WO2001077505A1 - Throttle valve - Google Patents

Throttle valve Download PDF

Info

Publication number
WO2001077505A1
WO2001077505A1 PCT/JP2001/002831 JP0102831W WO0177505A1 WO 2001077505 A1 WO2001077505 A1 WO 2001077505A1 JP 0102831 W JP0102831 W JP 0102831W WO 0177505 A1 WO0177505 A1 WO 0177505A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
bore
throttle
throttle valve
throttle shaft
Prior art date
Application number
PCT/JP2001/002831
Other languages
French (fr)
Japanese (ja)
Inventor
Toshio Karasawa
Hirofumi Asakura
Younosuke Hatsumi
Original Assignee
Mikuni Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corporation filed Critical Mikuni Corporation
Publication of WO2001077505A1 publication Critical patent/WO2001077505A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1005Details of the flap
    • F02D9/101Special flap shapes, ribs, bores or the like

Definitions

  • the present invention relates to a throttle valve used for a throttle body, and more particularly, to a throttle valve capable of reducing a totally closed leak amount and a change in air flow rate in a low opening region of the throttle valve.
  • a fuel supply system for an automobile gasoline engine fuel and air are separately controlled, and are electronically controlled so as to achieve a required air-fuel ratio.
  • the amount of air is controlled by a throttle valve, but it is desirable that the diameter of the throttle pod be as large as possible to improve the engine output.
  • FIG. 5 is a diagram showing a relationship between the opening degree (angle) of the throttle valve and the intake air amount.
  • the intake air volume is not zero. This is because if it is set to 0 when fully closed, the throttle valve and the pore will come into close contact, and if they are brought into close contact, the valve will be more likely to bite into the pore, making it impossible to open and close the valve. However, this is because a small gap is kept between the valve and the pore. Normally, the idling opening is set at a position slightly opened from the fully closed position.
  • the throttle valve opening is determined by the accelerator pedal depression amount. This needs to be prevented so that the vehicle can be launched at a safe speed. Therefore, it is very important that the angle ⁇ is small. In recent years, efforts have been made to minimize the engine speed during idling in order to reduce fuel consumption and silence. Therefore, it is important to be able to finely control the amount of air before and after the idling opening.
  • FIG. 6 is a view showing a conventional throttle valve.
  • a disk-shaped throttle valve 1 is disposed in a cylindrical bore 2 so as to intersect with the central axis a of the bore 2 and is fixed to a throttle shaft (not shown) penetrating the bore with screws or the like. It is mounted to be rotatable around the shaft ⁇ of the torque shaft.
  • the measures to reduce the angle when fully closed in (1) and to increase the thickness t are relatively simple in configuration and have little effect on cost. Measures are often adopted.
  • pulp 1 usually has a disk shape, but since the gap s between the valve 1 and the pore 2 is small, if the thickness t of the valve 1 is increased, the pulp rotates in the direction of the arrow shown in Fig. 6.
  • the cross-hatched portion 1a in FIG. 6 on the outer peripheral surface of the pulp theoretically interferes with the pore 2.
  • This part of l a is referred to here as the “consolidation zone”.
  • the penetration zone is perpendicular to the line a '(which overlaps with the line a in Fig. 6) which passes through the point of intersection with the rotation axis 0 on the outer peripheral surface of the valve 1 and is parallel to the central axis a.
  • a line b drawn along the outer periphery of the valve 1 so as to pass through the rotation 0 and the rotation 0.
  • the present invention has been made in order to solve the above problems, and has as its object to provide a throttle valve capable of reducing an increase in the amount of intake air when the valve is fully closed and in a low opening range. Disclosure of the invention
  • a throttle valve according to the present invention is arranged in a cylindrical bore so as to intersect with the center axis of the bore, and is rotatably supported by a throttle shaft passing through the bore.
  • the penetration zone near the intersection with the throttle shaft is It is characterized by being escaped so as to avoid interference.
  • the penetration zone is located inside a spherical surface centered on the center point of the valve and having a diameter equal to the diameter of the valve.
  • a disk-shaped throttle valve that is disposed in a cylindrical bore so as to intersect with the center axis of the bore and is rotatably supported by a throttle shaft that penetrates the bore;
  • the thickness is divided into two parts by a plane including the rotation axis, and a semicircular step is formed on one side of the throttle shaft on the front side and a semicircular step on the other side of the throttle shaft. It is characterized by being formed.
  • a disc-shaped throttle valve arranged in a cylindrical bore so as to intersect with the center axis of the bore and rotatably supported by a throttle shaft penetrating the bore,
  • the thickness is divided into two parts by a plane including the rotation axis, and the rear part in the direction of rotation of the valve of one of the two parts of the thickness of the throttle shaft is the thick part, and the outer diameter of the thick part
  • the outer peripheral surface of the thick portion is located inside a spherical surface centered on the center point of the valve and having a diameter equal to the diameter of the valve.
  • FIG. 1 is a perspective view of a valve according to a first embodiment of the present invention.
  • FIG. 3 shows a second embodiment of the present invention.
  • FIG. 4 is a side view of a valve according to a third embodiment of the present invention.
  • Fig. 5 is a diagram showing the relationship between the throttle valve opening and the amount of intake air. is there.
  • FIG. 6 is a diagram of a conventional throttle valve, and is a diagram for explaining a penetration zone. '' Best mode for carrying out the invention
  • FIG. 1 is a perspective view of a valve according to a first embodiment of the present invention.
