WO2001072940A1 - Traitement de blanchisserie pour tissus - Google Patents

Traitement de blanchisserie pour tissus Download PDF

Info

Publication number
WO2001072940A1
WO2001072940A1 PCT/GB2001/001134 GB0101134W WO0172940A1 WO 2001072940 A1 WO2001072940 A1 WO 2001072940A1 GB 0101134 W GB0101134 W GB 0101134W WO 0172940 A1 WO0172940 A1 WO 0172940A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
composition
composition according
backbone
groups
Prior art date
Application number
PCT/GB2001/001134
Other languages
English (en)
Inventor
Andrew Hopkinson
Original Assignee
Unilever Plc
Unilever Nv
Hindustan Lever Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Plc, Unilever Nv, Hindustan Lever Limited filed Critical Unilever Plc
Priority to CA002403455A priority Critical patent/CA2403455A1/fr
Priority to AU2001240845A priority patent/AU2001240845A1/en
Priority to BR0109566-8A priority patent/BR0109566A/pt
Priority to EP01911923A priority patent/EP1268726A1/fr
Publication of WO2001072940A1 publication Critical patent/WO2001072940A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin

Definitions

  • the present invention relates to laundry treatment compositions for laundry cleaning or treatment products, comprising an ingredient for deposition onto fabric during a washing, rinsing or other treatment process.
  • WO-A-99/14245 discloses laundry detergent compositions containing cellulosic based polymers to provide appearance and integrity benefits to fabrics.
  • These polymers are cellulosic polymers in which the saccharide rings have pendant oxygen atoms to which substituents R' are bonded, i.e. they are attached to the rings via an ether linkage.
  • the groups ⁇ R' can be hydrogen, lower alkyl or alkylene linkages terminated by carboxylic acid, ester or amide groups.
  • up to five alkyleneoxy groups may be interspersed between the groups are the respective oxygen atom. At least some of these groups may undergo a chemical change such as hydrolysis, in the wash liquor. However no such change would result in an increased affinity for the fabric.
  • esters of carboxyalkyl groups are configured with the carbonyl group closer to the polysaccharide than the oxygen atom (i.e. esters of carboxyalkyl groups) , any hydrolysis will result in free acid substituents which will actually result in an increase in solubility and therefore, a decrease in affinity for the fabric.
  • WO-A-99/14295 discloses structures analogous to those described in WO-A-99/14245 but in one alternative, the substituents ⁇ R' together with the oxygen on the saccharide ring, constitute pendant half-esters of certain dicarboxylic acids.
  • the dicarboxylic acid half-esters would tend to hydrolyse in the wash liquor and thereby increase affinity of the material for a cotton fabric.
  • this mechanism of action or behaviour is not mentioned.
  • the hydrolysis rate of such dicarboxylic acids half esters is not as great as that of esters of monocarboxylic acids (which are not disclosed or claimed in WO-A-99/14295) .
  • the degree of substitution for this variant is specified as being from 0.001 to 0.1. This is so ' low as to. make the enhancement of fabric affinity too low to be worthwhile for this mechanism of action.
  • the structures described and claimed insofar as they have such half ester substituents must also have substituents of the type which are carboxyalkyl groups or esters thereof, i.e. of the type also described in .WO-A-99/14245. In the latter (ester) case, these would hydrolyse to the free acid form.
  • the degree of substitution of the latter (0.2 to 2) is considerably higher than for the half-ester groups and the resultant increase in solubility would easily negate any enhanced affinity for the fabric by hydrolysis of the half- ester groups .
  • compositions comprising a water soluble or water dispersible rebuild agent for deposition onto fabric during a treatment process, wherein the rebuild agent undergoes during the treatment process, a chemical change by which the affinity of the rebuild agent for the fabric is increased.
  • the chemical change occurs in groups covalently bonded to be pendant to the polymeric backbone of the rebuild agent via an ester linkage, the ester-linked groups being selected from monocarboxylic acid esters.
  • the backbone comprises cellulose units or other ⁇ -1,4 linked polysaccharide units, the average degree of substitution of the total of all groups pendant on the saccharide rings of the backbone being from 0.3 to 3.0.
  • a preferred fabric rebuild agent is "cellulose monoacetate" which is used to denote acetates with a degree of substitution of 1 or less.
  • Detergent compositions containing the rebuild agents are stated to give pH of the wash liquor from 7 to 10.5 for a main wash detergent.
  • Many of the examples of the disclosure employ cellulose monoacetate with a degree of substitution of acetate groups of 0.48 or 0.50.
  • cellulose monoacetate of a given narrow range of degree of substitution and molecular weight when used in a detergent composition which gives a wash liquor of pH in the range 9.5 to 11.0 more preferably 10 to 11 gives particularly improved deposition.
  • a laundry treatment composition comprising a water-soluble or water-dispersible rebuild agent for deposition onto a fabric during a treatment process wherein the rebuild agent undergoes during the treatment process, a chemical change by which change the affinity of the rebuild agent for the fabric is increased, said chemical change occurring in or to acetate groups covalently bonded to be pendant on a polymeric bakcbone of the rebuild agent and which backbone comprises cellulose units or other ⁇ -1,4 linked polysaccharide units, the average degree of substitution of the acetate groups pendant on the saccharide rings of the backbone being from 0.55 to 0.70, the weight average molecular weight of the rebuild agent being in the range 12,000 to 20,000, the pH of an aqueous solution of the laundry treatment composition at 20 °C at a concentration of lg of composition per litre of water being in the range 9.5 to 11.0, provided that the laundry treatment composition does not comprise cellulose acetate of average molecular weight 10,000, which comprises acetate groups covalently bonded to the cellulose backbone, with
  • average degree of* substitution refers to the number of substituted pendant groups per saccharide ring, averaged over all saccharide rings of the rebuild agent. Each saccharide ring prior to substitution has three -OH groups and therefore, an average degree of substitution of 3 means that each of these groups on all molecules of the sample, bears a substituent.
  • the present invention provides a method of rebuilding a fabric to replace fibre loss due to washing, the process comprising treating the fabric with a composition according to the present invention.
  • rebuild agents exert their effect. Whether or not they can repair thinned or damaged fibres is not known. However, they are capable of replacing lost fibre weight with deposited and/or bonded material, usually of cellulosic type. This can provide one or more advantages such as repair or rebuilding of the fabric, strengthening of the textile or giving it enhanced body* or smoothness, reducing its transparency, reducing fading of colours, improving the appearance of the fabric or of individual fibres, improved comfort during garment wear, dye transfer inhibition, increased stiffness, anti-wrinkle, effect and ease of ironing.
  • Cellulose is substantially insoluble in water. Attachment of the acetate groups causes disruption of the hydrogen bonding between rings of the cellulose chain, thus increasing water solubility or dispersibility. In the treatment liquor, it is believed that the ester groups are hydrolysed, causing the affinity for the fabric to increase and the polymer to be deposited on the fabric. Detailed Description of the Invention.
  • the weight average molecular weight (M w ) ' of the rebuild agent (as determined by GPC) is in the range 12,000 to 20,000, preferably 15,000 to 20,000.
  • water-soluble as used herein, what is meant is that the material forms an isotropic solution on addition to water or another aqueous solution.
  • water-dispersible as used herein, what is meant is that the material forms a finely divided suspension on addition to water or another aqueous solution.
  • water-dispersible means that the material, in water at pH 7 and at 25°C, produces a solution or a dispersion having long-term stability.
  • an increase in the affinity of the material for the fabric upon a chemical change is that at some time during the treatment process, the amount of material that has been deposited' is greater when the chemical change is occurring or has occurred, compared to when the chemical change has not occurred and is not occurring, or is occurring more slowly, the comparison being made with all conditions being equal except for that change in the conditions which is necessary to affect the rate of chemical change.
  • Deposition includes adsorption, cocrystallisation, entrapment and/or adhesion.
  • the polysaccharide may be straight or branched. Many naturally occurring polysaccharides have at least some degree of branching, or at any rate, at least some saccharide rings are in the form of pendant side groups (and therefore are not in themselves counted in the degree of substitution) on a main polysaccharide backbone.
  • a polysaccharide comprises a plurality of saccharide rings which have pendant hydroxyl groups.
  • the pendant groups can be bonded chemically or by other bonding mechanism, to these hydroxyl groups by any means described hereinbelow.
  • the "average degree of substitution” means the average number of pendant groups per saccharide ring for the totality of polysaccharide molecules in the sample and is determined for all saccharide rings whether they form part of a linear backbone or are themselves, pendant side groups in the polysaccharide .
  • polymeric backbones suitable as according to the present invention include those described in Hydrocolloid Applications, A. Nussinswitch, Blackie 1997.
  • the chemical change which causes the increased fabric affinity will usually be hydrolysis.
  • it is preferably lysis, for example hydrolysis or, perhydrolysis or else it is preferably bond- cleavage, optionally catalysed by an enzyme or another catalyst.
  • Hydrolysis of ester-linked groups is most typical.
  • this change is not merely protonation or deprotonation, i.e. a pH induced effect.
  • the chemical change occurs in or to a group covalently bonded to a polymeric backbone, especially, the loss of one or more such groups.
  • These group (s) is/are pendant on the backbone.
  • these are ester-linked groups based on monocarboxylic acids ,
  • Preferred for use in the invention are cellulosic polymers of formula (I) : -
  • polymerisation of suitable monomers for example, enzymatic polymerisation of saccharides, e.g. per S. Shoda, & S. Kobayashi, Makromol. Symp. 1995, 99, 179-184 or oligosaccharide synthesis by orthogonal glycosylation e.g. per H. Paulsen, Angew. Che . Int. Ed. Engl . 1995, 34, 1432- 1434. ;
  • a polymeric backbone (either naturally occurring, especially polysaccharides, especially beta-1,4- linked polysaccharides, especially cellulose, mannan, glucomannan, galactomannan, xyloglucan; or synthetic polymers) up to the required degree of substitution with acetate groups using a reagent (especially acetic acid halide, acetic anhydride or acetic acid) in a solvent which either dissolves the backbone, swells the backbone, or does not swell the backbone but dissolves or swells the product;
  • a reagent especially acetic acid halide, acetic anhydride or acetic acid
  • the degree and pattern of substitution from routes (1) or (2) may be subsequently altered by partial removal of functional groups by hydrolysis or solvolysis or other cleavage. Relative amounts of reactants and reaction times can also be used to control the degree of substitution.
  • the degree of polymerisation of the backbone may be reduced before, during, or after the derivatisation with functional groups.
  • the degree of polymerisation of the backbone may be increased by further polymerisation or by cross linking agents before, during, or after the derivatisation step.
  • the rebuild agent may be incorporated into compositions containing only a diluent and/or also comprising another active ingredient.
  • the compound is typically included in said compositions at levels of from 0.005% to 25% by weight, preferably 0.01% to 10%, most preferably 0.025% to 2.5%.
  • the active ingredient in the compositions is preferably a surface active agent or a fabric conditioning agent. More than one active ingredient may be included. For some applications a mixture of active ingredients may be used.
  • compositions of the invention may be in any physical form e.g. a solid such as a powder or granules, a tablet, a solid bar, a paste, gel or (especially aqueous) liquid.
  • the compositions may be used in laundry compositions, especially in liquid or powder laundry composition, for example for use in a wash and/or rinse and/or drying process.
  • Fabric conditioning compositions may be in the form of a tumble dryer article, for example a sheet of absorbent material on which the composition used in the present invention is absorbed, for use in a tumble drying process.
  • compositions of the present 'invention are preferably laundry compositions, especially main wash (fabric washing) compositions or rinse-added softening compositions.
  • the main wash compositions may include a fabric softening agent and rinse-added fabric softening compositions may include surface-active compounds, particularly non-ionic surface- active compounds, if appropriate.
  • the detergent compositions of the invention may contain a surface-active compound (surfactant) which may be chosen from soap and non-soap anionic, cationic, non-ionic, amphoteric and zwitterionic surface-active compounds and mixtures thereof.
  • surfactant may be chosen from soap and non-soap anionic, cationic, non-ionic, amphoteric and zwitterionic surface-active compounds and mixtures thereof.
  • surface-active compound surfactant
  • surfactant may be chosen from soap and non-soap anionic, cationic, non-ionic, amphoteric and zwitterionic surface-active compounds and mixtures thereof.
  • the preferred detergent-active compounds that can be used are soaps and synthetic non-soap anionic and non-ionic compounds .
  • compositions of the invention may contain linear alkylbenzene sulphonate, particularly linear alkylbenzene sulphonates having an alkyl chain length of C 8 -C ⁇ 5 . It is preferred if the level of linear alkylbenzene sulphonate is from 0 wt% to 30 wt%, more preferably 1 wt% to 25 wt%, most preferably from 2 wt% to 15 wt%.
  • compositions of the invention may contain other anionic surfactants in amounts additional to the percentages quoted above.
  • Suitable anionic surfactants are well-known to those skilled in the art. Examples include primary and secondary alkyl sulphates, particularly Cs-Cis primary alkyl sulphates; alkyl ether sulphates; olefin sulphonates; alkyl xylene sulphonates; dialkyl sulphosuccinates; and fatty acid ester sulphonates.
  • Sodium salts are generally preferred.
  • compositions of the invention may contain non-ionic surfactant.
  • Nonionic surfactants that may be used include the primary and secondary alcohol ethoxylates, especially the C 8 -C 2 o aliphatic alcohols ethoxylated with an average of from 1 to 20 moles of ethylene oxide per mole of alcohol, and more especially the C 1 0-C 1 5 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol.
  • Non-ethoxylated nonionic surfactants include alkylpolyglycosides, glycerol monoethers, and polyhydroxyamides (glucamide) .
  • the level of total non-ionic surfactant is from 0 wt% to 30 wt%, preferably from 1 wt% to 25 wt% ' , most preferably from 2 wt% to 15 wt%.
  • Cationic surfactants that may be used include quaternary ammonium salts of the general formula R ⁇ R 2 R3RN + X ⁇ wherein the R groups are long or short hydrocarbon chains, typically alkyl, hydroxyalkyl or ethoxylated alkyl groups, and X is a counter-ion (for example, compounds in which R x is a Cs-C 2 2 alkyl group, preferably a C 8 -C ⁇ 0 or C ⁇ 2 -C ⁇ 4 alkyl group, R 2 is a methyl group, and R 3 and R, which may be the same or different, are methyl or hydroxyethyl groups) ; and cationic esters (for example, choline esters) .
  • R x is a Cs-C 2 2 alkyl group, preferably a C 8 -C ⁇ 0 or C ⁇ 2 -C ⁇ 4 alkyl group
  • R 2 is a methyl group
  • R 3 and R which may be the same or different,
  • surfactant surface-active compound
  • amount present will depend on the intended use of the detergent composition.
  • surfactant systems may be chosen, as is well known to the skilled formulator, for handwashing products and for products intended for use in different types of washing machine.
  • the total amount of surfactant present will also depend on the intended end use and may be as high as 60 wt%, for example, in a composition for washing fabrics by hand. In compositions for machine washing of fabrics, an amount of from 5 to 40 wt% is generally appropriate. Typically the compositions will comprise at least 2 wt% surfactant e.g. 2- 60%, preferably 15-40% most preferably 25-35%.
  • Detergent compositions suitable for use in most automatic fabric washing machines generally contain anionic non-soap surfactant, or non-ionic surfactant, or combinations of the two in any suitable ratio, optionally together with soap.
  • any conventional fabric conditioning agent may be used in the compositions of the present invention.
  • the conditioning agents may be cationic or non-ionic. If the fabric conditioning compound is to be employed in a main wash detergent composition the compound will typically be non-ionic. If used in the rinse phase, they will typically be cationic. They may for example be used in amounts from 0.5% to 35%, preferably from 1% to 30% more preferably from 3% to 25% by weight of the composition.
  • the fabric conditioning agent has two long chain alkyl or alkenyl chains each having an average chain length greater than or equal to C ⁇ 6 . Most preferably at least 50% of the long chain alkyl or alkenyl groups have a chain length of Cie or above.
  • the long chain alkyl or alkenyl groups of the fabric conditioning agents are predominantly linear.
  • the fabric conditioning agents are preferably compounds that provide excellent softening, and are characterised by a chain melting L ⁇ to L ⁇ transition temperature greater than 25°C, preferably greater than 35°C, most preferably .greater than 45°C.
  • This L ⁇ to L ⁇ transition can be measured by DSC as defined in " Handbook of Lipid Bilayers, D Marsh, CRC Press, Boca Raton, Florida, 1990 (pages 137 and 337) .
  • Substantially insoluble fabric conditioning compounds in the context of this invention are defined as fabric conditioning compounds having a solubility less than 1 x 10 ⁇ 3 wt % in deminerailised water at 20°C.
  • the fabric softening compounds have a solubility less than 1 x 10 "4 wt %, most preferably less than 1 x 10 -8 to 1 x 10 "6 .
  • Preferred cationic fabric softening agents comprise a substantially water insoluble quaternary ammonium material comprising a single alkyl or alkenyl long chain having an average chain length greater than or equal to C 2 o or, more preferably, a compound comprising a polar head group and two alkyl or alkenyl chains having an average chain length greater than or equal to C 14 .
  • the cationic fabric softening agent is a quaternary ammonium material or a quaternary ammonium material containing at least one ester group.
  • the quaternary ammonium compounds containing at least one ester group are referred to herein as ester-linked quaternary ammonium compounds .
  • ester group' includes an ester group which is a linking group in the molecule.
  • ester-linked quaternary ammonium compounds it is preferred for the ester-linked quaternary ammonium compounds to contain two or more ester groups.
  • ester group (s) is a linking group between the nitrogen atom and an alkyl group.
  • the ester groups (s) are preferably attached to the nitrogen atom via another hydrocarbyl group.
  • quaternary ammonium compounds containing at least one ester group, preferably two, wherein at least one higher molecular weight group containing at least one ester group and two or three lower molecular weight groups are linked to a common nitrogen atom to produce, a cation and wherein the electrically balancing anion is a halide, acetate or lower alkosulphate ion, such as chloride or methosulphate .
  • the higher molecular weight substituent on the nitrogen is preferably a higher alkyl group, containing 12 to 28, preferably 12 to 22, e.g.
  • the lower molecular weight substituents are preferably lower alkyl of 1 to 4 carbon atoms, such as methyl or ethyl, or substituted lower alkyl.
  • One or more of the said lower molecular weight substituents may include an aryl moiety or may be replaced by an aryl, such as benzyl, phenyl or other suitable substituents.
  • the quaternary ammonium material is a compound having two Ci 2 -C 22 alkyl or alkenyl groups connected to a quaternary ammonium head group via at least one ester link, preferably two ester links or a compound comprising a single long chain with an average chain length equal to or greater than C 20 ⁇
  • the quaternary ammonium material comprises a compound having two long chain alkyl or alkenyl chains with an average chain length equal to or greater than C i . Even more preferably each chain has an average chain length equal to or greater than C ⁇ 6 . Most preferably at least 50% of each long chain alkyl or alkenyl group has a chain length of Ci 8 . It is preferred if the long chain alkyl or alkenyl groups are predominantly linear.
  • the most preferred type of ester-linked quaternary ammonium material that can be used in compositions according to the invention is represented by the formula (A) :
  • R 1 , n, R 2 and X are as defined above.
  • Preferred materials of this class such as 1,2 bis [hardened tallowoyloxy] -3-trimethylammonium propane chloride and their method of preparation are, for example, described in US-A-4 137 180.
  • these materials comprise small amounts of the corresponding monoester as described in US-A-4 137 180 for example 1-hardened tallow-oyloxy-2-hydroxy-3- trimethylam onium propane chloride.
  • Another class of preferred ester-linked quaternary ammonium materials for use in compositions according to the invention can be represented by the formula: R x
  • each R 1 group is independently selected from C ⁇ _ 4 alkyl, hydroxyalkyl or C 2 - 4 alkenyl groups; and wherein each R 2 group is independently selected from Ce- 2 8 alkyl or alkenyl groups;
  • X ⁇ is any suitable counter-ion, i.e. a halide, acetate or lower alkosulphate ion, such as chloride or methosulphate .
  • T is -O-C- or -C-0-; and n is an integer from 1-5 or is 0
  • each R 1 group is methyl and each n is 2.
  • Di- (tallowyloxyethyl) - dimethyl ammonium chloride available from Hoechst, is the most preferred.
  • Di- (hardened tallowyloxyethyl) dimethyl ammonium chloride, ex Hoechst and di- (tallowyloxyethyl) - methyl hydroxyethyl methosulphate are also preferred.
  • Another preferred class of quaternary ammonium cationic fabric softening agent is defined by formula (C) :- R 1
  • R 1 , R 2 and X are as hereinbefore defined.
  • a ' preferred material of formula (C) is di-hardened tallow- diethyl ammonium chloride, sold under the Trademark Arquad 2HT.
  • the optionally ester-linked quaternary ammonium material may contain optional additional components, as known in the art, in particular, low molecular weight solvents, for instance isopropanol and/or ethanol, and co-actives such as nonionic softeners, for example fatty acid or sorbitan esters.
  • low molecular weight solvents for instance isopropanol and/or ethanol
  • co-actives such as nonionic softeners, for example fatty acid or sorbitan esters.
  • compositions of the invention when used as main .wash fabric washing compositions, will generally also contain one or more detergency builders.
  • the total amount. of detergency builder in the compositions will typically range from 5 to 80 wt%, preferably from 10 to 60 wt% .
  • Inorganic builders that may be present include sodium carbonate, if desired in combination with a crystallisation seed for calcium carbonate, as disclosed in GB 1 437 950 (Unilever) ; crystalline and amorphous aluminosilicates, for example, zeolites as disclosed in GB 1 473 201 (Henkel) , amorphous aluminosilicates as disclosed in GB 1 473 202 (Henkel) and mixed crystalline/amorphous aluminosilicates as disclosed in GB 1 470 250 (Procter & Gamble) ; and layered silicates as disclosed in EP 164 514B (Hoechst) .
  • Inorganic phosphate builders for example, sodium orthophosphate, pyrophosphate and tripolyphosphate are also suitable for use with this invention.
  • compositions of the invention preferably contain an alkali metal, preferably sodium, aluminosilicate builder.
  • Sodium aluminosilicates may generally be incorporated in amounts of from 10 to 70% by weight (anhydrous basis) , preferably from 25 to 50 wt%.
  • the alkali metal aluminosilicate may be either crystalline or amorphous or mixtures thereof, having the general formula: 0.8-1.5 Na 2 0. A1 2 0 3 . 0.8-6 Si0 2
  • the preferred sodium aluminosilicates contain 1.5-3.5 Si0 2 units (in the formula above)*. Both the amorphous and the crystalline materials can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. Suitable crystalline sodium aluminosilicate ion-exchange detergency builders are described, for example, in GB 1 429 143 (Procter & Gamble) .
  • the preferred sodium aluminosilicates of this type are the well-known commercially available zeolites A and X, and mixtures thereof.
  • the zeolite may be the commercially available zeolite 4A now widely used in laundry detergent powders.
  • the zeolite builder incorporated in the compositions of the invention is maximum aluminium zeolite P (zeolite MAP) as described and claimed in EP 384 070A (Unilever) .
  • Zeolite MAP is defined as an alkali metal aluminosilicate of the zeolite P type having a silicon to aluminium ratio not exceeding 1.33, preferably within the range of from 0.90 to 1.33, and more preferably within the range of from 0.90 to 1.20.
  • zeolite MAP having a silicon to aluminium ratio not exceeding 1.07, more preferably about 1.00.
  • the calcium binding capacity of zeolite MAP is generally at least 150 mg CaO per g of anhydrous material.
  • Organic builders that may be present include polycarboxylate polymers such as polyacrylates, acrylic/maleic copolymers, and acrylic phosphinates; monomeric polycarboxylates such as citrates, gluconates, oxydisuccinates, glycerol mono-, di and trisuccinates, carboxymethyloxy succinates, carboxymethyloxymalonates, dipicolinates, hydroxyethyliminodiacetates, alkyl- and alkenylmalonates and succinates; and sulphonated fatty acid salts. This list is not intended to be exhaustive.
  • polycarboxylate polymers such as polyacrylates, acrylic/maleic copolymers, and acrylic phosphinates
  • monomeric polycarboxylates such as citrates, gluconates, oxydisuccinates, glycerol mono-, di and trisuccinates, carboxymethyloxy succinates, carboxymethyloxymalonates, dipicolinates, hydroxyethy
  • organic builders are citrates, suitably used in amounts of from 5 to 30 wt%, preferably from 10 to 25 wt%; and acrylic polymers, more especially acrylic/maleic copolymers, suitably used in amounts of from 0.5 to 15 wt%, preferably from 1 to 10 wt%.
  • Builders both inorganic and organic, are preferably present in alkali metal salt, especially sodium salt, form.
  • compositions according to the invention may also suitably contain a bleach system.
  • Fabric washing compositions may desirably contain peroxy bleach compounds, for example, inorganic persalts or organic peroxyacids, capable of yielding hydrogen peroxide in aqueous solution.
  • Suitable peroxy bleach ⁇ compounds include organic peroxides such as urea peroxide, and inorganic persalts such as the alkali metal perborates, percarbonates, perphosphates, persilicates and persulphates .
  • organic peroxides such as urea peroxide
  • inorganic persalts such as the alkali metal perborates, percarbonates, perphosphates, persilicates and persulphates .
  • Preferred inorganic persalts are sodium perborate monohydrate and tetrahydrate, and sodium percarbonate .
  • sodium percarbonate having a protective coating against destabilisation by moisture Especially preferred is sodium percarbonate having a protective coating against destabilisation by moisture.
  • Sodium percarbonate having a protective coating comprising sodium etaborate and sodium silicate is disclosed in GB 2 123 044B (Kao) .
  • the peroxy bleach compound is suitably present in an amount of from 0.1 to 35 wt%, preferably from 0.5 to 25 wt%.
  • the peroxy bleach compound may be used in conjunction with a bleach activator (bleach precursor) to improve .bleaching action at low wash temperatures.
  • the bleach precursor is suitably present in an amount of from 0.1 to 8 wt%, preferably from 0.5 to 5 wt%.
  • Preferred bleach precursors are peroxycarboxylic acid precursors, more especially peracetic acid precursors and pernoanoic acid precursors.
  • Especially preferred bleach precursors suitable for use in the present invention are N,N,N' ,N' , -tetracetyl ethylenediamine (TAED) and sodium noanoyloxybenzene sulphonate (SNOBS) .
  • TAED N,N,N' ,N' , -tetracetyl ethylenediamine
  • SNOBS sodium noanoyloxybenzene sulphonate
  • the novel quaternary ammonium and phosphonium bleach precursors disclosed in US 4 751 015 and US 4 818 426 (Lever Brothers Company) and EP 402 971A (Unilever) , and the cationic bleach precursors disclosed in EP 284 292A and EP 303 520A (Kao) are also of interest.
  • the bleach system can be either supplemented with or replaced by a peroxyacid.
  • peracids can be found in US 4 686 063 and US 5 397 501 (Unilever) .
  • a preferred example is the imido peroxycarboxylic class of peracids described in EP A 325 288, EP A 349 940, DE 382 3172 and EP 325 289.
  • a particularly preferred example is phtalimido peroxy caproic acid (PAP).
  • PAP phtalimido peroxy caproic acid
  • Such peracids are suitably present at 0.1 - 12%, preferably 0.5 - 10%.
  • a bleach stabiliser may also be present.
  • Suitable bleach stabilisers include ethylenediamine tetra-acetate (EDTA) , the polyphosphonates such as Dequest (Trade Mark) and non-phosphate stabilisers such as EDDS (ethylene diamine di-succinic acid) . These bleach stabilisers are also useful for stain removal especially in products containing low levels of bleaching species or no bleaching species.
  • An especially preferred bleach system comprises a peroxy bleach compound (preferably sodium percarbonate optionally together with a bleach activator) , and a transition metal bleach catalyst as described and claimed in EP 458 397A ,EP 458 398A and EP 509 787A (Unilever) .
  • a peroxy bleach compound preferably sodium percarbonate optionally together with a bleach activator
  • a transition metal bleach catalyst as described and claimed in EP 458 397A ,EP 458 398A and EP 509 787A (Unilever) .
  • compositions according to the invention may also contain one or more enzyme (s).
  • Suitable enzymes include the proteases, amylases, cellulases, oxidases, peroxidases and Upases usable for incorporation in detergent compositions.
  • Preferred proteolytic enzymes (proteases) are, catalytically active protein materials which degrade or alter protein types of stains when present as in fabric stains in a hydrolysis reaction. They may be of any suitable origin, such as vegetable, animal, bacterial or yeast origin.
  • proteolytic enzymes or proteases of various qualities and origins and having activity in various pH ranges of from 4-12 are available and can be used in the instant invention.
  • suitable proteolytic enzymes are the subtilisins which are obtained from particular strains of B. Subtilis B. licheniformis, such as the commercially available subtilisins Maxatase (Trade Mark), as supplied by Gist Brocades N.V., Delft, Holland, and Alcalase (Trade Mark) , as supplied by Novo Industri A/S, Copenhagen, Denmark.
  • protease obtained from a strain of Bacillus having maximum activity throughout the pH range of 8-12, being commercially available, e.g. from Novo Industri A/S under the registered trade-names Esperase (Trade Mark) and Savinase (Trade-Mark) .
  • Esperase Trade Mark
  • Savinase Trade-Mark
  • Other commercial proteases are Kazusase (Trade Mark obtainable from Showa-Denko of Japan) , Optimase (Trade Mark from Miles Kali-Chemie, Hannover, West Germany) , and Superase (Trade Mark obtainable from Pfizer of U.S.A.).
  • Detergency enzymes are commonly employed in granular form in amounts of from about 0.1 to about 3.0 wt%. However, any suitable physical form of enzyme may be used.
  • compositions of the invention may contain alkali metal, preferably sodium carbonate, in order to increase detergency and ease processing.
  • Sodium carbonate may suitably be present in amounts ranging from 1 to 60 wt%, preferably from 2 to 40 wt%.
  • compositions containing little or no sodium carbonate are also within the scope of the invention.
  • Powder flow may be improved by the incorporation of a small amount of a powder structurant, for example, a fatty acid (or fatty acid soap) , a sugar, an acrylate or acrylate/maleate copolymer, or sodium silicate.
  • a powder structurant for example, a fatty acid (or fatty acid soap) , a sugar, an acrylate or acrylate/maleate copolymer, or sodium silicate.
  • a powder structurant for example, a fatty acid (or fatty acid soap) , a sugar, an acrylate or acrylate/maleate copolymer, or sodium silicate.
  • fatty acid soap suitably present in an amount of from 1 to 5 wt%.
  • detergent compositions of the invention include sodium silicate; antiredeposition agents such as cellulosic polymers; inorganic salts such as sodium sulphate; lather control agents or lather boosters as appropriate; proteolytic and lipolytic enzymes; dyes; coloured speckles; perfumes; foam controllers; fluorescers and decoupling polymers.
  • sodium silicate antiredeposition agents such as cellulosic polymers
  • inorganic salts such as sodium sulphate
  • lather control agents or lather boosters as appropriate
  • proteolytic and lipolytic enzymes dyes; coloured speckles; perfumes; foam controllers
  • fluorescers and decoupling polymers This list is not intended to be exhaustive. If sodium sulphate is present it is preferable if it is present at levels of or below 10 wt% of the total composition, more preferably at a level of or below 5wt%.
  • compositions of the present invention are required to give a pH of 9.5 to 11.0, when dissolved in water at a concentration of lg of laundry composition per litre of water, at 20°C.
  • alkaline components such as alkaline sodium silicate, sodium carbonate, sodium bicarbonate, sodium tripolyphosphate and the like can be included in the compositions at a level necessary to give a pH in the range 9 - 10.5.
  • the sodium silicate level will be in the range 0 -10 wt%.
  • the level of sodium carbonate may be in the range 0 - 20, preferably 5 - 20%, more preferably 7 - 17% by weight.
  • Particulate detergent compositions are suitably prepared by spray-drying a slurry of compatible heat-insensitive ingredients, and then spraying on or post-dosing those ingredients unsuitable for processing via the slurry.
  • the skilled detergent formulator will have no difficulty in deciding which ingredients should be included in the slurry and which should not.
  • Particulate detergent compositions of the invention preferably have a bulk density of at least 400 g/1, more • preferably at least 500 g/1.
  • Especially preferred compositions have bulk densities of at least 650 g/litre, more preferably at least 700 g/litre.
  • Such powders may " be prepared either by post-tower densification of spray-dried powder, or by wholly non-tower methods such as dry mixing and granulation; in both cases a high-speed mixer/granulator may advantageously be used.
  • Liquid detergent compositions can be prepared by admixing the essential and optional ingredients thereof in any desired order to provide compositions containing components in the requisite concentrations.
  • Liquid compositions according to the present invention can also be in compact form which means it will contain a lower level of water compared to a conventional liquid detergent.
  • Treatment of the fabric with the rebuild agent can be made by any suitable method such as washing, soaking or rinsing of the substrate.
  • the treatment will involve a washing or rinsing method such as treatment in the main wash or rinse cycle of a washing machine and involves contacting the fabric with an aqueous medium comprising the composition of the present invention.
  • reaction mixture placed in an inert " atmosphere, is maintained at a pressure of 6 bar at 150°C for 4 h. A further 100 ml of methanol are added, the mixture being maintained at the same pressure and temperature for 8 h. After cooling, the cellulose acetate is precipitated by the addition of acetone, then recovered by filtration and washing.
  • the degree of substitution and the molecular weight are determined by NMR analysis of the proton and gel permeation chromatography.
  • the cellulose acetate thus prepared has a degree of substitution of 0.55 and a molecular weight of 14,000.
  • the product is soluble in water.
  • Example 2 Detergent Granulate Prepared by Non-Spray
  • composition was prepared by the two-stage mechanical granulation method described in EP-A- 367 339.
  • Minors antiredeposition polymers transition-metal scavangers/bleach stabilisers, fluorescers, antifoams, dye-transfer-inhibition polymers, enzymes, and perfume.
  • 100% cotton fabric was mercerised, bleached, woven, not dyed and previously desized by washing in lg/1 Synperonic A7 + 4.5g/l sodium carbonate at 95°C, followed by rinsing in de-ionised water at 95°C.
  • the fabric was cut up into 22cm x 22cm squares. Threads running parallel to the edges were removed to a depth of 1cm, in an attempt to prevent the loss of threads during the washes.
  • the weight of each square was ⁇ 7g and each cloth was to be washed separately. Therefore 70ml of liquor gave a liquor: cloth ratio of -10:1.
  • Example 11 contained a sodium carbonate based buffer to give a final wash liquor pH of 10.5.
  • Comparative Example A comprised a phosphate based buffer to give a wash liquor at a dosage level of lg composition per litre of water of pH 7.
  • Example 11 The cellulose acetate used in Example 11 is obtained by the method of Example 1 and had a degree of substitution of 0.58 and a weight average molecular weight determined by GPC of 16200.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

L'invention porte sur un polymère de reconstitution de tissus qui comprend un squelette de cellulose ou de polysaccharide β-1,4 lié à des groupes acétate pendants, le degré de substitution des groupes acétate sur les groupes saccharide du squelette étant compris entre 0,55 et 0,70, avec un poids moléculaire compris entre 12,000 et 20,000. Ce polymère permet d'obtenir un effet de reconstitution des tissus particulièrement efficace dans un procédé de traitement de blanchisserie à un pH compris entre 9,5 et 11,0.
PCT/GB2001/001134 2000-03-29 2001-03-15 Traitement de blanchisserie pour tissus WO2001072940A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002403455A CA2403455A1 (fr) 2000-03-29 2001-03-15 Traitement de blanchisserie pour tissus
AU2001240845A AU2001240845A1 (en) 2000-03-29 2001-03-15 Laundry treatment for fabrics
BR0109566-8A BR0109566A (pt) 2000-03-29 2001-03-15 Composição para tratamento na lavagem de roupa, e, processo de reconstituição de um tecido para substituir a perda de fibras devido à lavagem
EP01911923A EP1268726A1 (fr) 2000-03-29 2001-03-15 Traitement de blanchisserie pour tissus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0007660.4 2000-03-29
GBGB0007660.4A GB0007660D0 (en) 2000-03-29 2000-03-29 Laundry treatment for fabrics

Publications (1)

Publication Number Publication Date
WO2001072940A1 true WO2001072940A1 (fr) 2001-10-04

Family

ID=9888701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2001/001134 WO2001072940A1 (fr) 2000-03-29 2001-03-15 Traitement de blanchisserie pour tissus

Country Status (7)

Country Link
US (1) US6517588B2 (fr)
EP (1) EP1268726A1 (fr)
AU (1) AU2001240845A1 (fr)
BR (1) BR0109566A (fr)
CA (1) CA2403455A1 (fr)
GB (1) GB0007660D0 (fr)
WO (1) WO2001072940A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9900150D0 (en) * 1999-01-05 1999-02-24 Unilever Plc Treatment for fabrics
JP4670169B2 (ja) * 2000-11-15 2011-04-13 ソニー株式会社 情報信号処理装置、情報信号処理方法、画像信号処理装置およびそれを使用した画像表示装置、それに使用される係数種データ生成装置、並びに情報記録媒体
GB0117768D0 (en) * 2001-07-20 2001-09-12 Unilever Plc Use of polymers in fabrics cleaning
BR0211247B1 (pt) * 2001-07-20 2015-02-10 Unilever Nv Composição de limpeza de roupa suja, e, método de liberar um ou mais benefícios em lavagem de roupa suja na limpeza de um tecido têxtil
US20080188392A1 (en) * 2002-12-02 2008-08-07 Diamond Chemical Company, Inc. Laundry Compositions
US20050112152A1 (en) * 2003-11-20 2005-05-26 Popplewell Lewis M. Encapsulated materials
US20050113282A1 (en) * 2003-11-20 2005-05-26 Parekh Prabodh P. Melamine-formaldehyde microcapsule slurries for fabric article freshening
US7105064B2 (en) * 2003-11-20 2006-09-12 International Flavors & Fragrances Inc. Particulate fragrance deposition on surfaces and malodour elimination from surfaces
US20050226900A1 (en) * 2004-04-13 2005-10-13 Winton Brooks Clint D Skin and hair treatment composition and process for using same resulting in controllably-releasable fragrance and/or malodour counteractant evolution
US20050227907A1 (en) * 2004-04-13 2005-10-13 Kaiping Lee Stable fragrance microcapsule suspension and process for using same
US7594594B2 (en) * 2004-11-17 2009-09-29 International Flavors & Fragrances Inc. Multi-compartment storage and delivery containers and delivery system for microencapsulated fragrances
US20070207174A1 (en) * 2005-05-06 2007-09-06 Pluyter Johan G L Encapsulated fragrance materials and methods for making same
CN104629938A (zh) * 2015-02-05 2015-05-20 江苏健客生物科技发展有限公司 一种柔顺护色洗衣液

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4235735A (en) * 1979-07-30 1980-11-25 Milliken Research Corporation Laundry detergent containing cellulose acetate anti-redeposition agent
WO2000018860A1 (fr) * 1998-09-30 2000-04-06 Unilever Plc Traitement pour textiles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142034A (en) * 1990-04-16 1992-08-25 Eastman Kodak Company Cellulose ester compositions and process for the preparation thereof
GB0007656D0 (en) * 2000-03-29 2000-05-17 Unilever Plc Laundry treatment for fabrics
GB0007650D0 (en) * 2000-03-29 2000-05-17 Unilever Plc Laundry treatment for fabrics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4235735A (en) * 1979-07-30 1980-11-25 Milliken Research Corporation Laundry detergent containing cellulose acetate anti-redeposition agent
WO2000018860A1 (fr) * 1998-09-30 2000-04-06 Unilever Plc Traitement pour textiles

Also Published As

Publication number Publication date
AU2001240845A1 (en) 2001-10-08
GB0007660D0 (en) 2000-05-17
US6517588B2 (en) 2003-02-11
BR0109566A (pt) 2003-06-03
CA2403455A1 (fr) 2001-10-04
EP1268726A1 (fr) 2003-01-02
US20020013248A1 (en) 2002-01-31

Similar Documents

Publication Publication Date Title
EP1520927B1 (fr) Traitement pour textiles
EP1268727B1 (fr) Procede de lavage de tissus
EP1141195B1 (fr) Traitement pour textiles
US6517588B2 (en) Laundry treatment for fabrics
US6358903B2 (en) Laundry treatment for fabrics
EP1272598B1 (fr) Traitement de tissus
EP1341888A1 (fr) Composition de blanchissage
EP1268728B1 (fr) Granule de traitement du linge et composition detergente contenant cette granule
GB2360791A (en) Softening treatment for fabrics
GB2360792A (en) Laundry treatment composition containing a rebuild agent
GB2360794A (en) Cellulose derivative rebuild agent for fabrics

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001911923

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2403455

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/01304/MU

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2001911923

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001911923

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP