JPH01187326A - Air fuel mixer for gas engine - Google Patents

Air fuel mixer for gas engine

Info

Publication number
JPH01187326A
JPH01187326A JP63008848A JP884888A JPH01187326A JP H01187326 A JPH01187326 A JP H01187326A JP 63008848 A JP63008848 A JP 63008848A JP 884888 A JP884888 A JP 884888A JP H01187326 A JPH01187326 A JP H01187326A
Authority
JP
Japan
Prior art keywords
valve
gas
valve body
opening
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63008848A
Other languages
Japanese (ja)
Inventor
Shinji Nakai
信治 中井
Fumio Yamashita
文男 山下
Kiyokazu Minami
南 清和
Hiroyuki Tsuda
裕之 津田
Kazuhiko Ogura
小倉 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP63008848A priority Critical patent/JPH01187326A/en
Publication of JPH01187326A publication Critical patent/JPH01187326A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/04Gas-air mixing apparatus
    • F02M21/047Venturi mixer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1035Details of the valve housing
    • F02D9/104Shaping of the flow path in the vicinity of the flap, e.g. having inserts in the housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

PURPOSE:To restrain carbon from being bitten in the vicinity of a valve support portion at an air fuel mixer mixing combustion air and fuel gas, by making larger than those of other portions the opening of the vicinity place of a valve body support portion out of an opening at a passage inner perimeter surface at the time of a throttle valve totally closed. CONSTITUTION:A gas mixer 1 has a venturi portion 5 formed at a passage 4 inside a body 3 connected to the air suction port 2 of a gas engine, and a throttle valve 7 whose opening/closing is controlled with a revolution number control tool, is arranged on the side of the air suction port 2 rather than this venturi portion 5. And gas fuel such as city gas or the like and combustion air are supplied to the venturi portion 5 respectively from a gas supply source 8 through a fuel supply quantity control tool 9 and through an air cleaner 10. In this instance, the opening size of a valve opening 18 between a passage inner perimeter surface 14 and a valve body 11's perimeter side surface 15 in the vicinity of the valve shaft support portion 17 of the throttle valve 7, is formed wider than the opening size of a valve opening 19 at other portions.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、都市ガスや液化石油ガス等の気体燃料を使用
して運転されるガスエンジンの空燃混合器に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an air-fuel mixer for a gas engine operated using gaseous fuel such as city gas or liquefied petroleum gas.

(従来技術) ガスエンジンの空燃混合器(以下、単にミキサーという
)はガソリン機関のキャブレターとほぼ同じ構造を採っ
ており、ベンチュリー部に生じた負圧力でダイヤフラム
式燃料供給量制御具(ゼロガバナ)を介して気体燃料を
吸い込み、回転数制御具(ガバナ)で開閉制御されるス
ロットル弁で混合気の供給を調節するようになっている
(Prior art) The air-fuel mixer (hereinafter simply referred to as mixer) of a gas engine has almost the same structure as the carburetor of a gasoline engine, and uses a diaphragm type fuel supply amount control device (zero governor) using the negative pressure generated in the venturi section. Gaseous fuel is sucked in through the engine, and the supply of air-fuel mixture is adjusted by a throttle valve that is opened and closed by a rotational speed controller (governor).

(解決しようとする課題) ところが従来のミキサーでは、ガソリン機関と同じ考え
方をして、ミキサーにおけるスロットル弁の弁体は通路
断面形状に見合う楕円板で形成されている。ガソリン機
関の場合には、上述の構造で問題はなかったが、ガスエ
ンジンのミキサーにあっては、エンジン回転の制御性能
が低下するという問題がある。
(Problem to be Solved) However, in conventional mixers, the valve body of the throttle valve in the mixer is formed of an elliptical plate that matches the cross-sectional shape of the passage, based on the same concept as in gasoline engines. In the case of a gasoline engine, there is no problem with the above-described structure, but in the case of a mixer for a gas engine, there is a problem in that the control performance of the engine rotation is deteriorated.