  • a valve 10 is located in a bore 2 and is rotatably mounted by a throttle shaft (not shown).
  • the X axis in the figure overlaps with the axis of the throttle shaft, and the z axis overlaps with the center axis of bore 2.
  • the y-axis is an axis that is orthogonal to both the X-axis and the z-axis.
  • point 0 ' is the intersection of the X, y, and z axes, which is the center point of the valve 10.
  • the maximum relief amount ⁇ 5 max at the outer peripheral edge of the valve based on the equation (1) can be obtained as follows from FIG. Incorporation zone 1 0
  • the shape of a may be a slope, but if the shape is a sphere, the gap between the bore 2 and the valve 10 approaches a constant, and the angle ⁇ can be reduced.
  • FIG. 3 is a view showing a valve according to a second embodiment of the present invention.
  • the thickness of the valve 20 is divided into two sides by a plane c passing through the center axis of the throttle shaft and parallel to the disk of the valve, and the rotation direction of the valve 20 is divided into two.
  • (5 max is a value obtained from the above equations (1) and (2).
  • the diameter D v of the valve 20 is Is approximately the same size as the bore diameter D b.
  • the pulp 20 has a state in which a semi-circular step is formed in the thickness direction, and one of the upper and lower sides of the valve has a semi-circular step 20 formed in the front half. The other of the upper and lower sides has a semicircular step 20c formed in the back half.
  • the radius of the entire thickness of the valve 20 was reduced by ⁇ max.
  • the gap between the bore and the bore is limited to ⁇ 5 max for only about 1 to 2 of the valve thickness. In the remaining part, the gap between the bore and the bore was almost zero, so that the gap between the valve and the bore could be significantly reduced. With this configuration, even if the valve 20 rotates in the direction of the arrow in FIG.
  • the entire valve 20 including the penetration zone 20a can be prevented from penetrating into the bore.
  • the tightness of the large-diameter part with the seal is improved, the amount of air when fully closed is reduced, and the flow gradient in the low opening region can be reduced.
  • a relief is provided for a portion 20 a ′ overlapping with the throttle shaft 21 in the recessed zone 20 a. No need. Therefore, it is not necessary to hit the bore even if 20a is included except for 20a '. That is, considering the thickness of the throttle shaft, the amount of the step (5 can be made smaller than dmax, and the flow gradient in the low opening region can be further reduced. Escape to the part overlapping with the throttle shaft The non-forming is also applicable in the embodiment of FIG.
  • the embodiment of FIG. 1 Comparing the embodiment of FIG. 1 with the embodiment of FIG. 3, the embodiment of FIG. 1 has a smaller leakage amount when fully closed, but is difficult to machine, and the embodiment of FIG. It is easy to process and easy to mold.
  • FIG. 4 is a view showing a valve according to a third embodiment of the present invention.
  • the valve 30 in the figure is configured to rotate and open in the direction of the arrow.
  • the shape of the lower portion of the pulp 30 is the same as that of the embodiment of FIG. 3, and a step 30a is formed behind the pulp 30 in the rotation direction, but the upper half is A thick plate portion 30b is formed, and an outer peripheral surface 30c of the thick plate portion 30b facing the bore is formed in an arc shape.
  • the thick plate portion 3 Ob has a gradient such that it is thickest around the valve 30 and becomes thinner toward the center.
  • the amount of the step ⁇ 5 on the outer peripheral surface 30c can be made smaller than ⁇ max in consideration of the thickness of the throttle shaft 31.
  • the thickness of the valve is increased in the upper half of the valve, the air flow rate when the valve is fully closed can be reduced, and the increase in the amount of intake air in the low opening region of the throttle valve can be reduced.
  • the upper and lower portions of the valve cannot be symmetrical. This is because when the valve 30 rotates in the direction of the arrow, the upper side can rotate without any problem, but the lower side interferes with the pores and cannot rotate.
  • a throttle valve according to the present invention is arranged in a cylindrical bore so as to intersect with a center axis of the bore, and is rotatably supported by a throttle shaft passing through the bore. Since the penetration zone near the crossing with the throttle shaft is escaped to avoid interference with the bore, the throttle valve The gap between the bore and the bore can be minimized, the amount of air leakage when fully closed is minimized, and the increase in engine speed in the low opening range can be moderated.
  • a relief is not formed in a portion of the outer periphery of the pulp overlapping the throttle shaft, the amount of relief can be reduced, and the amount of intake air when fully closed can be reduced.
  • a disc-shaped throttle valve is disposed in a cylindrical pore so as to intersect with the center axis of the pore, and is rotatably supported by a throttle shaft penetrating the bore.
  • the thickness is divided into two parts by the plane including the rotation axis to form a semicircular step on the front side on one side of the throttle shaft, and a semicircular step on the back side on the other side of the throttle shaft. Due to the configuration, the gap between the throttle valve and the bore can be reduced with a relatively simple configuration.
  • a disc-shaped throttle valve disposed in a cylindrical bore so as to intersect the center axis of the bore and rotatably supported by a throttle shaft passing through the bore,
  • the thickness of the valve is divided into two parts on the plane including the rotation axis, and the thickness of the one side of the throttle shaft is defined as the thick part on the rear side in the direction of rotation of the valve. If the diameter is made smaller than the outer diameter on the front side in the rotation direction to provide a step, and the outer peripheral surface of the thick portion is located inside the spherical surface having the diameter of the valve centered on the center point of the valve.
  • the gap between the throttle pulp and the pore can be smaller than that described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Lift Valve (AREA)

Abstract

A throttle valve (10) disposed in a cylindrical bore (2) so as to cross the center axis of the bore and supported rotatably by a throttle shaft passing through the bore, wherein a bitten zone (10a) (diagonally shaded area) on the external surface of the throttle valve (10) near the area crossing the throttle shaft is removed by cutting so as to avoid an interference with the bore (2), and the maximum value δ max of a recess is shown by the expression (2); instead of forming such a recess, height differences (20b) and (20c) may be formed as shown in Fig. 3 or a thick wall part (30b) may be formed as shown in Fig. 4, whereby an increase in intake air volume at the time when the valve is fully closed and in a small opening area of the valve can be suppressed.

Description

明細 スロッ トルバルブ 技術分野  Description Throttle valve Technical field
本発明は、 スロッ トルボディに使用されるスロッ トルバルブに関し、 特に、 全閉リーク量を減少するとともに、 スロッ トルバルブの低開度領 域における空気の流量変化を小さくすることができるスロッ トルバルブ に関する。 背景技術  The present invention relates to a throttle valve used for a throttle body, and more particularly, to a throttle valve capable of reducing a totally closed leak amount and a change in air flow rate in a low opening region of the throttle valve. Background art
自動車のガソリンエンジン等における燃料供給システムでは、 燃料と 空気とは別々に制御され、 要求される空燃比になるように電子制御され ている。そして、空気量の制御は、スロッ トルバルブにより行われるが、 エンジン出力を向上させるために、 スロッ トルポディのポア径は、 極力 大きくする方が望ましい。  In a fuel supply system for an automobile gasoline engine, fuel and air are separately controlled, and are electronically controlled so as to achieve a required air-fuel ratio. The amount of air is controlled by a throttle valve, but it is desirable that the diameter of the throttle pod be as large as possible to improve the engine output.
第 5図は、 スロッ トルバルブの開度 (角度) と、 吸入空気量との関係 を示す線図である。 同図において、 スロッ トルバルブが全閉のとき、 吸 入空気量は 0 なっていない。 これは、 全閉のとき 0にすると、 スロッ トルバルブとポアとが密着することになり、 密着させると、 バルブがポ ァにかじりつき易くなつて、 バルブの開閉操作が不能になるため、 全閉 時でもバルブとポアとの間に微少な隙間が保たれるようにしているから 'である。 そして、 通常は、 全閉の位置から若干開いた位置にアイ ドリン グ開度が設定される。  FIG. 5 is a diagram showing a relationship between the opening degree (angle) of the throttle valve and the intake air amount. In the figure, when the throttle valve is fully closed, the intake air volume is not zero. This is because if it is set to 0 when fully closed, the throttle valve and the pore will come into close contact, and if they are brought into close contact, the valve will be more likely to bite into the pore, making it impossible to open and close the valve. However, this is because a small gap is kept between the valve and the pore. Normally, the idling opening is set at a position slightly opened from the fully closed position.
スロッ トルバルブがアイ ドリングの位置から開き始めると、 開度の小 さい領域では、 吸入空気量の増加が小さく、 開度が大きくなると、 急激 に上昇するようになっている。 そして、 この曲線のアイ ドリング時にお ける接線の勾配 (角度) をなるベく小さく し、 アイ ドリング状態から バルブが開き始めるときの吸入空気量の変化を小さくすることが望まれ ている。 When the throttle valve starts to open from the idling position, the increase in the amount of intake air is small in the small opening range, and suddenly increases when the opening increases. To rise. It is desired that the slope (angle) of the tangent at the time of idling of this curve be made as small as possible so that the change in the amount of intake air when the valve starts to open from the idling state.
このようにするのは、 次の理由による。 スロッ トルバルブの開度は、 アクセルペダルの踏み込み量により決まるのであるが、 アイ ドリング状 態からアクセルペダルを踏み込み始めたとき、 吸入空気量が急激に増加 すると、 車が急発進することになるので、 これを防止して、 安全なスピ ードで発進できるようにする必要がある。 そのために、 上記の角度 αが 小さいことが非常に重要になるからである。 また、 最近のエンジンは、 省燃費、 静寂性を求め、 アイ ドリング時の回転数を極力小さくするよう な努力がなされている。 そのため、 アイ ドリング開度前後の空気量を微 妙にコントロールできることが重要である。  This is done for the following reasons. The throttle valve opening is determined by the accelerator pedal depression amount. This needs to be prevented so that the vehicle can be launched at a safe speed. Therefore, it is very important that the angle α is small. In recent years, efforts have been made to minimize the engine speed during idling in order to reduce fuel consumption and silence. Therefore, it is important to be able to finely control the amount of air before and after the idling opening.
第 6図は、 従来のスロッ トルバルブを示す図である。 円板形状をした スロッ トルバルブ 1は、 円筒形状のポア 2内に、 ボア 2の中心軸 aと交 叉するように配置され、 ポアを貫通する図示しないスロッ トルシャフ ト にビス等で固定され、 スロッ トルシャフトの軸〇を中心に回動可能に取 り付けられている。  FIG. 6 is a view showing a conventional throttle valve. A disk-shaped throttle valve 1 is disposed in a cylindrical bore 2 so as to intersect with the central axis a of the bore 2 and is fixed to a throttle shaft (not shown) penetrating the bore with screws or the like. It is mounted to be rotatable around the shaft の of the torque shaft.
上記の角度 αを小さくするために、 従来は、  Conventionally, to reduce the angle α,
( 1 ) 第 6図に示すスロッ トルバルブ 1の全閉持の角度 を小さく し、 さらに、板厚 tを厚く して低開度域の空気量の変化を要求値に近づける。 (1) Reduce the fully closed angle of the throttle valve 1 shown in Fig. 6 and increase the plate thickness t to make the change in the air amount in the low opening range close to the required value.
( 2 ) 全閉時の角度 Sを 0にする。 そのために、 バルブの外周面をほぼ ポア径に等しい直径の球面とした真円バルブを採用する。 (2) Set the fully closed angle S to 0. For this purpose, a perfect circular valve whose outer peripheral surface is a spherical surface with a diameter approximately equal to the pore diameter is adopted.
( 3 ) アクセルワイヤレバ一比を変更して低開度域における空気量の変 化を小さくする、 といったリンク系での対応を図る。  (3) Change the accelerator wire lever ratio to reduce the change in the amount of air in the low opening range.
( 4 ) 球状ポアと球状バルブによる対応。 等の対策が採用されてきた。 (4) Correspondence with spherical pore and spherical valve. And other measures have been adopted.
上記の対策のうち、 (1 ) の全閉時の角度 を小さく し、 さらに、板厚 tを厚くする対応は、 比較的に構成が簡単であり、 コストへの影響が少 ないことから、 この対策を採用する場合も多い。  Among the above countermeasures, the measures to reduce the angle when fully closed in (1) and to increase the thickness t are relatively simple in configuration and have little effect on cost. Measures are often adopted.
ところで、 パルプ 1は、 通常、 円板形状であるが、 バルブ 1とポア 2 との隙間 sが小さいことから、 バルブ 1の板厚 tを厚くすると、 第 6図 に示す矢印方向にパルプが回転したとき、 パルプ外周面の第 6図でク口 スハッチングした部分 1 aが、 理論的にポア 2と干渉することになる。 この l aの部分をここでは 「嚙み込みゾーン」 ということにする。 嚙み 込みゾーンは、 バルブ 1の外周面の回転軸 0と交わる点を通り中心軸 a と平行な線 a ' (第 6図では線 aと重なっている) と、 この線 a ' と直交 する方向で、 かつ回転 0を通るようにバルブ 1の外周に沿って引いた 線 bとで挟まれた部分である。  By the way, pulp 1 usually has a disk shape, but since the gap s between the valve 1 and the pore 2 is small, if the thickness t of the valve 1 is increased, the pulp rotates in the direction of the arrow shown in Fig. 6. In this case, the cross-hatched portion 1a in FIG. 6 on the outer peripheral surface of the pulp theoretically interferes with the pore 2. This part of l a is referred to here as the “consolidation zone”. The penetration zone is perpendicular to the line a '(which overlaps with the line a in Fig. 6) which passes through the point of intersection with the rotation axis 0 on the outer peripheral surface of the valve 1 and is parallel to the central axis a. And a line b drawn along the outer periphery of the valve 1 so as to pass through the rotation 0 and the rotation 0.
そこで、 この嚙み込みゾーン 1 aがボアと干渉しないように、 バルブ 1とポア 2との間の隙間 sを大きくするようにしている。 そのため、 全 閉時ゃアイ ドリング時の吸入空気量が多くなり、 角度 αも必然的に大き くなつてしまう、 という問題があった。  Therefore, the gap s between the valve 1 and the pore 2 is increased so that the penetration zone 1a does not interfere with the bore. For this reason, there has been a problem that the amount of intake air when fully closed and when idling increases, and the angle α inevitably increases.
本発明は、 上記の問題を解決すべくなされたもので、 バルブの全閉時 と低開度域における吸入空気量の増加を少なくすることができるスロッ トルバルブを提供することを目的としている。 発明の開示  The present invention has been made in order to solve the above problems, and has as its object to provide a throttle valve capable of reducing an increase in the amount of intake air when the valve is fully closed and in a low opening range. Disclosure of the invention
本発明のスロッ トルバルブは、 円筒形状のボア内に該ポアの中心軸と 交叉するように配置され、 ボアを貫通するスロッ トルシャフトにより回 動可能に支持されるスロッ トルバルブにおいて、 スロッ トルバルブ外周 面の上記スロッ トルシャフトと交叉する近傍の嚙み込みゾーンが、 ポア との干渉を避けるように逃がされていることを特徴としている。 A throttle valve according to the present invention is arranged in a cylindrical bore so as to intersect with the center axis of the bore, and is rotatably supported by a throttle shaft passing through the bore. The penetration zone near the intersection with the throttle shaft is It is characterized by being escaped so as to avoid interference.
上記嚙み込みゾーンが、 バルブの中心点を中心としバルブの直径を直 径とする球面の内側にあることが望ましい。  It is preferable that the penetration zone is located inside a spherical surface centered on the center point of the valve and having a diameter equal to the diameter of the valve.
または、 円筒形状のポア内に該ボアの中心軸と交叉するように配置さ れ、 ボアを貫通するスロッ トルシャフ トにより回動可能に支持される円 板形状のスロッ トルバルブであって、 スロッ トルバルブの厚さを回転軸 を含む平面で 2分して、 スロッ トルシャフ トの一方側では表側に半円状 の段差部を形成し、 スロッ トルシャフ トの他方側では裏側に半円状の段 差部を形成したことを特徴としている。  Or a disk-shaped throttle valve that is disposed in a cylindrical bore so as to intersect with the center axis of the bore and is rotatably supported by a throttle shaft that penetrates the bore; The thickness is divided into two parts by a plane including the rotation axis, and a semicircular step is formed on one side of the throttle shaft on the front side and a semicircular step on the other side of the throttle shaft. It is characterized by being formed.
上記段差部がバルブの中心点を中心としパルプの直径を直径とする球 面の内側に入る構成とすることができる。  It is possible to adopt a configuration in which the step portion enters the inside of a spherical surface having the diameter of the pulp centered on the center point of the valve.
又は、円筒形状のボア内に該ポアの中心軸と交叉するように配置され、 ボアを貫通するスロッ トルシャフトにより回動可能に支持される円板形 状のスロッ トルバルブであって、 スロッ トルバルブの厚さを回転軸を含 む平面で 2分し、 スロッ トルシャフ トの一方側について上記 2分した厚 さの内のバルブの回転方向の後方側を厚肉部とし、 該厚肉部の外径を、 回転方向前側の外径より小さく して段差を設.け、 該厚肉部の外周面が、 バルブの中心点を中心としバルブの直径を直径とする球面の内側にある ことを特徴としている。 図面の簡単な説明  Alternatively, a disc-shaped throttle valve arranged in a cylindrical bore so as to intersect with the center axis of the bore and rotatably supported by a throttle shaft penetrating the bore, The thickness is divided into two parts by a plane including the rotation axis, and the rear part in the direction of rotation of the valve of one of the two parts of the thickness of the throttle shaft is the thick part, and the outer diameter of the thick part The outer peripheral surface of the thick portion is located inside a spherical surface centered on the center point of the valve and having a diameter equal to the diameter of the valve. I have. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1実施例で、 バルブの斜視図を示す。  FIG. 1 is a perspective view of a valve according to a first embodiment of the present invention.
第 2図は、 第 1図の y = 0における X— z平面図である。  FIG. 2 is an Xz plan view at y = 0 in FIG.
第 3図は、 本発明の第 2実施例である。  FIG. 3 shows a second embodiment of the present invention.
第 4図は、 本発明の第 3実施例で、 バルブの側面図である。  FIG. 4 is a side view of a valve according to a third embodiment of the present invention.
第 5図は、 スロッ トルバルブの開度と吸入空気量の関係を示す線図で ある。 Fig. 5 is a diagram showing the relationship between the throttle valve opening and the amount of intake air. is there.
第 6図は、 従来のスロッ トルバルブの図で、 嚙み込みゾーンを説明す る図である。 ' 発明を実施するための最良の形態  FIG. 6 is a diagram of a conventional throttle valve, and is a diagram for explaining a penetration zone. '' Best mode for carrying out the invention
以下に本発明の実施例を図面によって説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第 1図は本発明の第 1実施例で、 バルブの斜視図を示す。 同図におい て、 バルブ 1 0はボア 2内にあって、 図示しないスロッ トルシャフトに より回動可能に装着されている。 図中の X軸はスロッ トルシャフトの軸 と重なり、 z軸はボア 2の中心軸と重なっている。 y軸は、 X軸と z軸 の双方に直交する軸である。 そして、 点 0 ' は X, y , z軸の交点で、 バルブ 1 0の中心点である。  FIG. 1 is a perspective view of a valve according to a first embodiment of the present invention. In the figure, a valve 10 is located in a bore 2 and is rotatably mounted by a throttle shaft (not shown). The X axis in the figure overlaps with the axis of the throttle shaft, and the z axis overlaps with the center axis of bore 2. The y-axis is an axis that is orthogonal to both the X-axis and the z-axis. And point 0 'is the intersection of the X, y, and z axes, which is the center point of the valve 10.
第 1図において、 嚙み込みゾーン 1 0 aを画定する線 a ' と線 bは、 第 6図で説したのと同じである。 バルブ 1 0とボア 2との間の隙間を s としたとき、 s = 0であって、 しかもバルブ 1とボア 2とのかじり付き を発生させないためには、バルブ 1 0の嚙み込みゾーン 1 0 aの部分を、 第 1図に示すように線 b上では 0でバルブ外周縁に向かって漸増し、 線 a ' とバルブ外周縁とが交わるところで最大の d maxとなるように削り 取った逃がしのある形状に成形する必要がある。 すなわち、 第 1図のパ ルブ 1 0の嚙み込みゾーン 1 0 aは、 点〇' を中心とするバルブ 1 0の 直径 D vの球の内側に入るように逃がしている。 換言すれば、 点〇' か ら嚙み込みゾーン 1 0 aの任意の点までの距離 rが、  In FIG. 1, the lines a ′ and b that define the embedding zone 10a are the same as those described in FIG. Assuming that the gap between valve 10 and bore 2 is s, s = 0, and in order to prevent galling between valve 1 and bore 2, the penetration zone 1 of valve 10 must be As shown in Fig. 1, the portion of 0a was gradually increased toward the outer peripheral edge of the valve at 0 on line b, and was cut off so that the maximum dmax was reached at the intersection of line a 'and the outer peripheral edge of the valve. It is necessary to form it into a shape with relief. That is, the penetration zone 10a of the valve 10 in FIG. 1 is released so as to enter the inside of the sphere having the diameter Dv of the valve 10 centered on the point 〇 '. In other words, the distance r from point 〇 'to any point in the penetration zone 10a is
' r < ( D v / 2 ) ( 1 ) 'r <(Dv / 2) (1)
となるようにしている。 I am trying to be.
そして、 (1 ) 式に基づくバルブ外周縁部での最大逃がし量 <5 maxは、 第 2図により次のようにして求めることができる。 嚙み込みゾーン 1 0 aの形状は、 斜面でもよいが、 球面にすると、 ボア 2とバルブ 10の隙 間が一定に近づき、 角 αを小さくすることができる。 Then, the maximum relief amount <5 max at the outer peripheral edge of the valve based on the equation (1) can be obtained as follows from FIG. Incorporation zone 1 0 The shape of a may be a slope, but if the shape is a sphere, the gap between the bore 2 and the valve 10 approaches a constant, and the angle α can be reduced.
第 2図は、 ζ— X平面の y = 0におけるパルプ 10の断面図である。 そして、全閉時におけるノ 5ルブの設定角度(第 6図の Θに相当する角度) を 。とし、 バルブ 1 0の板厚 = tとし、 rく (D v/2) とすると、 【式 1】
Figure imgf000008_0001
上記 (1) 式より
FIG. 2 is a cross-sectional view of the pulp 10 at y = 0 on the ζ-X plane. Then, set the angle of the knob when fully closed (the angle corresponding to Θ in Fig. 6). If the plate thickness of the valve 10 = t, and r (D v / 2), then:
Figure imgf000008_0001
From the above equation (1)
【式 2】
Figure imgf000008_0002
となる。
[Equation 2]
Figure imgf000008_0002
Becomes
一般的に、 t = l〜4mm、 。= 0〜20° 、 バルブ 1 0の直径 D v =ポアの直径 Db = 20〜80mmのスロッ トルボディにおいては、 Generally, t = l ~ 4mm,. = 0 to 20 °, diameter of valve 10 D v = pore diameter Db = 20 to 80 mm
<5max> 0. 003〜0. 229 mm <5max> 0.003 to 0.229 mm
となる。 このうち最小値 0. 003mmは、 t = l、 。=0° 、 Db 80mmの場合で、最大値 0. 229mmは、 t = 4mm、 。=20° 、 D b = 20mmの場合である。 Becomes The minimum value of 0.003mm is t = l,. = 0 °, Db 80mm, maximum value 0.229mm, t = 4mm,. = 20 ° and D b = 20 mm.
以上から、 嚙み込みゾーン 10 aをバルブの直径 Dvの球より小さく なるようにすれば、 パルプとボアとの間の隙間 sを s = 0としても、 バ ルブがポアにかじりつくことが無くなることになる。  From the above, if the penetration zone 10a is made smaller than the bulb diameter Dv, the valve will not stick to the pore even if the gap s between the pulp and the bore is s = 0. become.
また、 バルブをスロッ トルボディに組み込んだ後、 嚙み込みゾーン部 の除肉された部位に M02 などを塗ると塗布し易く、剥がれにくい(固 化し易い) ことで、 さらに全閉度を向上させ、 アイ ドリング開度前後の 空気量を微妙にコントロールすることができる。 Also, after incorporating a valve in the slot Torubodi, easily coated with paint and M0 2 in removing the meat has been part of the zone part narrowing seen嚙, difficult to peel off (solid This makes it possible to further improve the fully closed position and finely control the air volume before and after the idling opening.
第 3図は、 本発明の第 2実施例のバルブを示す図である。 この実施例 では、 バルブ 2 0の板厚を、 スロッ トルシャフトの中心軸を通りバルブ の円板に平行な平面 cで表裏に 2分し、 2分された内の、 バルブ 2 0の 回転方向の後方側に (5 maxの段差を形成している。 ここで、 (5 maxは、 上記の式 (1 ) 及び (2 ) から求められた値である。 また、 バルブ 2 0 の径 D vは、 ボアの径 D bとほぼ同じ大きさとしている。  FIG. 3 is a view showing a valve according to a second embodiment of the present invention. In this embodiment, the thickness of the valve 20 is divided into two sides by a plane c passing through the center axis of the throttle shaft and parallel to the disk of the valve, and the rotation direction of the valve 20 is divided into two. (5 max is a value obtained from the above equations (1) and (2). In addition, the diameter D v of the valve 20 is Is approximately the same size as the bore diameter D b.
パルプ 2 0は、 第 3図 (b ) に示すように厚さ方向に半円状の段がつ いた状態となり、 バルブの上下の一方が表半分に半円状の段差 2 0 が 形成され、上下の他方が裏半分に半円状の段差 2 0 cが形成されている。 従来は、 バルブ 2 0の厚さ全体について、 その半径が ό maxだけ小さく なるようにしていたが、 本発明では、 バルブの板厚のほぼ 1ノ2につい てのみボアとの隙間を <5 maxとし、 残りの部分は、 ボアとの隙間をほぼ 0としたので、バルブとボアとの間の隙間を大幅に狭めることができた。 このような構成とすれば、 バルブ 2 0が第 4図の矢印方向に回転して も、 嚙み込みゾーン 2 0 aを含むバルブ 2 0全体がボアに嚙み込むこと を防止でき、 同時に段付きの太径部の密閉性が上がり、 全閉時の空気量 を減少させ、低開度領域における流量勾配 を小さくすることができる。 第 3図の実施例において、 スロッ トルシャフト 2 1の太さを考慮した 場合、 嚙み込みゾーン 2 0 aの内、 スロッ トルシャフト 2 1 と重なる部 分 2 0 a ' については、 逃げを設ける必要がない。 したがって、 2 0 a ' を除く 2 0 aの嚙み込み —ンさえボアに当たらなければよい。 すなわ ち、 スロッ トルシャフトの太さを考慮すれば、 段差の量 (5は、 d maxよ り小さくすることが可能となり、 低開度領域における流量勾配 をさら に小さくすることができる。 このスロッ トルシャフトと重なる部分に逃 げを形成しないことは、 第 1図の実施例でも適用可能である。 As shown in FIG. 3 (b), the pulp 20 has a state in which a semi-circular step is formed in the thickness direction, and one of the upper and lower sides of the valve has a semi-circular step 20 formed in the front half. The other of the upper and lower sides has a semicircular step 20c formed in the back half. Conventionally, the radius of the entire thickness of the valve 20 was reduced by ό max. However, in the present invention, the gap between the bore and the bore is limited to <5 max for only about 1 to 2 of the valve thickness. In the remaining part, the gap between the bore and the bore was almost zero, so that the gap between the valve and the bore could be significantly reduced. With this configuration, even if the valve 20 rotates in the direction of the arrow in FIG. 4, the entire valve 20 including the penetration zone 20a can be prevented from penetrating into the bore. The tightness of the large-diameter part with the seal is improved, the amount of air when fully closed is reduced, and the flow gradient in the low opening region can be reduced. In the embodiment of FIG. 3, in consideration of the thickness of the throttle shaft 21, a relief is provided for a portion 20 a ′ overlapping with the throttle shaft 21 in the recessed zone 20 a. No need. Therefore, it is not necessary to hit the bore even if 20a is included except for 20a '. That is, considering the thickness of the throttle shaft, the amount of the step (5 can be made smaller than dmax, and the flow gradient in the low opening region can be further reduced. Escape to the part overlapping with the throttle shaft The non-forming is also applicable in the embodiment of FIG.
第 1図と第 3図の実施例を比べると、 第 1図の実施例の方が、 全閉時 リーク量は少なくなるが、 加工が困難であり、 第 3図の実施例の方が、 加工が容易で、 成形し易いという特徴がある。  Comparing the embodiment of FIG. 1 with the embodiment of FIG. 3, the embodiment of FIG. 1 has a smaller leakage amount when fully closed, but is difficult to machine, and the embodiment of FIG. It is easy to process and easy to mold.
第 4図は、 本発明の第 3の実施例のバルブを示す図である。 同図のバ ルブ 3 0は、 矢印方向に回転して開く構成である。 この実施例では、 バ ルプ 3 0の下 分の形状は第 3図の実施例と同じで、 パルプ 3 0の回転 向の後方に段差部 3 0 aを形成しているが、 上半分については、 厚板 部 3 0 bを形成し、 この厚板部 3 0 bのボアと対向する外周面 3 0 cを 円弧状にしている。 厚板部 3 O bは、 バルブ 3 0の周辺が最も厚く、 中 心に向かうに連れて薄くなるような勾配がつけられている。  FIG. 4 is a view showing a valve according to a third embodiment of the present invention. The valve 30 in the figure is configured to rotate and open in the direction of the arrow. In this embodiment, the shape of the lower portion of the pulp 30 is the same as that of the embodiment of FIG. 3, and a step 30a is formed behind the pulp 30 in the rotation direction, but the upper half is A thick plate portion 30b is formed, and an outer peripheral surface 30c of the thick plate portion 30b facing the bore is formed in an arc shape. The thick plate portion 3 Ob has a gradient such that it is thickest around the valve 30 and becomes thinner toward the center.
また、 この外周面 3 0 cの段差の量 <5は、 スロッ トルシャフト 3 1の 太さを考慮すれば、 δ maxより小さくすることが可能である。 また、 バ ルブの上半分ではバルブの板厚が厚くなるので、 全閉時の空気流量を減 少させ、 スロッ トルバルブの低開度領域における吸入空気量の増加を小 さくすることができる。  In addition, the amount of the step <5 on the outer peripheral surface 30c can be made smaller than δmax in consideration of the thickness of the throttle shaft 31. In addition, since the thickness of the valve is increased in the upper half of the valve, the air flow rate when the valve is fully closed can be reduced, and the increase in the amount of intake air in the low opening region of the throttle valve can be reduced.
この実施例の場合、 バルブの上下を対称形状にすることはできない。 というのは、 バルブ 3 0が矢印方向に回転したとき、 上側は問題なく回 転できるが、 下側はポアと干渉して回らなくなってしまうからである。 産業上の利用可能性  In this embodiment, the upper and lower portions of the valve cannot be symmetrical. This is because when the valve 30 rotates in the direction of the arrow, the upper side can rotate without any problem, but the lower side interferes with the pores and cannot rotate. Industrial applicability
本発明のスロッ トルバルブは、 円筒形状のポア内に該ボアの中心軸と 交叉するように配置され、 ポアを貫通するスロッ トルシャフ トにより回 動可能に支持されるスロッ トルバルブにおいて、 スロッ トルバルブ外周 面の上記スロッ トルシャフトと交叉する近傍の嚙み込みゾーンが、 ボア との干渉を避けるように逃がされている構成なので、 スロッ トルバルブ とボアとの間の隙間を最小にし、 全閉時の空気リーク量を最小にし、 か つ、 低開度領域におけるエンジン回転の上昇を緩やかにすることができ る。 A throttle valve according to the present invention is arranged in a cylindrical bore so as to intersect with a center axis of the bore, and is rotatably supported by a throttle shaft passing through the bore. Since the penetration zone near the crossing with the throttle shaft is escaped to avoid interference with the bore, the throttle valve The gap between the bore and the bore can be minimized, the amount of air leakage when fully closed is minimized, and the increase in engine speed in the low opening range can be moderated.
上記パルプ外周のスロッ トルシャフトと重なる部分には逃げを形成し ない構成とすれば、 逃げの量を小さくすることができ、 さらに全閉時の 吸入空気量を減少させることができる。  If a relief is not formed in a portion of the outer periphery of the pulp overlapping the throttle shaft, the amount of relief can be reduced, and the amount of intake air when fully closed can be reduced.
又は、円筒形状のポア内に該ポアの中心軸と交叉するように配置され、 ボアを貫通するスロヅ トルシャフトにより回動可能に支持される円板形 状のスロッ トルバルブであって、 スロッ トルバルブの厚さを回転軸を含 む平面で 2分して、 スロッ トルシャフ トの一方側では表側に半円状の段 差部を形成し、 スロッ トルシャフ トの他方側では裏側に半円状の段差部 を形成した構成なので、 比較的簡単な構成でスロッ トルバルブとボアと の間の隙間を小さくできる。  Alternatively, a disc-shaped throttle valve is disposed in a cylindrical pore so as to intersect with the center axis of the pore, and is rotatably supported by a throttle shaft penetrating the bore. The thickness is divided into two parts by the plane including the rotation axis to form a semicircular step on the front side on one side of the throttle shaft, and a semicircular step on the back side on the other side of the throttle shaft. Due to the configuration, the gap between the throttle valve and the bore can be reduced with a relatively simple configuration.
または、 円筒形状のボァ内に該ボアの中心軸と交叉するように配置さ れ、 ボアを貫通するスロッ トルシャフトにより回動可能に支持される円 板形状のスロッ トルバルブであって、 スロッ トルバルブの厚さを回転軸 を含む平面で 2分し、 スロッ トルシャフ トの一方側について上記 2分し た厚さの内のバルブの回転方向の後方側を厚肉部とし、 該厚肉部の外径 を、 回転方向前側の外径より小さく して段差を設け、 該厚肉部の外周面 が、 バルブの中心点を中心としバルブの直径を直径とする球面の内側に ある構成とすれば、 スロッ トルパルプとポアとの間の隙間を前記のもの よりも小さくできる。  Or a disc-shaped throttle valve disposed in a cylindrical bore so as to intersect the center axis of the bore and rotatably supported by a throttle shaft passing through the bore, The thickness of the valve is divided into two parts on the plane including the rotation axis, and the thickness of the one side of the throttle shaft is defined as the thick part on the rear side in the direction of rotation of the valve. If the diameter is made smaller than the outer diameter on the front side in the rotation direction to provide a step, and the outer peripheral surface of the thick portion is located inside the spherical surface having the diameter of the valve centered on the center point of the valve. The gap between the throttle pulp and the pore can be smaller than that described above.

Claims

請求の範囲 The scope of the claims
1 . 円筒形状のボア内に該ボアの中心軸と交叉するように配置され、 ボ ァを貫通するスロッ トルシャフトにより回動可能に支持されるスロッ ト ルバルブにおいて、 スロッ トルパルプ外周面の上記スロッ トルシャフ ト と交叉する近傍の嚙み込みゾーンが、 ポアとの干渉を避けるように逃が されていることを特徴とするスロッ トルバルブ。 1. A throttle valve which is disposed in a cylindrical bore so as to intersect with the center axis of the bore and is rotatably supported by a throttle shaft passing through the bore, wherein the throttle shaft on the outer peripheral surface of the throttle pulp is provided. The throttle valve is characterized in that the penetration zone near the intersection with the gate is vented to avoid interference with the pore.
2. 上記嚙み込みゾーンが、 バルブの中心点を中心としバルブの直径を 直径とする球面の内側にあることを特徴とする請求の範囲 1記載のスロ ッ トルバルブ。  2. The throttle valve according to claim 1, wherein the recessed zone is located inside a spherical surface having the diameter of the valve centered on the center point of the valve.
3 . 上記バルブ外周のスロッ トルシャフトと重なる部分には逃げを形成 しないことを特徴とする請求の範囲 1又は 2記載のスロッ トルバルブ。 3. The throttle valve according to claim 1, wherein no relief is formed in a portion of the outer periphery of the valve that overlaps the throttle shaft.
4 . 円筒形状のボア内に該ボアの中心軸と交叉するように配置され、 ボ ァを貫通するスロッ トルシャフトにより回動可能に支持される円板形状 のスロッ トルバルブであって、 スロ.ッ トルバルブの厚さを回転軸を含む 平面で 2分して、 スロッ トルシャフトの一方側では表側に半円状の段差 部を形成し、 スロッ トルシャフ トの他方側では裏側に半円状の段差部を 形成したことを特徴とするスロッ トルバルブ。 4. A disk-shaped throttle valve which is disposed in a cylindrical bore so as to intersect with the central axis of the bore and is rotatably supported by a throttle shaft passing through the bore. The thickness of the throttle valve is divided into two parts by a plane including the rotation axis, and a semicircular step is formed on one side of the throttle shaft on the front side and a semicircular step on the other side of the throttle shaft. A throttle valve characterized in that a throttle valve is formed.
5 . 上記段差部がバルブの中心点を中心としバルブの直径を直径とする 球面の内側に入ることを特徴とする請求の範囲 4記載のスロッ トルバル ブ。  5. The throttle valve according to claim 4, wherein said stepped portion enters inside a spherical surface having a diameter of a valve centered on a center point of the valve.
6 . 円筒形状のボア内に該ボアの中心軸と交叉するように配置され、 ポ ァを貫通するスロッ トルシャフトにより回動可能に支持される円板形状 のスロッ トルバルブであって、 スロッ トルパルプの厚さを回転軸を含む 平面で 2分し、 スロッ トルシャフ トの一方側について上記 2分した厚さ の内のバルブの回転方向の後方側を厚肉部とし、 該厚肉部の外径を、 回 転方向前側の外径より小さく して段差を設け、 該厚肉部の外周面が、 バ ルブの中心点を中心としバルブの直径を直径とする球面の内側にあるこ とを特徴とするスロッ トルバルブ。 6. A disk-shaped throttle valve which is disposed in a cylindrical bore so as to intersect with the center axis of the bore, and is rotatably supported by a throttle shaft passing through the bore. The thickness is divided into two parts by a plane including the rotation axis, and the rear side in the direction of rotation of the valve of the two divided thicknesses on one side of the throttle shaft is a thick part, and the outer diameter of the thick part is , Times A step formed to be smaller than the outer diameter on the front side in the rolling direction, and wherein the outer peripheral surface of the thick portion is located inside a spherical surface having the diameter of the valve centered on the center point of the valve. .
PCT/JP2001/002831 2000-04-05 2001-03-30 Throttle valve WO2001077505A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000102895A JP2001289070A (en) 2000-04-05 2000-04-05 Throttle valve
JP2000-102895 2000-04-05

Publications (1)

Publication Number Publication Date
WO2001077505A1 true WO2001077505A1 (en) 2001-10-18

Family

ID=18616685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002831 WO2001077505A1 (en) 2000-04-05 2001-03-30 Throttle valve

Country Status (2)

Country Link
JP (1) JP2001289070A (en)
WO (1) WO2001077505A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002216A (en) * 2007-06-21 2009-01-08 Hitachi Ltd Intake air quantity control device for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186540U (en) * 1984-11-12 1986-06-06
JPS63235629A (en) * 1987-03-20 1988-09-30 Nippon Carbureter Co Ltd Engine intake throttle valve
JPH01187326A (en) * 1988-01-18 1989-07-26 Kubota Ltd Air fuel mixer for gas engine
JPH041672U (en) * 1990-04-16 1992-01-08
JPH10121994A (en) * 1996-10-16 1998-05-12 Toyota Motor Corp Intake-air volume control mechanism for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186540U (en) * 1984-11-12 1986-06-06
JPS63235629A (en) * 1987-03-20 1988-09-30 Nippon Carbureter Co Ltd Engine intake throttle valve
JPH01187326A (en) * 1988-01-18 1989-07-26 Kubota Ltd Air fuel mixer for gas engine
JPH041672U (en) * 1990-04-16 1992-01-08
JPH10121994A (en) * 1996-10-16 1998-05-12 Toyota Motor Corp Intake-air volume control mechanism for internal combustion engine

Also Published As

Publication number Publication date
JP2001289070A (en) 2001-10-19

Similar Documents

Publication Publication Date Title
US5315975A (en) Intake control device for internal combustion engine
US5794591A (en) Throttle valve for an internal combustion engine
JP4739128B2 (en) Intake control valve
WO2001077505A1 (en) Throttle valve
EP1243775B1 (en) Throttle plate wedge
US6006722A (en) Fine resolution air control valve
JP2003184583A (en) Throttle valve
JPH036328B2 (en)
JP4051286B2 (en) Flap valve
JP2698793B2 (en) Engine intake throttle valve
JP4565344B2 (en) Intake control device for internal combustion engine
JPH061938U (en) Butterfly valve
JP2000337174A (en) Throttle valve of throttle body
JP2000274265A (en) Intake amount controller for internal combustion engine
JP2559341Y2 (en) Throttle valve stopper structure
JPH0318632A (en) Intake air quantity control device for engine
JPH0310356Y2 (en)
JPS6042207Y2 (en) Internal combustion engine reduction gear
JPH0326281Y2 (en)
JP2536531Y2 (en) Sliding throttle valve carburetor
JPH0422045Y2 (en)
JPH0338428B2 (en)
JPH0137152Y2 (en)
JP2005105820A (en) Variable intake throttle valve
JP2000045799A (en) Air intake device for internal combustion engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase