WO2001077267A1 - Fuel for use in fuel cell system - Google Patents

Fuel for use in fuel cell system Download PDF

Info

Publication number
WO2001077267A1
WO2001077267A1 PCT/JP2001/003096 JP0103096W WO0177267A1 WO 2001077267 A1 WO2001077267 A1 WO 2001077267A1 JP 0103096 W JP0103096 W JP 0103096W WO 0177267 A1 WO0177267 A1 WO 0177267A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel cell
volume
cell system
amount
Prior art date
Application number
PCT/JP2001/003096
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichirou Saitou
Iwao Anzai
Osamu Sadakane
Michiro Matsubara
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Priority to AU46890/01A priority Critical patent/AU4689001A/en
Priority to JP2001575121A priority patent/JP4598897B2/en
Publication of WO2001077267A1 publication Critical patent/WO2001077267A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons

Definitions

  • the present invention relates to a fuel used for a fuel cell system.
  • the fuel for fully utilizing the performance of the fuel cell system has not yet been developed. Not issued.
  • the fuel for a fuel cell system it is often the power generation amount per weight, C 0 2 generation amount per power generation force s larger, good fuel economy force S of the entire fuel cell system, evaporative emission (evaporative Emissions, reformed hornworm medium, water gas shift reaction catalyst, carbon monoxide removal catalyst, fuel cell stack, etc., with low deterioration of the fuel cell system, long initial performance, and short system startup time Good handling properties such as storage stability and bow I fire point are required.
  • the amount of heat required (the amount of heat that balances the amount of preheat and the amount of heat absorbed and absorbed by the reaction) is subtracted from the amount of power generated.
  • Power generation capacity ⁇ The power generation capacity of the entire fuel cell system. Therefore, the temperature required for reforming the fuel is low, the power s and the preheating power s are small, which is advantageous.In addition, the starting time of the system is 5 ', which is advantageous.The weight required for preheating the fuel is also reduced. It is also necessary that the calorific power is small.
  • THC unreacted hydrocarbons
  • an object of the present invention is to provide a fuel suitable for a fuel cell system satisfying the above-mentioned required properties in a well-balanced manner. Disclosure of the invention
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a fuel containing a specific amount of a hydrocarbon compound having a specific carbon number is suitable for a fuel cell system.
  • the fuel for a fuel cell system according to the present invention is:
  • the content of hydrocarbon compounds having 4 carbon atoms is 15% by volume or less, the content of hydrocarbon compounds having 5 carbon atoms is 5% by volume or more, and the content of hydrocarbon compounds having 6 carbon atoms is contained.
  • the amount is 10% by volume or more.
  • the fuel containing the specified amount of the hydrocarbon compound having the specified number of carbon atoms further includes: Those satisfying such additional requirements are more preferable.
  • a fuel for a fuel cell system having a saturated content of 30% by volume or more having a saturated content of 30% by volume or more.
  • a fuel for a fuel cell system having an aromatic content of 50% by volume or less is a fuel for a fuel cell system having an aromatic content of 50% by volume or less.
  • FIG. 1 is a flowchart of a steam reforming fuel cell system used for evaluating fuel for a fuel cell system according to the present invention.
  • FIG. 2 is a flowchart of a partial oxidation fuel cell system used for evaluating fuel for a fuel cell system of the present invention.
  • the amount of the hydrocarbon compound having a specific carbon number is as follows.
  • the content of hydrocarbon compounds with 4 carbon atoms indicates the content of hydrocarbon compounds with 4 carbon atoms based on the total amount of fuel, and keeps the amount of evaporative gas (evaporation) low. From the point of handling, such as the flash point, it is necessary to have a capacity of 15% by volume or less. It is necessary to have a force of 10% by volume or less. Is most preferred.
  • the content of the hydrocarbon compounds having 5 carbon atoms indicates the content of hydrocarbon compounds having a carbon number of 5 relative to the fuel total amount, it is often the power generation amount per weight, CO 2 occurs It is necessary to be at least 5% by volume because power generation per unit is large and fuel efficiency of the fuel cell system as a whole is low. It is more preferably at least 20% by volume, still more preferably at least 20% by volume, and even more preferably at least 25% by volume. Most preferably, it is 30% by volume or more.
  • the content of hydrocarbon compounds with 6 carbon atoms indicates the content of hydrocarbon compounds with 6 carbon atoms based on the total fuel amount, indicating that the amount of power generation per weight is large and that CO 2 Because of the large amount of power generation per unit and the good fuel efficiency of the fuel cell system as a whole, it is necessary to have a capacity of at least 10% by volume, preferably at least 15% by volume, preferably at least 20% by volume. And more preferably at least 25% by volume, and most preferably at least 30% by volume.In the present invention, the content of the hydrocarbon compound having 7 and 8 carbon atoms is preferred. is not particularly limited about the, since power generation force heard per C0 2 generation amount, usually the total amount of fuel based on the total amount (V (C 7 + C 8 )) as the force element Mashiku of less than 20 volume% used Can be
  • the deterioration of 3ji reforming catalyst can last reduced initial resistance capability s long, the total amount of the number of 10 or more hydrocarbon compounds carbon based fuel total amount (V (C 10 +)) is 20% by volume or less S is preferred, more preferably 10% by volume or less, and most preferably 5% by volume or less.
  • V (C 4 ), V (C 5 ), V (C 6 ⁇ , V (C 7 + C 8 ) ⁇ V (C 10 +) are determined by the gas chromatography method shown below.
  • the column is a methyl silicon capillary column, helium or nitrogen is used as the carrier gas, and a hydrogen ionization detector (FID) is used as the detector.
  • FID hydrogen ionization detector
  • the sulfur content when the sulfur content is 1 mass ppm or more, it means the sulfur content measured by JISK 2541 "Crude oil and petroleum products-sulfur content test method", and when it is less than 1 mass ppm, ASTM D4045-96 It means the sulfur content measured by "Standard Test Method for Sul fur in Petroleum Products by Hydrogenolysis and Rateometric Colorimetry".
  • the content of each of the saturated component, the olefin component and the aromatic component is not limited, but the saturated component (V (S)) is 30% by volume or more, and the olefin component (V (0)) is 35% by volume. % Or less, and the aromatic content (V (Ar)) is preferably 50% by volume or less.
  • the saturated component (V (S)) is 30% by volume or more
  • the olefin component (V (0)) is 35% by volume. % Or less
  • the aromatic content (V (Ar)) is preferably 50% by volume or less.
  • V (S) is often power generation amount per weight, C0 2 generation per generation amount that large heard, good fuel economy force of the entire fuel cell system, THC force s' less that in the exhaust gas, Since the system startup time power S is short, it is preferable that the capacity be 30% by volume or more, more preferably 40% by volume or more, even more preferably 50% by volume or more, and 60% by volume or more. Is still more preferred, 70% by volume or more is even more preferred, 80% by volume or more is even more preferred, and 90% by volume or more is even more preferred. More than 95% by volume is most preferable.
  • V (0) is often power generation amount per weight, C0 2 generation per generation amount that large heard, the deterioration of the reforming catalyst can last reduced initial resistance capability for a long time, that good storage stability
  • the force is preferably 35% by volume or less, more preferably 25% by volume or less, still more preferably 20% by volume or less, and even more preferably 15% by volume or less. Preferably, it is 10% by volume or less.
  • V (S), V (0) and V (A r) are all values measured by the fluorescent indicator adsorption method of JIS K 2 536 “Petroleum products-hydrocarbon type test method”.
  • the ratio of the paraffin content in the saturated component is preferably at least 60% by volume, more preferably at least 65% by volume, even more preferably at least 70% by volume, and at least 75% by volume. % Or more, still more preferably 80% by volume or more, still more preferably 85% by volume or more, and even more preferably 90% by volume or more. Is even more preferred, and is more preferably 95% by volume or more.
