WO2001068984A1 - Drying mold for pulp mold formed body - Google Patents

Drying mold for pulp mold formed body Download PDF

Info

Publication number
WO2001068984A1
WO2001068984A1 PCT/JP2001/000789 JP0100789W WO0168984A1 WO 2001068984 A1 WO2001068984 A1 WO 2001068984A1 JP 0100789 W JP0100789 W JP 0100789W WO 0168984 A1 WO0168984 A1 WO 0168984A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
molded article
pulp
exhaust
drying
Prior art date
Application number
PCT/JP2001/000789
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Nonomura
Keiji Eto
Yasushi Yamada
Toshio Kobayashi
Kenichi Otani
Original Assignee
Kao Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000069493A external-priority patent/JP3289001B2/en
Application filed by Kao Corporation filed Critical Kao Corporation
Publication of WO2001068984A1 publication Critical patent/WO2001068984A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J3/00Manufacture of articles by pressing wet fibre pulp, or papier-mâché, between moulds
    • D21J3/10Manufacture of articles by pressing wet fibre pulp, or papier-mâché, between moulds of hollow bodies
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J1/00Fibreboard
    • D21J1/06Drying
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J7/00Manufacture of hollow articles from fibre suspensions or papier-mâché by deposition of fibres in or on a wire-net mould

Definitions

  • the present invention relates to a dry mold for drying a wet molded product formed by a pulp molding method, and a pulp molded product having a reduced contact area and reduced frictional resistance.
  • the drying mold used for drying the wet compact formed by the pulp molding method has an air passage for discharging steam out of the mold.
  • Various types are known as a drying type having such an air passage.
  • a device using a porous mold material as described in Japanese Patent Application Laid-Open No. 8-260400 (2) a material having a net formed on the surface of a porous mold material, (3)
  • a core vent is arranged in a mold exhaust path.
  • the dry type (3) it takes time to attach and adjust the core vent member in the exhaust passage, and it is difficult to attach the core vent to a portion having a small curvature or a screw portion. Also, traces of the outer peripheral contour of the core vent member remain on the surface of the molded product, which is not preferable in appearance. Also, as a technology relating to a dry mold for a pulp molded product, a technology disclosed in UK Patent No. 9394420 is known. In this dry mold, a groove is formed on the surface of the mold body, and a perforated cover is provided on the surface of the mold. Then, heat is supplied from the inner surface on the back side of the mold body by a burner to supply heat.
  • the temperature stability of the mold could not be said to be good.
  • the temperature of the molded body rapidly drops, so that high drying efficiency cannot be obtained.
  • the molded product was burnt and discolored.
  • the heat capacity of the mold is small, if the thickness of the molded body to be dried is partially different, the temperature of the molded body becomes partially non-uniform and the molded body has uneven drying. Had occurred.
  • the heat capacity is small, the temperature fluctuation of the mold body is easily influenced by the temperature fluctuation of the burner, and a molded body cannot be obtained stably.
  • a first object of the present invention is to provide a drying mold for a pulp molded article having high drying efficiency, in which both the efficiency of steam escape and the supply of heat to the molded article are good.
  • the pulp molded body is subjected to post-processing such as printing, labeling, and coating on the surface after molding, or by a conveyor or other transport line for stocking. Conveyed.
  • post-processing such as printing, labeling, and coating on the surface after molding, or by a conveyor or other transport line for stocking. Conveyed.
  • the pulp molded product has a higher frictional resistance than the plastic molded product, the pulp molded product comes into contact with the molded product or the molded product and the transport guide during transportation, and the surface of the molded product becomes In some cases, the molded product may be damaged or clogged or caught on the transfer line, causing the line to stop.
  • the present invention relates to a dry mold of a pulp molded article used for drying a wet molded article formed by a pulp molding method, comprising: a mold having an accommodating portion corresponding to an outer shape of the molded article.
  • the first object has been attained by providing a dry mold of a pulp molded article characterized by having a portion where a collective exhaust passage is not provided.
  • the present invention has a concave portion or a convex portion having a shape that can be fitted to a wet molded product formed by a pulp molding method, and a large number of concave portions or convex portions are provided on the surface of the concave portion or the convex portion.
  • the first object has been attained by providing a dry mold of a pulp molded article in which a vapor escape groove is formed in a recess and a perforated metal plate is arranged in close contact with the surface.
  • the present invention relates to a pulp molding de formation feature that many projections are formed at a predetermined position, the individual areas of the convex portion in plan view 1.
  • 9 X 1 0- 3 ⁇ 3. 2 mm 2 a pulp molded article having a pitch of 0.1 to 5 mm and a total area of the projections of 0.5 to 40% with respect to an outer surface area of the pulp molded article.
  • the second object has been achieved.
  • FIG. 1 is a schematic view showing one embodiment of a drying mold for a pulp molded article of the present invention, wherein (a) is a plan view and (b) is a front view.
  • FIGS. 2A and 2B are views showing a main part of the drying mold according to the embodiment, wherein FIG. 2A is an enlarged plan view of the housing section, and FIG. 2B is an enlarged sectional view of the housing section.
  • FIG. 3 is a cross-sectional view (an end view corresponding to the arrow a—a in FIG. 1) of the block constituting the dry mold block of the embodiment.
  • FIG. 4 is an end view (an end view corresponding to the arrow b—b in FIG. 1) of the block constituting the dry mold block of the embodiment.
  • FIG. 5 is a cross-sectional view (a cross-sectional view corresponding to the arrow c-c in FIG. 1) of a block constituting the dry mold block of the same embodiment.
  • FIG. 6 is an end view (an end view corresponding to the arrow d--d in FIG. 1) of a block constituting the dry mold block of the embodiment.
  • FIG. 7 is a cross-sectional view (a cross-sectional view taken along the line e—e in FIG. 1) of the block constituting the dry mold block of the embodiment.
  • FIG. 8 is a process diagram showing a preferred method of drying a wet pulp molded article using the drying mold of the present embodiment, and (a) is a view showing a state in which the molded article is contained; b) is a diagram showing a state in which the core is inserted, (c) is a diagram showing a pressed state by the core, and (d) is a diagram showing a detached state.
  • FIG. 9 is an exploded perspective view of one embodiment of a dry mold for a pulp molded article of the present invention.
  • FIGS. 10 (a) and (b) are a front view and a cross-sectional view taken along the line b--b of the drying mold shown in FIG. 9 with the porous metal plate and the holding plate removed, respectively.
  • FIG. 10 is a cross-sectional view (corresponding to FIG. 9 (b)) showing another embodiment (with the multi-hole metal plate removed) of the dry mold of the pulp molded article of the present invention.
  • FIG. 12 is a perspective view showing one embodiment of the pulp molded article of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a first embodiment of a dry mold (hereinafter, also simply referred to as a dry mold) of a pulp molded article of the present invention.
  • reference numeral 1 indicates a dry type.
  • the drying mold 1 of the present embodiment is used for drying a wet molded article formed by a pulp molding method.
  • the drying mold 1 is used as a pair, and is used to dry a cylindrical bottle-shaped formed body having a mouth and a neck.
  • the drying mold 1 includes a mold block 2 having a housing portion 20 corresponding to the outer shape of a molded body.
  • the accommodating part 20 partially has a large number of fine exhaust holes 21, and gathers with the part where the collective exhaust passage 22 leading to the exhaust holes 21 is provided inside the mold block 2. And a portion where the exhaust path 22 is not provided.
  • the mold block 2 is formed of a rectangular parallelepiped metal block, and an accommodation portion 20 is recessed on the upper surface side.
  • the upper surface of the peripheral portion of the housing portion 20 is flat, and the upper surface is the dividing surface (butting surface) of the drying mold 1.
  • the diameter D of the exhaust hole 21 (the distance from the surface of the housing in the exhaust section to the collective exhaust passage, see Fig. 2 (b)) facilitates the escape of steam and prevents clogging by pulp fibers.
  • the thickness is preferably from 0.1 to 1 mm, and more preferably from 0.2 to 0.8 mm.
  • the depth d of the exhaust hole 21 should be 1 to 10 mm in terms of easy escape of steam, prevention of clogging by fiber, and ease of maintenance. More preferably, it is 2 to 8 mm. This Here, the depth of the exhaust hole 21 refers to the distance from the storage section 20 to the collective exhaust path 22.
  • the ratio d ZD between the hole diameter D and the depth d of the exhaust hole 21 is the workability of the exhaust hole 21, the deformation of the mold block 2 due to the processing of the exhaust hole 21, and the finishing accuracy of the exhaust hole 21. And preferably from 0.5 to 15, more preferably from 3 to 10.
  • the exhaust hole 21 has an opening area ratio of the exhaust hole 21 in the accommodation portion 20 and an exhaust hole 21 1 in view of a balance between ease of escape of steam and heat conductivity, and securing strength of the accommodation portion 20.
  • the pitch can be determined as appropriate.
  • the exhaust holes 21 are patterned so that the accommodating portion 20 is divided into an exhaust portion 23 in which the exhaust holes 21 are formed at a high density and a heat transfer portion 24 having few exhaust holes 21. It is drilled in.
  • the boundary between the exhaust portion and the heat transfer portion is, specifically, a contour connecting the outer edges of the outermost exhaust holes of the exhaust holes 21 formed in the accommodation portion 20 in a pattern arrangement. As defined, drying by heat supply to the molded body is mainly performed through the heat transfer portion, but heat transfer is also performed from a portion other than the exhaust hole 21 in the exhaust portion.
  • the ratio of the area of the exhaust part 23 to the area of the heat transfer part 24 (the area of the exhaust part) / (the area of the heat transfer part) is 1 Z from the viewpoint of the balance between the ease with which steam can escape and the thermal conductivity. It is preferably from 19 to 11.
  • the width of the exhaust portion 23 (the interval between adjacent heat transfer portions 24) is preferably 1 to 20 mm, more preferably 2 to 15 mm, and more preferably 4 to 10 mm. Is more preferable. If the width of the exhaust portion 23 is too wide, heat transfer in the exhaust portion 23 will be insufficient and uneven drying will occur.If it is too narrow, the exhaust portion 23 and the corresponding collective exhaust path will become large or complicated. Therefore, processing becomes complicated.
  • the width of the heat transfer section 24 is preferably 5 to 5 Omm, more preferably 8 to 40 mm, and even more preferably 10 to 3 Omm.
  • the relationship between the width of the exhaust portion 23 and the depth of the exhaust hole 21 is, from the viewpoint of heat transfer in the exhaust portion 23, (width of the exhaust portion 23) / (depth of the exhaust hole 21). It is preferably 5 or less, more preferably 4 or less, and even more preferably 3 or less.
  • Exhaust holes 21 are formed in the ring pattern.
  • the exhaust holes 21 forming each pattern are formed adjacent to each other in a staggered lattice pattern as shown in FIG. 2 (a). In this way, by dividing the housing portion 20 into the exhaust portion 23 and the heat transfer portion 23 according to the drilling pattern of the exhaust holes 21, a large number of exhaust holes 2 are formed in one collective exhaust passage 22. 1 can be assembled, so that efficient exhaust can be achieved even if there are few collective exhaust passages that are difficult to process.
  • the exhaust port is provided with an exhaust hole 21 such that the area ratio in the storage section 20 is 5 to 50% from the viewpoint of the balance between ease of escape of steam and thermal conductivity and securing the strength of the storage section 20. It is preferable to provide them.
  • the pattern arrangement of the exhaust holes 21 is a staggered pattern (the exhaust holes 21 are arranged at the apex of a regular triangle), the opening ratio of the exhaust portion is determined from the point of strength. It is necessary to secure the drilling pitch P of 1 at least twice the hole diameter D. Therefore, staggered
  • the open area ratio of the exhaust portion in the case of the element shape is a maximum of 22.7% from the equation (1), and the open area ratio of the exhaust hole 21 in the accommodation portion 20 is preferable from the above area ratio. Or 1.1 (22.7 ⁇ 5) to 11.3 (22.7 ⁇ 50)%.
  • the exhaust hole 21 is formed such that the hole diameter D increases toward the opening end on the housing portion 20 side. As a result, the edge 21a of the opening edge becomes gentle, and clogging of the pulp fiber is less likely to occur, and maintenance is easy.
  • the exhaust hole 21 can be formed by electron beam machining, laser single beam machining, or the like. When drilling the exhaust hole 21, it is preferable to drill it from the side in contact with the molded body in the storage part 20 toward the collecting drainage channel 22.
  • the collective exhaust passage 22 surrounds the housing portion 20 at a predetermined distance from the housing portion 20 and is formed to penetrate the inside of the mold block 2 in the longitudinal direction. Exhaust holes 21 are drilled so as to be concentrated in the collective exhaust passage 22.
  • the collective exhaust passage 22 is formed of 22 A to E, 25 B, and 25 D as described later.
  • the cross-sectional area (cross-sectional area in the length direction) of the collective exhaust path 22 is preferably from 30 to 400 mm 2 , more preferably from 50 to 300 mm 2 . If the cross-sectional area is small, the exhaust resistance increases and machining becomes difficult. On the other hand, if it is too large, the heat capacity of the block becomes small, and the stability of the block heat supply decreases.
  • a metal heating block 3 having the same shape as the mold block 2 is fixed to the mold block 2 by a predetermined means on the lower surface side of the mold block 2. Is defined.
  • a plurality of through holes 30 are formed in the heat generating block 3 along its longitudinal direction, and a predetermined heating means, for example, a heating element such as an electric heater (not shown) is formed in the through hole 30. ) Can be inserted. If a heating means is provided in the heat generating block 3, other drying molds may be used depending on the shape of the compact. By sharing with a heating block, mold parts can be shared and mold production costs can be reduced. In addition, the mold exchange can be facilitated.
  • the mold block 2 is divided into five blocks in the longitudinal direction into blocks 2A to 2E so that each block can be fixed by a predetermined fixing means. It has become. By forming the mold block with a plurality of blocks in this way, machining and maintenance are facilitated.
  • the block 2A shown in FIGS. 1 and 3 is a block corresponding to the mouth of the molded body, and five collecting exhaust passages 22A communicating with the exhaust holes 21A surround the housing portion 20A. It is arranged to be.
  • the block 2B shown in FIGS. 1 and 4 is a block corresponding to the shoulder of the molded body, and a ring-shaped pattern exhaust hole 21B is drilled in the housing portion 20B. These exhaust holes 21B communicate with the collective exhaust passage 22B of a large space.
  • the block 2B is provided with a collective exhaust passage 22B and a collective exhaust passage 25B communicating with a collective exhaust passage 22C of the block 2C described later.
  • Block 2C shown in FIGS. 1 and 5 is a block corresponding to the body of the molded body.
  • Exhaust holes 21C are formed in the housing portion 20C in a row pattern at a predetermined interval. These exhaust holes 21 C lead to five collective exhaust passages 22 C for each row.
  • the block 2D shown in FIG. 1 and FIG. 6 has a ring-shaped pattern of exhaust holes 21D formed in the accommodating portion 20D. Leads to 2D.
  • the block 2D is provided with a collective exhaust passage 22D and a collective exhaust passage 25D communicating with the collective exhaust passage 22C of the block 2C.
  • Block 2E shown in FIGS. 1 and 7 is a block corresponding to the bottom of the molded body, and exhaust holes 21E are punched in the accommodating portion 20E in a line pattern corresponding to the bottom. These exhaust holes 21 E communicate with a collective exhaust passage 22 E in a wide space.
  • Block 2E also communicates with the collective exhaust passage 22D of block 2D, An exhaust path 25E is formed so as to face the collective exhaust path 25D.
  • the collective exhaust path 22E and the exhaust path 25E communicate with an exhaust chamber 26E.
  • the exhaust chamber 26E communicates with an exhaust port 27E formed at the lower end of the block 2E.
  • the dry molds 1 of the present embodiment are used as a pair, and in a state in which a wet molded body is housed in a cavity formed by two housing sections, the divided surfaces of the molds are abutted with each other to form the molded body. Perform drying.
  • FIG. 8 the structure and shape of the dry type are simplified for simplicity.
  • a predetermined papermaking process is performed in a cavity formed by the two storage portions 20 by abutting the divided surfaces of the two drying dies 1, 1.
  • the pulp molded body 4 formed by the method is accommodated.
  • Both drying dies 1 are previously heated to a predetermined temperature by the heating element arranged in the mold block 2.
  • the hollow bag-shaped core 5 is inserted into the molded body 4. It is preferable that the core 5 has elasticity and can expand and contract.
  • the core 5 is preferably formed of urethane, fluorine-based rubber, silicone-based rubber, elastomer, or the like having excellent tensile strength, rebound resilience, elasticity and the like.
  • a pressurized fluid is supplied into the core 5 to expand the core 5, and the molded body 4 in a wet state by the expanded core 5 is placed in the storage section 2. Press on the inner surface of 0.
  • the molded body 4 is pressed against the inner surface of the housing by the expanded core 5, and the drying of the molded body 4 proceeds, and the shape of the inner surface of the housing 20 is transferred to the molded body 4.
  • the molded body 4 is pressed against the housing from the inside of the molded body 4 to the outside, so that the molded body 4 is dried with high drying efficiency even if the inner surface shape of the housing is complicated, and The accommodation section of 20
  • the inner surface shape is transferred to the molded body 2 with high accuracy.
  • the surface of the housing portion 20 of the drying mold 1 is not easily deformed by the pressing by the core 5. It becomes bad.
  • the pressurized fluid used to expand the core 5 for example, compressed air (heated air), oil (heated oil), and various other liquids are used.
  • the pressure for supplying the pressurized fluid is preferably from 0.01 to 5 MPa, particularly preferably from 0 :! to 3 MPa.
  • the pressurized fluid in the core 5 is drained, and the core 5 is reduced.
  • the reduced core 5 is taken out of the molded body 4, and the drying molds 1, 1 are opened to take out the molded body 4.
  • the drying mold 1 of the present embodiment has good steam escaping efficiency and good heat supply to the molded body, and has high drying efficiency.
  • the accommodating portion 20 is divided into the exhaust portion and the heat transfer portion by the exhaust hole 21 formed in a predetermined pattern, efficient drying can be performed even if the number of collective exhaust passages is small. it can.
  • the heat conduction part is large, sufficient heat can be supplied, and the heat capacity is large, so that the temperature stability of the dry type is high.
  • minute exhaust holes 21 are densely formed in the collective exhaust passage, the exhaust efficiency is extremely high.
  • the mold block 2 can be divided in the longitudinal direction, maintenance work such as cleaning can be easily performed.
  • FIG. 9 is an exploded perspective view of a second embodiment of the drying mold of the present invention
  • FIGS. 10 (a) and (b) show the porous metal plate and the holding plate from the drying mold shown in FIG. The front view and the cross section taken along the line b-b are shown respectively.
  • the dry mold 101 has a concave portion 111.
  • Perforated metal plate that fits into the recessed portion of the back plate 120 and the cavity plate 110 located on the lower surface side of the cavity plate 110 and the cavity plate 110 And a holding plate 140 for fixing the porous metal plate 130 to the cavity plate 110.
  • two dry molds 101 shown in FIGS. 9 and 10 are used, and a molded body in a wet state is accommodated in a cavity formed by two concave portions 111. Then, the molded body is dried by abutting the divided surfaces.
  • the cavity plate 110 is composed of a rectangular parallelepiped metal block, and the upper surface of the cavity plate is fitted with a vertical half of a wet molded body formed by a predetermined method.
  • a recessed portion 1 11 having a shape that can be formed is provided, and the molded body is accommodated in the recessed portion 1 11.
  • the upper surface of the cavity plate 110 is flat, and this surface becomes the dividing surface (butting surface) of the dry mold 101.
  • the steam escape groove 112 is formed in the concave portion 111 in a portion corresponding to the body and bottom of the molded body to be dried.
  • the portion surrounded by the vapor escape groove 1 1 2 forms a truncated quadrangular pyramid-shaped convex portion 1 1 3 having a prismatic shape or a nearly right-angled rising angle.
  • the width of the steam escape groove 1 1 2 is 0.5 to 30 mm, especially from the viewpoint of improving the steam escape efficiency and preventing uneven steam escape, uneven heating of the pulp fiber and deformation of the perforated metal plate. It is preferably about 10 mm.
  • the pitch of the steam escape grooves 112 is determined from the width of the steam escape grooves 112 and a desired contact ratio with the porous metal plate 130. The greater the depth of the steam escape groove 1 12, the higher the steam escape efficiency. However, from the point of view of the machining process, 1 mm or more, especially 3 mm or more, is sufficient.
  • steam escape holes 114 are formed radially and regularly in the normal direction of the concave portion 111.
  • the steam escape holes 114 are preferably formed with a pitch that is at least twice the pitch of the steam escape grooves 112. Note that the steam escape hole 114 is also formed in the concave portion 111 in a portion corresponding to the mouth and neck of the molded article to be dried.
  • a through hole 115 is formed along the longitudinal direction thereof so as to communicate with the steam escape hole 114.
  • the inside of the cavity plate 110 is a communication passage that connects the steam escape groove 1 12 to the outside of the drying mold 101 by the steam escape hole 114 and the through hole 115. Is formed. Then, the steam generated by drying the wet compact is discharged to the outside of the drying mold 101 through the communication passage.
  • the perforated metal plate 130 is formed by pressing a thin plate-shaped metal plate with a large number of holes 131 formed by punching, electron beam processing, laser processing, etc., and has a cavity plate. It has a recessed portion 132 shaped to fit into the recessed portion 111 of 110 and a flange 133 extending horizontally from the periphery of the recessed portion 132.
  • the hole 13 1 is formed at least over the entire area of the recess 1 32. Drilling of the perforated metal plate 130 is facilitated by making it thinner.
  • the perforated metal plate 130 has a thickness of 0.1 to 10 mm, particularly 0.4 to 5 mm, and especially 0.8 to 3 mm. Securing, easy formation of holes 131, difficulty in clogging of pulp fibers into holes 131, perforated metal plate 130 ease of press working, easy release of steam, etc. Preferred from the point.
  • the porous metal plate 130 is easily deformed, and the porous metal plate 130 and the cavity are formed.
  • the surface of the concave portion 111 of the plate 110 adheres well to the layer, and the efficiency of heat conduction is improved. Also, porous metal By smoothing the surfaces of the plate 130 and the concave portion 111, the efficiency of heat conduction is further improved.
  • the perforated metal plate 130 has a hole area ratio of the hole 131 in the recessed portion 132 of 0.5 to 70%, particularly:! It is preferable that the content be within a range of from 40% to 40% in terms of the balance between the ease with which steam can escape and the thermal conductivity, and the strength of the porous metal plate 130.
  • the perforated metal plate 130 having a pore diameter of 0.05 to 2 mm, particularly 0.1 to 0.6 mm facilitates the escape of steam and prevents clogging of pulp fibers. Further, it is preferable in that the marks of the holes 13 1 are prevented from being transferred to the surface of the molded article in a convex shape.
  • the pitch of the holes 13 1 is determined from the hole area ratio and the hole diameter described above.
  • the apparent contact area between the concave portion 111 of the cavity plate 110 and the porous metal plate 130 is 10 to 90% of the apparent area of the concave portion 111, especially 30 to 6%. 0% is preferable from the viewpoint of the balance between ease of vapor escape and thermal conductivity.
  • the “apparent contact area between the concave portion 111 of the cavity plate 110 and the perforated metal plate 130” means that the perforated metal plate 130 has no holes.
  • the “apparent area of the concave portion 111” refers to the surface area of the concave portion 111 before the vapor escape groove 112 is formed in the concave portion 111.
  • the concave portion 1 32 of the porous metal plate 130 When the concave portion 1 32 of the porous metal plate 130 is fitted into the concave portion 1 1 1 of the cavity plate 110, the concave portion 1 32 is in surface contact with the concave portion 1 1 1. It is in close contact. Thereby, the heat transfer efficiency is improved, and the drying efficiency of the molded body is improved.
  • the perforated metal plate 130 has a concave plate 132 that has a cavity plate 110. It is pressed by a holding plate 140 of the same shape as the flange 133 of the perforated metal plate 130 in a state of being fitted to the concave portion 111 of the perforated metal plate 130. In detail, the flange 13 is clamped by the holding plate 140 and the stepped portion 116 formed on the periphery of the concave portion 111 of the cavity plate 110.
  • the holding plate 140 and the perforated metal plate 130 are detachably fixed to the cavity plate 110 by means of 141. Since the perforated metal plate 130 is detachably fixed in this manner, even if clogging of the pulp fiber occurs in the perforated metal plate 130, it can be easily removed and washed, and the dry mold 1 0 1 is excellent in its maintainability.
  • a back plate 120 made of the same metal block as the cavity plate 110 is fixed to the cavity plate 110 by predetermined means. Have been.
  • a plurality of through holes are formed in the knock plate 120 along its longitudinal direction, and a predetermined heating means, for example, a heating element 121 such as an electric heater is inserted into the through hole.
  • a heating means is provided on the back plate 120, by sharing it with another dry mold back plate according to the shape of the compact, the mold parts can be shared and the production cost of the mold can be reduced. I can do it. It is also possible to easily change the mold.
  • the divided surfaces of the two drying dies 101, 101 are abutted against each other to form a cavity formed by the two concave portions 111.
  • a pulp molded article 4 molded by a predetermined papermaking method is accommodated. Both drying dies 101 are previously heated to a predetermined temperature by a heating element arranged on the back plate.
  • a hollow bag-shaped core 5 is placed in the molded body 4. insert. It is preferable that the core 5 has elasticity and can expand and contract.
  • the core 5 is preferably formed of urethane, fluorine-based rubber, silicone-based rubber, elastomer, or the like having excellent tensile strength, rebound resilience, elasticity and the like.
  • a pressurized fluid is supplied into the core 5 to expand the core 5, and the molded body 4 in a wet state is expanded by the expanded core 5.
  • 11 Press against the perforated metal plate (not shown) arranged on the inner surface of 1.
  • the molded body 4 is pressed against the inner surface of the porous metal plate by the expanded core 5, and the shape of the porous metal plate is transferred to the molded body 4 as drying of the molded body 4 proceeds.
  • the compact 4 is pressed against the porous metal plate from the inside to the outside of the compact 4, the compact 4 is dried with high drying efficiency even if the shape of the porous metal plate is complicated.
  • the shape of the perforated metal plate is transferred to the molded body 4 with high accuracy.
  • the porous metal plate is deformed by the pressing by the core 5 and comes into close contact with the inner surface of the concave portion 111, the heat transfer efficiency is further improved.
  • the pressurized fluid used to expand the core 5 for example, compressed air (heated air), oil (heated oil), and other various liquids are used.
  • the pressure for supplying the pressurized fluid is preferably from 0.01 to 5 MPa, particularly preferably from 0.1 to 3 MPa.
  • the pressurized fluid in the core 5 is drained, and the core 5 is reduced.
  • the reduced core 5 is taken out of the molded body 4, and the drying molds 101 and 101 are further opened to take out the molded body 4.
  • FIG. 13 is a perspective view of an embodiment of the pulp molded article of the present invention.
  • the pulp molded article 201 of the present embodiment is in the form of a hollow cylinder having a cylindrical shape.
  • the molded body 201 has an open mouth and neck part 202, a trunk part 203 and a bottom part 204, These parts are connected smoothly and seamlessly.
  • the diameter of the mouth and neck portion 202 is smaller than the diameter of the torso portion 203.
  • a screw thread 205 is formed on the outer peripheral surface of the mouth and neck portion 202, and the screw thread 205 is adapted to be screwed with a cap (not shown).
  • the molded body 201 is formed using pulp as a main raw material. Of course, it may be formed from 100% of pulp. When another material is used in addition to the pulp, the amount of the material is preferably 1 to 70% by weight, particularly preferably 5 to 50% by weight. Other materials include inorganic substances such as talc and kaolinite, inorganic fibers such as glass fiber and carbon fiber, synthetic resin powder such as polyolefin, synthetic fiber, non-wood or vegetable fiber, and polysaccharides. Can be Thus, in the molded body 201 of the present embodiment, a large number of projections 206 are formed on the body 203. Each of the projections 206 has an independent dot shape when viewed in a plan view. Each convex portion 206 has a hemispherical three-dimensional shape, and is circular in plan view.
  • 1. 9 X 1 0- is 3 ⁇ 3. 2 mm 2, preferably 0. 0 3 ⁇ 0. 8 mm 2, further favored properly 0 . a 0 7 1 X ⁇ 0. 2 8 mm 2.
  • the convex portion 206 is formed regularly in the body portion 203 of the molded body 1.
  • the pitch of the projections 206 in the height direction of the molded body 201 is 0.1 to 5 mm, and preferably 0.4 to 3 mm. If the pitch is less than 0.1 mm, the protrusions 206 are formed too densely, and the frictional resistance is no different from that without the protrusions 206. If the pitch is more than 5 mm, the compact 2 01 When the molded products 201 come into contact with each other or when the molded product 201 comes into contact with the guide of the transfer line, contact is likely to occur at a part other than the convex portion 206 of the molded product 201.
  • the frictional resistance is no different from the case without the convex portion 206.
  • the pitch in the case where the protrusions 206 are irregularly formed means that, when focusing on a certain protrusion 206, the pitch around the protrusion 206 and the periphery of the protrusion 206 is as follows. The distance between each existing convex part is measured, this operation is performed for many convex parts 206, and the obtained distance is averaged.
  • the total area of the projections 206 in the molded body 1 in plan view is 0.5 to 40% with respect to the outer surface area of the molded body 201, and preferably:! -30%, more preferably 5-25% (this value is hereinafter referred to as a convex area ratio).
  • a convex area ratio this value is hereinafter referred to as a convex area ratio.
  • the area ratio of the projections is less than 0.5%, the pitch of the projections 206 becomes relatively larger than the size of the projections 206, and the area other than the projections 206 is formed. And the frictional resistance is the same as when there is no protrusion 206.
  • the planar portions of the molded body 201 come into contact with each other, a small area of the convex portion 206 is effective in reducing the contact area. Therefore, when the convex area ratio is 40% or more, the effect of reducing the contact area is reduced, and the frictional resistance is the same as when there is no convex 6.
  • the height of the projections 206 does not become a particularly significant factor in preventing the compact 210 from being clogged or caught on the transport line, and the individual areas, pitches and projections of the projections 206 are not particularly large. If the area ratio is within the above-mentioned range, the clogging and catching can be effectively prevented even if the projections 206 are extremely low. Specifically, if the height of the convex portion 206 is 0.01 mm or more, particularly 0.05 mm or more, the clogging is performed. Rolling and snagging can be effectively prevented. There is no particular upper limit on the height of the convex portion 206, but if it is too high, the appearance of the molded body 201 may be impaired, or molding of the molded body 201 may be difficult. The upper limit is about mm.
  • the molded body 201 can be molded by a conventionally known pulp molding method.
  • a multi-hole plate (punch plate) or the like in which a large number of through-holes having a predetermined diameter are regularly formed may be arranged at the site.
  • pulp fibers are deposited on the papermaking surface of a mold that is composed of a set of split molds and has a cavity of a predetermined shape inside to form a water-containing molded body, which can then be expanded and contracted into the molding. Then, a predetermined fluid is supplied into the core to expand the core, and the expanded core is used to expand the molded body on the papermaking surface.
  • Forming the molded body 201 by the pressing method allows the protrusions 206 to be formed with high accuracy, and in particular, the protrusions having a height of 0.01 mm or more can be formed. Is preferred.
  • the pressing by the core is used for a step of dehydrating the water-containing molded article and / or a step of heating and drying the molded article after dehydration.
  • the mold block and the heat-generating block are preferably configured so as to be able to be divided into a plurality in the longitudinal direction, but depending on the size and shape of the molded body, etc. Either or both can be composed of one block.
  • the pattern formed from the set of exhaust holes may be arranged in a lattice, stripe, dot, wave, dashed pattern, or the like, depending on the size and shape of the molded article to be dried. it can.
  • the collective exhaust passage provided inside the mold block can be penetrated so as to open above and below the mold block. It can also be penetrated so as to open at one of the following.
  • a pattern formed from a set of exhaust holes can be used as a logo, a pattern, and the like.
  • the heating means can be disposed inside the mold block.
  • the collective exhaust path is not limited to this embodiment, but can be configured to correspond to the pattern of the exhaust section.
  • the mold block can be divided in the thickness direction in order to facilitate the processing and maintenance of the collective exhaust passage.
  • the cross-sectional shape of the exhaust hole in the storage section can be rectangular, elliptical, or oval.
  • the open area ratio is treated as the hole shape as viewed from the surface in contact with the compact.
  • two drying dies are used in abutting relationship.However, depending on the shape of the molded body, only one drying die or a combination of three or more drying dies may be used. Can also.
  • the steam escape groove 112 formed in the surface of the concave portion 111 may have various patterns according to the shape of the molded article to be dried.
  • the cavity plate 110 of the drying mold 1 may have a convex portion 11 that can be fitted with the molded article to be dried as shown in FIG.
  • the protrusion 1 1 ′ may be used, and a vapor escape groove 1 12 may be provided on the surface of the protrusion 11 1 ′.
  • a heating means may be disposed on cavity plate 110.
  • the shape of the hole 131 in the porous metal plate 130 may be a square, an ellipse, or a slit shape, and the size of the hole 131 may be different on the front and back of the porous metal plate 130. good.
  • the opening area ratio in that case was viewed from the surface where the molded body was in contact.
  • the equivalent diameter when the cross-sectional shape of the exhaust hole is other than circular is
  • the processing of the perforated metal plate 130 may be cutting.
  • two drying dies are used in abutment, but depending on the shape of the molded article, one drying die alone or a combination of three or more drying dies may be used.
  • the porous metal plate has a thickness of 0.1 to 10 mm, a hole diameter of 0.05 to 2 mm, and a pore area ratio of 0.5 to 70%. Type.
  • the shape of the convex portion 206 of the pulp molded article according to the embodiment is circular when viewed in plan.
  • the shape in plan view may be a polygon such as a triangle, a rectangle, or a hexagon. May be used.
  • each of the protrusions 206 has an independent dot shape, but may have a shape of a ridge or the like instead.
  • the convex portion 206 is formed on the body portion 203.
  • a large number of convex portions may be formed on the bottom portion 204 instead or together with this.
  • the shape, arrangement, and the like of the convex portion formed on the trunk portion 203 and the convex portion formed on the bottom portion 204 may be the same or different.
  • the convex portion 206 is formed over substantially the entire region of the trunk portion 203. Instead, a convex portion is formed intermittently on the trunk portion 203. You may.
  • a convex portion may be formed on the entire surface of the molded body 201, or a convex portion may be formed on a portion other than the body portion 203 and the bottom portion 204. A part may be formed.
  • the pulp molded article of the present invention can be applied to various shapes such as a box-shaped carton-shaped container, a spoon, a lid, and a stone box, in addition to a pot-shaped hollow container.
  • a box-shaped carton-shaped container such as a spoon, a lid, and a stone box
  • the present invention will be described in more detail with reference to examples.
  • Example 1 Using the drying molds shown in FIGS. 9 and 10, a molded body produced by the pulp molding method was heated and dried by the method shown in FIG. 8 (Example 1). Further, in Example 1, the steam escape groove 1 1 1 was not formed, and only the steam escape hole 1 1 4 (hole diameter 1 mm, pitch 1 O mm) and the through hole 1 1 5 were formed, and a porous metal plate was used instead. The same operation as in Example 1 was performed except that a copper net was used (Comparative Example 1). In both Example 1 and Comparative Example 1, the initial water content of the molded article used was 77% by weight. The details of the drying conditions of Example 1 and Comparative Example 1 and the moisture content of the dried compact are shown in Table 1 below.
  • Thickness 0.5 mm
  • Width 2 ;
  • Example 1 using a drying mold in which a number of vapor escape grooves were formed in the surface of the concave portion and a perforated metal plate was arranged so as to be in close contact with the surface.
  • a drying mold in which a number of vapor escape grooves were formed in the surface of the concave portion and a perforated metal plate was arranged so as to be in close contact with the surface.
  • Fig. 7 it can be seen that the surface temperature of the porous metal plate is high and the heat transfer efficiency is high. It can also be seen that the moisture content of the compact after drying is low and the escape of steam is good. And, since the heat transfer efficiency is high and the steam escape is good, it can be seen that the drying efficiency of the compact is high.
  • Comparative Example 1 using the drying type in which the steam escape groove is not provided and the net is arranged, the surface temperature of the net is low and the heat transfer efficiency is low. It can also be seen that the moisture content of the compact after drying is high and the escape of steam is poor. Further, since the heat transfer efficiency is low and the escape of steam is poor, it can be understood that the drying efficiency of the compact is low.
  • the bottle-shaped molded body shown in Fig. 14 was manufactured by the pulp molding method. ⁇ Many hemispherical projections were regularly formed on the body of this molded body. Table 2 shows the area, arrangement pitch, and area ratio of the projections in plan view.
  • Example 2 0.283 1.1 0.9 29 0.77 No surface damage Example 3 0.126 0.69 0.8 23 0.71 No surface damage Example 4 0.071 0.26 0.6 23 0.67 No surface damage Example 5 0.031 0.35 0.4 23 0.78 No surface damage Comparative Example 2 0.785 10 10 0.8 0.85 Surface scratched Comparative Example 3 0 0.85 Surface scratched (Comparative Example 3)
  • a port-like molded body was manufactured in the same manner as in Example 2 except that no convex portion was formed on the body.
  • a 10 ⁇ 50 mm test piece was cut from the body of the bottle-shaped molded body and fixed to a measuring stand. While applying a point pressure to the test piece with a 20 g pole indenter, the pole indenter was slid at a moving speed of 50 Omm / min, and the load at that time was measured. The friction coefficient was calculated by dividing the load (g) by the weight (20 g) of the pole indenter.
  • the bottle-shaped compacts were held in both hands and rubbed while applying a load of about 200 to 300 g, and the scratches generated on the surface were observed.
  • the molded article of the example has a convex area having a specific area and a pitch formed with a specific area ratio of the convex section, and is therefore smaller than the molded article of the comparative example. It can be seen that the frictional resistance has been reduced. Also, it can be seen that the molded article of the example is less likely to be damaged than the molded article of the comparative example, and that the damage is less noticeable.
  • both the escape efficiency of steam and the heat supply to a molded object are favorable, and the drying die of a pulp mold molded object with high drying efficiency is provided.
  • a dry mold for a pulp molded article which is inexpensive and excellent in maintainability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Paper (AREA)

Abstract

A mold used for drying a formed body in the status of being wetted formed using a pulp mold method, comprising a metal mold block (2) having a three-dimensional storage part (20) therein matching the outside shape of the formed body, wherein a plurality of fine exhaust holes (21) are drilled in the storage part (20) and a collective exhaust path (22) leading to the exhaust holes (21) is disposed inside the metal mold block (2).

Description

明 細 書 パルプモール ド成形体の乾燥型 技術分野  Description Dry mold for pulp molding
本発明は、 パルプモール ド法によ り成形された湿潤状態の成形体を乾 燥させるための乾燥型、 及び接触面積が低減し、 摩擦抵抗が軽減したパ ルプモール ド成形体に関する。  The present invention relates to a dry mold for drying a wet molded product formed by a pulp molding method, and a pulp molded product having a reduced contact area and reduced frictional resistance.
背景技術 Background art
パルプモール ド法によって成形された湿潤状態の成形体を乾燥させる ために用いられる乾燥型には、 蒸気を型外へ排出するための通気路が形 成されている。 斯かる通気路を有する乾燥型と しては、 種々のものが知 られている。 例えば、 (1 )特開平 8 — 2 6 0 4 0 0号公報に記載のよう に 多孔質の型材を用いたもの、 (2 ) 多孔質の型材の表面に網を張ったもの、 ( 3 )特許第 2 5 7 9 8 7 5号のよう に、コアベン トを型の排気路に配した もの等がある。  The drying mold used for drying the wet compact formed by the pulp molding method has an air passage for discharging steam out of the mold. Various types are known as a drying type having such an air passage. For example, (1) a device using a porous mold material as described in Japanese Patent Application Laid-Open No. 8-260400, (2) a material having a net formed on the surface of a porous mold material, (3) As in Patent No. 2,579,875, there is one in which a core vent is arranged in a mold exhaust path.
しかし、 ( 1 )の乾燥型では、 型材の内部が微細な空隙となっていること から、 蒸気の通過抵抗が大きく 、 蒸気の逃げは大きく ならない。 また、 パルプ繊維が型材に付着して目詰ま りが起こ り易く 、 保守に多大な労力 を要する。 更に、 型材が高価であることから、 製造経費が高くなつてし まう。 (2 )の乾燥型では、 網の跡が成形体の表面に転写されてしまい成形 体の外観を損ねてしまう。 また、 型材と網との接触は線接触である こと から、 伝熱効率が不十分であり十分な熱供給が行えない。 (3 )の乾燥型は コアベン ト部材を排気路に付設 · 調整する作業に時間を要し、 また曲率 の小さい部分やネジ部等にコアベン トを付設することが困難である。 ま た、 成形体表面にコアベン ト部材の外周輪郭跡が残り、 外観上好ましく ない。 また、 パルプモール ド成形体の乾燥型に関する技術と しては、 英国特 許第 9 3 9 4 2 0号のものが知られている。 この乾燥型は、 モール ド本 体の表面に溝が形成され、 モール ド表面に有孔カバーが配設されもので ある。 そして、 モ一ル ド本体の裏側内面からバーナーで加熱して熱供給 を行う ものである。 However, in the dry mold of (1), since the inside of the mold material has minute voids, the steam passage resistance is large, and the escape of steam is not large. In addition, pulp fibers tend to adhere to the mold material and cause clogging, requiring a great deal of maintenance. In addition, the high cost of the molds adds to the manufacturing costs. With the dry mold of (2), traces of the net are transferred to the surface of the molded body, which impairs the appearance of the molded body. Also, since the contact between the mold and the net is line contact, the heat transfer efficiency is insufficient and sufficient heat supply cannot be performed. In the dry type (3), it takes time to attach and adjust the core vent member in the exhaust passage, and it is difficult to attach the core vent to a portion having a small curvature or a screw portion. Also, traces of the outer peripheral contour of the core vent member remain on the surface of the molded product, which is not preferable in appearance. Also, as a technology relating to a dry mold for a pulp molded product, a technology disclosed in UK Patent No. 9394420 is known. In this dry mold, a groove is formed on the surface of the mold body, and a perforated cover is provided on the surface of the mold. Then, heat is supplied from the inner surface on the back side of the mold body by a burner to supply heat.
しかし、 この乾燥型は、 モール ドの熱容量が小さいこ とから、 モール ドの温度安定性が良いものとは言えなかった。 即ち、 モール ド本体に湿 潤状態のパルプが接触した場合に、 モール ド本体の温度が急激に低下す るため、 高い乾燥効率が得られないものであった。 この対応策と して、 モール ド本体の初期加熱温度を高めておく と、 成形体に焦げ、 変色が発 生した。 また、 モール ドの熱容量が小さいため、 乾燥させる成形体が部 分的に厚みが異なる形態である場合には、 モール ド本体の温度が部分的 に不均一になり、 成形体にも乾燥むらが生じていた。 さ らに、 熱容量が 小さいため、 モール ド本体の温度変動がバーナーの温度変動に左右され やすく 、 安定的に成形体を得る ことができなかった。  However, due to the low heat capacity of the dry mold, the temperature stability of the mold could not be said to be good. In other words, when wet moist pulp comes into contact with the molded body, the temperature of the molded body rapidly drops, so that high drying efficiency cannot be obtained. As a countermeasure, if the initial heating temperature of the mold body was raised, the molded product was burnt and discolored. In addition, since the heat capacity of the mold is small, if the thickness of the molded body to be dried is partially different, the temperature of the molded body becomes partially non-uniform and the molded body has uneven drying. Had occurred. Furthermore, since the heat capacity is small, the temperature fluctuation of the mold body is easily influenced by the temperature fluctuation of the burner, and a molded body cannot be obtained stably.
従って本発明は、 蒸気の逃げ効率及び成形体への熱供給が共に良好で あ り、 乾燥効率の高いパルプモール ド成形体の乾燥型を提供することを 第 1 の目的とする。  Accordingly, a first object of the present invention is to provide a drying mold for a pulp molded article having high drying efficiency, in which both the efficiency of steam escape and the supply of heat to the molded article are good.
一方、 パルプモール ド成形体は、 その成形後、 表面に印刷、 ラベル貼 付、 コ一ティ ング等の後工程を施す為、 或いはス ト ックの為に、 コンペ ァ等の搬送ライ ンによって搬送される。 しかしながら、 パルプモール ド 成形体はプラスチック成形体に比して摩擦抵抗が大きいこ とから、 搬送 中に、 成形体同士や成形体と搬送ガイ ド等とが接触する ことで、 成形体 の表面に傷が付いたり、 或いは搬送ライ ンで成形体の詰ま りや引っ掛か り等が生じてライ ンが停止してしまう ことがある。  On the other hand, the pulp molded body is subjected to post-processing such as printing, labeling, and coating on the surface after molding, or by a conveyor or other transport line for stocking. Conveyed. However, since the pulp molded product has a higher frictional resistance than the plastic molded product, the pulp molded product comes into contact with the molded product or the molded product and the transport guide during transportation, and the surface of the molded product becomes In some cases, the molded product may be damaged or clogged or caught on the transfer line, causing the line to stop.
また、パルプモール ド成形体からなる食品用 卜 レイ等を積み重ねて(ス タ ック して) 保管した状態から 1 つずつを取り分ける場合に、 ト レイ と ト レイが密着して 1 個ずつに取り分けられないことがある。 In addition, food trays made of pulp molded articles are stacked (stacked). When separating one by one from the stored condition, the trays may not be separated one by one due to the close contact of the trays.
従って本発明は、 搬送ライ ンでの詰ま りや引っ掛かりが防止され、 傷 が付きにく く 、 また傷が目立ちにく いパルプモール ド成形体を提供する ことを第 2 の目的とする。  Accordingly, it is a second object of the present invention to provide a pulp molded article which is prevented from being clogged or caught on a transfer line, is hardly damaged, and is hardly damaged.
発明の開示 Disclosure of the invention
本発明は、 パルプモール ド法によ り成形された湿潤状態の成形体の乾 燥に用いられるパルプモール ド成形体の乾燥型において、 前記成形体の 外形形状に対応した収容部を有する金型ブロ ッ クを備えており、 該収容 部に微細な排気孔を多数有しているとともに、 該金型ブロ ックの内部に 該排気孔に通じる集合排気路が配設されている部位と該集合排気路が配 設されていない部位とを有していることを特徴とするパルプモール ド成 形体の乾燥型を提供することによ り、 前記第 1 の目的を達成したもので ある。  The present invention relates to a dry mold of a pulp molded article used for drying a wet molded article formed by a pulp molding method, comprising: a mold having an accommodating portion corresponding to an outer shape of the molded article. A block having a large number of fine exhaust holes in the housing portion, and a portion in which a collective exhaust passage leading to the exhaust holes is provided inside the mold block; The first object has been attained by providing a dry mold of a pulp molded article characterized by having a portion where a collective exhaust passage is not provided.
本発明は、 パルプモール ド法によ り成形された湿潤状態の成形体と嵌 合し得る形状の凹状部又は凸状部を有し、 該凹状部又は該凸状部の表面 に、 多数の蒸気逃げ溝を凹設すると共に多孔金属板を該表面と密着当接 するように配したパルプモール ド成形体の乾燥型を提供することによ り 前記第 1 の目的を達成したものである。  The present invention has a concave portion or a convex portion having a shape that can be fitted to a wet molded product formed by a pulp molding method, and a large number of concave portions or convex portions are provided on the surface of the concave portion or the convex portion. The first object has been attained by providing a dry mold of a pulp molded article in which a vapor escape groove is formed in a recess and a perforated metal plate is arranged in close contact with the surface.
本発明は、 所定部位に多数の凸部が形成されているパルプモール ド成 形体であって、 平面視での該凸部の個々の面積が 1 . 9 X 1 0— 3〜 3 . 2 m m 2 で、 ピッチが 0 . 1 〜 5 m mであり、 且つ該凸部の全面積が該 パルプモール ド成形体の外表面積に対して 0 . 5 〜 4 0 %であるパルプ モール ド成形体を提供することによ り前記第 2 の目的を達成したもので ある。 The present invention relates to a pulp molding de formation feature that many projections are formed at a predetermined position, the individual areas of the convex portion in plan view 1. 9 X 1 0- 3 ~ 3. 2 mm 2 , a pulp molded article having a pitch of 0.1 to 5 mm and a total area of the projections of 0.5 to 40% with respect to an outer surface area of the pulp molded article. Thus, the second object has been achieved.
図面の簡単な説明 図 1 は、 本発明のパルプモール ド成形体の乾燥型の一実施形態を示す 概略図であ り、 ( a ) は平面図、 ( b ) は正面図である。 BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a schematic view showing one embodiment of a drying mold for a pulp molded article of the present invention, wherein (a) is a plan view and (b) is a front view.
図 2 は、 同実施形態の乾燥型の要部を示す図であ り、 ( a ) は収容部 の拡大平面図、 ( b ) は収容部の拡大断面図である。  FIGS. 2A and 2B are views showing a main part of the drying mold according to the embodiment, wherein FIG. 2A is an enlarged plan view of the housing section, and FIG. 2B is an enlarged sectional view of the housing section.
図 3 は、 同実施形態の乾燥型の金型ブロ ッ クを構成するブロ ックの断 面図 (図 1 の a — a矢視端面図相当図) である。  FIG. 3 is a cross-sectional view (an end view corresponding to the arrow a—a in FIG. 1) of the block constituting the dry mold block of the embodiment.
図 4は、 同実施形態の乾燥型の金型ブロ ックを構成するブロ ックの端 面図 (図 1 の b — b矢視端面図相当図) である。  FIG. 4 is an end view (an end view corresponding to the arrow b—b in FIG. 1) of the block constituting the dry mold block of the embodiment.
図 5 は、 同実施形態の乾燥型の金型プロ ッ クを構成するプロ ックの断 面図 (図 1 の c 一 c 矢視断面図相当図) である。  FIG. 5 is a cross-sectional view (a cross-sectional view corresponding to the arrow c-c in FIG. 1) of a block constituting the dry mold block of the same embodiment.
図 6 は、 同実施形態の乾燥型の金型ブロ ックを構成するブロックの端 面図 (図 1 の d — d矢視端面図相当図) である。  FIG. 6 is an end view (an end view corresponding to the arrow d--d in FIG. 1) of a block constituting the dry mold block of the embodiment.
図 7 は、 同実施形態の乾燥型の金型ブロ ッ ク を構成するブロ ックの断 面図 (図 1 の e — e 矢視断面図) である。  FIG. 7 is a cross-sectional view (a cross-sectional view taken along the line e—e in FIG. 1) of the block constituting the dry mold block of the embodiment.
図 8 は、 本実施形態の乾燥型を用いて湿潤状態のパルプモール ド成形 体を乾燥させる好ましい方法を示す工程図であ り、 ( a ) は成形体を収 容した状態を示す図、 ( b ) は中子を挿入している状態を示す図、 ( c ) は中子による押圧状態を示す図、 ( d ) は脱型状態を示す図である。 図 9 は、 本発明のパルプモール ド成形体の乾燥型の一実施形態の分解 斜視図である。  FIG. 8 is a process diagram showing a preferred method of drying a wet pulp molded article using the drying mold of the present embodiment, and (a) is a view showing a state in which the molded article is contained; b) is a diagram showing a state in which the core is inserted, (c) is a diagram showing a pressed state by the core, and (d) is a diagram showing a detached state. FIG. 9 is an exploded perspective view of one embodiment of a dry mold for a pulp molded article of the present invention.
図 1 0 ( a ) 及び ( b ) はそれぞれ、 図 9 に示す乾燥型から多孔金属 板及び押さえ板を取り外した状態での正面図及び b — b線断面図である 図 1 1 は、本発明のパルプモール ド成形体の乾燥型の他の実施形態(多 孔金属板を取り外した状態) を示す断面図 〔図 9 ( b ) 相当図〕 である。  FIGS. 10 (a) and (b) are a front view and a cross-sectional view taken along the line b--b of the drying mold shown in FIG. 9 with the porous metal plate and the holding plate removed, respectively. FIG. 10 is a cross-sectional view (corresponding to FIG. 9 (b)) showing another embodiment (with the multi-hole metal plate removed) of the dry mold of the pulp molded article of the present invention.
図 1 2 は、 本発明のパルプモール ド成形体の一実施形態を示す斜視図 である。 発明を実施するための最良の形態 FIG. 12 is a perspective view showing one embodiment of the pulp molded article of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明を、 その好ましい実施形態に基づき図面を参照しながら説 明する。  Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings.
図 1 は、 本発明のパルプモール ド成形体の乾燥型 (以下、 単に乾燥型 ともいう) の第 1 実施形態を示したものである。 同図において符号 1 は 乾燥型を示している。  FIG. 1 shows a first embodiment of a dry mold (hereinafter, also simply referred to as a dry mold) of a pulp molded article of the present invention. In the figure, reference numeral 1 indicates a dry type.
本実施形態の乾燥型 1 は、 パルプモール ド法によ り成形された湿潤状 態の成形体を乾燥させるために用いられる。 この乾燥型 1 は、 一対で用 いられ、口頸部を有する円筒ボ トル形状の成形体を乾燥するものである。 図 1 に示すよう に、 乾燥型 1 は、 成形体の外形形状に対応した収容部 2 0 を有する金型ブロック 2 を備えている。 収容部 2 0 には微細な排気 孔 2 1 を部分的に多数有しているとともに、 金型ブロック 2 の内部に排 気孔 2 1 に通じる集合排気路 2 2が配設されている部位と集合排気路 2 2が配設されていない部位とを有している。  The drying mold 1 of the present embodiment is used for drying a wet molded article formed by a pulp molding method. The drying mold 1 is used as a pair, and is used to dry a cylindrical bottle-shaped formed body having a mouth and a neck. As shown in FIG. 1, the drying mold 1 includes a mold block 2 having a housing portion 20 corresponding to the outer shape of a molded body. The accommodating part 20 partially has a large number of fine exhaust holes 21, and gathers with the part where the collective exhaust passage 22 leading to the exhaust holes 21 is provided inside the mold block 2. And a portion where the exhaust path 22 is not provided.
金型ブロ ック 2 は、 直方体状の金属製ブロ ックから構成されており、 その上面側に、 収容部 2 0が凹設されている。 収容部 2 0 の周縁部の上 面は平坦になっており、 該上面が乾燥型 1 の分割面 (突き合わせ面) と なる。  The mold block 2 is formed of a rectangular parallelepiped metal block, and an accommodation portion 20 is recessed on the upper surface side. The upper surface of the peripheral portion of the housing portion 20 is flat, and the upper surface is the dividing surface (butting surface) of the drying mold 1.
排気孔 2 1 の孔径 D (排気部における収容部表面から集合排気路まで の距離、 図 2 ( b ) 参照) は、 蒸気を逃げ易く し且つパルプ繊維による 目詰ま り を防止し、 更に排気孔 2 1 の耐久性、 加工性の点から、 0 . 1 〜 l m mであることが好まし く 、 0 . 2 〜 0 . 8 m mであることがよ り 好ましい。  The diameter D of the exhaust hole 21 (the distance from the surface of the housing in the exhaust section to the collective exhaust passage, see Fig. 2 (b)) facilitates the escape of steam and prevents clogging by pulp fibers. From the viewpoint of durability and workability of 21, the thickness is preferably from 0.1 to 1 mm, and more preferably from 0.2 to 0.8 mm.
また、 排気孔 2 1 の深さ d (図 2 ( b ) 参照) は、 蒸気の逃げ易さ、 繊維による目詰ま り防止、 メンテナンスのし易さの点において 1 〜 1 0 m mである ことが好ましく 、 2 〜 8 m mであることがよ り好ましい。 こ こで、 排気孔 2 1 の深さは、 収容部 2 0から集合排気路 2 2 までの距離 をいう。 Further, the depth d of the exhaust hole 21 (see FIG. 2 (b)) should be 1 to 10 mm in terms of easy escape of steam, prevention of clogging by fiber, and ease of maintenance. More preferably, it is 2 to 8 mm. This Here, the depth of the exhaust hole 21 refers to the distance from the storage section 20 to the collective exhaust path 22.
排気孔 2 1 の孔径 Dと深さ d との比 d Z Dは 排気孔 2 1 の加工性、 排気孔 2 1 の加工による金型ブロ ック 2の変形 排気孔 2 1 の仕上げ精 度の点から 0 . 5 〜 1 5である ことが好ましく 3 〜 1 0 であることが よ り好ましい。  The ratio d ZD between the hole diameter D and the depth d of the exhaust hole 21 is the workability of the exhaust hole 21, the deformation of the mold block 2 due to the processing of the exhaust hole 21, and the finishing accuracy of the exhaust hole 21. And preferably from 0.5 to 15, more preferably from 3 to 10.
排気孔 2 1 は、 蒸気の逃げ易さ と熱伝導性とのバランス、 及び収容部 2 0 の強度確保の点から、 収容部 2 0 における排気孔 2 1 の開孔面積率 及び排気孔 2 1 のピッチは、 適宜決定する ことができる。  The exhaust hole 21 has an opening area ratio of the exhaust hole 21 in the accommodation portion 20 and an exhaust hole 21 1 in view of a balance between ease of escape of steam and heat conductivity, and securing strength of the accommodation portion 20. The pitch can be determined as appropriate.
排気孔 2 1 は、 収容部 2 0 を、 排気孔 2 1 が高密度で形成された排気 部 2 3 と排気孔 2 1 が殆どない熱伝達部 2 4 とに区分けするよう にパタ ーン配列で穿設されている。 排気部と熱伝達部との境界は、 具体的には、 収容部 2 0 にパターン配列でまとまって穿設された排気孔 2 1 の最も外 側の排気孔の外縁どう しを結んだ輪郭で定義され、 成形体への熱供給に よる乾燥は、 主と して熱伝達部を通じて行われるが、 排気部内の排気孔 2 1 以外の部分からも熱伝達は行われる。  The exhaust holes 21 are patterned so that the accommodating portion 20 is divided into an exhaust portion 23 in which the exhaust holes 21 are formed at a high density and a heat transfer portion 24 having few exhaust holes 21. It is drilled in. The boundary between the exhaust portion and the heat transfer portion is, specifically, a contour connecting the outer edges of the outermost exhaust holes of the exhaust holes 21 formed in the accommodation portion 20 in a pattern arrangement. As defined, drying by heat supply to the molded body is mainly performed through the heat transfer portion, but heat transfer is also performed from a portion other than the exhaust hole 21 in the exhaust portion.
排気部 2 3 と熱伝達部 2 4 との面積の比 (排気部の面積) / (熱伝達 部の面積) は、 蒸気の逃げ易さ と熱伝導性とのバラ ンスの点から、 1 Z 1 9 ~ 1 1 である ことが好ましい。  The ratio of the area of the exhaust part 23 to the area of the heat transfer part 24 (the area of the exhaust part) / (the area of the heat transfer part) is 1 Z from the viewpoint of the balance between the ease with which steam can escape and the thermal conductivity. It is preferably from 19 to 11.
排気部 2 3 の幅 (隣接する熱伝達部 2 4 どう しの間隔) は、 1 〜 2 0 m mである ことが好ましく 、 2 〜 1 5 m mであることがよ り好ましく 、 4 〜 1 0 m mであることが更に好ましい。 排気部 2 3 の幅が広すぎると 排気部 2 3 における熱伝達が不十分となって乾燥むらが生じ、 狭すぎる と排気部 2 3及びそれに対応する集合排気路が大きくなるか又は複雑と なるため、 加工が複雑となる。  The width of the exhaust portion 23 (the interval between adjacent heat transfer portions 24) is preferably 1 to 20 mm, more preferably 2 to 15 mm, and more preferably 4 to 10 mm. Is more preferable. If the width of the exhaust portion 23 is too wide, heat transfer in the exhaust portion 23 will be insufficient and uneven drying will occur.If it is too narrow, the exhaust portion 23 and the corresponding collective exhaust path will become large or complicated. Therefore, processing becomes complicated.
排気部の幅とは逆の理由から、 熱伝達部 2 4 の幅 (隣接する排気部 2 3 どう しの間隔) は、 5 〜 5 O m mであることが好ましく 、 8 〜 4 0 m mであることがよ り好ましく、 1 0 〜 3 O m mである ことが更に好まし い。 For the opposite reason to the width of the exhaust section, the width of the heat transfer section 24 (adjacent exhaust section 2 (Interval between 3) is preferably 5 to 5 Omm, more preferably 8 to 40 mm, and even more preferably 10 to 3 Omm.
排気部 2 3 の幅と前記排気孔 2 1 の深さ との関係は、 当該排気部 2 3 における熱伝達の点から (排気部 2 3 の幅) / (排気孔 2 1 の深さ) が 5以下であることが好ましく、 4以下であることがよ り好ましく、 3以 下であることが更に好ましい。  The relationship between the width of the exhaust portion 23 and the depth of the exhaust hole 21 is, from the viewpoint of heat transfer in the exhaust portion 23, (width of the exhaust portion 23) / (depth of the exhaust hole 21). It is preferably 5 or less, more preferably 4 or less, and even more preferably 3 or less.
本実施形態では、 成形体の口部、 及び胴部の中央部に対応する部分に、 その周り に所定間隔をおいて列状パターンに、 肩部、 胴部の下方部に対 応する部分にリ ング状パターンに、 排気孔 2 1 が穿設されている。 各パ ターンを形成する排気孔 2 1 は、 本実施形態では、 図 2 ( a ) に示すよ うに、 千鳥格子状に隣接して穿設されている。 このよう に排気孔 2 1 の 穿設パターンによって収容部 2 0 を排気部 2 3 と熱伝達部 2 3 とに区分 けすることによ り、 一つの集合排気路 2 2 に多数の排気孔 2 1 を集合で き、 加工の困難な集合排気路が少なく ても効率的に排気できるようにな してある。  In the present embodiment, a portion corresponding to the central portion of the mouth portion and the body portion of the molded body, a line pattern with a predetermined interval around the portion, and a portion corresponding to the shoulder portion and the lower portion of the body portion. Exhaust holes 21 are formed in the ring pattern. In this embodiment, the exhaust holes 21 forming each pattern are formed adjacent to each other in a staggered lattice pattern as shown in FIG. 2 (a). In this way, by dividing the housing portion 20 into the exhaust portion 23 and the heat transfer portion 23 according to the drilling pattern of the exhaust holes 21, a large number of exhaust holes 2 are formed in one collective exhaust passage 22. 1 can be assembled, so that efficient exhaust can be achieved even if there are few collective exhaust passages that are difficult to process.
排気部は、 蒸気の逃げ易さ と熱伝導性とのバランス及び収容部 2 0 の 強度確保の点から収容部 2 0 における面積率が 5 〜 5 0 %であるよう に 排気孔 2 1 を穿設することが好ましい。 特に、 排気孔 2 1 のパターン配 列を千鳥格子状 (排気孔 2 1 が正三角形の頂角に位置する配列) とした 場合における排気部の開孔率は、 強度の点から排気孔 2 1 の穿設ピッチ Pを少なく とも孔径 Dの 2倍以上確保する必要がある。 従って、 千鳥格  The exhaust port is provided with an exhaust hole 21 such that the area ratio in the storage section 20 is 5 to 50% from the viewpoint of the balance between ease of escape of steam and thermal conductivity and securing the strength of the storage section 20. It is preferable to provide them. In particular, in the case where the pattern arrangement of the exhaust holes 21 is a staggered pattern (the exhaust holes 21 are arranged at the apex of a regular triangle), the opening ratio of the exhaust portion is determined from the point of strength. It is necessary to secure the drilling pitch P of 1 at least twice the hole diameter D. Therefore, staggered
2 Two
4 U (V 子状とした場合の排気部の開孔率は式 ( 1 ) から最大で 2 2. 7 %とな り、 排気孔 2 1 の収容部 2 0 における開孔率は、 上記面積率から好まし く は 1 . 1 ( 2 2. 7 X 5 ) 〜 1 1 . 3 ( 2 2. 7 X 5 0 ) %である。 図 2 ( b ) に示すように、 排気孔 2 1 は、 その孔径 Dが収容部 2 0側 の開口端に向けて拡径するように形成するこ とが好ま しい。これによ り、 開口縁部のエッジ 2 1 aが緩やかになり、 パルプ繊維の目詰ま りが起こ り にく く なり、 また、 メンテナンスも行い易い。 排気孔 2 1 は、 電子ビ ーム加工、 レーザ一ビーム加工等によって穿設するこ とができる。 排気 孔 2 1 の穿設に際しては、 収容部 2 0 における成形体に接する側から集 合排水路 2 2 に向けて穿設することが好ましい。 4 U (V The open area ratio of the exhaust portion in the case of the element shape is a maximum of 22.7% from the equation (1), and the open area ratio of the exhaust hole 21 in the accommodation portion 20 is preferable from the above area ratio. Or 1.1 (22.7 × 5) to 11.3 (22.7 × 50)%. As shown in FIG. 2 (b), it is preferable that the exhaust hole 21 is formed such that the hole diameter D increases toward the opening end on the housing portion 20 side. As a result, the edge 21a of the opening edge becomes gentle, and clogging of the pulp fiber is less likely to occur, and maintenance is easy. The exhaust hole 21 can be formed by electron beam machining, laser single beam machining, or the like. When drilling the exhaust hole 21, it is preferable to drill it from the side in contact with the molded body in the storage part 20 toward the collecting drainage channel 22.
集合排気路 2 2 は、 収容部 2 0から所定の距離をおいて収容部 2 0 を 囲繞し、金型ブロ ック 2 の内部を長手方向に貫く よう に形成されている。 そして、 排気孔 2 1 は、 集合排気路 2 2 に多数集約されるよう に穿設さ れている。 本実施形態の乾燥型 1 においては、 集合排気路 2 2 は、 後述 のよう に、 2 2 A~ E及び 2 5 B , 2 5 Dで形成されている。  The collective exhaust passage 22 surrounds the housing portion 20 at a predetermined distance from the housing portion 20 and is formed to penetrate the inside of the mold block 2 in the longitudinal direction. Exhaust holes 21 are drilled so as to be concentrated in the collective exhaust passage 22. In the drying mold 1 of the present embodiment, the collective exhaust passage 22 is formed of 22 A to E, 25 B, and 25 D as described later.
集合排気路 2 2 の断面積 (長さ方向の断面積) は、 3 0 - 4 0 0 mm2 であることが好ま しく 、 5 0〜 3 0 0 mm 2であることがよ り好ましい。 断面積が小さいと排気抵抗が大きく なり、 加工も難しく なる。 その反面、 大きすぎるとブロ ックの熱容量が小さ く なり、 ブロ ッ クの熱供給の安定 性が低下する。 The cross-sectional area (cross-sectional area in the length direction) of the collective exhaust path 22 is preferably from 30 to 400 mm 2 , more preferably from 50 to 300 mm 2 . If the cross-sectional area is small, the exhaust resistance increases and machining becomes difficult. On the other hand, if it is too large, the heat capacity of the block becomes small, and the stability of the block heat supply decreases.
図 1 に示すよう に、 金型ブロッ ク 2 の下面側には、 金型ブロ ッ ク 2 と 同形の金属製の発熱ブロ ック 3が、 所定手段によ り金型ブロ ック 2 に固 定されている。 発熱ブロ ック 3 には、 その長手方向に沿って複数の貫通 孔 3 0が形成されており、 貫通孔 3 0 に所定の加熱手段、 例えば電熱ヒ 一夕一等の発熱体 (図示せず) が嵌挿できるよう になしてある。 発熱ブ ロック 3 に加熱手段を配する場合、 成形体の形状に応じて他の乾燥型の 発熱ブロ ック と共有することで、 型部品の共有化ができ、 型の制作費の 低減が図れる。 また、 型交換を容易にすることもできる。 As shown in FIG. 1, a metal heating block 3 having the same shape as the mold block 2 is fixed to the mold block 2 by a predetermined means on the lower surface side of the mold block 2. Is defined. A plurality of through holes 30 are formed in the heat generating block 3 along its longitudinal direction, and a predetermined heating means, for example, a heating element such as an electric heater (not shown) is formed in the through hole 30. ) Can be inserted. If a heating means is provided in the heat generating block 3, other drying molds may be used depending on the shape of the compact. By sharing with a heating block, mold parts can be shared and mold production costs can be reduced. In addition, the mold exchange can be facilitated.
本実施形態の乾燥型 1 においては、 金型ブロ ック 2 はブロック 2 A〜 2 Eに長手方向に 5分割できるよ う になつており、 各ブロ ックは所定の 固定手段で固定できるよう になつている。 このよう に金型ブロ ックを複 数のブロ ックで構成することで、 加工及びメ ンテナンスを行い易く して いる。  In the drying mold 1 of the present embodiment, the mold block 2 is divided into five blocks in the longitudinal direction into blocks 2A to 2E so that each block can be fixed by a predetermined fixing means. It has become. By forming the mold block with a plurality of blocks in this way, machining and maintenance are facilitated.
図 1 及び図 3 に示すブロック 2 Aは、 成形体の口部に対応するブロ ッ クであり 、 排気孔 2 1 Aに通じる 5本の集合排気路 2 2 Aが収容部 2 0 Aを囲繞するように配設されている。 図 1 及び図 4 に示すブロ ック 2 B は、 成形体の肩部に対応するブロ ックであ り、 リ ング状パターンの排気 孔 2 1 Bが収容部 2 0 Bに穿設され、 これらの排気孔 2 1 Bが広い空間 の集合排気路 2 2 Bに通じている。 また、 ブロ ック 2 Bには、 集合排気 路 2 2 B及び後述のブロ ック 2 Cの集合排気路 2 2 Cに通じる集合排気 路 2 5 Bが穿設されている。 図 1 及び図 5 に示すブロ ック 2 Cは、 成形 体の胴部に対応するブロックであ り、 収容部 2 0 Cには所定間隔の列状 パターンに排気孔 2 1 Cが穿設されており、 これらの排気孔 2 1 Cが 5 本の集合排気路 2 2 Cに列毎に通じている。 図 1 及び図 6 に示すブロ ッ ク 2 Dは、リ ング状パターンの排気孔 2 1 Dが収容部 2 0 Dに穿設され、 これらの排気孔 2 1 Dが広い空間の集合排気路 2 2 Dに通じている。 ま た、 ブロ ック 2 Dには、 集合排気路 2 2 D及びブロ ッ ク 2 Cの集合排気 路 2 2 Cに通じる集合排気路 2 5 Dが穿設されている。 図 1 及び図 7 に 示すブロ ック 2 Eは、 成形体の底部に対応するブロ ッ クであり、 収容部 2 0 Eには該底部に対応した列状パターンに排気孔 2 1 Eが穿設されて おり、これら排気孔 2 1 Eが広い空間の集合排気路 2 2 Eに通じている。 ブロック 2 Eには、 また、 前記ブロ ック 2 Dの集合排気路 2 2 Dに通じ、 前記集合排気路 2 5 Dに対向するよう に排気路 2 5 Eが穿設されている そして、 これら集合排気路 2 2 E及び排気路 2 5 Eは、 排気チャ ンバ 2 6 Eに通じており、 排気チャ ンバ 2 6 Eからブロック 2 Eの下端部に穿 設された排気口 2 7 Eに通じている。 The block 2A shown in FIGS. 1 and 3 is a block corresponding to the mouth of the molded body, and five collecting exhaust passages 22A communicating with the exhaust holes 21A surround the housing portion 20A. It is arranged to be. The block 2B shown in FIGS. 1 and 4 is a block corresponding to the shoulder of the molded body, and a ring-shaped pattern exhaust hole 21B is drilled in the housing portion 20B. These exhaust holes 21B communicate with the collective exhaust passage 22B of a large space. The block 2B is provided with a collective exhaust passage 22B and a collective exhaust passage 25B communicating with a collective exhaust passage 22C of the block 2C described later. Block 2C shown in FIGS. 1 and 5 is a block corresponding to the body of the molded body. Exhaust holes 21C are formed in the housing portion 20C in a row pattern at a predetermined interval. These exhaust holes 21 C lead to five collective exhaust passages 22 C for each row. The block 2D shown in FIG. 1 and FIG. 6 has a ring-shaped pattern of exhaust holes 21D formed in the accommodating portion 20D. Leads to 2D. The block 2D is provided with a collective exhaust passage 22D and a collective exhaust passage 25D communicating with the collective exhaust passage 22C of the block 2C. Block 2E shown in FIGS. 1 and 7 is a block corresponding to the bottom of the molded body, and exhaust holes 21E are punched in the accommodating portion 20E in a line pattern corresponding to the bottom. These exhaust holes 21 E communicate with a collective exhaust passage 22 E in a wide space. Block 2E also communicates with the collective exhaust passage 22D of block 2D, An exhaust path 25E is formed so as to face the collective exhaust path 25D.The collective exhaust path 22E and the exhaust path 25E communicate with an exhaust chamber 26E. The exhaust chamber 26E communicates with an exhaust port 27E formed at the lower end of the block 2E.
本実施形態の乾燥型 1 は、 一対で用いられ、 2 つの収容部によって形 成されるキヤ ビティ 内に湿潤状態の成形体を収容した状態で、 それぞれ の分割面同士を突き合わせて該成形体の乾燥を行う。  The dry molds 1 of the present embodiment are used as a pair, and in a state in which a wet molded body is housed in a cavity formed by two housing sections, the divided surfaces of the molds are abutted with each other to form the molded body. Perform drying.
次に、 本実施形態の乾燥型 1 を用いた成形体の好ましい乾燥方法につ いて図 8 を参照しながら説明する。 尚、 図 8 においては簡便のため、 乾 燥型の構造及び形状等は簡略化してある。 先ず、 図 8 ( a ) に示すよう に、 2つの乾燥型 1 , 1 の分割面同士を突き合わせることによ り、 2 つ の収容部 2 0で形成されるキヤ ビティ 内に、 所定の抄造方法によ り成形 されたパルプモール ド成形体 4 を収容する。 両乾燥型 1 は金型プロ ック 2 に配された前記発熱体によって予め所定温度に加熱されている。  Next, a preferred method for drying a formed body using the drying mold 1 of the present embodiment will be described with reference to FIG. In FIG. 8, the structure and shape of the dry type are simplified for simplicity. First, as shown in FIG. 8 (a), a predetermined papermaking process is performed in a cavity formed by the two storage portions 20 by abutting the divided surfaces of the two drying dies 1, 1. The pulp molded body 4 formed by the method is accommodated. Both drying dies 1 are previously heated to a predetermined temperature by the heating element arranged in the mold block 2.
次に、 図 8 ( b ) に示すよう に、 中空の袋状の中子 5 を成形体 4内に 挿入する。 中子 5 は、 弾性を有し伸縮自在であることが好ましい。 また 中子 5 は、 引張強度、 反発弾性及び伸縮性等に優れたウレタン、 フッ素 系ゴム、 シリ コーン系ゴム又はエラス トマ一等によって形成されている ことが好ましい。  Next, as shown in FIG. 8 (b), the hollow bag-shaped core 5 is inserted into the molded body 4. It is preferable that the core 5 has elasticity and can expand and contract. The core 5 is preferably formed of urethane, fluorine-based rubber, silicone-based rubber, elastomer, or the like having excellent tensile strength, rebound resilience, elasticity and the like.
次に、 図 8 ( c ) に示すように、 中子 5 内に加圧流体を供給して中子 5 を膨張させ、 膨張した中子 5 によ り湿潤状態の成形体 4 を収容部 2 0 の内面に押圧する。 成形体 4 は、 膨張した中子 5 によって収容部の内面 に押し付けられ、 成形体 4 の乾燥が進行すると共に収容部 2 0 の内面形 状が成形体 4 に転写される。 このように、 成形体 4の内部から外部に向 けて成形体 4が収容部に押し付けられるので、 収容部の内面形状が複雑 であっても、 高乾燥効率で成形体 4が乾燥され、 しかも、 収容部 2 0 の 内面形状が精度良く成形体 2 に転写されることになる。 更に、 収容部 2 0 に穿設する排気孔 2 1 の孔径を前述した範囲とする ことによ り 、 中子 5 による押圧によっても、 乾燥型 1 の収容部 2 0 の表面が変形しにく く なる。 中子 5 を膨張させるために用いられる加圧流体と しては、 例えば 圧縮空気 (加熱空気) 、 油 (加熱油) 、 その他各種の液が使用される。 また、 加圧流体を供給する圧力は、 0 . 0 1 〜 5 M P a、 特に 0 . :! 〜 3 M P aであることが好ましい。 Next, as shown in FIG. 8 (c), a pressurized fluid is supplied into the core 5 to expand the core 5, and the molded body 4 in a wet state by the expanded core 5 is placed in the storage section 2. Press on the inner surface of 0. The molded body 4 is pressed against the inner surface of the housing by the expanded core 5, and the drying of the molded body 4 proceeds, and the shape of the inner surface of the housing 20 is transferred to the molded body 4. As described above, the molded body 4 is pressed against the housing from the inside of the molded body 4 to the outside, so that the molded body 4 is dried with high drying efficiency even if the inner surface shape of the housing is complicated, and The accommodation section of 20 The inner surface shape is transferred to the molded body 2 with high accuracy. Further, by setting the diameter of the exhaust hole 21 drilled in the housing portion 20 within the above-described range, the surface of the housing portion 20 of the drying mold 1 is not easily deformed by the pressing by the core 5. It becomes bad. As the pressurized fluid used to expand the core 5, for example, compressed air (heated air), oil (heated oil), and various other liquids are used. Further, the pressure for supplying the pressurized fluid is preferably from 0.01 to 5 MPa, particularly preferably from 0 :! to 3 MPa.
成形体 4 を所定の含水率まで十分に乾燥できたら、 図 8 ( d ) に示す よう に、 中子 5 内の加圧流体を抜き、 中子 5 を縮小させる。 次いで、 縮 小した中子 5 を成形体 4内よ り取り出し、 更に両乾燥型 1 , 1 を開いて 成形体 4 を取り出す。  When the molded body 4 has been sufficiently dried to a predetermined moisture content, as shown in FIG. 8 (d), the pressurized fluid in the core 5 is drained, and the core 5 is reduced. Next, the reduced core 5 is taken out of the molded body 4, and the drying molds 1, 1 are opened to take out the molded body 4.
このよう に、 本実施形態の乾燥型 1 は、 蒸気の逃げ効率及び成形体へ の熱供給が共に良好であ り、 乾燥効率の高いものである。 特に、 収容部 2 0が、 所定のパターン形状で穿設された排気孔 2 1 によって排気部と 熱伝達部とに区分けされているので、 集合排気路が少なく ても効率よく 乾燥を行う ことができる。 すなわち、 集合排気路が少なく て済むため、 熱伝導部が大きく なり、 充分な熱供給が可能となるほか、 熱容量が大き く なるため、 乾燥型の温度安定性が高く なる。 また、 集合排気路に対し 微細な排気孔 2 1 が密に穿設されているので、 排気効率が非常に高い。 さ らに、 金型ブロック 2が長手方向に分割できるので、 掃除などのメ ン テナンス作業が行い易いものである。  As described above, the drying mold 1 of the present embodiment has good steam escaping efficiency and good heat supply to the molded body, and has high drying efficiency. In particular, since the accommodating portion 20 is divided into the exhaust portion and the heat transfer portion by the exhaust hole 21 formed in a predetermined pattern, efficient drying can be performed even if the number of collective exhaust passages is small. it can. In other words, since the number of collective exhaust passages is small, the heat conduction part is large, sufficient heat can be supplied, and the heat capacity is large, so that the temperature stability of the dry type is high. In addition, since minute exhaust holes 21 are densely formed in the collective exhaust passage, the exhaust efficiency is extremely high. Further, since the mold block 2 can be divided in the longitudinal direction, maintenance work such as cleaning can be easily performed.
図 9 には本発明の乾燥型における第 2実施形態の分解斜視図が示され ており、 図 1 0 ( a ) 及び ( b ) には図 9 に示す乾燥型から多孔金属板 及び押さえ板を取り外した状態での正面図及び b — b線断面図がそれぞ れ示されている。  FIG. 9 is an exploded perspective view of a second embodiment of the drying mold of the present invention, and FIGS. 10 (a) and (b) show the porous metal plate and the holding plate from the drying mold shown in FIG. The front view and the cross section taken along the line b-b are shown respectively.
図 9及び図 1 0 に示すように、 乾燥型 1 0 1 は、 凹状部 1 1 1 を有す るキヤ ビティ プレー ト 1 1 0、 キヤ ビティ プレー 卜 1 1 0 の下面側に配 されたバックプレー ト 1 2 0 、 キヤ ビティ プレー ト 1 1 0 の凹状部 1 1 1 と嵌合する多孔金属板 1 3 0 、 及び多孔金属板 1 3 0 をキヤ ビティ ブ レー ト 1 1 0 に固定するための押さえ板 1 4 0 とを有している。 As shown in FIG. 9 and FIG. 10, the dry mold 101 has a concave portion 111. Perforated metal plate that fits into the recessed portion of the back plate 120 and the cavity plate 110 located on the lower surface side of the cavity plate 110 and the cavity plate 110 And a holding plate 140 for fixing the porous metal plate 130 to the cavity plate 110.
本実施形態においては、 図 9及び図 1 0 に示す乾燥型 1 0 1 を 2つ用 い、 2 つの凹状部 1 1 1 によって形成されるキヤ ビティ 内に湿潤状態の 成形体を収容した状態下に、 それぞれの分割面同士を突き合わせて該成 形体の乾燥を行う。  In the present embodiment, two dry molds 101 shown in FIGS. 9 and 10 are used, and a molded body in a wet state is accommodated in a cavity formed by two concave portions 111. Then, the molded body is dried by abutting the divided surfaces.
キヤ ビティ プレー ト 1 1 0 は、 直方体状の金属製ブロ ッ クから構成さ れており、 その上面側には、 所定の方法によ り成形された湿潤状態の成 形体の縦半分と嵌合し得る形状の凹状部 1 1 1 が凹設されており、 この 凹状部 1 1 1 内に成形体が収容される。 キヤ ビティ プレー 卜 1 1 0 の上 面は平坦になっており、 該面が乾燥型 1 0 1 の分割面 (突き合わせ面) となる。  The cavity plate 110 is composed of a rectangular parallelepiped metal block, and the upper surface of the cavity plate is fitted with a vertical half of a wet molded body formed by a predetermined method. A recessed portion 1 11 having a shape that can be formed is provided, and the molded body is accommodated in the recessed portion 1 11. The upper surface of the cavity plate 110 is flat, and this surface becomes the dividing surface (butting surface) of the dry mold 101.
凹状部 1 1 1 の内面には多数の蒸気逃げ溝 1 1 2が格子状に凹設され ている。 蒸気逃げ溝 1 1 2 は、 凹状部 1 1 1 において、 乾燥すべき成形 体の胴部及び底部に対応する部分に凹設されている。 蒸気逃げ溝 1 1 2 によって取り囲まれている部分は角柱状ないし立ち上がり角度が直角に 近い截頭四角錐状の凸状部 1 1 3 を形成している。  On the inner surface of the concave portion 111, a large number of steam escape grooves 112 are formed in a lattice shape. The steam escape groove 112 is formed in the concave portion 111 in a portion corresponding to the body and bottom of the molded body to be dried. The portion surrounded by the vapor escape groove 1 1 2 forms a truncated quadrangular pyramid-shaped convex portion 1 1 3 having a prismatic shape or a nearly right-angled rising angle.
蒸気逃げ溝 1 1 2 の幅は、 蒸気の逃げ効率の向上、 並びに蒸気の逃げ ムラ、 パルプ繊維の加熱ムラ及び多孔金属板の変形防止の点から 0 . 5 〜 3 0 m m、 特に :! 〜 1 0 m mである ことが好ましい。 また、 蒸気逃げ 溝 1 1 2 のピッチは、 蒸気逃げ溝 1 1 2 の幅及び多孔金属板 1 3 0 との 所望の接触割合から決定される。 蒸気逃げ溝 1 1 2 の深さは、 深ければ 深い方が蒸気の逃げ効率が向上するが、 加工工程の点から、 1 m m以上、 特に 3 m m以上あれば十分である。 蒸気逃げ溝 1 1 2 の縦横の交点には、 凹状部 1 1 1 の法線方向に向け て蒸気逃げ穴 1 1 4が放射状に且つ規則的に形成されている。 蒸気逃げ 穴 1 1 4は、 蒸気逃げ溝 1 1 2 のピッチの 2倍以上のピッチで形成され ている ことが好ましい。 尚、 蒸気逃げ穴 1 1 4 は、 凹状部 1 1 1 におい て、 乾燥すべき成形体の口頸部に対応する部分にも形成されている。 The width of the steam escape groove 1 1 2 is 0.5 to 30 mm, especially from the viewpoint of improving the steam escape efficiency and preventing uneven steam escape, uneven heating of the pulp fiber and deformation of the perforated metal plate. It is preferably about 10 mm. The pitch of the steam escape grooves 112 is determined from the width of the steam escape grooves 112 and a desired contact ratio with the porous metal plate 130. The greater the depth of the steam escape groove 1 12, the higher the steam escape efficiency. However, from the point of view of the machining process, 1 mm or more, especially 3 mm or more, is sufficient. At the vertical and horizontal intersections of the steam escape grooves 1 12, steam escape holes 114 are formed radially and regularly in the normal direction of the concave portion 111. The steam escape holes 114 are preferably formed with a pitch that is at least twice the pitch of the steam escape grooves 112. Note that the steam escape hole 114 is also formed in the concave portion 111 in a portion corresponding to the mouth and neck of the molded article to be dried.
キヤ ビティ プレー ト 1 1 0 の内部には、 その長手方向に沿って且つ蒸 気逃げ穴 1 1 4 と連通するよう に貫通孔 1 1 5 が形成されている。 その 結果、 キヤ ビティ プレー ト 1 1 0 の内部には、 蒸気逃げ穴 1 1 4 と貫通 孔 1 1 5 とによって、 蒸気逃げ溝 1 1 2 と乾燥型 1 0 1 の外部とを連通 する連通路が形成される。 そして、 湿潤した成形体の乾燥によ り発生し た蒸気は、 該連通路を通じて乾燥型 1 0 1 の外部に排出される。  Inside the cavity plate 110, a through hole 115 is formed along the longitudinal direction thereof so as to communicate with the steam escape hole 114. As a result, the inside of the cavity plate 110 is a communication passage that connects the steam escape groove 1 12 to the outside of the drying mold 101 by the steam escape hole 114 and the through hole 115. Is formed. Then, the steam generated by drying the wet compact is discharged to the outside of the drying mold 101 through the communication passage.
多孔金属板 1 3 0 は、 パンチング、 電子ビーム加工、 レーザー加工等 によって多数の孔 1 3 1 が形成された平板状の薄手の金属板をプレス加 ェして形成されており、 キヤ ビティ プレー ト 1 1 0 の凹状部 1 1 1 に嵌 合する形状の凹陥部 1 3 2及び凹陥部 1 3 2 の周縁から水平方向に延出 したフランジ 1 3 3 を有している。 孔 1 3 1 は少なく とも凹陥部 1 3 2 の全域に形成されている。 多孔金属板 1 3 0 の孔加工は薄肉にすること で容易となる。  The perforated metal plate 130 is formed by pressing a thin plate-shaped metal plate with a large number of holes 131 formed by punching, electron beam processing, laser processing, etc., and has a cavity plate. It has a recessed portion 132 shaped to fit into the recessed portion 111 of 110 and a flange 133 extending horizontally from the periphery of the recessed portion 132. The hole 13 1 is formed at least over the entire area of the recess 1 32. Drilling of the perforated metal plate 130 is facilitated by making it thinner.
多孔金属板 1 3 0 は、 その厚みが 0. 1 〜 ; 1 0 mm、 特に 0. 4〜 5 mm、 と りわけ 0 . 8〜 3 mmであることが、 多孔金属板 1 3 0 の強度 確保、 孔 1 3 1 の形成の容易さ、 孔 1 3 1 へのパルプ繊維の目詰ま りの しにく さ、 多孔金属板 1 3 0 プレス加工のし易さ、 蒸気の抜け易さ等の 点から好ま しい。 また、 乾燥工程で成形体を後述する中子で押圧する場 合には、 前記範囲の厚みとすることで、 多孔金属板 1 3 0が変形し易く なり、 多孔金属板 1 3 0 とキヤ ビティ プレー ト 1 1 0 の凹状部 1 1 1 の 表面とがー層良好に密着し、 熱伝導の効率が向上する。 また、 多孔金属 板 1 3 0及び凹状部 1 1 1 の表面を平滑とすることによ り、 熱伝導の効 率が更に向上する。 The perforated metal plate 130 has a thickness of 0.1 to 10 mm, particularly 0.4 to 5 mm, and especially 0.8 to 3 mm. Securing, easy formation of holes 131, difficulty in clogging of pulp fibers into holes 131, perforated metal plate 130 ease of press working, easy release of steam, etc. Preferred from the point. When the molded body is pressed by a core described later in the drying step, by setting the thickness in the above range, the porous metal plate 130 is easily deformed, and the porous metal plate 130 and the cavity are formed. The surface of the concave portion 111 of the plate 110 adheres well to the layer, and the efficiency of heat conduction is improved. Also, porous metal By smoothing the surfaces of the plate 130 and the concave portion 111, the efficiency of heat conduction is further improved.
多孔金属板 1 3 0 は、 その凹陥部 1 3 2 における孔 1 3 1 の開孔面積 率が 0 . 5 〜 7 0 %、 特に :! 〜 4 0 %であることが、 蒸気の逃げ易さ と 熱伝導性とのバランスの点、 及び多孔金属板 1 3 0 の強度確保の点から 好ましい。  The perforated metal plate 130 has a hole area ratio of the hole 131 in the recessed portion 132 of 0.5 to 70%, particularly:! It is preferable that the content be within a range of from 40% to 40% in terms of the balance between the ease with which steam can escape and the thermal conductivity, and the strength of the porous metal plate 130.
多孔金属板 1 3 0 は、 その孔径が 0 . 0 5 〜 2 mm、 特に 0 . 1 〜 0 . 6 mmである ことが、 蒸気を逃げ易く し且つパルプ繊維の目詰ま り を防 止し、 更に孔 1 3 1 の跡が成形体の表面に凸状に転写する ことを防止す る点から好ましい。  The perforated metal plate 130 having a pore diameter of 0.05 to 2 mm, particularly 0.1 to 0.6 mm facilitates the escape of steam and prevents clogging of pulp fibers. Further, it is preferable in that the marks of the holes 13 1 are prevented from being transferred to the surface of the molded article in a convex shape.
孔 1 3 1 のピッチは、 前述の開孔面積率及び孔径から決定される。 キヤ ビティ プレー ト 1 1 0 の凹状部 1 1 1 と多孔金属板 1 3 0 との見 掛けの接触面積は、 凹状部 1 1 1 の見掛け面積の 1 0 〜 9 0 %、 特に 3 0〜 6 0 %である ことが、 蒸気の逃げ易さと熱伝導性とのバランスの点 から好ましい。 ここで、 「キヤ ビティ プレー ト 1 1 0 の凹状部 1 1 1 と 多孔金属板 1 3 0 との見掛けの接触面積」 とは、 多孔金属板 1 3 0 に孔 があいていないと考えた場合の該多孔金属板 1 3 0 と凹状部 1 1 1 の表 面との接触面積をいい、 本実施形態においては凹状部 1 1 1 における凸 状部 1 1 3 の上面の合計面積に相当する。 また、 「凹状部 1 1 1 の見掛 け面積」 とは、 凹状部 1 1 1 に蒸気逃げ溝 1 1 2が形成される前の該凹 状部 1 1 1 の表面積をいう。  The pitch of the holes 13 1 is determined from the hole area ratio and the hole diameter described above. The apparent contact area between the concave portion 111 of the cavity plate 110 and the porous metal plate 130 is 10 to 90% of the apparent area of the concave portion 111, especially 30 to 6%. 0% is preferable from the viewpoint of the balance between ease of vapor escape and thermal conductivity. Here, the “apparent contact area between the concave portion 111 of the cavity plate 110 and the perforated metal plate 130” means that the perforated metal plate 130 has no holes. Means the contact area between the porous metal plate 130 and the surface of the concave portion 111, and in the present embodiment, corresponds to the total area of the upper surface of the convex portion 113 in the concave portion 111. The “apparent area of the concave portion 111” refers to the surface area of the concave portion 111 before the vapor escape groove 112 is formed in the concave portion 111.
多孔金属板 1 3 0 の凹陥部 1 3 2 がキヤ ビティ プレー ト 1 1 0 の凹状 部 1 1 1 に嵌合した状態では、 凹陥部 1 3 2 は凹状部 1 1 1 に面接触状 態で密着当接している。 これによ り伝熱効率が向上し、 ひいては成形体 の乾燥効率が向上する。  When the concave portion 1 32 of the porous metal plate 130 is fitted into the concave portion 1 1 1 of the cavity plate 110, the concave portion 1 32 is in surface contact with the concave portion 1 1 1. It is in close contact. Thereby, the heat transfer efficiency is improved, and the drying efficiency of the molded body is improved.
多孔金属板 1 3 0 は、 その凹陥部 1 3 2 がキヤ ビティ プレー ト 1 1 0 の凹状部 1 1 1 に嵌合した状態下に、 多孔金属板 1 3 0 のフ ラ ンジ 1 3 3 と同形の押さえ板 1 4 0 によって押さえ付けられる。 詳細には、 押さ え板 1 4 0 と、 キヤ ビティ プレー ト 1 1 0 の凹状部 1 1 1 の周縁に形成 された段差部 1 1 6 とによって、 フランジ 1 3 3 が挟持され、 更にポル 卜 1 4 1 によって押さえ板 1 4 0及び多孔金属板 1 3 0が、 キヤ ビティ プレー ト 1 1 0 に着脱可能に固定される。 このよう に、 多孔金属板 1 3 0が着脱可能に固定されているので、 多孔金属板 1 3 0 にパルプ繊維の 目詰ま りが起こっても取り外して洗浄する ことが容易であり、 乾燥型 1 0 1 はその保守性に優れている。 The perforated metal plate 130 has a concave plate 132 that has a cavity plate 110. It is pressed by a holding plate 140 of the same shape as the flange 133 of the perforated metal plate 130 in a state of being fitted to the concave portion 111 of the perforated metal plate 130. In detail, the flange 13 is clamped by the holding plate 140 and the stepped portion 116 formed on the periphery of the concave portion 111 of the cavity plate 110. The holding plate 140 and the perforated metal plate 130 are detachably fixed to the cavity plate 110 by means of 141. Since the perforated metal plate 130 is detachably fixed in this manner, even if clogging of the pulp fiber occurs in the perforated metal plate 130, it can be easily removed and washed, and the dry mold 1 0 1 is excellent in its maintainability.
キヤ ビティ プレー ト 1 1 0 の下面側には、 キヤ ビティ プレー ト 1 1 0 と同形の金属製ブロックからなるバックプレー ト 1 2 0が、 所定手段に よ りキヤ ビティ プレー ト 1 1 0 に固定されている。 また、 ノ ックプレ一 ト 1 2 0 には、 その長手方向に沿って複数の貫通孔が形成されており、 該貫通孔に所定の加熱手段、 例えば電熱ヒーター等の発熱体 1 2 1 が嵌 挿されている。 バックプレー ト 1 2 0 に加熱手段を配する場合、 成形体 の形状に応じて他の乾燥型のバックプレー 卜 と共有することで、 型部品 の共有化ができ、 型の制作費の低減が図れる。 また、 型交換を容易にす ることもできる。  On the underside of the cavity plate 110, a back plate 120 made of the same metal block as the cavity plate 110 is fixed to the cavity plate 110 by predetermined means. Have been. A plurality of through holes are formed in the knock plate 120 along its longitudinal direction, and a predetermined heating means, for example, a heating element 121 such as an electric heater is inserted into the through hole. Have been. When a heating means is provided on the back plate 120, by sharing it with another dry mold back plate according to the shape of the compact, the mold parts can be shared and the production cost of the mold can be reduced. I can do it. It is also possible to easily change the mold.
本実施形態の乾燥型 1 0 1 を用いた成形体の好ましい乾燥方法につい て前記図 8 を参照しながら説明する。  A preferred method for drying a molded body using the drying mold 101 of the present embodiment will be described with reference to FIG.
先ず、 図 8 ( a ) に示すよう に、 2つの乾燥型 1 0 1 , 1 0 1 の分割 面同士を突き合わせることによ り、 2つの凹状部 1 1 1 で形成されるキ ャ ビティ 内に、 所定の抄造方法によ り成形されたパルプモール ド成形体 4 を収容する。 両乾燥型 1 0 1 はバックプレー トに配された発熱体によ つて予め所定温度に加熱されている。  First, as shown in FIG. 8 (a), the divided surfaces of the two drying dies 101, 101 are abutted against each other to form a cavity formed by the two concave portions 111. Next, a pulp molded article 4 molded by a predetermined papermaking method is accommodated. Both drying dies 101 are previously heated to a predetermined temperature by a heating element arranged on the back plate.
次に、 図 8 ( b ) に示すように、 中空の袋状の中子 5 を成形体 4内に 挿入する。 中子 5 は、 弾性を有し伸縮自在であることが好ましい。 また 中子 5 は、 引張強度、 反発弾性及び伸縮性等に優れたウレタン、 フッ素 系ゴム、 シリ コーン系ゴム又はエラス トマ一等によって形成されている ことが好ましい。 Next, as shown in FIG. 8 (b), a hollow bag-shaped core 5 is placed in the molded body 4. insert. It is preferable that the core 5 has elasticity and can expand and contract. The core 5 is preferably formed of urethane, fluorine-based rubber, silicone-based rubber, elastomer, or the like having excellent tensile strength, rebound resilience, elasticity and the like.
次に、 図 8 ( c ) に示すよう に、 中子 5 内に加圧流体を供給して中子 5 を膨張させ、 膨張した中子 5 によ り湿潤状態の成形体 4 を凹状部 1 1 1 の内面に配された多孔金属板 (図示せず) に押圧する。 成形体 4は、 膨張した中子 5 によって多孔金属板の内面に押し付けられ、 成形体 4の 乾燥が進行すると共に多孔金属板の形状が成形体 4 に転写される。 この よう に、 成形体 4の内部から外部に向けて成形体 4が多孔金属板に押し 付けられるので、 多孔金属板の形状が複雑であっても、 高乾燥効率で成 形体 4が乾燥する。 しかも、 精度良く多孔金属板の形状が成形体 4 に転 写されることになる。 その上、 中子 5 による押圧で多孔金属板が変形し、 凹状部 1 1 1 の内面に一層密着して当接することから、 伝熱効率が一層 向上する。 中子 5 を膨張させるために用いられる加圧流体と しては、 例 えば圧縮空気 (加熱空気) 、 油 (加熱油) 、 その他各種の液が使用され る。 また、 加圧流体を供給する圧力は、 0 . 0 1 ~ 5 M P a、 特に 0 . 1 〜 3 M P aであることが好ましい。  Next, as shown in FIG. 8 (c), a pressurized fluid is supplied into the core 5 to expand the core 5, and the molded body 4 in a wet state is expanded by the expanded core 5. 11 Press against the perforated metal plate (not shown) arranged on the inner surface of 1. The molded body 4 is pressed against the inner surface of the porous metal plate by the expanded core 5, and the shape of the porous metal plate is transferred to the molded body 4 as drying of the molded body 4 proceeds. As described above, since the compact 4 is pressed against the porous metal plate from the inside to the outside of the compact 4, the compact 4 is dried with high drying efficiency even if the shape of the porous metal plate is complicated. In addition, the shape of the perforated metal plate is transferred to the molded body 4 with high accuracy. In addition, since the porous metal plate is deformed by the pressing by the core 5 and comes into close contact with the inner surface of the concave portion 111, the heat transfer efficiency is further improved. As the pressurized fluid used to expand the core 5, for example, compressed air (heated air), oil (heated oil), and other various liquids are used. Further, the pressure for supplying the pressurized fluid is preferably from 0.01 to 5 MPa, particularly preferably from 0.1 to 3 MPa.
成形体 4 を所定の含水率まで十分に乾燥できたら、 図 8 ( d ) に示す よう に、 中子 5 内の加圧流体を抜き、 中子 5 を縮小させる。 次いで、 縮 小した中子 5 を成形体 4内よ り取り 出し、 更に両乾燥型 1 0 1 , 1 0 1 を開いて成形体 4 を取り出す。  When the molded body 4 has been sufficiently dried to a predetermined moisture content, as shown in FIG. 8 (d), the pressurized fluid in the core 5 is drained, and the core 5 is reduced. Next, the reduced core 5 is taken out of the molded body 4, and the drying molds 101 and 101 are further opened to take out the molded body 4.
図 1 3 には、 本発明のパルプモール ド成形体の一実施形態の斜視図が 示されている。 図 1 3 に示すよう に、 本実施形態のパルプモール ド成形 体 2 0 1 は、 円筒ポ 卜ル状の中空容器の形態をしている。 成形体 2 0 1 は、 開口 した口頸部 2 0 2 、 胴部 2 0 3及び底部 2 0 4 を有しており、 これらの部位が、 つなぎ目無く滑らかに連接している。 FIG. 13 is a perspective view of an embodiment of the pulp molded article of the present invention. As shown in FIG. 13, the pulp molded article 201 of the present embodiment is in the form of a hollow cylinder having a cylindrical shape. The molded body 201 has an open mouth and neck part 202, a trunk part 203 and a bottom part 204, These parts are connected smoothly and seamlessly.
口頸部 2 0 2 の径は胴部 2 0 3 の径よ り も小さ くなつている。 また口 頸部 2 0 2 の外周面には、 ネジ山 2 0 5が形成されており、 このネジ山 2 0 5 は図示しないキャ ップと螺合するよう になされている。  The diameter of the mouth and neck portion 202 is smaller than the diameter of the torso portion 203. In addition, a screw thread 205 is formed on the outer peripheral surface of the mouth and neck portion 202, and the screw thread 205 is adapted to be screwed with a cap (not shown).
成形体 2 0 1 は、 パルプを主原料として形成されている。 勿論パルプ 1 0 0 %から形成されていてもよい。 パルプに加えて他の材料を用いる 場合には、 該材料の配合量は 1 〜 7 0重量%、 特に 5〜 5 0重量%とす る ことが好ましい。他の材料と してはタルクやカオリ ナイ ト等の無機物、 ガラス繊維やカーボン繊維等の無機繊維、 ポリ オレフィ ン等の合成樹脂 粉末、 合成繊維、 非木材または植物質繊維、 多糖類等が挙げられる。 而して、 本実施形態の成形体 2 0 1 においては、 その胴部 2 0 3 に多 数の凸部 2 0 6が形成されている。 各凸部 2 0 6 は、 平面視してそれぞ れ独立した ドッ ト状の形態をしている。 各凸部 2 0 6 は、 それぞれ半球 状の立体形状をしており、 平面視では円形となっている。  The molded body 201 is formed using pulp as a main raw material. Of course, it may be formed from 100% of pulp. When another material is used in addition to the pulp, the amount of the material is preferably 1 to 70% by weight, particularly preferably 5 to 50% by weight. Other materials include inorganic substances such as talc and kaolinite, inorganic fibers such as glass fiber and carbon fiber, synthetic resin powder such as polyolefin, synthetic fiber, non-wood or vegetable fiber, and polysaccharides. Can be Thus, in the molded body 201 of the present embodiment, a large number of projections 206 are formed on the body 203. Each of the projections 206 has an independent dot shape when viewed in a plan view. Each convex portion 206 has a hemispherical three-dimensional shape, and is circular in plan view.
平面視での凸部 2 0 6 の個々の面積は、 1 . 9 X 1 0—3〜 3 . 2 mm2 であり、 好ましく は 0. 0 3〜 0. 8 mm2 、 更に好ま しく は 0 . 0 7 1 X〜 0 . 2 8 mm2 である。 前記面積が 1 . 9 X 1 0—3mm2 未満であ ると、 凸部 2 0 6 の高さが低くなり過ぎて凸部 2 0 6 を形成することが 困難となり、 また凸部 2 0 6がない場合との有意差がなく なる。 3. 2 mm2 超であると、 凸部 2 0 6 の形状が大きく過ぎて精度良く成形する ことが困難となり、 また成形体 2 0 1 の外観が損なわれてしまう。 Individual areas of the projections 2 0 6 in a plan view, 1. 9 X 1 0- is 3 ~ 3. 2 mm 2, preferably 0. 0 3~ 0. 8 mm 2, further favored properly 0 . a 0 7 1 X~ 0. 2 8 mm 2. The area 1. 9 X 1 0- 3 when mm Ru 2 below der, the height of the convex portion 2 0 6 is too low it is difficult to form the protrusions 2 0 6, also the convex portions 2 0 There is no significant difference from the case without 6. If it is more than 3.2 mm 2 , the shape of the convex portion 206 is too large, so that it is difficult to mold with high accuracy, and the appearance of the molded body 201 is impaired.
凸部 2 0 6 は、 成形体 1 の胴部 2 0 3 において規則的に形成されてい る。 成形体 2 0 1 の高さ方向における凸部 2 0 6 のピッチは、 0. 1 〜 5 mmであり、 好ましく は 0 . 4〜 3 mmである。 ピッチが 0. 1 mm 未満であると、 凸部 2 0 6が密に形成され過ぎて、 摩擦抵抗が凸部 2 0 6が無い場合と変わらなく なる。 ピッチが 5 mm超であると、 成形体 2 0 1 同士が互いに接触する場合や、 成形体 2 0 1 と搬送ライ ンのガイ ド とが接触する場合において、 成形体 2 0 1 の凸部 2 0 6 以外の部位で接 触が起こ り易く な り、 やはり摩擦抵抗が凸部 2 0 6 が無い場合と変わら なくなる。 尚、 凸部 2 0 6 が不規則に形成されている場合のピッチとは、 ある凸部 2 0 6 に着目 したときに、 その凸部 2 0 6 と、 その凸部 2 0 6 のまわり に存在する各凸部との間の距離を測定し、 この操作を多数の凸 部 2 0 6 について行い、 得られた距離を平均した値をいう。 The convex portion 206 is formed regularly in the body portion 203 of the molded body 1. The pitch of the projections 206 in the height direction of the molded body 201 is 0.1 to 5 mm, and preferably 0.4 to 3 mm. If the pitch is less than 0.1 mm, the protrusions 206 are formed too densely, and the frictional resistance is no different from that without the protrusions 206. If the pitch is more than 5 mm, the compact 2 01 When the molded products 201 come into contact with each other or when the molded product 201 comes into contact with the guide of the transfer line, contact is likely to occur at a part other than the convex portion 206 of the molded product 201. In other words, the frictional resistance is no different from the case without the convex portion 206. The pitch in the case where the protrusions 206 are irregularly formed means that, when focusing on a certain protrusion 206, the pitch around the protrusion 206 and the periphery of the protrusion 206 is as follows. The distance between each existing convex part is measured, this operation is performed for many convex parts 206, and the obtained distance is averaged.
また、 成形体 1 における凸部 2 0 6 の平面視での全面積は、 成形体 2 0 1 の外表面積に対して 0 . 5 〜 4 0 %であ り 、 好ましく は :! 〜 3 0 % 、 更に好ましく は 5 〜 2 5 %である (以下、 この値を凸部面積率という) 。 一般に、 成形体がガイ ドと接触する場合や、 成形体の曲面と曲面とが接 触する場合には、 当該接触部位は小面積に限られる ことから、 凸部 2 0 6 の効果を引き出すためには、 凸部 2 0 6 のピッチが小さ く 、 接触する 部位に該凸部 2 0 6 が存在していることが必要である。 よって、 凸部面 積率が 0 . 5 %未満であると、 凸部 2 0 6 の大きさに対して凸部 2 0 6 のピッチが相対的に大きくなり、 凸部 2 0 6以外の部位で接触すること となり、 摩擦抵抗は凸部 2 0 6が無い場合と変わらなく なる。 一方、 成 形体 2 0 1 の平面部分同士が接触する場合には、 凸部 2 0 6 の面積が小 さいことが接触面積を減らす上で有効である。 よって、 凸部面積率が 4 0 %以上であると、 接触面積を減らす効果が小さ く なり 、 摩擦抵抗は凸 部 6が無い場合と変わらなくなる。  The total area of the projections 206 in the molded body 1 in plan view is 0.5 to 40% with respect to the outer surface area of the molded body 201, and preferably:! -30%, more preferably 5-25% (this value is hereinafter referred to as a convex area ratio). Generally, when the molded body comes into contact with the guide or when the curved surface of the molded body comes into contact with the curved surface, the contact area is limited to a small area. In this case, it is necessary that the pitch of the projections 206 is small and that the projections 206 are present at the contacting portions. Therefore, if the area ratio of the projections is less than 0.5%, the pitch of the projections 206 becomes relatively larger than the size of the projections 206, and the area other than the projections 206 is formed. And the frictional resistance is the same as when there is no protrusion 206. On the other hand, when the planar portions of the molded body 201 come into contact with each other, a small area of the convex portion 206 is effective in reducing the contact area. Therefore, when the convex area ratio is 40% or more, the effect of reducing the contact area is reduced, and the frictional resistance is the same as when there is no convex 6.
凸部 2 0 6 の高低は、 成形体 2 0 1 の搬送ライ ンでの詰ま りや引っ掛 かり防止に特に大きな要因とはならず、 凸部 2 0 6 の個々の面積、 ピッ チ及び凸部面積率が前述の範囲内であれば、 凸部 2 0 6 が極めて低くて も前記詰ま りや引っ掛かりが効果的に防止される。 具体的には、 凸部 2 0 6 の高さが 0 . 0 1 m m以上、 特に 0 . 0 5 m m以上あれば、 前記詰 ま りや引っ掛かり を効果的に防止できる。 凸部 2 0 6 の高さに特に上限 は無いが、 余り に高過ぎると成形体 2 0 1 の外観を損なったり、 或いは 成形体 2 0 1 の成形が困難になる ことがある ことから、 1 m m程度が上 限となる。 The height of the projections 206 does not become a particularly significant factor in preventing the compact 210 from being clogged or caught on the transport line, and the individual areas, pitches and projections of the projections 206 are not particularly large. If the area ratio is within the above-mentioned range, the clogging and catching can be effectively prevented even if the projections 206 are extremely low. Specifically, if the height of the convex portion 206 is 0.01 mm or more, particularly 0.05 mm or more, the clogging is performed. Rolling and snagging can be effectively prevented. There is no particular upper limit on the height of the convex portion 206, but if it is too high, the appearance of the molded body 201 may be impaired, or molding of the molded body 201 may be difficult. The upper limit is about mm.
成形体 2 0 1 は従来公知のパルプモール ド法によって成形することが できる。成形体 2 0 1 の胴部 2 0 3 に多数の凸部 2 0 6 を形成するには、 例えば成形体 2 0 1 の抄造に用いられる金型及の抄造面における胴部 2 0 3 の対応部位に、 所定の径を有する透孔が規則的に多数形成された多 孔板 (パンチプレー ト) 等を配すればよい。  The molded body 201 can be molded by a conventionally known pulp molding method. In order to form a large number of projections 206 on the body 203 of the molded body 201, for example, the correspondence of the body 203 to the mold surface used for the molding of the molded body 201 and the forming surface thereof A multi-hole plate (punch plate) or the like in which a large number of through-holes having a predetermined diameter are regularly formed may be arranged at the site.
特に、 一組の割型から構成され且つ内部に所定形状のキヤ ビティ が形 成される金型の抄紙面にパルプ繊維を堆積させ含水状態の成形体を形成 し、 次いで該成形内に拡縮可能な中空状の中子を挿入し、 然る後、 該中 子内に所定の流体を供給して該中子を拡張させ、 拡張した該中子によつ て前記成形体を前記抄紙面に押圧する方法によ り成形体 2 0 1 を形成す ることが、 凸部 2 0 6 を精度良く 形成することができる点、 特に高さ 0 . 0 1 m m以上の凸部を形成し得る点から好ましい。 この場合、 前記中子 による押圧は、 含水状態の前記成形体を脱水する工程及び 又は脱水後 の前記成形体を加熱乾燥させる工程に用いられる。  In particular, pulp fibers are deposited on the papermaking surface of a mold that is composed of a set of split molds and has a cavity of a predetermined shape inside to form a water-containing molded body, which can then be expanded and contracted into the molding. Then, a predetermined fluid is supplied into the core to expand the core, and the expanded core is used to expand the molded body on the papermaking surface. Forming the molded body 201 by the pressing method allows the protrusions 206 to be formed with high accuracy, and in particular, the protrusions having a height of 0.01 mm or more can be formed. Is preferred. In this case, the pressing by the core is used for a step of dehydrating the water-containing molded article and / or a step of heating and drying the molded article after dehydration.
本発明は前記実施形態に制限されない。 例えば、 金型ブロック及び発 熱ブロ ッ クは、 前記第 1 実施形態におけるよう に、 長手方向に複数に分 割できるよう に構成することが好ましいが、 成形体の寸法 · 形状等に応 じて、 何れか一方又は両方を 1 つのブロ ッ クで構成する こともできる。 また、 排気孔の集合から形成されるパターンは、 乾燥すべき成形体の寸 法 · 形状等に応じて、 格子状、 縞状、 ドッ ト状、 波状、 破線状等の模様 に配列する こともできる。 また、 金型ブロ ック内部に配設する集合排気 路は、 金型ブロ ックの上下に開口するよう に貫通させる こともでき、 上 下の何れか一方において開口するよう に貫通させることもできる。また、 排気部のパターン及び排気孔 2 1 の大きさを変えることにより、 排気孔 の集合から形成されるパターンをロゴ、 模様等としても利用する ことが できる。 The present invention is not limited to the above embodiment. For example, as in the first embodiment, the mold block and the heat-generating block are preferably configured so as to be able to be divided into a plurality in the longitudinal direction, but depending on the size and shape of the molded body, etc. Either or both can be composed of one block. Also, the pattern formed from the set of exhaust holes may be arranged in a lattice, stripe, dot, wave, dashed pattern, or the like, depending on the size and shape of the molded article to be dried. it can. Also, the collective exhaust passage provided inside the mold block can be penetrated so as to open above and below the mold block. It can also be penetrated so as to open at one of the following. In addition, by changing the size of the exhaust portion pattern and the size of the exhaust hole 21, a pattern formed from a set of exhaust holes can be used as a logo, a pattern, and the like.
また、 発熱ブロックに加熱手段を配する ことに代えて、 金型ブロック の内部に加熱手段を配することもできる。 また、 集合排気路も本実施形 態に限定されるものではなく 、 排気部のパターンと対応して構成するこ とができる。 この場合、 集合排気路の加工及びメ ンテナンスのし易さか ら金型プロ ックを厚み方向に分割することもできる。  Further, instead of disposing the heating means in the heat generating block, the heating means can be disposed inside the mold block. Also, the collective exhaust path is not limited to this embodiment, but can be configured to correspond to the pattern of the exhaust section. In this case, the mold block can be divided in the thickness direction in order to facilitate the processing and maintenance of the collective exhaust passage.
また、 収容部における排気孔の断面形状は、 矩形、 楕円形、 長円形と する こともできる。 その場合の開孔面積率は、 成形体を当接する面から 見た孔形状で取り扱う。  In addition, the cross-sectional shape of the exhaust hole in the storage section can be rectangular, elliptical, or oval. In this case, the open area ratio is treated as the hole shape as viewed from the surface in contact with the compact.
また、 前記第 1 、 第 2実施形態においては、 2つの乾燥型を突き合わ せて使用したが、 成形体の形状によっては 1 つの乾燥型のみ又は 3っ以 上の乾燥型を組み合わせて用いることもできる。  In the first and second embodiments, two drying dies are used in abutting relationship.However, depending on the shape of the molded body, only one drying die or a combination of three or more drying dies may be used. Can also.
また、 凹状部 1 1 1 の表面に凹設する蒸気逃げ溝 1 1 2 は、 乾燥すベ き成形体の形状等に応じて種々のパターンであってもよい。  Further, the steam escape groove 112 formed in the surface of the concave portion 111 may have various patterns according to the shape of the molded article to be dried.
また、 乾燥すべき成形体の形状によっては、 乾燥型 1 におけるキヤ ビ ティ プレー ト 1 1 0 として、 図 1 2 に示すよう に乾燥すべき成形体と嵌 合し得る形状の凸状部 1 1 1 ' が凸設されたものを用い、 該凸状部 1 1 1 ' の表面に蒸気逃げ溝 1 1 2 を設けてもよい。  In addition, depending on the shape of the molded article to be dried, the cavity plate 110 of the drying mold 1 may have a convex portion 11 that can be fitted with the molded article to be dried as shown in FIG. The protrusion 1 1 ′ may be used, and a vapor escape groove 1 12 may be provided on the surface of the protrusion 11 1 ′.
また、 ノ ックプレー ト 1 2 0 に加熱手段を配することに代えて、 キヤ ビティ プレー ト 1 1 0 に加熱手段を配してもよい。  Further, instead of disposing a heating means on knock plate 120, a heating means may be disposed on cavity plate 110.
また、 多孔金属板 1 3 0 における孔 1 3 1 の形状は、 四角形、 楕円、 ス リ ッ ト状でも良く 、 孔 1 3 1 の寸法は、 多孔金属板 1 3 0 の表裏で異 なっても良い。 その場合の開孔面積率は、 成形体が当接する面から見た 孔形状で取り扱う。 排気孔の断面形状が円形以外の場合の相当直径は、Further, the shape of the hole 131 in the porous metal plate 130 may be a square, an ellipse, or a slit shape, and the size of the hole 131 may be different on the front and back of the porous metal plate 130. good. The opening area ratio in that case was viewed from the surface where the molded body was in contact. Handle with hole shape. The equivalent diameter when the cross-sectional shape of the exhaust hole is other than circular is
(開孔面積 排気孔の周長) X 4で換算した値とする。 また、 多孔金属 板 1 3 0 の加工は、 切削加工でも良い。 (Open area Exhaust hole circumference) X 4 The processing of the perforated metal plate 130 may be cutting.
また、 上記実施形態においては、 2つの乾燥型を突き合わせて使用し たが、 成形体の形状によっては 1 つの乾燥型のみ又は 3 つ以上の乾燥型 を組み合わせて用いてもよい。  Further, in the above embodiment, two drying dies are used in abutment, but depending on the shape of the molded article, one drying die alone or a combination of three or more drying dies may be used.
また、 本発明の好ましい形態としては、 前記多孔金属板の厚みが 0 . l 〜 1 0 m m、 孔径が 0 . 0 5 〜 2 m m、 開孔面積率が 0 . 5 〜 7 0 % である乾燥型が挙げられる。  In a preferred embodiment of the present invention, the porous metal plate has a thickness of 0.1 to 10 mm, a hole diameter of 0.05 to 2 mm, and a pore area ratio of 0.5 to 70%. Type.
また、 前記実施形態によるパルプモール ド成形体の凸部 2 0 6 の形状 は平面視して円形であつたが、 これに代えて平面視の形状が三角形、 四 角形、 六角形等の多角形のものを用いてもよい。  In addition, the shape of the convex portion 206 of the pulp molded article according to the embodiment is circular when viewed in plan. Instead, the shape in plan view may be a polygon such as a triangle, a rectangle, or a hexagon. May be used.
また前記実施形態においては、 凸部 2 0 6 は、 それぞれ独立した ドッ 卜状の形態をしているが、 これに代えて、 突条等の形態と してもよい。 また前記実施形態においては、 凸部 2 0 6 は、 胴部 2 0 3 に形成され ていたが、 これに代えて又はこれと共に底部 2 0 4 に多数の凸部を形成 してもよい。 この場合、 胴部 2 0 3 に形成される凸部と、 底部 2 0 4 に 形成される凸部とでは、 その形状、 配置等は同じでもよく或いは異なつ ていてもよい。 また、 前記実施形態においては、 凸部 2 0 6 は、 胴部 2 0 3 のほぼ全域に亘つて形成されていたが、 これに代えて胴部 2 0 3 に 間欠的に凸部を形成してもよい。 更に、 成形体 2 0 1 の用途及び形状に 応じて、 成形体 2 0 1 の表面の全面に凸部を形成してもよく 、 或いは胴 部 2 0 3及び底部 2 0 4以外の部位に凸部を形成してもよい。  Further, in the above-described embodiment, each of the protrusions 206 has an independent dot shape, but may have a shape of a ridge or the like instead. Further, in the above-described embodiment, the convex portion 206 is formed on the body portion 203. However, a large number of convex portions may be formed on the bottom portion 204 instead or together with this. In this case, the shape, arrangement, and the like of the convex portion formed on the trunk portion 203 and the convex portion formed on the bottom portion 204 may be the same or different. Further, in the above-described embodiment, the convex portion 206 is formed over substantially the entire region of the trunk portion 203. Instead, a convex portion is formed intermittently on the trunk portion 203. You may. Further, depending on the use and shape of the molded body 201, a convex portion may be formed on the entire surface of the molded body 201, or a convex portion may be formed on a portion other than the body portion 203 and the bottom portion 204. A part may be formed.
また本発明のパルプモール ド成形体はポ トル状の中空容器の他、 箱形 のカー ト ン形状の容器、 スプーン、 蓋体、 石鹼箱等種々の形状に適用で さる。 以下、 実施例によ り本発明を更に詳細に説明する。 Further, the pulp molded article of the present invention can be applied to various shapes such as a box-shaped carton-shaped container, a spoon, a lid, and a stone box, in addition to a pot-shaped hollow container. Hereinafter, the present invention will be described in more detail with reference to examples.
〔実施例 1及び比較例 1〕  (Example 1 and Comparative Example 1)
図 9及び図 1 0 に示す乾燥型を用い、 パルプモール ド法により製造し た成形体を図 8 に示す方法で加熱乾燥させた (実施例 1 ) 。 また、 実施 例 1 において蒸気逃げ溝 1 1 1 を形成せず、 蒸気逃げ穴 1 1 4 (穴径 1 mm、 ピッチ 1 O mm) 及び貫通孔 1 1 5のみを形成し且つ多孔金属板 に代えて銅製の網を用いる以外は実施例 1 と同様の操作を行った (比較 例 1 ) 。 実施例 1及び比較例 1 の何れにおいても、 用いた成形体の初期 含水率は 7 7重量%であった。 実施例 1及び比較例 1 の乾燥条件の詳細 及び乾燥後の成形体の含水率を以下の表 1 に示す。  Using the drying molds shown in FIGS. 9 and 10, a molded body produced by the pulp molding method was heated and dried by the method shown in FIG. 8 (Example 1). Further, in Example 1, the steam escape groove 1 1 1 was not formed, and only the steam escape hole 1 1 4 (hole diameter 1 mm, pitch 1 O mm) and the through hole 1 1 5 were formed, and a porous metal plate was used instead. The same operation as in Example 1 was performed except that a copper net was used (Comparative Example 1). In both Example 1 and Comparative Example 1, the initial water content of the molded article used was 77% by weight. The details of the drying conditions of Example 1 and Comparative Example 1 and the moisture content of the dried compact are shown in Table 1 below.
Tab.l 実 施 例 1 比 較 例 1 アルミ製パンチメタル Tab.l Example 1 Comparative Example 1 Aluminum punch metal
孔径; 0.6 nun  Pore diameter: 0.6 nun
孔ビツチ;縦 0.9咖  Hole bite; length 0.9 mm
多孔 板 横 1.2 mm 30メッシュの銅∞  Perforated plate 1.2 mm wide, 30 mesh copper
開孔面積率; 2 9%  Open area ratio: 29%
厚み; 0.5 mm  Thickness; 0.5 mm
孔は千鳥に配置 幅; 2咖  Holes are staggered. Width: 2 ;
深さ; 3咖 溝なし  Depth; 3 咖 without groove
蒸 : f溝 ヒッチ;縦 5 mm  Steam: f-groove hitch; length 5 mm
パンチメタルとの接触割合; 36% ヒーター温度; 1 94°C ヒーター 1 94eC Contact rate with punch metal; 36% Heater temperature; 194 ° C Heater 194 e C
乾 燥 型 パンチメタル上での実測値; 1 82。C 網上での実測値; 1 53。C  Actual value on dry punch metal; 182. C Observed value on net; C
弾性体による加圧力; 0.4 MP a 弾性体による加圧力; 0.4 MP a 加熱時間; 30秒 加熱時間; 30秒 成 形 体 含水率; 12.2重量% 含水率; 32.2重量% 表 1 に示す結果から明らかなように、 凹状部の表面に、 多数の蒸気逃 げ溝を凹設すると共に多孔金属板を該表面と密着当接するよう に配した 乾燥型を用いた実施例 1 においては、 多孔金属板の表面温度が高く、 伝 熱効率が高いことが判る。 また乾燥後の成形体の含水率が低く 、 蒸気の 逃げが良いことも判る。 そして、 伝熱効率が高く、 蒸気の逃げが良いこ とから、 成形体の乾燥効率が高いことが判る。 Pressing force by elastic body; 0.4 MPa Pressing force by elastic body; 0.4 MPa Heating time: 30 seconds Heating time: 30 seconds Molded body Water content: 12.2% by weight Water content: 32.2% by weight As is evident from the results shown in Table 1, Example 1 using a drying mold in which a number of vapor escape grooves were formed in the surface of the concave portion and a perforated metal plate was arranged so as to be in close contact with the surface. In Fig. 7, it can be seen that the surface temperature of the porous metal plate is high and the heat transfer efficiency is high. It can also be seen that the moisture content of the compact after drying is low and the escape of steam is good. And, since the heat transfer efficiency is high and the steam escape is good, it can be seen that the drying efficiency of the compact is high.
これに対して、 蒸気逃げ溝を設けず且つ網を配した乾燥型を用いた比 較例 1 においては、 網の表面温度が低く、 伝熱効率が低いことが判る。 また乾燥後の成形体の含水率が高く 、 蒸気の逃げが悪いことも判る。 そ して、 伝熱効率が低く 、 蒸気の逃げが悪いことから、 成形体の乾燥効率 が低いことが判る。  On the other hand, in Comparative Example 1 using the drying type in which the steam escape groove is not provided and the net is arranged, the surface temperature of the net is low and the heat transfer efficiency is low. It can also be seen that the moisture content of the compact after drying is high and the escape of steam is poor. Further, since the heat transfer efficiency is low and the escape of steam is poor, it can be understood that the drying efficiency of the compact is low.
〔実施例 2〜 5及び比較例 2〕  (Examples 2 to 5 and Comparative Example 2)
パルプモール ド法によって図 1 4 に示すボ トル状の成形体を製造した < この成形体における胴部には、 半球状の多数の凸部が規則的に形成され ていた。 凸部の平面視での面積及び配列ピッチ並びに凸部面積率を表 2 に示す。  The bottle-shaped molded body shown in Fig. 14 was manufactured by the pulp molding method. <Many hemispherical projections were regularly formed on the body of this molded body. Table 2 shows the area, arrangement pitch, and area ratio of the projections in plan view.
Tab.2 Tab.2
平面視での高さ方向 横方向  Height direction in plan view Lateral direction
凸部面積率 摩擦係数 耐傷付き性 凸部の面積 ピッチ ピッチ  Convex area ratio Friction coefficient Scratch resistance Convex area Pitch Pitch
(跏2) (mm; dm) (¾)  (Lot2) (mm; dm) (¾)
実施例 2 0.283 1.1 0.9 29 0.77 表面に傷無し 実施例 3 0.126 0.69 0.8 23 0.71 表面に傷無し 実施例 4 0.071 0.26 0.6 23 0.67 表面に傷無し 実施例 5 0.031 0.35 0.4 23 0.78 表面に傷無し 比較例 2 0.785 10 10 0.8 0.85 表面に傷有り 比較例 3 0 0.85 表面に傷有り 〔比較例 3〕 Example 2 0.283 1.1 0.9 29 0.77 No surface damage Example 3 0.126 0.69 0.8 23 0.71 No surface damage Example 4 0.071 0.26 0.6 23 0.67 No surface damage Example 5 0.031 0.35 0.4 23 0.78 No surface damage Comparative Example 2 0.785 10 10 0.8 0.85 Surface scratched Comparative Example 3 0 0.85 Surface scratched (Comparative Example 3)
胴部に凸部を形成しない以外は実施例 2 と同様にしてポ 卜ル状の成形 体を製造した。  A port-like molded body was manufactured in the same manner as in Example 2 except that no convex portion was formed on the body.
〔性能評価〕  (Performance evaluation)
実施例及び比較例で得られた成形体について、 以下の方法で成形体表 面の摩擦係数を測定し、 耐傷付き性を評価した。 その結果を表 2 に示す。  With respect to the molded bodies obtained in the examples and comparative examples, the friction coefficient of the molded body surface was measured by the following method, and the scratch resistance was evaluated. The results are shown in Table 2.
〔摩擦係数の測定方法〕  (Method of measuring friction coefficient)
ボ トル状の成形体の胴部から 1 0 X 5 0 mmの試験片を切り取り、 測 定台に固定した。 2 0 gのポール圧子で試験片に点圧を加えながら該ポ ール圧子を 5 0 O mm/m i nの移動速度で滑ら し、 その時の加重を測 定した。 該荷重 ( g ) をポール圧子の重量 ( 2 0 g ) で除すことで摩擦 係数を算出した。  A 10 × 50 mm test piece was cut from the body of the bottle-shaped molded body and fixed to a measuring stand. While applying a point pressure to the test piece with a 20 g pole indenter, the pole indenter was slid at a moving speed of 50 Omm / min, and the load at that time was measured. The friction coefficient was calculated by dividing the load (g) by the weight (20 g) of the pole indenter.
〔耐傷付き性の評価方法〕  [Evaluation method for scratch resistance]
ボ トル状の成形体同士を両手に持ち、 2 0 0〜 3 0 0 g程度の荷重を かけながら こすり合わせて、 表面に生じた傷を観察した。  The bottle-shaped compacts were held in both hands and rubbed while applying a load of about 200 to 300 g, and the scratches generated on the surface were observed.
表 2 に示す結果から明らかなよう に、 実施例の成形体は、 特定の面積 及びピッチを有する凸部が特定の凸部面積率で形成されているので、 比 較例の成形体に比して、 摩擦抵抗が低減していることが判る。 また、 実 施例の成形体は比較例の成形体に比して傷付き難く 、 また傷が目立ちに く いことも判る。  As is evident from the results shown in Table 2, the molded article of the example has a convex area having a specific area and a pitch formed with a specific area ratio of the convex section, and is therefore smaller than the molded article of the comparative example. It can be seen that the frictional resistance has been reduced. Also, it can be seen that the molded article of the example is less likely to be damaged than the molded article of the comparative example, and that the damage is less noticeable.
産業上の利用可能性 Industrial applicability
本発明によれば、 蒸気の逃げ効率及び成形体への熱供給が共に良好で あり、 乾燥効率の高いパルプモール ド成形体の乾燥型が提供される。  ADVANTAGE OF THE INVENTION According to this invention, both the escape efficiency of steam and the heat supply to a molded object are favorable, and the drying die of a pulp mold molded object with high drying efficiency is provided.
また本発明によれば、 安価で保守性に優れたパルプモール ド成形体の 乾燥型が提供される。  Further, according to the present invention, there is provided a dry mold for a pulp molded article which is inexpensive and excellent in maintainability.
本発明によれば、 搬送中の詰ま りや引っ掛かりが防止されたパルプモ 一ル ド成形体が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the clogging and the pulp A single molded body is provided.
また本発明によれば、 傷が付きにく く 、 また傷が目立ちにく いパルプ モール ド成形体が提供される。  Further, according to the present invention, there is provided a pulp molded article that is hardly scratched and hardly noticeable.

Claims

請 求 の 範 囲 The scope of the claims
1 . パルプモール ド法によ り成形された湿潤状態の成形体の乾燥に用い られるパルプモール ド成形体の乾燥型において、 前記成形体の外形形状 に対応した収容部を有する金型ブロ ックを備えており 、 該収容部に微細 な排気孔を多数有しているとともに、 該金型ブロ ックの内部に該排気孔 に通じる集合排気路が配設されている部位と該集合排気路が配設されて いない部位とを有していることを特徴とするパルプモール ド成形体の乾 燥型。 1. In a dry mold for a pulp molded article used for drying a wet molded article formed by a pulp molding method, a mold block having an accommodating portion corresponding to the outer shape of the molded article is provided. A portion having a large number of fine exhaust holes in the housing portion, a portion in which a collective exhaust passage leading to the exhaust holes is provided inside the mold block, and the collective exhaust passage. A dry mold of a pulp molded article, characterized by having a portion where no is disposed.
2 . 前記排気孔が、 前記収容部を排気部と熱伝達部とに区分けするよう に穿設されている特許請求の範囲第 1 項記載のパルプモール ド成形体の 乾燥型。  2. The drying mold for a pulp molded article according to claim 1, wherein the exhaust hole is formed so as to divide the storage portion into an exhaust portion and a heat transfer portion.
3 . 前記排気孔の孔径が 0 . 1 〜 1 m mであ り、 該排気孔の深さが 1 〜 1 0 m mである特許請求の範囲第 1 項記載のパルプモール ド成形体の乾 燥型。  3. The dry mold for a pulp molded article according to claim 1, wherein a diameter of the exhaust hole is 0.1 to 1 mm, and a depth of the exhaust hole is 1 to 10 mm. .
4 . 前記排気孔の孔径が前記収容部側の開口端に向けて拡径している特 許請求の範囲第 1 項記載のパルプモール ド成形体の乾燥型。  4. The dry mold for pulp molded articles according to claim 1, wherein the diameter of the exhaust hole is increased toward the opening end on the storage section side.
5 . 前記排気孔が縞状、 格子状、 ドッ ト状、 又は波状にパターン配列さ れている特許請求の範囲第 1 項記載のパルプモール ド成形体の乾燥型。 5. The drying mold for a pulp molded article according to claim 1, wherein the exhaust holes are arranged in a stripe, lattice, dot, or wavy pattern.
6 . 前記排気孔が前記収容部に部分的に形成されている特許請求の範囲 第 1 項記載のパルプモール ド成形体の乾燥型。 6. The dry mold for a pulp molded article according to claim 1, wherein the exhaust hole is partially formed in the housing portion.
7 . パルプモール ド法によ り成形された湿潤状態の成形体と嵌合し得る 形状の凹状部又は凸状部を有し、 該凹状部又は該凸状部の表面に、 多数 の蒸気逃げ溝を凹設すると共に多孔金属板を該表面と密着当接するよう に配したパルプモール ド成形体の乾燥型。  7. It has a concave or convex portion that can be fitted to the wet molded product formed by the pulp molding method, and a large number of vapor escapes are provided on the surface of the concave or convex portion. A dry mold of a pulp molded article in which a groove is formed and a perforated metal plate is arranged in close contact with the surface.
8 . キヤ ビティ プレー トと、 該キヤ ビティ プレー トの下面側に配された バックプレー ト とを有し、 8. The cavity plate and the lower surface of the cavity plate Having a back plate and
前記キヤ ビティ プレー 卜の上面側に前記凹状部が凹設されているか又 は前記凸状部が凸設されており、  The concave portion is recessed on the upper surface side of the cavity plate, or the convex portion is protruded,
前記キヤ ビティ プレー ト又はバッ クプレー 卜 に加熱手段が配されてい る特許請求の範囲第 7項記載のパルプモール ド成形体の乾燥型。  8. The dry mold for a pulp molded article according to claim 7, wherein a heating means is provided on the cavity plate or the back plate.
9 . 所定部位に多数の凸部が形成されているパルプモール ド成形体であ つて、 平面視での該凸部の個々の面積が 1 . 9 X 1 0一3〜 3. 2 mm2 で、 ピッチが 0 . 1〜 5 m mであ り、 且つ該凸部の全面積が該パルプモ 一ル ド成形体の外表面積に対して 0 . 5〜 4 0 %であるパルプモール ド 成形体。 9. Numerous pulp molding de moldings der connexion convex portions are formed at a predetermined position, in the individual areas of the convex portion in plan view 1. 9 X 1 0 one 3 ~ 3. 2 mm 2 A pulp molded article having a pitch of 0.1 to 5 mm and a total area of the projections of 0.5 to 40% with respect to an outer surface area of the pulp molded article.
10. 前記パルプモール ド成形体が口頸部、 胴部及び底部を有するボ トル 状の中空容器であり、 前記凸部が前記胴部及び Z又は前記底部に形成さ れている特許請求の範囲第 8項記載のパルプモール ド成形体。  10. The pulp molded body is a bottle-shaped hollow container having a mouth, a neck, a body, and a bottom, and the protrusion is formed on the body, the Z, or the bottom. 9. The pulp molded article according to item 8.
11. 前記凸部の高さが 0 . 0 1〜 l mmである特許請求の範囲第 9項記 載のパルプモール ド成形体。  11. The molded pulp molded article according to claim 9, wherein the height of the convex portion is 0.01 to 1 mm.
PCT/JP2001/000789 2000-03-13 2001-02-05 Drying mold for pulp mold formed body WO2001068984A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000069493A JP3289001B2 (en) 2000-03-13 2000-03-13 Pulp molded product
JP2000-69493 2000-03-13
JP2000268526 2000-09-05
JP2000-268526 2000-09-05

Publications (1)

Publication Number Publication Date
WO2001068984A1 true WO2001068984A1 (en) 2001-09-20

Family

ID=26587376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000789 WO2001068984A1 (en) 2000-03-13 2001-02-05 Drying mold for pulp mold formed body

Country Status (1)

Country Link
WO (1) WO2001068984A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2611848A (en) * 2020-11-04 2023-04-19 Diageo Great Britain Ltd A 3D printed mould for forming a unitary article from pulp
GB2625779A (en) * 2022-12-23 2024-07-03 Pulpex Ltd Method and system for drying moulded fibre receptacle

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS359669B1 (en) * 1957-08-31 1960-07-22
JPS3817054B1 (en) * 1961-10-23 1963-09-05
JPS57191400A (en) * 1981-05-13 1982-11-25 Nippon Sekiso Kogyo Kk Method and apparatus for producing pulp molded article
JPH07189199A (en) * 1993-12-27 1995-07-25 Honshu Paper Co Ltd Production of mold for molding
JPH08260400A (en) * 1995-03-17 1996-10-08 Sintokogio Ltd Drying mold for formed material
US5603808A (en) * 1994-12-27 1997-02-18 Sintokogio, Ltd. Mold for forming pulp moldings
JPH09132900A (en) * 1995-10-31 1997-05-20 Noritake Co Ltd Forming mold for pulp mold, forming of pulp mold and pulp mold
JPH11222800A (en) * 1996-05-27 1999-08-17 Image Lab Text:Kk Frame mold for papermaking of three-dimensional paperware and its production
WO1999042661A1 (en) * 1998-02-23 1999-08-26 Kao Corporation Method of manufacturing pulp mold formed product
JP2000034699A (en) * 1998-07-13 2000-02-02 Oji Paper Co Ltd Hot-pressing mold for pulp molded product and production of pulp molded product

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS359669B1 (en) * 1957-08-31 1960-07-22
JPS3817054B1 (en) * 1961-10-23 1963-09-05
JPS57191400A (en) * 1981-05-13 1982-11-25 Nippon Sekiso Kogyo Kk Method and apparatus for producing pulp molded article
JPH07189199A (en) * 1993-12-27 1995-07-25 Honshu Paper Co Ltd Production of mold for molding
US5603808A (en) * 1994-12-27 1997-02-18 Sintokogio, Ltd. Mold for forming pulp moldings
JPH08260400A (en) * 1995-03-17 1996-10-08 Sintokogio Ltd Drying mold for formed material
JPH09132900A (en) * 1995-10-31 1997-05-20 Noritake Co Ltd Forming mold for pulp mold, forming of pulp mold and pulp mold
JPH11222800A (en) * 1996-05-27 1999-08-17 Image Lab Text:Kk Frame mold for papermaking of three-dimensional paperware and its production
WO1999042661A1 (en) * 1998-02-23 1999-08-26 Kao Corporation Method of manufacturing pulp mold formed product
JP2000034699A (en) * 1998-07-13 2000-02-02 Oji Paper Co Ltd Hot-pressing mold for pulp molded product and production of pulp molded product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2611848A (en) * 2020-11-04 2023-04-19 Diageo Great Britain Ltd A 3D printed mould for forming a unitary article from pulp
GB2614773A (en) * 2020-11-04 2023-07-19 Diageo Great Britain Ltd A mould for forming a unitary article from pulp
GB2625779A (en) * 2022-12-23 2024-07-03 Pulpex Ltd Method and system for drying moulded fibre receptacle

Similar Documents

Publication Publication Date Title
KR101697718B1 (en) Press for producing a tampon
JPS6257975A (en) Method and apparatus for releaf processing and drilling of polymer web so as to coincide with shape of one kind or plural kinds of three-dimensional molding structure
DE69519573D1 (en) METHOD FOR MOLDING A CONTAINER FROM CARDBOARD AND CONTAINERS MADE THEREOF
KR20080083117A (en) Tissue sheet molded with elevated elements and methods of making the same
US20150140288A1 (en) System and Method for Embossing the Wire Side of a Molded Fiber Article
WO2001068984A1 (en) Drying mold for pulp mold formed body
CN109477301B (en) Three-dimensional papermaking belt
JP4099147B2 (en) Manufacturing method of paper-molded product and heating press device
JP2014070308A (en) Non-woven fabric and method for producing non-woven fabric
JP4439315B2 (en) Manufacturing method of papermaking molded body
KR890701504A (en) Deformable pulp paper product, manufacturing method and use method
JP2003129400A (en) Male mold for producing fibrous formed body
IT202100010307A1 (en) METHOD AND APPARATUS FOR PRODUCING A CELLULAR SUPPORT FOR PREFERABLY FOOD PRODUCTS, A CELLLESS SUPPORT OBTAINABLE THUS
DK169290B1 (en) Method and Tool for Manufacturing Fiber Pulp Packaging Items
JP3289017B2 (en) Dry mold for pulp mold
JP3249795B2 (en) Method for producing pulp molded article
WO2023170624A1 (en) An arrangement for drying a molded fiber-based product and a method for producing the product
JP7457362B2 (en) Manufacturing method for pulp molded products
WO2000059697A1 (en) A method for producing sheet or board of fibers of oil palm stem
JP3071786B1 (en) Wet papermaking mold
JP3512699B2 (en) Method for producing pulp molded article
JP3970173B2 (en) Method for producing pulp molded article
JPH07189199A (en) Production of mold for molding
WO2000058061A1 (en) A method for producing sheet or board of coconut fibres
JP3249793B2 (en) Method for producing pulp molded article

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase