WO2001071188A1 - Displacement type machinery - Google Patents

Displacement type machinery Download PDF

Info

Publication number
WO2001071188A1
WO2001071188A1 PCT/JP2000/001649 JP0001649W WO0171188A1 WO 2001071188 A1 WO2001071188 A1 WO 2001071188A1 JP 0001649 W JP0001649 W JP 0001649W WO 0171188 A1 WO0171188 A1 WO 0171188A1
Authority
WO
WIPO (PCT)
Prior art keywords
reciprocating
piston
revolving
working chamber
fixed
Prior art date
Application number
PCT/JP2000/001649
Other languages
French (fr)
Japanese (ja)
Inventor
Isao Hayase
Kunihiko Takao
Takeshi Tsuchiya
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2000/001649 priority Critical patent/WO2001071188A1/en
Publication of WO2001071188A1 publication Critical patent/WO2001071188A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0094Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 crankshaft

Definitions

  • the present invention relates to a positive displacement machine, and more particularly to a positive displacement compressor suitable for use in a refrigerating cycle such as a refrigerator and an air conditioner, and an air compressor.
  • the drive torque fluctuates greatly because a single piston repeatedly alternates between suction, compression and discharge, and unbalance due to the reciprocating motion of the piston.
  • the inertia force s was generated, causing the compressor to increase the excitation force.
  • the compression mechanism and the drive motor must be floated in a sealed container with a panel, which causes the compressor to become larger and increase the cost. Had become.
  • a single relatively large piston is required to replace all required replacement sheets (Rule 26).
  • a large differential pressure s which reaches the difference between the compressor suction pressure and the compressor discharge pressure, acts on the seal between the reciprocating biston and the cylinder pore, increasing the internal leakage of working gas and increasing the compressor pressure. Was causing a decrease in efficiency.
  • the residual gas volume at the top dead center position of the biston increases due to the suction valve attached to the cylinder head, which causes the compressor performance to decrease due to the re-expansion of the residual gas.
  • the working gas is sucked into the working chamber via the suction valve, and the passage resistance is large. Had become.
  • An object of the present invention is to improve the technical problems of the prior art described above and to provide a positive displacement compressor in which both torque fluctuation and unbalanced inertial force, which are factors of the exciting force, are small and low in vibration. is there.
  • the above object is a displacement type displacement paper provided with a reciprocating member that is connected to a drive shaft and reciprocates with the rotation of the drive shaft, and the reciprocation causes a change in volume in the working chamber (Rule 26). This is achieved by providing a reciprocating translation member connected to the drive shaft and reciprocating with the rotation of the drive shaft.
  • the above object is to provide a capacity machine having a reciprocating member connected to a drive shaft and reciprocating with the rotation of the drive shaft, and a volume change occurs in the working chamber due to the reciprocation.
  • This is achieved by providing a reciprocating balance member that is connected and reciprocates with the rotation of the drive and shaft, and a balance weight provided on the drive shaft and based on the reciprocating member and the reciprocal balance member.
  • the above object is to provide a cylindrical orbiting member that performs a revolving motion, a drive mechanism that provides the orbital motion to the orbiting member, a fixed frame member that supports the driving mechanism, and a reciprocating motion of the orbiting member. And is supported so as to be able to reciprocate in a direction substantially perpendicular to the axis of the bore, and is operated by reciprocating relative to the revolving member or reciprocating relative to the fixed frame member.
  • the object is to provide a revolving piston having a revolving motion, a crank pin portion rotatably inserted into the revolving piston, a crankshaft for revolving the revolving piston, and supporting the crankshaft.
  • a fixed frame member a movable cylinder having at least one fixing piece Sutonboa protruding orthogonally to the swivel Bisutonka s orbiting piston bore portion inserted reciprocally and the orbiting piston bore, each fixed Pisutonpoa
  • At least one fixed piston inserted in a reciprocating motion and fixed to the fixed frame member, and at least one end face of the revolving piston bore portion is closed and replaced paper (Rule 26)
  • At least one cylinder head fixed to the fixed frame member; and at least one cylinder head formed by the head end face of each of the turning pistons, the orbiting piston bore portion, and each of the cylinder heads.
  • a second working chamber formed by at least one working chamber, at least one fixed bisdon pore portion, a respective fixed piston, and an outer periphery of the orbiting piston, and the second working chamber with the revolving motion of the orbiting piston.
  • a fluid inflow / outflow mechanism for compressing the fluid by increasing or decreasing the volumes of the first working chamber and the second working chamber; and a second reciprocating member reciprocating in a direction substantially perpendicular to the movable cylinder.
  • FIG. 1 is a side sectional view showing a positive displacement compressor according to a first embodiment of the present invention
  • FIG. 2 is a sectional view taken along line II of FIG. 1
  • FIG. FIG. 4 is a cross-sectional view of FIG. 1
  • FIG. 4 is a view showing the movement of each part when the drive shaft of the configuration of FIG. 2 is rotated by 90 °
  • FIG. 6 is a side sectional view showing a positive displacement compressor according to a second embodiment of the present invention
  • FIG. 6 is a sectional view taken along the line III-III of FIG. Best mode for carrying out the invention
  • FIGS. 1 and 2 A first embodiment of the present invention will be described with reference to FIGS.
  • a driving mechanism including a revolving piston 1 for revolving motion, a crankshaft 2 for revolving the revolving biston 1 and a driving motor 8, and a fixed support for the driving mechanism
  • a movable cylinder 4 having a frame member 3, a revolving piston pore portion 4 a for reciprocatingly inserting the revolving piston 1, and at least one fixed piston bore portion 4 c projecting orthogonally to the revolving biston bore portion 4 a; At least one of the fixed pistons 5 inserted into the fixed piston bore portion 4c so as to be able to reciprocate and fixed to the fixed frame member 3, and at least one of the end faces of the revolving piston stone portion 4a is closed to fix the fixed frame member.
  • At least one first working chamber 12 is formed by the cylinder head 6, and the outer peripheral cylindrical surface 1 a of each swivel screw-in 1, the respective fixed screw-ton bore 4 c, and the respective fixed piston 5 to form at least one second working chamber 13, and increase or decrease the volume of each of the first working chambers 12 and each of the second working chambers 13 along with the revolving motion of the orbiting piston 1.
  • a fluid inflow / outflow mechanism including a suction port and a discharge port for a fluid to be transferred or compressed is provided.
  • a reciprocating member 26 through a slider 25 through a tip end of a crankpin portion 2a is provided. Is reciprocated in the direction perpendicular to the movable cylinder 4.
  • the revolving piston 1 has an outer peripheral cylindrical surface portion 1a and a central cylindrical hole portion 1b orthogonal to the outer cylindrical surface portion 1a.
  • the crank pin portion 2a of the crank shaft 2 is rotatably inserted into the cylindrical hole portion 1b, and imparts revolving motion to the revolving piston 1.
  • the crankshaft 2 is rotatably supported by a bearing 3 a of a fixed frame 3.
  • the outer peripheral cylindrical surface portion 1a of the revolving piston 1 is inserted into the revolving piston bore portion 4a formed in the movable cylinder 4 in a reciprocating motion force s : I dog state.
  • the crank pin portion 2a is inserted into the cylindrical hole portion 1b of the revolving piston 1 through the elongated hole portion 4b formed in the movable cylinder 4.
  • the movable cylinder 4 also has fixed piston pores 4c having smaller inner diameters formed on both sides of the swivel piston 'tonbore 4a, and each of the movable pistons 4 is orthogonally connected to the swivel piston pore 4a.
  • the two fixed piston bores 4 c have two fixed pistons 5 each. Replacement paper (Rule 26) These cylindrical outer peripheral surface portions 5 a are inserted from both sides in a state where relative reciprocating motion is possible, and each fixed piston 5 is fixed to the fixed frame 3.
  • the fixed frame 3 is also fixed so that the two cylinder heads 6 force s respectively close the openings at both ends of the orbiting piston bores 4 a of the movable cylinder 4.
  • the cylinder head 6 and the end of the revolving piston bore 4a are not fixed to each other, but have a small gap so that relative movement between the rainy people is possible.
  • the direction of the plane part 6a of the cylinder head 6 is perpendicular to the center axis of the revolving piston bore part 4a and parallel to the center axis of the fixed piston bore part 4c.
  • the seal member 7 is incorporated for airtightness of the minute gap.
  • the slider 25 has a rectangular parallelepiped shape, and has two parallel flat portions 25a and a central cylindrical hole portion 25b orthogonal to the flat portion 25a.
  • the central cylindrical hole 25b is rotatably inserted into the tip of the crankpin 2a.
  • the flat portion 25a is also inserted so as to be capable of a relative reciprocating motion to two parallel flat portions 26a of the reciprocating member 26, and the reciprocating member 26 is a rod portion thereof.
  • 2 6b is guided by the reciprocating motion guide portion 6d of the cylinder head 6 integrally fixed to the fixed frame 3, so that a reciprocating motion force 5 in a direction perpendicular to the reciprocating direction of the movable cylinder 4 is provided. 'Possibly supported.
  • the rotor 8a of the drive motor 8 is mounted on the crankshaft 2, and the stator 8b of the drive motor 8 is fixed to the main chamber 9 together with the fixed frame 3. I have. Openings at both ends of the main chamber 9 are closed by the upper chamber 10 and the lower chamber 11 to form a closed container.
  • the above-mentioned configuration allows the crank replacement sheet (Rule 26).
  • the orbiting piston 1 revolves due to the eccentric motion of the crank pin portion 2a.
  • the movement of the swiveling piston 1 in the direction of the piston piston 4 a was not transmitted to the movable cylinder 4 because the rainy person could slide on each other in that direction, and was guided to the movable cylinder 4 by the fixed piston 5.
  • Fixed piston bore 4 Only reciprocating motion in C direction is transmitted. At this time, the swivel piston 1 reciprocates in the swivel piston pore 4a.
  • the head end face 1 c of the orbiting piston turning Bisutonpoa portion 4 a and cylindrical Dae' de of the flat portion 6 a and two first-stage working chamber being formed with a relatively large maximum volume by the sealing member 7 (First working chamber) 1 2, formed by outer cylindrical surface 1 a of swivel piston 1, fixed piston bore 4 c and fixed piston head 5 b, each having a relatively small maximum volume 2
  • First working chamber formed by outer cylindrical surface 1 a of swivel piston 1, fixed piston bore 4 c and fixed piston head 5 b, each having a relatively small maximum volume 2
  • Four second-stage working chambers (second working chambers) 13 a total of four working chambers, repeatedly increase and decrease in volume as the crankshaft 2 rotates.
  • the slider 25 also revolves due to the eccentric motion of the crank pin portion 2a, but the movement of the slider 25 in the plane portion 26a direction is the same in both directions.
  • the working gas (fluid) at the suction pressure is compressed from the suction port 15 of the two places where the suction pipe 14 after branching into two is connected to the main chamber 9
  • the air flows into the machine, passes through the first-stage suction port (first suction port) 6 b formed in the cylinder head 6, and is sucked into the first-stage working chamber 12.
  • the movable cylinder 4 is guided by the fixed piston 5 and reciprocates in the direction of the piston bore 4c, the flat portion 6a of the cylinder head 6 increases the volume of the first-stage working chamber in the suction stroke. Only in the case of, there is a portion exposed to the first-stage working chamber 12.
  • the suction port 6b is a flat sheet for cylinder head 6 (Rule 26) Formed in such a portion of the surface portion 6a, even if the suction valve is not mounted, the working gas once sucked flows through the suction port 6b during the compression stroke in which the volume of the working chamber 12 decreases. There is no backflow.
  • the working gas compressed to the intermediate pressure in the first-stage working chamber 12 is supplied to the first-stage discharge port 6c formed in the cylinder head 6 and the discharge valve mounted on the cylinder head 6. After passing through the preload spring 17 and the valve support member 18, the fluid is discharged into a space 19 in a closed container formed by the main chamber 9, the upper chamber 10 and the lower chamber 11. Since the revolving piston 1 reciprocates in the direction of the piston bore 4 a of the movable cylinder 4, the suction stroke in which the volume of the second-stage working chamber 13 increases also on the surface of the outer cylindrical surface 1 a of the revolving piston.
  • a second-stage suction port (second suction port) Id is formed in such a portion on the outer peripheral cylindrical surface 1a of the orbiting piston.
  • the specific shape of the suction port 1d is a groove formed on the outer circumference of the revolving piston 1 so as to reach the elongated hole 4b opening in the revolving piston bore 4a of the movable cylinder 4 '. It is a passage with a shape, and communicates the space 19 in the closed container with the working chamber 13 only when the working chamber 1'3 is in the suction stroke. Therefore, even if the suction valve is not mounted, the working gas once sucked does not flow back to the space 19 in the closed container during the compression stroke.
  • the working gas at the intermediate pressure in the space 19 passes through the suction port 1 d from the space 19 in the closed container, is further compressed after being sucked into the respective working chambers 13, and is further compressed.
  • the discharge pipe 23 flows out of the compressor at discharge pressure from discharge ports 24 at two places.
  • the relationship between the conventional piston head and the bore of the cylinder that guides the reciprocating motion is reversed, and instead of the outer cylindrical surface of the piston, the inner cylindrical surface is replaced (Rule 26). It is formed as a fixed piston pore portion 4c of the movable cylinder, and the cylinder has an evening cylindrical surface instead of the inner cylindrical surface of the pore to form a fixed piston head 5b.
  • the compression work per working chamber is reduced, and further, since the phases thereof are shifted from each other, the overall driving torque fluctuation is reduced. It is done. Furthermore, because of the two-stage compression system, the pressure ratio in each working chamber is reduced, which also reduces the drive torque fluctuation itself in each working chamber. As a result, torque fluctuations are greatly uniformed
  • a second reciprocating member (26) that makes a reciprocating motion in a direction substantially perpendicular to the movable cylinder (4) as the first reciprocating member is provided.
  • the resultant force of the respective reciprocating inertial forces can be made a load having a substantially constant magnitude and rotating in the direction substantially at the rotation speed of the crankshaft 2. This load is equivalent to the centrifugal force acting on the eccentric mass, and can be balanced by the counterweight fixed to the crankshaft 2.
  • the combined force of inertia force is a load that rotates at the rotational speed of the crankshaft 2 with a constant magnitude, and the counterweight fixed to the crankshaft 2. It is understood that 2 b can be balanced. From the above formula, for example, a so-called single-cylinder reciprocating machine having only one piston that reciprocates in a cylinder by a drive shaft known as a refrigerator compressor is driven by a drive shaft that drives the piston.
  • each working chamber only needs to consume a part of the work, so that each working cold is miniaturized, and it is arranged radially around the rotation axis of the driving motor. The whole compressor is reduced in diameter, instead of protruding largely in the radial direction.
  • the mass of the movable cylinder 4 is reciprocated by the reciprocating member, and the mass of 26 is multiplied by 2 with the equations (6) and (7), differentiated twice with time t, and further multiplied by (-1).
  • the inertial forces F x , F y in the reciprocating direction of are expressed by the following equations.
  • the maximum attained pressure is an intermediate pressure, so that the head 1C of the revolving piston is located at the head 1C.
  • Applied compressive load s' small.
  • Razz I contracture in maximum ultimate pressure reaches the discharge pressure, the compression acting on the fixed piston Tonboa ⁇ Ka? Relatively small because the turning Bisuton outer peripheral cylindrical surface portion 1 a The load is small.
  • the suction valve since the suction valve is not required, the passage resistance of the suction passage and the residual gas space in the working chamber can be reduced, and the efficiency and capacity of the compressor are improved. There is.
  • the pressure ratio of each stage is significantly reduced due to the two-stage compression, the adverse effect of the re-expansion of the residual gas in each working chamber is reduced, and the performance of the compressor is improved. This has the effect.
  • the space 19 in the sealed container has an intermediate pressure, and in order to maintain the airtightness of the first-stage working chamber 12, at most the intermediate pressure and the suction pressure are required. Only the differential pressure needs to be sealed, and the airtightness of the second-stage working chamber 13 is maintained. In order to maintain the pressure, only the differential pressure between the discharge pressure and the intermediate pressure needs to be sealed. In other words, the differential pressure to be reduced is smaller than the differential pressure between the discharge pressure and the suction pressure in the case of the conventional single-stage compression, and this has the effect of improving the efficiency and capacity of the compressor by reducing internal leakage. .
  • FIGS. 5 and 6 show a second embodiment of the present invention. Since the basic structure is similar to that of the first embodiment shown in FIGS. 1 to 4, it will be described mainly on the parts unique to the second embodiment.
  • the reciprocating piston member 27 is fixed to the lower part of the crankshaft 2 ′ via a condro 29 connected by a biston pin 28 ′.
  • the reciprocating member 26 ′ reciprocates in the same direction and in substantially the same phase by the second crankpin member 30 thus formed.
  • the sum of the mass of the reciprocating piston member 27, the mass of the piston pin 28, and a part of the mass of the connecting rod 29 (the mass around the small end) is provided as the third reciprocating mass,
  • the inertial force F x in the X-axis direction is expressed by the following equation (8).
  • inertial force F y + F y inertia mosquito ⁇ and y-axis direction of the X-axis direction is vector synthesized as a force acting in the axial direction of the same plane, the size Is constant and the load rotates at the rotation speed of the crankshaft 2 '.
  • the inertia balance can be more completely achieved in the second embodiment, so that there is an effect that a positive displacement compressor with lower vibration can be provided as compared with the first embodiment.
  • the other effects of the first embodiment can be similarly obtained in the second embodiment.
  • the third reciprocating mass in the second embodiment is the second crank pin.
  • the member 30, the connector 29, the piston pin 28, the reciprocating piston member 27, and the reciprocating piston member 2 The reciprocating motion is given by a “crank-slider mechanism” consisting of a cylinder member 32 that guides the reciprocating motion of the reciprocating motion.
  • a reciprocating motion may be provided using the "Scotch yoke mechanism” that provides motion.
  • the reciprocating motion is given to the second reciprocating mass by the “sketch choke mechanism”, but the reciprocating motion is given to the “crank-slider mechanism”. Even if the structure is changed, the effects of the invention described above can be obtained almost in the same manner. ,
  • two first working chambers and two working chambers are respectively provided inside the swivel piston bore of the movable cylinder and inside the fixed piston bore.
  • a total of two working chambers can be formed.
  • Ki they force Turning to repeat the offset change in the volume of the bis tons revolving nine 0 ° with the motion transfer, de be be made by dispersing the four overall workload in each working chamber, In addition to the reduction of the driving torque fluctuation of each working chamber, the driving torque fluctuations having a phase shift are superimposed and the torque fluctuation force s is made uniform.
  • the first working chamber and the second working chamber are sealed spaces formed by inner peripheral wall surfaces that are constituted by both ends or the outer periphery of the swivel piston, and the pressure of each working chamber is directly applied to both ends of the swivel piston. And the outer periphery, and then the turning piston is directly supported by the sliding load of the crankpin of the crankshaft.
  • the conventional technology causes a large sliding load to act and increases the friction loss.
  • the number of sliding portions corresponding to the sliding portion between the slider and the piston, which has been reduced, is reduced, and the efficiency of the compressor can be improved.
  • crankshaft always performs effective compression work for the other working chamber even if it does not perform compression work for one working chamber at the top dead center, and friction due to bearing load Losses always occur for a certain amount of useful work, and the ratio of friction loss to useful work can be reduced and efficiency can be improved.
  • the movable cylinder When each working chamber changes its volume, the movable cylinder reciprocates with respect to the cylinder head, and the orbiting piston reciprocates with respect to the movable cylinder.
  • the cylinder head forming the first working chamber in the swiveling piston port of the movable cylinder and the side of the swiveling piston forming the second working chamber in the fixed piston bore have the respective working chamber volumes. It is possible to open the suction port exposed to the working chamber only while the pressure increases, eliminating the need for the suction valve that caused the increase in the passage resistance.
  • a residual gas space is created in a part other than the lift restriction part of the suction valve and the part on the cylinder head surface where the suction valve is mounted, whereas there is no suction valve.
  • the structure enables a design to reduce the residual gas volume.
  • the differential pressure to be sealed in the first working chamber of the first stage is the differential pressure between the suction pressure of the compressor and the intermediate pressure
  • the second pressure of the second stage is The differential pressure to be sealed in the working chamber.
  • both are smaller than the differential pressure between the suction pressure and the discharge pressure, which is the conventional differential pressure to be sealed. Leakage is reduced.
  • the pressure ratio in each stage is smaller than the pressure ratio when compression is completed in one stage, so the influence of the re-expansion of residual gas in each working chamber s can be reduced, and the capacity of the compressor can be improved.
  • the component configuration of the compressor and the shape and function of each component are not much different from those of the components of the conventional reciprocating compressor, and conventional equipment and processing for efficient cylindrical and planar processing are efficient. Since technology can be used, low-cost production is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

Displacement type machinery, wherein a second reciprocating mass (26) performing a reciprocating motion in the direction at right angle to the reciprocating motion direction of a first reciprocating mass (A) is added to the first reciprocating mass (A) forming a compression mechanism and a resultant force of these reciprocating motion inertia forces is converted into a load which is constant in size and has a direction rotated together with a driving shaft (2) so as to keep a balance with a centrifugal force of an eccentric mass (2b) fixed to the driving shaft (2), and also a third reciprocating mass (27) reciprocating in the same direction as the second reciprocating mass (26) is added to another position in axial direction so as to also keep a balance with a moment, whereby, because the compression mechanism itself is of a multiple cylinder type and, in addition, reduces a variation in driving torque as a mechanism suitable for two-stage compression, an unbalance caused by an inertia force can be reduced so as to reduce vibration.

Description

明 細 書  Specification
容積形機械  Positive displacement machine
技術分野 Technical field
本発明は、 容積形機械に係わり、 特に冷凍機および空気調和機用等の冷凍 サイクル用や空気圧縮機用として用いるのに好適な容積形圧縮機に関する。 背景技術  The present invention relates to a positive displacement machine, and more particularly to a positive displacement compressor suitable for use in a refrigerating cycle such as a refrigerator and an air conditioner, and an air compressor. Background art
従来の容積形機械の一例であるレシプロ式容積形圧縮機においては、 例え ば、 文献 「密閉型圧縮機」 (川平睦義 著、 日本冷凍協会 発行) の 2 7頁 および第 1図 0 . 1、 第 1図 0 . 2、 第 1図 0 . 3 に記載」 されているように、 クランクシャフトにより円筒形状のスラィダ (旋回ピストン) を公転駆動し、 スライダカ s相対的に往復運動可能に揷入されるスライダガイ ド部を有した 1 個のビストンに、 前記の相対的な往復運動方向と直角方向の往復運動を行な わせ、 In the case of a reciprocating positive displacement compressor, which is an example of a conventional positive displacement machine, for example, see page 27 and FIG. 0.1 of the document "Hydraulic compressor" (Matsuyoshi Kawahira, published by Japan Refrigeration Association). , Figure 1 0. 2 and FIG. 1 0. as described "3, a cylindrical Suraida a (orbiting piston) is driven revolving with the crankshaft, Suraidaka s relatively reciprocally揷入A single piston having a slider guide portion to be reciprocated in a direction perpendicular to the relative reciprocating direction described above,
ピストンが往復運動可能に揷入される固定シリンダのピストンボア部の反ピ ストン側開口部を、 固定シリンダに固定されたシリンダへッドにより閉塞し、 シリンダへッ ドに吸入バルブと吐出バルブとを装着し、 それらの圧縮機構全 体を駆動用モータとともにパネ等を介して密閉容器内に浮かせた構造であつ た。 ' The opening on the opposite side of the piston bore of the fixed cylinder into which the piston is reciprocally movable is closed by a cylinder head fixed to the fixed cylinder, and the cylinder head is provided with a suction valve and a discharge valve. , And the entire compression mechanism together with the drive motor was floated in a sealed container via a panel or the like. '
発明の開示 Disclosure of the invention
従来の容積形機械である上記のレシプロ式容積形圧縮機においては、 一個 のビストンにより交互に吸入と圧縮、 吐出の俘用を繰り返すため駆動トルク 変動が大きく、 また、 ピストンの往復運動によりアンバランス慣性力力 s発生 し、 圧縮機の加振力を大きくする原因となっていた。 そして、 大きな加振力 による振動増大を防止するため、 圧縮機構部と駆動用モータ部とを密閉容器 内にパネで浮かせた構造とする必要があり、 これが圧縮機の大型化とコスト 増加の原因となっていた。 また、 一個の比較的大きなピストンで所用の全動 差替え用紙 (規則 26) 力を消費するため、 駆動用モータ回転中心から圧縮機構部の最外周部までの 偏位が大きくなり、 これが圧縮機の大型化の原因となっていた。 さらに、 ピ ストン頭部のガス圧力による圧縮荷重は、 スライダとクランクシャフトとの 摺動部に作用する前にスライダとピストンとの摺動部にも作用し、 摩擦損失 を増大させ圧縮機の効率を低下させる原因となっていた。 そしてピストン頭 部のガス圧力により軸受に作用する圧縮荷重は、 有効な圧縮仕事をほとんど 行わないピストン上死点位置近傍でも大きく、 摩擦損失の割合を増大させて 圧縮機の効率を低下させる原因となっていた。: また、 往復運動を行なうビス トンとシリンダポア間のシール部には、 圧縮機吸入圧力と圧縮機吐出圧力と の差に達する大きな差圧力 s作用し、 作動ガスの内部漏洩を増大させて圧縮機 の効率を低下させる原因となっていた。 In the above-mentioned reciprocating positive displacement compressor, which is a conventional positive displacement machine, the drive torque fluctuates greatly because a single piston repeatedly alternates between suction, compression and discharge, and unbalance due to the reciprocating motion of the piston. The inertia force s was generated, causing the compressor to increase the excitation force. In order to prevent the vibration from increasing due to a large excitation force, the compression mechanism and the drive motor must be floated in a sealed container with a panel, which causes the compressor to become larger and increase the cost. Had become. Also, a single relatively large piston is required to replace all required replacement sheets (Rule 26). Since the power is consumed, the deflection from the rotation center of the driving motor to the outermost periphery of the compression mechanism becomes large, which causes the compressor to become large. Furthermore, the compression load due to the gas pressure at the piston head also acts on the sliding part between the slider and the piston before acting on the sliding part between the slider and the crankshaft, increasing friction loss and increasing the efficiency of the compressor. Was causing the decrease. The compression load acting on the bearing due to the gas pressure at the piston head is large even near the top dead center position of the piston where almost no effective compression work is performed, causing the rate of friction loss to increase and reducing the efficiency of the compressor. Had become. A large differential pressure s, which reaches the difference between the compressor suction pressure and the compressor discharge pressure, acts on the seal between the reciprocating biston and the cylinder pore, increasing the internal leakage of working gas and increasing the compressor pressure. Was causing a decrease in efficiency.
また、 ビストンの上死点位置でピストン頭部に残った残留ガスが再膨張す ることにより作動ガスの吸気効率を低下させ、 圧縮機の能力を低下させる原 因となっていた。 この能力低下は、 圧縮機の吸入圧力に対する吐出圧力の圧 力比が高い時に特に大きかつた。  Also, the residual gas remaining on the piston head at the top dead center position of Biston re-expanded, which reduced the working gas intake efficiency and reduced the compressor capacity. This decrease was particularly significant when the pressure ratio of the discharge pressure to the suction pressure of the compressor was high.
さらに、 シリンダへッ ドに吸入バルブが装着されていることに伴つてビス トンの上死点位置における残留ガス容積が増大し、 残留ガスの再膨張による 圧縮機の能力低下を増大させる原因となっていた。 また、 吸入バルブを介し て作動ガスを作動室に吸入するため通路抵抗が大きく、 吸入ガスの比重量低 下による圧縮機の能力低下と、 吸入仕事の増大による圧縮機の効率低下の原 因となっていた。  In addition, the residual gas volume at the top dead center position of the biston increases due to the suction valve attached to the cylinder head, which causes the compressor performance to decrease due to the re-expansion of the residual gas. I was In addition, the working gas is sucked into the working chamber via the suction valve, and the passage resistance is large. Had become.
本発明の目的は、 上記の従来技術の技術課題を改善し、 加振力の要因であ るトルク変動とアンバランス慣性力がいずれも小さく低振動である容積形圧 縮機を提供することにある。  An object of the present invention is to improve the technical problems of the prior art described above and to provide a positive displacement compressor in which both torque fluctuation and unbalanced inertial force, which are factors of the exciting force, are small and low in vibration. is there.
上記目的は、 駆動軸に連結されこの駆動軸の回転に伴って往復運動し、 こ の往復運動により作動室に容積変化が生じる往復運動部材を備えた容積形機 差替え用紙(規則 26) 械において、 前記駆動軸に連結されこの駆動軸の回転に伴つて往復運動する 往復ノ ランス部材を備えることにより達成される。 The above object is a displacement type displacement paper provided with a reciprocating member that is connected to a drive shaft and reciprocates with the rotation of the drive shaft, and the reciprocation causes a change in volume in the working chamber (Rule 26). This is achieved by providing a reciprocating translation member connected to the drive shaft and reciprocating with the rotation of the drive shaft.
また、 上記目的は、 駆動軸に連結されこの駆動軸の回転に伴って往復運動 し、 この往復運動により作動室に容積変化が生じる往復運動部材を備えた容 積形機械において、 前記駆動軸に連結されこの駆動,軸の回転に伴つて往復運 動する往復バランス部材と、 前記駆動軸に設けられ、 前記往復運動部材及ぴ 前記往復バランス部材に基づくバラ.ンスウェイトとを備えることにより達成 れる  Further, the above object is to provide a capacity machine having a reciprocating member connected to a drive shaft and reciprocating with the rotation of the drive shaft, and a volume change occurs in the working chamber due to the reciprocation. This is achieved by providing a reciprocating balance member that is connected and reciprocates with the rotation of the drive and shaft, and a balance weight provided on the drive shaft and based on the reciprocating member and the reciprocal balance member.
また、 上記目的は、 公転運動を行なう円筒状の旋回運動部材と、 この旋回 運動部材に公転運動を与える駆動機構と、 この駆動機構を支持する固定フ レーム部材と、 前記旋回運動部材が往復運動可能に挿入されるポア部を有し このボア部の軸と略直交方向に往復運動可能に支持され、 前記旋回運動部材 との相対的な往復運動若しくは前記固定フレーム部材に対する往復運動によ り作動室に容積変化を生じさせる第 1の往復運動部材と、 前記駆動機構によ り駆動され、 この第 1の往復運動部材に対する前記旋回運動部材の相対的な 往復運動と略同位相で前記第 1の往復運動部材と略直交方向に往復運動方向 し、 作動室を形成しない第 2の往復運動部材とを備えることにより達成され る  In addition, the above object is to provide a cylindrical orbiting member that performs a revolving motion, a drive mechanism that provides the orbital motion to the orbiting member, a fixed frame member that supports the driving mechanism, and a reciprocating motion of the orbiting member. And is supported so as to be able to reciprocate in a direction substantially perpendicular to the axis of the bore, and is operated by reciprocating relative to the revolving member or reciprocating relative to the fixed frame member. A first reciprocating member for causing a volume change in the chamber; and a first reciprocating member driven by the driving mechanism, the first reciprocating member having a phase substantially the same as a reciprocating motion of the revolving member relative to the first reciprocating member. This is achieved by providing a second reciprocating member that reciprocates in a direction substantially orthogonal to the first reciprocating member and does not form a working chamber.
また、 上記目的は、 公転運動を行なう旋回ピストンと、 この旋回ピストン に回転自在に^入されたクランクピン部によ;りこの旋回ピストンに公転運動 を与えるクランクシャフトと、 このクランクシャフトを支持する固定フレー ム部材と、 前記旋回ビストンカ s往復動可能に挿入される旋回ピストンボア部 およびこの旋回ピストンボア部に直交して突出する少なくとも一つの固定ピ ストンボア部を有する可動シリンダと、 それぞれの固定ピストンポア部に往 復運動可能に挿入され前記固定フレーム部材に固定される少なくとも一つの 固定ピス トンと、 前記旋回ピストンボア部の少なくとも一方の端面を閉塞し 差替え用紙(規則 26) 前記固定フレーム部材に固定される少なくとも一つのシリンダへッ ドと、 前 記; 回ピストンのそれぞれの頭部端面と前記旋回ピストンボア部とそれぞれ のシリンダへッ ドとにより少なくとも一つ形成された第 1の作動室と、 それ ぞれの固定ビスドンポア部とそれぞれの固定ビストンと前記旋回ピストンの 外周とにより少なくとも一つ形成された第 2の作動室と、 前記旋回ピス トン の公転運動に伴い前記第 1の作動室および前記第 2の作動室の容積を増減さ せて流体の圧縮作用を行なう流体出入流通機構と、 前記可動シリンダと略直 角方向に往復運動する第 2の往復運動部材とを備えることのより達成される。 図面の簡単な説明 Further, the object is to provide a revolving piston having a revolving motion, a crank pin portion rotatably inserted into the revolving piston, a crankshaft for revolving the revolving piston, and supporting the crankshaft. a fixed frame member, a movable cylinder having at least one fixing piece Sutonboa protruding orthogonally to the swivel Bisutonka s orbiting piston bore portion inserted reciprocally and the orbiting piston bore, each fixed Pisutonpoa At least one fixed piston inserted in a reciprocating motion and fixed to the fixed frame member, and at least one end face of the revolving piston bore portion is closed and replaced paper (Rule 26) At least one cylinder head fixed to the fixed frame member; and at least one cylinder head formed by the head end face of each of the turning pistons, the orbiting piston bore portion, and each of the cylinder heads. A second working chamber formed by at least one working chamber, at least one fixed bisdon pore portion, a respective fixed piston, and an outer periphery of the orbiting piston, and the second working chamber with the revolving motion of the orbiting piston. A fluid inflow / outflow mechanism for compressing the fluid by increasing or decreasing the volumes of the first working chamber and the second working chamber; and a second reciprocating member reciprocating in a direction substantially perpendicular to the movable cylinder. Achieved by providing. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1の実施例である容積形圧縮機を示す側断面図であ り、 第 2図は、 第 1図の I— I断面図であり、 第 3図は、 第 1図の Π— Π断 面図であり、 第 4図は、 第 2図の構成の^動軸を 9 0 ° ずつ回転した場合の 各部の動きを示す図であり、 第 5図は、 本発明の第 2の実施例である容積形 圧縮機を示す側断面図であり、 第 6図は、 第 5図の ΠΙ— ΙΠ断面図である。 発明を実 ·施する ための.最良の形態  FIG. 1 is a side sectional view showing a positive displacement compressor according to a first embodiment of the present invention, FIG. 2 is a sectional view taken along line II of FIG. 1, and FIG. FIG. 4 is a cross-sectional view of FIG. 1, and FIG. 4 is a view showing the movement of each part when the drive shaft of the configuration of FIG. 2 is rotated by 90 °, and FIG. FIG. 6 is a side sectional view showing a positive displacement compressor according to a second embodiment of the present invention, and FIG. 6 is a sectional view taken along the line III-III of FIG. Best mode for carrying out the invention
本発明の第 1の実施例を第 1図〜第 4図を参照しながら説明する。 第 1図 および第 2図に示すように、 公転運動を行なう旋回ピス トン 1 と、 旋回ビス トン 1に公転運動を与えるクランクシャフト 2および駆動モータ 8よりなる 駆動機構と、 駆動機構を支持する固定フレーム部材 3と、 旋回ピストン 1を 往復運動可能に挿入する旋回ピストンポア部 4 aおよび旋回ビストンボア部 4 aに直交して突出する少なくとも一つの固定ピストンボア部 4 cを有する 可動シリンダ 4と、 それぞれの固定ピストンボア部 4 cに往復運動可能に揷 入され固定フレーム部材 3に固定される少なくとも一つの固定ビストン 5と、 旋回ビストンボア部 4 aの少なく ともいずれか一方の端面を閉塞し固定フ レーム部材 3に固定される少なくとも一つのシリンダヘッド 6とを備え、 旋 回ピストン 1のそれぞれの端面 1 cと旋回ピストンポア部 4 aとそれぞれの 差替え用紙 (規則 26) シリンダへッ ド 6とにより少なくとも一つの第 1の作動室 1 2を形成し、 そ れぞれの旋回ビス トン 1の外周円筒面部 1 aとそれぞれの固定ビス トンボア 部 4 c とそれぞれの固定ビストン 5とにより少なくとも一つの第 2の作動室 1 3を形成し、 旋回ピストン 1の公転運動に伴いそれぞれの第 1の作動室 1 2およびそれぞれの第 2の作動室 1 3の容積を増減させて移送または圧縮さ せる流体の吸入ポートおよび吐出ポ—ト等よりなる流体出入流通機構を具備 した構成とし、 さらに、 クランクピン部 2 aの先端部により、 スライダ 2 5 を介して往復運動部材 2 6を可動シリンダ 4と直角方向に往復運動させる構 成とする。 A first embodiment of the present invention will be described with reference to FIGS. As shown in FIGS. 1 and 2, a driving mechanism including a revolving piston 1 for revolving motion, a crankshaft 2 for revolving the revolving biston 1 and a driving motor 8, and a fixed support for the driving mechanism A movable cylinder 4 having a frame member 3, a revolving piston pore portion 4 a for reciprocatingly inserting the revolving piston 1, and at least one fixed piston bore portion 4 c projecting orthogonally to the revolving biston bore portion 4 a; At least one of the fixed pistons 5 inserted into the fixed piston bore portion 4c so as to be able to reciprocate and fixed to the fixed frame member 3, and at least one of the end faces of the revolving piston stone portion 4a is closed to fix the fixed frame member. 3 having at least one cylinder head 6, each end face 1 c of the revolving piston 1 and a revolving piston pore 4 a and each replacement sheet (Rule 26) At least one first working chamber 12 is formed by the cylinder head 6, and the outer peripheral cylindrical surface 1 a of each swivel screw-in 1, the respective fixed screw-ton bore 4 c, and the respective fixed piston 5 to form at least one second working chamber 13, and increase or decrease the volume of each of the first working chambers 12 and each of the second working chambers 13 along with the revolving motion of the orbiting piston 1. A fluid inflow / outflow mechanism including a suction port and a discharge port for a fluid to be transferred or compressed is provided. Further, a reciprocating member 26 through a slider 25 through a tip end of a crankpin portion 2a is provided. Is reciprocated in the direction perpendicular to the movable cylinder 4.
以下、 2つの固定ピス トンボア部と 2つの固定ピス トンとを設け、 2つの 第 1の作動室および 2つの第 2の作動室を形成した構成について詳細に説明 する。 なお 1つのシリンダへッ ドを設けて 1つの第 1の作動室を形成した例 や、 1つの固定ビストンボアと 1つの固定ビストンとを設けて 1つの第 2の 作動室を形成した例については、 それぞれの部材の個数を読み代えることに より構成される。  Hereinafter, a configuration in which two fixed piston bores and two fixed pistons are provided to form two first working chambers and two second working chambers will be described in detail. In addition, for an example in which one cylinder head is provided to form one first working chamber, and an example in which one fixed biston bore and one fixed biston are provided to form one second working chamber, It is constituted by reading the number of each member.
旋回ピス トン 1は、 外周円筒面部 1 aと外 '円筒面部 1 aに直交する中央 の円筒穴部 1 bとを有している。 クランクシャフ ト 2のクランクピン部 2 a は円筒穴部 1 bに回転可能に挿入され、 旋回ピストン 1に公転運動を与える。 クランクシャフト 2は固定フレーム 3の軸受部 3 aにより回転支持されてい る。 旋回ピス トン 1の外周円筒面部 1 aは可動シリンダ 4に形成された旋回 ピストンボア部 4 aの中に、 往復運動力 s可能な: I犬態で挿入されている。 なお、 クランクピン部 2 aは可動シリンダ 4に形成された長穴部 4 bを通過して旋 回ピストン 1の円筒穴部 1 bに挿入されている。 可動シリンダ 4には、 また、 旋回ピス'トンボア部 4 aの両側に、 内径のより小さい固定ピストンポア部 4 cが形成されており、 それぞれ旋回ピストンポア部 4 aに直交して連通して いる。 2つの固定ピス トンボア部 4 cには、 2つの固定ピス トン 5のそれぞ 差替え用紙(規則 26) れの円筒外周面部 5 aが両側から相対的な往復運動が可能な状態で揷入され ており、 それぞれの固定ピストン 5は固定フレーム 3に固定されている。 固 定フレーム 3には、 また、 2つのシリンダヘッド 6力 s、 それぞれ可動シリン ダ 4の旋回ピストンボア部 4 aの両端開口部を閉塞するように固定されてい る。 その際、 シリンダへッ ド 6と旋回ピストンボア 4 aの端部とは互いに固 定はされておらず、 雨者間の相対運動が可能なように微小な隙間を持たせて ある。 シリンダへッド 6の平面部 6 aの方向は、 旋回ピストンボア部 4 aの 中心軸に対して直角方向であり、 固定ピストンポア部 4 cの中心軸に対して 平行である。 したがって、 可動シリンダ 4が固定ピストン 5に案内されて固 定ピストンボア部 4 cの中心軸の方向に移動しても、 シリンダへッド 6と旋 回ビストンポア部 4 aの端面との間の ί殻小隙間は一定に保たれるが、 本実施 例ではシ一ル部材 7がその微小隙間の気密のために組み込まれている。 The revolving piston 1 has an outer peripheral cylindrical surface portion 1a and a central cylindrical hole portion 1b orthogonal to the outer cylindrical surface portion 1a. The crank pin portion 2a of the crank shaft 2 is rotatably inserted into the cylindrical hole portion 1b, and imparts revolving motion to the revolving piston 1. The crankshaft 2 is rotatably supported by a bearing 3 a of a fixed frame 3. The outer peripheral cylindrical surface portion 1a of the revolving piston 1 is inserted into the revolving piston bore portion 4a formed in the movable cylinder 4 in a reciprocating motion force s : I dog state. The crank pin portion 2a is inserted into the cylindrical hole portion 1b of the revolving piston 1 through the elongated hole portion 4b formed in the movable cylinder 4. The movable cylinder 4 also has fixed piston pores 4c having smaller inner diameters formed on both sides of the swivel piston 'tonbore 4a, and each of the movable pistons 4 is orthogonally connected to the swivel piston pore 4a. The two fixed piston bores 4 c have two fixed pistons 5 each. Replacement paper (Rule 26) These cylindrical outer peripheral surface portions 5 a are inserted from both sides in a state where relative reciprocating motion is possible, and each fixed piston 5 is fixed to the fixed frame 3. The fixed frame 3 is also fixed so that the two cylinder heads 6 force s respectively close the openings at both ends of the orbiting piston bores 4 a of the movable cylinder 4. At this time, the cylinder head 6 and the end of the revolving piston bore 4a are not fixed to each other, but have a small gap so that relative movement between the rainy people is possible. The direction of the plane part 6a of the cylinder head 6 is perpendicular to the center axis of the revolving piston bore part 4a and parallel to the center axis of the fixed piston bore part 4c. Therefore, even if the movable cylinder 4 is guided by the fixed piston 5 and moves in the direction of the center axis of the fixed piston bore portion 4c, the distance between the cylinder head 6 and the end face of the revolving biston pore portion 4a remains unchanged. Although the shell small gap is kept constant, in this embodiment, the seal member 7 is incorporated for airtightness of the minute gap.
第 3図において、 スライダ 2 5は直方体状の形状をしており互いに平行な 2つの平面部 2 5 aと平面部 2 5 aに直交する中央の円筒穴部 2 5 bとを有 しており、 中央の円筒穴部 2 5 bがクランクピン部 2 aの先端部に回転可能 に挿入されている。 平面部 2 5 aは、 また、 往復運動部材 2 6の互いに平行 な 2つの平面部 2 6 aに相対的な往復運動力可能に挿入されており、 往復運 動部材 2 6はそのロッ ド部 2 6 bが固定フレーム 3に一体に固定されたシリ ンダへッ ド 6の往復運動ガイド部 6 dに案内されることにより、 可動シリン ダ 4の往復運動の方向と直角方向の往復運動力5'可能に支持されている。 In FIG. 3, the slider 25 has a rectangular parallelepiped shape, and has two parallel flat portions 25a and a central cylindrical hole portion 25b orthogonal to the flat portion 25a. The central cylindrical hole 25b is rotatably inserted into the tip of the crankpin 2a. The flat portion 25a is also inserted so as to be capable of a relative reciprocating motion to two parallel flat portions 26a of the reciprocating member 26, and the reciprocating member 26 is a rod portion thereof. 2 6b is guided by the reciprocating motion guide portion 6d of the cylinder head 6 integrally fixed to the fixed frame 3, so that a reciprocating motion force 5 in a direction perpendicular to the reciprocating direction of the movable cylinder 4 is provided. 'Possibly supported.
第 1図に戻って、 クランクシャフト 2には駆動モータ 8のロータ部 8 aが 取り付けられており、 駆動モータ 8のステ一タ部 8 bは固定フレーム 3とと もにメィンチャンバ 9に固定されている。 メィンチャンバ 9の両端開口部は 上チャンバ 1 0と下チャンバ 1 1とにより閉塞され、 密閉容器を形成してい る。  Returning to FIG. 1, the rotor 8a of the drive motor 8 is mounted on the crankshaft 2, and the stator 8b of the drive motor 8 is fixed to the main chamber 9 together with the fixed frame 3. I have. Openings at both ends of the main chamber 9 are closed by the upper chamber 10 and the lower chamber 11 to form a closed container.
第 1図及び第 4図を参照して、 以上の構成とすることにより、 クランク 差替え用紙( 則 26) シャフト 2が駆動モータ 8により回転駆動されると、 旋回ピストン 1はクラ ンクピン部 2 aの偏心運動により公転運動を行なう。 旋回ピストン 1の旋回 ビストンボア部 4 a方向の運動は、 雨者がその方向には互いに摺動可能であ るため可動シリンダ 4に伝達されず、 可動シリンダ 4には固定ピストン 5に より案内された固定ピストンボア部 4 C方向の往復運動のみが伝達される。 その際、 旋回ビストン 1は旋回ピストンポア部 4 a内で往復運動を行なう。 すなわち、 旋回ピストンの頭部端面 1 cと旋回ビストンポア部 4 aとシリン ダへッ ドの平面部 6 aおよびシール部材 7により形成され比較的大きな最大 容積を持つ 2つの第 1段目の作動室 (第 1の作動室) 1 2と、 旋回ピス トン 1の外周円筒面部 1 aと固定ピス トンボア部 4 cと固定ピス トンの頭部 5 b とにより形成され各々比較的小さな最大容積を持つ 2つの第 2段目の作動室 (第 2の作動室) 1 3の、 合計 4つの作動室は、 それぞれ、 クランクシャフ ト 2の回転に伴いその容積の増減を繰り返す。, With reference to FIG. 1 and FIG. 4, the above-mentioned configuration allows the crank replacement sheet (Rule 26). When the shaft 2 is rotationally driven by the drive motor 8, the orbiting piston 1 revolves due to the eccentric motion of the crank pin portion 2a. The movement of the swiveling piston 1 in the direction of the piston piston 4 a was not transmitted to the movable cylinder 4 because the rainy person could slide on each other in that direction, and was guided to the movable cylinder 4 by the fixed piston 5. Fixed piston bore 4 Only reciprocating motion in C direction is transmitted. At this time, the swivel piston 1 reciprocates in the swivel piston pore 4a. That is, the head end face 1 c of the orbiting piston turning Bisutonpoa portion 4 a and cylindrical Dae' de of the flat portion 6 a and two first-stage working chamber being formed with a relatively large maximum volume by the sealing member 7 (First working chamber) 1 2, formed by outer cylindrical surface 1 a of swivel piston 1, fixed piston bore 4 c and fixed piston head 5 b, each having a relatively small maximum volume 2 Four second-stage working chambers (second working chambers) 13, a total of four working chambers, repeatedly increase and decrease in volume as the crankshaft 2 rotates. ,
また、 第 3図に示されているように、 スライダ 2 5もクランクピン部 2 a の偏心運動により公転運動を行なうが、 スライダ 2 5の平面部 2 6 a方向の 運動は、 両者がその方向には互いに摺動可能であるため往復運動部材 2 6に 伝達されず、 往復運動部材 2 6には往復運動ガイ ド部 6 dにより案内された 往復運動、 すなわち可動シリンダ 4と直角方向の往復運動のみが伝達される。 吸入圧力の作動ガス (流体) は、 第 2図および第 4図に示すように、 2本 に分岐した後の吸入配管 1 4がメインチャンバ 9に接続する 2力所の吸入口 1 5から圧縮機内に流入し、 それぞれ、 シリンダへッ ド 6に形成された第 1 段目の吸入ポート (第 1の吸入ポート) 6 bを通過して、 第 1段目の作動室 1 2に吸入される。 可動シリンダ 4が固定ビストン 5により案内されて固定 ピストンボア部 4 c方向に往復運動するため、 シリンダへッド 6の平面部 6 aには第 1段目の作動室の容積が増大する吸入行程の時のみ第 1段目の作動 室 1 2に露出する部分が存在する。 吸入ポート 6 bはシリンダへッ ド 6の平 差替え用紙(規則 26) 面部 6 aのそのような部分に形成されているため、 吸入バルブを装着しなく ても、 一旦吸入された作動ガスが作動室 1 2の容積が減少する圧縮行程の間 に吸入ポート 6 bより逆流する事はない。 Also, as shown in FIG. 3, the slider 25 also revolves due to the eccentric motion of the crank pin portion 2a, but the movement of the slider 25 in the plane portion 26a direction is the same in both directions. Are not transmitted to the reciprocating member 26 because they are slidable with each other, and the reciprocating member 26 receives the reciprocating motion guided by the reciprocating guide portion 6d, that is, the reciprocating motion in the direction perpendicular to the movable cylinder 4. Only transmitted. As shown in Fig. 2 and Fig. 4, the working gas (fluid) at the suction pressure is compressed from the suction port 15 of the two places where the suction pipe 14 after branching into two is connected to the main chamber 9 The air flows into the machine, passes through the first-stage suction port (first suction port) 6 b formed in the cylinder head 6, and is sucked into the first-stage working chamber 12. . Since the movable cylinder 4 is guided by the fixed piston 5 and reciprocates in the direction of the piston bore 4c, the flat portion 6a of the cylinder head 6 increases the volume of the first-stage working chamber in the suction stroke. Only in the case of, there is a portion exposed to the first-stage working chamber 12. The suction port 6b is a flat sheet for cylinder head 6 (Rule 26) Formed in such a portion of the surface portion 6a, even if the suction valve is not mounted, the working gas once sucked flows through the suction port 6b during the compression stroke in which the volume of the working chamber 12 decreases. There is no backflow.
第 1段目の作動室 1 2内で中間圧力まで圧縮された作動ガスは、 シリンダ ヘッ ド 6に形成された第 1段目の吐出ポート 6 cとシリンダへッド 6に装着 された吐出バルブ 1 6、 予圧バネ 1 7およびバルブ支持部材 1 8を通過して、 メインチャンバ 9と上チャンバ 1 0と下チャン 1 1とにより形成される密 閉容器内の空間 1 9に吐出される。 旋回ピストン 1が可動シリンダ 4の旋回 ピス トンボア部 4 a方向に往復運動するため、 旋回ビストンの外周円筒面部 1 aの表面にも、 第 2段目の作動室 1 3の容積が増大する吸入行程の時のみ 作動室 1 3に露出する部分がある。 旋回ピス トンの外周円筒面 1 aにはその ような部分に第 2段目の吸入ポート (第 2の吸入ポート) I dが形成されて いる。 吸入ポート 1 dの具体的形状は、 可動シリンダ 4 'の旋回ピストンボア 部 4 aに開口している長穴部 4 bまで達するように、 旋回ビストン 1の外周 円筒面 1 aに形成された溝形状の通路であり、 作動室 1 ' 3が吸入行程の時の み密閉容器内の空間 1 9と作動室 1 3どを連通する。 したがって、 吸入バル ブを装着しなくても、 一旦吸入された作動ガスが圧縮行程の間に密閉容器内 の空間 1 9に逆流する事はない。  The working gas compressed to the intermediate pressure in the first-stage working chamber 12 is supplied to the first-stage discharge port 6c formed in the cylinder head 6 and the discharge valve mounted on the cylinder head 6. After passing through the preload spring 17 and the valve support member 18, the fluid is discharged into a space 19 in a closed container formed by the main chamber 9, the upper chamber 10 and the lower chamber 11. Since the revolving piston 1 reciprocates in the direction of the piston bore 4 a of the movable cylinder 4, the suction stroke in which the volume of the second-stage working chamber 13 increases also on the surface of the outer cylindrical surface 1 a of the revolving piston. There is a part exposed to the working chamber 13 only when A second-stage suction port (second suction port) Id is formed in such a portion on the outer peripheral cylindrical surface 1a of the orbiting piston. The specific shape of the suction port 1d is a groove formed on the outer circumference of the revolving piston 1 so as to reach the elongated hole 4b opening in the revolving piston bore 4a of the movable cylinder 4 '. It is a passage with a shape, and communicates the space 19 in the closed container with the working chamber 13 only when the working chamber 1'3 is in the suction stroke. Therefore, even if the suction valve is not mounted, the working gas once sucked does not flow back to the space 19 in the closed container during the compression stroke.
空間 1 9内の中間圧力の作動ガスは、 密閉容器内の空間 1 9から吸入ポー ト 1 dを通過し、 それぞれの作動室 1 3に吸入された後にさらに圧縮され、 固定ピストン 5の頭部に形成された第 2段目の吐出ポート 5 c とその内部に 組み込まれた吐出バルブ 2 0およぴ予圧バネ 2 1、 バルブ支持部材 2 2を逋 過し、 さらに、 固定ピストン 5の内部を通って、 最終的には一本に合流する 吐出配管 2 3の 2力所の吐出口 2 4から吐出圧力で圧縮機外に流出する。 以上のように、 従来のピストン頭部とその往復運動の案内をするシリンダ のボア部の関係を逆転させ、 ビストンの外周円筒面の代わりに内周円筒面を 差替え用紙(規則 26) 形成して可動シリンダの固定ピストンポア部 4 cとし、 シリンダには内周円 筒面であるポアの代わりに夕周円筒面を形成して固定ピス ンの頭部 5 bと している。 The working gas at the intermediate pressure in the space 19 passes through the suction port 1 d from the space 19 in the closed container, is further compressed after being sucked into the respective working chambers 13, and is further compressed. Through the second-stage discharge port 5c formed in the valve and the discharge valve 20 and the preload spring 21 and the valve support member 22 incorporated therein. And finally merges into one pipe. The discharge pipe 23 flows out of the compressor at discharge pressure from discharge ports 24 at two places. As described above, the relationship between the conventional piston head and the bore of the cylinder that guides the reciprocating motion is reversed, and instead of the outer cylindrical surface of the piston, the inner cylindrical surface is replaced (Rule 26). It is formed as a fixed piston pore portion 4c of the movable cylinder, and the cylinder has an evening cylindrical surface instead of the inner cylindrical surface of the pore to form a fixed piston head 5b.
第 1の実施例によれば、 合計 4つの作動室が形成できるので 1つの作動室 当たりの圧縮仕事が減り、 しかも、.それらの位相が互いにずれている事によ り全体の駆動トルク変動がならされる。 さらに、 2段圧縮方式としているた め各作動室での圧力比が小さくなり、 これによつても個々の作動室での駆動 トルク変動自体が小さくなる。 以上の結果、 トルク変動が大幅に均一化され る  According to the first embodiment, since a total of four working chambers can be formed, the compression work per working chamber is reduced, and further, since the phases thereof are shifted from each other, the overall driving torque fluctuation is reduced. It is done. Furthermore, because of the two-stage compression system, the pressure ratio in each working chamber is reduced, which also reduces the drive torque fluctuation itself in each working chamber. As a result, torque fluctuations are greatly uniformed
次に本実施例における往復運動に伴う慣性力を低減させる原理及ぴ機構に ついて説明する。 第 1の往復運動部材である可動シリンダ 4と略直角方向に 往镇運動する第 2の往復運動部材 2 6を設ける。 そして、 それらの質量と振 幅とを調整することにより各々の往復動慣性力の合力を大きさがほぼ一定で 方向がほぼクランクシャフト 2の回転速度で回転する荷重とすることができ る。 この荷重は、 偏心質量に作用する遠心力と等価であり、 クランクシャフ ト 2に固定した釣り合い重りでバランスさせることが可能となる。  Next, the principle and mechanism for reducing the inertial force accompanying the reciprocating motion in this embodiment will be described. A second reciprocating member (26) that makes a reciprocating motion in a direction substantially perpendicular to the movable cylinder (4) as the first reciprocating member is provided. By adjusting their mass and amplitude, the resultant force of the respective reciprocating inertial forces can be made a load having a substantially constant magnitude and rotating in the direction substantially at the rotation speed of the crankshaft 2. This load is equivalent to the centrifugal force acting on the eccentric mass, and can be balanced by the counterweight fixed to the crankshaft 2.
すなわち、 例えば、 クランクシャフ ト 2の角速度を ωとし、 X軸方向に 往復運動している可動シリンダの質量を 、 片振幅を とすると、 その X軸 の憒性カ Fxは次式で表される。 Fx = ml · ω2 - ^(ω - ή (1) 一方、 y軸方向に往復運動している第 2の往復運動部材の質量を 2 、 片 振幅を r2とすると、 その y軸の慣性力: vは次式で表される。 That is, for example, if the angular velocity of the crankshaft 2 is ω and the mass of the movable cylinder reciprocating in the X-axis direction is one-sided amplitude, the X-axis positive force F x is expressed by the following equation. You. F x = m l ω 2- ^ (ω-ή (1) On the other hand, if the mass of the second reciprocating member reciprocating in the y-axis direction is 2 and the half amplitude is r 2 , the y-axis Inertia force: v is expressed by the following equation.
F„ - m2 - r2 - 2■ sin(o) · ή (2) 互いに直角方向のこれら慣性力のべクトル合成力: ^の大きさ I は次式と 差替え用紙(規則 26) なる。 F "- m 2 - r 2 - 2 ■ sin (o) · ή (2) to each other base vector composite force of the inertial force of the perpendicular direction: ^ a magnitude I is the following formula and replacement sheets (Rule 26) Become.
F \ = (F ^ F - F \ = (F ^ F-
(3) 今、 . rx =»¾ · r2 =m . rとす tば、' m - r - ω 2 = const (4) (3) Now, if r x = »¾ r 2 = m .r t, then 'm-r-ω 2 = const (4)
の方向を αとすると tana =— ^ = tan((» - (5)  Is α, tana = — ^ = tan ((»-(5)
2 ·  2 ·
(4)式と(5)式から慣性力のべタ トル合成力 ^は大きさが一定でクランク シャフト 2の回転速度で回転する荷重であることがわかり、 クランクシャフ ト 2に固定した釣り合い重り 2 bでバランス可能であることが理解される。 以上の式から、 例えば、 冷蔵庫用のコンプレッサとして知られる駆動軸に よりシリンダ内を往復運動を行うビストンを一つだけ備えた所謂単気筒レシ プロ機に、 このピストンを駆動する駆動軸により駆動され、' ビストンの運動 方向に直角な往復運動を行う圧縮に寄与しない往復運動バランサを設けて、 駆動軸 ピストンの往復運動と往復運動バランサの慣性力に見合うバランス ウェイ トを設けることで、 ピストンの慣性力による振動を低減することがで きる。  From Equations (4) and (5), it can be seen that the combined force of inertia force is a load that rotates at the rotational speed of the crankshaft 2 with a constant magnitude, and the counterweight fixed to the crankshaft 2. It is understood that 2 b can be balanced. From the above formula, for example, a so-called single-cylinder reciprocating machine having only one piston that reciprocates in a cylinder by a drive shaft known as a refrigerator compressor is driven by a drive shaft that drives the piston. By providing a reciprocating balancer that does not contribute to compression and performs a reciprocating motion perpendicular to the direction of the motion of the piston, and by providing a balance weight that matches the reciprocating motion of the drive shaft piston and the inertia force of the reciprocating balancer, the inertia of the piston Vibration due to force can be reduced.
これらの機構を設けることにより、 圧縮機の加振力の原因となる駆動トル ク変動とァンバランス慣性力の両方が低減できるため、 非常に低振動な圧縮 機を提供することができ、 またその圧縮機構部と駆動用モータ部とを密閉容 器内にパネで浮かせて防振する構造が実用上不要となり、 防振構造の採用に 伴う圧縮機の大型化とコスト増加が防止される。 さらに、 各作動室はそれぞ れ部分的な仕事量を消化すればよいため、 各'作動寒が小型化され、 かつ駆動 用モー夕の回転軸周りに放射状に配置されるため、 一方向だけ半径方向に大 きく突出した状態でなく、 圧縮機全体が小径化される。 差替え用紙(規則 26) 次に、 上記説明した 4気筒の第 1の実施例における振動低減について説明 する。 クランクシャフト 2のクランクピン偏心量を とし、 その回転角速度 を ωとした場合、 第 1の往復運動質量である可動シリンダ 4 (稼動シリンダ の慣性力力 s最も^:,きいのでこの慣性力による加振力を低減させる目的) の X軸方向位置は By providing these mechanisms, it is possible to reduce both the drive torque fluctuation and the unbalanced inertia force, which cause the compressor's excitation force, so that a very low-vibration compressor can be provided. It is practically unnecessary to use a vibration-absorbing structure in which the mechanism and the drive motor are floated in a sealed container with a panel, which prevents the compressor from becoming larger and costly due to the adoption of the vibration-proofing structure. In addition, each working chamber only needs to consume a part of the work, so that each working cold is miniaturized, and it is arranged radially around the rotation axis of the driving motor. The whole compressor is reduced in diameter, instead of protruding largely in the radial direction. Replacement form (Rule 26) Next, vibration reduction in the first embodiment of the above-described four cylinders will be described. Assuming that the amount of eccentricity of the crankpin of the crankshaft 2 is, and that the rotational angular velocity is ω, the movable cylinder 4 (the inertial force of the operating cylinder s is the most For the purpose of reducing vibration force)
X = cos(ft) . t) (6) で表され、 同時に第 2の往復運動質量 (往復バランス部材) である往復運動 部材 2 6の y軸方向位 ¾は  X = cos (ft). T) (6), and at the same time, the reciprocating member 26, which is the second reciprocating mass (reciprocating balance member), has the y-axis position ¾
ァ = η . sin(G) - t ) (7) で表される。  A = η. Sin (G)-t) (7)
可動シリンダ 4の質量を 、 往復運動部材, 2 6の質量を 2をそれぞれ (6) 式と(7)式に乗じて時間 tで 2回微分し、 さらに (- 1)を乗じる事により各部 材の往復運動方向の慣性力 Fx, Fyが次式で表される。 The mass of the movable cylinder 4 is reciprocated by the reciprocating member, and the mass of 26 is multiplied by 2 with the equations (6) and (7), differentiated twice with time t, and further multiplied by (-1). The inertial forces F x , F y in the reciprocating direction of are expressed by the following equations.
Fx = m ' ωΛ · cos(© · t) (8) F.. = · · £ϋ" · sin( ω - 1) (9) F x = m 'ω Λ cos (© t) (8) F .. = · £ ϋ "sin (ω-1) (9)
(8)式と(9)式の関係は、 前出の(1)式と(2)式の関係と比較して ηが共通で ある点が異なる力?、 とする事により前記の(4)式と(5)式と同様の結果 が容易に導け、 それらのベクトル合成力^は、 大きさが一定でクランクシャ フトの回転速度で回転する荷重となることがわかる。 すなわち、 クランク シャフ トのバランスウェイ ト部分 2 bによりバランスさせることができる。 以上の結果、 第 1の実施例では圧縮機の加振力の原因となる駆動トルク変 動とァンバランスな往復運動の慣性力の両方が低減できるため、 非常に低振 動な圧縮機を提供する事ができるという効果がある。 ' 差替え用紙(規則 26) また、 その圧縮機構部と駆動用モータ部とを密閉容器内にパネで浮かせて 防振する構造が不要となり、 防振構造の採用に伴う圧縮機の大型化とコス ト 増加が防止できるという効果がある。 さらに、 1つの作動室当たりの圧縮仕 事カ?小さいため、 第 1の実施例の各作動室は例えば同容量で単気筒のレシプ 口式圧縮機に比べて小型化でき、 圧縮機全体が小径化できるという効果があ る。 また、 各作動室の圧力は、 クランクピン部 2 aに支持された旋回ピスト ン 1の頭部 1 cと外周円筒面部 1 aとに直接作用するため、 それらの圧力に よる荷重が作用して摩擦損失の発生する摺動部が少なくなり、 圧縮機の効率 が向上するという効果がある。 また、 第 1の実施例の第 1段目の作動室 1 2 では、 旋回ピストンポア径が比較的大きいにも拘わらず、 最高到達圧力が中 間圧力であるため旋回ピス トンの頭部 1 Cに作用する圧縮荷重力 s'小さい。 ま た、 第 2段目の作動室 1 3では、 最高到達圧力が吐出圧力に達するにも拘わ らず、 固定ピス トンボア径カ?比較的小さいので旋回ビストン外周円筒面部 1 aに作用する圧縮荷重が小さい。 すなわち、 第 1の実施例では、 2段圧縮と したことによ り、 旋回ビス トンの円筒穴部 1 bとクランクピン部 2 aとの摺 動部に作用する荷重の最大値力 ?低下して摺動条件が緩和され、 信頼性が向上 するという効果がある。 The relationship between Eqs. (8) and (9) is different from the relationship between Eqs. (1) and (2) given above in that the force is different in that η is common. The results similar to Eqs.) And Eq. (5) can be easily derived, and it can be seen that their vector composite force ^ is a load of constant magnitude and rotating at the crankshaft rotation speed. That is, the balance can be achieved by the balance weight portion 2b of the crankshaft. As a result, in the first embodiment, since both the drive torque fluctuation and the inertial force of the reciprocating motion in an unbalanced manner, which cause the exciting force of the compressor, can be reduced, a very low vibration compressor is provided. The effect is that you can do things. '' Replacement forms (Rule 26) In addition, there is no need to use a panel to float the compression mechanism and the drive motor in a closed container with a vibration isolator, which can prevent the compressor from becoming larger and costly due to the adoption of the vibration isolator. There is. Furthermore, since one compression specifications Kotka per working chamber? Small, the working chamber of the first embodiment can be miniaturized as compared with the recip port compressor single cylinder at the same volume for example, the entire compressor is small This has the effect of making it possible. In addition, the pressure of each working chamber directly acts on the head 1c of the revolving piston 1 and the outer cylindrical surface 1a supported by the crank pin 2a, so that the load due to the pressure acts on the head 1c. This has the effect of reducing the sliding parts where friction loss occurs and improving the efficiency of the compressor. Further, in the first-stage working chamber 12 of the first embodiment, despite the relatively large diameter of the revolving piston pore, the maximum attained pressure is an intermediate pressure, so that the head 1C of the revolving piston is located at the head 1C. Applied compressive load s' small. Also, in the second stage of the working chamber 1 3, Razz I contracture in maximum ultimate pressure reaches the discharge pressure, the compression acting on the fixed piston Tonboa 径Ka? Relatively small because the turning Bisuton outer peripheral cylindrical surface portion 1 a The load is small. That is, in the first embodiment, Ri by the fact that a two-stage compression, the maximum force of the load acting on the sliding portion of the cylindrical hole 1 b and the crank pin portion 2 a of the pivot bis tons? Lowered This has the effect of reducing the sliding conditions and improving the reliability.
さらに、 第 1の実施例では、 吸入バルフ、'が不要な構造であるため、 吸入経 路の通路抵抗と作動室の残留ガス空間が低減でき、 圧縮機の効率と能力が向 上するという効果がある。  Furthermore, in the first embodiment, since the suction valve is not required, the passage resistance of the suction passage and the residual gas space in the working chamber can be reduced, and the efficiency and capacity of the compressor are improved. There is.
また、 第 1の実施例では、 2段圧縮としたことにより各段の圧力比が大幅 に低下し、 各作動室の残留ガスの再膨張の悪影響が小さくなって圧縮機の能 力が向上するという効果がある。  Also, in the first embodiment, the pressure ratio of each stage is significantly reduced due to the two-stage compression, the adverse effect of the re-expansion of the residual gas in each working chamber is reduced, and the performance of the compressor is improved. This has the effect.
さらに、 第 1の実施例では、 密閉容器内の空間 1 9が中間圧力となってお り、 第 1段目の作動室 1 2の気密を維持するためには、 たかだか中間圧力と 吸入圧力の差圧だけをシールすればよく、 第 2段目の作動室 1 3の気密を維 差替え用紙(規則 26) 持するためには、 たかだか吐出圧力と中間圧力の差圧だけをシールすればよ レ、。 すなわち、 従来の 1段圧縮の場合の吐出圧力と吸入圧力との差圧に比べ でノールすべき差圧が小さく、 これによる内部漏洩の低減で圧縮機の効率と 能力が向上するという効果がある。 Furthermore, in the first embodiment, the space 19 in the sealed container has an intermediate pressure, and in order to maintain the airtightness of the first-stage working chamber 12, at most the intermediate pressure and the suction pressure are required. Only the differential pressure needs to be sealed, and the airtightness of the second-stage working chamber 13 is maintained. In order to maintain the pressure, only the differential pressure between the discharge pressure and the intermediate pressure needs to be sealed. In other words, the differential pressure to be reduced is smaller than the differential pressure between the discharge pressure and the suction pressure in the case of the conventional single-stage compression, and this has the effect of improving the efficiency and capacity of the compressor by reducing internal leakage. .
第 5図〜第 6図に本発明の第 2の実施例を示す。 基本構造は第 1図〜第 4 図に示す第 1の実施例と同様な部分力多いため、 以下、 第 2の実施例特有の 部分を中心に説明する。 第 2の実施例では第 5図〜第 6図に示すように、 往 復運動ピストン部材 2 7がビストンピン 2 8 'により連結されたコンロッ ド 2 9を介して、 クランクシャフト 2 'の下部に固定された第 2のクランクピン 部材 3 0により往復運動部材 2 6 ' と同方向にほぼ同位相で往復運動する構 成となっている。 すなわち、 往復運動ピストン部材 2 7の質量とピストンピ ン 2 8の質量とコンロッ ド 2 9の質量の一部 (小端部周りの質量) とを合計 したものを第 3の往復運動質量として持ち、 該第 3の往復運動質量と第 2の 往復運動質量である往復運動部材 2 6 ' とを、 第 Ίの往復運動質量である可 動ビストン 4を間に挟んで軸方向の雨側に持つ構成となっている。  5 and 6 show a second embodiment of the present invention. Since the basic structure is similar to that of the first embodiment shown in FIGS. 1 to 4, it will be described mainly on the parts unique to the second embodiment. In the second embodiment, as shown in FIG. 5 and FIG. 6, the reciprocating piston member 27 is fixed to the lower part of the crankshaft 2 ′ via a condro 29 connected by a biston pin 28 ′. The reciprocating member 26 ′ reciprocates in the same direction and in substantially the same phase by the second crankpin member 30 thus formed. That is, the sum of the mass of the reciprocating piston member 27, the mass of the piston pin 28, and a part of the mass of the connecting rod 29 (the mass around the small end) is provided as the third reciprocating mass, A configuration in which the third reciprocating mass and the reciprocating member 26 ′ that is the second reciprocating mass are on the rain side in the axial direction with the movable biston 4 that is the second reciprocating mass interposed therebetween. It has become.
第 3の往復運動質量を .とし、 第 2のクランクピン部材 3 0の偏心量を r2 とすると、 第 3の往復運動質量のようにクランクスライダ機構による往復運 動は完全な正弦運動にはならないが、 その y軸方向の慣性力 は概ね次式 で表される。 Fy = τη3 · }·2 - ω2 - siai - t) (10) クランクシャフト 2 :の偏心量を第 1の実施例と同じく ηとし、 往復運動 部材 2 6 ' の質量を 2 とすれば、 その y軸方向の慣性力^ は概ね次式で表' れる The third reciprocating mass and., When the amount of eccentricity of the second crank pin member 3 0 and r 2, the reciprocating movements by the crank slider mechanism as in the third reciprocating mass to complete sinusoidal motion However, the inertial force in the y-axis direction is roughly expressed by the following equation. F y = τη 3 ··· 22 -siai-t) (10) The eccentricity of the crankshaft 2 is set to η as in the first embodiment, and the mass of the reciprocating member 26 ′ is set to 2. If the inertial force in the y-axis direction is approximately
Fy = m2 · r, · ω2 · sin(<i) - t ) Γ11) 差替え用紙 (規則 26) なお、 往復運動部材 2 6 ' の質量《¾'は第 1の実施例のそれ m2に比べて若 干小さい。 F y = m 2 r, ω 2 sin (<i)-t) Γ11) Replacement sheet (Rule 26) Incidentally, 'mass "¾ of' the reciprocating member 2 6 young interference smaller than that m 2 of the first embodiment.
第 2の実施例における可動ピストン 4は、 第 1の実施例のそれと同じである のでその X軸方向の慣性力 Fxは(8)式で表される。 Since the movable piston 4 in the second embodiment is the same as that in the first embodiment, the inertial force F x in the X-axis direction is expressed by the following equation (8).
第 5図に示すように、 可動ピストン 4と往復運動部材 2 6 ' との軸方向距 離を 、 可動ピ トン 4と往復運動ビストン鄧材 2 7との軸方向距離を と した時に、 第 2の実施例の構成では '  As shown in FIG. 5, when the axial distance between the movable piston 4 and the reciprocating member 26 ′ is defined as the axial distance between the movable piston 4 and the reciprocating biston member 27, the second distance is obtained. In the configuration of the embodiment of
Fy + Fy = FX (12) F y + F y = F X (12)
Fy - L2 = Fy - Lx (13) の両式を同時に満足する 、 m3、 r2の組み合わせを選定する事ができる。 すなわち、 第 2の実施例の構成では、 X軸方向の慣性カ^と y軸方向の慣 性力 Fy + Fy は軸方向の同一平面内に作用する力としてベク トル合成され、 大きさが一定でクランクシャフト 2 'の回転速度で回転する荷重となる。 ' 従って、 クランクシャフ トのバランスウェイ ト部分 2 ' bや駆動モータの ロータ部 8 aに取り付けられたバランスウエイ ト 3 1 によ り、 X軸方向と y軸方向の慣性力だけでなく、 X軸と y軸周りに慣性力によつて発生する モーメントまで、 ほぼ完全にバランスさせる'事ができる。 なお第 1の実施例 の構]^では、 X軸方向と y軸方向の慣性力は完全にバランスさせる事がで きる力、 X軸と y軸周りに慣性力によつて発生するモーメントまで完全に ノ ランスさせる事はできない。 F y -L 2 = F y -L x (13) A combination of m 3 and r 2 that satisfies both equations at the same time can be selected. That is, in the configuration of the second embodiment, inertial force F y + F y inertia mosquito ^ and y-axis direction of the X-axis direction is vector synthesized as a force acting in the axial direction of the same plane, the size Is constant and the load rotates at the rotation speed of the crankshaft 2 '. '' Therefore, not only the inertia force in the X-axis direction and the y-axis direction, but also the X-axis and y-axis inertia forces are obtained by the balance weight 31 attached to the crankshaft balance weight part 2 b and the drive motor rotor part 8a. The moment generated by the inertial force around the axis and y-axis can be almost completely balanced. In the structure of the first embodiment] ^, the inertia force in the X-axis direction and the y-axis direction can be completely balanced, and the moment generated by the inertia force around the X-axis and y-axis is completely It is not possible to let them know.
以上のように、 第 2の実施例では慣性バランスをより完全にとる事ができ るので、 第 1の実施例に比べてさらに低振動な容積形圧縮機を提供できると いう効果がある。 その他の第 1の実施例における効果は第 2の実施例でも同 様に得られる。  As described above, the inertia balance can be more completely achieved in the second embodiment, so that there is an effect that a positive displacement compressor with lower vibration can be provided as compared with the first embodiment. The other effects of the first embodiment can be similarly obtained in the second embodiment.
差替え用紙(規則 26) なお、 第 2の実施例における第 3の往復運動質量は、 第 2のクランクピン. 部材 3 0 とコンロッ ド 2 9とピストンピン 2 8と往復運動ピストン部材 2 7、 および、 往復運動ピストン部材 2 7の往復運動の案内をするシリンダ部材 3 2からなる 「クランク一スライダ機構」 により、 往復運動を与えられる構造 であるが、 これは第 2の往復運動質量である往復運動部材 2 6 ' に往復運動 を与えている 「スコッチヨーク機構」 を用いて往復運動を与えられる構造と してもかまわない。 また逆 、 第 1の実施例と第 2の実施例において 「ス コッチョーク機構」 により第 2の往復運動質量に往復運動を与えていた構造 を, 「クランク一スライダ機構」 により往復運動を与えらる構造に変えても 上記の発明の効果はほぼ同様に得られる。 , Replacement form (Rule 26) The third reciprocating mass in the second embodiment is the second crank pin. The member 30, the connector 29, the piston pin 28, the reciprocating piston member 27, and the reciprocating piston member 2 The reciprocating motion is given by a “crank-slider mechanism” consisting of a cylinder member 32 that guides the reciprocating motion of the reciprocating motion. A reciprocating motion may be provided using the "Scotch yoke mechanism" that provides motion. Conversely, in the first and second embodiments, the reciprocating motion is given to the second reciprocating mass by the “sketch choke mechanism”, but the reciprocating motion is given to the “crank-slider mechanism”. Even if the structure is changed, the effects of the invention described above can be obtained almost in the same manner. ,
上記説明した第 1及び第 2の実施例によれば、 可動シリンダの旋回ビスト ンボアの内部と固定ピストンボアの内部とに、 それぞれ 2つずつの第 1の作 動室と前記 2の作動室が形成され合計 つの作動室が形成できる。' しかも、 それら力 ?旋回ビス トンの公転運動に伴い 9 0度ずつ移送のずれた容積変化を 繰り返すため、 全体の仕事量を 4つに分散させて各作動室で行なわす事がで き、 各作動室の駆動トルク変動が低減されることに加えて位相のずれた駆動 トルク変動が重ね合わされてトルク変動力 s均一化される。 特に、 第 1の作動 室で第 1段目の圧縮を行なつた後に第 2の作動室に導いて第 2段目の圧縮を 行なう 2段圧縮方式とした場合、 各作動室での個々の駆動トルク変動自体が、 各作動室での圧力比が小さくなる事により小さくなるため、 トルク変動がよ り均一化される。 . · According to the first and second embodiments described above, two first working chambers and two working chambers are respectively provided inside the swivel piston bore of the movable cylinder and inside the fixed piston bore. A total of two working chambers can be formed. 'Moreover, Ki they force? Turning to repeat the offset change in the volume of the bis tons revolving nine 0 ° with the motion transfer, de be be made by dispersing the four overall workload in each working chamber, In addition to the reduction of the driving torque fluctuation of each working chamber, the driving torque fluctuations having a phase shift are superimposed and the torque fluctuation force s is made uniform. In particular, in the case of a two-stage compression system in which the first compression is performed in the first working chamber and then guided to the second working chamber to perform the second compression, the individual compression in each working chamber is considered. Since the drive torque fluctuation itself becomes smaller as the pressure ratio in each working chamber becomes smaller, the torque fluctuation becomes more uniform. ·
第 1の作動室と第 2の作動室はそれぞれ旋回ビストンの両端部あるいは外 周部を構成要素とした内周壁面により形成された密閉空間であり、 各作動室 の圧力は直接旋回ビストンの両端部や外周部に作用し、 次に旋回ビストンは クランクシャフトのクランクピン部の摺動荷重により直接支持される。 すな わち、 従来技術で大きな摺動荷重が作用して摩擦損失を増大させる原因と 差替え用紙(規則 26) なっていたスライダとピストンとの間の摺動部に相当する摺動箇所が少なく なり、 圧縮機の効率を向上できる。 またクランクシャフトは、 上死点の状態 にある 1つの作動室に対して圧縮仕事をしていなくても、 他の作動室に対し て常に必ず有効な圧縮仕事を行なっており、 軸受荷重による摩擦損失は常に ある有効仕事に対して発生することになり、 有効仕事に対する摩擦損失の割 合を低減し、 効率を向上させることができる。 The first working chamber and the second working chamber are sealed spaces formed by inner peripheral wall surfaces that are constituted by both ends or the outer periphery of the swivel piston, and the pressure of each working chamber is directly applied to both ends of the swivel piston. And the outer periphery, and then the turning piston is directly supported by the sliding load of the crankpin of the crankshaft. In other words, the conventional technology causes a large sliding load to act and increases the friction loss. The number of sliding portions corresponding to the sliding portion between the slider and the piston, which has been reduced, is reduced, and the efficiency of the compressor can be improved. In addition, the crankshaft always performs effective compression work for the other working chamber even if it does not perform compression work for one working chamber at the top dead center, and friction due to bearing load Losses always occur for a certain amount of useful work, and the ratio of friction loss to useful work can be reduced and efficiency can be improved.
各作動室が容積の変化を行なう際に、 可動シリンダはシリンダへッ ドに対 して往復運動を行ない、 旋回ピストンは可動シリンダに対して往復運動を行 なうため、 各作動室 形成する壁面の中で、.可動シリンダの旋回ピストンポ ァ内の第 1の作動室を形成するシリンダヘッ ドと、 固定ピス トンボア内の第 2の作動室を形成する旋回ビストン側面には、 それぞれの作動室の容積が増 '大する間だけ作動室に露出する吸入ポートを開口することが可能であり、 通' 路抵抗増大の原因であつた吸入バルブが不要となる。  When each working chamber changes its volume, the movable cylinder reciprocates with respect to the cylinder head, and the orbiting piston reciprocates with respect to the movable cylinder. The cylinder head forming the first working chamber in the swiveling piston port of the movable cylinder and the side of the swiveling piston forming the second working chamber in the fixed piston bore have the respective working chamber volumes. It is possible to open the suction port exposed to the working chamber only while the pressure increases, eliminating the need for the suction valve that caused the increase in the passage resistance.
また、 従来の吸入バルブを用いた構造では、 吸入バルブのリフト規制部や シリンダへッ ド表面の吸入バルブ装着部以外の'部分に、 残留ガス空間ができ るのに対して、 吸入バルブのない構造とすることによって残留ガス容積を減 少させる設計が可能となる。 , : In addition, in the conventional structure using a suction valve, a residual gas space is created in a part other than the lift restriction part of the suction valve and the part on the cylinder head surface where the suction valve is mounted, whereas there is no suction valve. The structure enables a design to reduce the residual gas volume. , :
次に、 2種類のボア断面積を設けており、 ボア断面積の大きい第 1の作動 室で第一段目の圧縮を終了した流体をボア断面積の小さい第 2の作動室に導 いて第 2段目の圧縮を行なう構造にできる。 このため、 旋回ピストンのボア の断面積が比較的大きくても、 そこの第 1の作動室を第 1段目の圧縮に用い ることによ'り、 その最高作用圧力はまだ中間圧力であり、 固定ピストンボア での最高圧力は第 2段目の圧縮により圧縮機の吐出圧力に達するがその断面 積は小さくなる。 すなわち、 旋回ピストン頭部や側面に作用する圧縮荷重は、 いずれも、 従来のピストン頭部に作用する圧縮荷重に比べて小さくなる。  Next, two types of bore cross-sectional areas are provided, and the fluid that has completed the first stage compression in the first working chamber with a large bore cross-sectional area is guided to the second working chamber with a small bore cross-sectional area. A structure that performs second-stage compression can be provided. Therefore, even if the cross-sectional area of the bore of the orbiting piston is relatively large, the maximum working pressure is still the intermediate pressure by using the first working chamber there for the first stage compression. However, the maximum pressure in the fixed piston bore reaches the discharge pressure of the compressor due to the second stage compression, but its cross-sectional area becomes smaller. In other words, the compressive load acting on the revolving piston head and side faces is smaller than the conventional compressive load acting on the piston head.
また、 2段圧縮を行なう構造では、.圧縮機の密閉容器内の圧力を第 1段目 差替え用紙 (規則 26) の吐出圧力である中間圧力とする事により、 第 1段目の第 1の作動室でシー ルすべき差圧は圧縮機の吸入圧と中間圧との差圧、 第 2段目の第 2の作動室 でシールすべき差圧は中間圧と圧縮機の吐出圧力との差圧となり、 いずれも、 従来のシールすべき差圧である吸入圧力と吐出圧力との差圧より小さくなつ て内部漏洩が減少する。 また、 2段圧縮を行なう構造では、 1段で圧縮を完 了する場合の圧力比に比べて各段の圧力比がいずれも小さくなるため、 各作 動室の残留ガスの再膨張の影響力 s小さくなり、 圧縮機の能力が向上できる。 次に、 圧縮機の部品構成と各部品の形状や機能は、 従来のレシプロ式圧縮 機の構成部品のそれと大差がなく、 能率的な円筒面や平面の加工のための従 来の設備、 加工技術を用いることができるので、 低コストでの生産が可能と なる。 In the case of two-stage compression, the pressure inside the airtight container of the compressor must be changed to the first-stage replacement paper (Rule 26). The differential pressure to be sealed in the first working chamber of the first stage is the differential pressure between the suction pressure of the compressor and the intermediate pressure, and the second pressure of the second stage is The differential pressure to be sealed in the working chamber is the differential pressure between the intermediate pressure and the discharge pressure of the compressor, and both are smaller than the differential pressure between the suction pressure and the discharge pressure, which is the conventional differential pressure to be sealed. Leakage is reduced. Also, in a structure that performs two-stage compression, the pressure ratio in each stage is smaller than the pressure ratio when compression is completed in one stage, so the influence of the re-expansion of residual gas in each working chamber s can be reduced, and the capacity of the compressor can be improved. Next, the component configuration of the compressor and the shape and function of each component are not much different from those of the components of the conventional reciprocating compressor, and conventional equipment and processing for efficient cylindrical and planar processing are efficient. Since technology can be used, low-cost production is possible.
以上説明 した よ う に、 本発明によれば、 駆動トルク変動とァンバ ランス慣性力の両方を低減し、'低振動である容積形機械を提供することがで きるという効果を有する。  As described above, according to the present invention, it is possible to provide both a low-vibration positive displacement machine by reducing both the drive torque fluctuation and the balance inertia force.
差替え用紙(規則 26) Replacement form (Rule 26)

Claims

請求の範囲  The scope of the claims
1 . 駆動軸に連結されこの駆動軸の回転に伴って往復運動し、 この往復運 動により作動室に容積変化が生じる往復運動部材を備えた容積形機械におい て、 前記駆動軸に連結されこの駆動軸の回転に伴つて往復運動する往復バラ ンス部材を備えた容積形機械。 '  1. In a positive displacement machine provided with a reciprocating member that is connected to a drive shaft and reciprocates with the rotation of the drive shaft, and the reciprocating motion causes a change in the volume of the working chamber, this is connected to the drive shaft. A positive displacement machine equipped with a reciprocating balance member that reciprocates as the drive shaft rotates. '
2 . 駆動軸に連結されこの駆動軸の回転に伴って往復運動し、 この往復運動 により作動室に容積変化が生じる往復運動部材を備えた容積形機械において、 前記駆動軸に連結されごの駆動軸の回転に伴つて往復運動する往復バランス 部材と、 前記駆動軸に設けられ、 前記往復運動部材及び前記往復ノ ランス部 材に基づくバランスウェイトとを備えた容積形機械。  2. A positive displacement machine having a reciprocating member that is connected to a drive shaft and reciprocates with the rotation of the drive shaft, and the reciprocating motion causes a volume change in the working chamber. A positive displacement machine comprising: a reciprocating balance member that reciprocates with rotation of a shaft; and a balance weight provided on the drive shaft and based on the reciprocating member and the reciprocating translation member.
3 . 公転運動を行なう円筒状の旋回運動部材と、 この旋回運動部材に公転運 動を与える駆動機構と、 この駆動機構を支持する固定フレーム部材と、 前記 旋回運動部材が往復運動可能に挿入されるボア部を有しこのボア部の軸と略 直交方向に往復運動可能に支持され、 前記旋回運動部材との相対的な往復運 動若しくは前記固定フレーム部材に対する往復運動により作動室に容積変化 を生じさせる第 1の往復運動部材と、 前記駆動機構により駆動され、 この第- 1の往復運動部材に対する前記旋回運動部材の相対的な往復運動と略同位相 で前記第 1の往復運動部材と略直交方向に往復運動方向し、 作動室を形成し ない第 2の往復運動部材とを備えた容積形機械。 - 4 , 公転運動を行なう円筒状の旋回運動部材と、 この旋回運動部材に公転運 動を与える駆動機構と、 この駆動機構を支持する固定フレーム部材と、 前記 旋回運動部材が往復運動可能に挿入されるボア部を有しこのボア部の軸と略 直交方向に往復運動可能に支持され、 前記旋回運動部材との相対的な往復運 動若しくは前記固定フレーム部材に対する往復運動により作動室に容積変化 を生じさせる第 1の往復運動部材と、 前記駆動機構により駆動され、 前記第 1の往復運動部材に対する前記旋回運動部材の相対的な往復運動と略同位相 差替え用紙 (規則 26) で前記第 1の往復運動部材と B各直交方向に往復運動方向する第 2の往復運動 部材と、 前記駆動機構により駆動され、 前記第 1の往復運動部材に対する前 記旋回運動部材の相対的な往復運動と略同位相で前記第 1の往復運動部材と 略直交方向に往復運動方向する第 3の往復運動部材とを備え、 前記第 2.の往 復運動部材と前記第 3の往復運動部材とは前記第 1の往復運動部材を間に挟 んで軸方向に配置されている容積形機械。 3. A cylindrical revolving member for revolving motion, a drive mechanism for revolving the revolving motion member, a fixed frame member for supporting the driving mechanism, and the revolving member inserted reciprocally. A reciprocating motion in a direction substantially orthogonal to the axis of the bore portion, and a change in volume in the working chamber due to reciprocating motion relative to the revolving member or reciprocating motion relative to the fixed frame member. A first reciprocating member to be generated; driven by the drive mechanism; and substantially the same as the first reciprocating member in substantially the same phase as the reciprocating movement of the revolving member relative to the first reciprocating member. A positive displacement machine comprising: a second reciprocating member that reciprocates in an orthogonal direction and does not form a working chamber. -4, a cylindrical orbiting member for revolving motion, a drive mechanism for providing orbital motion to the orbiting member, a fixed frame member for supporting the driving mechanism, and the orbiting member inserted reciprocally. And is supported so as to be able to reciprocate in a direction substantially orthogonal to the axis of the bore portion, and the volume of the working chamber is changed by reciprocating motion relative to the revolving member or reciprocating motion with respect to the fixed frame member. A first reciprocating member for generating the following reciprocating motion; and a sheet having substantially the same phase as a reciprocating motion of the revolving member relative to the first reciprocating member driven by the driving mechanism (Rule 26) A first reciprocating member, a second reciprocating member that reciprocates in each of the orthogonal directions B, and a second reciprocating member that is driven by the driving mechanism; The first reciprocating member having substantially the same phase as the reciprocating motion, and a third reciprocating member reciprocating in a direction substantially orthogonal to the first reciprocating member. The second reciprocating member and the third reciprocating member. Is a positive displacement machine arranged in the axial direction with the first reciprocating member interposed therebetween.
5 . 公転運動を行なう旋回ピストンと、 この旋回ピストンに回転自在に揷入 されたクランクピン部によ りこの旋回ピストンに公転運動を与えるクランク シャフトと、 このクランクシャフトを支持する固定フレーム部材と、 前記旋 回ピストンカ s往復動可能に挿入される旋回ピストンボア部およぴこの旋回ピ ストンボア部に直交して突出する少なく とも一つの固定ピストンボア部を有 する可動シリンダと、 それぞれの固定ピストンポア部に往復運動可能に揷入 され前記固定フレーム部材に固定される少なく とも一つの固定ピストンと、 前記旋回ビストンボア部の少なく とも一方の端面を閉塞し前記固定フレーム 部材に固定される少なく とも一つのシリンダへッ ドと、 前記旋回ピストンの それぞれの頭部端面と前記旋回ピストンポア部とそれぞれのシリンダへッド とにより少なく とも一つ形成された第 1の作動室と、 それぞれの固定ピスト ンボア部とそれぞれの固定ビストンと前記旋回ピストンの外周とにより少な くとも一つ形成された第 2の作動室と、 -前記旋回ピストンの公転運動に伴い 前記第 1の作動室および前記第 2の作動室の容積を増減させて流体の圧縮作 5. A revolving piston that revolves, a crankshaft that revolves the revolving piston with a crankpin that is rotatably inserted into the revolving piston, a fixed frame member that supports the crankshaft, A rotating piston bore portion inserted reciprocally; a movable cylinder having at least one fixed piston bore portion projecting perpendicular to the rotating piston bore portion; and a fixed piston bore portion. At least one fixed piston inserted reciprocally into the fixed frame member and at least one cylinder fixed to the fixed frame member by closing at least one end face of the orbiting piston bore portion. A head, an end face of each head of the orbiting piston, and the orbiting piston pore And at least one first working chamber formed by at least one cylinder head, at least one first piston formed by at least one fixed piston bore, at least one fixed piston, and at least one outer periphery of the orbiting piston. A second working chamber;-increasing or decreasing the volumes of the first working chamber and the second working chamber in accordance with the revolving motion of the orbiting piston to compress the fluid;
' 用を行なう流体出入流通機構と、 前記可動シリンダと略直角方向に往復運動 する第 2の往復運動部材とを備えた容積形圧縮機。 And a second reciprocating member reciprocating in a direction substantially perpendicular to the movable cylinder.
6 . 公転運動を行なう旋回ピストンと、 この旋回ピストンに回転自在に挿入 されたクランクピン部によりこの旋回ピストンに公転運動を与えるクランク シャフトと、 このクランクシャフトを支持する固定フレーム部材と、 前記旋 回ビストンが往復動可能に揷入される旋回ピ トンボア部およびこの旋回ピ 差替え用紙(規則 26) ストンボア部に直交して突出する少なくとも一つの固定ピストンボア部を有 する可動シリンダと、 それぞれの固定ピストンポア部に往復運動可能に挿入 され前記固定フレーム部材に固定される少なくとも一つの固定ピストンと、 前記旋回ピストンボア部の少なく とも一方の端面を閉塞し前記固定フレーム 部材に固定される少なくとも一つのシリンダへッ ドと、 前記旋回ピストンの それぞれの頭部端面と前記旋回ピストンボァ部とそれぞれのシリンダへッ ド とにより少なく とも一つ形成された第 1の作動室と、 それぞれの固定ビスト ンポア部とそれぞれの固定ピストンと前記旋回ビストンの夕周とにより少な く とも一つ形成された第 2の作動室と、 前記旋回ピストンの公転運動に伴い 前記第 1の作動室およぴ前記第 2の作動室の容積を増減させて流体の圧縮作 用を行なう流'体出入流通機構と、 前記可動シリンダと略直角方向に往復運動 する第 2の往復運動部材と、 前記可動シリンダと略直角方向に往復運動し、 前記第 2の往復運動部材と共に軸方向に前記第 1の往復運動部材を挟む位置 に配置された第 3の往復運動部材とを備えた容積形 ·圧縮機。 6. A revolving piston that revolves, a crankshaft that revolves the revolving piston with a crankpin that is rotatably inserted into the revolving piston, a fixed frame member that supports the crankshaft, Swivel piston bore where the piston can be reciprocated and this swivel replacement sheet (Rule 26) A movable cylinder having at least one fixed piston bore protruding orthogonally to the stone bore, at least one fixed piston inserted reciprocally into each fixed piston bore and fixed to the fixed frame member; At least one cylinder head which closes at least one end face of the revolving piston bore and is fixed to the fixed frame member; a head end face of the revolving piston, the revolving piston bore and the respective cylinder head; And at least one second working chamber formed with at least one fixed piston hole portion, at least one fixed piston, and at least one evening of the orbiting piston. And the volumes of the first working chamber and the second working chamber due to the revolving motion of the orbiting piston. A fluid reciprocating mechanism that reciprocates in a direction substantially perpendicular to the movable cylinder; a reciprocating member that reciprocates in a direction substantially perpendicular to the movable cylinder; a reciprocating member that reciprocates in a direction substantially perpendicular to the movable cylinder; A positive displacement compressor comprising: a third reciprocating member disposed at a position sandwiching the first reciprocating member in an axial direction together with a second reciprocating member.
7 . 請求の範囲 5または 6において、 二つの固定ピス トンボア部と二つの固 定ピストンと二つのシリンダヘッ ドとを設け、 二つの第 1の作動室と二つの 第 2の作動室を形成した容積形圧縮機。  7. The volume in Claim 5 or 6, wherein two fixed piston bores, two fixed pistons, and two cylinder heads are provided, and two first working chambers and two second working chambers are formed. Shape compressor.
8 . 請求の範囲 3乃至 5のいずれかにおいて、 前記流体出入流通機構は、 そ れぞれのシリ ンダへッ ドに設けられ、 旋回ピ.ス トンの公転運動に伴いそれぞ れの第 1の作動室の容積が増大する間のみ'それぞれの第 1の作動室と連通す る少なくとも一つの第 1の吸入ポートと、 前記旋回ビストンに設けられそれ ぞれの第 2の作動室の容積が増大する間のみそれぞれの第 2の作動室と連通 する少なくとも一 の第 2の吸入ポートとよりなる容積形圧縮機。  8. In any one of claims 3 to 5, the fluid inflow / outflow mechanism is provided in each cylinder head, and the first inflow / outflow mechanism is provided in accordance with the revolving motion of the swivel piston. Only while the volume of the first working chamber increases, at least one first suction port communicating with the respective first working chamber, and the volume of each second working chamber provided in the swivel piston. A positive displacement compressor comprising at least one second suction port in communication with each second working chamber only while increasing.
9 . 請求の範囲.8において、 それぞれの吐出ポートは流体の前後の圧力差に より開閉する吐出バルブを装着している容積形圧縮機。  9. The positive displacement compressor according to claim 8, wherein each discharge port is equipped with a discharge valve that opens and closes according to a pressure difference between the front and rear of the fluid.
1 0 . 請求の範囲 5乃至 9のいずれかにおいて、 前記可動シリンダには、 旋 差替え用紙(規則 26) 回ビストンボア部のそれぞれの端面とシリンダへッ ドとの隙間をシールする シ一ル部材力取り付けられている容積形圧縮機。 10. The movable cylinder according to any one of claims 5 to 9, wherein the movable cylinder includes a rotation replacement sheet (Rule 26). A positive displacement compressor fitted with a seal member that seals the gap between each end face of the rotating biston bore and the cylinder head.
1 1 . 請求の範囲 5乃至 1 0のいずれかにおいて、 前記旋回ピストンは、'そ の断面積がそれぞれの固定ピストンの断面積より大きく形成されるとともに、 流体をそれぞれの第 1の作動室で第 1段目の圧縮を行ない、 次にそれぞれの 第 2の作動室に導いて第 2段'目の圧縮を行なう容積形圧縮機。  11. In any one of claims 5 to 10, wherein the orbiting piston has a cross-sectional area larger than a cross-sectional area of each fixed piston, and fluid flows in each of the first working chambers. A positive displacement compressor that performs the first stage compression, and then leads to each second working chamber to perform the second stage compression.
差替え用紙 (規則 26) Replacement form (Rule 26)
PCT/JP2000/001649 2000-03-17 2000-03-17 Displacement type machinery WO2001071188A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/001649 WO2001071188A1 (en) 2000-03-17 2000-03-17 Displacement type machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/001649 WO2001071188A1 (en) 2000-03-17 2000-03-17 Displacement type machinery

Publications (1)

Publication Number Publication Date
WO2001071188A1 true WO2001071188A1 (en) 2001-09-27

Family

ID=11735806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001649 WO2001071188A1 (en) 2000-03-17 2000-03-17 Displacement type machinery

Country Status (1)

Country Link
WO (1) WO2001071188A1 (en)

Similar Documents

Publication Publication Date Title
US6659744B1 (en) Rotary two axis expansible chamber pump with pivotal link
JP5040907B2 (en) Refrigeration equipment
KR100850847B1 (en) Rotary fluid machine
KR100768597B1 (en) Reciprocating compressor
JP4407771B2 (en) Rotary fluid machine
JP2008240667A (en) Rotary compressor
KR101870179B1 (en) Rotary compressor with dual eccentric portion
EP1486677A1 (en) Rotary compressor
JPH0458086A (en) Fluid compressor
JP2005188492A (en) Horizontal opposed type compressor
JP4065654B2 (en) Multi-cylinder rotary compressor
JP4609496B2 (en) Rotary fluid machine
JP6066708B2 (en) Scroll compressor
JP4438886B2 (en) Rotary fluid machine
JP4858207B2 (en) Multistage compressor
WO2001071188A1 (en) Displacement type machinery
KR101055279B1 (en) Donut vane rotary compressor
JP2014129755A (en) Rotary compressor
CA2580022A1 (en) Orbiting valve for a reciprocating pump
JP5234168B2 (en) Refrigeration equipment
WO2009149616A1 (en) A revolving cylinder compressor
JP2009108762A (en) Rotary fluid machine
JP6019669B2 (en) Rotary compressor
JP2008163835A (en) Rotary fluid machine
JP5011963B2 (en) Rotary fluid machine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 569145

Kind code of ref document: A

Format of ref document f/p: F