  • the above-mentioned saturated content and paraffin content are values determined by the above-described gas chromatography method.
  • the ratio of branched paraffin in paraffin is 30% by volume or more, 50% %, More preferably at least 70% by volume, and most preferably at least 70% by volume.
  • the above paraffin content and the amount of branched paraffin are determined by the gas chromatography This is a value determined by the luffy method.
  • a base material for producing the fuel of the present invention are desulfurized hydrocarbons such as light naphtha, desulfurized light naphtha, isomerized gasoline, desulfurized alkylate obtained by desulfurizing an alkylate, and desulfurized isobutane.
  • desulfurized hydrocarbons such as light naphtha, desulfurized light naphtha, isomerized gasoline, desulfurized alkylate obtained by desulfurizing an alkylate, and desulfurized isobutane.
  • Low sulfur alkylates by low-grade olefins desulfurized light cracked gasoline obtained by desulfurizing the light fraction of cracked gasoline, light fraction of GTL, and desulfurized LPG obtained by desulfurizing LPG.
  • the fuel for the fuel cell system of the present invention includes a colorant for identification, an antioxidant for improving oxidative stability, a metal deactivator, a corrosion inhibitor for corrosion prevention, and cleanliness of the fuel line.
  • Additives such as a detergent for maintaining the lubrication and a lubricity improver for improving the lubricity can be added.
  • the colorant is preferably 1 Oppm or less, more preferably 5 ppm or less.
  • the antioxidant is preferably at most 300 ppm, more preferably at most 200 ppm, even more preferably at most 100 ppm, most preferably at most 1 Opp-m.
  • the metal deactivator is preferably 50 ppm or less, more preferably 30 ppm or less, still more preferably 1 Oppm or less, and most preferably 5 ppm or less.
  • the corrosion inhibitor is preferably 5 Oppm or less, more preferably 3 Oppm or less, still more preferably 1 Oppm or less, and most preferably 5 ppm or less.
  • the detergent is preferably at most 300 ppm, more preferably at most 200 pm, most preferably at most 1,00 ppm.
  • the lubricity improver is preferably 300 ppm or less, more preferably 200 ppm or less, and even more preferably 100 ppm or less.
  • the fuel of the present invention is used as a fuel for a fuel cell system.
  • the fuel cell system according to the present invention includes a fuel reformer, a carbon monoxide purifying device, a fuel cell, and the like, and the fuel of the present invention is suitably used for any fuel cell system.
  • the fuel reformer is for reforming the fuel to obtain hydrogen, which is the fuel of the fuel cell.
  • a reformer specifically, for example,
  • a steam reforming reformer that mixes heated and vaporized fuel with steam and reacts by heating in a catalyst such as copper, nickel, platinum, ruthenium, etc., to obtain a product containing hydrogen as a main component.
  • a partially oxidized reformer that mixes heated and vaporized fuel with air and reacts with or without a catalyst such as copper, nickel, platinum, ruthenium, etc. to obtain a product containing hydrogen as a main component.
  • the heated and vaporized fuel is mixed with steam and air, and the partial oxidation reforming of (2) is performed in the former stage of the catalyst layer of copper, nickel, platinum, ruthenium, etc., and in the latter stage, the partial oxidation reaction (1)
  • the steam reforming of (1) is carried out by using the heat generation to obtain a product comprising hydrogen as a main component.
  • the carbon monoxide purifier removes carbon monoxide contained in the gas generated by the above reformer and becomes a catalyst poison of the fuel cell.
  • a selective oxidation reactor that converts carbon monoxide into carbon dioxide by mixing the reformed gas with compressed air and reacting it in a catalyst such as platinum or ruthenium is mentioned. used.
  • fuel cells include solid polymer fuel cells (PEFC), phosphoric acid fuel cells (PAFC), molten carbonate fuel cells (MCFC), and solid oxide fuel cells (SOFC). ) And the like. .
  • PEFC solid polymer fuel cells
  • PAFC phosphoric acid fuel cells
  • MCFC molten carbonate fuel cells
  • SOFC solid oxide fuel cells
  • Example 1 the fuel cell system as described above is used for electric vehicles, conventional hybrid vehicles of an engine and electricity, portable power sources, distributed power sources, home power sources, and cogeneration systems.
  • Table 1 shows the properties and the like of each base material used for each fuel in the examples and comparative examples.
  • the heat capacity and latent heat of vaporization were determined by the content of each component determined by the gas chromatography method described above, and by the 'I Vo l ⁇ of the Technical Data Data Book 1 e um Ref in ⁇ 1, Chap. 1 Gene ra 1 Data, Table 1 C 1 ”was calculated based on the numerical value per unit weight for each component.
  • Table 2 shows the properties of each fuel used in Examples and Comparative Examples. Table 1
  • the fuel and water were vaporized by electric heating, and led to a reformer filled with a noble metal catalyst and maintained at a specified temperature with an electric heater to generate a reformed gas rich in hydrogen.
  • the temperature of the reformer is the lowest temperature at which reforming is performed completely in the initial stage of the test.
  • the reformed gas is led to a carbon monoxide treatment unit (water gas shift reaction) together with water vapor, and 3i (converts carbon monoxide in the raw gas to carbon dioxide), and the generated gas is led to a polymer electrolyte fuel cell to generate electricity. Done.
  • a carbon monoxide treatment unit water gas shift reaction
  • 3i converts carbon monoxide in the raw gas to carbon dioxide
  • the fuel was gasified by electric heating, and the preheated air was charged with a precious metal catalyst and led to a reformer maintained at 110 ° C with an electric heater to generate hydrogen-rich reformed gas. .
  • the reformed gas is led to a carbon monoxide treatment device (water gas shift reaction) together with water vapor to convert carbon monoxide in the reformed gas into carbon dioxide, and the generated gas is guided to a polymer electrolyte fuel cell to generate electricity.
  • a carbon monoxide treatment device water gas shift reaction
  • Figure 2 shows a flowchart of the partial oxidation fuel cell system used for the evaluation.
  • a sample filling hose was attached to the filler port of a 20-litre gasoline carrying can, and the attachment part was completely sealed. Each liter was filled with 5 liters of fuel while the vent valve of the can was open. After filling, the air vent valve was closed and left for 30 minutes. After standing, an activated carbon adsorption device was attached to the tip of the air release valve, and the valve was opened. Immediately, 10 liters of each fuel were supplied from the filler port. Five minutes after refueling, leaving the air release valve open, the activated carbon was allowed to absorb steam, and then the weight increase of the activated carbon was measured. The test was performed at a constant temperature of 25 ° C.
  • Each fuel was filled with oxygen in a pressure-resistant sealed container, heated to 100 ° C, left for 24 hours while maintaining the temperature, and evaluated by the real gum test method specified in JISK2261 .
  • Table 3 shows the measured values and calculated values.
  • the fuel for a fuel cell system is a fuel that can obtain high-output electric energy with a small performance deterioration ratio and that satisfies various performances for a fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel for use in a fuel cell system which contains hydrocarbon compounds having four carbon atoms in an amount of 15 vol % or less, hydrocarbon compounds having five carbon atoms in an amount of 5 vol % or more, hydrocarbon compounds having six carbon atoms in an amount of 10 vol % or more. The fuel exhibits an increased energy output generated per it s weight and per amount of CO2 formed, an improved fuel consumption, a decreased evaporative emission, good handling properties such as good storage stability and a suitable flash point, and reduced calories required for preheating. Further, the fuel allows a fuel cell system using the fuel to keep its initial performance for a long period of time, since it reduces the deterioration of a fuel cell system including a reforming catalyst, a water gas shift reaction catalyst, a carbon monoxide removal catalyst and a fuel cell stack.

Description

明 細 書 燃料電池システム用燃料 技術分野  Description Fuel technology for fuel cell systems
本発明は、 燃料電池システムに用いられる燃料に関する。 背景技術  The present invention relates to a fuel used for a fuel cell system. Background art
近年、 将来の地球環境に対する危機感の高まりから、 地球にやさしいエネルギ ー供紿システムの開発力 s求められている。 特に、 地球温暖ィヒ防止のための C O 2 の低減、 T H C (排出ガス中の未反応の炭ィヒ水素) 、 N O x、 P M (排出ガス中 の粒子状物質:すす、 燃料 ·潤滑油の高沸点 ·高分子の未燃成分) 等有害物質の 低減を、 高度に達成すること力 S要求されている。 そのシステムの具体例としては 、 従来のオット一·ディーゼルシステムに代わる自動車動力システム、 あるいは 火力に代わる発電システムが挙げられる。  In recent years, with the growing sense of crisis for the future global environment, there has been a demand for the development capability of earth-friendly energy supply systems. In particular, reduction of CO 2 to prevent global warming, THC (unreacted carbon in exhaust gas), NOx, PM (particulate matter in exhaust gas: soot, fuel, lubricating oil The ability to achieve a high degree of reduction of harmful substances such as high-boiling points and unburned components of polymers) Specific examples of such a system include an automobile power system that replaces the conventional Otto-diesel system or a power generation system that replaces thermal power.
そこで、 理想に近いエネルギー効率を持ち、 基本的には H 2 0と C 02 しか排 出しない燃料電池が、'社会の要望に応えるにもっとも有望なシステムと期待され ている。 そして、 このようなシステムの達成のためには、 機器の技術開発だけで はなく、 それに最適な燃料の開発が必要不可欠である。 Thus we have the energy efficiency close to the ideal, it is basically a fuel cell that does not leave waste only H 2 0 and C 0 2 is, it is expected that the most promising system to meet the needs of 'society. To achieve such a system, it is indispensable to develop not only equipment technology but also the optimal fuel for it.
従来、 燃料電池システム用の燃料としては、 水素、 メタノール、 炭化水素系燃 料が考えられている。  Conventionally, hydrogen, methanol, and hydrocarbon fuels have been considered as fuels for fuel cell systems.
燃料電池システム用の燃料として、 水素は、 特別の改質装置を必要としない卓 で有利であるが、 常温で気体のため、 貯蔵性並びに車両等への搭載性に問題があ り、 供給に特別な設備が必要である。 また引火の危険性も高く取り扱いに注意が 必要である。  As a fuel for fuel cell systems, hydrogen is advantageous for tables that do not require a special reformer, but because it is a gas at room temperature, it has problems with storage and mounting on vehicles, etc. Special equipment is required. Also, there is a high risk of ignition, so care must be taken when handling.
一方、 メタノールは、 水素への改質が比較的容易である点で有利であるが、 重 量あたりの発電量が小さく、 有毒のため取り扱いにも注意が必要である。 また、 腐食性があるため、 貯蔵 ·供給に特殊な設備が必要である。  On the other hand, methanol is advantageous in that it can be relatively easily reformed to hydrogen, but its power generation per weight is small and it must be handled with care because it is toxic. In addition, since it is corrosive, special equipment is required for storage and supply.
このように、 燃料電池システムの能力を充分に発揮させるための燃料は未だ開 発されていない。 特に、 燃料電池システム用燃料としては、 重量当りの発電量が 多いこと、 C 0 2発生量当たりの発電量力 s大きいこと、 燃料電池システム全体と しての燃費力 S良いこと、 蒸発ガス (エバポェミッション) が少ないこと、 改質角虫 媒、 水性ガスシフト反応触媒、 一酸化炭素除去触媒、 燃料電池スタック等、 燃料 電池システムの劣化が小さく初期性能が長時間持続できること、 システムの起動 時間が短いこと、 貯蔵安定性や弓 I火点など取り扱い性が良好なことなどが求めら れる。 In this way, the fuel for fully utilizing the performance of the fuel cell system has not yet been developed. Not issued. In particular, as the fuel for a fuel cell system, it is often the power generation amount per weight, C 0 2 generation amount per power generation force s larger, good fuel economy force S of the entire fuel cell system, evaporative emission (evaporative Emissions, reformed hornworm medium, water gas shift reaction catalyst, carbon monoxide removal catalyst, fuel cell stack, etc., with low deterioration of the fuel cell system, long initial performance, and short system startup time Good handling properties such as storage stability and bow I fire point are required.
なお、 燃料電池システムでは、 燃料および改質器を所定の温度に保つことカ泌 要なため、 発電量からそれに必要な熱量 (予熱量及び反応に伴う吸発熱をバラン スさせる熱量) を差し引いた発電量力^ 燃料電池システム全体の発電量となる。 したがって、 燃料を改質させるために必要な温度が低レ、方力 s予熱量力 s小さく有利 になり、 更にシステムの起動時間力5'短く有利になり、 また燃料の予熱に必要な重 量当りの熱量力 s小さいことも必要である。 予熱が十分でない場合、 排出ガス中に 未反応の炭化水素 ( T H C ) が多くなり、 重量当りの発電量を低下させるだけで なく、 大気汚染の原因となる可能性がある。 逆に言えば、 同一システムを同一温 度で稼働させた場合に、 排出ガス中の T H Cが少なく、 水素への変換率が高い方 力 S有利である。 In the fuel cell system, since it is important to keep the fuel and reformer at a given temperature, the amount of heat required (the amount of heat that balances the amount of preheat and the amount of heat absorbed and absorbed by the reaction) is subtracted from the amount of power generated. Power generation capacity ^ The power generation capacity of the entire fuel cell system. Therefore, the temperature required for reforming the fuel is low, the power s and the preheating power s are small, which is advantageous.In addition, the starting time of the system is 5 ', which is advantageous.The weight required for preheating the fuel is also reduced. It is also necessary that the calorific power is small. Insufficient preheating can result in high levels of unreacted hydrocarbons (THC) in the exhaust gas, not only reducing power generation per weight but also causing air pollution. Conversely, when the same system is operated at the same temperature, the THC in the exhaust gas is small and the conversion rate to hydrogen is high.
本発明は、 このような状況を鑑み、 上記したような要求性状をバランス良く満 たした燃料電池システムに適した燃料を提供することを目的とする。 発明の開示  In view of such circumstances, an object of the present invention is to provide a fuel suitable for a fuel cell system satisfying the above-mentioned required properties in a well-balanced manner. Disclosure of the invention
本発明者らは、 上記課題を解決するため鋭意研究を重ねた結果、 特定の炭素数 の炭化水素化合物を特定量含有する燃料が、 燃料電池システムに適していること を見出した。  The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a fuel containing a specific amount of a hydrocarbon compound having a specific carbon number is suitable for a fuel cell system.
すなわち、 本発明に係る燃料電池システム用燃料は、  That is, the fuel for a fuel cell system according to the present invention is:
( 1 ) 炭素数 4の炭化水素化合物の含有量が 1 5容量%以下であり、 炭素数 5の 炭化水素化合物の含有量が 5容量%以上であり、 炭素数 6の炭化水素化合物の含 有量が 1 0容量%以上であるものである。  (1) The content of hydrocarbon compounds having 4 carbon atoms is 15% by volume or less, the content of hydrocarbon compounds having 5 carbon atoms is 5% by volume or more, and the content of hydrocarbon compounds having 6 carbon atoms is contained. The amount is 10% by volume or more.
上記特定の炭素数の炭化水素化合物を特定量含有する燃料に、 更に、 以下のよ うな付加的要件を満たすものがより好ましい。 The fuel containing the specified amount of the hydrocarbon compound having the specified number of carbon atoms further includes: Those satisfying such additional requirements are more preferable.
( 2 ) 硫黄分含有量が 5 0質量 p p m以下である燃料電池システム用燃料。 (2) Fuel for a fuel cell system having a sulfur content of 50 mass ppm or less.
( 3 ) 飽和分が 3 0容量%以上である燃料電池システム用燃料。 (3) A fuel for a fuel cell system having a saturated content of 30% by volume or more.
( 4 ) ォレフィン分が 3 5容量%以下である燃料電池システム用燃料。  (4) Fuel for a fuel cell system having an olefin content of 35% by volume or less.
( 5 ) 芳香族分が 5 0容量%以下である燃料電池システム用燃料。  (5) A fuel for a fuel cell system having an aromatic content of 50% by volume or less.
( 6 ) 飽和分中のパラフィン分の割合が 6 0容量%以上である燃料電池システム 用燃料。  (6) Fuel for a fuel cell system in which the proportion of paraffin in the saturated content is 60% by volume or more.
( 7 ) パラフィン分中の分岐型パラフィンの割合が 3 0容量%以上である燃料電 池システム用燃料。 図面の簡単な説明.  (7) Fuel for fuel cell systems in which the proportion of branched paraffin in the paraffin content is 30% by volume or more. Brief description of the drawings.
第 1図は、 本発明の燃料電池システム用燃料の評価に用いた水蒸気改質型燃料 電池システムのフローチャートである。 第 2図は、 本発明の燃料電池システム用 燃料の評価に用いた部分酸化型燃料電池システムのフローチャートである。 発明を実施するための最良の形態  FIG. 1 is a flowchart of a steam reforming fuel cell system used for evaluating fuel for a fuel cell system according to the present invention. FIG. 2 is a flowchart of a partial oxidation fuel cell system used for evaluating fuel for a fuel cell system of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の内容をさらに詳細に説明する。  Hereinafter, the contents of the present invention will be described in more detail.
本発明において、 特定の炭素数の炭化水素化合物量は次のようなものである。 炭素数 4の炭化水素化合物の含有量 (V ( C 4 ) ) は、 燃料全量を基準とした 炭素数 4の炭化水素化合物の含有量を示し、 蒸発ガス (エバポェミッション) の 量を低く押さえることができ、 引火点等の取扱性カ浪ぃ点から、 1 5容量%以下 であること力 s必要であり、 1 0容量%以下であること力 子ましく、 5容量%以下 であることが最も好ましい。 In the present invention, the amount of the hydrocarbon compound having a specific carbon number is as follows. The content of hydrocarbon compounds with 4 carbon atoms (V (C 4 )) indicates the content of hydrocarbon compounds with 4 carbon atoms based on the total amount of fuel, and keeps the amount of evaporative gas (evaporation) low. From the point of handling, such as the flash point, it is necessary to have a capacity of 15% by volume or less. It is necessary to have a force of 10% by volume or less. Is most preferred.
炭素数 5の炭化水素化合物の含有量 (V ( C 5 ) ) は、 燃料全量を基準とした 炭素数 5の炭化水素化合物の含有量を示し、 重量当りの発電量が多いこと、 C O 2 発生量当たりの発電量力 きいこと、 燃料電池システム全体としての燃費カ浪 いこと等から、 5容量%以上であることが必要であり、 1 0容量%以上であるこ と力 s好ましく、 1 5容量%以上であることがより好ましく、 2 0容量%以上であ ることがさらにより好ましく、 2 5容量%以上であることがさらにより一層好ま しく、 30容量%以上であること力最も好ましい。 The content of the hydrocarbon compounds having 5 carbon atoms (V (C 5)) indicates the content of hydrocarbon compounds having a carbon number of 5 relative to the fuel total amount, it is often the power generation amount per weight, CO 2 occurs It is necessary to be at least 5% by volume because power generation per unit is large and fuel efficiency of the fuel cell system as a whole is low. It is more preferably at least 20% by volume, still more preferably at least 20% by volume, and even more preferably at least 25% by volume. Most preferably, it is 30% by volume or more.
炭素数 6の炭化水素化合物の含有量 (V (C6 》 ) は、 燃料全量を基準とした 炭素数 6の炭化水素化合物の含有量を示し、 重量当りの発電量が多いこと、 CO 2発生量当たりの発電量が大きいこと、 燃料電池システム全体としての燃費力良 いこと等から、 10容量%以上であること力 s必要であり、 15容量%以上である こと力好ましく、 20容量%以上であることがより好ましく、 25容量%以上で あることがさらにより好ましく、 30容量%以上であること力 S最も好ましい。 また、 本発明においては、 炭素数 7および 8の炭化水素化合物の含有量につい て特に制限はないが、 C02発生量当たりの発電量力 きいことから、 燃料全量 を基準として通常合計量 (V (C7 +C8 ) ) として 20容量%未満のもの力 子 ましく用いられる。 The content of hydrocarbon compounds with 6 carbon atoms (V (C 6 )) indicates the content of hydrocarbon compounds with 6 carbon atoms based on the total fuel amount, indicating that the amount of power generation per weight is large and that CO 2 Because of the large amount of power generation per unit and the good fuel efficiency of the fuel cell system as a whole, it is necessary to have a capacity of at least 10% by volume, preferably at least 15% by volume, preferably at least 20% by volume. And more preferably at least 25% by volume, and most preferably at least 30% by volume.In the present invention, the content of the hydrocarbon compound having 7 and 8 carbon atoms is preferred. is not particularly limited about the, since power generation force heard per C0 2 generation amount, usually the total amount of fuel based on the total amount (V (C 7 + C 8 )) as the force element Mashiku of less than 20 volume% used Can be
また、 本発明においては、 炭素数 10以上の炭化水素ィヒ合物の含有量について 特に制限はないが、 C02発生量当たりの発電量力 s大きいこと、 燃料電池システ ム全体としての燃費カ浪ぃこと、 3ji質触媒の劣化が小さく初期性能力 s長時間持続 できることなどから、 燃料全量を基準として炭素数 10以上の炭化水素化合物の 合計量 (V (C10+ ) ) が 20容量%以下であること力 s好ましく、 10容量%以 下であることがより好ましく、 5容量%以下であること力最も好ましい。 In the present invention, there is no particular restriction as to the content of the number 10 and higher hydrocarbons I arsenide compound carbon, C0 2 generation amount per power generation force s greater fuel economy mosquito Sina overall fuel cell system and Iko, etc. the deterioration of 3ji reforming catalyst can last reduced initial resistance capability s long, the total amount of the number of 10 or more hydrocarbon compounds carbon based fuel total amount (V (C 10 +)) is 20% by volume or less S is preferred, more preferably 10% by volume or less, and most preferably 5% by volume or less.
なお、 上記した V (C4 ) 、 V (C5 ) 、 V (C6 λ、 V (C7+C8 ) ^ V ( C10+ ) 、 は、 以下に示すガスクロマトグラフィー法により定量される値である 。 すなわち、 カラムにはメチルシリコンのキヤビラリ一カラム、 キャリアガスに はヘリウムまたは窒素を、 検出器には水素イオン化検出器 (F I D) を用い、 力 ラム長 25〜50m、 キャリアガス流量 0. 5〜: I . 5ミリリットル Zmi n、 分割比 1 : 50〜1 : 250、 注入口温度 150〜250°C、 初期カラム温度— 10〜10°C、 終期カラム温度 150〜250°C、 検出器温 150〜250°Cの 条件で測定した値である。 The above-mentioned V (C 4 ), V (C 5 ), V (C 6 λ, V (C 7 + C 8 ) ^ V (C 10 +) are determined by the gas chromatography method shown below. In other words, the column is a methyl silicon capillary column, helium or nitrogen is used as the carrier gas, and a hydrogen ionization detector (FID) is used as the detector. 0.5 to: I. 5 ml Zmin, split ratio 1: 50 to 1: 250, inlet temperature 150 to 250 ° C, initial column temperature—10 to 10 ° C, final column temperature 150 to 250 ° C, It is a value measured at a detector temperature of 150 to 250 ° C.
また、 本発明の燃料の硫黄分含有量については何ら制限はないが、 改質触媒、 水性ガスシフト反応触媒、 一酸化炭素除去触媒、 燃料電池スタック等、 燃料電池 システムの劣化が小さく初期性能力長時間持続できることなどから、 燃料全量基 準で、 50質量 ppm以下であること力 S好ましく、 30質量 ppm以下であるこ とがより好ましく、 10質量 ppm以下であることがさらにより好ましく、 1質 量 ppm以下であることがさらにより一層好ましく、 0. 1質量 ppm以下であ ること力 S最も好ましい。 Although there is no limitation on the sulfur content of the fuel of the present invention, the deterioration of the fuel cell system such as a reforming catalyst, a water gas shift reaction catalyst, a carbon monoxide removal catalyst, a fuel cell stack, etc. is small, and the initial capacity is long. Because it can be maintained for a long time, it should be 50 mass ppm or less based on the total fuel amount. Is more preferably 10 mass ppm or less, still more preferably 1 mass ppm or less, and still more preferably 0.1 mass ppm or less.
ここで、 硫黄分とは、 1質量 ppm以上の場合、 J I S K 2541 「原油 及び石油製品—硫黄分試験方法」 により測定される硫黄分を意味し、 1質量 PP m未満の場合、 ASTM D4045-96 「Standard Test Method for Sul fur in Petroleum Products by Hydrogenolysis and Rateometric Colorimetry 」 により測定される硫黄分を意味している。  Here, when the sulfur content is 1 mass ppm or more, it means the sulfur content measured by JISK 2541 "Crude oil and petroleum products-sulfur content test method", and when it is less than 1 mass ppm, ASTM D4045-96 It means the sulfur content measured by "Standard Test Method for Sul fur in Petroleum Products by Hydrogenolysis and Rateometric Colorimetry".
本発明において、 飽和分、 ォレフィン分および芳香族分の各含有量にはなんら 制限はないが、 飽和分 (V (S) ) は 30容量%以上、 ォレフィン分 (V (0) ) は 35容量%以下、 芳香族分 (V (Ar) ) は 50容量%以下であることが好 ましい。 以下、 これらを個別に説明する。  In the present invention, the content of each of the saturated component, the olefin component and the aromatic component is not limited, but the saturated component (V (S)) is 30% by volume or more, and the olefin component (V (0)) is 35% by volume. % Or less, and the aromatic content (V (Ar)) is preferably 50% by volume or less. Hereinafter, these will be individually described.
V (S) は、 重量当りの発電量が多いこと、 C02発生量当たりの発電量が大 きいこと、 燃料電池システム全体としての燃費力良いこと、 排出ガス中の THC 力 s '少ないこと、 システムの起動時間力 S短いこと等から、 30容量%以上であるこ と力 s好ましく、 40容量%以上であることがより好ましく、 50容量%以上であ ることがさらにより好ましく、 60容量%以上であることがさらにより一層好ま しく、 70容量%以上であることがさらにより一層好ましく、 80容量%以上で あることがさらにより一層好ましく、 90容量%以上であることがさらにより一 層好ましく、 95容量%以上であること力 S最も好ましい。 V (S) is often power generation amount per weight, C0 2 generation per generation amount that large heard, good fuel economy force of the entire fuel cell system, THC force s' less that in the exhaust gas, Since the system startup time power S is short, it is preferable that the capacity be 30% by volume or more, more preferably 40% by volume or more, even more preferably 50% by volume or more, and 60% by volume or more. Is still more preferred, 70% by volume or more is even more preferred, 80% by volume or more is even more preferred, and 90% by volume or more is even more preferred. More than 95% by volume is most preferable.
V (0) は、 重量当りの発電量が多いこと、 C02発生量当たりの発電量が大 きいこと、 改質触媒の劣化が小さく初期性能力長時間持続できること、 貯蔵安定 性が良好なことなどから、 35容量%以下であること力 s'好ましく、 25容量%以 下であることがより好ましく、 20容量%以下であることがさらにより好ましく 、 15容量%以下であることがさらにより一層好ましく、 10容量%以下である こと力最も ¾Fましい。 V (0) is often power generation amount per weight, C0 2 generation per generation amount that large heard, the deterioration of the reforming catalyst can last reduced initial resistance capability for a long time, that good storage stability For example, the force is preferably 35% by volume or less, more preferably 25% by volume or less, still more preferably 20% by volume or less, and even more preferably 15% by volume or less. Preferably, it is 10% by volume or less.
V (Ar) は、 重量当りの発電量が多いこと、 CO 2発生量当たりの発電量が 大きいこと、 燃料電池システム全体としての燃費力良いこと、 排出ガス中の TH C力 s少ないこと、 システムの起動時間力 S短いこと、 重量当りの発電量が多いこと 、 改質触媒の劣化が小さく初期性能力長時間持続できることなどから、 5 0容量 %以下であること力 s好ましく、 4 5容量%以下であることがより好ましく、 4 0 容量%以下であることがさらにより好ましく、 3 5容量%以下であることがさら により一層好ましく、 3 0容量%以下であることがさらにより一層好ましく、 2 0容量%以下であることがさらにより一層好ましく、 1 0容量%以下であること 力 sさらにより一層好ましく、 5容量%以下であること力最も好ましい。 V (Ar): high power generation per weight, high power generation per CO 2 generation, good fuel economy as a whole fuel cell system, low THC power in exhaust gas, system Startup time power S is short, power generation per weight is large Since the deterioration of the reforming catalyst is small and the initiality ability can be maintained for a long time, it is preferable that the capacity is 50% by volume or less, more preferably 45% by volume or less, and 40% by volume or less. Is still more preferably 35% by volume or less, still more preferably 30% by volume or less, even more preferably 20% by volume or less, and 10% by volume or less. % Or less, more preferably 5% by volume or less.
そして、 上記硫黄分の好ましい範囲と上記芳香族分の好ましい範囲力 つなが らに満足すること力 改質触媒の劣化が小さく初期性能を長く維持できることか ら、 最も好ましい。  It is most preferable because the preferable range of the sulfur content and the preferable range of the aromatic content are satisfied while the deterioration of the reforming catalyst is small and the initial performance can be maintained for a long time.
上記の V ( S ) 、 V ( 0 ) および V (A r ) は、 全て J I S K 2 5 3 6 「 石油製品—炭化水素タイプ試験方法」 の蛍光指示薬吸着法により測定される値で ある。  The above V (S), V (0) and V (A r) are all values measured by the fluorescent indicator adsorption method of JIS K 2 536 “Petroleum products-hydrocarbon type test method”.
また、 本発明において、 燃料の飽和分中のパラフィン分の割合については何ら 制限はないが、 重量当りの発電量が多いこと、 C 02発生量当たりの発電量が大 きいことなど力 >ら、 飽和分中のパラフィン分の割合が 6 0容量%以上であること 力 S好ましく、 6 5容量%以上であることがより好ましく、 7 0容量%以上である ことがさらにより好ましく、 7 5容量%以上であることがさらにより一層好まし く、 8 0容量%以上であることがさらにより一層好ましく、 8 5容量%以上であ ることがさらにより一層好ましく、 9 0容量%以上であることがさらにより一層 好ましく、 9 5容量%以上であること力 s最も好ましい。 Further, in the present invention is not in any way limit for the percentage of the paraffin component in the saturated component of the fuel, it is often the power generation amount per weight, C 0 such as power per 2 emissions it large heard force> et al The ratio of the paraffin content in the saturated component is preferably at least 60% by volume, more preferably at least 65% by volume, even more preferably at least 70% by volume, and at least 75% by volume. % Or more, still more preferably 80% by volume or more, still more preferably 85% by volume or more, and even more preferably 90% by volume or more. Is even more preferred, and is more preferably 95% by volume or more.
上記の飽和分およびパラフィン分は、 上記したガスクロマトグラフィー法によ り定量された値である。  The above-mentioned saturated content and paraffin content are values determined by the above-described gas chromatography method.
また、 上記パラフィン分中の分岐型パラフィンの割合については何ら制限はな いが、 重量当りの発電量が多いこと、 C 02発生量当たりの発電量が大きいこと 、 燃料電池システム全体としての燃費力 S良いこと、 排出ガス中の T H Cが少ない こと、 システムの起動時間力5'短いこと等から、 パラフィン分中の分岐型パラフィ ンの割合が 3 0容量%以上であること力好ましく、 5 0容量%以上であることが より好ましく、 7 0容量%以上であること力 s最も好ましい。 Further, no limitation is a bur often power per weight for the percentage of branched paraffins in the paraffinic fraction, that the power generation per C 0 2 generation amount is large, overall fuel consumption of a fuel cell system Power S Good, low THC in exhaust gas, short system startup time 5 ', etc., it is preferable that the ratio of branched paraffin in paraffin is 30% by volume or more, 50% %, More preferably at least 70% by volume, and most preferably at least 70% by volume.
上記のパラフィン分および分岐型パラフィンの量は、 上記したガスクロマトグ ラフィ一法により定量された値である。 The above paraffin content and the amount of branched paraffin are determined by the gas chromatography This is a value determined by the luffy method.
本発明の燃料の製造方法については、 特に制限はない。 具体的には例えば、 原 油を常圧蒸留して得られる軽質ナフサ、 原油を常圧蒸留して得られる重質ナフサ 、 軽質ナフサを脱硫した脱硫軽質ナフサ、 重質ナフサを脱硫した脱硫重質ナフサ 、 軽質ナフサを異性化装置でィソパラフィンに転ィヒして得られる異性化ガソリン 、 イソブタン等の炭ィヒ水素に低級ォレフィンを付加 (アルキル化) することによ つて得られるアルキレート、 アルキレートを脱硫処理した脱硫アルキレート、 脱 硫されたィソブタン等の炭化水素と脱硫された低級ォレフィンによる低硫黄アル キレート、 接触改質法で得られる改質ガソリン、 2女質ガソリンょり芳香族分を抽 出した残分であるラフイネ一ト、 3質ガソリンの軽質留分、 [質ガソリンの中重 質留分、 改質ガソリンの重質留分、 接触分解法、 水素化分解法等で得られる分解 ガソリン、 分解ガソリンの軽質留分、 分解ガソリンの重質留分、 分解ガソリンを 脱硫処理した脱硫分解ガソリン、 分解ガソリンの軽質留分を脱硫処理した脱硫軽 質分解ガソリン、 分解ガソリンの重質留分を脱硫処理した脱硫重質分解ガソリン 、 天然ガス等を一酸化炭素と水素に分解した後に F— T (Fischer-Tropsch ) 合 成で得られる 「G T L (Gas to Liquids) J の軽質留分、 L P Gを脱硫処理し た脱硫 L P G、 等の基材を 1種または 2種以上を用いて製造される。 また、 上言己 の基材を 1種または 2種以上を混合した後に、 水素ィヒあるいは吸着等によって脱 硫することによつても製造できる。  There is no particular limitation on the method for producing the fuel of the present invention. Specifically, for example, light naphtha obtained by atmospheric distillation of crude oil, heavy naphtha obtained by atmospheric distillation of crude oil, desulfurized light naphtha obtained by desulfurizing light naphtha, desulfurized heavy obtained by desulfurizing heavy naphtha Alkylates and alkylates obtained by adding (alkylating) lower olefins to isomerized gasoline obtained by converting naphtha and light naphtha to isoparaffin with an isomerizer, and to hydrocarbons such as isobutane. Desulfurized alkylate, desulfurized hydrocarbons such as isobutane and desulfurized low-olefin, low-sulfur alkylate, reformed gasoline obtained by catalytic reforming, and aromatics from female gasoline. Rough rice as extracted residue, light fraction of three gasoline, [medium heavy fraction of high quality gasoline, heavy fraction of reformed gasoline, catalytic cracking method, hydrogenation Cracked gasoline obtained by cracking, cracked gasoline light fraction, cracked gasoline heavy fraction, desulfurized cracked gasoline obtained by desulfurizing cracked gasoline, desulfurized light cracked gasoline obtained by desulfurizing cracked gasoline light fraction, cracked GTL (Gas to Liquids) J obtained by F-T (Fischer-Tropsch) synthesis after cracking heavy sulfur cracked gasoline, natural gas, etc., which is obtained by desulfurizing a heavy fraction of gasoline, into natural gas and carbon monoxide It is produced by using one or more base materials such as light fractions, desulfurized LPG obtained by desulfurizing LPG, etc. In addition, one or more base materials of the above-mentioned base materials are mixed. It can also be produced later by desulfurization by means of hydrogen or adsorption.
これらの中でも、 本発明の燃料の製造基材として好ましいものとしては、 軽質 ナフサ、 脱硫軽質ナフサ、 異性化ガソリン、 アルキレートを脱硫処理した脱硫ァ ルキレート、 脱硫されたイソブタン等の炭化水素と脱硫された低級ォレフィンに よる低硫黄アルキレート、 分解ガソリンの軽質留分を脱硫処理した脱硫軽質分解 ガソリン、 G T Lの軽質留分、 L P Gを脱硫処理した脱硫 L P G、 等が挙げられ る。  Among them, preferred as a base material for producing the fuel of the present invention are desulfurized hydrocarbons such as light naphtha, desulfurized light naphtha, isomerized gasoline, desulfurized alkylate obtained by desulfurizing an alkylate, and desulfurized isobutane. Low sulfur alkylates by low-grade olefins, desulfurized light cracked gasoline obtained by desulfurizing the light fraction of cracked gasoline, light fraction of GTL, and desulfurized LPG obtained by desulfurizing LPG.
本発明の燃料電池システム用燃料には、 識別のために着色剤、 酸化安定度向上 のために酸化防止剤、 金属不活性化剤、 腐食防止のための腐食防止剤、 燃料ライ ンの清浄性維持のために清浄剤、 潤滑性向上のための潤滑性向上剤等の添加剤を 添加することもできる。 しカゝし、 改質触媒の劣化が小さく初斯注能力 S '長時間維持できることから、 着色 剤は 1 Oppm以下が好ましく、 5 ppm以下がより好ましい。 同様の理由によ り、 酸化防止剤は 300 p p m以下が好ましく、 200 p p m以下がより好まし く、 100 ppm以下力 S更により好ましく、 1 Opp— m以下が最も好ましい。 同 様の理由により金属不活性化剤は 50 p p m以下が好ましく、 30 p p m以下が より好ましく、 1 Oppm以下が更により好ましく、 5 ppm以下が最も好まし い。 また、 同様に改質触媒の劣化が小さく初期性能を長時間維持できることから 、 腐食防止剤は 5 Oppm以下が好ましく、 3 Oppm以下がより好ましく、 1 Oppm以下が更により好ましく、 5 ppm以下が最も好ましい。 同様の理由に より清浄剤は 300ppm以下が好ましく、 200pm以下がより好ましく、 1 ,00 p pm以下がもっとも好ましい。 同様の理由により潤滑性向上剤は 300 p pm以下力好ましく、 200ppm以下がより好ましく、 100pm以下がもつ とも好ましい。 The fuel for the fuel cell system of the present invention includes a colorant for identification, an antioxidant for improving oxidative stability, a metal deactivator, a corrosion inhibitor for corrosion prevention, and cleanliness of the fuel line. Additives such as a detergent for maintaining the lubrication and a lubricity improver for improving the lubricity can be added. However, since the deterioration of the reforming catalyst is small and the initial injection capacity S ′ can be maintained for a long time, the colorant is preferably 1 Oppm or less, more preferably 5 ppm or less. For similar reasons, the antioxidant is preferably at most 300 ppm, more preferably at most 200 ppm, even more preferably at most 100 ppm, most preferably at most 1 Opp-m. For the same reason, the metal deactivator is preferably 50 ppm or less, more preferably 30 ppm or less, still more preferably 1 Oppm or less, and most preferably 5 ppm or less. Similarly, since the deterioration of the reforming catalyst is small and the initial performance can be maintained for a long time, the corrosion inhibitor is preferably 5 Oppm or less, more preferably 3 Oppm or less, still more preferably 1 Oppm or less, and most preferably 5 ppm or less. preferable. For the same reason, the detergent is preferably at most 300 ppm, more preferably at most 200 pm, most preferably at most 1,00 ppm. For the same reason, the lubricity improver is preferably 300 ppm or less, more preferably 200 ppm or less, and even more preferably 100 ppm or less.
本発明の燃料は、 燃料電池システム用燃料として用いられる。 本発明でいう燃 料電池システムには、 燃料の改質器、 一酸化炭素浄化装置、 燃料電池等が含まれ るが、 本発明の燃料は如何なる燃料電池システムにも好適に用いられる。  The fuel of the present invention is used as a fuel for a fuel cell system. The fuel cell system according to the present invention includes a fuel reformer, a carbon monoxide purifying device, a fuel cell, and the like, and the fuel of the present invention is suitably used for any fuel cell system.
燃料の改質器は、 燃料を改質して燃料電池の燃料である水素を得るためのもの である。 改質器と'しては、 具体的には、 例えば、  The fuel reformer is for reforming the fuel to obtain hydrogen, which is the fuel of the fuel cell. As a reformer, specifically, for example,
(1) 加熱気化した燃料と水蒸気を混合し、 銅、 ニッケル、 白金、 ルテニウム等 の触媒中で加熱反応させることにより、 水素を主成分とする生成物を得る水蒸気 改質型改質器、  (1) A steam reforming reformer that mixes heated and vaporized fuel with steam and reacts by heating in a catalyst such as copper, nickel, platinum, ruthenium, etc., to obtain a product containing hydrogen as a main component.
(2) 加熱気化した燃料を空気と混合し、 銅、 ニッケル、 白金、 ルテニウム等の 触媒中または無触媒で反応させることにより、 水素を主成分とする生成物を得る 部分酸化型改質器、  (2) A partially oxidized reformer that mixes heated and vaporized fuel with air and reacts with or without a catalyst such as copper, nickel, platinum, ruthenium, etc. to obtain a product containing hydrogen as a main component.
(3) 加熱気化した燃料を水蒸気及び空気と混合し、 銅、 ニッケル、 白金、 ルテ ユウム等の触媒層前段にて、 (2) の部分酸化型改質を行ない、 後段にて部分酸 化反応の熱発生を利用して、 ( 1 ) の水蒸気型改質を行なうことにより、 水素を 主成分とする生成物を得る部分酸ィヒ ·水蒸気改質型改質器、  (3) The heated and vaporized fuel is mixed with steam and air, and the partial oxidation reforming of (2) is performed in the former stage of the catalyst layer of copper, nickel, platinum, ruthenium, etc., and in the latter stage, the partial oxidation reaction (1) The steam reforming of (1) is carried out by using the heat generation to obtain a product comprising hydrogen as a main component.
等が挙げられる。 一酸化炭素浄化装置とは、 上記の改質装置で生成されたガスに含まれ、 燃料電 池の触媒毒となる一酸化炭素の除去を行なうものであり、 具体的には、 And the like. The carbon monoxide purifier removes carbon monoxide contained in the gas generated by the above reformer and becomes a catalyst poison of the fuel cell.
(1) 改質ガスと加熱気化した水蒸気を混合し、 銅、 ニッケル、 白金、 ルテユウ ム等の触媒中で反応させることにより、 一酸化炭素と水蒸気より二酸化炭素と水 素を生成物として得る水性ガスシフト反応器、  (1) An aqueous solution that mixes reformed gas and heated vaporized steam and reacts in a catalyst such as copper, nickel, platinum, and ruthenium to obtain carbon dioxide and hydrogen as products from carbon monoxide and steam. Gas shift reactor,
(2) 改質ガスを圧縮空気と混合し、 白金、 ルテニウム等の触媒中で反応させる ことにより、 一酸化炭素を二酸化炭素に変換する選択酸化反応器等が挙げられ、 これらを単独または組み合わせて使用される。  (2) A selective oxidation reactor that converts carbon monoxide into carbon dioxide by mixing the reformed gas with compressed air and reacting it in a catalyst such as platinum or ruthenium is mentioned. used.
燃料電池としては、 具体的には、 例えば、 固体高分子型燃料電池 (PEFC) 、 リン酸型燃料電池 (PAFC) 、 溶融炭酸塩型燃料電池 (MCFC) 、 固体酸 化物型燃料電池 (SO FC) 等が挙げられる。 . .  Specific examples of fuel cells include solid polymer fuel cells (PEFC), phosphoric acid fuel cells (PAFC), molten carbonate fuel cells (MCFC), and solid oxide fuel cells (SOFC). ) And the like. .
また、 上記したような燃料電池システムは、 電気自動車、 従来エンジンと電気 のハイブリッド自動車、 可搬型電源、 分散型電源、 家庭用電源、 コージエネレ一 シヨンシステム等に用いられる。, 実施例  Further, the fuel cell system as described above is used for electric vehicles, conventional hybrid vehicles of an engine and electricity, portable power sources, distributed power sources, home power sources, and cogeneration systems. , Example
実施例および比較例の各燃料に用いた各基材の性状等を第 1表に示す。  Table 1 shows the properties and the like of each base material used for each fuel in the examples and comparative examples.
なお、 熱容量及び蒸発潜熱は、 上記したガスクロマトグラフィ一法により定量 された各成分毎の含有量と、 「Techn i ca l Data B o o k-P e t r o 1 e um Ref i ni ng」 の 'I Vo l■· 1, Chap. 1 Gene r a 1 Data, Tab l e 1 C 1」 に記載されている各成分ごとの単位 重量当たりの数値を基に計算で求めた。  The heat capacity and latent heat of vaporization were determined by the content of each component determined by the gas chromatography method described above, and by the 'I Vo l ■ of the Technical Data Data Book 1 e um Ref in · 1, Chap. 1 Gene ra 1 Data, Table 1 C 1 ”was calculated based on the numerical value per unit weight for each component.
また、 実施例および比較例に用いた各燃料の性状等を第 2表に示す。 第 1表 Table 2 shows the properties of each fuel used in Examples and Comparative Examples. Table 1
Figure imgf000012_0001
Figure imgf000012_0001
差替え用紙(規則 26) 第 1表 (続き) Replacement form (Rule 26) Table 1 (continued)
Figure imgf000013_0001
Figure imgf000013_0001
差替え用紙(規則 26) 鹏螺 ¾ i; Replacement form (Rule 26) 鹏 screw ¾ i ;
混合割合 LPG 17% 脱硫軽質ナフサ 100% 80% Mixing ratio LPG 17% Desulfurized light naphtha 100% 80%
異性化ガソリン 100%  100% isomerized gasoline
軽質改質ガソリン 20%  Light reformed gasoline 20%
中重質改質ガソリン 30% 15% 重質改質ガソリン 70% 68% 性状 硫黄分 ¾ ppm 0.1 0.1 0.3 0.3 0.5 炭素数割合  Medium heavy reformed gasoline 30% 15% Heavy reformed gasoline 70% 68% Property Sulfur content ¾ ppm 0.1 0.1 0.3 0.3 0.5 Carbon number ratio
炭素数 4 容量% 5.4 7.9 2.4 0.0 16.6 炭素数 5 容量% 42.2 43.7 43.6 0.0 0.0 炭素数 6 容量% 49.2 45.7 53.6 0.2 0.1 炭素数 7 容量% 3.1 2.5 0.3 10.9 5.4 炭素数 8 容量% 0.1 0.1 0.1 14.4 7.2 炭素数 7+8 容量% 3.2 2.6 0.4 25.3 12.6 炭素数 9 容量% 0.0 0.0 0.0 51.8 48.4 炭素数 10以上 容量% 0.0 0.0 0.0 22.8 21.9 組成  Carbon number 4% by volume 5.4 7.9 2.4 0.0 16.6 Carbon number 5% by volume 42.2 43.7 43.6 0.0 0.0 Carbon number 6% by volume 49.2 45.7 53.6 0.2 0.1 Carbon number 7% by volume 3.1 2.5 0.3 10.9 5.4 Carbon number 8% by volume 0.1 0.1 0.1 14.4 7.2 Carbon number 7 + 8% by volume 3.2 2.6 0.4 25.3 12.6 Carbon number 9 Volume% 0.0 0.0 0.0 51.8 48.4 Carbon number 10 or more Volume% 0.0 0.0 0.0 22.8 21.9 Composition
飽和分 容量% 98.9 98.5 99.9 1.6 17.9 ォレフィン分 容量% 0.0 0.4 0.1 0.0 0.1 芳香族分 容量% 1.1 1.1 0.0 98.3 82.0 飽和分中のパラフィン 容量% 92.6 93.9 98.4 98.2 99.9 ハ 'ラフィン中の分枝/ ラフィン容量% 37.2 42.6 83.5 54.8 35.9 密度 g/cm3 0.6564 0.6549 0.6475 0.8804 0.8316 真発熱量 kJ/kg 44820 44850 44798 41180 41738 熱容量 (液体) kJ/kg-°C 2.197 2.203 2.197 1.704 1.780 熱容量 (気体) kJ/kg-°C 1.569 1.572 1.582 1.219 1.274 蒸発潜熱 kJ/kg 344.4 345.1 332.8 319.8 323.3 Saturation content% 98.9 98.5 99.9 1.6 17.9 Olefin content% 0.0 0.4 0.1 0.0 0.1 Aromatic content% 1.1 1.1 0.0 98.3 82.0 Paraffin content% in saturation 92.6 93.9 98.4 98.2 99.9 Branching / raffin content in paraffin % 37.2 42.6 83.5 54.8 35.9 Density g / cm3 0.6564 0.6549 0.6475 0.8804 0.8316 Net calorific value kJ / kg 44820 44850 44798 41180 41738 Heat capacity (liquid) kJ / kg- ° C 2.197 2.203 2.197 1.704 1.780 Heat capacity (gas) kJ / kg- ° C 1.569 1.572 1.582 1.219 1.274 Latent heat of vaporization kJ / kg 344.4 345.1 332.8 319.8 323.3
これら各燃料について、 燃料電池システム評価試験、 蒸発ガス試験、 貯蔵安定 性試験を行なった。 For each of these fuels, a fuel cell system evaluation test, evaporative gas test, and storage stability test were performed.
燃料電池システム評価試験 Fuel cell system evaluation test
( 1 ) 水蒸気改質型  (1) Steam reforming type
燃料と水を電気加熱により気ィヒさせ、 貴金属系触媒を充填し電気ヒータ一で所 定の温度に維持した改質器に導き、 水素分に富む改質ガスを発生させた。  The fuel and water were vaporized by electric heating, and led to a reformer filled with a noble metal catalyst and maintained at a specified temperature with an electric heater to generate a reformed gas rich in hydrogen.
改質器の温度は、 試験の初期段階において改質カ '完全に行なわれる最低の温度 The temperature of the reformer is the lowest temperature at which reforming is performed completely in the initial stage of the test.
(改質ガスに T H C力 S含まれない最低温度) とした。 (The lowest temperature at which the reformed gas does not contain THC and S).
改質ガスを水蒸気と共に一酸化炭素処理装置 (水性ガスシフト反応) に導き、 3i (質ガス中の一酸化炭素を二酸化炭素に変換した後、 生成したガスを固体高分子 型燃料電池に導き発電を行なった。  The reformed gas is led to a carbon monoxide treatment unit (water gas shift reaction) together with water vapor, and 3i (converts carbon monoxide in the raw gas to carbon dioxide), and the generated gas is led to a polymer electrolyte fuel cell to generate electricity. Done.
評価に用いた水蒸気改質型の燃料電池システムのフローチヤ一トを第 1図に示 す 0 Shown to 0 Furochiya one bets in Figure 1 of the steam reforming type fuel cell system used for evaluation
( 2 ) 部分酸化型  (2) Partial oxidation type
燃料を電気加熱により気ィヒさせ、 予熱した空気と共に貴金属系触媒を充填し電 気ヒーターで 1 1 0 0 °Cに維持した改質器に導き、 水素分に富む改質ガスを発生 させた。  The fuel was gasified by electric heating, and the preheated air was charged with a precious metal catalyst and led to a reformer maintained at 110 ° C with an electric heater to generate hydrogen-rich reformed gas. .
改質ガスを水蒸気と共に一酸化炭素処理装置 (水性ガスシフト反応) に導き、 改質ガス中の一酸化炭素を二酸化炭素に変換した後、 生成したガスを固体高分子 型燃料電池に導き発電を行なった。  The reformed gas is led to a carbon monoxide treatment device (water gas shift reaction) together with water vapor to convert carbon monoxide in the reformed gas into carbon dioxide, and the generated gas is guided to a polymer electrolyte fuel cell to generate electricity. Was.
評価に用いた部分酸化型の燃料電池システムのフローチャートを第 2図に示す  Figure 2 shows a flowchart of the partial oxidation fuel cell system used for the evaluation.
( 3 ) 評価方法 (3) Evaluation method
評価試験開始直後に改質器から発生する改質ガス中の H 2 、 C O、 C 02 、 T H C量について測定を行った。 同じく、 評価試験開始直後に一酸化炭素処理装置 から発生する改質ガス中の H 2 、 C O、 C 02 、 T H C量について測定を行った 評価試験開始直後および開始 1 0 0時間後の燃料電池における発電量、 燃料消 費量、 並びに燃料電池から排出される C O 2量について測定を行なった。 各燃料を所定の改質器温度にまで導くために要する熱量 (予熱量) は、 熱容量 、 蒸発潜熱から計算した。 Evaluation H 2, CO in the reformed gas generated from the reformer immediately after the start of the test, were measured for C 0 2, THC amount. Similarly, the evaluation test immediately after the start of H 2 in the reformed gas generated from the carbon monoxide processor, CO, C 0 2, THC amount measured immediately after the evaluation test start was performed on and start 1 0 0 hour after the fuel cell We measured the amount of power generation, fuel consumption, and the amount of CO 2 emitted from the fuel cell. The amount of heat (preheat amount) required to guide each fuel to a predetermined reformer temperature was calculated from the heat capacity and latent heat of vaporization.
また、 これら測定値'計算値および燃料発熱量から、 3女質触媒の性能劣化割合 (試験開始 1 0 0時間後の発電量 Z試験開始直後の発電量) 、 熱効率 (試験開始 直後の発電量 Z燃料発熱量) 、 予熱量割合 (予熱量 Z発電量) を計算した。 蒸発ガス試験  In addition, based on these measured values' calculated values and fuel calorific value, the performance degradation rate of the three female catalysts (power generation 100 hours after the start of the test Z power generation immediately after the start of the test), thermal efficiency (power generation immediately after the start of the test) Z fuel calorific value) and preheat amount ratio (preheat amount Z power generation amount) were calculated. Evaporative gas test
2 0リツトルのガソリン携行缶の給油口に試料充填用ホースを装着し、 装着部 を完全にシールした。 缶の空気抜きバルブは開けたまま、 各燃料を 5リットル充 填した。 充填後に空気抜きバルブを閉め、 3 0分間放置した。 放置後、 空気抜き バルブの先に活性炭吸着装置を取付けてバルブを開けた。 直ちに給油口から各燃 料を 1 0リットル給油した。 給油後 5分間、 空気抜きバルブを開けたまま放置し 活性炭に蒸気を吸収させ、 その後に活性炭の重量増を測定した。 なお、 試験は 2 5 °Cの一定温度下で行なった。  A sample filling hose was attached to the filler port of a 20-litre gasoline carrying can, and the attachment part was completely sealed. Each liter was filled with 5 liters of fuel while the vent valve of the can was open. After filling, the air vent valve was closed and left for 30 minutes. After standing, an activated carbon adsorption device was attached to the tip of the air release valve, and the valve was opened. Immediately, 10 liters of each fuel were supplied from the filler port. Five minutes after refueling, leaving the air release valve open, the activated carbon was allowed to absorb steam, and then the weight increase of the activated carbon was measured. The test was performed at a constant temperature of 25 ° C.
貯蔵安定度試験 Storage stability test
各燃料を耐圧密閉容器に酸素と共に充填し、 1 0 0 °Cに加熱、 '温度を保ったま ま 2 4時間放置した後、 J I S K 2 2 6 1に定める実在ガム試験法にて評価を 行なった。  Each fuel was filled with oxygen in a pressure-resistant sealed container, heated to 100 ° C, left for 24 hours while maintaining the temperature, and evaluated by the real gum test method specified in JISK2261 .
各測定値 ·計算値を第 3表に示す。 Table 3 shows the measured values and calculated values.
鹏鹉 ¾ I 鹏 鹉 ¾ I
第 3表 Table 3
Figure imgf000017_0001
Figure imgf000017_0001
1 )改質ガス中に THCが含まれない最低温度  1) Minimum temperature at which THC is not contained in the reformed gas
2)電気エネルギー/燃料発熱量  2) Electric energy / fuel calorific value
3)燃料を所定の改質器温度に導くために必要な熱量 3) The amount of heat required to bring the fuel to the specified reformer temperature
4)予熱量 Z電気エネルギー 4) Preheating amount Z electric energy
産業上の利用可能性 Industrial applicability
上記の通り、 本発明にかかる燃料電池システム用燃料は、 性能劣化割合の少な い電気エネルギーを高出力で得ることができる他、 燃料電池用として各種性能を 満足する燃料である。  As described above, the fuel for a fuel cell system according to the present invention is a fuel that can obtain high-output electric energy with a small performance deterioration ratio and that satisfies various performances for a fuel cell.

Claims

請 求 の 範 囲 The scope of the claims
1 . 炭素数 4の炭化水素化合物の含有量が 1 5容量%以下であり、 炭素数 5の 炭化水素化合物の含有量が 5容量%以上であり、 炭素数 6の炭化水素化合物の含 有量が 1 0容量%以上である燃料電池システム用燃料。 1. The content of hydrocarbon compounds having 4 carbon atoms is 15% by volume or less, the content of hydrocarbon compounds having 5 carbon atoms is 5% by volume or more, and the content of hydrocarbon compounds having 6 carbon atoms is 1. For a fuel cell system having a content of 10% by volume or more.
2 . 硫黄分含有量が 5 0質量 p p m以下である請求の範囲第 1項記載の燃料電 池システム用燃料。  2. The fuel for a fuel cell system according to claim 1, wherein the sulfur content is 50 mass ppm or less.
3 . 飽和分が 3 0容量%以上である請求の範囲第 1項または第 2項記載の燃料 電池システム用燃料。  3. The fuel for a fuel cell system according to claim 1, wherein the saturated content is 30% by volume or more.
4 . ォレフィン分が 3 5容量%以下である請求の範囲第 1項〜第 3項何れかに 記載の燃料電池システム用燃料。  4. The fuel for a fuel cell system according to any one of claims 1 to 3, wherein the olefin content is 35% by volume or less.
5 . 芳香族分が 5 0容量%以下である請求の範囲第 1項〜第 4項何れかに記載 の燃料電池システム用燃料。  5. The fuel for a fuel cell system according to any one of claims 1 to 4, wherein the aromatic component is 50% by volume or less.
6 . 飽和分中のパラフィン分の割合が 6 0容量%以上である請求の範囲第 1項 〜第 5項可れかに記載の燃料電池システム用燃料。 , 6. The fuel for a fuel cell system according to any one of claims 1 to 5, wherein the proportion of the paraffin component in the saturated component is 60% by volume or more. ,
7 . パラフィン分中の分岐型パラフィンの割合が 3 0容量%以上である請求の 範囲第 1項〜第 6項何れかに記載の燃料電池システム用燃料。 7. The fuel for a fuel cell system according to any one of claims 1 to 6, wherein the proportion of the branched paraffin in the paraffin content is 30% by volume or more.
PCT/JP2001/003096 2000-04-10 2001-04-10 Fuel for use in fuel cell system WO2001077267A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU46890/01A AU4689001A (en) 2000-04-10 2001-04-10 Fuel for use in fuel cell system
JP2001575121A JP4598897B2 (en) 2000-04-10 2001-04-10 Fuel for fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000107834 2000-04-10
JP2000-107834 2000-04-10

Publications (1)

Publication Number Publication Date
WO2001077267A1 true WO2001077267A1 (en) 2001-10-18

Family

ID=18620777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003096 WO2001077267A1 (en) 2000-04-10 2001-04-10 Fuel for use in fuel cell system

Country Status (3)

Country Link
JP (1) JP4598897B2 (en)
AU (1) AU4689001A (en)
WO (1) WO2001077267A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100829A (en) * 2008-09-25 2010-05-06 Showa Shell Sekiyu Kk Hydrocarbon fuel oil with paraffin as main constituent for use in fuel cell system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150380A (en) * 1986-12-13 1988-06-23 Idemitsu Kosan Co Ltd Improved kerosene
JPH03199294A (en) * 1989-12-27 1991-08-30 Sekiyu Sangyo Katsuseika Center Process for producing reformed raw material from petroleum fuel by cracking desulfurization
JPH0570780A (en) * 1991-09-12 1993-03-23 Sekiyu Sangyo Kasseika Center Depth desulfurization of middle-or low-boiling oil
JPH11236580A (en) * 1997-12-18 1999-08-31 Idemitsu Kosan Co Ltd Unleaded gasoline composition
JP2000012061A (en) * 1998-06-23 2000-01-14 Masayoshi Ishida Fuel cell power generating system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150380A (en) * 1986-12-13 1988-06-23 Idemitsu Kosan Co Ltd Improved kerosene
JPH03199294A (en) * 1989-12-27 1991-08-30 Sekiyu Sangyo Katsuseika Center Process for producing reformed raw material from petroleum fuel by cracking desulfurization
JPH0570780A (en) * 1991-09-12 1993-03-23 Sekiyu Sangyo Kasseika Center Depth desulfurization of middle-or low-boiling oil
JPH11236580A (en) * 1997-12-18 1999-08-31 Idemitsu Kosan Co Ltd Unleaded gasoline composition
JP2000012061A (en) * 1998-06-23 2000-01-14 Masayoshi Ishida Fuel cell power generating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100829A (en) * 2008-09-25 2010-05-06 Showa Shell Sekiyu Kk Hydrocarbon fuel oil with paraffin as main constituent for use in fuel cell system

Also Published As

Publication number Publication date
AU4689001A (en) 2001-10-23
JP4598897B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JPWO2002031090A1 (en) Gasoline vehicle and fuel for fuel cell system, and storage and / or supply system thereof
JP4598892B2 (en) Fuel for fuel cell system
JP4598894B2 (en) Fuel for fuel cell system
JP4583666B2 (en) Fuel for fuel cell system
JP4598893B2 (en) Fuel for fuel cell system
WO2001077259A1 (en) Fuel for use in fuel cell system
JP4598890B2 (en) Fuel for fuel cell system
JP4598889B2 (en) Fuel for fuel cell system
US6837909B2 (en) Fuel for use in a fuel cell system
JP4598898B2 (en) Fuel for fuel cell system
JP4598891B2 (en) Fuel for fuel cell system
JP4632281B2 (en) Fuel for fuel cell system
JP4598897B2 (en) Fuel for fuel cell system
JP4598895B2 (en) Fuel for fuel cell system
JP4598896B2 (en) Fuel for fuel cell system
JP4601869B2 (en) Fuel for fuel cell system
WO2002000814A1 (en) Fuel for fuel cell system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 575121

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase