WO2001073825A1 - Aligner, apparatus and method for transferring wafer, microdevice and method for manufacturing the same - Google Patents

Aligner, apparatus and method for transferring wafer, microdevice and method for manufacturing the same Download PDF

Info

Publication number
WO2001073825A1
WO2001073825A1 PCT/JP2001/002634 JP0102634W WO0173825A1 WO 2001073825 A1 WO2001073825 A1 WO 2001073825A1 JP 0102634 W JP0102634 W JP 0102634W WO 0173825 A1 WO0173825 A1 WO 0173825A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
chamber
substrate
reticle
transfer
Prior art date
Application number
PCT/JP2001/002634
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Aoki
Naomasa Shiraishi
Soichi Owa
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU44620/01A priority Critical patent/AU4462001A/en
Publication of WO2001073825A1 publication Critical patent/WO2001073825A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • G03F7/70741Handling masks outside exposure position, e.g. reticle libraries
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • G03F7/7075Handling workpieces outside exposure position, e.g. SMIF box
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70933Purge, e.g. exchanging fluid or gas to remove pollutants

Definitions

  • Exposure apparatus Exposure apparatus, substrate transfer apparatus and method, microdevice and method for manufacturing the same
  • the present invention relates to, for example, an exposure apparatus, a substrate transfer method, a micro device, and a method for manufacturing the same, which are used for manufacturing a fine circuit pattern of a semiconductor element, a liquid crystal display element, or the like.
  • a pattern image of a reticle is projected via a projection optical system onto a projection area (shot) on a wafer coated with a photosensitive material (resist).
  • a reduction projection exposure apparatus that reduces the size of the image and projects it is used.
  • the circuit in the semiconductor element is transferred by exposing a circuit pattern on a wafer by the projection exposure apparatus, and is formed by post-processing.
  • An integrated circuit is obtained by repeatedly layering about 20 layers of such circuit wiring.
  • the exposure apparatus basically includes four parts: an illumination optical system, a reticle operation unit, a projection optical system, and a wafer operation unit.
  • the exposure light from the exposure light source first passes through the illumination optical system.
  • the illumination optical system shapes the exposure light from the exposure light source into a desired shape, enhances the uniformity of illuminance in the light beam, and limits the area of the exposure light irradiated on the reticle. And other functions.
  • the reticle is a circuit pattern that prints on a wafer with a light-shielding substance on a glass material that transmits exposure light.
  • the reticle operation unit that operates this reticle is a reticle holding, reticle replacement, and scan type. It has functions such as scanning in an exposure apparatus, has relatively many movable parts compared to an illumination optical system, and often has outside air mixed therein.
  • the projection optical system is used to form an image of the circuit pattern transmitted through the reticle on the wafer surface, and has a closed structure.
  • a wafer is a part that becomes a semiconductor element or the like in a post-processing step after a circuit pattern on a reticle is transferred.
  • the wafer operation unit performs wafer holding, wafer exchange, movement of the exposure area, scanning with a scanning type exposure apparatus, and many movable parts like the reticle operation unit.
  • vacuum ultraviolet light having a wavelength of about 180 nm or less
  • substances that transmit these short-wavelength lights are extremely limited.
  • vacuum ultraviolet light is absorbed by oxygen molecules, water molecules, carbon dioxide molecules, etc. contained in the air (hereinafter referred to as light-absorbing substances), so that the exposure light passes through the reticle and has sufficient illuminance on the surface.
  • light-absorbing substances oxygen molecules, water molecules, carbon dioxide molecules, etc. contained in the air
  • the present invention has been made in view of the above-described problems, and has an exposure apparatus and a substrate transfer apparatus capable of reducing the time required for loading and unloading a substrate such as a reticle and a wafer, and capable of satisfactorily managing light-absorbing substances in an optical path space. And a method, a microdevice and a method for manufacturing the same.
  • An exposure apparatus is an exposure apparatus that irradiates a substrate with exposure energy from an exposure energy generation source, and includes: a storage chamber that stores the substrate; A transport mechanism that unloads the storage chamber from the transport path via the transport path; and a gas inflow suppression mechanism that forms a gas flow for suppressing the inflow of gas from the transport path into the storage chamber.
  • the transfer mechanism has a gas inflow suppression mechanism that forms a gas flow for suppressing the inflow of gas from the transfer path into the storage chamber.
  • the gas inflow suppression mechanism actively prevents the gas from flowing into the accommodation room from the carrying path by the gas flow, so that there is no need to temporarily stop the carrying, and the carrying is performed.
  • the light-absorbing substance in the storage chamber can be maintained at a low concentration without performing exhaust or gas replacement in a load port chamber or the like between the road and the storage chamber. As a result, it is possible to reliably print a circuit pattern, and to increase the manufacturing speed (throughput) of an electronic device.
  • An exposure apparatus is an exposure apparatus that irradiates a substrate with exposure energy from an exposure energy generation source, and includes: a storage chamber that stores the substrate; A transfer mechanism for unloading from the storage chamber via the transfer path, and a transfer chamber having a wall for closing a gas flow path from the transfer path to the storage chamber during the loading or unloading. Have.
  • the transfer mechanism includes a wall that closes a gas flow path from a transfer path to the storage chamber when the substrate is loaded into or out of the storage chamber. Chamber, the wall blocks the gas flow path when the substrate is taken in and out, and the gas contained in the transfer chamber is suppressed only by the inflow. Mixing of impurity gas into the exposure optical path space can be minimized, and the impurity concentration in the space can be kept low.
  • the gas inflow suppression mechanism is provided in the middle of the transport path, or between the transport path and the storage chamber, for supplying the gas into the transport path, and for sucking the gas in the transport path.
  • the gas supply port may be disposed between the storage chamber and the gas suction port.
  • the gas supply port is provided in the transport path such that an inflow direction of the gas is away from the storage chamber, and the gas exhaust port is such that a suction direction of the gas is directed to the storage chamber side.
  • a more effective air shower space can be formed by generating a gas flow to the outside of the internal storage chamber more smoothly and at a higher flow rate.
  • a pair of a gas supply port and a gas exhaust port may be arranged along the transport path.
  • a continuous air shower space can be formed, and the inflow of the light absorbing substance can be further suppressed.
  • the substrate may be a mask to which the exposure energy is applied via an illumination light system, and the storage chamber may include a mask stage for holding the mask.
  • the substrate may be a wafer to which an image of a pattern formed on the mask is transferred via a projection optical system, and the accommodation chamber has a wafer stage for holding the wafer. May be.
  • the transfer chamber may be a movable chamber arranged so as to be movable between a position at which a substrate can be taken in and out of the space and a position at which a substrate can be taken in and out of the space.
  • the flow path may be closed when the substrate is arranged at a position where the substrate can be taken in and out from the outside of the space and when the substrate is arranged at a position where it can be taken in and out from the inside of the space.
  • the substrate can be loaded and unloaded by simply moving the transfer chamber, and the inflow of gas at the time of transfer into and out of the wall can be minimized without performing gas replacement in the transfer chamber.
  • the moving chamber may be a rotating chamber that is rotatable in and out of the space, and when the rotating chamber is arranged in the space, the substrate can be taken in and out of the space.
  • the substrate may be allowed to enter and exit from the outside of the space when the substrate is disposed outside the space.
  • the substrate can be loaded and unloaded while suppressing the gas inflow only by the operation of rotating the rotating chamber.
  • the wall of the transfer chamber may be an outer door that allows a substrate to be taken in and out from the outside of the storage chamber and an inner door that can take a substrate in and out of the space.
  • the substrate can be loaded and unloaded by simply opening and closing the outer and inner doors, and the gas at the time of loading and unloading by the outer and inner doors can be replaced without replacing the gas in the transfer chamber. Can be reduced as much as possible.
  • the inside of the accommodation room may be set to a higher pressure than the outside, or may be set to substantially the same pressure. In this case, even when the storage chamber is temporarily connected to the outside such as a transfer path when the substrate is loaded or unloaded, the inflow of the light-absorbing substance from the outside of the storage chamber can be suppressed.
  • the accommodating chamber is at least one of an accommodating chamber for accommodating a mask stage for mounting a mask or an accommodating chamber for accommodating a substrate stage, and the substrate is at least one of a mask and a substrate.
  • the exposure apparatus has a relatively short optical path length, has many movable parts, and in the above-mentioned accommodation room where a mask or a substrate is frequently carried in and out, it can inevitably tolerate a higher concentration of the light-absorbing substance and at the same time can carry out the above-described high-speed carrying in and out. Is required.
  • the substrate transfer apparatus of the present invention includes: a transfer mechanism that loads the substrate into the storage chamber via a transfer path or unloads the substrate from the storage chamber through the transfer path; and inflows gas from the transfer path into the storage chamber. And a gas inflow suppression mechanism that forms a gas flow for suppressing the gas flow.
  • the substrate transfer device may include a gas supply port provided in the transfer path or between the transfer path and the storage chamber to supply the gas into the transfer path, and a gas to suck the gas in the transfer path.
  • the gas supply port may be provided between the storage chamber and the gas suction port.
  • the gas supply port is provided in the transfer path so that an inflow direction of the gas is away from the storage chamber, and the gas exhaust port is configured to store the gas in the storage direction. It may be provided in the transport path so as to face the room.
  • the substrate transfer method according to the present invention is configured to suppress inflow of gas from the transfer path to the storage chamber between a storage chamber that stores the substrate and a transfer path that transfers the substrate.
  • the gas flow is formed, and the substrate is transferred through the formed gas flow via a transfer mechanism.
  • the gas may be supplied into the transfer path from the middle of the transfer path or between the transfer path and the storage chamber, and the gas in the transfer furnace may be sucked.
  • the microdevice of the present invention is a microdepice manufactured through a transfer step of transferring a pattern of a mask onto a substrate, and the transfer step is performed by the exposure apparatus.
  • the method for manufacturing a micro device of the present invention includes a transfer step of transferring a pattern of a mask onto a substrate, and the transfer step is performed by the exposure apparatus of the present invention.
  • the transfer step is performed by the above-described exposure apparatus, a reliable pattern transfer is performed at a high throughput, and a microphone opening device such as a low-cost and high-quality semiconductor device or a liquid crystal device can be manufactured. Obtainable. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic overall configuration diagram showing an exposure apparatus in a first embodiment of an exposure apparatus, a micro device, and a method of manufacturing the same according to the present invention.
  • FIG. 2A to FIG. 2C are schematic cross-sectional views of a main part showing operations of a reticle transport system and a wafer transport system in the first embodiment of the exposure apparatus, the microdepice and the method of manufacturing the same according to the present invention. It is.
  • FIG. 3 is a schematic cross-sectional view of a main part showing a reticle transport system and a wafer transport system in a second embodiment of the exposure apparatus, the micro device, and the method of manufacturing the same according to the present invention.
  • FIG. 4 is a schematic sectional view of a main part showing a reticle transport system and a wafer transport system in a third embodiment of the exposure apparatus, the micro device and the method of manufacturing the same according to the present invention.
  • FIG. 5A to FIG. 5E are schematic cross-sectional views of the main part showing the operation of the reticle transport system in the fourth embodiment of the exposure apparatus, the micro device, and the method of manufacturing the same according to the present invention.
  • FIG. 5A to FIG. 5E are schematic cross-sectional views of the main part showing the operation of the reticle transport system in the fourth embodiment of the exposure apparatus, the micro device, and the method of manufacturing the same according to the present invention.
  • FIGS. 6A to 6E are schematic cross-sectional views of main parts showing the operation of a reticle transport system in a fifth embodiment of the exposure apparatus, the micro device, and the method for manufacturing the same according to the present invention.
  • FIGS. 7A to 7C are schematic cross-sectional views of main parts showing the operation of a reticle transport system in a sixth embodiment of the exposure apparatus, the microdepice, and the method of manufacturing the same according to the present invention.
  • FIG. 8 is a schematic plan view of a main part showing a reticle transport system in a sixth embodiment of an exposure apparatus, a micro device, and a method of manufacturing the same according to the present invention.
  • FIG. 9A to FIG. 9E are schematic cross-sectional views of main parts showing the operation of a reticle transport system in a seventh embodiment of the exposure apparatus, the micro device, and the method of manufacturing the same according to the present invention. .
  • FIG. 10 is a flowchart showing an example of a semiconductor device manufacturing process. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 a first embodiment of an exposure apparatus, a micro device, and a method of manufacturing the same according to the present invention will be described with reference to FIG. 1 and FIGS. 2A to 2C.
  • the present invention is not limited to the following embodiments.
  • the components of these embodiments may be combined as appropriate.
  • FIG. 1 is a diagram schematically showing the overall configuration of an exposure apparatus in the present embodiment.
  • the exposure apparatus emits, as an exposure light source 1, exposure light IL of vacuum ultraviolet light (wavelength: 157 nm).
  • the exposure light IL emitted from the exposure light source 1 is incident on the deflection mirror 2a in the illumination optical system L ⁇ .
  • the illumination optical system L O has a rod lens or fly-eye lens 3 as an optical integrator, a deflecting mirror 2b, relay lenses 8a and 8b, a blind 9, a condenser lens 10, and the like.
  • the exposure light IL reflected from the deflecting mirror 2a is The light enters the condenser lens 10 via the deflecting mirror 2b, the relay lens 8a, the blind 9, the relay lens 8b, and the polarizing mirror 2c.
  • a reflection mirror (not shown) for extracting a part of the exposure light and transmitting the remaining exposure light is disposed between the fly-eye lens 3 and the deflecting mirror 2b, and is reflected from the reflection mirror.
  • An integrator sensor (not shown) that receives the exposed exposure light IL and monitors the exposure energy, and receives and returns the exposure light IL that is reflected back from the optical system and the like after the reflection mirror via the reflection mirror.
  • a reflectance monitor (not shown) for monitoring.
  • the exposure light IL that has passed through the condenser lens 10 is incident on a reticle (mask, substrate) on a two-dimensionally movable reticle stage RST supported in the reticle chamber 11. Further, the exposure light IL transmitted through the reticle R enters the projection optical system PL and transmits through a plurality of lens elements constituting the projection optical system PL. Further, the exposure light IL enters the wafer (substrate) W on the wafer stage WST designated in the wafer chamber 12 and forms a pattern image on the reticle R on the surface of the wafer W.
  • the reticle chamber 11 is loaded with a reticle R onto a reticle stage RST arranged in its internal space S via a channel-like reticle transport path 13 or a reticle R is loaded from the reticle stage RST onto the reticle transport path 13.
  • a reticle transport system (transport mechanism) 14 for unloading via a port is connected.
  • the wafer W is loaded onto the wafer stage WST disposed in the internal space S of the wafer chamber 12 through the wafer transport path 15 having a pipe shape, or the wafer W is loaded from the wafer stage WST through the wafer transport path 15.
  • a wafer transfer system (transfer mechanism) 16 for unloading is connected.
  • the wafer W is placed on the sample stage 13 on the wafer stage WST that can move in the three-dimensional directions (XYZ directions), and the positions of the reticle stage RST and the wafer stage WS in the XY plane are the reticle stage R ST
  • laser light is incident on an interferometer mirror (not shown) provided on the wafer stage WST and reflected by a laser interferometer (not shown), and is measured by reflection.
  • Reticle stage RST and wafer stage WST are moved synchronously during exposure, and a pattern is exposed on wafer W by a so-called step-and-scan method.
  • the integrated exposure amount and reflectivity of the exposure light are measured and monitored by an integrator sensor and a reflectivity monitor, and the measured values are sent to a control system (not shown) as a signal, and the illuminance during printing on the wafer You can know.
  • a concentration meter (not shown) that measures the concentration (purge purity) of the light-absorbing substance in these optical path spaces is connected to the illumination optical system LO, the reticle chamber 11, the projection optical system P L and the wafer chamber 12. The measured value is sent to the control system as a signal.
  • the above four parts may be managed at different light-absorbing substance concentrations according to the optical path length / disturbance frequency.
  • a gas supply mechanism (illustration shown) for supplying a purge gas (for example, helm, argon, nitrogen, etc.) having a small absorption rate to the inside of the illumination optical system LO, the reticle chamber 11, the projection optical system PL, and the wafer chamber 12. (Abbreviated) is connected.
  • a purge gas (high cleanliness) having a low light absorbing rate is supplied by a gas supply mechanism. It is desirable that the internal pressure of at least the internal space S in the reticle chamber 11 is set to be higher than that of the outside, or that the internal pressure and the external pressure are set to be substantially the same.
  • the reticle transport system 14 and the wafer transport system 16 of the present embodiment have a reticle chamber 11 and a wafer chamber 12 (hereinafter, reticle chamber 11 is an example).
  • the gas for suppressing the inflow of gas from the reticle transport path 13 and the wafer transport path 15 (hereinafter described using the reticle transport path 13 as an example) with respect to each internal space S is described.
  • It has a gas inflow suppression mechanism 17 that forms a flow. That is, the gas inflow control mechanism 17 is provided at a connection portion with the internal space S such as the reticle transport path 13 and the like. It has a gas supply port 17a for supplying gas) and a gas exhaust port (gas suction port) 17b for sucking and exhausting the gas supplied from the gas supply port 17a.
  • the reticle chamber 11 and the wafer chamber 12 correspond to the storage chamber in the present invention. Further, it is desirable that a plurality of combinations of the gas supply port 17a and the gas exhaust port 17b in the present embodiment be provided for the transport path.
  • a gas supply pipe 17c connected to a gas supply source (not shown) is connected to the gas supply port 17a, and a gas suction source such as a vacuum pump (not shown) is connected to the gas exhaust port 17b.
  • a gas suction source such as a vacuum pump (not shown) is connected to the gas exhaust port 17b.
  • the gas supply port 17a is disposed between the internal space S and the gas exhaust port 17b, and the gas supply pipe 17a is arranged so that the gas inflow direction is away from the internal space S. It is formed by inclining c.
  • the gas exhaust port 17b is formed by inclining the gas exhaust pipe 17d such that the gas suction direction is directed to the internal space S side. Therefore, between the gas supply port 17a and the gas exhaust port 17b, a space in which the gas flow generates an air shower from the inside space S to the outside (hereinafter, referred to as an air shower space) A will be formed.
  • the entrance 18 to the internal space S is provided with a shutter 18 a capable of opening and closing the entrance 18, and the shutter 18 a is a reticle R and a wafer W (hereinafter, referred to as a reticle R, etc.).
  • the entrance 18 is opened when loading / unloading, and the entrance 18 is closed except when loading / unloading.
  • the reticle R is transferred from a reticle library (not shown) that manages a plurality of available reticles R to the reticle transport system 14 in the internal space S of the reticle chamber 11 that controls the concentration of light-absorbing substances. And set it on the optical path of the exposure light IL on the reticle stage RST.
  • the wafer W is similarly moved into the internal space S of the chamber 12 where the concentration of the light-absorbing substance is controlled by the carrier system 16 and placed on the optical path of the exposure light IL on the wafer stage WST.
  • the reticle R differs for each semiconductor element to be baked or for each layer to be baked, and the reticle R is exchanged according to a necessary process, reticle exchange is frequently performed. Therefore, when the reticle R is carried into the reticle chamber 11, the exposure light IL is absorbed by the light-absorbing material unless the inflow of the light-absorbing material is further reduced, and it is difficult to secure an exposure amount necessary for transferring the light-shielding pattern. Since the loading of the wafer W into the wafer chamber 12 is performed more frequently than that of the reticle R, the reduction of the inflow of the light-absorbing substance during the loading is more important than that of the reticle.
  • the gas supply port 17 a installed on the internal space S side into the air shower space A and the internal space S High-purity inert gas with less absorption toward the gas exhaust port 17 b installed outside the wafer, that is, from the reticle chamber 11 side and the wafer chamber 12 side to the outside. Ejects a flammable gas. At this time, gas is supplied from a direction that intersects the direction of transport (loading or unloading) of reticle R or the like.
  • the high-purity purge gas flow from the gas supply port 17a must be fast enough to reduce the inflow of light-absorbing substances from the outside. At the same time, the gas is exhausted and discharged from the gas exhaust port 17b with high suction power.
  • the gas supply port 17a is formed so that the gas inflow direction is away from the internal space S
  • the gas exhaust port 17b is set so that the gas suction direction is toward the internal space S. Since it is formed so as to face, the flow velocity of the gas flow to the outside of the internal space S is increased, and the mixing of the external atmosphere gas into the air shower space A is further reduced.
  • the amount of gas mixed in from the outside of the air shower space A depends on the shape of the air shower space A and the position, direction, diameter, etc. of the gas supply port 17a and gas exhaust port 17b. It is preferable to optimize the shape and the like.
  • the reticle R and the like move in the air space A to form a member that isolates the inside and outside of the exposure light path space like a door of a load port chamber. It is carried into and out of the internal space S such as the reticle room 11 at a higher speed without waiting time for opening and closing.
  • the gas supply cost can be reduced by reducing the flow rate of the supply gas or stopping the supply.
  • the difference between the second embodiment and the first embodiment is that the first embodiment has a gas supply port 17a and While the pair of gas exhaust ports 17b are installed in the reticle transport path 13 and the like, the exposure apparatus of the second embodiment uses the reticle transport system 20 and wafer transport as shown in FIG. A point that a plurality of pairs of a gas supply port 17a and a gas exhaust port 17b are arranged along the reticle transport path 23 and the wafer transport path 24 as the gas inflow suppression mechanism 22 of the system 21. .
  • the air shower spaces A1, A2, and A3 are continuously installed from the internal space S side to the outside by a plurality of pairs of the gas supply port 17a and the gas exhaust port 17b. In each case, an air shower is generated as in the air shower space A of the first embodiment.
  • the air shower space A2 can reduce the amount of outside air mixed in compared to the air shower space A3, and the air shower space A1 can reduce the amount of outside air mixed in compared to the air shower space A2. Finally, the intrusion of outside air into the internal space S of the reticle chamber 11 or the like can be further reduced.
  • the gas sucked in the gas exhaust port 17b of the air shower space A1 may be supplied from the gas supply port 17a of the air shower space A2, A3.
  • the gas sucked in the gas exhaust port 17 b of the air shower space A 1 is supplied again from the gas supply port 17 a of the air shower space A 2, and the gas in the air shower space A 2 is supplied.
  • the gas sucked at the exhaust port 17b may be supplied again from the gas supply port 17a of A3 during the air shower. In this way, by using the gas used in the air shower space A1 again in the air shower spaces A2 and A3, the gas consumption can be suppressed.
  • the concentration of the gas supplied from the gas supply port 17a be set higher from the reticle library and the wafer cassette to the internal space S such as the reticle chamber 11 or the like.
  • the difference between the third embodiment and the first embodiment is that the first embodiment is different from the first embodiment in that the gas supply port 17a and the gas exhaust port 17b extend from the internal space S side to the outside in the reticle transport path 13 and the like.
  • the gas inflow suppressing mechanism 32 of the reticle transfer system 30 and the wafer transfer system 31 is used.
  • the gas supply port 32a and the gas exhaust port 32b are arranged to face each other at the same position in the transfer direction of the reticle transfer path 33 and the wafer transfer path 34.
  • the gas supplied from the gas supply port 32 a is directly sucked into the gas exhaust port 32 b facing the gas supply port 32 a, and the gas supply port 32 a
  • An air curtain space K is formed between the gas curtain 32 and the gas exhaust port 32b. Therefore, the flow of gas that is going to flow through the reticle transport path 33 toward the internal space S such as the reticle chamber 11 is blocked by the air curtain space K, and the inflow to the inside is suppressed. The inflow of a light absorbing substance from the outside can be reduced.
  • FIGS. 5A to 5E Next, a fourth embodiment of the present invention will be described with reference to FIGS. 5A to 5E.
  • the first embodiment carries in and out the reticle R through the air shower space A with the gas supply port 17a and the gas exhaust port 17b.
  • the revolving door chambers (transfer chamber, moving chamber, and rotary chamber) 41 of the reticle transport system 40 are used in the exposure apparatus of the fourth embodiment.
  • the reticle R is carried into or out of the internal space S of the reticle chamber 11 via the reticle chamber 11.
  • Reticle R is held in revolving door chamber 41 on its upper and lower surfaces (in a direction perpendicular to the plane of the paper in the figure).
  • the exposure apparatus of the present embodiment includes a reticle R loading port 18 (a rail that is a reticle transport path of the reticle transport system 42 (a moving path of the transport arm that transports the reticle) 4 2a and the reticle chamber 11).
  • a rotating door chamber 41 having a rotating shaft 41 a at the connection portion with the internal space S) and rotatably moving inside and outside the internal space S is provided.
  • FIG. 5A and FIG. 5B when the revolving door chamber 41 is disposed outside the internal space S, the reticle R can be put in and out from the outside of the internal space S.
  • FIG. 5C the reticle R can be rotated and moved into and out of the inner space S when placed in the inner space S as shown in FIG. 5D and FIG. 5E. State, and these states can be switched by rotation.
  • the revolving door chamber 41 has the revolving door (wall) 41b in both states in which the reticle R can be inserted and removed, and the loading port (flow path) 18 as a whole.
  • Shut off Prevents gas from flowing from reticle transport system 42 into internal space S.
  • the revolving door 41b is provided with an elastic member 41c such as viton at a portion in contact with the side wall of the apparatus so as to be more closely attached to the side wall of the apparatus around the carry-in port 18. Degassing-treated sealing materials are also provided. .
  • the pressure in the internal space S of the reticle chamber 11 may be set slightly higher than that of the outside.
  • FIG. 5 A open the revolving door chamber 41 toward the outside of the internal space S.
  • Reticle R which has moved on rails 4 2a of reticle transport system 42, is stored in revolving door chamber 41 as shown in FIG. 5B, and then revolved as shown in FIG. 5C. Rotate chamber 41.
  • the reticle R is moved toward the reticle stage R and ST as shown in FIG. 5E. Let it. Therefore, in the states of FIG. 5A and FIG. 5B and FIG. 5D and FIG. 5E, the inside and outside of the reticle chamber 11 are sealed by the revolving door 41b, so that the inside of the exposure light path space of the light-absorbing substance is inside. It is easy to keep the state with almost no inflow into the system.
  • the inflow of gas is suppressed to a small amount, and furthermore, there is no need to perform a work such as gas replacement for taking in and out of the reticle R and the like, so that there is an advantage that the throughput is further increased. If the internal pressure of the internal space S is set to be higher than that of the outside, the mixing of gas from the reticle transport system 42 can be further suppressed, and the amount of mixed gas can be positively reduced.
  • Nozzle-like purge gas injection port is installed inside the internal space S, and an exhaust port is installed outside the internal space S, so that a local purge gas from the inside of the internal space S to the outside is located near the revolving door 41b.
  • the same effect can be obtained by providing a flow (dotted arrow shown in FIG. 5C). Is obtained.
  • FIGS. 6A to 6E Next, a fifth embodiment of the present invention will be described with reference to FIGS. 6A to 6E.
  • the exposure apparatus of the fourth embodiment includes a rotating door chamber 41 for rotating and moving to carry in and out a reticle: R, etc.
  • the reticle transport system 51 moves the reticle R out of the internal space S of the reticle chamber 11 and the internal space. It is a point that it has an elevator room (moving room). 52 that can move up and down between the position that can be taken in and out from the inside.
  • the elevator room 52 of the present embodiment is vertically movably disposed in a connection portion 43 (flow path) between the reticle transfer system 51 and the internal space S, and has a top plate (wall portion) 52a and a top plate 52a.
  • Bottom plate (wall) 5 2 b Force When reticle R is placed in a position where it can be taken in and out from inside space S (as shown in FIGS. 6A and 6B), and when reticle R can be taken in and out from inside space S When it is placed in the position (the state shown in FIG. 6D and FIG. 6E), the connecting portion 43 is closed.
  • the elevator room 52 has a structure in which both ends in the traveling direction of the reticle R by the reticle transport system 51 are open.
  • the connecting portion 43 which is a space in which the elevator room 52 moves up and down, is about twice the height of the elevator room 52. That is, in the present embodiment, for example, when the reticle R is carried into the internal space S of the reticle chamber 11, when the reticle R reaches the vicinity of the reticle chamber 11 or before, as shown in FIG. As described above, the elevator room 52 is moved to the upper part of the connection portion 43. The reticle R is moved on the rail 51 a of the reticle transport system 51 and stored in the elevator room 52 as shown in FIG. 6B.
  • the elevator room 52 is moved downward together with the reticle R, and is arranged below the connection portion 43 as shown in FIG. 6D.
  • the internal space S reticle R of the reticle chamber 11 is finally loaded.
  • the inside and outside of the equipment are sealed by the top plate 52a and the bottom plate 52b of the elevator room 52. Therefore, it is possible to keep the light absorbing substance hardly flowing into the internal space S.
  • the external gas force S FIG. 6C, which is equivalent to the difference between the internal volume of the elevator room 52 and the volume of the reticle R and other internal members, is used.
  • the liquid may enter the internal space S of the reticle room 11 while the elevator room 52 is moving.
  • the inflow of gas is suppressed to a small amount, the time consumed for loading and unloading the reticle R is reduced, and the loading and unloading of the reticle R can be performed at a higher speed, so that a decrease in throughput can be reduced.
  • the internal space S is set to a high pressure with respect to the outside, or a purge gas ejection port is provided on the internal space S side to locally direct the gas toward the external reticle transport system 51.
  • a simple purge gas flow (dotted arrow shown in FIG. 6C) may be formed.
  • the difference between the sixth embodiment and the fifth embodiment is that, in the fifth embodiment, the height of the connecting portion 43, which is the space in which the elevator room 52 moves up and down, is about twice the height of the elevator room 52.
  • the connection between the reticle transport system 51 and the internal space S of the reticle chamber 11 is established.
  • the height of the part 6 1 is about three times the height of the elevator room 52.
  • the reticle transport system 51 and the reticle room 11 are connected and gas may flow in, whereas in the sixth embodiment, the elevator room 7B, the reticle transport system 51 and the reticle chamber 11 are not connected by the top plate 52a and the bottom plate 52b, as shown in FIG. Therefore, the inflow of the light absorbing substance can be further reduced.
  • FIGS. 9A to 9E Next, a seventh embodiment of the present invention will be described with reference to FIGS. 9A to 9E.
  • the difference between the seventh embodiment and the fifth embodiment is that, in the fifth embodiment, the reticle R is loaded and unloaded through the elevator chamber 52 that moves up and down.
  • an outer opening / closing door 7 2 a through which a reticle R can be taken in and out from the reticle transport system 71 and a reticle from the inner space S side of the reticle chamber 11.
  • the reticle R and the like are loaded and unloaded via the load lock chamber 72 provided with the inside opening / closing doors 72b that can take in and out the vehicle R and the like.
  • the reticle R when the reticle R is carried into the internal space S of the reticle chamber 11, when the reticle R reaches the vicinity of the reticle chamber 11 or before, as shown in FIG. 9A. Then, with the inside door 72b closed, open the outside door 72a. The reticle R is moved on the renole 71 a of the reticle transport system 71 as shown in FIG. 9B and guided into the load lock chamber 72.
  • FIG. 9C the outer opening / closing door 72a is closed as shown in FIG. 9C, and the inner door is further closed as shown in FIG. 9D.
  • a general load lock chamber provided for removing components inside and outside the enclosed space has a force S for removing the components after performing gas replacement inside, and in this embodiment, a reticle R is loaded. Do not perform gas replacement while stored in the lock chamber 72.
  • an amount of external gas corresponding to the difference between the internal volume of the load lock chamber 72 and the volumes of the reticle R and other internal members flows into the internal space S of the reticle chamber 11.
  • the amount of gas flowing into the reticle chamber 11 or the wafer chamber 12 is minute compared to the amount of gas supplied thereto. Since the volume is very small as compared with the volume of the wafer chamber 12, a small amount of gas flows into the reticle chamber 11 or the wafer chamber 12.
  • the illumination optical system and the projection optical system have a relatively long optical path length and a small variation in the atmosphere components, while the reticle operating unit and the wafer operating unit have a relatively short optical path length and a large atmospheric variation. .
  • the concentration of light-absorbing substances such as oxygen molecules, water molecules, and carbon dioxide molecules at lower levels in the illumination optical system and projection optical system. It is not realistic to control the concentration low.
  • the reticle chamber 11 or the wafer chamber 12 has a somewhat lower concentration control of the light absorbing substance than the illumination optical system and the projection optical system. Gas is allowed to flow. Therefore, compared to the case where exhaust pressure is reduced and gas is replaced in the load lock chamber 72 ⁇ , the loading and unloading of reticle R. Time can be reduced, reticle R can be loaded and unloaded at a higher speed, and a decrease in throughput can be reduced.
  • the present invention also includes the following embodiments.
  • the internal space S of the reticle chamber 11 or the like in which the substrate such as the reticle R and the wafer W is transferred is a vacuum-tight airtight space, and even if there is a slight gap, the internal air pressure as described above.
  • a space that is isolated from the external space by control is included.
  • the internal volumes of the revolving door room 41, the elevator room 52, and the load lock room 72, and the cross-sectional areas of the air shower spaces A, A1 to A3 in the first to seventh embodiments should be as small as possible. Thus, the amount of the light absorbing substance flowing into the internal space S is reduced.
  • the rotating door room, the elevator room, or the load lock chamber which is the same as the reticle transfer system, is provided in the transfer system, and the wafer W is loaded and unloaded through these.
  • nitrogen gas, helium, and argon are used as the purge gas to be supplied to the space inside the projection optical system PL and the illumination optical system LO, but an inert gas such as neon, krypton, xenon, and radon is used. May be used.
  • the exposure apparatus of each of the above embodiments can be applied to a proximity exposure apparatus that exposes a mask pattern by bringing a mask and a substrate into close contact with each other instead of a reticle without using a projection optical system.
  • F 2 not only laser (1 5 7 nm), g-ray (4 3 6 nm), i-rays (3 6 5 nm), K r F excimer laser (2 4 8 nm), a r F excimer laser (1 9 3 nm), it is possible to use X-rays.
  • the magnification of the projection optical system may be not only a reduction system but also a level shift of an equal magnification and an enlargement system.
  • the projection optical system when using the F 2 laser or X-ray to the optical system of the catadioptric system or refractive system (reticle also used as a reflective type).
  • each reticle transport system of the reticle R includes a reticle transport arm.
  • the reticle is formed of a glass material, and an oxide film such as alumite is formed on the surface of the aluminum alloy or aluminum constituting the reticle transfer arm.
  • the reticle and the transfer arm are made of different materials, if they come into contact with each other, peel off or rub, Moves and generates static electricity. That is, there is a possibility that at least a part of the shape of a circuit pattern formed on the reticle by vapor deposition of chromium or the like is damaged by static electricity generated when the reticle comes into contact with the transfer arm or the like.
  • the base material of the reticle holding portion of the transfer arm is made of a material containing aluminum, a silicon oxide film is formed on the surface of the base material, and the silicon oxide film is held in contact with the reticle.
  • Reticle base materials include crystals such as calcium fluoride, lithium fluoride, magnesium fluoride, strontium fluoride, lithium-calcium-aluminum-flowride, and lithium-strontium-aluminum-flowride and the like, and zirconium-fluoride.
  • Fluoride glass made of palladium-lanthanum-aluminum, quartz glass doped with fluorine, quartz glass doped with hydrogen and hydrogen, quartz glass containing OH groups, quartz containing OH groups in addition to fluorine Improved quartz such as glass can be used.
  • these fluorides and modified quartz can be used not only as a reticle but also as a light-transmitting optical material constituting an illumination optical system and a projection optical system.
  • the same material as the above-described reticle base material can be used as the vitreous material or the material having a similar composition formed on the surface of the reticle holding portion of the transfer arm. Vitreous formed on the surface of the reticle holding part of the transfer arm, and the base material of the reticle It is not always necessary to use the same material, and any one of the above-mentioned fluoride, modified quartz, and silicon oxide film may be used.
  • the reticle mounting surface (mounting portion) of the reticle stage can be similarly configured.
  • the F 2 laser in the optical path space must be an inert gas atmosphere, and F 2 lasers is absorbed in the water molecules Mautame, inert It is managed so that water molecules do not exist in the gas as much as possible. Therefore, among the optical path space of the F 2 laser, the wafer is conveyed to the wafer chamber or the like, static electricity is easily charged.
  • the static electricity charged on the wafer can be removed by bringing the pins into contact with the surface of the wafer mounted on the wafer stage in the wafer chamber.
  • the pins As a support member for supporting the wafer on the wafer stage, static electricity can be constantly removed through the conductive portion provided on the pins without static electricity being charged on the wafer or the like.
  • the above-mentioned pins may be used as the support member for supporting the wafer on the wafer transfer arm.
  • any of a contact system and a non-contact system may be used.
  • a contact method a belt conveyance method can be used, and in the non-contact method, an electrostatic levitation method can be used.
  • an insulating substrate 2 having levitation electrodes facing the substrate and a displacement sensor for detecting a gap between each levitation electrode and the substrate are provided on a transport path.
  • the detection value obtained from the displacement sensor is compared with the target value, and the deviation is calculated to control the applied voltage to each of the floating electrodes, and the substrate is applied by applying the voltage to each of the floating electrodes. It is sucked by electrostatic attraction and held in a non-contact state for transport.
  • the exposure apparatus of each of the above embodiments can be applied to a step-and-repeat type exposure apparatus that exposes a pattern of a mask while the mask and the substrate are stationary and sequentially moves the substrate.
  • the application of the exposure apparatus is not limited to the exposure apparatus for manufacturing semiconductors, for example, manufacturing an exposure apparatus for liquid crystal for exposing a liquid crystal display element pattern on a square glass plate, and manufacturing a thin film magnetic head. Can be widely applied to an exposure apparatus for the purpose.
  • the stage may be a type that moves along a guide or a guideless type that does not have a guide.
  • one of the magnet unit (permanent magnet) and the armature unit is connected to the stage, and the other of the magnet unit and the armature unit is connected to the stage moving surface ( Base).
  • the reaction force generated by the movement of the wafer stage may be mechanically released to the floor (ground) using a frame member.
  • the present invention is also applicable to an exposure apparatus having such a structure.
  • the reaction force generated by the movement of the reticle stage may be mechanically released to the floor (ground) by using a frame member, as described in Japanese Patent Application Laid-Open No. 8-330224.
  • the present invention is also applicable to an exposure apparatus having such a structure.
  • the exposure apparatus controls the various subsystems including the components listed in the claims of the present application to maintain the predetermined mechanical accuracy, electrical accuracy, and optical accuracy. It is manufactured by assembling. Before and after this assembly, various adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical systems before and after this assembly were performed. Adjustments are then made to achieve electrical accuracy.
  • the process of assembling the exposure device from various subsystems includes mechanical connections, wiring connections of electric circuits, and piping connections of pneumatic circuits among the various subsystems. Prior to the process of assembling the exposure apparatus from the various subsystems, there is an individual assembly process for each subsystem.
  • step 201 for designing device functions and performance step 202 for fabricating a mask (reticle) based on this design step, silicon Step 203 of manufacturing a wafer from a material, Step 204 of exposing a reticle pattern to a wafer using the exposure apparatus of the above-described embodiment, Step of assembling depiice (including dicing, bonding, and package processes) ) Manufactured through 205, inspection step 206, etc.
  • step 201 for designing device functions and performance step 202 for fabricating a mask (reticle) based on this design step
  • silicon Step 203 of manufacturing a wafer from a material step 204 of exposing a reticle pattern to a wafer using the exposure apparatus of the above-described embodiment
  • Step assembling depiice including dicing, bonding, and package processes
  • the transfer mechanism has a gas inflow suppression mechanism that forms a gas flow for suppressing the inflow of gas from the transfer path.
  • the inflow suppression mechanism actively prevents gas from flowing into the space from the transport path. This makes it possible to maintain a low concentration of the light-absorbing substance in the space without having to temporarily stop the transfer and without performing exhaust or gas replacement in a load lock chamber or the like between the transfer path and the space. Therefore, the circuit pattern can be reliably printed, and the manufacturing speed (throughput) of the electronic device can be increased.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Library & Information Science (AREA)
  • Toxicology (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

An aligner comprising transfer mechanisms (14, 16) provided with a gas inflow suppression mechanism (17) for forming a gas flow for suppressing inflow of gas from transfer paths (13, 15) into at least one space (S) between an exposing energy generating source and a wafer stage. When a wafer is transferred into the space or out therefrom by means of the transfer mechanisms, the gas inflow suppression mechanism can prevent inflow of gas from the transfer path into the space without interrupting the transfer of the wafer temporarily. Furthermore, the concentration of light absorbing substances in the space can be maintained at a low level without replacing gas in a load lock chamber between the transfer path and the space.

Description

明 細 書 露光装置、 基板搬送装置および方法、 マイクロデバイスおよびその製造方法 技術分野  Description: Exposure apparatus, substrate transfer apparatus and method, microdevice and method for manufacturing the same
本発明は、 例えば、 半導体素子、 液晶表示素子等の微細回路パターン等の製造 に用いられる露光装置、 基板搬送装置おょぴ方法、 マイクロデバイスおよびその 製造方法に関する。 背景技術  The present invention relates to, for example, an exposure apparatus, a substrate transfer method, a micro device, and a method for manufacturing the same, which are used for manufacturing a fine circuit pattern of a semiconductor element, a liquid crystal display element, or the like. Background art
半導体素子又は液晶表示素子等をフォトリソグラフイエ程で製造する際に、 レ チクルのパターン像を投影光学系を介して感光材 (レジス ト) が塗布されたゥェ ハ上の各投影領域 (ショット) に縮小して投影する縮小投影露光装置が使用され ている。 半導体素子中の回路は、 上記投影露光装置でウェハ上に回路パターンを 露光することにより転写され、 後処理によって形成される。 こういった回路配線 を 2 0層程度にわたって繰り返し成層したものが集積回路である。  When manufacturing a semiconductor device or a liquid crystal display device by a photolithographic process, a pattern image of a reticle is projected via a projection optical system onto a projection area (shot) on a wafer coated with a photosensitive material (resist). A reduction projection exposure apparatus that reduces the size of the image and projects it is used. The circuit in the semiconductor element is transferred by exposing a circuit pattern on a wafer by the projection exposure apparatus, and is formed by post-processing. An integrated circuit is obtained by repeatedly layering about 20 layers of such circuit wiring.
近年、 集積回路の高密度集積化、 すなわち回路パターンの微細化が進められて きた。 このため、 投影露光装置における露光光も短波長化される傾向にある。 す なわち、 これまで主流だった水銀ランプの輝線にかわって、 K r Fエキシマレー ザ (λ が用いられるようになり、 さらに短波長の A r Fエキシマレー ザ (λ =193ηπι) の実用化も最終段階に入りつつある。 更なる高密度集積化を目 指して F 2レーザ ( X =157nm) の研究も進められている。 しかし、 F 2レーザの ような真空紫外光 (波長約 190mn以下の紫外線) では、 光学硝材ゃ空気中に含 まれるガス分子における吸光による減光が大きく、 高スループット化の妨げとな つている。 In recent years, high-density integration of integrated circuits, that is, miniaturization of circuit patterns, has been promoted. For this reason, the exposure light in the projection exposure apparatus also tends to have a shorter wavelength. In other words, the KrF excimer laser (λ) has been used instead of the emission line of mercury lamps, which has been the mainstream until now, and the practical use of short-wavelength ArF excimer laser (λ = 193ηπι) is finally completed. We are entering the stage. the higher density integration and aims are research underway of F 2 laser (X = 157 nm). However, the vacuum ultraviolet light such as F 2 laser (wavelength of about 190mn following UV In), the optical glass material has a large dimming due to absorption of gas molecules contained in the air, which hinders high throughput.
また、 露光装置は、 基本的には照明光学系、 レチクル操作部、 投影光学系、 ゥ ェハ操作部の 4つの部分から構成される。 露光光源からの露光光は、 まず照明光 学系を通過する。照明光学系は、露光光源からの露光光を所望の形状に成形する、 光束内の照度の均一性を高める、 レチクル上に照射される露光光のエリアを制限 する、 などの機能を備える。 The exposure apparatus basically includes four parts: an illumination optical system, a reticle operation unit, a projection optical system, and a wafer operation unit. The exposure light from the exposure light source first passes through the illumination optical system. The illumination optical system shapes the exposure light from the exposure light source into a desired shape, enhances the uniformity of illuminance in the light beam, and limits the area of the exposure light irradiated on the reticle. And other functions.
レチクルは、 露光光を透過する硝材の上に遮光物質でウェハ上に焼き付ける回 路パターンを描いたものであり、 このレチクルを操作するレチクル操作部は、 レ チクルの保持、 レチクルの交換、 スキャン型露光装置における走査、 などの機能 があり、 照明光学系に比べて比較的可動部が多く、 外気が混入する場合が多い。 投影光学系は、 レチクルを透過した回路パターンをウェハ面上に結像するため のもので、 密閉された構造を持つ。 ウェハはレチクル上の回路パターンが転写さ れた後、 後処理工程において半導体素子等になる部分である。  The reticle is a circuit pattern that prints on a wafer with a light-shielding substance on a glass material that transmits exposure light. The reticle operation unit that operates this reticle is a reticle holding, reticle replacement, and scan type. It has functions such as scanning in an exposure apparatus, has relatively many movable parts compared to an illumination optical system, and often has outside air mixed therein. The projection optical system is used to form an image of the circuit pattern transmitted through the reticle on the wafer surface, and has a closed structure. A wafer is a part that becomes a semiconductor element or the like in a post-processing step after a circuit pattern on a reticle is transferred.
ウェハ操作部は、 ウェハの保持、 ウェハの交換、 露光エリアの移動、 スキャン 型露光装置における走査等を行い、 レチクル操作部と同様に可動部が多レ、。  The wafer operation unit performs wafer holding, wafer exchange, movement of the exposure area, scanning with a scanning type exposure apparatus, and many movable parts like the reticle operation unit.
例えば、 波長が約 180nm以下といった真空紫外域光の場合、 これらの短波長 の光を透過する物質は極めて限定される。 通常の空気では、 含まれる酸素分子、 水分子、 二酸化炭素分子など (以下、 吸光物質と称す) によって真空紫外光が吸 光されるため、 露光光がレチクルを介してゥヱハ面上に十分な照度で到達するこ とは容易でなく (波長 157nm のレーザ光を用いた場合)、 ヘリウム、 アルゴン、 窒素といった吸光のほとんどない不活性ガスで光路空間を満たす必要がある。 こ のため、 真空紫外光を用いた露光装置では、 露光光路空間の密閉度を高め、 外気 の流入とパージガスの流出を防止するような工夫を行った上で、 露光光路上の吸 光物質を低減若しくは排除する必要がある。  For example, in the case of vacuum ultraviolet light having a wavelength of about 180 nm or less, substances that transmit these short-wavelength lights are extremely limited. In ordinary air, vacuum ultraviolet light is absorbed by oxygen molecules, water molecules, carbon dioxide molecules, etc. contained in the air (hereinafter referred to as light-absorbing substances), so that the exposure light passes through the reticle and has sufficient illuminance on the surface. It is not easy to reach by using a laser beam with a wavelength of 157 nm, and it is necessary to fill the optical path space with an inert gas such as helium, argon, or nitrogen that has little absorption. For this reason, in an exposure apparatus using vacuum ultraviolet light, after taking measures to increase the degree of airtightness of the exposure light path space and prevent the inflow of outside air and the outflow of purge gas, the light absorbing material on the exposure light path is removed. They need to be reduced or eliminated.
そこで、 レチクルやウェハのように頻繁に光路空間外から光路空間内に搬入す るものがあると、 一旦それらの物質をロードロック室に格納し、 ロードロック室 のガスを吸光のない高純度パージガス (不活性ガス) で置換するなどの措置が必 要となる。 一般に、 ガスの置換には 2つの手法がある。 一つは減圧排気による方 法であり、 今一つは定圧下におけるガス置換である。 前者では、 減圧に伴って口 ードロック室内壁に吸着した物質 (主に水や炭化水素) が脱離してレチクルゃゥ 工ハに付着し、 正確な製品を製造する際の妨げとなることが指摘されている。 後 者では、 一般にガス置換には時間がかかるので、 スループットの低下といった弊 害を生じる可能性がある。 発明の開示 Therefore, if there is something like a reticle or a wafer that is frequently brought into the optical path space from outside the optical path space, these substances are temporarily stored in the load lock chamber, and the gas in the load lock chamber is purified by a high-purity purge gas that does not absorb light. (Inert gas) and other measures are required. In general, there are two approaches to gas replacement. One is a method using reduced pressure exhaust, and the other is gas replacement under a constant pressure. In the former case, it was pointed out that substances (mainly water and hydrocarbons) adsorbed on the interior walls of the mouthlock due to decompression desorbed and adhered to the reticle processing equipment, hindering the production of accurate products. Have been. In the latter case, gas replacement generally takes a long time, which may cause a problem such as a decrease in throughput. Disclosure of the invention
本発明は、 前述の課題に鑑みてなされたもので、 レチクルやウェハ等の基板の 搬入出時にかかる時間を低減すると共に、 光路空間内の吸光物質を良好に管理で きる露光装置、 基板搬送装置および方法、 マイクロデバイスおよびその製造方法 を提供することを目的とする。  The present invention has been made in view of the above-described problems, and has an exposure apparatus and a substrate transfer apparatus capable of reducing the time required for loading and unloading a substrate such as a reticle and a wafer, and capable of satisfactorily managing light-absorbing substances in an optical path space. And a method, a microdevice and a method for manufacturing the same.
本発明の第 1態様の露光装置は、 露光エネルギー発生原からの露光エネルギー を基板に照射する露光装置であって、 前記基板を収容する収容室と、 前記収容室 に搬送路を介して搬入又は前記収容室から前記搬送路を介して搬出する搬送機構 と、 前記収容室に対する前記搬送路からの気体の流入を抑制するためのガス流れ を形成するガス流入抑制機構とを有する。  An exposure apparatus according to a first aspect of the present invention is an exposure apparatus that irradiates a substrate with exposure energy from an exposure energy generation source, and includes: a storage chamber that stores the substrate; A transport mechanism that unloads the storage chamber from the transport path via the transport path; and a gas inflow suppression mechanism that forms a gas flow for suppressing the inflow of gas from the transport path into the storage chamber.
この露光装置では、 搬送機構が、 前記収容室に対する搬送路からの気体の流入 を抑制するためのガスの流れを形成するガス流入抑制機構を有しているので、 搬 送機構により基板を前記収容室内に搬入出する際に、 ガス流入抑制機構により搬 送路から前記収容室内に気体が流入することを積極的にガスの流れで防ぐことに より、 搬送を一旦停止する必要もなく、 かつ搬送路と前記収容室との間のロード 口ック室等において排気やガス置換を行わずとも、 前記収容室内の吸光物質を低 濃度に維持できる。 これにより、 確実な回路パターンの焼き付けを可能にし、 ひ いては電子デバイスの製造速度 (スループット) を高めることができる。  In this exposure apparatus, the transfer mechanism has a gas inflow suppression mechanism that forms a gas flow for suppressing the inflow of gas from the transfer path into the storage chamber. When the gas is carried into and out of the room, the gas inflow suppression mechanism actively prevents the gas from flowing into the accommodation room from the carrying path by the gas flow, so that there is no need to temporarily stop the carrying, and the carrying is performed. The light-absorbing substance in the storage chamber can be maintained at a low concentration without performing exhaust or gas replacement in a load port chamber or the like between the road and the storage chamber. As a result, it is possible to reliably print a circuit pattern, and to increase the manufacturing speed (throughput) of an electronic device.
本発明の他の態様の露光装置は、 露光エネルギー発生源からの露光エネルギー を基板に照射する露光装置であって、 前記基板を収容する収容室と、 前記収容室 に搬送路を介して搬入又は前記収容室から'前記搬送路を介して搬出する搬送機構 と、 前記搬入又は前記搬出の際に、 前記搬送路から前記収容室内への気体の流路 を閉塞する璧部を備える搬送室とを有する。  An exposure apparatus according to another aspect of the present invention is an exposure apparatus that irradiates a substrate with exposure energy from an exposure energy generation source, and includes: a storage chamber that stores the substrate; A transfer mechanism for unloading from the storage chamber via the transfer path, and a transfer chamber having a wall for closing a gas flow path from the transfer path to the storage chamber during the loading or unloading. Have.
この露光装置では、 搬送機構が、 前記収容室に基板を搬入する際又は前記収容 室から基板を搬出する際に、 搬送路から前記収容室内への気体の流路を閉塞する 壁部を備える搬送室を有するので、 基板の出し入れ時に壁部が気体の流路を閉塞 して、 搬送室内に含まれる気体の流入だけに抑えられ、 搬送室内の排気やガス置 換を行わずとも、 搬送路から露光光路空間内への不純物ガスの混入を極力抑える ことができ、 前記空間内の不純物濃度を低く維持できる。 前記ガス流入抑制機構は、 前記搬送路の途中、 又は前記搬送路と前記収容室と の間に設けられ前記搬送路内に前記ガスを供給するガス供給口と、 前記搬送路内 のガスを吸引するガス吸引口とを有し、 前記ガス供給口は、 前記収容室と前記ガ ス吸引口との間に配置されていてもよい。 In this exposure apparatus, the transfer mechanism includes a wall that closes a gas flow path from a transfer path to the storage chamber when the substrate is loaded into or out of the storage chamber. Chamber, the wall blocks the gas flow path when the substrate is taken in and out, and the gas contained in the transfer chamber is suppressed only by the inflow. Mixing of impurity gas into the exposure optical path space can be minimized, and the impurity concentration in the space can be kept low. The gas inflow suppression mechanism is provided in the middle of the transport path, or between the transport path and the storage chamber, for supplying the gas into the transport path, and for sucking the gas in the transport path. The gas supply port may be disposed between the storage chamber and the gas suction port.
また、 前記ガス供給口は、 前記ガスの流入方向が前記収容室から離れる方向に 向くように前記搬送路に設けられ、 前記ガス排気口は、 前記ガスの吸引方向が前 記収容室側に向くように前記搬送路に設けられていてもよい。 この場合には、 よ りスムーズにかつ高い流速で内部収容室外側へのガス流を発生させ、 より効果的 なエアシャワー空間を形成できる。  In addition, the gas supply port is provided in the transport path such that an inflow direction of the gas is away from the storage chamber, and the gas exhaust port is such that a suction direction of the gas is directed to the storage chamber side. As described above. In this case, a more effective air shower space can be formed by generating a gas flow to the outside of the internal storage chamber more smoothly and at a higher flow rate.
本癸明では、 前記ガス流入抑制機構において、 ガス供給口およびガス排気口の 対を搬送路に沿って配置してもよい。 この場合には、 連続したエアシャワー空間 を形成することができ、 より吸光物質の流入を抑制できる。  In the present invention, in the gas inflow suppressing mechanism, a pair of a gas supply port and a gas exhaust port may be arranged along the transport path. In this case, a continuous air shower space can be formed, and the inflow of the light absorbing substance can be further suppressed.
前記基板は、 照明光字系を介して前記露光エネルギーが照射されるマスクであ つてもよく、 前記収容室は、 前記マスクを保持するマスクステージを有していて もよい。 あるいは、 前記基板は、 投影光学系を介して前記マスクに形成されたパ ターンの像が転写されるウェハであってもよく、 前記収容室は、'前記ウェハを保 持するウェハステージを有していてもよい。  The substrate may be a mask to which the exposure energy is applied via an illumination light system, and the storage chamber may include a mask stage for holding the mask. Alternatively, the substrate may be a wafer to which an image of a pattern formed on the mask is transferred via a projection optical system, and the accommodation chamber has a wafer stage for holding the wafer. May be.
本発明では、 搬送室が、 基板を前記空間外側から出し入れ可能な位置と前記空 間内側から出し入れ可能な位置との間を移動可能に配置された移動室とされてい てもよく、 壁部が、 基板を前記空間外側から出し入れ可能な位置に配置された際 及び前記空間内側から出し入れ可能な位置に配置された際に流路を閉塞するよう にしてもよい。 この場合には、 移動室を移動させるだけで基板の搬入出が可能に なるとともに、 移動室内のガス置換を行わなくても壁部で搬入出時のガスの流入 を極力低減できる。  In the present invention, the transfer chamber may be a movable chamber arranged so as to be movable between a position at which a substrate can be taken in and out of the space and a position at which a substrate can be taken in and out of the space. The flow path may be closed when the substrate is arranged at a position where the substrate can be taken in and out from the outside of the space and when the substrate is arranged at a position where it can be taken in and out from the inside of the space. In this case, the substrate can be loaded and unloaded by simply moving the transfer chamber, and the inflow of gas at the time of transfer into and out of the wall can be minimized without performing gas replacement in the transfer chamber.
本発明では、 移動室が、 前記空間の内外に回転移動可能な回転室とされていて もよく、 該回転室を、 前記空間内に配置された際に基板を前記空間内側から出し 入れ可能にするとともに前記空間外に配置された際に基板を前記空間外側から出 し入れ可能にしてもよい。 この場合には、 回転室を回転させる動作だけでガスの 流入を抑えながら基板の搬入出が可能になる。 本発明では、 搬送室の壁部が、 前記収容室の外側から基板を出し入れ可能な外 側開閉扉及び前記空間内側から基板を出し入れ可能な内側開閉扉とされていても よい。 この場合には、 外側開閉扉及び内側開閉扉の開閉動作だけで基板の搬入出 が可能になるとともに、 搬送室内のガス置換を行わなくても外側開閉扉及び内側 開閉扉で搬入出時のガスの流入を極力低減できる。 In the present invention, the moving chamber may be a rotating chamber that is rotatable in and out of the space, and when the rotating chamber is arranged in the space, the substrate can be taken in and out of the space. Alternatively, the substrate may be allowed to enter and exit from the outside of the space when the substrate is disposed outside the space. In this case, the substrate can be loaded and unloaded while suppressing the gas inflow only by the operation of rotating the rotating chamber. In the present invention, the wall of the transfer chamber may be an outer door that allows a substrate to be taken in and out from the outside of the storage chamber and an inner door that can take a substrate in and out of the space. In this case, the substrate can be loaded and unloaded by simply opening and closing the outer and inner doors, and the gas at the time of loading and unloading by the outer and inner doors can be replaced without replacing the gas in the transfer chamber. Can be reduced as much as possible.
本発明の露光装置では、 前記収容室内が、 その外部より高圧に設定されていて もよいし、 あるいは、 略同じ圧力に設定されていてもよい。 この場合には、 基板 の搬入出時に前記収容室と搬送路等の外部とが一時的に接続された場合でも、 前 記収容室の外部からの吸光物質の流入を抑制できる。  In the exposure apparatus of the present invention, the inside of the accommodation room may be set to a higher pressure than the outside, or may be set to substantially the same pressure. In this case, even when the storage chamber is temporarily connected to the outside such as a transfer path when the substrate is loaded or unloaded, the inflow of the light-absorbing substance from the outside of the storage chamber can be suppressed.
本発明の露光装置では、 前記収容室を、 マスクを載置するマスクステージを収 納する収容室又は基板ステージを収納する収容室の少なくとも一方とし、基板を、 マスク又は基板の少なくとも一方にしてもよい。 露光装置は、 比較的光路長が短 く、 可動部が多いうえ、 マスク又は基板の搬入出が頻繁な上記収容室では、 必然 的に高めの吸光物質濃度を許容できるとともに、 高速な前記搬入出が要求される ためである。  In the exposure apparatus of the present invention, the accommodating chamber is at least one of an accommodating chamber for accommodating a mask stage for mounting a mask or an accommodating chamber for accommodating a substrate stage, and the substrate is at least one of a mask and a substrate. Good. The exposure apparatus has a relatively short optical path length, has many movable parts, and in the above-mentioned accommodation room where a mask or a substrate is frequently carried in and out, it can inevitably tolerate a higher concentration of the light-absorbing substance and at the same time can carry out the above-described high-speed carrying in and out. Is required.
本発明の基板搬送装置は、 前記基板を収容室に搬送路を介して搬入又は前記収 容窒から前記搬送路を介して搬出する搬送機構と、 前記収容室に対する前記搬送 路からの気体の流入を抑制するためのガス流れを形成するガス流入抑制機構とを 有する。  The substrate transfer apparatus of the present invention includes: a transfer mechanism that loads the substrate into the storage chamber via a transfer path or unloads the substrate from the storage chamber through the transfer path; and inflows gas from the transfer path into the storage chamber. And a gas inflow suppression mechanism that forms a gas flow for suppressing the gas flow.
この基板搬送装置は、 前記搬送路の途中又は前記搬送路と前記収容室との間に 設けられ前記搬送路内に前記ガスを供給するガス供給口と、 前記搬送路内のガス を吸引するガス吸引口とを有していてもよく、 前記ガス供給口は、 前記収容室と 前記ガス吸引口との間に配置されてもよい。  The substrate transfer device may include a gas supply port provided in the transfer path or between the transfer path and the storage chamber to supply the gas into the transfer path, and a gas to suck the gas in the transfer path. The gas supply port may be provided between the storage chamber and the gas suction port.
さらにこの基板搬送装置では、 前記ガス供給口は、 前記ガスの流入方向が前記 収容室から離れる方向に向くように前記搬送路に設けられ、 前記ガス排気口は、 前記ガスの吸引方向が前記収容室側に向くように前記搬送路に設けられていても よい。  Further, in the substrate transfer apparatus, the gas supply port is provided in the transfer path so that an inflow direction of the gas is away from the storage chamber, and the gas exhaust port is configured to store the gas in the storage direction. It may be provided in the transport path so as to face the room.
本発明の基板搬送方法は、 前記基板が収容される収容室と前記基板を搬送する 搬送路との間に前記収容室に対する前記搬送路からの気体の流入を抑制するため のガスの流れを形成し、 前記形成されたガスの流れの中を、 搬送機構を介して前 記基板を搬送する。 The substrate transfer method according to the present invention is configured to suppress inflow of gas from the transfer path to the storage chamber between a storage chamber that stores the substrate and a transfer path that transfers the substrate. The gas flow is formed, and the substrate is transferred through the formed gas flow via a transfer mechanism.
この搬送方法では、 前記搬送路の途中、 又は前記搬送路と前記収容室との間か ら、 前記搬送路内に前記ガスを供給すると共に、 前記搬送炉内のガスを吸引して もよい。  In this transfer method, the gas may be supplied into the transfer path from the middle of the transfer path or between the transfer path and the storage chamber, and the gas in the transfer furnace may be sucked.
本発明のマイクロデバイスは、 マスクのパターンを基板に転写する転写工程を 経て製造されるマイクロデパイスであって、 上記露光装置により転写工程が施さ れた。  The microdevice of the present invention is a microdepice manufactured through a transfer step of transferring a pattern of a mask onto a substrate, and the transfer step is performed by the exposure apparatus.
本発明のマイクロデバイスの製造方法は、 マスクのパターンを基板に転写する 転写工程を有し、 上記本発明の露光装置により前記転写工程を行う。  The method for manufacturing a micro device of the present invention includes a transfer step of transferring a pattern of a mask onto a substrate, and the transfer step is performed by the exposure apparatus of the present invention.
このマイクロデバイス及びマイクロデバイスの製造方法では、 上記露光装置で 転写工程を行うので、 高いスループットで確実なパターン転写が行われて低コス トで高品質な半導体デバイスや液晶デバイス等のマイク口デバイスを得ることが できる。 図面の簡単な説明  In the microdevice and the method for manufacturing the microdevice, since the transfer step is performed by the above-described exposure apparatus, a reliable pattern transfer is performed at a high throughput, and a microphone opening device such as a low-cost and high-quality semiconductor device or a liquid crystal device can be manufactured. Obtainable. BRIEF DESCRIPTION OF THE FIGURES
FIG. 1は、 本発明に係る露光装置、 マイクロデバイスおよびその製造方法の第 1実施例において、 露光装置を示す概略的な全体構成図である。  FIG. 1 is a schematic overall configuration diagram showing an exposure apparatus in a first embodiment of an exposure apparatus, a micro device, and a method of manufacturing the same according to the present invention.
FIG. 2 A〜FIG. 2 Cは、本発明に係る露光装置、マイクロデパイスおよびその 製造方法の第 1実施例において、 レチクル搬送系及びウェハ搬送系の動作を示す 要部の概略的な断面図である。  FIG. 2A to FIG. 2C are schematic cross-sectional views of a main part showing operations of a reticle transport system and a wafer transport system in the first embodiment of the exposure apparatus, the microdepice and the method of manufacturing the same according to the present invention. It is.
FIG. 3は、 本発明に係る露光装置、 マイクロデバイスおよびその製造方法の第 2実施例において、 レチクル搬送系及ぴウェハ搬送系を示す要部の概略的な断面 図である。  FIG. 3 is a schematic cross-sectional view of a main part showing a reticle transport system and a wafer transport system in a second embodiment of the exposure apparatus, the micro device, and the method of manufacturing the same according to the present invention.
FIG.4は、 本発明に係る露光装置、 マイクロデバイスおよびその製造方法の第 3実施例において、 レチクル搬送系及びウェハ搬送系を示す要部の概略的な断面 図である。  FIG. 4 is a schematic sectional view of a main part showing a reticle transport system and a wafer transport system in a third embodiment of the exposure apparatus, the micro device and the method of manufacturing the same according to the present invention.
FIG. 5 A〜FIG. 5 Eは、本発明に係る露光装置、 マイクロデバイスおよびその 製造方法の第 4実施例において、 レチクル搬送系の動作を示す要部の概略的な断 面図である。 FIG. 5A to FIG. 5E are schematic cross-sectional views of the main part showing the operation of the reticle transport system in the fourth embodiment of the exposure apparatus, the micro device, and the method of manufacturing the same according to the present invention. FIG.
FIG.6 A〜FIG. 6 Eは、本発明に係る露光装置、マイクロデバイスおよびその 製造方法の第 5実施例において、 レチクル搬送系の動作を示す要部の概略的な断 面図である。  FIGS. 6A to 6E are schematic cross-sectional views of main parts showing the operation of a reticle transport system in a fifth embodiment of the exposure apparatus, the micro device, and the method for manufacturing the same according to the present invention.
FIG. 7 A〜FIG. 7 Cは、本発明に係る露光装置、マイクロデパイスおよびその 製造方法の第 6実施例において、 レチクル搬送系の動作を示す要部の概略的な断 面図である。  FIGS. 7A to 7C are schematic cross-sectional views of main parts showing the operation of a reticle transport system in a sixth embodiment of the exposure apparatus, the microdepice, and the method of manufacturing the same according to the present invention.
FIG. 8は、 本発明に係る露光装置、 マイクロデバイスおよびその製造方法の第 6実施例において、 レチクル搬送系を示す要部の概略的な平面図である。  FIG. 8 is a schematic plan view of a main part showing a reticle transport system in a sixth embodiment of an exposure apparatus, a micro device, and a method of manufacturing the same according to the present invention.
FIG. 9 A〜: FIG. 9 Eは、本発明に係る露光装置、マイクロデバイスおよびその 製造方法の第 7実施例において、 レチクル搬送系の動作を示す要部の概略的な断 面図である。  FIG. 9A to FIG. 9E are schematic cross-sectional views of main parts showing the operation of a reticle transport system in a seventh embodiment of the exposure apparatus, the micro device, and the method of manufacturing the same according to the present invention. .
FIG.10は、 半導体デバイスの製造工程の一例を示すフローチャートである。 発明を実施するための最良の形態  FIG. 10 is a flowchart showing an example of a semiconductor device manufacturing process. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る露光装置、 マイクロデバイスおよびその製造方法の第 1実 施例を、 FIG. 1及び FIG. 2 A〜FIG. 2 Cを参照しながら説明する。 ただし、 本 発明は以下の各実施例に限定されるものではなく、 例えばこれら実施例の構成要 素同士を適宜 Eみ合わせてもよい。  Hereinafter, a first embodiment of an exposure apparatus, a micro device, and a method of manufacturing the same according to the present invention will be described with reference to FIG. 1 and FIGS. 2A to 2C. However, the present invention is not limited to the following embodiments. For example, the components of these embodiments may be combined as appropriate.
FIG. 1は、 本実施例における露光装置の全体構成を概略的に示す図であり、 該 露光装置は、 露光光源 1として、 真空紫外光 (波長 1 5 7 n m) の露光光 I Lを 出射する F2 レーザを有するステップ 'アンド 'スキャン方式の半導体素子 (デ バイス) 製造用投影露光装置である。 ' この露光装置では、 露光光源 1から出射された露光光 I Lが照明光学系 L〇内 の偏向ミラー 2 aに入射される。 FIG. 1 is a diagram schematically showing the overall configuration of an exposure apparatus in the present embodiment. The exposure apparatus emits, as an exposure light source 1, exposure light IL of vacuum ultraviolet light (wavelength: 157 nm). a semiconductor element (device) for manufacturing a projection exposure apparatus by a step 'and' scan method having a F 2 laser. 'In this exposure apparatus, the exposure light IL emitted from the exposure light source 1 is incident on the deflection mirror 2a in the illumination optical system L 光学.
照明光学系 L Oは、 ォプチカルインテグレータとしてのロッドレンズ又はフラ ィアイレンズ 3、 偏向ミラー 2 b、 リレーレンズ 8 a、 8 b、 プラインド 9及び コンデンサレンズ 1 0等を有している。  The illumination optical system L O has a rod lens or fly-eye lens 3 as an optical integrator, a deflecting mirror 2b, relay lenses 8a and 8b, a blind 9, a condenser lens 10, and the like.
すなわち、 偏向ミラー 2 aから反射した露光光 I Lは、 フライアイレンズ 3、 偏向ミラー 2 b、 リレーレンズ 8 a、 ブラインド 9、 リレーレンズ 8 b、 偏光ミ ラー 2 cを介して、 コンデンサレンズ 10に入射される。 That is, the exposure light IL reflected from the deflecting mirror 2a is The light enters the condenser lens 10 via the deflecting mirror 2b, the relay lens 8a, the blind 9, the relay lens 8b, and the polarizing mirror 2c.
照明光学系 LOには、 フライアイレンズ 3と偏向ミラー 2 bとの間に露光光の 一部を取り出し残りの露光光を透過する反射ミラー (図示略) が配置され、 該反 射ミラーから反射した露光光 I Lを受光して露光エネルギーをモニタするインテ グレータセンサ (図示略) と、 反射ミラー以降の光学系等から反射して戻ってき た露光光 I Lを反射ミラーを介して受光して反射率をモニタする反射率モニタ (図示略) とが設けられている。  In the illumination optical system LO, a reflection mirror (not shown) for extracting a part of the exposure light and transmitting the remaining exposure light is disposed between the fly-eye lens 3 and the deflecting mirror 2b, and is reflected from the reflection mirror. An integrator sensor (not shown) that receives the exposed exposure light IL and monitors the exposure energy, and receives and returns the exposure light IL that is reflected back from the optical system and the like after the reflection mirror via the reflection mirror. And a reflectance monitor (not shown) for monitoring.
コンデンサレンズ 10を通過した露光光 I Lは、 レチクル室 1 1内に支持され た 2次元移動可能なレチクルステージ RST上のレチクル (マスク、 基板) に 入射する。 さらに、 レチクル Rを透過した露光光 I Lは、 投影光学系 PL内に入 '射され、 該投影光学系 PLを構成する複数のレンズエレメントを透過する。 さら に露光光 I Lは、 ウェハ室 12内に指示されたウェハステージ WST上のウェハ (基板) Wに入射し、 レチクル R上のパターン像をウェハ W表面に形成する。 レチクル室 1 1には、 その内部空間 Sに配置されたレチクルステージ RST上 にレチクル Rを管路状のレチクル搬送路 13を介して搬入又はレチクルステージ R S T上からレチクル Rをレチクル搬送路 1 3を介して搬出するレチクル搬送系 (搬送機構) 14が接続されている。 ウェハ室 12には、 その内部空間 Sに配置 されたゥェハステージ W S T上にゥヱハ Wを管路状のウェハ搬送路 15を介して 搬入又はウェハステージ WST上からウェハ Wをウェハ搬送路 1 5を介して搬出 するウェハ搬送系 (搬送機構) 16が接続されている。  The exposure light IL that has passed through the condenser lens 10 is incident on a reticle (mask, substrate) on a two-dimensionally movable reticle stage RST supported in the reticle chamber 11. Further, the exposure light IL transmitted through the reticle R enters the projection optical system PL and transmits through a plurality of lens elements constituting the projection optical system PL. Further, the exposure light IL enters the wafer (substrate) W on the wafer stage WST designated in the wafer chamber 12 and forms a pattern image on the reticle R on the surface of the wafer W. The reticle chamber 11 is loaded with a reticle R onto a reticle stage RST arranged in its internal space S via a channel-like reticle transport path 13 or a reticle R is loaded from the reticle stage RST onto the reticle transport path 13. A reticle transport system (transport mechanism) 14 for unloading via a port is connected. The wafer W is loaded onto the wafer stage WST disposed in the internal space S of the wafer chamber 12 through the wafer transport path 15 having a pipe shape, or the wafer W is loaded from the wafer stage WST through the wafer transport path 15. A wafer transfer system (transfer mechanism) 16 for unloading is connected.
ウェハ Wは、 3次元方向 (XYZ方向) に移動可能なウェハステージ WST上 の試料台 13に載置され、 レチクルステージ RST及ぴウェハステージ WS丁の XY平面内での位置は、 レチクルステージ R ST及びウェハステージ WSTにそ れぞれ設けられた干渉計ミラー (図示略) にレーザ干渉計 (図示略) からレーザ 光を入射し反射させることによりそれぞれ計測される。  The wafer W is placed on the sample stage 13 on the wafer stage WST that can move in the three-dimensional directions (XYZ directions), and the positions of the reticle stage RST and the wafer stage WS in the XY plane are the reticle stage R ST In addition, laser light is incident on an interferometer mirror (not shown) provided on the wafer stage WST and reflected by a laser interferometer (not shown), and is measured by reflection.
レチクルステージ RSTおよびウェハステージ WSTは、 露光時に同期移動さ れ、 いわゆるステップ ·アンド · スキャン方式でウェハ W上にパターンが露光さ れる。 露光光の積算露光量及び反射率は、 インテグレータセンサ及び反射率モニタに よって計測、 監視され、 これらから制御系 (図示略) へと計測値が信号として送 られてゥェハ Wへの焼き付け時の照度を知ることができる。 Reticle stage RST and wafer stage WST are moved synchronously during exposure, and a pattern is exposed on wafer W by a so-called step-and-scan method. The integrated exposure amount and reflectivity of the exposure light are measured and monitored by an integrator sensor and a reflectivity monitor, and the measured values are sent to a control system (not shown) as a signal, and the illuminance during printing on the wafer You can know.
照明光学系 L O、 レチクル室 1 1、 投影光学系 P L¾びウェハ室 1 2には、 こ れらの光路空間内の吸光物質の濃度 (パージ純度) を測定する濃度計 (図示略) が接続され、 その測定値は信号として制御系に送られる。 上記 4つの部分は、 光 路長ゃ外乱頻度に従って、それぞれ異なる吸光物質濃度で管理されていてもよレ、。 さらに、 照明光学系 L O、 レチクル室 1 1、 投影光学系 P L及ぴウェハ室 1 2 には、 内部に吸光率の小さいパージガス (例えば、ヘリゥム、 アルゴン、 窒素等) を供給するガス供給機構 (図示略) が接続されている。 すなわち、 上記各部の内 部から吸光物質を軽減若しくは排除するために、 ガス供給機構によって吸光率の 低いパージガス (高清浄度) の流入を行っている。 少なくともレチクル室 1 1内 の内部空間 Sは、 その内圧が外部よりも高圧に設定されているか、 あるいはその 內圧と外部とが略同じ圧力に設定されていることが望ましい。  A concentration meter (not shown) that measures the concentration (purge purity) of the light-absorbing substance in these optical path spaces is connected to the illumination optical system LO, the reticle chamber 11, the projection optical system P L and the wafer chamber 12. The measured value is sent to the control system as a signal. The above four parts may be managed at different light-absorbing substance concentrations according to the optical path length / disturbance frequency. Further, a gas supply mechanism (illustration shown) for supplying a purge gas (for example, helm, argon, nitrogen, etc.) having a small absorption rate to the inside of the illumination optical system LO, the reticle chamber 11, the projection optical system PL, and the wafer chamber 12. (Abbreviated) is connected. That is, in order to reduce or eliminate the light absorbing substance from the inside of each of the above parts, a purge gas (high cleanliness) having a low light absorbing rate is supplied by a gas supply mechanism. It is desirable that the internal pressure of at least the internal space S in the reticle chamber 11 is set to be higher than that of the outside, or that the internal pressure and the external pressure are set to be substantially the same.
本実施例のレチクル搬送系 1 4及ぴウェハ搬送系 1 6は、 FIG. 2 A〜FIG. 2 C に示すように、 レチクル室 1 1及びウェハ室 1 2 (以下、 レチクル室 1 1を例に とって説明する) の各内部空間 Sに対するレチクル搬送路 1 3及びウェハ搬送路 1 5 (以下、 レチクル搬送路 1 3を例にとって説明する) からの気体の流入を抑 制するためのガスの流れを形成するガス流入抑制機構 1 7を有している。 すなわ ち、 該ガス流入制御機構 1 7は、 レチクル搬送路 1 3等の内部空間 Sとの接続部 分に設けられ、 レチクル搬送路 1 3等にガス (吸光率の小さい高純度な不活性ガ ス) を供給するガス供給口 1 7 aとガス供給口 1 7 aから供給されたガスを吸引 して排気するガス排気口 (ガス吸引口) 1 7 bとを有している。  As shown in FIG. 2A to FIG. 2C, the reticle transport system 14 and the wafer transport system 16 of the present embodiment have a reticle chamber 11 and a wafer chamber 12 (hereinafter, reticle chamber 11 is an example). The gas for suppressing the inflow of gas from the reticle transport path 13 and the wafer transport path 15 (hereinafter described using the reticle transport path 13 as an example) with respect to each internal space S is described. It has a gas inflow suppression mechanism 17 that forms a flow. That is, the gas inflow control mechanism 17 is provided at a connection portion with the internal space S such as the reticle transport path 13 and the like. It has a gas supply port 17a for supplying gas) and a gas exhaust port (gas suction port) 17b for sucking and exhausting the gas supplied from the gas supply port 17a.
なお、レチクル室 1 1及びウェハ室 1 2力 本発明における収容室に対応する。 また、 本実施の形態におけるガス供給口 1 7 aと、 ガス排気口 1 7 bとの組合 せは、 搬送路に対して複数個設けられることが望ましい。  The reticle chamber 11 and the wafer chamber 12 correspond to the storage chamber in the present invention. Further, it is desirable that a plurality of combinations of the gas supply port 17a and the gas exhaust port 17b in the present embodiment be provided for the transport path.
前記ガス供給口 1 7 aには、 図示しないガスの供給源に接続されたガス供給管 1 7 cが接続され、 また前記ガス排気口 1 7 bには、 図示しない真空ポンプ等の ガス吸引源に接続されたガス排気管 1 7 dが接続されている。 ガス供給口 1 7 aは、 内部空間 Sとガス排気口 1 7 bとの間に配置されるとと もに、 ガスの流入方向が内部空間 Sから離れる方向に向くようにガス供給管 1 7 cを傾斜させて形成されている。 さらに、 ガス排気口 1 7 bは、 ガスの吸引方向 が内部空間 S側に向くようにガス排気管 1 7 dを傾斜させて形成されている。 し たがって、 ガス供給口 1 7 aとガス排気口 1 7 bとの間には、 ガス流が内部空間 S内側から外側に向いたエアシャワーを生じさしめる空間 (以下、 エアシャワー 空間と称する) Aが形成されることになる。 A gas supply pipe 17c connected to a gas supply source (not shown) is connected to the gas supply port 17a, and a gas suction source such as a vacuum pump (not shown) is connected to the gas exhaust port 17b. Connected to the gas exhaust pipe 17d. The gas supply port 17a is disposed between the internal space S and the gas exhaust port 17b, and the gas supply pipe 17a is arranged so that the gas inflow direction is away from the internal space S. It is formed by inclining c. Further, the gas exhaust port 17b is formed by inclining the gas exhaust pipe 17d such that the gas suction direction is directed to the internal space S side. Therefore, between the gas supply port 17a and the gas exhaust port 17b, a space in which the gas flow generates an air shower from the inside space S to the outside (hereinafter, referred to as an air shower space) A will be formed.
内部空間 Sへの搬入口 1 8には、 該搬入口 1 8を開閉可能なシャッター 1 8 a が設けられ、 該シャッター 1 8 aはレチクル R及ぴウェハ W (以下、 レチクル R 等と称す) の搬入出時に搬入口 1 8を開け、 搬入出時以外は搬入口 1 8を閉塞す る。  The entrance 18 to the internal space S is provided with a shutter 18 a capable of opening and closing the entrance 18, and the shutter 18 a is a reticle R and a wafer W (hereinafter, referred to as a reticle R, etc.). The entrance 18 is opened when loading / unloading, and the entrance 18 is closed except when loading / unloading.
次に、本実施例におけるレチクル R及ぴゥヱハ Wの搬送方法について説明する。 レチクル Rを、 利用可能な複数のレチクル Rを管理しているレチクルライブラ リ (図示略) から、 吸光物質の濃度管理を行っているレチクル室 1 1の内部空間 S内に、 レチクル搬送系 1 4によって移動させ、 レチクルステージ R S T上にお ける露光光 I Lの光路上に設置する。 ウェハ Wを、 吸光物質の濃度管理を行って いるゥヱハ室 1 2の内部空間 S内に、同様にゥヱハ搬送系 1 6によって移動させ、 ウェハステージ W S T上における露光光 I Lの光路上に設置する。  Next, a method of transporting the reticle R and the reticle W in the present embodiment will be described. The reticle R is transferred from a reticle library (not shown) that manages a plurality of available reticles R to the reticle transport system 14 in the internal space S of the reticle chamber 11 that controls the concentration of light-absorbing substances. And set it on the optical path of the exposure light IL on the reticle stage RST. The wafer W is similarly moved into the internal space S of the chamber 12 where the concentration of the light-absorbing substance is controlled by the carrier system 16 and placed on the optical path of the exposure light IL on the wafer stage WST.
レチクル Rは、 焼き付ける半導体素子毎若しくは焼き付ける層毎に異なり、 必 要な工程に応じてレチクル Rの交換が行われるので、 レチクル交換は頻繁に行わ れる。 したがって、 レチクル室 1 1内へのレチクル Rの搬入時には、 吸光物質の 流入をより低減しないと露光光 I Lが吸光物質によって吸光されてしまい、 遮光 パターンの転写に必要な露光量の確保が難しい。 ウェハ室 1 2へのウェハ Wの搬 入は、 レチクル R以上に頻繁に行われるので、 搬入時における吸光物質の流入の 低減はレチクル同様若しくはそれ以上に重要である。  Since the reticle R differs for each semiconductor element to be baked or for each layer to be baked, and the reticle R is exchanged according to a necessary process, reticle exchange is frequently performed. Therefore, when the reticle R is carried into the reticle chamber 11, the exposure light IL is absorbed by the light-absorbing material unless the inflow of the light-absorbing material is further reduced, and it is difficult to secure an exposure amount necessary for transferring the light-shielding pattern. Since the loading of the wafer W into the wafer chamber 12 is performed more frequently than that of the reticle R, the reduction of the inflow of the light-absorbing substance during the loading is more important than that of the reticle.
このため、 レチクル R等をレチクル室 1 1内及ぴウェハ室 1 2内に搬入する場 合、 エアシャワー空間 A内に、 内部空間 S側に設置されたガス供給口 1 7 aから 内部空間 Sの外側に設置されたガス排気口 1 7 bに向かって、 すなわちレチクル 室 1 1側及ぴウェハ室 1 2側から外側に向かって吸光のより少ない高純度な不活 性ガスを噴出させる。 このとき、 レチクル R等の搬送 (搬入又は搬出) 方向と交 差する方向からガスを供給する。 For this reason, when the reticle R and the like are carried into the reticle chamber 11 and the wafer chamber 12, the gas supply port 17 a installed on the internal space S side into the air shower space A and the internal space S High-purity inert gas with less absorption toward the gas exhaust port 17 b installed outside the wafer, that is, from the reticle chamber 11 side and the wafer chamber 12 side to the outside. Ejects a flammable gas. At this time, gas is supplied from a direction that intersects the direction of transport (loading or unloading) of reticle R or the like.
外部雰囲気ガスのエアシャワー空間 A内部への混入をより低減するために、 ガ ス供給口 1 7 aからの高純度パージガス流は、 外部からの吸光物質の流入が低減 できる程度に速いものでなければならず、 同時にガス排気口 1 7 bでは高い吸引 力をもってガスを吸引し、 排出させる。  In order to further reduce the contamination of the external atmosphere gas into the air shower space A, the high-purity purge gas flow from the gas supply port 17a must be fast enough to reduce the inflow of light-absorbing substances from the outside. At the same time, the gas is exhausted and discharged from the gas exhaust port 17b with high suction power.
このとき、 ガス供給口 1 7 aが、 ガスの流入方向が内部空間 Sから離れる方向 に向くように形成されているとともに、 ガス排気口 1 7 bが、 ガスの吸引方向が 内部空間 S側に向くように形成されているので、 内部空間 S外側へのガス流の流 速が高くなり、 外部雰囲気ガスのエアシャワー空間 A内部への混入がより低減さ れる。 エアシャワー空間 A外部からのガスの混入量は、 エアシャワー空間 Aの形 状やガス供給口 1 7 a及びガス排気口 1 7 bの位置、 向き及ぴ径等に依存するの で、 それぞれ必要とされる形状等に最適化されることが好ましい。  At this time, the gas supply port 17a is formed so that the gas inflow direction is away from the internal space S, and the gas exhaust port 17b is set so that the gas suction direction is toward the internal space S. Since it is formed so as to face, the flow velocity of the gas flow to the outside of the internal space S is increased, and the mixing of the external atmosphere gas into the air shower space A is further reduced. The amount of gas mixed in from the outside of the air shower space A depends on the shape of the air shower space A and the position, direction, diameter, etc. of the gas supply port 17a and gas exhaust port 17b. It is preferable to optimize the shape and the like.
これによつて、 露光光路空間である内部空間 Sと外部とを隔絶するロードロッ ク室等の構造無しに内部空間 S内への吸光物質の流入をより低減させることがで きる。 すなわち、 レチクル R等は、 FIG. 2 A〜FIG. 2 Cに示すように、 エアシャ ヮー空間 A内を移動することで、 ロード口 ク室の扉のように露光光路空間内外 を隔絶する部材の開閉時の待ち時間無しで、 より高速でレチクル室 1 1等の内部 空間 Sに搬入され、 また内部空間 Sから搬出される。  This makes it possible to further reduce the inflow of the light-absorbing substance into the internal space S without a structure such as a load lock chamber that separates the internal space S, which is the exposure optical path space, from the outside. That is, as shown in FIG. 2A to FIG. 2C, the reticle R and the like move in the air space A to form a member that isolates the inside and outside of the exposure light path space like a door of a load port chamber. It is carried into and out of the internal space S such as the reticle room 11 at a higher speed without waiting time for opening and closing.
搬入出時以外は、 供給ガスの流量を少なくする、 若しくは供給を停止すること により、 ガス供給にかかるコストの低減を行うことができる。  Except during loading and unloading, the gas supply cost can be reduced by reducing the flow rate of the supply gas or stopping the supply.
内部空間 S内部と同種のガスでエアシャワーを起こすことが望ましいが、 他の 吸光のない物質であるヘリウム、 アルゴン、 窒素などのガスを用いてもよい。 さらに、 エアシャワーを起こすには、 大量のパージガスが必要になるが、 ガス 排気口 1 7 bによってガスを回収した後、 純化器やパーティクルフィルタ等^介 することによって当該ガスを再利用できる。 これによつて、 本装置のランニング コス卜の上昇を低減できる。  It is desirable to generate an air shower with the same type of gas as the inside of the internal space S, but other non-absorbing substances such as helium, argon, and nitrogen may be used. Furthermore, a large amount of purge gas is required to generate an air shower, but after collecting the gas through the gas exhaust port 17b, the gas can be reused by passing through a purifier, a particle filter, or the like. This can reduce an increase in running cost of the present apparatus.
次に、 本発明の第 2実施例を、 FIG. 3を参照して説明する。  Next, a second embodiment of the present invention will be described with reference to FIG.
第 2実施例と第 1実施例との異なる点は、 第 1実施例が、 ガス供給口 1 7 a及 びガス排気口 1 7 bの一対をレチクル搬送路 1 3等に設置しているのに対し、 第 2実施例の露光装置では、 FIG. 3 ^示すように、 レチクル搬送系 2 0及びウェハ 搬送系 2 1のガス流入抑制機構 2 2として、 ガス供給口 1 7 a及びガス排気口 1 7 bの複数対をレチクル搬送路 2 3及びウェハ搬送路 2 4に沿って配置している 点である。 The difference between the second embodiment and the first embodiment is that the first embodiment has a gas supply port 17a and While the pair of gas exhaust ports 17b are installed in the reticle transport path 13 and the like, the exposure apparatus of the second embodiment uses the reticle transport system 20 and wafer transport as shown in FIG. A point that a plurality of pairs of a gas supply port 17a and a gas exhaust port 17b are arranged along the reticle transport path 23 and the wafer transport path 24 as the gas inflow suppression mechanism 22 of the system 21. .
第 1実施例の場合、 エアシャワーガスの高速化や給排気口の最適化等を行った 場合でも、 露光光路空間内外を隔絶する障壁が無いときは、 少なからず外気 (搬 送路からの気体) の混入が避けられない。 そこで、 第 2実施例では、 ガス供給口 1 7 a及びガス排気口 1 7 bの複数対によってエアシャワー空間 A 1、 A 2、 A 3を内部空間 S側かち外部に向けて連続に設置して、 それぞれにおいて第 1実施 例のエアシャワー空間 Aのようにエアシャワーを起こす。  In the case of the first embodiment, even if the speed of the air shower gas is increased or the air supply / exhaust port is optimized, if there is no barrier that separates the inside and outside of the exposure optical path space, the outside air (gas from the transport path) ) Is inevitable. Therefore, in the second embodiment, the air shower spaces A1, A2, and A3 are continuously installed from the internal space S side to the outside by a plurality of pairs of the gas supply port 17a and the gas exhaust port 17b. In each case, an air shower is generated as in the air shower space A of the first embodiment.
エアシャワー空間 A 3よりはエアシャワー空間 A 2の方が外気の混入量を少な くすることができ、 さらにエアシャヮー空間 A 2よりはエアシャワー空間 A 1の 方が外気の混入量を少なくすることができ、 最終的にレチクル室 1 1等の内部空 間 Sへの外気の混入をより低減できる。  The air shower space A2 can reduce the amount of outside air mixed in compared to the air shower space A3, and the air shower space A1 can reduce the amount of outside air mixed in compared to the air shower space A2. Finally, the intrusion of outside air into the internal space S of the reticle chamber 11 or the like can be further reduced.
ここで、 エアシャワー空間 A 1のガス排気口 1 7 bで吸引されたガスを、 エア シャワー空間 A 2、 A 3のガス供給口 1 7 aからそれぞれ供給してもよい。また、 他の例として、 エアシャワー空間 A 1のガス排気口 1 7 bで吸引されたガスを、 エアシャワー空間 A 2のガス供給口 1 7 aから再び供給し、 エアシャワー空間 A 2のガス排気口 1 7 bで吸引されたガスを、 エアシャワー ^間 A 3のガス供給口 1 7 aから再ぴ供給してもよい。 このように、 エアシャワー空間 A 1で使用した ガスを、 再びエアシャワー空間 A 2、 A 3で使用することによって、 ガス使用量 を抑えることができる。  Here, the gas sucked in the gas exhaust port 17b of the air shower space A1 may be supplied from the gas supply port 17a of the air shower space A2, A3. As another example, the gas sucked in the gas exhaust port 17 b of the air shower space A 1 is supplied again from the gas supply port 17 a of the air shower space A 2, and the gas in the air shower space A 2 is supplied. The gas sucked at the exhaust port 17b may be supplied again from the gas supply port 17a of A3 during the air shower. In this way, by using the gas used in the air shower space A1 again in the air shower spaces A2 and A3, the gas consumption can be suppressed.
ガス供給口 1 7 aから供給するガスの濃度は、 レチクルライブラリ及ぴウェハ カセッ卜からレチクル室 1 1等の内部空間 Sに向かうに従い高く設定されている ことが望ましい。  It is desirable that the concentration of the gas supplied from the gas supply port 17a be set higher from the reticle library and the wafer cassette to the internal space S such as the reticle chamber 11 or the like.
次に、 本発明の第 3実施例を、 FIG.4を参照して説明する。  Next, a third embodiment of the present invention will be described with reference to FIG.
第 3実施例と第 1実施例との異なる点は、 第 1実施例が、 レチクル搬送路 1 3 等において内部空間 S側から外部に向けてガス供給口 1 7 a、 ガス排気口 1 7 b の順にこれらを配置しているのに対し、 第 3実施例の露光装置では、 FIG.4に示 すように、 レチクノレ搬送系 3 0及びウェハ搬送系 3 1のガス流入抑制機構 3 2と して、 レチクル搬送路 3 3及びウェハ搬送路 3 4の搬送方向における同位置でガ ス供給口 3 2 a及ぴガス排気口 3 2 bを互いに対向させて配置している点である。 すなわち、 本実施例では、 ガス供給口 3 2 aから供給されたガスが、 ガス供給 口 3 2 aに対向しているガス排気口 3 2 bに直接的に吸引され、 ガス供給口 3 2 aとガス排気口 3 2 bとの間にエアカーテン空間 Kが形成される。 したがって、 レチクル室 1 1等の内部空間 Sへ向けてレチクル搬送路 3 3等を流れようとする 気体の流れはエアカーテン空間 Kに遮断され、 その内側への流入が抑制されるこ とにより、 外部からの吸光物質の流入を低減できる。 The difference between the third embodiment and the first embodiment is that the first embodiment is different from the first embodiment in that the gas supply port 17a and the gas exhaust port 17b extend from the internal space S side to the outside in the reticle transport path 13 and the like. In the exposure apparatus of the third embodiment, as shown in FIG. 4, the gas inflow suppressing mechanism 32 of the reticle transfer system 30 and the wafer transfer system 31 is used. The point is that the gas supply port 32a and the gas exhaust port 32b are arranged to face each other at the same position in the transfer direction of the reticle transfer path 33 and the wafer transfer path 34. That is, in this embodiment, the gas supplied from the gas supply port 32 a is directly sucked into the gas exhaust port 32 b facing the gas supply port 32 a, and the gas supply port 32 a An air curtain space K is formed between the gas curtain 32 and the gas exhaust port 32b. Therefore, the flow of gas that is going to flow through the reticle transport path 33 toward the internal space S such as the reticle chamber 11 is blocked by the air curtain space K, and the inflow to the inside is suppressed. The inflow of a light absorbing substance from the outside can be reduced.
次に、 本発明の第 4実施例を、 FIG. 5 A〜FIG. 5 Eを参照して説明する。  Next, a fourth embodiment of the present invention will be described with reference to FIGS. 5A to 5E.
第 4実施例と第 1実施例との異なる点は、 第 1実施例が、 ガス供給口 1 7 a及 びガス排気口 1 7 bによるエアシャワー空間 Aを介してレチクル Rの搬入出を行 つているのに対し、 第 4実施例の露光装置では、 FIG. 5 A〜FIG. 5 Eに示すよう に、 レチクル搬送系 4 0の回転扉室 (搬送室、 移動室、 回転室) 4 1を介してレ チクル Rがレチクル室 1 1の内部空間 S内に搬入又は内部空間 S外に搬出される 点である。 回転扉室 4 1におけるレチクル Rの保持は、 その上下面 (図中の紙面 と垂直な方向) で行われる。  The difference between the fourth embodiment and the first embodiment is that the first embodiment carries in and out the reticle R through the air shower space A with the gas supply port 17a and the gas exhaust port 17b. On the other hand, in the exposure apparatus of the fourth embodiment, as shown in FIG. 5A to FIG. 5E, the revolving door chambers (transfer chamber, moving chamber, and rotary chamber) 41 of the reticle transport system 40 are used. The reticle R is carried into or out of the internal space S of the reticle chamber 11 via the reticle chamber 11. Reticle R is held in revolving door chamber 41 on its upper and lower surfaces (in a direction perpendicular to the plane of the paper in the figure).
すなわち、 本実施例の露光装置は、 レチクル Rの搬入口 1 8 (レチクル搬送系 4 2のレチクル搬送路であるレール(レチクルを搬送する搬送アームの移動経路) 4 2 aとレチクル室 1 1の内部空間 Sとの接続部) に回転軸 4 1 aを有して内部 空間 Sの内外に回転移動可能な回転扉室 4 1を備えている。 該回転扉室 4 1は、 FIG. 5 Aおよび FIG. 5 Bに示すように、 内部空間 S外に配置されたときはレチ クル Rを内部空間 S外側から出し入れ可能な状態になり、 さらに、 FIG. 5 Cに示 すように、 回転移動して、 FIG. 5 Dおよび FIG. 5 Eに示すように、 内部空間 S 内に配置されたときは内部空間 S内側からレチクル Rを出し入れ可能な状態にな り、 回転によってこれらの状態を切り換えることができる。  That is, the exposure apparatus of the present embodiment includes a reticle R loading port 18 (a rail that is a reticle transport path of the reticle transport system 42 (a moving path of the transport arm that transports the reticle) 4 2a and the reticle chamber 11). A rotating door chamber 41 having a rotating shaft 41 a at the connection portion with the internal space S) and rotatably moving inside and outside the internal space S is provided. As shown in FIG. 5A and FIG. 5B, when the revolving door chamber 41 is disposed outside the internal space S, the reticle R can be put in and out from the outside of the internal space S. As shown in FIG. 5C, the reticle R can be rotated and moved into and out of the inner space S when placed in the inner space S as shown in FIG. 5D and FIG. 5E. State, and these states can be switched by rotation.
回転扉室 4 1は、 FIG. 5 Bおよび FIG. 5 Dに示すように、 レチクル Rを出し 入れ可能な両状態で回転扉(壁部) 4 1 bが搬入口 (流路) 1 8全体を閉塞して、 レチクル搬送系 4 2から内部空間 S内への気体の流入を防ぐ。 回転扉 4 1 bは、 搬入口 1 8周囲の装置側壁とより密着するように、 該装置側壁に接触する部分に バイトン等の弾性部材 4 1 cが設けられている。 脱ガス処理が施されたシール材 も設けられている。 . As shown in FIG. 5B and FIG. 5D, the revolving door chamber 41 has the revolving door (wall) 41b in both states in which the reticle R can be inserted and removed, and the loading port (flow path) 18 as a whole. Shut off Prevents gas from flowing from reticle transport system 42 into internal space S. The revolving door 41b is provided with an elastic member 41c such as viton at a portion in contact with the side wall of the apparatus so as to be more closely attached to the side wall of the apparatus around the carry-in port 18. Degassing-treated sealing materials are also provided. .
レチクル室 1 1の内部空間 S内の圧力を外部に対してやや高圧に設定してもよ レ、。  The pressure in the internal space S of the reticle chamber 11 may be set slightly higher than that of the outside.
本実施例では、 例えばレチクル Rをレチクル室 1 1の内部空間 Sに搬入する場 合、 まずレチクル Rがレチクル搬送系 4 2によりレチクル室 1 1の近傍に到達し た時若しくはそれ以前に、 FIG. 5 Aに示すように、 回転扉室 4 1を内部空間 S外 側に向けて開放しておく。 レチクル搬送系 4 2のレール 4 2 a上を移動してきた レチクル Rが、 FIG. 5 Bに示すように、 回転扉室 4 1に格納された後、 FIG. 5 C に示すように、 回転扉室 4 1を回転させる。  In the present embodiment, for example, when the reticle R is carried into the internal space S of the reticle chamber 11, when the reticle R reaches the vicinity of the reticle chamber 11 by the reticle transport system 42 or before, the FIG. As shown in 5 A, open the revolving door chamber 41 toward the outside of the internal space S. Reticle R, which has moved on rails 4 2a of reticle transport system 42, is stored in revolving door chamber 41 as shown in FIG. 5B, and then revolved as shown in FIG. 5C. Rotate chamber 41.
回転扉室 4 1が、 FIG. 5 Dに示すように、 内部空間 S内側に向けて開放された 後に、 FIG. 5 Eに示すように、 レチクル Rをレチクルステージ R .S T方向へと移 動させる。 したがって、 FIG.5 Aおよび FIG. 5 B並びに FIG. 5 Dおよび FIG. 5 Eの状態では、レチクル室 1 1内外は、回転扉 4 1 bによって密閉されており、 吸光物質の露光光路空間内部への流入がほとんどない状態にしておくことが容易 になる。  After the revolving door chamber 41 is opened toward the inside of the internal space S as shown in FIG. 5D, the reticle R is moved toward the reticle stage R and ST as shown in FIG. 5E. Let it. Therefore, in the states of FIG. 5A and FIG. 5B and FIG. 5D and FIG. 5E, the inside and outside of the reticle chamber 11 are sealed by the revolving door 41b, so that the inside of the exposure light path space of the light-absorbing substance is inside. It is easy to keep the state with almost no inflow into the system.
この実施例によれば、 少なくとも回転扉室 4 1内空間の内容積からレチクル R や他の内部部材の容積との差に相当する量程度の外部ガスがレチクル室 1 1の内 部空間 S内に流入することになり、 さらに回転扉 4 1 bの回転中で多少の内部空 間 S内への不純物ガスの混入がある。 しかし、 本実施例では、 上記のようにガス の流入はわずかな量に抑制され、 さらにレチクル R等の出し入れに伴うガス置換 といった作業を不必要としたため、 スループットがより高くなる利点がある。 内部空間 Sの内圧を外部より高圧に設定しておけば、 レチクル搬送系 4 2から のガスの混入をより抑制し、 ガスの混入量を積極的に低減できる。  According to this embodiment, at least an amount of external gas corresponding to the difference between the internal volume of the revolving door chamber 41 and the volume of the reticle R and other internal members in the internal space S of the reticle chamber 11 is obtained. In addition, some impurity gas is mixed into the internal space S during the rotation of the revolving door 41b. However, in the present embodiment, as described above, the inflow of gas is suppressed to a small amount, and furthermore, there is no need to perform a work such as gas replacement for taking in and out of the reticle R and the like, so that there is an advantage that the throughput is further increased. If the internal pressure of the internal space S is set to be higher than that of the outside, the mixing of gas from the reticle transport system 42 can be further suppressed, and the amount of mixed gas can be positively reduced.
内部空間 S内側にノズル状等のパージガス噴出口を設置する、 内部空間 S外側 に排気口を配置する等して、 回転扉 4 1 b近傍に内部空間 S内部から外部への局 所的なパージガス流 (FIG. 5 Cに示す点線矢印) を設ける等しても、 同様の効果 が得られる。 Nozzle-like purge gas injection port is installed inside the internal space S, and an exhaust port is installed outside the internal space S, so that a local purge gas from the inside of the internal space S to the outside is located near the revolving door 41b. The same effect can be obtained by providing a flow (dotted arrow shown in FIG. 5C). Is obtained.
上記実施例では、 円の 4分の 1である扇形状の回転扉室 4 1だけを採用してい るが、 円全体にわたって複数の回転扉室を設けたものを利用することも可能であ る。  In the above embodiment, only the fan-shaped revolving door chamber 41, which is a quarter of a circle, is employed, but it is also possible to use one having a plurality of revolving door chambers over the entire circle. .
次に、 本発明の第 5実施例を、 FIG. 6 A〜FIG. 6 Eを参照して説明する。  Next, a fifth embodiment of the present invention will be described with reference to FIGS. 6A to 6E.
第 5実施例と第 4実施例との異なる点は、 第 4実施例の露光装置が、 回転移動 してレチクル: R等の搬入出を行う回転扉室 4 1を備えているのに対し、 第 5実施 例の露光装置では、 FIG. 6 A〜FIG. 6 Eに示すように、 レチクル搬送系 5 1が、 レチクル Rをレチクル室 1 1の内部空間 S外側から出し入れ可能な位置と内部空 間 S内側から出し入れ可能な位置との間を上下移動可能なェレベータ室 (移動室) . 5 2を備えている点である。  The difference between the fifth embodiment and the fourth embodiment is that the exposure apparatus of the fourth embodiment includes a rotating door chamber 41 for rotating and moving to carry in and out a reticle: R, etc. In the exposure apparatus of the fifth embodiment, as shown in FIG. 6A to FIG. 6E, the reticle transport system 51 moves the reticle R out of the internal space S of the reticle chamber 11 and the internal space. It is a point that it has an elevator room (moving room). 52 that can move up and down between the position that can be taken in and out from the inside.
本実施例のエレベータ室 5 2は、 レチクノレ搬送系 5 1と内部空間 Sとの接続部 4 3 (流路) 内に上下動可能に配置され、 その天板 (壁部) 5 2 a及ぴ底板 (壁 部) 5 2 b力 レチクル Rを内部空間 S外側から出し入れ可能な位置に配置され た際 (FIG. 6 Aおよび FIG. 6 Bに示す状態) 及び内部空間 S内側から出し入れ 可能な位置に配置された際 (FIG. 6 Dおよび FIG. 6 Eに示す状態) に、 接続部 4 3を閉塞する。 このエレベータ室 5 2は、 レチクル搬送系 5 1によるレチクル Rの進行方向における両端が開放された構造となっている。 エレベータ室 5 2が 上下する空間である接続部 4 3は、 エレベータ室 5 2の高さの 2倍程度である。 すなわち、 本実施例では、 例えばレチクル Rをレチクル室 1 1の内部空間 Sに 搬入する場合、 まずレチクル Rがレチクル室 1 1の近傍に到達した時若しくはそ れ以前に、 FIG.6 Aに示すように、 エレベータ室 5 2を接続部 4 3上部に移動さ せておく。 レチクル Rを、 FIG.6 Bに示すように、 レチクル搬送系 5 1のレール 5 1 a上を移動させ、 エレベータ室 5 2に格納する。  The elevator room 52 of the present embodiment is vertically movably disposed in a connection portion 43 (flow path) between the reticle transfer system 51 and the internal space S, and has a top plate (wall portion) 52a and a top plate 52a. Bottom plate (wall) 5 2 b Force When reticle R is placed in a position where it can be taken in and out from inside space S (as shown in FIGS. 6A and 6B), and when reticle R can be taken in and out from inside space S When it is placed in the position (the state shown in FIG. 6D and FIG. 6E), the connecting portion 43 is closed. The elevator room 52 has a structure in which both ends in the traveling direction of the reticle R by the reticle transport system 51 are open. The connecting portion 43, which is a space in which the elevator room 52 moves up and down, is about twice the height of the elevator room 52. That is, in the present embodiment, for example, when the reticle R is carried into the internal space S of the reticle chamber 11, when the reticle R reaches the vicinity of the reticle chamber 11 or before, as shown in FIG. As described above, the elevator room 52 is moved to the upper part of the connection portion 43. The reticle R is moved on the rail 51 a of the reticle transport system 51 and stored in the elevator room 52 as shown in FIG. 6B.
次に、 FIG. 6 Cに示すように、 エレベータ室 5 2をレチクル Rとともに下方に 移動させ、 FIG. 6 Dに示すように、接続部 4 3下部に配置する。この状態で、 FIG. 6 Eに示すように、 最終的にレチクル室 1 1の内部空間 Sヘレチクル Rを搬入す る。 上記の FIG. 6 Aおよび FIG. 6 B、 並びに FIG. 6 Dおよび FIG. 6 Eの状態 では、 装置の内外はエレベータ室 5 2の天板 5 2 a及ぴ底板 5 2 bによって密閉 されており、 吸光物質の内部空間 Sへの流入がほとんどない状態にしておくこと ができる。 Next, as shown in FIG. 6C, the elevator room 52 is moved downward together with the reticle R, and is arranged below the connection portion 43 as shown in FIG. 6D. In this state, as shown in FIG. 6E, the internal space S reticle R of the reticle chamber 11 is finally loaded. In the above-mentioned FIG. 6A and FIG. 6B, and FIG. 6D and FIG. 6E, the inside and outside of the equipment are sealed by the top plate 52a and the bottom plate 52b of the elevator room 52. Therefore, it is possible to keep the light absorbing substance hardly flowing into the internal space S.
本実施例では、 第 4実施例と同様に、 エレベータ室 5 2内空間の内容量からレ チクル Rや他の内部部材の容積との差に相当する量の外部ガス力 S、 FIG. 6 Cに示 すように、 エレベータ室 5 2の移動中にレチクル室 1 1の内部空間 Sに混入する ことが考えられる。 しかし、 ガスの流入はわずかな量に抑制されるとともに、 レ チクル Rの搬入出における時間の消費が低減され、 より高速なレチクル Rの搬入 出が可能になるので、 スループットの低下を低減できる。  In this embodiment, similarly to the fourth embodiment, the external gas force S, FIG. 6C, which is equivalent to the difference between the internal volume of the elevator room 52 and the volume of the reticle R and other internal members, is used. As shown in Fig. 5, it is conceivable that the liquid may enter the internal space S of the reticle room 11 while the elevator room 52 is moving. However, the inflow of gas is suppressed to a small amount, the time consumed for loading and unloading the reticle R is reduced, and the loading and unloading of the reticle R can be performed at a higher speed, so that a decrease in throughput can be reduced.
本実施例においても、 第 4実施例と同様に、 内部空間 Sを外部に対して高圧に したり、 パージガス噴出口を内部空間 S側に設けて外部のレチクル搬送系 5 1に 向けて局所的なパージガス流 (FIG. 6 Cに示す点線矢印) を形成してもよい。 次に、 本発明の第 6実施例を、 FIG. 7 A〜FIG. 7 C及び FIG. 8を参照して説 明する。 .  Also in this embodiment, as in the fourth embodiment, the internal space S is set to a high pressure with respect to the outside, or a purge gas ejection port is provided on the internal space S side to locally direct the gas toward the external reticle transport system 51. A simple purge gas flow (dotted arrow shown in FIG. 6C) may be formed. Next, a sixth embodiment of the present invention will be described with reference to FIGS. 7A to 7C and FIG. .
第 6実施例と第 5実施例との異なる点は、 第 5実施例では、 ェレベータ室 5 2 が上下する空間である接続部 4 3の高さがエレベータ室 5 2の高さの 2倍程度で あるのに対し、 第 6実施例の露光装置では、 FIG. 7 A〜FIG. 7 C及び FIG. 8に 示すように、 レチクル搬送系 5 1とレチクル室 1 1の内部空間 Sとの接続部 6 1 の高さがェレベータ室 5 2の高さの 3倍程度である点である。  The difference between the sixth embodiment and the fifth embodiment is that, in the fifth embodiment, the height of the connecting portion 43, which is the space in which the elevator room 52 moves up and down, is about twice the height of the elevator room 52. In contrast, in the exposure apparatus of the sixth embodiment, as shown in FIG. 7A to FIG. 7C and FIG. 8, the connection between the reticle transport system 51 and the internal space S of the reticle chamber 11 is established. The height of the part 6 1 is about three times the height of the elevator room 52.
すなわち、 第 5実施例では、 エレベータ室 5 2の移動時にレチクル搬送系 5 1 とレチクル室 1 1とが接続されてガスの流入が生じるおそれがあるのに対し、 第 6実施例では、 エレベータ室 5 2の移動時においても、 FIG. 7 Bに示すように、 天板 5 2 a及び底板 5 2 bによりレチクル搬送系 5 1とレチクル室 1 1とが接続 されずに閉じた空間が形成されるため、 吸光物質の流入をさらに低減させること ができる。  That is, in the fifth embodiment, when the elevator room 52 is moved, the reticle transport system 51 and the reticle room 11 are connected and gas may flow in, whereas in the sixth embodiment, the elevator room 7B, the reticle transport system 51 and the reticle chamber 11 are not connected by the top plate 52a and the bottom plate 52b, as shown in FIG. Therefore, the inflow of the light absorbing substance can be further reduced.
次に、 本発明の第 7実施例を、 FIG. 9 A〜FIG. 9 Eを参照して説明する。  Next, a seventh embodiment of the present invention will be described with reference to FIGS. 9A to 9E.
第 7実施例と第 5実施例との異なる点は、 第 5実施例では、 上下動するエレべ ータ室 5 2を介してレチクル Rの搬入出を行うのに対し、 第 7実施例の露光装置 では、 FIG. 9 A〜FIG. 9 Eに示すように、 レチクル搬送系 7 1側からレチクル R を出し入れ可能な外側開閉扉 7 2 aとレチクル室 1 1等の内部空間 S側からレチ クル R等を出し入れ可能な内側開閉扉 7 2 bとを備えたロードロック室 7 2を介 してレチクル R等の搬入出を行う点である。 The difference between the seventh embodiment and the fifth embodiment is that, in the fifth embodiment, the reticle R is loaded and unloaded through the elevator chamber 52 that moves up and down. In the exposure apparatus, as shown in FIGS. 9A to 9E, an outer opening / closing door 7 2 a through which a reticle R can be taken in and out from the reticle transport system 71 and a reticle from the inner space S side of the reticle chamber 11. The point is that the reticle R and the like are loaded and unloaded via the load lock chamber 72 provided with the inside opening / closing doors 72b that can take in and out the vehicle R and the like.
すなわち、 本実施例では、 例えばレチクル Rをレチクル室 1 1の内部空間 Sに 搬入する場合、 レチクル Rがレチクル室 1 1の近傍に到達した時若しくはそれ以 前に、 FIG. 9 Aに示すように、 内側開閉扉 7 2 bを閉じたままの状態で外側開閉 扉 7 2 aを開けておく。 レチクル Rを、 FIG. 9 Bに示すように、 レチクル搬送系 7 1のレーノレ 7 1 a上を移動させ、 ロードロック室 7 2内に導く。  That is, in the present embodiment, for example, when the reticle R is carried into the internal space S of the reticle chamber 11, when the reticle R reaches the vicinity of the reticle chamber 11 or before, as shown in FIG. 9A. Then, with the inside door 72b closed, open the outside door 72a. The reticle R is moved on the renole 71 a of the reticle transport system 71 as shown in FIG. 9B and guided into the load lock chamber 72.
次に、 レチクル Rが完全にロードロック室 7 2に格納された後、 FIG. 9 Cに示 すように、 外側開閉扉 7 2 aを閉め、 さらに、 FIG. 9 Dに示すように、 内側開閉 扉 7 2 bを開けて、 ロードロック室 7 2をレチクル室 1 1の内部空間 Sに向けて 開放し、 FIG. 9 Eに示すように、 光路空間である内部空間 Sにレチクル Rを搬入 する。 密閉空間内外で部材のゃり取りを行うために設ける一般的なロードロック 室は、内部のガス置換を行つてから当該部材のゃり取りを行う力 S、本実施例では、 レチクル Rがロードロック室 7 2に格納されている間にガス置換を行わない。 本実施例では、 ロードロック室 7 2の内容積からレチクル Rや他の内部部材の 容積との差に相当する量の外部ガスがレチクル室 1 1の内部空間 Sに流入するこ とになるが、 この流入するガスの量は、 レチクル室 1 1又はウェハ室 1 2内に供 給されるガスの量に比べて微小であり、 即ち、 ロードロック室 7 2の容器がレチ クル室 1 1又はウェハ室 1 2の容積に比べて非常に小さいため、 レチクル室 1 1 又はウェハ室 1 2内に流入するガスは少ない。 一般に、 照明光学系及び投影光学 系では比較的光路長が長く、 雰囲気の成分の変動が小さい一方、 レチクル操作部 及びウェハ操作部では光路長が比較的短く、 雰囲気の変動が大きいという特徴を 持つ。 そのため、 照明光学系及び投影光学系で酸素分子、 水分子、 二酸化炭素分 子などの吸光物質の濃度をより低めに管理するのが好ましく、 レチクル操作部及 びウェハ操作部では必要以上に吸光物質濃度を低く管理するのは現実的とほ言え ない。 上述したように、 多少のガスの流入があつたとしても、 レチクル室 1 1又 はウェハ室 1 2が照明光学系及び投影光学系に比べて吸光物質の濃度管理が緩く 管理されるので、 ある程度のガスの流入を許容できる。 従って、 ロードロック室 7 2內での排気減圧やガス置換を行う場合と比較して、 レチクル R.の搬入出にお ける時間の消費を低減することができ、 より高速なレチクル Rの搬入出が可能に なり、 スループットの低下を低減できる。 Next, after the reticle R is completely stored in the load lock chamber 72, the outer opening / closing door 72a is closed as shown in FIG. 9C, and the inner door is further closed as shown in FIG. 9D. Open the door 7 2 b and open the load lock chamber 72 toward the internal space S of the reticle chamber 11, and carry the reticle R into the internal space S, which is the optical path space, as shown in FIG. 9E. I do. A general load lock chamber provided for removing components inside and outside the enclosed space has a force S for removing the components after performing gas replacement inside, and in this embodiment, a reticle R is loaded. Do not perform gas replacement while stored in the lock chamber 72. In this embodiment, an amount of external gas corresponding to the difference between the internal volume of the load lock chamber 72 and the volumes of the reticle R and other internal members flows into the internal space S of the reticle chamber 11. However, the amount of gas flowing into the reticle chamber 11 or the wafer chamber 12 is minute compared to the amount of gas supplied thereto. Since the volume is very small as compared with the volume of the wafer chamber 12, a small amount of gas flows into the reticle chamber 11 or the wafer chamber 12. In general, the illumination optical system and the projection optical system have a relatively long optical path length and a small variation in the atmosphere components, while the reticle operating unit and the wafer operating unit have a relatively short optical path length and a large atmospheric variation. . For this reason, it is preferable to control the concentration of light-absorbing substances such as oxygen molecules, water molecules, and carbon dioxide molecules at lower levels in the illumination optical system and projection optical system. It is not realistic to control the concentration low. As described above, even if a small amount of gas flows in, the reticle chamber 11 or the wafer chamber 12 has a somewhat lower concentration control of the light absorbing substance than the illumination optical system and the projection optical system. Gas is allowed to flow. Therefore, compared to the case where exhaust pressure is reduced and gas is replaced in the load lock chamber 72 內, the loading and unloading of reticle R. Time can be reduced, reticle R can be loaded and unloaded at a higher speed, and a decrease in throughput can be reduced.
本発明は、 次のような実施例をも含むものである。  The present invention also includes the following embodiments.
上記各実施例において、 レチクル Rやウェハ W等の基板が搬送されるレチクル 室 1 1等の内部空間 Sとしては、 真空対応の気密空間、 及び少し隙間があっても 上述したように内部の気圧制御によって外部空間と隔離される空間が含まれる。 上記第 1〜 7実施例における回転扉室 4 1、 エレベータ室 5 2及びロードロッ ク室 7 2の内容積、 エアシャワー空間 A、 A 1〜A 3の断面積は、 可能な限り小 さくすることで、 内部空間 Sに流入する吸光物質の量が低減される。  In each of the above embodiments, the internal space S of the reticle chamber 11 or the like in which the substrate such as the reticle R and the wafer W is transferred is a vacuum-tight airtight space, and even if there is a slight gap, the internal air pressure as described above. A space that is isolated from the external space by control is included. The internal volumes of the revolving door room 41, the elevator room 52, and the load lock room 72, and the cross-sectional areas of the air shower spaces A, A1 to A3 in the first to seventh embodiments should be as small as possible. Thus, the amount of the light absorbing substance flowing into the internal space S is reduced.
上記第 4〜7実施例では、 ゥヱハ搬送系においても、 レチクル搬送系と同様の 回転扉室、 エレベータ室又はロードロック室がそれぞれ設けられて、 これを介し てウェハ Wの搬入出が行われる。  In the fourth to seventh embodiments, the rotating door room, the elevator room, or the load lock chamber, which is the same as the reticle transfer system, is provided in the transfer system, and the wafer W is loaded and unloaded through these.
上記各実施例では、 投影光学系 P L内や照明光学系 L O内等の空間に供給する パージガスとして、 窒素ガス、 ヘリウム、 アルゴンを用いたが、 ネオン、 クリプ トン、 キセノン、 ラドン等の不活性ガスを用いてもよい。  In each of the above embodiments, nitrogen gas, helium, and argon are used as the purge gas to be supplied to the space inside the projection optical system PL and the illumination optical system LO, but an inert gas such as neon, krypton, xenon, and radon is used. May be used.
上記各実施例の露光装置として、 投影光学系を用いることなくレチクルの代わ りにマスクと基板とを密接させてマスクのパターンを露光するプロキシミティ露 光装置にも適用できる。  The exposure apparatus of each of the above embodiments can be applied to a proximity exposure apparatus that exposes a mask pattern by bringing a mask and a substrate into close contact with each other instead of a reticle without using a projection optical system.
上記各実施例の露光装置の光源は、 F2 レーザ (1 5 7 n m) のみならず、 g 線 ( 4 3 6 n m)、 i線 ( 3 6 5 n m)、 K r Fエキシマレーザ ( 2 4 8 n m)、 A r Fエキシマレーザ (1 9 3 n m)、 X線を用いることができる。 The light source of the exposure apparatus of each embodiment, F 2 not only laser (1 5 7 nm), g-ray (4 3 6 nm), i-rays (3 6 5 nm), K r F excimer laser (2 4 8 nm), a r F excimer laser (1 9 3 nm), it is possible to use X-rays.
投影光学系の倍率は縮小系のみならず等倍および拡大系のレヽずれでもよい。 投影光学系としては、 F 2 レーザや X線を用いる場合は反射屈折系または屈折 系の光学系にする (レチクルも反射型タイプのものを用いる)。 The magnification of the projection optical system may be not only a reduction system but also a level shift of an equal magnification and an enlargement system. The projection optical system, when using the F 2 laser or X-ray to the optical system of the catadioptric system or refractive system (reticle also used as a reflective type).
上記各実施例において、 レチクル Rの各レチクル搬送系は、 レチクル搬送ァー ムを備えている。 通常、 レチクルは、 硝材で形成され、 レチクル搬送アームを構 成するアルミニウム合金又はアルミニウムの表面には、 アルマイト等の酸化皮膜 が形成されている。 すなわち、 レチクルと搬送アームとは異なる物質で形成され ているため、 両者を互いに接触、 剥離又は摩擦させたりすると、 両者の間で電子 が移動し、 静電気が発生する。 すなわち、 レチクルと搬送アームとが接触等した ときなどに発生した静電気によって、 レチクル上にクロム等の蒸着によって形成 させた回路パターンの少なくとも一部の形状を壊す可能性がある。 In each of the above embodiments, each reticle transport system of the reticle R includes a reticle transport arm. Usually, the reticle is formed of a glass material, and an oxide film such as alumite is formed on the surface of the aluminum alloy or aluminum constituting the reticle transfer arm. In other words, since the reticle and the transfer arm are made of different materials, if they come into contact with each other, peel off or rub, Moves and generates static electricity. That is, there is a possibility that at least a part of the shape of a circuit pattern formed on the reticle by vapor deposition of chromium or the like is damaged by static electricity generated when the reticle comes into contact with the transfer arm or the like.
同様に、 F 2レーザの光路空間内のうち、 ウェハの交換を行うウェハ室におい て、 ゥヱハ搬送アームやウェハステージに対し、 ウェハを接触させたり、 剥離さ せたりすると、 静電気が発生する可能性がある。 Similarly, of the optical path space of the F 2 laser, Te wafer chamber odor of replacing the wafer with respect to Uweha transfer arm and the wafer stage, or by contacting the wafer and or to peeling, possibility of static electricity is generated There is.
そこで、 レチクル搬送アームでレチクルを保持するときは、 搬送アームのレチ クル保持部の表面に、 レチクルと同質のガラス質又は酸化珪素皮膜を形成し、 こ のガラス質又は酸化珪素皮膜の表面を介してレチクルを保持する。 あるいは、 搬 送アームのレチクル保持部の母材をアルミニウムを含む材料とし、 その母材の表 面に酸化珪素皮膜を形成し、 この酸化珪素皮膜とレチクルとを接触させて保持す る。 このように、 搬送アームのレチクルを保持する部分に、 レチクルと同質の物 質又は組成の近い材質のガラス質又は酸化珪素皮膜を設けることによって、 水分 子が含まれない若しくは水分子が低減された不活性ガス雰囲気中で、 レチクルと 搬送アームとの接触や剥離による静電気の発生が抑制され、 レチクル基板の帯電 を防止又は抑制できる。 このため、 帯電によるレチクル上の回路パターンの破壊 を防止できる。  Therefore, when holding the reticle with the reticle transfer arm, a glassy or silicon oxide film of the same quality as the reticle is formed on the surface of the reticle holding section of the transfer arm, and the glassy or silicon oxide film is interposed. To hold the reticle. Alternatively, the base material of the reticle holding portion of the transfer arm is made of a material containing aluminum, a silicon oxide film is formed on the surface of the base material, and the silicon oxide film is held in contact with the reticle. By providing a vitreous or silicon oxide film of the same or similar composition to the reticle on the portion of the transfer arm that holds the reticle, water molecules are not contained or water molecules are reduced. In an inert gas atmosphere, the generation of static electricity due to the contact or separation between the reticle and the transfer arm is suppressed, and the charging of the reticle substrate can be prevented or suppressed. For this reason, it is possible to prevent the circuit pattern on the reticle from being destroyed due to charging.
レチクルの基材としては、 フッ化カルシウム、 フッ化リチウム、 フッ化マグネ シゥム、 フッ化ストロンチウム、 リチウム一カルシウム一アルミニウム一フロー ライド、 及ぴリチウム一ストロンチウム一アルミニウム一フローライド等の結晶 や、ジルコニウム一パリゥム一ランタン一アルミニウムからなるフッ化ガラスや、 フッ素をドープした石英ガラス、フッ素を加えて水素もドープされた石英ガラス、 O H基を含有させた石英ガラス、 フッ素に加えて O H基を含有した石英ガラス等 の改良石英を用いることができる。 ただし、 これらフッ化物や改良石英は、 レチ クルだけでなく、 照明光学系及び投影光学系を構成する光透過性の光学材料とし て用いることもできる。  Reticle base materials include crystals such as calcium fluoride, lithium fluoride, magnesium fluoride, strontium fluoride, lithium-calcium-aluminum-flowride, and lithium-strontium-aluminum-flowride and the like, and zirconium-fluoride. Fluoride glass made of palladium-lanthanum-aluminum, quartz glass doped with fluorine, quartz glass doped with hydrogen and hydrogen, quartz glass containing OH groups, quartz containing OH groups in addition to fluorine Improved quartz such as glass can be used. However, these fluorides and modified quartz can be used not only as a reticle but also as a light-transmitting optical material constituting an illumination optical system and a projection optical system.
従って、 搬送アームのレチクル保持部の表面に形成されるガラス質又は組成の 近い材質としては、上述したレチクルの基材と同様のものを用いることができる。 搬送アームのレチクル保持部の表面に形成されるガラス質と、 レチクルの基材 とは、 必ずしも同質にする必要はなく、 上述したフッ化物、 改良石英、 酸化珪素 皮膜のいずれかを用いればよい。 Therefore, the same material as the above-described reticle base material can be used as the vitreous material or the material having a similar composition formed on the surface of the reticle holding portion of the transfer arm. Vitreous formed on the surface of the reticle holding part of the transfer arm, and the base material of the reticle It is not always necessary to use the same material, and any one of the above-mentioned fluoride, modified quartz, and silicon oxide film may be used.
レチクル搬送アームについて説明したが、 レチクルステージのレチクル載置面 (載置部) についても同様に構成できる。  Although the reticle transfer arm has been described, the reticle mounting surface (mounting portion) of the reticle stage can be similarly configured.
次に、 ウェハなどの基板に対する帯電防止又は帯電した静電気を除去する構成 について説明する。  Next, a description will be given of a configuration for preventing or removing static electricity from a substrate such as a wafer.
前述したように、 F 2レーザを用いた露光装置では、 F2レーザの光路空間内を 不活性ガス雰囲気としなければならず、 かつ F2レーザは水分子に吸収されてし まうため、 不活性ガス中に水分子が極力存在しないように管理されている。 した がって、 F2 レーザの光路空間内のうち、 ウェハ室等に搬送されるウェハには、 静電気が帯電しやすい。 As described above, in the exposure apparatus using F 2 laser, the F 2 laser in the optical path space must be an inert gas atmosphere, and F 2 lasers is absorbed in the water molecules Mautame, inert It is managed so that water molecules do not exist in the gas as much as possible. Therefore, among the optical path space of the F 2 laser, the wafer is conveyed to the wafer chamber or the like, static electricity is easily charged.
そこで、 ウェハ室内に、 ゥヱハステージに載置されたウェハ表面にピンを接触 させることによって、 ゥヱハに帯電した静電気を除去できる。  Therefore, the static electricity charged on the wafer can be removed by bringing the pins into contact with the surface of the wafer mounted on the wafer stage in the wafer chamber.
ウェハステージ上でゥヱハを支持する支持部材を上記ピンで兼用することによ つて、 ウェハ等に静電気が帯電することなく、 ピンに設けられた導電部を通じて 常に静電気を除去できる。 ウェハ搬送アーム上でウェハを支持する支持部材を上 記ピンで兼用してもよレ、。  By using the pins as a support member for supporting the wafer on the wafer stage, static electricity can be constantly removed through the conductive portion provided on the pins without static electricity being charged on the wafer or the like. The above-mentioned pins may be used as the support member for supporting the wafer on the wafer transfer arm.
本実施の形態におけるレチクル搬送系、 及びウェハ搬送系としては、 上述した アーム方式のほかに、 接触方式おょぴ非接触方式 (浮上搬送) のいずれかを使用 してもよい。 接触方式では、 ベルト搬送方式を用いることができ、 非接触方式で は、 静電浮上方式を用いることができる。 特に、 静電浮上方式の例としては、 搬 送路に、 基板に対向する浮上用電極を有する絶縁基板 2と、 各浮上用電極と基板 とのギャップを検出する変位センサとを設ける。 そして、 変位センサから得られ た検出値を目標値と比較してその偏差を演算処理することで各浮上用電極への印 加電圧を制御し、 各浮上用電極への電圧の印加により基板を静電吸引力により吸 引して非接触で保持して搬送を行う。  As the reticle transport system and the wafer transport system in the present embodiment, in addition to the above-mentioned arm system, any of a contact system and a non-contact system (floating transfer) may be used. In the contact method, a belt conveyance method can be used, and in the non-contact method, an electrostatic levitation method can be used. In particular, as an example of the electrostatic levitation method, an insulating substrate 2 having levitation electrodes facing the substrate and a displacement sensor for detecting a gap between each levitation electrode and the substrate are provided on a transport path. Then, the detection value obtained from the displacement sensor is compared with the target value, and the deviation is calculated to control the applied voltage to each of the floating electrodes, and the substrate is applied by applying the voltage to each of the floating electrodes. It is sucked by electrostatic attraction and held in a non-contact state for transport.
上記各実施例の露光装置として、 マスクと基板とを静止した状態でマスクのパ ターンを露光し、 基板を順次ステップ移動させるステップ'アンド ' リピート型 の露光装置にも適用できる。 露光装置の用途としては半導体製造用の露光装置に限定されることなく、 例え ば、 角型のガラスプレートに液晶表示素子パターンを露光する液晶用の露光装置 や、 薄膜磁気へッドを製造するための露光装置にも広く適用できる。 The exposure apparatus of each of the above embodiments can be applied to a step-and-repeat type exposure apparatus that exposes a pattern of a mask while the mask and the substrate are stationary and sequentially moves the substrate. The application of the exposure apparatus is not limited to the exposure apparatus for manufacturing semiconductors, for example, manufacturing an exposure apparatus for liquid crystal for exposing a liquid crystal display element pattern on a square glass plate, and manufacturing a thin film magnetic head. Can be widely applied to an exposure apparatus for the purpose.
ヴェハステージゃレチクルステージにリニアモータを用いる場合は、 エアベア リングを用いたエア浮上型およびローレンツ力またはリアクタンス力を用いた磁 気浮上 のどちらを用いてもよい。 ステージは、 ガイドに沿って移動するタイプ でもよいし、 ガイドを設けないガイドレスタイプでもよい。  When a linear motor is used for the reticle stage and the reticle stage, either an air levitation type using an air bearing or a magnetic levitation using Lorentz force or reactance force may be used. The stage may be a type that moves along a guide or a guideless type that does not have a guide.
ステージの駆動装置として平面モータを用いる場合、磁石ュ-ット(永久磁石) と電機子ュニットのいずれか一方をステージに接続し、 磁石ュニットと電機子ュ ニットの他方をステージの移動面側 (ベース) に設ければよい。  When a planar motor is used as the stage driving device, one of the magnet unit (permanent magnet) and the armature unit is connected to the stage, and the other of the magnet unit and the armature unit is connected to the stage moving surface ( Base).
ウェハステージの移動により発生する反力は、 特開平 8一丄 6 6 4 7 5号公報 に記載されているように、 フレーム部材を用いて機械的に床 (大地) に逃がして もよい。本発明は、このような構造を備えた露光装置においても適用可能である。 レチクルステージの移動により発生する反力は、 特開平 8— 3 3 0 2 2 4号公 報に記載されているように、 フレーム部材を用いて機械的に床 (大地) に逃がし てもよい。 本発明は、 このような構造を備えた露光装置においても適用可能であ る。 The reaction force generated by the movement of the wafer stage, as disclosed in JP-A-8 Ichi丄6 6 4 7 5 JP, may be mechanically released to the floor (ground) using a frame member. The present invention is also applicable to an exposure apparatus having such a structure. The reaction force generated by the movement of the reticle stage may be mechanically released to the floor (ground) by using a frame member, as described in Japanese Patent Application Laid-Open No. 8-330224. The present invention is also applicable to an exposure apparatus having such a structure.
以上のように、 本願実施例の露光装置は、 本願特 F請求の範囲に挙げられた各 構成要素を含む各種サブシステムを、 所定の機械的精度、 電気的精度、 光学的精 度を保つように、 組み立てることで製造される。 これら各種精度を確保するため に、 この組み立ての前後には、 各種光学系については光学的精度を達成するため の調整、 各種機械系については機械的精度を達成するための調整、 各種電気系に ついては電気的精度を達成するための調整が行われる。 各種サブシステムから露 光装置への組み立て工程は、 各種サブシステム相互の、 機械的接続、 電気回路の 配線接続、 気圧回路の配管接続等が含まれる。 この各種サブシステムから露光装 置への組み立て工程の前に、 各サブシステム個々の組み立て工程がある。 各種サ ブシステムの露光装置への組み立て工程が終了したら、 総合調整が行われ、 露光 装置全体としての各種精度が確保される。 露光装置の製造は温度おょぴクリーン 度等が管理されたクリーンルームで行うことが望ましい。 半導体デバイス (マイクロデバイス) は、 FIG.10に示すように、 デバイスの機 能 ·性能設計を行うステップ 2 0 1、 この設計ステップに基づいたマスク (レチ クル) を製作するステップ 2 0 2、 シリコン材料からウェハを製造するステップ 2 0 3、 前述した実施例の露光装置によりレチクルのパターンをウェハに露光す るウェハ処理ステップ 2 0 4、 デパイス組み立てステップ (ダイシング工程、 ボ ンデイング工程、 パッケージ工程を含む) 2 0 5、 検査ステップ 2 0 6等を経て 製造される。 産業上の利用の可能性 As described above, the exposure apparatus according to the embodiment of the present invention controls the various subsystems including the components listed in the claims of the present application to maintain the predetermined mechanical accuracy, electrical accuracy, and optical accuracy. It is manufactured by assembling. Before and after this assembly, various adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical systems before and after this assembly were performed. Adjustments are then made to achieve electrical accuracy. The process of assembling the exposure device from various subsystems includes mechanical connections, wiring connections of electric circuits, and piping connections of pneumatic circuits among the various subsystems. Prior to the process of assembling the exposure apparatus from the various subsystems, there is an individual assembly process for each subsystem. When the process of assembling the various sub-systems into the exposure apparatus is completed, comprehensive adjustments are made to ensure various precisions of the entire exposure apparatus. It is desirable to manufacture the exposure apparatus in a clean room where the temperature and cleanliness are controlled. For semiconductor devices (micro devices), as shown in FIG. 10, step 201 for designing device functions and performance, step 202 for fabricating a mask (reticle) based on this design step, silicon Step 203 of manufacturing a wafer from a material, Step 204 of exposing a reticle pattern to a wafer using the exposure apparatus of the above-described embodiment, Step of assembling depiice (including dicing, bonding, and package processes) ) Manufactured through 205, inspection step 206, etc. Industrial applicability
本発明では、 搬送機構が、 搬送路からの気体の流入を抑制するためのガスの流 れを形成するガス流入抑制機構を有しているので、 搬送機構により基板を搬入出 する際に、 ガス流入抑制機構により搬送路から空間内に気体が流入することを積 極的に防ぐ。 これにより、 搬送を一旦停止する必要もなく、 かつ搬送路と前記空 間との間のロードロック室等において排気やガス置換を行わずとも、 前記空間内 の吸光物質を低濃度に維持できる。 したがって、 確実な回路パターンの焼き付け が可能であり、電子デバイスの製造速度(スループット)を高めることができる。  According to the present invention, the transfer mechanism has a gas inflow suppression mechanism that forms a gas flow for suppressing the inflow of gas from the transfer path. The inflow suppression mechanism actively prevents gas from flowing into the space from the transport path. This makes it possible to maintain a low concentration of the light-absorbing substance in the space without having to temporarily stop the transfer and without performing exhaust or gas replacement in a load lock chamber or the like between the transfer path and the space. Therefore, the circuit pattern can be reliably printed, and the manufacturing speed (throughput) of the electronic device can be increased.

Claims

請求の範囲 The scope of the claims
1 . 露光エネルギー発生原からの露光エネルギーを基板に照射する露光装置であ つて、 1. An exposure apparatus that irradiates the substrate with exposure energy from an exposure energy source,
前記基板を収容する収容室と、  A housing chamber for housing the substrate,
前記収容室に搬送路を介して搬入又は前記収容室から前記搬送路を介して搬出 する搬送機構と、  A transport mechanism for loading the storage chamber through a transport path or transporting the storage chamber out of the storage chamber via the transport path;
前記収容室に対する前記搬送路からの気体の流入を抑制するためのガス流れを 形成するガス流入抑制機構とを有する。  A gas flow suppressing mechanism for forming a gas flow for suppressing the flow of gas from the transfer path into the storage chamber.
2 . 請求項 1の露光装置であって、 2. The exposure apparatus according to claim 1, wherein
前記ガス流入抑制機構は、  The gas inflow suppression mechanism,
前記搬送路の途中、 又は前記搬送路と前記収容室との間に設けられ、 前記搬送 路内に前記ガスを供給するガス供給口と、  A gas supply port provided in the middle of the transport path, or between the transport path and the storage chamber, for supplying the gas into the transport path;
前記搬送路内のガスを吸引するガス吸引口とを有し、  Having a gas suction port for sucking gas in the transport path,
前記ガス供給口は、 前記収容室と前記ガス吸引口との間に配置される。  The gas supply port is disposed between the storage chamber and the gas suction port.
3. 請求項 2の露光装置であって、 3. The exposure apparatus according to claim 2, wherein
前記ガス供給口は、 前記ガスの流入方向が前記収容室から離れる方向に向くよ 'うに、 前記搬送路に設けられ、  The gas supply port is provided in the transport path such that an inflow direction of the gas faces away from the storage chamber,
前記ガス排気口は、 前記ガスの吸引方向が前記収容室側に向くように、 前記搬 送路に設けられる。  The gas exhaust port is provided in the transport path such that a suction direction of the gas is directed to the storage chamber side.
4 . 請求項 2の露光装置であって、 4. The exposure apparatus according to claim 2, wherein
前記ガス流入抑制機構は、 前記ガス供給口及び前記ガス排気口の対を前記基板 の搬送方向に沿って配置する。  The gas inflow suppression mechanism arranges a pair of the gas supply port and the gas exhaust port along a transport direction of the substrate.
5 . 請求項 1の露光装置であって、 5. The exposure apparatus according to claim 1, wherein
前記基板は、 照明光字系を介して前記露光エネルギーが照射されるマスクであ り、 The substrate is a mask to which the exposure energy is applied via an illumination light system. And
前記収容室は、 前記マスクを保持するマスクステージを有する。  The accommodation room has a mask stage that holds the mask.
6 . 請求項 2の露光装置であって、 6. The exposure apparatus according to claim 2, wherein
前記基板は、 投影光学系を介して前記マスクに形成されたパターンの像が転写 されるウェハであり、  The substrate is a wafer to which an image of a pattern formed on the mask is transferred via a projection optical system,
前記収容室は、 前記ウェハを保持するウェハステージを有する。  The storage chamber has a wafer stage that holds the wafer.
7 . 露光エネルギー発生源からの露光エネルギーを基板に照射する露光装置であ つて、 7. An exposure apparatus that irradiates the substrate with exposure energy from an exposure energy source,
前記基板を収容する収容室と、  A housing chamber for housing the substrate,
前記収容室に搬送路を介して搬入又は前記収容室から前記搬送路を介して搬出 する搬送機構と、  A transport mechanism for loading the storage chamber through a transport path or transporting the storage chamber out of the storage chamber via the transport path;
前記搬入又は前記搬出の際に、 前記搬送路から前記収容室内への気体の流路を 閉塞する璧部を備える搬送室とを有する。  And a transfer chamber having a wall for closing a gas flow path from the transfer path into the storage chamber during the loading or unloading.
8 . 請求項 7の露光装置であって、 8. The exposure apparatus of claim 7, wherein
前記搬送室は、 前記基板を前記空間外側から出し入れ可能な位置と前記空間内 側から出し入れ可能な位置との間を移動可能に配置された移動室であり、 前記壁部は、 前記基板を前記収容室外側から出し入れ可能な位置に配置された 際及び前記収容室内側から出し入れ可能な位置に配置された際に前記流路を閉塞 する。  The transfer chamber is a transfer chamber movably disposed between a position at which the substrate can be taken in and out of the space and a position at which the substrate can be taken in and out of the space. The flow path is closed when it is placed at a position where it can be taken in and out from the outside of the accommodation room and when it is placed at a position where it can be taken out and in from the inside of the accommodation room.
9 . 請求項 8の露光装置であって、 9. The exposure apparatus according to claim 8, wherein
前記移動室は、 前記収容室の内外に回転移動可能な回転室であり、  The moving chamber is a rotating chamber that is rotatable inside and outside the storage chamber,
該回転室は、 前記収容室内に配置された際に前記基板を前記収容室内側から出 し入れ可能になるとともに前記収容室外に配置された際に前記基板を前記収容室 外側から出し入れ可能になる。 The rotating chamber enables the substrate to be moved in and out of the housing chamber when placed in the housing chamber, and also allows the substrate to be moved in and out of the housing chamber when positioned outside the housing chamber. .
1 0 . 請求項 7の露光装置であって、 10. The exposure apparatus according to claim 7, wherein
前記壁部は、 前記収容室の外側から前記基板を出し入れ可能な外側開閉扉及び 前記収容室内側から前記基板を出し入れ可能な内側開閉扉である。  The wall portion includes an outside door that allows the substrate to be taken in and out from the outside of the accommodation room and an inside door that allows the substrate to be taken in and out from the inside of the accommodation room.
1 1 . 請求項 1又は 7の露光装置であって、 11. The exposure apparatus according to claim 1 or 7, wherein
前記収容室内の圧力は、 その外部より高い圧力に設定、 又は略同じ圧力に設定 される。  The pressure in the accommodation chamber is set to a higher pressure than the outside thereof, or set to substantially the same pressure.
1 2 . 請求項 1または 7の露光装置であって、 1 2. The exposure apparatus according to claim 1 or 7, wherein
前記収容室は、'前記マスクを載置するマスクステージを収納する収容室又は前 記基板ステージを収納する収容室の少なくとも一方であり、  The accommodating chamber is at least one of an accommodating chamber for accommodating a mask stage on which the mask is mounted or an accommodating chamber for accommodating the substrate stage.
前記基板は、 前記マスク又は前記ウェハの少なくとも一方である。  The substrate is at least one of the mask or the wafer.
1 3 . 基板を搬送する基板搬送装置であって、 1 3. A board transfer device for transferring a board,
前記基板を収容室に搬送路を介して搬入又は前記収容窒から前記搬送路を介し て搬出する搬送機構と、  A transfer mechanism for loading the substrate into the storage chamber via a transfer path or discharging the substrate from the storage chamber through the transfer path;
前記収容室に対する前記搬送路からの気体の流入を抑制するためのガス流れを 形成するガス流入抑制機構とを有する。  A gas flow suppressing mechanism for forming a gas flow for suppressing the flow of gas from the transfer path into the storage chamber.
1 4 . 請求項 1 3の基板搬送装置であって、 14. The substrate transfer apparatus according to claim 13, wherein
前記搬送路の途中、 又は前記搬送路と前記収容室との間に設けられ、 前記搬送 路内に前記ガスを供給するガス供給口と、  A gas supply port provided in the middle of the transport path, or between the transport path and the storage chamber, for supplying the gas into the transport path;
前記搬送路内のガスを吸引するガス吸引口とを有し、  Having a gas suction port for sucking gas in the transport path,
前記ガス供給口は、 前記収容室と前記ガス吸引口との間に配置される。  The gas supply port is disposed between the storage chamber and the gas suction port.
1 5 . 請求項 1 4の基板搬送装置であって、 15. The substrate transfer apparatus according to claim 14, wherein
前記ガス供給口は、 前記ガスの流入方向が前記収容室から離れる方向に向くよ うに、 前記搬送路に設けられ、  The gas supply port is provided in the transport path so that the gas inflow direction is directed in a direction away from the storage chamber,
前記ガス排気口は、 前記ガスの吸引方向が前記収容室側に向くように、 前記搬 送路に設けられる。 The gas exhaust port is configured such that the suction direction of the gas is directed toward the storage chamber, It is provided on the transmission route.
1 6 . 基板の搬送方法であって、 1 6. A method of transporting a substrate,
前記基板が収容される収容室と、 前記基板を搬送する搬送路との間に、 前記収 容室に対する前記搬送路からの気体の流入を抑制するためのガスの流れを形成し、 前記形成されたガスの流れの中を、 搬送機構を介して前記基板を搬送する。  Forming a gas flow between the accommodation chamber in which the substrate is accommodated, and a transport path for transporting the substrate, for suppressing inflow of gas from the transport path into the storage chamber; The substrate is transported in the flow of the gas through a transport mechanism.
1 7. 請求項 1 6の搬送方法であって、 1 7. The transport method according to claim 16, wherein
前記搬送路の途中、 又は前記搬送路と前記収容室との間から、 前記搬送路内に 前記ガスを供給すると共に、 前記搬送炉内のガスを吸引する。  The gas is supplied into the transport path from the middle of the transport path or between the transport path and the storage chamber, and the gas in the transport furnace is sucked.
1 8. マスクのパターンを基板に転写する転写工程を経て製造されるマイクロデ パイスであって、 1 8. A micro device manufactured through a transfer process of transferring a mask pattern to a substrate,
請求項 1または 7の露光装置により前記転写工程が施されたマイクロデバイス。  A microdevice to which the transfer step has been performed by the exposure apparatus according to claim 1.
1 9 . マスクのパターンを基板に転写する転写工程を経て製造されるマイクロデ パイスの製造方法であって、 1 9. A method of manufacturing a micro device manufactured through a transfer step of transferring a pattern of a mask onto a substrate,
請求項 1または 7の露光装置により前記転写工程を行うマイクロデバイスの製 造方法。  A method for manufacturing a micro device, wherein the transfer step is performed by the exposure apparatus according to claim 1 or 7.
PCT/JP2001/002634 2000-03-29 2001-03-29 Aligner, apparatus and method for transferring wafer, microdevice and method for manufacturing the same WO2001073825A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU44620/01A AU4462001A (en) 2000-03-29 2001-03-29 Aligner, apparatus and method for transferring wafer, microdevice and method formanufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-92307 2000-03-29
JP2000092307 2000-03-29

Publications (1)

Publication Number Publication Date
WO2001073825A1 true WO2001073825A1 (en) 2001-10-04

Family

ID=18607659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002634 WO2001073825A1 (en) 2000-03-29 2001-03-29 Aligner, apparatus and method for transferring wafer, microdevice and method for manufacturing the same

Country Status (2)

Country Link
AU (1) AU4462001A (en)
WO (1) WO2001073825A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1341045A1 (en) * 2002-03-01 2003-09-03 ASML Netherlands B.V. Method of transferring a mask or substrate
US6753945B2 (en) 2002-03-01 2004-06-22 Asml Netherlands B.V. Transfer method for a mask or substrate, storage box, apparatus adapted for use in such method, and device manufacturing method including such a transfer method
WO2006069755A2 (en) * 2004-12-23 2006-07-06 Carl Zeiss Smt Ag Lens module comprising at least one replaceable optical element
EP1813989A1 (en) * 2006-01-30 2007-08-01 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318626A (en) * 1993-05-07 1994-11-15 Nec Yamaguchi Ltd Semiconductor manufacturing apparatus
JPH0794570A (en) * 1993-09-20 1995-04-07 Hitachi Ltd Semiconductor production system, substrate carrying method and semiconductor device
JPH10106939A (en) * 1996-10-01 1998-04-24 Canon Inc Exposing system and substrate carrying method
JPH10154655A (en) * 1996-11-25 1998-06-09 Canon Sales Co Inc Aligner with hermetic structure
JPH11145245A (en) * 1997-11-13 1999-05-28 Dainippon Screen Mfg Co Ltd Wafer processor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06318626A (en) * 1993-05-07 1994-11-15 Nec Yamaguchi Ltd Semiconductor manufacturing apparatus
JPH0794570A (en) * 1993-09-20 1995-04-07 Hitachi Ltd Semiconductor production system, substrate carrying method and semiconductor device
JPH10106939A (en) * 1996-10-01 1998-04-24 Canon Inc Exposing system and substrate carrying method
JPH10154655A (en) * 1996-11-25 1998-06-09 Canon Sales Co Inc Aligner with hermetic structure
JPH11145245A (en) * 1997-11-13 1999-05-28 Dainippon Screen Mfg Co Ltd Wafer processor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1341045A1 (en) * 2002-03-01 2003-09-03 ASML Netherlands B.V. Method of transferring a mask or substrate
US6753945B2 (en) 2002-03-01 2004-06-22 Asml Netherlands B.V. Transfer method for a mask or substrate, storage box, apparatus adapted for use in such method, and device manufacturing method including such a transfer method
KR101252312B1 (en) 2004-12-23 2013-04-08 칼 짜이스 에스엠테 게엠베하 Lens module comprising at least one replaceable optical element
WO2006069755A3 (en) * 2004-12-23 2006-10-05 Zeiss Carl Smt Ag Lens module comprising at least one replaceable optical element
JP2008526004A (en) * 2004-12-23 2008-07-17 カール・ツァイス・エスエムティー・アーゲー Lens module comprising at least one replaceable optical element
US8092029B2 (en) 2004-12-23 2012-01-10 Carl Zeiss Smt Gmbh Lens module comprising at least one exchangeable optical element
US8376559B2 (en) 2004-12-23 2013-02-19 Carl Zeiss Smt Gmbh Lens module comprising at least one exchangeable optical element
WO2006069755A2 (en) * 2004-12-23 2006-07-06 Carl Zeiss Smt Ag Lens module comprising at least one replaceable optical element
US8939587B2 (en) 2004-12-23 2015-01-27 Carl Zeiss Smt Gmbh Lens module comprising at least one exchangeable optical element
US9423695B2 (en) 2004-12-23 2016-08-23 Carl Zeiss Smt Gmbh Lens module comprising at least one exchangeable optical element
US9703098B2 (en) 2004-12-23 2017-07-11 Carl Zeiss Smt Gmbh Lens module comprising at least one exchangeable optical element
EP1813989A1 (en) * 2006-01-30 2007-08-01 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US7724351B2 (en) 2006-01-30 2010-05-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and exchangeable optical element
US10620543B2 (en) 2006-01-30 2020-04-14 Carl Zeiss Smt Gmbh Method and device for the correction of imaging defects
US11003088B2 (en) 2006-01-30 2021-05-11 Carl Zeiss Smt Gmbh Method and device for the correction of imaging defects

Also Published As

Publication number Publication date
AU4462001A (en) 2001-10-08

Similar Documents

Publication Publication Date Title
US6842221B1 (en) Exposure apparatus and exposure method, and device manufacturing method
KR20010095087A (en) Exposure apparatus, exposure method, and method of manufacturing device
US6571057B2 (en) Optical instrument, gas replacement method and cleaning method of optical instrument, exposure apparatus, exposure method and manufacturing method for devices
US6791661B2 (en) Gas replacement method and apparatus, and exposure method and apparatus
US6833903B2 (en) Inert gas purge method and apparatus, exposure apparatus, reticle stocker, reticle inspection apparatus, reticle transfer box, and device manufacturing method
WO2002021583A9 (en) Aligner and method of manufacturing a device
WO2005036622A1 (en) Substrate carrying apparatus, exposure apparatus, and method for producing device
WO1999050892A1 (en) Optical device and exposure system equipped with optical device
US20030047692A1 (en) Measuring method and measuring apparatus, exposure method and exposure apparatus
JP4027085B2 (en) Device manufacturing related apparatus and device manufacturing method
WO2003079419A1 (en) Mask storage device, exposure device, and device manufacturing method
JP2005064210A (en) Method for exposure, and method of manufacturing electronic device and exposure device utilizing the method
JP2008066635A (en) Apparatus for purging inside of container with purge gas
US6885431B2 (en) Exposure apparatus and method of manufacturing a semiconductor device using the same
JPWO2002041375A1 (en) Transport method and apparatus, exposure method and apparatus, and device manufacturing method
WO2001073825A1 (en) Aligner, apparatus and method for transferring wafer, microdevice and method for manufacturing the same
JPWO2005038887A1 (en) Environment control apparatus, device manufacturing apparatus, device manufacturing method, exposure apparatus
JP2008041822A (en) Exposure apparatus, device manufacturing method, and environment control unit
JP2004258113A (en) Mask protecting device, mask, gas replacing apparatus, exposure apparatus, method for replacing gas, and exposure method
JP2004354656A (en) Optical cleaning apparatus, optical cleaning method, exposure apparatus, exposure method and method for manufacturing device
JP2003209042A (en) Apparatus related to manufacturing of device and manufacturing method of reticle and device
JP2001345264A (en) Aligner, exposure method, and method of manufacturing device
WO2002093626A1 (en) Aligning method and aligner, and method and system for conveying substrate
KR20080101751A (en) Exposure apparatus
JP2004259756A (en) Gas substituting apparatus, exposure unit and method for manufacturing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 571456

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase