infected with EB virus, are sensitized in vitro with proteins, protein-expressing cells or lysates thereof. Alternatively, sensitized lymphocytes can be fused with human-derived myeloma cells capable of permanent division, for example, U266, to obtain a hybridoma that produces a desired human antibody having protein binding activity (Japanese Patent Application Laid-Open No. -No. 17688).
次いで、 得られたハイプリ ドーマをマウス腹腔内に移植し、 同マウスより腹水 を回収し、 得られたモノクローナル抗体を、 例えば、 硫安沈殿、 プロテイン A、 プ ロティン G力ラム、 DEAEィオン交換クロマトグラフィ一、標的遺伝子がコードする 蛋白質をカヅプリングしたァフィ二ティ一カラムなどにより精製することで調製 することが可能である。 調製された抗体は、 標的遺伝子がコードする蛋白質の精 製、検出に用いられる他、該蛋白質のァゴニストゃアン夕ゴニストの候補になる。 また、 この抗体を疾患に対する抗体治療へ応用することも考えられる。 得られた 抗体を人体に投与する目的 (抗体治療) で使用する場合には、 免疫原性を低下さ せるため、 ヒト抗体やヒト型抗体が好ましい。  Next, the obtained hybridoma was transplanted into the peritoneal cavity of a mouse, ascites was recovered from the mouse, and the obtained monoclonal antibody was subjected to, for example, ammonium sulfate precipitation, protein A, protein G force ram, DEAE ion exchange chromatography, It can be prepared by purifying the protein encoded by the target gene using a coupled affinity column or the like. The prepared antibody is used not only for purification and detection of the protein encoded by the target gene, but also as a candidate for the agonist-ian gonist of the protein. It is also conceivable to apply this antibody to antibody therapy for diseases. When the obtained antibody is used for administration to the human body (antibody therapy), a human antibody or a humanized antibody is preferable in order to reduce immunogenicity.
例えば、 ヒト抗体遺伝子のレパートリーを有するトランスジエニック動物に抗 原となる蛋白質、 蛋白質発現細胞又はその溶解物を免疫して抗体産生細胞を取得 し、 これをミエローマ細胞と融合させたハイプリ ドーマを用いて蛋白質に対する ヒト抗体を取得することができる (国際公開番号 W092- 03918、 W093-2227, W094- 02602、 W094- 25585、 W096-33735および W096- 34096参照)。 For example, a transgenic animal having a repertoire of human antibody genes is immunized with a protein serving as an antigen, a protein-expressing cell or a lysate thereof to obtain antibody-producing cells, and a hybridoma obtained by fusing this with myeloma cells is used. Against protein Human antibodies can be obtained (see International Publication Nos. W092--03918, W093-2227, W094-02602, W094-25585, W096-33735 and W096-34096).
ハイプリドーマを用いて抗体を産生する以外に、 抗体を産生する感作リンパ球 等の免疫細胞を癌遺伝子 (oncogene) により不死化させた細胞を用いてもよい。 このように得られたモノクローナル抗体はまた、 遺伝子組換え技術を用いて産 生させた組換え型抗体として得ることができる(例えば、 Borrebaeck, C. A. Κ· and Larrick, J. W., THERAPEUTIC MONOCLONAL ANTIBODIES, Published in the United Kingdom by MCMILLAN PUBLISHERS LTD, 1990参照)。 組換え型抗体は、 それをコ ードする DNAをハイプリドーマ又は抗体を産生する感作リンパ球等の免疫細胞か らクローニングし、 適当なベクターに組み込んで、 これを宿主に導入し産生させ る。 本発明は、 この組換え型抗体を包含する。  In addition to producing antibodies using hybridomas, cells in which immune cells such as sensitized lymphocytes producing antibodies have been immortalized with oncogenes may be used. The monoclonal antibody thus obtained can also be obtained as a recombinant antibody produced using a gene recombination technique (for example, Borrebaeck, CA and Larrick, JW, THERAPEUTIC MONOCLONAL ANTIBODIES, Published in the United Kingdom by MCMILLAN PUBLISHERS LTD, 1990). Recombinant antibodies are produced by cloning the DNA encoding them from immune cells such as hybridomas or sensitized lymphocytes producing the antibodies, inserting them into an appropriate vector, and introducing them into a host to produce them. . The present invention includes this recombinant antibody.
さらに、 本発明において抗体は、 標的遺伝子がコードする蛋白質に結合する限 り、 その抗体断片や抗体修飾物であってよい。例えば、抗体断片としては、 Fab、 F(ab,)2、 Fv又は H鎖と L鎖の Fvを適当なリンカーで連結させたシングルチエイン Fv(scFv) (Huston, J. S. et al., ? roc. Natl. Acad. Sci. U.S.A. (1988) 85, 5879- 5883)が挙げられる。 具体的には、 抗体を酵素、 例えば、 パパイン、 ぺプシ ンで処理し抗体断片を生成させるか、 又は、 これら抗体断片をコードする遺伝子 を構築し、 これを発現べクタ一に導入した後、 適当な宿主細胞で発現させる (例 えば、 Co, M. S. et al., J. Immunol. (1994) 152, 2968-2976 ; Better, M. and Horwitz, A. H" Methods Enzymol. (1989) 178, 476-496 ; Pluckthun, A. and Skerra, A., Methods Enzymol. (1989) 178, 497-515 ; Lamoyi, Ε·, Methods Enzymol. (1986) 121, 652-663; Rousseaux, J. et al., Methods Enzymol. (1986) 121, 663-669 ; Bird, R. E. and Walker, B. W., Trends Biotechnol. (1991) 9, 132-137参照)。  Furthermore, in the present invention, the antibody may be an antibody fragment or a modified antibody thereof as long as it binds to the protein encoded by the target gene. For example, as an antibody fragment, Fab, F (ab,) 2, Fv or a single chain Fv (scFv) obtained by linking an Fv of an H chain and an L chain with an appropriate linker (Huston, JS et al.,? Roc. Natl. Acad. Sci. USA (1988) 85, 5879-5883). Specifically, an antibody is treated with an enzyme, for example, papain or pepsin, to generate antibody fragments, or a gene encoding these antibody fragments is constructed and introduced into an expression vector. Expression in a suitable host cell (eg, Co, MS et al., J. Immunol. (1994) 152, 2968-2976; Better, M. and Horwitz, A. H "Methods Enzymol. (1989) 178, 476-496; Pluckthun, A. and Skerra, A., Methods Enzymol. (1989) 178, 497-515; Lamoyi, Ε ·, Methods Enzymol. (1986) 121, 652-663; Rousseaux, J. et al. (1986) 121, 663-669; Bird, RE and Walker, BW, Trends Biotechnol. (1991) 9, 132-137).
抗体修飾物として、 ポリエチレングリコール(PEG)等の各種分子と結合した抗 体を使用することもできる。 本発明において 「抗体」 にはこれらの抗体修飾物も 包含される。 このような抗体修飾物を得るには、 得られた抗体に化学的な修飾を 施すことによって得ることができる。 これらの方法はこの分野において既に確立 されている。 As the modified antibody, an antibody bound to various molecules such as polyethylene glycol (PEG) can be used. In the present invention, “antibody” includes these modified antibodies. Included. Such a modified antibody can be obtained by subjecting the obtained antibody to chemical modification. These methods are already established in this field.
また、 本発明において抗体は、 公知の技術を使用して非ヒト抗体由来の可変領 域とヒト抗体由来の定常領域からなるキメラ抗体又は非ヒト抗体由来の CDR (相補 性決定領域) とヒト抗体由来の FR (フレームワーク領域) 及び定常領域からなる ヒト型化抗体として得ることができる。  In the present invention, the antibody may be a chimeric antibody composed of a variable region derived from a non-human antibody and a constant region derived from a human antibody, or a CDR (complementarity determining region) derived from a non-human antibody and a human antibody. It can be obtained as a humanized antibody consisting of FR (framework region) and constant region derived from it.
前記のように得られた抗体は、 均一にまで精製することができる。 本発明で使 用される抗体の分離、 精製は通常の蛋白質で使用されている分離、 精製方法を使 用すればよい。 例えば、 ァフィ二ティークロマトグラフィー等のクロマトグラフ ィーカラム、 フィルター、 限外濾過、 塩析、 透析、 SDSポリアクリルアミ ドゲル電 気泳動、 等電点電気泳動等を適宜選択、 組み合わせれば、 抗体を分離、 精製する こと力 sできる (Antibodies: A Laboratory Manual . Ed Harlow and David Lane, Cold Spring Harbor Laboratory, 1988) が、 これらに限定されるものではない。 上記 で得られた抗体の濃度測定は吸光度の測定又は酵素結合免疫吸着検定法 (Enzyme- linked immunosorbent assay; EL ISA) 等により行うことができる。 The antibody obtained as described above can be purified to homogeneity. The separation and purification of the antibody used in the present invention may be performed by the separation and purification methods used for ordinary proteins. For example, antibodies can be separated by appropriately selecting and combining chromatographic columns such as affinity chromatography, filters, ultrafiltration, salting out, dialysis, SDS polyacrylamide gel electrophoresis, isoelectric focusing, etc. can this the force s purifying (Antibodies:. a Laboratory Manual Ed Harlow and David Lane, Cold Spring Harbor Laboratory, 1988) is not intended to be limited thereto. The concentration of the antibody obtained as described above can be measured by measuring absorbance or enzyme-linked immunosorbent assay (ELISA).
ァフィ二ティークロマトグラフィーに用いるカラムとしては、 プロティン A力 ラム、 プロテイン Gカラムが挙げられる。 例えば、 プロテイン Aカラムを用いた カラムとして、 Hyper D, POROS, Sepharose F. F. (Pharmacia) 等が挙げられる。 ァフィ二ティークロマトグラフィー以外のクロマトグラフィーとしては、 例え ば、 イオン交換クロマトグラフィー、 疎水性クロマトグラフィー、 ゲル濾過、 逆 相クロマトグラフィー、吸着クロマトグラフィー等が挙げられる(Strategies for Protein Purification and Characterization: A Laboratory Course Manual . Ed Daniel R. Marshak et al. , Cold Spring Harbor Laboratory Press, 1996)0 こ れらのクロマトグラフィ一は HPLC、 FPLC等の液相クロマトダラフィ一を用いて行 うことができる。 また、 抗体の抗原結合活性を測定する方法として、 例えば、 吸光度の測定、 酵 素結合免疫吸着検定法(Enzyme-linked i腿 miosorbent assay; EUSA)、 EIA (酵素 免疫測定法)、 RIA (放射免疫測定法)あるいは蛍光抗体法を用いることができる。 ELISAを用いる場合、抗体を固相化したプレートに標的蛋白質を添加し、次いで目 的の抗体を含む試料、 例えば、 抗体産生細胞の培養上清や精製抗体を加える。 酵 素、 例えば、 アルカリフォスファターゼ等で標識した抗体を認識する二次抗体を 添加し、 プレートをインキュベーションし、 次いで洗浄した後、 p-ニトロフエ二 ル憐酸などの酵素基質を加えて吸光度を測定することで抗原結合活性を評価する ことができる。蛋白質として蛋白質の断片、例えばその C末端からなる断片あるい は N末端からなる断片を使用してもよい。抗体の活性評価には、 BIAcore(Pharmacia 製) を使用することができる。 Columns used for affinity chromatography include Protein A column and Protein G column. For example, columns using a protein A column include Hyper D, POROS, Sepharose FF (Pharmacia) and the like. Examples of chromatography other than affinity chromatography include, for example, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, and adsorption chromatography (Strategies for Protein Purification and Characterization: A Laboratory). (Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996) 0 These chromatography methods can be carried out using liquid phase chromatography such as HPLC and FPLC. Methods for measuring the antigen-binding activity of antibodies include, for example, measurement of absorbance, enzyme-linked immunosorbent assay (EUSA), EIA (enzyme immunoassay), and RIA (radioimmunoassay). Measurement method) or a fluorescent antibody method. When using ELISA, a target protein is added to a plate on which an antibody is immobilized, and then a sample containing the target antibody, for example, a culture supernatant of antibody-producing cells or a purified antibody is added. Add a secondary antibody that recognizes an enzyme, for example, an antibody labeled with alkaline phosphatase, and incubate the plate.After washing, add an enzyme substrate such as p-nitrophenyl folic acid and measure the absorbance. Thus, the antigen binding activity can be evaluated. As the protein, a protein fragment, for example, a fragment comprising the C-terminus or a fragment comprising the N-terminus may be used. BIAcore (Pharmacia) can be used for antibody activity evaluation.
これらの手法を用いることにより、 抗体と試料中に含まれる標的遺伝子がコ一 ドする蛋白質が含まれると予想される試料とを接触せしめ、 該抗体と該蛋白質と の免疫複合体を検出又は測定することからなる、 該遺伝子がコードする蛋白質の 検出又は測定方法を実施することができる。 この測定方法は、 該遺伝子がコード する蛋白質を特異的に検出又は測定することができるため、 該蛋白質を用いた 種々の実験、 検査、 診断等に有用である。  By using these techniques, the antibody is brought into contact with a sample expected to contain the protein encoding the target gene contained in the sample, and an immunocomplex of the antibody and the protein is detected or measured. The method for detecting or measuring the protein encoded by the gene can be carried out. Since this measurement method can specifically detect or measure the protein encoded by the gene, it is useful for various experiments, tests, diagnoses, and the like using the protein.
本発明はまた、 標的遺伝子の一方の鎖またはその相補鎖に相補的な少なくとも 15ヌクレオチドを含むポリヌクレオチドを提供する。  The present invention also provides a polynucleotide comprising at least 15 nucleotides complementary to one strand of the target gene or its complementary strand.
ここで 「相補鎖」 とは、 A:T (ただし RNAの場合は U)、 G:Cの塩基対からなる 2本 員核酸の一方の鎖に対する他方の鎖を指す。また、 「相補的」とは、少なくとも 15 個の連続したヌクレオチド領域で完全に相補配列である場合に限られず、 少なく とも 70%、 好ましくは少なくとも 80%、 より好ましくは 90%、 さらに好ましくは 95%以上の塩基配列上の相同性を有すればよい。蛋白質の相同性を決定するには、 文献 (Wilbur, W. J. and Lipman, D. J. Proc. Natl . Acad. Sci. USA (1983) 80, 726-730) に記載のアルゴリズムにしたがえばよい。 このような核酸には、標的遺伝子の検出や増幅に用いるプローブやブラィマー、 該遺伝子の発現を検出するためのプローブやプライマー、 該遺伝子の発現を制御 するためのヌクレオチド又はヌクレオチド誘導体 (例えば、 アンチセンスオリゴ ヌクレオチドやリボザィム、 またはこれらをコードする DNA等) が含まれる。 ここ で、 遺伝子の検出には、 遺伝子の変異の検出も含まれる。 また、 このような核酸 は、 DNAチップの作製に利用することもできる。上記ポリヌクレオチドをプライマ 一として用いる場合、 3'側の領域は相補的とし、 5'側には制限酵素認識配列ゃタ グなどを付加することができる。 As used herein, the term “complementary strand” refers to one strand of a two-membered nucleic acid consisting of A: T (U for RNA) and G: C base pairs with respect to the other strand. Further, the term "complementary" is not limited to a completely complementary sequence in at least 15 contiguous nucleotide regions, but is at least 70%, preferably at least 80%, more preferably 90%, and still more preferably 95%. What is necessary is that they have homology on the base sequence of at least%. To determine the homology of proteins, the algorithm described in the literature (Wilbur, WJ and Lipman, DJ Proc. Natl. Acad. Sci. USA (1983) 80, 726-730) may be used. Such nucleic acids include probes and primers used for detection and amplification of a target gene, probes and primers for detecting the expression of the gene, nucleotides or nucleotide derivatives for controlling the expression of the gene (for example, antisense Oligonucleotides, ribozymes, or DNA encoding them). Here, the detection of a gene includes the detection of a mutation in the gene. Such a nucleic acid can also be used for producing a DNA chip. When the above-mentioned polynucleotide is used as a primer, the region on the 3 ′ side may be complementary, and a tag for a restriction enzyme recognition sequence may be added to the 5 ′ side.
アンチセンスオリゴヌクレオチドとしては、 例えば、 蛋白質のコード領域中の いずれかの箇所にハイプリダイズするアンチセンスオリゴヌクレオチドが含まれ る。 このアンチセンスオリゴヌクレオチドは、 好ましくは蛋白質のコード領域中 の連続する少なくとも 15個以上のヌクレオチドに対するアンチセンスオリゴヌク レオチドである。 さらに好ましくは、 連続する少なくとも 15個以上のヌクレオチ ドが翻訳開始コドンを含むアンチセンスオリゴヌクレオチドである。  Antisense oligonucleotides include, for example, antisense oligonucleotides that hybridize at any point in the coding region of a protein. The antisense oligonucleotide is preferably an antisense oligonucleotide for at least 15 consecutive nucleotides in the coding region of the protein. More preferably, at least 15 or more consecutive nucleotides are an antisense oligonucleotide containing a translation initiation codon.
アンチセンスオリゴヌクレオチドとしては、 それらの誘導体や修飾体を使用す ることができる。 修飾体として、 例えばメチルホスホネート型又はェチルホスホ ネート型のような低級アルキルホスホネート修飾体、 ホスホロチォェ一ト修飾体 又はホスホロアミデート修飾体等が挙げられる。  As the antisense oligonucleotide, derivatives and modifications thereof can be used. Examples of the modified product include a modified lower alkyl phosphonate such as a methyl phosphonate type or an ethyl phosphonate type, a phosphorothioate modified product, a phosphoroamidate modified product, and the like.
アンチセンスオリゴヌクレオチドは、 DNA又は mRNAの所定の領域を構成するヌク レォチドに対応するヌクレオチドが全て相補配列であるもののみならず、 オリゴ ヌクレオチドが標的遺伝子をコ一ドする DNAまたは RNAに特異的にハイプリダイズ できる限り、 1 又は複数個のヌクレオチドのミスマッチが存在しているものも含 まれる o  Antisense oligonucleotides include not only those whose nucleotides corresponding to the nucleotides constituting the predetermined region of DNA or mRNA are all complementary sequences, but also those whose oligonucleotides specifically target DNA or RNA encoding the target gene. Hybridization Includes one or more nucleotide mismatches wherever possible o
本発明のアンチセンスォリゴヌクレオチド誘導体は、 標的遺伝子がコードする 蛋白質の産生細胞に作用して、 該蛋白質をコードする DNA又は mRNAに結合するこ とにより、 その転写又は翻訳を阻害したり、 mRNAの分解を促進したりして、 該蛋 白質の発現を抑制することにより、 結果的に該蛋白質の作用を抑制する効果を有 する。 The antisense oligonucleotide derivative of the present invention acts on a cell that produces a protein encoded by a target gene and binds to DNA or mRNA encoding the protein, thereby inhibiting its transcription or translation, or Or promote the decomposition of By suppressing the expression of white matter, it has the effect of suppressing the action of the protein as a result.
本発明のアンチセンスオリゴヌクレオチド誘導体は、 それらに対して不活性な 適当な基剤と混和して塗布剤、 パツプ剤等の外用剤とすることができる。  The antisense oligonucleotide derivative of the present invention can be made into an external preparation such as a coating agent or a patch by mixing with an appropriate base material which is inactive against the derivative.
また、 必要に応じて、 賦形剤、 等張化剤、 溶解補助剤、 安定化剤、 防腐剤、 無 痛化剤等を加えて錠剤、 散財、 顆粒剤、 カプセル剤、 リボソームカプセル剤、 注 射剤、 液剤、 点鼻剤など、 さらに凍結乾燥剤とすることができる。 これらは常法 にしたがって調製することができる。  If necessary, excipients, isotonic agents, solubilizing agents, stabilizers, preservatives, soothing agents, etc. may be added to tablets, splinters, granules, capsules, ribosome capsules, It can be a lyophilized agent such as a propellant, a liquid, a nasal drop and the like. These can be prepared according to a conventional method.
本発明のアンチセンスオリゴヌクレオチド誘導体は患者の患部に直接適用する か、 又は血管内に投与するなどして結果的に患部に到達し得るように患者に適用 する。 さらには、 持続性、 膜透過性を高めるアンチセンス封入素材を用いること もできる。例えば、 リボソーム、 ポリ- L-リジン、 リピヅド、 コレステロール、 リ ポフエクチン又はこれらの誘導体が挙げられる。  The antisense oligonucleotide derivative of the present invention is applied directly to the affected area of the patient, or is applied to the patient so as to be able to reach the affected area as a result of intravenous administration or the like. Furthermore, an antisense-encapsulated material that enhances durability and membrane permeability can be used. For example, ribosome, poly-L-lysine, lipid, cholesterol, lipofectin or derivatives thereof can be mentioned.
本発明のアンチセンスオリゴヌクレオチド誘導体の投与量は、 患者の状態に応 じて適宜調整し、 好ましい量を用いることができる。例えば、 0. 1〜100mg/kg、 好. ましくは 0. 1〜50mg/kgの範囲で投与することができる。  The dosage of the antisense oligonucleotide derivative of the present invention can be appropriately adjusted according to the condition of the patient, and a preferred amount can be used. For example, it can be administered in the range of 0.1 to 100 mg / kg, preferably 0.1 to 50 mg / kg.
本発明のアンチセンスオリゴヌクレオチドは標的遺伝子がコードする蛋白質の 発現を阻害し、 従って該蛋白質の生物学的活性を抑制することにおいて有用であ る。 また、 本発明のアンチセンスオリゴヌクレオチドを含有する発現阻害剤は、 該蛋白質の生物学的活性を抑制することが可能である点で有用である。  The antisense oligonucleotide of the present invention inhibits the expression of the protein encoded by the target gene and is therefore useful in suppressing the biological activity of the protein. Further, the expression inhibitor containing the antisense oligonucleotide of the present invention is useful in that it can suppress the biological activity of the protein.
標的遺伝子がコードする蛋白質に対する抗体または該遺伝子の一方の鎖または その相補鎖に相補的な少なくとも 15ヌクレオチドを含むポリヌクレオチドを利用 して、 遺伝子または蛋白質の変異または発現の検査を行うことができる。 標的遺 伝子が疾患に関与する場合は、 該抗体または該ポリヌクレオチドを利用して疾患 の検査を行うことができる。 なお、 本発明において疾患の検査には、 疾患原因遺 伝子の変異に起因して疾患の症状を発現している患者の検査のみならず、 被験者 が疾患原因遺伝子の発現量の異常または遺伝子の変異に起因して該疾患にかかり やすいか否かを判断するために行う、 疾患原因遺伝子の発現量の検査、 および遺 伝子の変異の検査も含まれる。 すなわち、 疾患原因遺伝子の発現の異常や、 疾患 原因遺伝子の片方の対立遺伝子に変異が生じることなどにより、 表面上は未だ症 状を発現していない場合においても、 該疾患にかかる危険性が非常に増大してい るものと考えられる。 また、 疾患に限らず、 その他の遺伝要因を持つ表現型に対 しても、 例えばその原因遺伝子を有するか否かを検査したり、 その遺伝子の変異 や発現の検査を行うことができる。 The mutation or expression of the gene or protein can be tested using an antibody against the protein encoded by the target gene or a polynucleotide containing at least 15 nucleotides complementary to one strand of the gene or its complementary strand. When the target gene is involved in the disease, the antibody or the polynucleotide can be used to test for the disease. In the present invention, the examination of the disease includes not only the examination of a patient who has developed the symptoms of the disease due to the mutation of the disease-causing gene, To assess whether the disease-causing gene is susceptible to the disease due to abnormal expression of the disease-causing gene or mutation in the gene, and also to test for mutations in the gene. included. That is, even if the symptom has not yet been expressed on the surface due to abnormal expression of the disease-causing gene or mutation of one allele of the disease-causing gene, the risk of the disease is extremely high. It is considered that the number has increased. In addition, not only for diseases but also for phenotypes having other genetic factors, for example, it is possible to test whether or not the phenotype has the causative gene, and to test for mutation or expression of the gene.
抗体を利用して疾患等の検査を行うには、 例えば、 被検試料中における原因遺 伝子がコードする蛋白質を検出する工程を含む方法が含まれる。 原因遺伝子がコ Testing of a disease or the like using an antibody includes, for example, a method including a step of detecting a protein encoded by a causative gene in a test sample. If the causative gene is
—ドする蛋白質に対する抗体を用いた検査は、具体的には、 (a )被検試料に上記 の抗体を接触させる工程、 (b )該被検試料への該抗体の結合を検出する工程、を 含む。 蛋白質の検出は、 抗体を用いた免疫沈降、 ウェスタンプロット、 免疫組織 化学、 ELISAなどにより行うことができる。 The test using an antibody against the protein to be loaded includes, specifically, (a) a step of bringing the antibody into contact with a test sample, (b) a step of detecting the binding of the antibody to the test sample, including. The protein can be detected by immunoprecipitation using an antibody, Western blot, immunohistochemistry, ELISA, or the like.
また、 本発明の検査には、 遺伝子の転写産物またはその cDNAの塩基配列、 およ びゲノム DNA配列(内因性転写制御配列も含む)の塩基配列、 またはその相補鎖と 相補的なポリヌクレオチド (プローブおよびプライマー)が利用されうる。なお、 変異の検査には、 対立遺伝子の片方のアレルに変異を持つ 「キャリア一」 を特定 するための検査も含まれる。  In addition, in the test of the present invention, the nucleotide sequence of the transcript of the gene or its cDNA, the nucleotide sequence of the genomic DNA sequence (including the endogenous transcription control sequence), or a polynucleotide complementary to its complementary strand ( Probes and primers). The mutation test also includes a test to identify “carriers” with a mutation in one allele of the allele.
プライマ一として用いられる場合、 ポリヌクレオチドは、 通常、 15bp〜: LOObp であり、 好ましくは 17bp〜30bpである。 プライマーは、 標的遺伝子またはその発 現を調節する領域の少なくとも一部を増幅しうるものであればいかなるものでも よい。 このような領域としては、 例えば、 遺伝子のェキソン領域、 イントロン領 域、 プロモーター領域、 ェンハンサー領域が含まれる。  When used as a primer, the polynucleotide is usually between 15 bp and: LOObp, preferably between 17 bp and 30 bp. The primer may be any primer that can amplify at least a part of the target gene or a region that regulates its expression. Examples of such a region include an exon region, an intron region, a promoter region, and an enhancer region of a gene.
—方、プローブとしてのポリヌクレオチドは、合成ポリヌクレオチドであれば、 通常、少なくとも 15bp以上の鎖長を有する。プラスミド DNAなどのベクターに組み 込んだクローンから得た二本鎖 MAをプローブとして用いることも可能である。プ ローブとしては、 遺伝子またはその発現を調節する領域の少なくとも一部の塩基 配列またはそれらの相補鎖に相補的であればいかなるものでもよい。 プローブが ハイブリダィズする領域としては、 例えば、 遺伝子のェキソン領域、 イントロン 領域、 プロモー夕一領域、 ェンハンサ一領域が含まれる。 プローブとして用いる 場合、 ポリヌクレオチドあるいは二本鎖 DNAは適宜標識して用いられる。標識する 方法としては、 例えば、 T4ポリヌクレオチドキナーゼを用いてポリヌクレオチド の 5'端を32 Pでリン酸化することにより標識する方法や、 クレノゥ酵素などの DNA ポリメラーゼを用い、 ランダムへキサマーォリゴヌクレオチドなどをプライマー として32 Pなどのァイソトープゃ、 蛍光色素あるいはピオチンなどによって標識さ れた基質塩基を取り込ませる方法 (ランダムプライム法など) が挙げられる。 標的遺伝子がコードする蛋白質に対する抗体または該遺伝子の一方の鎖または その相補鎖に相補的な少なくとも 15ヌクレオチドを含むポリヌクレオチドを利用 した検査方法の一つは、 被検試料中における標的遺伝子の転写産物を検出するェ 程を含む方法である。このような検査方法は、 ( a )被検試料に上記のポリヌクレ ォチドを接触させる工程、 ( b )該被検試料中の mRNAへの該ポリヌクレオチドの結 合を検出する工程、 を含む方法が含まれる。 このような検査は、 例えばノーザン ハイブリダイゼ一ションゃ RT- PCRなどにより行うことができる。 RT-PCRを利用し た検査は、 具体的には (a )被検試料中の mRNAから cDNAを合成する工程、 (b )合 成した cDNAを錡型に、 本発明のポリヌクレオチドをプライマーとして用いて、 ポ リメラーゼ連鎖反応を行なう工程、 ( c )ポリメラーゼ連鎖反応により増幅された DNAを検出する工程、 を含む。 ノ一ザンハイプリダイゼーションゃ RT-PCRは、 公知 の遺伝子工学技術により行うことができる。 また、 DNAチップまたは DNAマイクロ アレイによる検出も可能である。 On the other hand, a polynucleotide as a probe generally has a chain length of at least 15 bp or more if it is a synthetic polynucleotide. Combine into vectors such as plasmid DNA It is also possible to use a double-stranded MA obtained from the cloned clone as a probe. The probe may be any probe as long as it is complementary to the base sequence of at least a part of the gene or a region that regulates its expression or a complementary strand thereof. Examples of the region to which the probe hybridizes include an exon region, an intron region, a promoter region, and an enhancer region of a gene. When used as a probe, the polynucleotide or double-stranded DNA is used after being appropriately labeled. Labeling methods include, for example, labeling by phosphorylating the 5 'end of the polynucleotide with 32 P using T4 polynucleotide kinase, or random hexamer oligonucleotide using a DNA polymerase such as Klenow II enzyme. Using a primer as a primer, a method of incorporating a substrate base labeled with an isotope such as 32 P, a fluorescent dye, or biotin (such as a random prime method) can be used. One of the testing methods using an antibody against the protein encoded by the target gene or a polynucleotide containing at least 15 nucleotides complementary to one strand of the gene or its complementary strand is a transcript of the target gene in a test sample. This is a method that includes the step of detecting Such a test method includes a method comprising: (a) contacting the above-mentioned polynucleotide with a test sample; and (b) detecting the binding of the polynucleotide to mRNA in the test sample. included. Such a test can be performed, for example, by Northern hybridization—RT-PCR. Inspection using RT-PCR includes the following steps: (a) a step of synthesizing cDNA from mRNA in a test sample; (b) a step of synthesizing the synthesized cDNA and a primer of the polynucleotide of the present invention. Performing a polymerase chain reaction; and (c) detecting DNA amplified by the polymerase chain reaction. Northern hybridization—RT-PCR can be performed by known genetic engineering techniques. Detection by DNA chip or DNA microarray is also possible.
また、 疾患等の検査は、 標的遺伝子における変異または多型を検出することに よって行うことも考えられる。 すなわち、 標的遺伝子のコード領域または転写制 御領域における変異または多型を検出することにより検査を行うことができる。 このような検査方法の一つの態様は、 被検者の標的遺伝子の塩基配列を直接決定 する方法である。 例えば、 上記ヌクレオチドをプライマ一として、 被検者から単 離した DNAを铸型として、 PCR(Polymerase Chain React ion)法などにより、 被検者 の標的遺伝子の一部もしくは全部(例えばェキソン、 イントロン、 プロモー夕一、 ェンハンサ一を含む領域) を増幅し、 その塩基配列の決定を行う。 これを対照者 (例えば健常者等) の該遺伝子の配列と比較することにより検査を行うことがで きる。 In addition, testing for a disease or the like may be performed by detecting a mutation or polymorphism in a target gene. That is, the coding region or transcriptional regulation of the target gene The test can be performed by detecting a mutation or polymorphism in the control region. One embodiment of such a test method is a method for directly determining the nucleotide sequence of a target gene of a subject. For example, a part or all of the target gene (for example, exon, intron, or the like) of the subject can be determined by PCR (Polymerase Chain Reaction) method or the like using the above nucleotide as a primer and DNA isolated from the subject as type III. The region containing the promoter and enhancer is amplified and its base sequence is determined. A test can be performed by comparing this with the sequence of the gene of a control person (for example, a healthy person or the like).
検査方法としては、このように直接被検者由来の DNAの塩基配列を決定する方法 以外に種々の方法が用いられる。 その一つの態様は、 (a)被検者から MA試料を調 製する工程、 (b)本発明のポリヌクレオチドをプライマ一として被検者由来の DNA を増幅する工程、 (c)増幅した DNAを一本鎖 DNAに解離させる工程、 (d)解離させた 一本鎖 DNAを非変性ゲル上で分離する工程、および (e)分離した一本鎖 DNAのゲル上 での移動度を対照者の場合と比較する工程、 を含む。  As a test method, various methods are used other than the method of directly determining the nucleotide sequence of the DNA derived from the subject. One embodiment is (a) a step of preparing an MA sample from a subject, (b) a step of amplifying DNA from the subject using the polynucleotide of the present invention as a primer, and (c) amplified DNA. (D) separating the dissociated single-stranded DNA on a nondenaturing gel, and (e) controlling the mobility of the separated single-stranded DNA on the gel. Comparing with the case of.
このような方法として、 PCR - SSCP( single- strand conformation polymorphism、 一本鎖局次構造多型)法 (Cloning and polymerase chain reactioh-smgle-strand conformation polymorphism analysis of anonymous Alu repeats on chromosome 11. Genomics. 1992 Jan 1; 12(1): 139-146.、 Detection of p53 gene mutations in human brain tumors by single-strand conformation polymorphism analysis of polymerase chain reaction products. Oncogene. 1991 Aug 1; 6(8) : 1313- 1318.、 Multiple fluorescence-based PCR-SSCP analysis with post labeling.、 PCR Methods Appl . 1995 Apr 1 ; 4(5) : 275-282. )が挙げられる。 この方法は操作 が比較的簡便であり、 また試料の量も少なくてすむなどの利点を有するため、 特 に多数の DNAサンプルをスクリーニングするのに好適である。その原理は以下の如 くである。二本鎖 DNA断片を一本鎖に解離すると、各鎖はその塩基配列に依存した 独自の高次構造を形成する。この解離した MA鎖を変性剤を含まないポリアクリル アミドゲル中で電気泳動すると、 それぞれの高次構造の差に応じて、 相補的な同 じ鎖長の一本鎖 DNAが異なる位置に移動する。一塩基の置換によってもこの一本鎖 DNAの高次構造は変化し、ポリアクリルアミドゲル電気泳動において異なる移動度 を示す。従って、 この移動度の変化を検出することにより MA断片に点突然変異や 欠失、 あるいは揷入などによる変異が存在することを検出することができる。 具体的には、 まず、標的遺伝子の一部、 あるいは全部を PCR法などによって増幅 する。 増幅される範囲としては、 通常 200〜400bp程度の長さが好ましい。 また、 増幅される領域としては、 遺伝子の全てのヱキソン、 全てのイントロンの他、 遺 伝子のプロモーター、ェンハンサ一も含まれる。 PCRによる遺伝子断片増幅の際、 32Pなどのァイソトープ、 あるいは蛍光色素やピオチンなどによって標識したブラ イマ一を用いるか、 あるいは PCR反応液に32 Pなどのァイソト一プ、 あるいは蛍光 色素やビォチンなどによつて標識した基質塩基を加えて PCRを行うことによって 合成される DNA断片を標識する。 あるいは PCR反応後にクレノウ酵素などを用いて 32Pなどのァイソトープ、 あるいは蛍光色素やピオチンなどによって標識した基質 塩基を合成された DNA断片に付加することによっても標識を行うことができる。こ うして得られた標識された DNA断片を熱を加えることなどにより変性し、尿素など の変性剤を含まないポリアクリルアミドゲルによって電気泳動を行う。 この際、 ポリアクリルアミドゲル (こ適量(5から 10%程度)のグリセロールを添加すること により、 MA断片の分離の条件を改善することができる。 また、 泳動条件は各 DNA 断片の性質により変動するが、 通常、 室温 (20から 25°C) で行い、 好ましい分離 が得られないときには 4から 30°Cまでの温度で最適の移動度を与える温度の検討 を行う。電気泳動後、 DNA断片の移動度を、 X線フィルムを用いたオートラジオグ ラフィーや、 蛍光を検出するスキャナ一等で検出し、 解析する。 移動度に差があ るバンドが検出された場合、 このバンドを直接ゲルから切り出し、 PCRによって再 度増幅し、 それを直接シークェンシングすることにより、 変異の存在を確認する ことができる。 また、標識した DNAを使わない場合においても、電気泳動後のゲル をェチジゥムブ口マイドゃ銀染色法などによって染色することによって、 バンド を検出することができる。 As such a method, PCR-SSCP (Single-strand conformation polymorphism, Single-strand conformation polymorphism) method (Cloning and polymerase chain reactioh-smgle-strand conformation polymorphism analysis of anonymous Alu repeats on chromosome 11.Genomics. 1992) Jan 1; 12 (1): 139-146., Detection of p53 gene mutations in human brain tumors by single-strand conformation polymorphism analysis of polymerase chain reaction products.Oncogene.1991 Aug 1; 6 (8): 1313-1318. , Multiple fluorescence-based PCR-SSCP analysis with post labeling., PCR Methods Appl. 1995 Apr 1; 4 (5): 275-282.). This method has advantages such as relatively simple operation and small sample size, and is particularly suitable for screening a large number of DNA samples. The principle is as follows. When a double-stranded DNA fragment is dissociated into single strands, each strand forms a unique higher-order structure depending on its base sequence. This dissociated MA chain is denatured without polyacrylic When electrophoresed in an amide gel, single-stranded DNAs of the same complementary length move to different positions according to the differences in their higher-order structures. The single-stranded substitution also changes the higher-order structure of this single-stranded DNA, indicating different mobilities in polyacrylamide gel electrophoresis. Therefore, by detecting the change in mobility, it is possible to detect the presence of a mutation due to a point mutation, deletion, or insertion in the MA fragment. Specifically, first, part or all of the target gene is amplified by PCR or the like. As the range to be amplified, usually, a length of about 200 to 400 bp is preferable. In addition, the region to be amplified includes not only all the exons and all the introns of the gene, but also the gene promoter and the enhancer. When amplifying gene fragments by PCR, use an isotope such as 32 P or a primer labeled with a fluorescent dye or biotin, or use an isotope such as 32 P or a fluorescent dye or biotin in the PCR reaction solution. The DNA fragment synthesized by adding the labeled substrate base and performing PCR is labeled. Alternatively, labeling can also be performed by adding an isotope such as 32 P or a substrate base labeled with a fluorescent dye or biotin to the synthesized DNA fragment using Klenow enzyme after the PCR reaction. The thus obtained labeled DNA fragment is denatured by applying heat or the like, and electrophoresis is performed on a polyacrylamide gel containing no denaturing agent such as urea. At this time, the conditions for separation of MA fragments can be improved by adding a suitable amount of glycerol (about 5 to 10%) to polyacrylamide gel. The electrophoresis conditions vary depending on the properties of each DNA fragment. However, it is usually performed at room temperature (20 to 25 ° C), and when favorable separation is not obtained, the temperature which gives the optimum mobility at a temperature of 4 to 30 ° C is examined. The mobility is detected and analyzed by autoradiography using X-ray film or a scanner that detects fluorescence, etc. If a band with a difference in mobility is detected, this band is directly analyzed from the gel. Excision, re-amplification by PCR, and direct sequencing can confirm the presence of the mutation. Le The band can be detected by staining the DNA with ethidium mouth silver silver staining method or the like.
本発明の検査方法の他の態様は、 (a) 被検者から DNA試料を調製する工程、 (b) 本発明のポリヌクレオチドをプライマーとして用いて被検者由来の DNAを増幅す る工程、 (c) 増幅した DNAを切断する工程、 (d) DNA断片をその大きさに応じて分 離する工程、 (e)分離した DNA断片に対し、検出可能な標識をした本発明のポリヌ クレオチドをプローブとしてハイプリダイズさせる工程、および(f)検出された DNA断片の大きさを、 対照者の場合と比較する工程、 を含む。  Other aspects of the test method of the present invention include: (a) a step of preparing a DNA sample from a subject; (b) a step of amplifying DNA from the subject using the polynucleotide of the present invention as a primer; (C) a step of cleaving the amplified DNA, (d) a step of separating the DNA fragment according to its size, and (e) a detectable labeled polynucleotide of the present invention is added to the separated DNA fragment. And (f) comparing the size of the detected DNA fragment with that of a control.
このような方法としては、 制限酵素断片長多型 (Restriction Fragment Length Polymorphism/RFLP) を利用した方法、 PCR-RFLP法などが挙げられる。 DNAを切断 する酵素としては、 通常、 制限酵素を用いる。 具体的には、 制限酵素の認識部位 に変異または多型が存在する場合、あるいは制限酵素処理によって生じる DNA断片 内に塩基揷入、 または欠失がある場合、 制限酵素処理後に生じる断片の大きさが 対照 (例えば健常者の場合) と比較して変化する。 この変異または多型を含む部 分を PCR法によって増幅し、それぞれの制限酵素で処理することによって、 これら の変異または多型を電気泳動後のバンドの移動度の差として検出することができ る。あるいは、染色体 MAをこれらの制限酵素によって処理し、電気泳動した後、 上記ポリヌクレオチドをプローブとして用いてサザンプロッティングを行うこと により、変異または多型の有無を検出することができる。用いられる制限酵素は、 それぞれの検査部位に応じて適宜選択することができる。 この方法では、 ゲノム DNA以外にも被検者から調製した RNAを逆転写酵素で cDNAにし、 これをそのまま制 限酵素で切断した後サザンブロッテイングを行うこともできる。 また、 この cDNA を铸型として PCRで標的遺伝子の一部、あるいは全部を増幅し、それを制限酵素で 切断した後、 移動度の差を調べることもできる。  Examples of such a method include a method using restriction fragment length polymorphism (RFLP) and a PCR-RFLP method. Restriction enzymes are usually used as enzymes that cut DNA. Specifically, when a mutation or polymorphism is present at the recognition site of the restriction enzyme, or when there is a base insertion or deletion in the DNA fragment generated by the restriction enzyme treatment, the size of the fragment generated after the restriction enzyme treatment Varies compared to controls (eg, in healthy individuals). By amplifying the portion containing this mutation or polymorphism by PCR and treating with each restriction enzyme, these mutations or polymorphism can be detected as a difference in the mobility of the band after electrophoresis. . Alternatively, the presence or absence of a mutation or polymorphism can be detected by treating the chromosomal MA with these restriction enzymes, electrophoresing, and performing Southern plotting using the polynucleotide as a probe. The restriction enzyme to be used can be appropriately selected according to each test site. In this method, in addition to genomic DNA, RNA prepared from a subject can be converted into cDNA with a reverse transcriptase, which can be directly cut with a restriction enzyme and then subjected to Southern blotting. Alternatively, using this cDNA as type II, a part or all of the target gene can be amplified by PCR and cut with restriction enzymes, and then the difference in mobility can be examined.
また、 被検者から調製した DNAの代わりに RNAを用いても同様に検出することが 可能である。このような方法は、 (a)被検者から RNA試料を調製する工程、 (b)大 きさに応じて調製した UNAを分離する工程、 (c) 分離した RNAに対し、 検出可能な 標識をした本発明の リヌクレオチドをプローブとしてハイプリダイズさせるェ 程、 および (d) 検出された RNAの大きさを、 対照者の場合と比較する工程、 を含 む。具体的な方法の一例としては、被検者から調製した RNAを電気泳動し、上記ポ リヌクレオチドをプローブとして用いてノーザンブロッテイングを行い、 移動度 の差を検出する。 Also, detection can be performed in the same manner by using RNA instead of DNA prepared from the subject. Such a method includes the steps of (a) preparing an RNA sample from a subject; (C) a step of hybridizing the isolated RNA with the detectable-labeled oligonucleotide of the present invention as a probe, and (d) the detected RNA. Comparing the size of the control with the control. As an example of a specific method, RNA prepared from a subject is subjected to electrophoresis, and Northern blotting is performed using the above-described polynucleotide as a probe to detect a difference in mobility.
検査方法の他の態様は、 (a)被検者から DNA試料を調製する工程、 )本発明の ポリヌクレオチドをプライマ一として被検者由来の MAを増幅する工程、 (c)増幅 した DNAを、 DNA変性剤の濃度が次第に高まるゲル上で分離する工程、 および (d) 分離した DNAのゲル上での移動度を対照者の場合と比較する工程、を含む方法であ o  Other aspects of the test method include: (a) a step of preparing a DNA sample from a subject;) amplifying MA from the subject using the polynucleotide of the present invention as a primer; and (c) amplifying the amplified DNA. Separating on a gel in which the concentration of the DNA denaturing agent is gradually increased, and (d) comparing the mobility of the separated DNA on the gel with that of a control.
このような方法としては、 変性剤濃度勾配ゲル電気泳動法 (denaturant gradient gel electrophoresis: DGGE) が挙げられる。 標的遺伝子の一部、 ある いは全部を上記プライマ一などを用いた PCR法などによって増幅し、これを尿素な どの変性剤の濃度が移動するに従って徐々に高くなつているポリアクリルアミド ゲル中で電気泳動し、 対照者(例えば健常者等) と比較する。変異が存在する DNA 断片の場合、 より低い変性剤濃度位置で MA断片が一本鎖になり、極端に移動速度 が遅くなるため、 この移動度の差を検出することにより変異または多型の有無を 検出することができる。  Examples of such a method include denaturant gradient gel electrophoresis (DGGE). A part or all of the target gene is amplified by PCR using the above primers, etc., and this is amplified in a polyacrylamide gel where the concentration gradually increases as the concentration of denaturant such as urea moves. Run the sample and compare it with a control (eg, a healthy subject). In the case of a DNA fragment containing a mutation, the MA fragment becomes single-stranded at a lower denaturant concentration and the migration speed becomes extremely slow.The presence or absence of a mutation or polymorphism can be detected by detecting this difference in mobility. Can be detected.
これら方法以外にも、 特定位置の変異のみを検出する目的にはアレル特異的ォ リゴヌクレオチド (Allele Specific Oligonucleotide/ASO) ハイプリダイゼー シヨン法が利用できる。 変異が存在すると考えられる塩基配列を含むォリゴヌク レオチドを作製し、 これと試料 DNAでハイプリダイゼーシヨンを行わせると、変異 が存在する場合、 ハイブリッド形成の効率が低下する。 それをサザンプロット法 や、 特殊な蛍光試薬がハイプリヅドのギヤヅプにィン夕一力レーシヨンすること により消光する性質を利用した方法などにより検出できる。 また、 リボヌクレア ーゼ Aミスマツチ切断法による検出も可能である。具体的には、標的遺伝子の一部、 あるいは全部を PCR法などによって増幅し、これをプラスミドベクター等に組み込 んだ標的遺伝子断片等から調製した標識 RNAとハイブリダィゼ一シヨンを行う。変 異が存在する部分においてはハイプリッドが一本鎖構造となるので、 この部分を リボヌクレァーゼ Aによつて切断し、これをオートラジオグラフィ一などで検出す ることによって変異の存在を検出することができる。 図面の簡単な説明 In addition to these methods, the Allele Specific Oligonucleotide (ASO) hybridization method can be used for the purpose of detecting only a mutation at a specific position. When an oligonucleotide containing a nucleotide sequence that is considered to have a mutation is prepared and hybridized with this and a sample DNA, the efficiency of hybridization decreases when the mutation is present. This can be detected by the Southern plot method or a method utilizing the property of quenching by a special fluorescent reagent being applied to the hybrid gap in a single step. Also, Ribonuclea It can also be detected by the A-Masemachi cutting method. Specifically, a part or all of the target gene is amplified by PCR or the like, and the target gene is hybridized with a labeled RNA prepared from a target gene fragment or the like incorporated in a plasmid vector or the like. Since the hybrid has a single-stranded structure in the portion where the mutation exists, it is possible to detect the presence of the mutation by cleaving this portion with ribonuclease A and detecting this by autoradiography. it can. BRIEF DESCRIPTION OF THE FIGURES
図 1は、相関検定およびハーディ-ワインベルグ比率の正確確率検定によって得 られた P値を、尋常性乾癬の遺伝子マッビングに用いたマイクロサテライトマ一力 —の位置とともに示した図である。 aIkBLから HLA-Lまでの HLAクラス I領域におけ る各遺伝子の位置を示す遺伝子マップ。 白および黒の四角はそれそれ HLAクラス I 遺伝子および非 HLA遺伝子を表す。 矢印は遺伝子の方向を示す。 b症例-対照相関 検定およびハーディ-ワインベルグ比率の正確確率検定による統計解析。曲線は各 検定における 2点移動平均に基づいて平滑適合化を行った上で描いた。白丸を実線 でつないだものは症例 -対照相閧検定でフィヅシャ一の正確確率検定によ όて得 られた Pc値、白四角を破線でつないだものはハーディ-ワインベルグ比率からの偏 差に関する正確確率検定(確率検定)によって得られた P値、黒四角を太い実線で つないだものは患者でのハーディ-ワインベルグ平衡の帰無仮説に対するヘテロ 接合体減少に関する正確確率検定によって得られた P値を示す。 eマイクロサテラ ィトマ一カーの位置とともに括弧内に HLA-C遺伝子座から各マイクロサテライト までの距離 (kb) を示した。 発明を実施するための最良の形態 FIG. 1 shows the P values obtained by the correlation test and the Hardy-Weinberg ratio exact test, together with the positions of the microsatellite markers used for the gene mapping of psoriasis vulgaris. a Gene map showing the location of each gene in the HLA class I region from IkBL to HLA-L. White and black boxes represent HLA class I genes and non-HLA genes, respectively. Arrows indicate the direction of the gene. b Statistical analysis by case-control correlation test and exact test of Hardy-Weinberg ratio. The curves were drawn after smooth fitting based on the two-point moving average in each test. The white circles connected by a solid line indicate the Pc values obtained by the Fisher's exact probability test in the case-control analysis, and the white squares connected by the broken line indicate the deviation from the Hardy-Weinberg ratio. The P value obtained by the exact probability test (probability test), the solid square connecting the solid squares to the P value obtained by the exact probability test for heterozygous reduction on the null hypothesis of Hardy-Weinberg equilibrium in patients. Indicates a value. The distance (kb) from the HLA-C locus to each microsatellite is shown in parentheses along with the position of the e microsatellite car. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例により具体的に説明するが、 本発明はこれら実施例に制 限されるものではない。 [実施例 1 ] HLAクラス I領域のマイクロサテライトマ一力一 Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples. [Example 1] HSA class I microsatellite matrix
本発明者らによる大規模なゲノムシークェンシングを通して、 動原体側の MICB 遺伝子からテロメァ側の HLA-F遺伝子 (Mizuki, N. et al . (1997) Genomics, 42, 55-66; Shiina, T. et al . (1998) Genomics, 47, 372-382; Shiina, T. et al . (1999) Immunol . Rev. , 167, 193-199; Tamiya, G. et al. (1998) Tissue Antigens, 51, 337-346) までに及び、 HLA-Bおよび HLA-C遺伝子を含む 1.8Mbの HLAクラス I領 域内に、 2-から 5-ヌクレオチド反復の範囲にあるマイクロサテライト座が 758個同 定された。 以上のマイクロサテライトのうち 70個に関して、 日本人集団における 多型情報量を分析した。 このうち 38個は情報的価値が高く、 ヘテロ接合度は平均 で 66%であり、平均 8.9種のアレルがあることが明らかになった(Tamiya, G. et al . (1998) Tissue Antigens, 51, 337-346; Tamiya, G. et al . (1999) Tissue Antigens 54: 221-228)。 これら 38個のマイクロサテライト反復部位を高分解能マ ッビングのために選択した。 既知の 7つの多型遺伝子およびマイクロサテライ ト [MICBヽ MICAヽ HLA- Bヽ HLA-C, HLA-Aヽ MIB (Grimaldi, M.C. et al. (1996) Hum. Immunol . , 51, 89-94) および D6S265 (Weissenbach, J. et al. (1992) Nature, 29, 794-801)]との-併用により、情報量に富む遺伝マーカーが計 45個、すなわち 41.1kb に 1つの割合で HLAクラス I領域内に定められた。 以上の高密度多型マーカーによ り、 尋常性乾癬、 ベ一チヱット病 (MIM 109650)、 急性全部ブドウ膜炎および潰瘍 性大腸炎 (MIM 191390) といった HLAクラス I関連疾患のハプロタイプ分析および マッピング分析に関する有用で正確な情報が得られると考えられる。  Through extensive genome sequencing by the present inventors, the centromeric MICB gene was converted to the telomere HLA-F gene (Mizuki, N. et al. (1997) Genomics, 42, 55-66; Shiina, T et al. (1998) Genomics, 47, 372-382; Shiina, T. et al. (1999) Immunol. Rev., 167, 193-199; Tamiya, G. et al. (1998) Tissue Antigens, 51 , 337-346), 758 microsatellite loci ranging from 2- to 5-nucleotide repeats were identified in the 1.8 Mb HLA class I region containing the HLA-B and HLA-C genes. . For 70 of these microsatellites, we analyzed polymorphism information in the Japanese population. Of these, 38 were highly informative, with an average heterozygosity of 66% and an average of 8.9 alleles (Tamiya, G. et al. (1998) Tissue Antigens, 51 , 337-346; Tamiya, G. et al. (1999) Tissue Antigens 54: 221-228). These 38 microsatellite repeat sites were selected for high resolution mapping. Seven known polymorphic genes and microsatellite [MICB ヽ MICA ヽ HLA-B ヽ HLA-C, HLA-A ヽ MIB (Grimaldi, MC et al. (1996) Hum. Immunol., 51, 89-94) And D6S265 (Weissenbach, J. et al. (1992) Nature, 29, 794-801)], resulting in a total of 45 informative genetic markers, one at 41.1 kb. Specified within the area. These high-density polymorphic markers enable haplotype and mapping analysis of HLA class I-related diseases such as psoriasis vulgaris, Behcet's disease (MIM 109650), acute pancreatitis and ulcerative colitis (MIM 191390). Useful and accurate information about
[実施例 2 ] 尋常性乾癬に関する感受性遺伝子座の特定  [Example 2] Identification of susceptibility locus for psoriasis vulgaris
本実施例では、 HLAクラス I領域内における尋常性乾癬の原因遺伝子の明確な位 置を決定するために、 上記の 38個の反復部位のうち 11個を用いて相関解析を行つ た。 選択されたマイクロサテライトは、 HLA- C遺伝子座の周囲にほぼ lOOkb当たり マイクロサテライト 1個という分解能で密に分布する (Cし 2_A、 232kb動原体側; Cl_4_l、 91kb動原体側; C1 5、 191^動原体側 1_4—3、 29kbテロメァ側; G1 3 1、 31kbテ口メァ側; C1— 2一 6、 89kbテ口メァ側; Cし 3— 2、 143kbテロメァ側; C2一 4—4、 200kbテ口メァ側; C4—2一 12、 457kbテ口メァ側; C4一 2— 25、 618kbテ口メァ側;およ び C3— 2」1ヽ 831kbテロメァ側) (図 1 )。 In this example, correlation analysis was performed using 11 out of the 38 repeat sites described above to determine the clear position of the causative gene for psoriasis vulgaris within the HLA class I region. The selected microsatellites are densely distributed around the HLA-C locus at a resolution of approximately 1 microsatellite per lOOkb (C and 2_A, 232kb centromere side; Cl_4_l, 91kb centromere side; C15, 191 ^ Centromeric side 1_4-3, 29kb telomere side; G13 1, C1-2-1.6, 89kb T-mail side; C3-2, 143kb Telo-mail side; C2-4-1-4, 200kb T-mail side; C4-212, 457kb T-mail Side; C4 1-2-25, 618 kb telomere side; and C3-2 ”1 ヽ 831 kb telomere side) (Fig. 1).
相関解析は、血縁関係にない合計 76名の日本人の尋常性乾癬患者と、 132名の健 常対照を調査対象とした。 患者は全例、 診断および治療のために東海大学医学皮 膚科 (神奈川、 日本) に入院した。 患者群は男性 51例、 女性 25例からなり、 平均 発症年齢は 33.9歳であった(SD = 15.3)。末梢血の採取前に、本研究の詳細を説明 することにより、健常者および患者の全員からィンフォームドコンセントを得た。 多型を呈するマイクロサテライト座の反復単位数 (マイクロサテライ トアレル の遺伝子型) を判定するために、 蛍光試薬 6- FAM、 HEXまたは TET (PE Biosystems, Foster City, CA)で 5,末端を標識することにより、一側性プライマーを合成した c 11種のマイクロサテライト (Cし 2_A、 Cl_4— 1、 Cl—2_5、 Cl_4— 3、 Cl_3_l、 Cし 2— 6、 Cl_3_2、 C2_4— 4、 C4_2_12、 C4_2_25、 C3_2_ll) の増幅に用いた PCRプライマーを 表 1に示した。 PCR反応混合物は、 ゲノム DNA 50ng、 dNTP (各 2.5mM) 2j 10 x バッファ一 (lOOmM Tris-HCl, pH8.3、 500mM KC1、 15niM MgCl2) 2 1ならびに順 方向および逆方向ブラィマ一 20pmol、さらに夕カラ組換え Taqポリメラ一ゼ(宝酒 造、 京都、 日本) 0.5Uを計 20 1中に含む。 96°Cで 5分間にわたり初期変性を行つ た後、 自動サーマルサイクラ一(宝酒造) を用いて、 96°C 1分間、 55°C 30秒間お よび 72°C 45秒間からなる処理を 30サイクル行い、 72°Cで 4分間の最終伸長を行わ せた。 増幅産物を 100°Cで 5分間変性させ、 ホルムアミドを含む停止バッファーと 混合した上で GS500 Tamra (PE Biosystems) のサイズ標準マーカ一とともに各レ ーンにアプライし、 自動 DNAシークェンサ一中にて、 8M尿素を含む 4%ポリアクリ ルアミド変性シークェンシングゲルで分離させた。 断片サイズは GeneScanソフト ウェア (PE Biosystems) を用いて自動判定した。 表 1 相関解析に用いたマイクロサテライトマ一力一 マイクロサテライト 位置 繰り返し単位 PCRプライマ一 The correlation analysis included a total of 76 unrelated Japanese patients with psoriasis vulgaris and 132 healthy controls. All patients were admitted to the Department of Dermatology, Tokai University (Kanagawa, Japan) for diagnosis and treatment. The patient group consisted of 51 men and 25 women with an average age of onset of 33.9 years (SD = 15.3). Prior to collection of peripheral blood, informed consent was obtained from all healthy individuals and patients by explaining the details of the study. Label the ends with fluorescent reagents 6-FAM, HEX or TET (PE Biosystems, Foster City, CA) to determine the number of repeat units (microsatellite allele genotypes) at the microsatellite loci exhibiting polymorphism it allows unilateral primers were microsatellite (C in c 11 species synthesized 2_A, Cl_4- 1, Cl-2_5 , Cl_4- 3, Cl_3_l, C and 2- 6, Cl_3_2, C2_4- 4, C4_2_12, C4_2_25 , C3_2_ll) are shown in Table 1. The PCR reaction mixture consisted of 50 ng of genomic DNA, dNTPs (2.5 mM each) 2j 10 x buffer (100 mM Tris-HCl, pH 8.3, 500 mM KC1, 15 niM MgCl 2 ) 21 and 20 pmol of forward and reverse primers, and Evening Recombinant Taq Polymerase (Takara Shuzo, Kyoto, Japan) 0.5U is included in total 201. After initial denaturation at 96 ° C for 5 minutes, 30 cycles of 96 ° C for 1 minute, 55 ° C for 30 seconds, and 72 ° C for 45 seconds were performed using an automatic thermal cycler (Takara Shuzo). This was followed by a final extension at 72 ° C for 4 minutes. The amplification product was denatured at 100 ° C for 5 minutes, mixed with a stop buffer containing formamide, applied to each lane with the size standard marker of GS500 Tamra (PE Biosystems), and placed in an automated DNA sequencer. Separation was performed on a 4% polyacrylamide denaturing sequencing gel containing 8M urea. Fragment size was automatically determined using GeneScan software (PE Biosystems). Table 1 Microsatellite markers used for correlation analysis Microsatellite Position Repeat unit PCR primer
C1_2_A Tel. (0 Vh)IMlCB (CA)23 CA: AATAGCCATGAGAAGCTATGTGGGGGAG  C1_2_A Tel. (0 Vh) IMlCB (CA) 23 CA: AATAGCCATGAGAAGCTATGTGGGGGAG
Cen. (89 W)/M1CA TG: CTACCTCCTTGCCAAACTTGCTGTTTGTG Cen. (89 W) / M1CA TG: CTACCTCCTTGCCAAACTTGCTGTTTGTG
Cl_4_l Tel. (40 iMICA (CAAA)6 CAAA: CGAGAACAACTGGCAGGACTG Cl_4_l Tel. (40 iMICA (CAAA) 6 CAAA: CGAGAACAACTGGCAGGACTG
Cen. (6 kb)/HLA-B TTTG: GACAGTCCTCATTAGCGCTGAGG Cen. (6 kb) / HLA-B TTTG: GACAGTCCTCATTAGCGCTGAGG
CI— 2— 5 Tel. (62 kb)/HLA-B (CA)4AA(CA)20 CA: CAGTAGTAAGCCAGAAGCTATTAC CI— 2— 5 Tel. (62 kb) / HLA-B (CA) 4 AA (CA) 20 CA: CAGTAGTAAGCCAGAAGCTATTAC
Cen. (19 kb)/ LA-C TG: AAGTCAAGCATATCTGCCATTTGG Cen. (19 kb) / LA-C TG: AAGTCAAGCATATCTGCCATTTGG
CI— 4一 3 Tel. (26 k聊 LA-C (GGAA)18 GGAA: TAGAAAACGCAATCTCGGCC CI—4-1 3 Tel. (26 klia LA-C (GGAA) 18 GGAA: TAGAAAACGCAATCTCGGCC
Cen. (71 kb)/OTF3 TTCC: CTGGATTAACCTGGAGACTC Cen. (71 kb) / OTF3 TTCC: CTGGATTAACCTGGAGACTC
C1J_1 Tel. (27 kb)IHLA-C (TTG)8 TTG: CAGTGACAAGCACCTGGCAC C1J_1 Tel. (27 kb) IHLA-C (TTG) 8 TTG: CAGTGACAAGCACCTGGCAC
Cen. (69 kb)/OTF3 CAA: GCCAGATGTGGTGGCATGC Cen. (69 kb) / OTF3 CAA: GCCAGATGTGGTGGCATGC
C1 J5 Tel. (85 kb)/HLA-C (TA)17 TA: TGTTCAGACCTCTTCCTGCC C1 J5 Tel. (85 kb) / HLA-C (TA) 17 TA: TGTTCAGACCTCTTCCTGCC
Cen. (1 1 kb)/OrFJ AT: GACTAGCTCTTGACTACTTG Cen. (11 kb) / OrFJ AT: GACTAGCTCTTGACTACTTG
Cl_3_2 Tel. (3フ kb)/OTF3 (TAA)16 TAA: TAGGGATGGTCCCAAACGTG Cl_3_2 Tel. (3 kb) / OTF3 (TAA) 16 TAA: TAGGGATGGTCCCAAACGTG
Cen. (7 kb)/S TTA: CCCGTGCAGGACTGATCTCC Cen. (7 kb) / S TTA: CCCGTGCAGGACTGATCTCC
C2—4—4 Tel (80 kb)/5 (GAAA)6AAAA(GAAA): GAAA: GGCTTGACTTGAAACTCAGAGACC C2-4-4 Tel (80 kb) / 5 (GAAA) 6 AAAA (GAAA) : GAAA: GGCTTGACTTGAAACTCAGAGACC
TTTC: T ATCTACTTATAGTCTATCACGG TTTC: T ATCTACTTATAGTCTATCACGG
C4 J2 Tel. (75 kb)/DDR (CA)13 CA: GAGCCACGGAGAGTCTCCCTTTATC C4 J2 Tel. (75 kb) / DDR (CA) 13 CA: GAGCCACGGAGAGTCTCCCTTTATC
Cen. (89 kb)/TUBB TG: TCCAGGAACTGTGAGTAGTAAGAAC Cen. (89 kb) / TUBB TG: TCCAGGAACTGTGAGTAGTAAGAAC
C4—2—25 Tel. (69 kb)/TUBB (TG)16 TG: TCTTCTGTGCAAGCAATGCACTGTAC C4-2-25 Tel. (69 kb) / TUBB (TG) 16 TG: TCTTCTGTGCAAGCAATGCACTGTAC
Cen. (47 kb)/HSGT260 CA: ATGTTACTTTTAGAAGATAACACTC Cen. (47 kb) / HSGT260 CA: ATGTTACTTTTAGAAGATAACACTC
C3 2 11 Tel. (50 kb)/«LA-£ (GA)22TA(GA)8 GA: AGATGGCATTTGGAGAGTGCAG C3 2 11 Tel. (50 kb) / «LA- £ (GA) 22 TA (GA) 8 GA: AGATGGCATTTGGAGAGTGCAG
Cen. (21 kb)/M/CC TC: TCCTTACAGCAGAGATATGTGG マーカ一は動原体側からテロメァ側の順に、 C1一 2一 A、 Cl_4_l、 C1_2_5 CI— 4— 3、 CI— 3_1、 CI— 2_6、 Cl—3— 2、 C2_4_4、 C4— 2_12、 C4— 2_25および C3— 2— 11である (図 1 )。 反復単位は本発明者らによって決定された配列デ一夕から決定した (Shi ina, T. et al . ( 1999) Immunol . Rev. , 167, 193- 199)。マ一カーはすべて Tamiyaら(Tamiya, G. et al . ( 1998) Tissue Antigens, 51, 337-346; Tamiya, G. et al . (1999) Tissue Antigens 54: 221-228) によって樹立された。 Telはテロメァ側、 Cenは動原体側 を表す。 PGRプライマーの配列は、 上から順に配列番号: 1〜 2 2とした。  Cen. (21 kb) / M / CC TC: TCCTTACAGCAGAGATATGTGG Markers are in the order of centromere to telomere, C12-21 A, Cl_4_l, C1_2_5 CI—4—3, CI—3_1, CI—2_6, Cl— 3-2, C2_4_4, C4-2_12, C4-2_25 and C3-2-11 (Fig. 1). The repeat units were determined from the sequence data determined by the inventors (Shi ina, T. et al. (1999) Immunol. Rev., 167, 193-199). All markers were established by Tamiya et al. (Tamiya, G. et al. (1998) Tissue Antigens, 51, 337-346; Tamiya, G. et al. (1999) Tissue Antigens 54: 221-228). Tel stands for telomere, Cen for centromere. The sequences of the PGR primers were set as SEQ ID NOs: 1 to 22 in order from the top.
アレル頻度は直接計数によって評価した。 患者と対照との間のアレル分布の有 意性の検定は、連続性の補正を行う 2法、およびフィ ッシャーの正確確率検定(P 値検定)によって行った。 P値は各座位で観測されたマイクロサテライトアレルの 数を乗することによって補正した(Pc)。 Pc<0.05の水準を統計的に有意とみなし た。 尋常性乾癬のリスクに関するォッズ比は 2 x 2分割表から算出した。 複数のァ レルに関するハーディ-ワインベルグ比率の正確確率検定 (exact P-value test) は、 Genepopソフトウェアパッケージ中にあるマルコフ連鎖法によってシミュレ一 卜した (Ta iya, G. et al . (1998) Tissue Antigens, 51, 337-346; Tamiya, G. et al . ( 1999) Tissue Antigens 54: 221-228; Guo, S.W. and Thompson, E.A. (1992) Biometrics, 48, 361-372)。 マルコフ連鎖法には、 アレル数や標本数が少ない場 合に、ハーディ-ワインベルグ比率を検定するための完全な算出を行うことができ るという利点がある。 ァレル数が < 5の場合には完全算出法によつて正確確率 (exact P-value)を算出した。ハ一ディ-ワインベルグ平衡 ^定に関しては P<0.1 の水準を統計的に有意とみなした。 Allele frequency was assessed by direct counting. The significance of the allele distribution between patients and controls was tested by two methods with continuity correction and Fisher's exact test (P-value test). P values were corrected by multiplying the number of microsatellite alleles observed at each locus (Pc). Levels with Pc <0.05 were considered statistically significant. The odds ratio for the risk of psoriasis vulgaris was calculated from a 2x2 contingency table. Exact P-value test for Hardy-Weinberg ratio for multiple alleles Were simulated by the Markov chain method in the Genepop software package (Taiya, G. et al. (1998) Tissue Antigens, 51, 337-346; Tamiya, G. et al. (1999) Tissue Antigens 54 : 221-228; Guo, SW and Thompson, EA (1992) Biometrics, 48, 361-372). The Markov chain method has the advantage that a complete calculation for testing the Hardy-Weinberg ratio can be made for small numbers of alleles and samples. When the number of alleles was <5, the exact probability (exact P-value) was calculated by the complete calculation method. The level of P <0.1 was considered statistically significant for the Hardy-Weinberg equilibrium.
患者群における HLA- Cw6の表現型頻度 (76例中 8例、 10.5%) は有意に高く、 Pc 値は 0.02であった (ォヅズ比 = 15.88)。 表 2に示した通り、 Pc値に対して <0.05 の統計的有意差が患者群で認められたアレルは以下の 4つのマイクロサテライト 座で見いだされた: Cし 2Jのアレル 303 ( 2= 12.62、 Pc = 0.0015)、 CI— 3_2のァ レル 357 ( 2 = 7.91、 Pc = 0.0034)、 C2_4_4のアレル 255、 259 (それぞれ 2 =9.53、 Pc = 0.0012および 2 = 11.58、 Pc = 0.0022)、 C4— 2— 12のアレル 223 ( ^2=7.59, Pc=0.036)。 各マイクロサテライトマ一力一におけるアレルの命名は増幅断片の サイズ長に基づいて行った。最も有意な相関が認められたのは C1一 2一 6のアレル 303 であった。 C1一 2— 6から C4— 2_12までの区域にある 4つのマイクロサテライトではい ずれも、 患者と対照との間でアレル頻度に統計的有意差が認められた (表 2およ び図 1 )。 The phenotypic frequency of HLA-Cw6 in the patient group (8 of 76, 10.5%) was significantly higher, with a Pc value of 0.02 (oz ratio = 15.88). As shown in Table 2, alleles with a statistical significance of <0.05 relative to Pc values in the patient group were found in the following four microsatellite loci: C and 2J allele 303 ( 2 = 12.62). , Pc = 0.0015), CI—alleles of 3_2 357 ( 2 = 7.91, Pc = 0.0034), alleles of C2_4_4 255, 259 ( 2 = 9.53, Pc = 0.0012 and 2 = 11.58, Pc = 0.0022, respectively), C4 — 2—12 alleles 223 (^ 2 = 7.59, Pc = 0.036). Allele naming in each microsatellite matrix was based on the size length of the amplified fragment. The most significant correlation was observed for the C1-126 allele 303. All four microsatellites in the area from C1 2-6 to C4-2_12 showed statistically significant differences in allele frequency between patients and controls (Table 2 and Figure 1). .
表 2 尋常性乾癬と相関する統計的に有意なアレル Table 2.Statistically significant alleles correlated with psoriasis vulgaris
a (c) HLA-C遺伝子の動原体側、 (t) HLA- C遺伝子のテロメァ側。 a (c) Centromere side of HLA-C gene, (t) Telomere side of HLA-C gene.
bフイツシヤーの正確確率検定による判定。 b Judgment by Fisher's exact test.
。各遺伝子座におけるマイクロサテライ トアレルの数を乗じることによって補正 した。 統計的に有意とみなした 0.05未満の Pc値に下線を施した。 . Corrected by multiplying the number of microsatellite alleles at each locus did. Pc values less than 0.05, which were considered statistically significant, are underlined.
ハーディ-ワインベルグ比率からの偏差 (確率検定) およびハーディ-ワインべ ルグ平衡の帰無仮説に対するヘテロ接合体減少 (Raymond, M. and Rous set, F. ( 1995 ) J. Hered. , 86, 248-249; Rousset, F. and Raymond, M. ( 1995) Genetics, 140, 1413-1419) に関するマルコフ連鎖法 (Guo, S.W. and Thompson, E.A. ( 1992) Biometrics, 48, 361-372) により、 以上の 11種のマイクロサテライトマーカーに 関するハーディ-ワインベルグ比率の正確確率検定も行った。予想した通り、検討 した 11種のマ一カーはすべて、健常対照ではハーディ-ワインベルグ平衡に従った (P>0.25)。 これに対して患者群では、表 3に一覧を示した通り、 5つの座位でハ 一デイ-ワインベルグ平衡からの有意な偏差が認められた (P<0. 1 ;C1_2_5、C1_3_1、 Cし 2J、 Cし 3—2および C2_4— 4)。 さらに、 5つの座位ではへテロ接合体の有意な減 少が認められた (P<0. 1; Cl_4_3、 Cし 3一 1、 Cl_3_2、 C2_4_4および C4_2_12)。 こ れに対して、 ヘテロ接合体の増加はいずれのマ一カーにも認められなかった。 C1一 3—1から C2— 4— 4までの区域にある 3つのマイクロサテライト座(Cし 3一 1、 Cl_3_2 および C2— 4_4)で、確率検定、 ヘテロ接合体減少検定ともに有意な P値が得られた ことは注目に値する (表 3および図 1 )。特に、 Cl_3_2および C2一 4_4は、 いずれの 検定でも極めて有意な P値に達した。 Deviation from Hardy-Weinberg ratio (probability test) and heterozygous reduction for the null hypothesis of Hardy-Weinberg equilibrium (Raymond, M. and Rous set, F. (1995) J. Hered., 86, 248 -249; Rousset, F. and Raymond, M. (1995) Genetics, 140, 1413-1419) using the Markov chain method (Guo, SW and Thompson, EA (1992) Biometrics, 48, 361-372). Exact tests of Hardy-Weinberg ratios for 11 microsatellite markers were also performed. As expected, all 11 markers examined followed the Hardy-Weinberg equilibrium in healthy controls (P> 0.25). In contrast, in the patient group, as shown in Table 3, significant deviations from the Hardy-Weinberg equilibrium were observed at the five loci (P <0.1; C1_2_5, C1_3_1, C1 2J, C 3-2 and C2_4-4). In addition, a significant decrease in heterozygotes was observed at the five loci (P <0.1; Cl_4_3, C_31, Cl_3_2, C2_4_4 and C4_2_12). In contrast, no increase in heterozygotes was observed in any of the markers. At three microsatellite loci (C3-11, Cl_3_2 and C2-4_4) located in the area from C1-1-3 to C2-4-4, significant P-values were obtained for both the probability test and the heterozygous reduction test. The findings are noteworthy (Table 3 and Figure 1). In particular, Cl_3_2 and C2_4_4 reached extremely significant P values in both tests.
表 3 マイクロサテライトに関するハーディ-ワインベルグ比率の正確確率検定 Table 3 Exact test of Hardy-Weinberg ratio for microsatellite
b  b
座位 H W3 S E へ丁口 S E へテ α期待値 Cヘテロ翻Sedentary position HW 3 SE to cue SE to te α expected value C heterotranslation
CJ—2—A 0.3939 0.0043 0.2881 0.0042 U.oUl リ, /οCJ-2-A 0.3939 0.0043 0.2881 0.0042 U.oUl, / ο
C1JJ 0.2443 0.0016 0.7024 0.0019 0.633 0.613C1JJ 0.2443 0.0016 0.7024 0.0019 0.633 0.613
C1 2 0,W« 0.0006 0.1599 0.0042 0.883 0.842C1 2 0, W «0.0006 0.1599 0.0042 0.883 0.842
C1 3 0.1968 0.0065 0,0362 0.0028 0.89 0.829C1 3 0.1968 0.0065 0,0362 0.0028 0.89 0.829
C1JJ 0-0203 0.561 0.461C1JJ 0-0203 0.561 0.461
C1J 0.0889 0.0023 0.1776 0.0027 0.676 0.579C1J 0.0889 0.0023 0.1776 0.0027 0.676 0.579
C1J 0,0172 0.0005 0,0051 0.0003 0.848 0.75C1J 0,0172 0.0005 0,0051 0.0003 0.848 0.75
C2JJ 0.Q097 0.0004 0,0093 0.0003 0.655 0.553C2JJ 0.Q097 0.0004 0,0093 0.0003 0.655 0.553
C4 J2 0.3006 0.0052 0,0303 0.0013 0.679 0.635C4 J2 0.3006 0.0052 0,0303 0.0013 0.679 0.635
C4 25 0.666 0.0041 0.6684 0.007 0.466 0.481C4 25 0.666 0.0041 0.6684 0.007 0.466 0.481
C3 2 Π 0.1837 0.0057 0.4787 0.0078 0.9 0.895 表中、 正確確率 (exact P- value) は、 以下のパラメ一夕一を用いるマルコフ連 鎖法に基づくシミュレーシヨンによって推定した: デメモライゼ一シヨン数 (dememorization number) = 1000、 ノ 、 チ =400、 ノ ツチ 1回当たり 0β |5(= 8000。アレル数が <5の場合には完全算出法によって正確確率を算出した。統計的 に有意とみなした 0.1未満の Ρ値に下線を施した。 SE、 標準誤差。 C3 2 Π 0.1837 0.0057 0.4787 0.0078 0.9 0.895 In the table, the exact probability (exact P-value) was estimated by a simulation based on the Markov chain method using the following parameters: dememorization number = 1000,, = = 400, notch 0β | 5 per time (= 8000. When the number of alleles is <5, the exact probability was calculated by the complete calculation method. ΡValues are underlined SE, standard error.
aハーディ-ワインベルグ比率からの偏差 (確率検定)。 a Deviation from Hardy-Weinberg ratio (probability test).
bハーディ—ワインベルグ平衡の帰無仮説に対するヘテロ接合体減少。 c患者集団におけるヘテロ接合体頻度の期待値。 b Heterozygous reduction to the null hypothesis of Hardy-Weinberg equilibrium. c Expected heterozygous frequency in patient population.
d患者集団におけるヘテロ接合体頻度の観測値。 d Observed heterozygous frequency in the patient population.
上記のように、解析したマイクロサテライトのうち Cし 2 Jから C4__2_12までの区 域に位置する 4つ (Cし 2_6、 Cl_3_2、 C2_4_4および C4— 2_12) で、 患者と対照との 間に統計的有意差が認められた(表 2および図 1 )。さらに、患者群でのハーディ -ワインベルグ平衡解析により、 Cl_3_lから C2一 4— 4までの区域にある 3つのマイク ロサテライト座 (Cl_3_l、 Cl_3_2および C2— 4_4) で、 確率検定およびへテロ接合 体減少検定の両方でハーディ-ワインベルグ平衡からの有意な偏差が認められた (表 3および図 1 )。特に、 Cl_3 2および C2 4 4はいずれの検定とも極めて有意な P値に達した。 乾癬の遺伝様式は不明であるが、 以上の 5つのマイクロサテライト 座でのヘテロ接合体の頻度が患者で期待される頻度より低かったこと(表 2 )は、 本症が遺伝的浸透率は高くないものの、劣性 HLA形質であることを示唆するものと 思われる。以上を総括すると、 C1_2_6 (HLA-Cの 89kbテロメァ側)から C2_4_4 (HLA-C の 200kbテロメァ側)までの lllkbの区域が、アレル分布およびハーディ-ワインべ ルグ平衡からの偏差の関する統計的手法のいずれによる評価でも、 >95%の信頼 水準で尋常性乾癬に関して重要な共通領域であると結論された(図 1 )。患者およ び対照例のデ一夕を取り扱う前者、患者のデータのみを取り扱う後者という 2つの 独立した統計的手法のいずれによっても尋常性乾癬に関してほぼ同一の重要な区 域が判明したことは強調する必要がある。 この結果は、 患者における HLAクラス I (HLA- A、 - Bおよび- C) およびクラス II (HLA-DRB1および- DQB1) アレルを用いた 伝達 Z不平衡テスト (transmission/disequilibrium test; TDT) およびパラメト リック連鎖解析に基づき、尋常性乾癬に関する感受性遺伝子が HLA-C遺伝子のテロ メァ側に存在することを示した以前のマッピングデータとも一致する (Jenisch, S. et al . (1998) Am. J. Hum. Genet. , 63, 191-199)。 産業上の利用の可能性 As described above, four of the analyzed microsatellites (C and 2_6, Cl_3_2, C2_4_4 and C4 and 2_12) located in the area from C and 2J to C4__2_12 have statistically significant differences between patients and controls. A significant difference was observed (Table 2 and FIG. 1). In addition, a Hardy-Weinberg equilibrium analysis of the patient group showed a probability test and heterozygotes for three microsatellite loci (Cl_3_l, Cl_3_2 and C2-4_4) in the area from Cl_3_l to C2-14-4. Both reduction tests showed significant deviations from Hardy-Weinberg equilibrium (Table 3 and FIG. 1). In particular, Cl_32 and C24 were extremely significant in both tests. P value reached. Although the mode of inheritance of psoriasis is unknown, the frequency of heterozygotes at these five microsatellite loci was lower than expected in patients (Table 2), indicating that this disease has a high genetic penetrance. Although it does not exist, it seems to indicate that it is a recessive HLA trait. To summarize the above, the lllkb area from C1_2_6 (89kb telomere of HLA-C) to C2_4_4 (200kb telomere of HLA-C) is statistically related to the allele distribution and deviation from Hardy-Weinberg equilibrium. The assessments by both determined that it was an important common area for psoriasis vulgaris with a confidence level of> 95% (Figure 1). Emphasis that nearly identical key areas for psoriasis vulgaris were identified by both independent statistical methods, the former dealing with patient and control cases overnight and the latter dealing only with patient data. There is a need to. The results indicate that the transmission / disequilibrium test (TDT) and parametrization in patients with HLA class I (HLA-A, -B and -C) and class II (HLA-DRB1 and -DQB1) alleles Based on Rick linkage analysis, this is consistent with previous mapping data indicating that a susceptibility gene for psoriasis vulgaris is located on the telomere side of the HLA-C gene (Jenisch, S. et al. (1998) Am. J. Hum. Genet., 63, 191-199). Industrial applicability
本発明により、約 lOOkbに 1個の割合で実質的に設定されたマイクロサテライト の遺伝多型マーカーを用いることを特徴とする遺伝子のマッピング方法が提供さ れた。 これにより、 効率的に疾患原因遺伝子のマッピングを行うことが可能とな る。 また、 本発明の方法は疾患の原因遺伝子以外にも、 遺伝要因を持つ任意の表 現型に関与する遺伝子のマッピングのためにも有用である。  According to the present invention, there has been provided a gene mapping method characterized by using a microsatellite genetic polymorphism marker substantially set at a ratio of about 1 per 100 kb. This enables efficient mapping of the disease-causing gene. Further, the method of the present invention is also useful for mapping genes involved in any phenotype having a genetic factor, other than the causative gene of a disease.

Claims

請求の範囲 The scope of the claims
1 .平均で 50kb〜150kbに 1個の割合で実質的に設定されたマイクロサテライトの 遺伝多型マーカーを用いることを特徴とする遺伝子マッピング方法。 1. A gene mapping method characterized by using a microsatellite genetic polymorphism marker substantially set at a ratio of one per 50 to 150 kb on average.
2 .平均で 80kb〜120kbに 1個の割合で実質的に設定されたマイクロサテライトの 遺伝多型マーカーを用いることを特徴とする遺伝子マッピング方法。  2. A gene mapping method characterized by using microsatellite genetic polymorphism markers substantially set at a ratio of one per 80 to 120 kb on average.
3 .平均で 90kb〜110kbに 1個の割合で実質的に設定されたマイクロサテライトの 遺伝多型マーカーを用いることを特徴とする遺伝子マッピング方法。  3. A gene mapping method characterized by using a microsatellite genetic polymorphism marker substantially set at a ratio of one per 90 to 110 kb on average.
4 . 遺伝子が疾患原因遺伝子である、 請求項 1〜3のいずれかに記載のマツピン グ方法。  4. The mapping method according to any one of claims 1 to 3, wherein the gene is a disease-causing gene.
5 . マイクロサテライトの遺伝多型マーカ一が、 対立遺伝子数の平均が 5個以上 であり、 かつへテロ接合度の平均が 6 0 %以上であることを特徴とする、 請求項 1〜 4のいずれかに記載のマヅビング方法。  5. The microsatellite genetic polymorphism marker according to claim 1, wherein the average number of alleles is 5 or more, and the average heterozygosity is 60% or more. The method according to any of the above.
6 . マヅビング領域が HLA領域である、請求項 1〜 5のいずれかに記載のマヅピン グ方法。  6. The mapping method according to any one of claims 1 to 5, wherein the mapping area is an HLA area.
7 . 対照健常者と無作為に選んだ疾患患者の多型マーカーの頻度を比較すること を特徴とする、 請求項 1〜6のいずれかに記載のマッピング方法。  7. The mapping method according to any one of claims 1 to 6, wherein the frequency of the polymorphism marker is compared between a control healthy subject and a randomly selected disease patient.
8 . マイクロサテライトの遺伝多型マーカ一の解析を D N Aチップと質量分析法 とを用いて行うことを特徴とする、 請求項 1〜 Ίのいずれかに記載のマヅビング 方法。  8. The method according to claim 1, wherein analysis of the genetic polymorphism marker of the microsatellite is performed using a DNA chip and mass spectrometry.
9 . 請求項 1〜 8のいずれかに記載のマッビング方法により絞り込まれた領域の S N Pを解析することにより、 標的遺伝子を特定する方法。  9. A method for identifying a target gene by analyzing SNP in a region narrowed down by the mapping method according to any one of claims 1 to 8.
1 0 . 請求項 1〜9のいずれかに記載の方法により特定された遺伝子。  10. A gene specified by the method according to any one of claims 1 to 9.
1 1 . 請求項 1 0に記載の遺伝子がコードする蛋白質。  11. A protein encoded by the gene according to claim 10.
1 2 . 請求項 1 1に記載の蛋白質に対する抗体。  12. An antibody against the protein of claim 11.
1 3 . 請求項 1 0に記載の遺伝子の一方の鎖またはその相補鎖に相補的な少なく とも 15ヌクレオチドを含むポリヌクレオチド。 13. The complement of the gene of claim 10 or one of its complements. A polynucleotide comprising 15 nucleotides.
PCT/JP2000/007621 2000-04-13 2000-10-30 Gene mapping method WO2001079482A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001577465A JPWO2001079482A1 (en) 2000-04-13 2000-10-30 Gene mapping method
US10/674,124 US7510834B2 (en) 2000-04-13 2003-09-26 Gene mapping method using microsatellite genetic polymorphism markers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-112699 2000-04-13
JP2000112699 2000-04-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10257511 A-371-Of-International 2000-10-30
US10/674,124 Continuation-In-Part US7510834B2 (en) 2000-04-13 2003-09-26 Gene mapping method using microsatellite genetic polymorphism markers

Publications (1)

Publication Number Publication Date
WO2001079482A1 true WO2001079482A1 (en) 2001-10-25

Family

ID=18624814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007621 WO2001079482A1 (en) 2000-04-13 2000-10-30 Gene mapping method

Country Status (2)

Country Link
JP (1) JPWO2001079482A1 (en)
WO (1) WO2001079482A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032160A1 (en) * 2005-09-14 2007-03-22 Tokai University Marker gene for examining hypertension
WO2009093288A1 (en) * 2008-01-25 2009-07-30 Tokai University Marker gene for examining psoriasis vulgaris
CN112522418A (en) * 2019-09-19 2021-03-19 公安部物证鉴定中心 Genetic marker for detecting human genome DNA

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025625A1 (en) * 1993-05-05 1994-11-10 The Johns Hopkins University Means for detecting familial colon cancer (fcc)

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994025625A1 (en) * 1993-05-05 1994-11-10 The Johns Hopkins University Means for detecting familial colon cancer (fcc)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Hajime TAMIYA et al., "Genome Tayousei Kaiseki ni yoru Shikkan Kanjusei Idenshi no Mapping; SNP to Micro Satellite no Hikaku", Molecular Medicine (25 April 2000), Vol. 37, No. 5, pages 526-531. *
Hajime TAMIYA et al., "MHC Ryouiki to Kansen", Idenshi Igaku (1999), Vol. 3, No. 1, pages 54-62. *
OKA A. et al., " Association analysis using refined microsatellite markers localizes a susceptibility locus for psoriasis vulgaris within a 111 kb segment telomeric to thw HLA-C gene", Human Molucular Genetics (1999), Vol. 8, No. 12, pages 2165-2170. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032160A1 (en) * 2005-09-14 2007-03-22 Tokai University Marker gene for examining hypertension
WO2009093288A1 (en) * 2008-01-25 2009-07-30 Tokai University Marker gene for examining psoriasis vulgaris
CN112522418A (en) * 2019-09-19 2021-03-19 公安部物证鉴定中心 Genetic marker for detecting human genome DNA

Also Published As

Publication number Publication date
JPWO2001079482A1 (en) 2004-04-30

Similar Documents

Publication Publication Date Title
US7510834B2 (en) Gene mapping method using microsatellite genetic polymorphism markers
JP5395767B2 (en) Transporter genes OATP-B, C, D, and E
US9434775B2 (en) Gene overexpressed in cancer
WO2001023556A1 (en) Novel hemopoietin receptor protein, nr12
JP4310104B2 (en) Gene mapping method using microsatellite polymorphism markers
WO2001009345A1 (en) Novel genes encoding protein kinase/protein phosphatase
WO2001079482A1 (en) Gene mapping method
WO2002020770A1 (en) Method of screening antitumor agent by using interaction between arf protein and hk33 protein
JP4590107B2 (en) New fetal gene
JP4189456B2 (en) Screening method for drugs regulating the interaction between ARF protein and A10 protein
JP2005505267A (en) Transmembrane proteins differentially expressed in cancer
JP2006061108A (en) Cancer diagnosis targeting gasdermin b and establishment of medicine
JP2005505272A (en) CAP-2 genes and proteins expressed in the brain associated with bipolar disorder
US20070009515A1 (en) Inflammatory skin disease-related slurp-2 gene and utilization thereof
US20030120036A1 (en) Human NOC2-related gene variants associated with lung cancer
US20030157501A1 (en) Novel human rna helicase, helicain
US20040018497A1 (en) Human obesity LIPIN3 polynucleotide and polypeptide sequences and methods of use thereof
JPWO2003031652A1 (en) Testing method for type I diabetes
WO2000004142A1 (en) Mucins
JP2003284560A (en) Abc transporter-associated gene abcc13
WO2002051999A1 (en) Novel atopic dermatitis-associated gene and proteins
AU4888799A (en) Mucins

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 577465

Kind code of ref document: A

Format of ref document f/p: F