この原因を究明したところ、ガソリン機関ではスロット
ル弁配設部分における通路内周面部分でのカーボンの堆
積は殆ど見られないのに対し、ガスエンジンの場合には
スロットル弁配設部分における通路内周面にカーホンが
堆積しており、この堆積したカーボンが弁作動に影響を
与えていることに起因していることが判明した。
When we investigated the cause of this problem, we found that in gasoline engines, there is almost no carbon accumulation on the inner circumferential surface of the passage where the throttle valve is installed, whereas in the case of gas engines, there is almost no carbon accumulation on the inner circumference of the passage where the throttle valve is installed. It was found that carbon was deposited on the valve surface, and this deposited carbon was affecting the valve operation.

即ち、ガソリン機関の場合には、通路内周面に付着した
カーボンは吹き返し燃料で洗われて流入混合器によって
燃焼室に持ち去られるのに対し、ガスエンジンの場合に
は吹き返し燃料に洗浄効果を期待することができず、カ
ーボンが通路内周面に堆積してしまうことになる。そし
て、このカーボンは弁体枢支部の近傍個所に特に堆積し
易い。
In other words, in the case of a gasoline engine, carbon adhering to the inner peripheral surface of the passage is washed away by the blown-back fuel and carried away into the combustion chamber by the inflow mixer, whereas in the case of a gas engine, the blown-back fuel is expected to have a cleaning effect. This results in carbon being deposited on the inner circumferential surface of the passage. This carbon particularly tends to accumulate near the valve body pivot portion.

それは、弁体枢支部の近傍個所では弁体の姿勢による通
路内周面と弁体周側面との隙間寸法の変化がないから、
弁体の開閉作動時に弁体の動きに伴って、通路内周面に
付着したカーボンが弁体枢支部の近傍個所での通路内周
面と弁体周側面との間の隙間に噛み込んでゆくためであ
る。そして、弁体作動にともなって隙間に噛み込んで行
ったカーボンは、強固に突き固められた状態となって弁
体の回転作動の抵抗になり、弁体の円滑な作動の障害に
なる。
This is because there is no change in the gap size between the inner circumferential surface of the passage and the circumferential side of the valve body due to the posture of the valve body in the vicinity of the valve body pivot point.
As the valve body moves when it opens and closes, carbon adhering to the inner circumferential surface of the passage gets caught in the gap between the inner circumferential surface of the passage and the circumferential side of the valve body near the pivot portion of the valve body. It's to go. Then, the carbon that gets caught in the gap as the valve body operates becomes firmly compacted and acts as a resistance to the rotational operation of the valve body, impeding smooth operation of the valve body.

(課題を解決するための手段) 本発明は上記の課題を解決するためのもので、そのため
に、ガスエンジンに使用する空燃混合器において、ベン
チュリー部よりも下流側に配設したスロットル弁の全閉
状態で弁体周側面と通路内周面との間に生じる隙間のう
ち、弁体枢支部の近傍個所における弁隙間部分の隙間寸
法を、他の弁隙間部分の隙間寸法よりも大きく形成した
ことを特徴とするものである。
(Means for Solving the Problems) The present invention is intended to solve the above problems, and for this purpose, in an air-fuel mixer used in a gas engine, a throttle valve disposed downstream of a venturi section. Among the gaps that occur between the circumferential side of the valve body and the inner circumferential surface of the passage in the fully closed state, the gap size of the valve gap portion near the valve body pivot portion is made larger than the gap size of other valve gap portions. It is characterized by the fact that

(作  用) 本発明では、スロットル弁の全閉状態において弁体周側
面と通路内周面との間に生じる隙間のうち、弁体枢支部
の近傍個所における弁隙間部分の隙間寸法を、他の弁隙
間部分の隙間寸法よりも大きく形成しているので、弁体
の揺動に伴って弁体が通路内周面に付着したカーボンを
弁枢支部近傍部に押し込むことがなくなり、カーボンが
突き固められることがなくなる。これにより弁枢支部近
傍でのカーボンの噛み込み量が少な(なり、弁体の開閉
作動を円滑に行える。
(Function) In the present invention, among the gaps that occur between the circumferential side of the valve body and the inner circumferential surface of the passage when the throttle valve is in a fully closed state, the gap size of the valve gap portion in the vicinity of the valve body pivot portion is Since the gap size is larger than that of the valve gap, the valve body does not push the carbon attached to the inner circumferential surface of the passage into the vicinity of the valve pivot when the valve body swings. It will no longer be hardened. As a result, the amount of carbon trapped in the vicinity of the valve pivot portion is reduced, and the opening and closing operations of the valve body can be performed smoothly.

(実施例) 図面は本発明の実施例を示し、第1図は要部取出し拡大
断面図、第2図はガスミキサーの縦断面図、第3図は第
2図の■−■線断面図である。
(Embodiment) The drawings show an embodiment of the present invention, in which Fig. 1 is an enlarged cross-sectional view of a main part taken out, Fig. 2 is a vertical cross-sectional view of a gas mixer, and Fig. 3 is a cross-sectional view taken along the line ■-■ in Fig. 2. It is.

このガスミキサー(1)はガスエンジンの吸気ポー4(
2)に接続されるボディ(3)の内部に透設した通路(
4)内にベンチュリー部(5)を形成し、このベンチュ
リー部(5)よりも吸気ポート(2)側に回転数制御具
(6)で開閉制御されるスロットル弁(7)が配置しで
ある。ベンチュリー部(5)にはガス供給源(8)から
ダイヤフラム式燃料供給量制御具(9)を介して都市ガ
ス等の気体燃料と、エアクリーナ(10)を介して燃焼
用空気とが供給されている。
This gas mixer (1) is the intake port 4 (
A transparent passage (
4) A venturi part (5) is formed within the venturi part (5), and a throttle valve (7) whose opening/closing is controlled by a rotation speed controller (6) is arranged closer to the intake port (2) than the venturi part (5). . Gaseous fuel such as city gas is supplied from the gas supply source (8) to the venturi section (5) via a diaphragm type fuel supply amount control device (9), and combustion air is supplied via the air cleaner (10). There is.

スロットル弁(7)の弁体(11)は弁軸(12)を介
して弁箱(13)に揺動可能に枢支されている。この弁
体(11)は通路内周面(14)の形状に対応する略楕
円形状に形成してあり、その周側面(15)は、前後端
縁部(16)をそれぞれ円弧状に形成するとともにその
円弧部分を直線で繋いだ形状に形成しである。
A valve body (11) of the throttle valve (7) is pivotally supported on a valve body (13) via a valve shaft (12). This valve body (11) is formed into a substantially elliptical shape corresponding to the shape of the inner circumferential surface (14) of the passage, and its circumferential side surface (15) has front and rear end edges (16) each formed in an arc shape. It is also formed into a shape in which the arc parts are connected with straight lines.

また、スロットル弁(7)の弁体(11)における弁軸
枢支部(17)の近傍部は弁軸(12)に対して直交す
る状態に切除されており、この弁軸枢支部(17)の近
傍での通路内周面(14)と弁体(11)の周側面(1
5)との間の弁隙間(18)の隙間寸法は池の部分での
弁隙間(19)の隙間寸法よりも広く形成しである。
Further, a portion of the valve body (11) of the throttle valve (7) near the valve shaft pivot portion (17) is cut out to be perpendicular to the valve shaft (12), and this valve shaft pivot portion (17) The inner circumferential surface (14) of the passage and the circumferential side surface (1) of the valve body (11) in the vicinity of
The gap size of the valve gap (18) between the valve gap (18) and the valve gap (18) is formed to be wider than the gap size of the valve gap (19) at the pond portion.

ガスミキサーの弁体(11)をこのように構成しておく
と、通路内周面(14)にカーボンが付着しても弁体(
11)の開閉作動時に弁体(11)がカーボンで受は止
められて弁体周側面(15)と通路内周面(14)との
間の隙間が大きくなることはないうえ、弁体(11)が
カーボンを噛み込んで作動不良になることがなくなる。
If the valve body (11) of the gas mixer is configured in this way, even if carbon adheres to the inner peripheral surface (14) of the passage, the valve body (
During the opening and closing operations of the valve body (11), the valve body (11) is blocked by carbon, so that the gap between the valve body circumferential side surface (15) and the passage inner circumferential surface (14) does not become large, and the valve body ( 11) will no longer get stuck in carbon and cause malfunction.

また、弁軸枢支部(17)の近傍個所では弁体(11)
の周側面(15)と通路内周面(14)との間の隙間寸
法が他の部分(弁軸から遠い部分)での周側面(15)
と通路内周面(14)との間の隙間寸法よりも太きく形
成しであることから、弁体(11)の作動時に弁軸枢支
部(17)の近傍個所では弁体(11)と通路内周面(
14)が接当することがなく、カーボンが取り込まれて
突き固められることがなくなる。
In addition, in the vicinity of the valve shaft pivot portion (17), the valve body (11)
The gap between the circumferential surface (15) and the inner circumferential surface (14) of the passage is different from the circumferential surface (15) in other parts (parts far from the valve shaft).
Since the gap is larger than the gap between the inner peripheral surface of the passageway (14) and the inner circumferential surface of the passage (14), when the valve body (11) is operated, the valve body (11) and Inner peripheral surface of passage (
14) will not come into contact with each other, and carbon will not be taken in and tamped.

(効  果) 本発明では、スロットル弁の全閉状態において弁体周側
面と通路内周面との間に生じる隙間のうち、弁体枢支部
の近傍個所における弁隙間部分の隙間寸法を、池の弁隙
間部分での隙間寸法よりも大きく形成しているので、弁
体の揺動に伴って弁体が通路内周面に付着したカーボン
を弁枢支部近傍部に押し込むことがなくなり、カーボン
が突き固められることがなくなる。これにより弁枢支部
近傍でのカーボンの噛み込み量が少なくる。
(Effects) In the present invention, among the gaps that occur between the circumferential side of the valve body and the inner circumferential surface of the passage in the fully closed state of the throttle valve, the gap size of the valve gap portion near the valve body pivot portion is Since the gap size is larger than that of the valve gap, the valve body does not push carbon attached to the inner circumferential surface of the passageway into the vicinity of the valve pivot when the valve body swings. No more being tamed down. This reduces the amount of carbon trapped near the valve pivot portion.

これにより、弁体の開閉作動を円滑に行うことができ、
エンジン回転速度の制御を高精度で行うことかできる。
This allows the valve body to open and close smoothly,
The engine speed can be controlled with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は要部取出し拡大
断面図、第2図はガスミキサーの縦断面図、第3図は第
2図のl−11I線断面図である。 5・・ベンチュリー部、7・・スロットル弁、11・・
・(7)の弁体、14・・・通路内周面、15・・・(
11)の周側面、17・・・弁体枢支部、18・・・(
17)付近の弁隙間部分、19・・・他の弁隙間部分。 第2図
The drawings show an embodiment of the present invention, in which FIG. 1 is an enlarged sectional view taken out of essential parts, FIG. 2 is a longitudinal sectional view of a gas mixer, and FIG. 3 is a sectional view taken along the line 1-11I in FIG. 2. 5... Venturi section, 7... Throttle valve, 11...
・Valve body of (7), 14... passage inner peripheral surface, 15... (
11) peripheral side surface, 17...valve body pivot portion, 18...(
17) Nearby valve gap portion, 19...Other valve gap portions. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、ガスエンジンの吸気系に配設され、燃焼室に吸入さ
れる燃焼用空気と燃料ガスとを混合させる空燃混合器に
おいて、ベンチュリー部(5)よりも下流側に配設した
スロットル弁(7)の全閉状態で弁体(11)の周側面
(15)と通路内周面(14)との間に生じる隙間のう
ち、弁体枢支部(17)の近傍個所における弁隙間部分
(18)の隙間寸法を、他の弁隙間部分(19)での隙
間寸法よりも大きく形成したことを特徴とするガスエン
ジンの空燃混合器
1. In the air-fuel mixer, which is installed in the intake system of a gas engine and mixes combustion air and fuel gas taken into the combustion chamber, the throttle valve ( Of the gaps that occur between the circumferential surface (15) of the valve body (11) and the inner circumferential surface of the passageway (14) in the fully closed state of (7), the valve gap portion ( An air-fuel mixer for a gas engine, characterized in that the gap size in (18) is larger than the gap size in other valve gap portions (19).
JP63008848A 1988-01-18 1988-01-18 Air fuel mixer for gas engine Pending JPH01187326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63008848A JPH01187326A (en) 1988-01-18 1988-01-18 Air fuel mixer for gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63008848A JPH01187326A (en) 1988-01-18 1988-01-18 Air fuel mixer for gas engine

Publications (1)

Publication Number Publication Date
JPH01187326A true JPH01187326A (en) 1989-07-26

Family

ID=11704166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63008848A Pending JPH01187326A (en) 1988-01-18 1988-01-18 Air fuel mixer for gas engine

Country Status (1)

Country Link
JP (1) JPH01187326A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311849A (en) * 1992-07-14 1994-05-17 Gas Research Institute Carburetor assembly for an internal combustion gas engine
WO2001077505A1 (en) * 2000-04-05 2001-10-18 Mikuni Corporation Throttle valve
JP2005299457A (en) * 2004-04-09 2005-10-27 Isuzu Motors Ltd Engine exhaust gas throttle valve
JP2011012614A (en) * 2009-07-02 2011-01-20 Aichi Machine Industry Co Ltd Throttle valve device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311849A (en) * 1992-07-14 1994-05-17 Gas Research Institute Carburetor assembly for an internal combustion gas engine
WO2001077505A1 (en) * 2000-04-05 2001-10-18 Mikuni Corporation Throttle valve
JP2005299457A (en) * 2004-04-09 2005-10-27 Isuzu Motors Ltd Engine exhaust gas throttle valve
US7406823B2 (en) 2004-04-09 2008-08-05 Isuzu Motors Limited Exhaust gas throttle valve for engines
JP2011012614A (en) * 2009-07-02 2011-01-20 Aichi Machine Industry Co Ltd Throttle valve device

Similar Documents

Publication Publication Date Title
JPH05195876A (en) Diaphragm carbureter
JPS6149126A (en) Intake device of 4-stroke internal-combustion engine
JPS5845574B2 (en) Internal combustion engine intake passage device
JPH01187326A (en) Air fuel mixer for gas engine
JPS5845573B2 (en) Internal combustion engine intake passage device
JPH01187325A (en) Air fuel mixer for gas engine
US4153650A (en) Idling fuel supplying system of a carburetor
JPH02223662A (en) Engine suction amount control device
JPS6136764Y2 (en)
US4229385A (en) Variable venturi carburetor
JPH02221670A (en) Engine intake quantity control device
JPH02233817A (en) Engine intake quantity controller
US6840509B2 (en) Carburetor for an internal combustion engine
JP2575056Y2 (en) Air-fuel ratio control device for gas engine
JPS5922291Y2 (en) Idle air-fuel ratio adjustment device for internal combustion engines
JP2502055B2 (en) Fuel injection engine
JPH0622138Y2 (en) Variable venturi vaporizer
JPH0949473A (en) Throttle valve control device
JPS603971Y2 (en) Fuel supply system for engines that use different fuel switching
JPH02233816A (en) Engine intake quantity controller
JPH02207116A (en) Engine intake air volume controlling device
JP2001342900A (en) Rotary throttle valve type carburettor
JPS6226331A (en) Throttle valve of carburetor
JPH04134174A (en) Carburetor
JPH07247850A (en) Intake device for internal combustion engine