WO2001066776A2 - Novel l-form bacterial strains, method for producing same and the use thereof for producing gene products - Google Patents

Novel l-form bacterial strains, method for producing same and the use thereof for producing gene products Download PDF

Info

Publication number
WO2001066776A2
WO2001066776A2 PCT/EP2001/002630 EP0102630W WO0166776A2 WO 2001066776 A2 WO2001066776 A2 WO 2001066776A2 EP 0102630 W EP0102630 W EP 0102630W WO 0166776 A2 WO0166776 A2 WO 0166776A2
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
proteins
protein
bacterial strain
cells
Prior art date
Application number
PCT/EP2001/002630
Other languages
German (de)
French (fr)
Other versions
WO2001066776A3 (en
Inventor
Christian Hoischen
Johannes Gumpert
Joachim Marian Kujau
Christine Fritsche
Gerda Elske
Beatrix Fahnert
Stefan Sieben
Hans Peter MÜLLER
Original Assignee
Institut für Molekulare Biotechnologie E.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10011358A external-priority patent/DE10011358A1/en
Application filed by Institut für Molekulare Biotechnologie E.V. filed Critical Institut für Molekulare Biotechnologie E.V.
Priority to AU52174/01A priority Critical patent/AU5217401A/en
Publication of WO2001066776A2 publication Critical patent/WO2001066776A2/en
Publication of WO2001066776A3 publication Critical patent/WO2001066776A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/305Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F)
    • C07K14/31Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F) from Staphylococcus (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/44Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from protozoa
    • C07K14/445Plasmodium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/52Bacterial cells; Fungal cells; Protozoal cells
    • A61K2039/523Bacterial cells; Fungal cells; Protozoal cells expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence

Definitions

  • Novel L-shape ba strains processes for their production and their use in the production of gene products
  • the invention relates to cell wallless bacterial L-form strains, methods for their production and their use for the production of gene products.
  • membrane proteins have hitherto not been able to be produced or can only be produced with unsatisfactory yield and purity.
  • reasons for this lie primarily in the proteolytic degradation of the proteins produced by cell-specific proteases, in the frequently occurring toxicity of the foreign proteins for the producer cells and, in the case of membrane proteins, in the strong association of the proteins produced with the cell membranes of the producer cells.
  • membrane proteins are only present in small amounts in the membranes and the membrane material is only available in limited amounts (e.g. in mammalian cells).
  • the isolation of the membranes also usually requires material and time-consuming separation processes to remove disruptive structures such as cell wall, flagella, fimbriae and other membrane and cell organelles.
  • prokaryotic expression systems The production of recombinant proteins in prokaryotic expression systems has the disadvantage that the proteins frequently assemble into functionally inactive aggregates in the cytosol or periplasm, so-called "inclusion bodies". Furthermore, prokaryotic producer cells also have cell-specific proteases which can degrade the foreign proteins produced. In addition, when using E. coli as producer cells, toxic cell components, in particular components of the cell walls, often make it difficult to obtain protein preparations that are harmless to the consumer.
  • L-shape bacterial cells are bacteria that grow with a greatly changed or without a cell wall. According to the nature of the cell envelope and its stability, L-form bacterial strains can be divided into four groups. Spheroplastic T p L forms still have remnants of the cell wall, for example the outer membrane, while protoplast type L form cells are only surrounded by the cytoplasmic membrane. Cells that only remain in the L-form phase under constant selection pressure with the help of inhibitors of cell wall biosynthesis (for example ampicillin) are called unstable L-forms. Strains whose cells have completely lost the ability to form a cell wall are referred to as stable L-forms.
  • cells of a bacterial type are first converted into spheroplasts or protoplasts by treatment with substances which inhibit cell wall biosynthesis (e.g. ⁇ -lactam antibiotics, vancomycin, D-cycloserine) or which break down the cell wall (e.g. lytic enzymes such as lysozyme) ,
  • substances which inhibit cell wall biosynthesis e.g. ⁇ -lactam antibiotics, vancomycin, D-cycloserine
  • lytic enzymes e.g. lytic enzymes such as lysozyme
  • a nutrient medium is a solution that contains a complex nutrient component, preferably freshly prepared meat extract, for basic supply with C and N sources, amino acids and ions, a growth stimulator, preferably yeast extract with essential vitamins and amino acids, an osmotic stabilizer to avoid cell lysis, preferably Sucrose or NaCl, a membrane stabilizer, preferably serum and divalent cations such as Mg 2+ , and a cell wall biosynthesis inhibitor, preferably contains ⁇ -lactam antibiotics such as penicillin (primary L-form medium).
  • a complex nutrient component preferably freshly prepared meat extract, for basic supply with C and N sources, amino acids and ions, a growth stimulator, preferably yeast extract with essential vitamins and amino acids, an osmotic stabilizer to avoid cell lysis, preferably Sucrose or NaCl, a membrane stabilizer, preferably serum and divalent cations such as Mg 2+ , and a cell wall biosynthesis inhibitor, preferably contains ⁇ -lactam antibiotics such as
  • LFS medium contains fresh meat extract with additives of yeast extract (0.5-1% w / v), horse serum (8-10% v / v), sucrose (6-10% w / v), penicillin (200-1000 U / ml), Bacto agar (1-1.5% w / v).
  • w / v stands for mass per volume, i.e. 10% w / v corresponds to 10 g per 100 ml. Unless otherwise stated, all percentages in the present description are w / v statements.
  • the abbreviation v / v stands for volume per volume.
  • the meat extract is obtained by extracting 2 kg of beef with 4 l of water in a steam pot for 1 hour, then adding 0.3 to 1% Bacto Peptone and 0.5 to 2% NaCl to the filtrate and adjusting to pH 7.0 ,
  • L-shapes i.e. those L-forms which have the ability to revert, i.e. lost to the resynthesis of the cell wall in the absence of penicillin.
  • agar blocks with L-shape colonies of a culture are transferred in parallel to LFS agar medium with and without the addition of penicillin until only L-shape colonies grow on the penicillin-free plates and no more reversion takes place.
  • These stable L-shape colonies are propagated until a dense colonization is achieved on the penicillin-free LSF agar plates.
  • agar blocks (2 x 2 cm) with plenty of colony noses are placed in 10-40 ml liquid LFS medium and incubated at 37 ° C with shaking. Optimization of growth in liquid LFS medium is achieved by continuously transferring the cultures (every 2-5 days) to fresh medium until the L-form cells grow to cell densities of 10 cells / ml over the course of 24 hours.
  • L-form strains for example of P. mirabilis and E. coli, are selected in the course of 50-80 passages, even without the addition of serum and sucrose show good growth.
  • These can then be adapted to growth in meat extract-free nutrient media by gradually replacing the meat extract portion of the LFS medium with other nutritional components defined in their composition.
  • BHIB Brain-heart-infusion- (BHIB), tryptic-soy-broth (TSOYB), Todd-Hewitt-broth (THEB) and L-broth (LB) are particularly suitable, defined, complex nutritional components for replacing the meat extract.
  • TSOYB tryptic-soy-broth
  • THEB Todd-Hewitt-broth
  • LB L-broth
  • Gumpert et al. disclose stable L-shape cells that are based on the treatment of normal bacterial cells with cell wall biosynthesis inhibitors such as ampicillin and simultaneous osmotic stabilization. These cells no longer form and no longer form a periplasmic compartment no extracellularly detectable proteases (J. Gumpert, E. Schuhmann, U. Taubeneck 1971, Journal Allg. Mikrobiologie, 11, 19-33; J. Gumpert, U. Taubeneck 1983, Experientia Suppl. Vol. 46, 227-241) ,
  • L-form bacterial strains are principally suitable for the production of recombinant proteins for a variety of reasons.
  • their membrane which is an adequate milieu for the production of membrane proteins, is freely accessible from the outside (K. Gura, J. Gumpert, C. Hoischen, 1997, IMB Anual Report 1996, 101-104; C. Hoischen, K. Gura, C. Luge, J. Gumpert 1997, Journal Bacteriol. 197, 3430-3436).
  • protoplast-type L-form strains have no cell organelles apart from the cytoplasmic membrane, from which the protein produced has to be separated.
  • DD 269 166 AI describes the use of cell-wall-free Gram-negative bacteria, such as Pseudomonas, Agrobacterium, Proteus and Escherichia, as well as Gram-positive bacteria, such as Staphylococcus, Streptococcus, Bacillus f Lactobacillus r Streptomyces and Thermoactinomyces, to obtain recombinant gene products, such as Streptomyinase human, Interferon-alpha-1 or Prochy osin.
  • Gram-negative bacteria such as Pseudomonas, Agrobacterium, Proteus and Escherichia
  • Gram-positive bacteria such as Staphylococcus, Streptococcus, Bacillus f Lactobacillus r Streptomyces and Thermoactinomyces
  • the DD 280 333 AI discloses a process for the production of milk-producing enzymes using stable L-form strains of bacterial or fungal origin.
  • DD 281 816 A5 relates to the production of serotype C streptokinase using L-form strains of e.g. P. mirabilis and Bac. subtilis.
  • Gumpert and Taubeneck disclose L-form strains that are able to grow in culture media without the addition of serum or osmotic stabilizers (J. Gumpert and U. Taubeneck 1983, Experientia Suppl. Vol. 46 (1983) 227-241) ,
  • the known L-shape cells are sensitive because of their missing cell wall, for example, to environmental influences and chemical and physical changes in the growth medium. They are therefore more suitable for the production of proteins in small quantities, less for fermentations on an industrial scale (J. Gumpert and C. Hoischen 1998, Current Opinion in Biotechnology, 9, 506-509).
  • the protein presented On the surface display with Gram-negative strains, the protein presented is usually fused with protein components of the outer membrane, such as OmpA, La B and PhoE, flagella proteins (flagellin) or proteins of the fimbriae (FimA, FimH), and thereby in the outer Anchored membrane.
  • protein components of the outer membrane such as OmpA, La B and PhoE, flagella proteins (flagellin) or proteins of the fimbriae (FimA, FimH), and thereby in the outer Anchored membrane.
  • the disadvantages of this system are that (i) the proteins presented must be transported through the inner membrane, periplasm and cell wall (mureinsacculus and outer membrane), (ii) that the size of the proteins presented is limited and (iü) that a number of medical applications are excluded by numerous immunoreactive components of the cell surface.
  • the presented protein In Gram-positive bacteria, the presented protein is usually fused with a surface protein of the cell wall (e.g. Protein A, M6 protein) and thereby fixed in the cell wall.
  • a surface protein of the cell wall e.g. Protein A, M6 protein
  • the presence of cell-specific antigen determinants and the frequent occurrence of extracellular proteases have a disadvantageous effect on the surface display with Gram-positive bacteria.
  • the protein presented must also first be transported through the z toplasmatic membrane and the cell wall.
  • the invention has for its object to provide new L-form strains for the biotechnological production of gene products, which have increased stability to chemical, physical and mechanical loads and which are therefore particularly suitable for fermentations under technical conditions and in particular for the production of membrane proteins ,
  • an L-shaped bacterial strain adapted to a complex nutrient medium is cultivated alternately at different temperatures in the range from 20 to 40 ° C.
  • the cells are fermented under increasing hydromechanical load.
  • stable L-forms of bacteria are preferably used, in particular stable protoplast-type L-forms.
  • Strains that grow stably can be found both in meat extract-containing complex media, preferably LFS medium, and in meat extract-free complex media, preferably those based on the complex nutrient components defined above, particularly preferably BHIB. be used.
  • Meat extract-free media are preferred because they are more reproducible and less expensive to manufacture and to produce medical products.
  • L-forms suitable as starting strains are described, for example, by J. Gumpert and U. Taubeneck 1983, Experientia Suppl. Vol. 46, 227-241, described in the literature cited therein and in DD 269 166 AI.
  • Preferred starting strains are the L-form strains of Escherichia coli, Proteu ⁇ mirabilis and Bacillus subtilis mentioned there.
  • Further preferred L-form strains are those of Bacillus licheniformis for Nocardia asteroides, Pseudomonas stutzeri, Staphylococcus aureus, Streptococcus faecalis, Streptomyces hygroscopicus and Thermo actinomyces vulgaris.
  • Particularly preferred starting strains are the L forms of P. mirabilis LVI, P. mirabilis L99, E. coli LWF +, E. coli LWF- and Bac. subtilis 1.1 70.
  • the preferred L-form strains of P. mirabilis LVI, P. mirabilis L99, E. coli LWF +, E. coli LWF- and Bac. subtilis L170 are deposited in the DMSZ (German Collection of Microorganisms and Cell Cultures, Marscheroder Weg lb, 38124 Braunschweig). The deposit numbers are: DSM 7988 (Proteus mirabilis LVI), DSM 7990 (Proteus mirabilis L99), DSM 7989 ⁇ Escherichia coli LWF +), DSM 8012 ⁇ Escherichia coli LWF-) and DSM 7978 (Bacillus subtilis L170).
  • L-form bacterial strains which have been treated according to process steps (a) or (b) above, preferably (a) and (b), in addition to stable growth behavior, in particular due to a high mechanical strength and a high temperature tolerance distinguished. They are significantly more resistant to fluctuations in growth temperature, medium composition, pH and other fermentation parameters and are therefore particularly suitable for the production of recombinant gene products under technical conditions.
  • Steps (a) and (b) can be carried out simultaneously or in succession.
  • the sequence is preferably step (a) followed by step (b).
  • Step (a), step (b) or preferably both steps can be repeated one or more times.
  • Step (a) comprises a multi-stage growth regime with alternating growth temperatures.
  • Step (a) is preferably carried out by varying the temperature alternately between two temperatures T1 and T2, T1 remaining the same during step (a) and T2 being varied.
  • the values for T2 are preferably below the value for T1.
  • T2 is gradually lowered and, after reaching the desired minimum temperature, is increased to a value above T1.
  • step (a) the culture in question is first inoculated into fresh medium and incubated in a shaking incubator at a constant temperature (Tl) for 24 to 36 hours as a submerged shaking culture (stage 1).
  • the cultivation takes place, for example, in 100 ml vessels, preferably in 35 ml of 3% BHI medium with the addition of 0.5% yeast extract.
  • the cultivation is continued until a cell concentration of 10 cells / ml is reached.
  • stage 2 Part of the culture from stage 1 is then transferred to fresh medium (inoculum about 10% v / v) and at a temperature incubated (T2), which is preferably lower than the temperature T1, over a period of preferably 18 to 48 hours, particularly preferably 24 to 36 hours (stage 2).
  • T2 is preferably the optimal growth temperature for the starting strain, for example 37 ° C., and is not changed in the course of step (a), while T2 is gradually reduced, preferably to a value of 20 to 22 ° C., particularly preferably about 20 ° C.
  • T2 is preferably lowered to the desired target temperature in 5 to 10 stages, preferably about 7 stages, so that step (a) preferably comprises a total of 10 to 20 and particularly preferably about 14 stages.
  • the cells are preferably cultivated for 18 to 48 hours, particularly preferably 24 to 36 hours, at the respective temperature. The cultivation is preferably continued until a cell concentration of 10 cells / ml is reached.
  • the temperature T2 is preferably reduced by 2 to 5 ° C. per stage, the temperature change from stage to stage also being different.
  • T2 can be raised to a value above Tl, preferably 2 to 5 ° C. above the optimal growth temperature, for example 40 ° C.
  • strains are obtained which are more reproducible in the course of growth compared to the starting strains, more tolerant towards growth temperatures and more constant in the growth rate.
  • the L-shape cells are alternately exposed to increasing hydromechanical loads.
  • the L-form cultures obtained in step (a) are fermented as a starting strain with varying shear forces and preferably also with varying aeration rates. Varying shear forces can be generated, for example, by varying the stirrer speed at which the fermentation medium is stirred.
  • Step (b) is preferably carried out in a fermenter with a net volume of 2 l, a height of 35 cm and a diameter of 18 cm, which is equipped with a wave disc stirrer with a diameter of 7 cm.
  • the fermentation regime is designed, for example, so that several fermenter runs are carried out in succession, the cells of one fermenter run being used as an inoculum for the next fermentation run.
  • 1000 to 2000 ml of BHIB medium with 0.7% yeast extract and 1% sucrose with 10% (V / V) of the culture from step (a) or the previous fermenter culture are preferably inoculated and at a constant stirring speed (fixed speed VF) and aeration rate preferably fermented at 32 ° C to 37 ° C.
  • the fermentation is continued up to a cell concentration of 10 8 to 109 cells / ml (about 24 to 48 hours). Under these conditions, the oxygen consumption of the L-shape cells is greatly increased. A decrease in the oxygen partial pressure p0 2 to values below approximately 5% should be avoided.
  • the stirring speed is briefly increased to a fixed value (changeover speed VU) when an oxygen partial pressure of about 5% is reached and from 20 to 30 when a partial pressure is reached % reset to the fixed speed VF.
  • the percentage refers to the saturation concentration of oxygen in the culture medium in question.
  • the fixed speed VF and the changeover speed VU of the stirrer are changed in the successive fermenter runs.
  • Step (b) preferably comprises 5 to 10, particularly preferably about 7, fermenter runs.
  • the stirring speeds in step (b) are changed according to the following scheme:
  • the aeration rate is preferably set to 0.2 to 1.0, particularly preferably 0.6 to 1.0 volume units of air per volume unit of medium per minute (1/1 min), very particularly preferably about 0.7 1/1 min.
  • composition of the nutrient media to be used in process steps (a) and (b) is selected according to the metabolic types and physiological characteristics of the parent bacteria.
  • Media suitable for the respective parent strains are known, see, for example, J. Gumpert 1982, Zschr. Allg. Microbiol., 22, 617-627.
  • steps (a) and (b) use brain-heart-infusion-broth (BHIB), Todd-Hewitt-broth (THEB), tryptic-soy-broth (TSOYB) or L-broth (LB) as the medium
  • BHIB brain-heart-infusion-broth
  • THEB Todd-Hewitt-broth
  • TSOYB tryptic-soy-broth
  • LB L-broth
  • a medium of the following composition is particularly suitable for the starting strains preferred according to the invention: BHIB (Difco) 3 g, yeast extract (Difco) 0.5 g, sucrose 1 g, distilled Water 100 ml. Based on the known media, the optimal medium composition for strains such as streptococci and streptomycetes can be determined by routine test series.
  • the modified strains P. mirabilis LVIWEI, P. mirabilis L99WEI, E. coli LWF + WEI, E. coli LWF-WEI and B. preserved subtilis L170WEI were obtained from the German Collection of Microorganisms and Cell Cultures in Braunschweig under the accession numbers DSM 13363 (P. mirabilis LVIWEI), DSM 13364 (P. mirabilis L99WEI), DSM 13362 ⁇ E. coli LWF + WEI) and DSM 13361 ⁇ B. subtilis L170WEI).
  • the L-form strains obtained by the process according to the invention have the following advantages compared to the starting strains in addition to the ones already mentioned: immediate usability in fermentations, more homogeneous cell populations with a lower proportion of lysing cells, more stable metabolism, higher cell numbers, higher biomass concentrations, higher doubling rates in the exponential growth phase, more favorable pH profiles, better tolerance of anti-foaming agents, better tolerance of higher stirring speeds.
  • the cells can be fermented in the temperature range from 20 to 40 ° C. directly at the temperature suitable for obtaining the desired gene product.
  • modified L-form strains show improved growth in process-relevant nutrient media such as BHIB, THEB, TSOYB, possibly with the addition of yeast extract (0.5-1%).
  • the L-form strains obtained by the process according to the invention are therefore particularly suitable for fermentations in stirred and airlift fermenters of 2 to 300 l and, due to their good suspendability, their ability to tolerate antifoams and hydromechanical stress factors, are advantageous in terms of process technology.
  • the cytoplasmic membranes of the L-form strains obtained according to the invention show characteristic differences in the protein pattern. They are described by way of example for E. coli LWF + and E. coli LWF + WEI in the exemplary embodiments and indicate genotypic and phenotypic changes.
  • E. coli LWF + and E. coli LWF + WEI they are also documented in the exemplary embodiments.
  • the L-form strains of, for example, E. coli, P. mirabilis and B. subtilis have no extracellular or periplasmic protease activities, and this significantly reduces the risk of proteolytic degradation processes on recombinant proteins.
  • strains modified according to the invention for. B. by adding 0.1-l ⁇ g / ml lyso-lecithin to the culture medium to stimulate the formation of extracellular membrane vesicles. This property is advantageous for the synthesis of recombinant membrane proteins.
  • Another advantage is that with the gene constructs (promoters, control sequences, origin regions, signal sequences) optimized for E. coli (parent form), well controllable gene expression and product synthesis is possible, so that heterologous means for a large repertoire of known means for genetic transformation and overexpression Gene products can be used.
  • These gene constructs can be used for modified L forms of E. coli as well as for other strains such as P. mirabilis and Bac. can be used subtilis.
  • the L-form strains obtained according to the invention also have a more uniform cell morphology, a stable cell metabolism and stable, reproducible growth properties. They can be provided inexpensively in large quantities by fermentation in 1 to 300 1 fermenters.
  • new L-form strains adapted to technical growth conditions can be produced by targeted genetic manipulation of the starting L-form strains. For example, by mutations in the genes recA, hsdRl S f relA, supE and by the introduction of amber and ocher mutants, recombination, modification and restriction can be designed in such a way that improved transformation and plasmid stability are achieved. Furthermore, by inserting genes of the transcription and Translation control, such as JacJ and IacUV-T7, into the chromosome can improve expression and product synthesis.
  • genes of the transcription and Translation control such as JacJ and IacUV-T7
  • the L-form strains obtained according to the invention are suitable for the production of any gene products, in particular for the production of recombinant proteins, preferably soluble, extracellular proteins and particularly for the production of membrane-bound proteins.
  • the proteins can be used as biochemicals for molecular biological and medical research, as diagnostics, as drugs and as enzymes with potential for substance conversion.
  • the cells are first transformed in a manner known per se with a nucleotide sequence coding for a gene product, e.g. with a suitable vector containing the product gene under the control of one or more promoters.
  • the vector preferably also contains a gene sequence which codes for a signal peptide which enables active transport of the gene product through the cytoplasmic membrane into the culture medium or anchoring of the gene product on the membrane (membrane anchor).
  • the transformed strain is cultivated under suitable conditions, then, if necessary, the expression of the recombinant proteins is induced, e.g. by adding an inductor, and then isolating the recorabinant protein.
  • Methods of obtaining gene products are also the subject of the present invention.
  • the cells are able to carry out post-translational modification processes.
  • the lipid content of the L-form membrane is changed in such a way that it offers sufficient space for the insertion and enrichment of foreign membrane proteins and that the folding and processing processes essential for functionality can take place in or on the membrane.
  • Iac-P / 0 and its derivatives such as lacUV, tac etc. (HA de Boer, LJ Comstock, M. Vasser, 1983, Proc. Natl. Acad. Sci. USA 80, 21-25), induction by IPGT- Additive (isopropyl-ß-D-thiogalactoside) or glucose / lactose shift; or fcetA-P / 0 (A. Skerra, 1994, Gene 151, 131-135); Induction by adding aTC (anhydro-tetracycline); Promoters whose expression start is initiated by changing the physiological conditions, e.g. B. ⁇ P L (E. Remaut, P. Stanssans, W.
  • P L tetO-1 from tetA-P / 0 and P L -P / 0 from phage ⁇ (R. Lutz, H. Bujard, 1997, Nucl. Acid. Res. 25, 1203-1210); constitutive promoters and promoter hybrids which allow permanent gene expression without induction (e.g. P-Jacl (lac repressor gene), P-bla ( ⁇ -lactamase gene), P-iacI / P-Jbia hybrid, speA (Streptococcus exotoxin A gene).
  • constitutive promoters and promoter hybrids which allow permanent gene expression without induction
  • P-Jacl lac repressor gene
  • P-bla ⁇ -lactamase gene
  • P-iacI / P-Jbia hybrid speA (Streptococcus exotoxin A gene).
  • ribosomal Binding site rbs; also ⁇ ' ⁇ .ne-.Delga.n ⁇ sequence, SD) are inserted, which allow binding of the mRNA to the riboso as a prerequisite for the start of protein synthesis.
  • the expression cassette (P / O, SD, signal sequence, structural gene) can be flanked by transcription terminator structures in order to minimize possible interference with neighboring expression cassettes.
  • the regulator genes required for effective control of the P / O regions e.g. lad or 2acl for IacP / 0 and fcacP / O; tetR for tetAP / O; cl ts857 for P L etc.
  • the regulator genes required for effective control of the P / O regions can be on the same or other autonomously replicating vectors localized or integrated into the chromosome.
  • signal peptides are inserted N-terminally in front of the product gene.
  • signal peptides for gene products that are to be secreted into the culture medium such as fusion proteins or certain protein domains, e.g. the extra-membrane regions of receptors, prokaryotic or eukaryotic signal peptides are suitable.
  • Signal peptides that cannot be split off by L-form signal peptidases are particularly suitable for anchoring proteins. These can be obtained from conventional signal peptides, for example, by the interfaces for signal peptidases, for example, by the Exchange of amino acids are modified so that they are not recognized by the signal peptidases.
  • sequences coding for the structural gene for corresponding peptides e.g. c-myc, His-tag, Strep-tag
  • proteins e.g. GST
  • these expression cassettes are integrated into a suitable plasmid.
  • This must contain a suitable origin of replication and at least one selection gene for propagation in the L-form cells.
  • the ColEl replicon high copy number
  • the pI5A and pSCIOl are preferably suitable Replicons (low number of copies).
  • L-forms of Gram-positive bacteria like Bac. Subtilis are suitable for origins of replication of vectors with a broad host spectrum (e.g.
  • Resistance to ß-lactam antibiotics eg ampicillin
  • chloramphenicol for all L- Forms unsuitable.
  • Resistance genes suitable for the plasmid constructs must therefore be determined, preferably those against kanamycin, erythromycin, nourseothricin, phleomycin and neomycin.
  • L-form strains are transformed with the expression vector using a standard method known per se (J. Gumpert, H. Cron, R. Plapp, H. Niersbach and C. Hoischen 1996, J. Basic Mircobiol. 36, 88-98 ). Then L-form cells are incubated with plasmid DNA and polyethylene glycol MG 6000 in an ice bath and at 37 ° C. After addition of LFS medium, incubation is carried out at 37 ° C. for 1-3 hours, and then this culture is plated on selective agar medium.
  • Kanamycin, erythromycin, nourseothricin and neomycin are preferably used as selective antibiotics according to the vector constructions.
  • the positive transformants are propagated on agar medium and adapted to growth in liquid nutrient media by transferring them to fresh medium 2-5 times.
  • Preferred growth media are LFS medium and BHIB medium with additions of 0.3-1% yeast extract, 1-2% sucrose and 2-50 ⁇ g / l selective antibiotic.
  • the agar cultures or submerged cultures are checked for the presence of the intact plasmid DNA using restriction analysis and agarose gel electrophoresis.
  • a second transformation method is carried out in such a way that the transformation mixture (plasmid DNA / L-form cells / PEG) is filled with LFS medium 1: 1 after stays in the ice bath and at 37 ° C. and for 2 - 6 hours at 37 ° C is incubated. Then add 2 - 10 ml LFS medium with 2 - 50 ⁇ g / ml of the corresponding selective antibiotic and further incubate under shaking conditions at 30 - 37 ° C for 10 - 48 hours. With this method, mixed populations of transformants are obtained, from which single colony cultures can be grown by plating on selective medium.
  • the L -Form cells first transformed with a plasmid and selected.
  • the second plasmid is then transformed into these transformants, selecting for the presence of the selection markers of both plasmids.
  • L-form transformant cultures are provided which contain one or more expression vectors.
  • the growth and fermentation conditions for the individual proteins can be different. They depend on whether the product synthesis is growth-linked or predominantly in the stationary growth phase, whether the product is formed more efficiently at temperatures from 26 to 30 ° C or 37 ° C, and whether the protein product is pH-sensitive and, e.g. like prochymosin, is degraded autocatalytically at pH values above pH 7.3. It has been found that the cells modified according to the invention are able to adapt quickly and without problems to the optimal growth conditions for the respective protein.
  • the overexpression of foreign proteins in the L-form cells can be controlled in such a way that no recombinant protein is formed in the course of the isolation and cultivation of the transformants and their growth in liquid media. Protein synthesis is only induced when high cell numbers are reached.
  • the essence of the cultivation is that the culture achieves the highest possible cell numbers (10 9-1010 cells / ml), that these are stimulated for expression and overproduction at the right time, that the proteins are secreted in high concentrations or built into the membrane, or are presented on the membrane that degradation of the proteins is avoided and that the culture supernatants or the L-shape cells with a maximum content of Protein products are provided for subsequent isolation.
  • the specific conditions and parameters are different for the producer strains used (L forms of E. coli, P. mirabilis, B. subtilis) and for the protein products and must be determined and optimized in each individual case. Specifically, this affects the composition of the nutrient media (especially C and N sources), the concentration of the selective antibiotics (0.5-50 ⁇ g / ml), optimal growth and synthesis temperatures (20-40 ° C, preferably 26-37 ° C), regulation of the pH value (pH 6.0-8.5, preferably pH 7.5), optimal oxygen input through selection of the fermentation tank, shaking frequencies (50-330 rpm), stirring speeds (200-600 rpm) ), Aeration rates (constant p0 2 ), feeding of C and N sources (especially glucose), time to induce gene expression (e.g.
  • the growth and product synthesis can be optimized at this stage by additional factors, e.g. B. low molecular weight effectors, vitamins, amino acid mixtures, lipid components, thiol reagents and non-metabolizable sugars.
  • An improvement in the formation of functionally active gene products can also be achieved by adding sugars, for example 1-5% sucrose. Such sugars are believed to improve the folding processes of various proteins.
  • the subsequent isolation and purification of the gene products depends on whether the protein is soluble or extracellular is obtained as a membrane-bound protein, for example peripheral or integral membrane protein. Since, in contrast to all other producer cells, the L-shape cells generally have no other cell organelles such as flagella, fimbriae, spores, cell walls and internal membrane systems apart from the cytoplasmic membrane, the cleaning steps required to separate these components are eliminated.
  • the membranes and membrane proteins can be isolated and purified relatively easily by cells (osmotic shock, ultrasound, French press) and subsequent centrifugation and washing in buffer solutions.
  • the L-shape cells are separated from the nutrient medium by centrifugation (6000 g / 10 min) and from this supernatant using the known methods of protein isolation (precipitation, sedimentation, extraction, filtration, electrophoretic separation; Affini - activity, ion exchange, size exclusion and hydrophobic chromatography, etc.) the proteins are separated and purified.
  • the L-shape cells are sedimented and washed in the same way by centrifugation.
  • the protein-membrane complexes are obtained by lysing the cells (osmotic lysis, ultrasound treatment, freezing and thawing, French press treatment).
  • the membranes (empty cells) are then washed in magnesium-containing (eg 0.1% MgSO 4 ) buffer solutions.
  • the membrane-bound proteins are detected using known methods, preferably by immunochemical methods based on synthetic peptides (Western blot, dot blot, ELISA, synthetic sequence-specific antibodies), cytochemical methods (immunoelectron microscopy with immunogold, fluorescence microscopy), radiochemical methods (Labeling with S methionine or H-leucine) and functional tests (enzymatic
  • the protein membrane complexes are usually in the form of vesicles (0.01-5 ⁇ m diameter) and can be obtained as a suspension in buffer solutions (TRIS, BBS, with additions of 0.1% MgS0 4 , phenylmethylsulfonfluoride, dithiothreitol) or be kept.
  • the membrane vesicles can be converted into inside-out vesicles by inversion using French press treatment or freeze-thaw.
  • the inner areas of the protein molecules on the cytoplasm side are freely accessible on the outer surface of the membrane vesicles.
  • Inverted protein membrane complexes produced in this way make interaction studies and structural elucidation of the cytoplasmic extramembrane domains possible.
  • the lipid matrix of the membranes can be dissolved using suitable detergents (SDS, plantars, Tween 20, Triton X 100).
  • SDS plantars, Tween 20, Triton X 100.
  • the integral and peripheral membrane proteins are released, and these can be isolated and purified as soluble or aggregated protein molecules.
  • the membrane-bound proteins isolated in this way can be reconstituted in lipid structures with a defined molecular composition. In this way, their correct molecular configuration and functionality can be maintained or restored.
  • Many membrane proteins are only functionally active if they are embedded in a suitable lipid environment.
  • Particularly suitable lipids are phospholipids with a pronounced tendency to form unilamellar bilayer vesicles (for example phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine).
  • the L-form strains according to the invention and the method according to the invention for the production of gene products are particularly suitable for the production of membrane-bound proteins.
  • Membrane-bound proteins are understood to mean those proteins which are bound to biomembranes. This includes both the so-called membrane proteins, which bind to membranes due to their chemical and physical properties, either integral or peripheral, as well as proteins that do not themselves bind to membranes and are only bound to the membrane by suitable membrane anchors.
  • membrane protein includes integral or peripheral membrane proteins, such as receptors (e.g. acetylcholine, bradykinin, endothelin, hormones), carrier proteins (e.g. for amino acids, sugars, ions, peptides, compatible solutes, electron transport), ion channels, ABC transporters, preprotein translocators.
  • receptors e.g. acetylcholine, bradykinin, endothelin, hormones
  • carrier proteins e.g. for amino acids, sugars, ions, peptides, compatible solutes, electron transport
  • ion channels e.g. ion channels
  • ABC transporters e.g. ion channels
  • preprotein translocators e.g. acetylcholine, bradykinin, endothelin, hormones
  • carrier proteins e.g. for amino acids, sugars, ions, peptides, compatible solutes, electron transport
  • ion channels e.g.
  • the method according to the invention and the L-form strains according to the invention are particularly suitable for expression and for the production of bacterial "outer membrane proteins” (Omps), in particular Omps with a ⁇ -sheet structure. These proteins are located in the outer membrane of Gram-negative cells. Surprisingly, it was possible for the first time to express Omps in large quantities even in soluble form. Omps are difficult to produce in pure form using conventional bacterial expression systems (Meens et al. 1997, Applied. Environment. Microbiol. 63: 2814-2820).
  • L-shaped strains for the production of omps, in particular omps in soluble form and omps with a ⁇ -sheet structure has not previously been described and is also an object of the invention.
  • Outer-membrane-proteins Gram-negative bacteria, especially pathogenic species, are suitable in soluble or membrane-bound form for interaction tests, structure-function studies, diagnostics and vaccination.
  • the second group of membrane-bound proteins includes, for example, soluble proteins and hydrophilic proteins, which are only able to bind to lipid membranes after being linked to, for example, a hydrophobic amino acid sequence.
  • the hydrophobic amino acid sequence serves as a membrane anchor.
  • Preferred membrane anchors are homologous and heterologous signal peptides, such as the eukaryotic signal peptide of the SERP protein from Plasmodium falciparum, which have interfaces which are not recognized by the bacterial leader peptidases.
  • membrane anchors are sequences of homologous and heterologous transmembrane regions of membrane proteins, such as hydrophobic transmembrane helices of homologous and heterologous prokaryotic and eukaryotic membrane proteins, preferably helix 1 or helices 1 to 3 of the lactose permease LacY from E. coli, the preprotein translocase SecY from E. coli or the swarm protein CcmA from P. mirabilis.
  • membrane proteins such as hydrophobic transmembrane helices of homologous and heterologous prokaryotic and eukaryotic membrane proteins, preferably helix 1 or helices 1 to 3 of the lactose permease LacY from E. coli, the preprotein translocase SecY from E. coli or the swarm protein CcmA from P. mirabilis.
  • Synthetic hydrophobic amino acid sequences with 8 to 150, preferably 10 to 120, very particularly preferably 10 to 30 amino acids, such as the leucine zipper, are also suitable.
  • Amino acid sequences are considered to be sufficiently hydrophobic if they bind to biomembranes according to the methods published by G. von Heijne (by Heijne G., "Assembly of Integral Membrane Proteins” in Biological Membranes: Structure, Biogenesis and Dynamics, Springer Verlag Berlin 1994, JAF Op den Kamp (Editor), pages 199 to 205; Cserzo, M., Wallin, E., Simon, I., Von Heijne G., Eloffson, A. Protein Eng. 1997, 10: 673-676 Membrane anchors are described in the exemplary embodiments.
  • the anchoring of proteins to membranes enables the surface presentation of the proteins on the L-shape membranes. Due to the lack of cell wall components (peptidoglyc n, outer membrane, lipopolysaccharides) and extracellular With the L-form strains, it is possible to present the proteins of interest directly on the cytoplasmic membrane. The lack of antigenic components is advantageous in terms of medical applications such as vaccinations and diagnostic methods. This opens up considerable advantages over conventional gram-positive and gram-negative bacterial surface display systems. In addition, high concentrations of the proteins can be achieved on the L-shape membrane (up to about 100 mg / 1).
  • the surface presentation of proteins makes it possible, for example, to obtain novel vaccines and interaction screening systems.
  • the desired antigen is anchored on the membrane of L-shape cells, and the cells are then used for vaccination. Only the active, i.e. antigenic components used, for example, by proteins for anchoring. Due to the high concentration of protein on the membrane, only a small number of cells is required for vaccination, and the use of patogenic cells or proteins can be avoided entirely.
  • the proteins that are particularly suitable for the surface display also include single chain antibodies and antibody fragments, heterologous enzymes, polyhistidyl tags and peptide libraries.
  • the modified L-shape cells are suitable for use in diagnostics and Therapy and for the preparation of agents for diagnostics and therapy, as biocatalysts, and for use in interaction screening.
  • L-form cells for the surface presentation of proteins has not been described to date and is therefore also a subject of the present invention, as are methods for the surface presentation of proteins using L-form cells and the use of L-forms with anchored to the cytoplasmic membrane Proteins for the manufacture of therapeutic and diagnostic agents. These methods include the steps described above for the production of proteins using L-forms, the cells being transformed with the gene construct from an anchor sequence and a protein sequence. When isolating the gene product, the cells are preferably not disrupted by surfactants or the like but rather isolated as a whole.
  • All L-Forms of bacteria are suitable for the surface presentation of proteins, in particular stable L-forms and very particularly stable protoplast-type L-forms.
  • Preferred and particularly preferred L-forms are those mentioned above as starting strains for the production of modified L-forms, in particular the L-forms modified according to the invention.
  • L-form strains according to the invention and the method according to the invention for producing gene products are also suitable:
  • proteins for use as pharmaceuticals and diagnostics such as, for example, pharmaceutically active enzymes and enzyme activators (exo- and endopeptidases, staphylokinase, streptokinase, hemolysin activator ShlB), growth factors, peptide hormones, antibody constructs (for example Fab, Fv fragments, their single chain variants , Miniantibodies, diabodies, complete antibody proteins), membrane-bound fusion proteins and other recombinant fusion proteins, with mono-, bi- or multivalent binding properties for medical diagnostics or therapy (eg of tumors), including receptors with ligand binding properties;
  • pharmaceutically active enzymes and enzyme activators exo- and endopeptidases, staphylokinase, streptokinase, hemolysin activator ShlB
  • growth factors for example Fab, Fv fragments, their single chain variants , Miniantibodies, diabodies, complete antibody proteins
  • membrane-bound fusion proteins and other recombinant fusion proteins
  • immunodeterminants such as surface antigens of pro- and eukaryotic organisms (e.g. the SERP and MSPl protein of the malaria pathogen Plasmodium falciparum, viral coat proteins (e.g. from the HIV virus and other retroviruses), viral transcriptases for antibody formation and immunization;
  • surface antigens of pro- and eukaryotic organisms e.g. the SERP and MSPl protein of the malaria pathogen Plasmodium falciparum
  • viral coat proteins e.g. from the HIV virus and other retroviruses
  • viral transcriptases for antibody formation and immunization
  • enzyme activators and enzyme inhibitors such as e.g. Protease inhibitors
  • precursor proteins i.e. Precursors of mature, biologically active proteins, which are retained due to the lack of extracellular proteolytic activity of the L-form cells and are used as an inactive form for therapeutic and diagnostic purposes and are only activated in the organism or diagnostic test.
  • the proteins obtained are functionally active and contain no disruptive membrane components, e.g. Lipopolysaccharides of the outer membrane of Gram-negative bacteria, which interfere with the production and functionality of the protein products.
  • the gene products mentioned are either translocated into the culture medium or isolated in membrane-bound form.
  • Example 1 shows that the modified strains are genotypically modified.
  • Example 2 shows that they have phenotypic and genotypic membrane changes.
  • strains modified according to the invention are better fermentable and form more product than the starting strain.
  • Example 4 describes the controlled gene expression and product synthesis with strains modified according to the invention.
  • Example 5 describes the anchoring of recombinant proteins in the cytoplasmic membrane using homologous and heterologous peptide sequences of integral membrane proteins as membrane anchors.
  • Pulse field gel electrophoresis enables DNA fragments to be separated over a large length range on a gel. This allows a comparative analysis of the genomic DNA of species and strains.
  • the L-form strains E. coli LWF + WEI and E. coli LWF + and the cell wall-containing parent strain E. coli WF + are grown under the same conditions.
  • the culture took place in steep breast bottles (100 ml) with 30 ml LFS medium and additions of horse serum (6% v / v), yeast extract (0.7%) and sucrose (4%) at 37 ° C on a rotary shaker at 200 U / minute
  • samples are taken from each strain in an equivalent corresponding to an optical density of 2, measured at 550 nm, in order to obtain comparable final biomasses. After centrifugation of the cell suspension at 3000 ⁇ g, 4 ° C.
  • a sufficient amount of 60 units of the respective restrictase was added to a piece of agarose (about 0.05 3 cm) and the incubation time of 16 hours was chosen to achieve complete cleavage.
  • the separation conditions of the DNA fragments in a 1.5% gel (SeaKemGold, FMC Bioproducts) at 170 V, 22 hours, pulse times of 2, 5-38 s and 12 ° C are based on optimized empirical values.
  • a pulse field gel electrophoresis apparatus of the type CHEF-DRII (BioRad) was used.
  • restriction endonucleases used (Sdal from MBI Fermentas, all others from New England Biolabs) have the following different specific cleavage sequences:
  • restriction endonucleases Xbal, Notl, Swal, Avrll, Ascl, Sfil and Sdal gave largely identical basic fragment patterns in both L-form strains and the parent strain. This is evidence that taxonomically it is the same organism, i. H. E. coli, acts (Fig. 1, 2).
  • Figure 1 shows cleavage patterns of chromosomal DNA of the modified L-form strain E coli LWF + WEI (2, 4, 6, 8) and the starting strain E. coli LWF + (3, 5, 7, 9) after digestion with 60 units each Restriction endonucleases Swal (2, 3), Spei (4, 5), XBal (6, 7) and Notl (8, 9) (all from New England Biolabs); lanes 1 and 10 show length markers, lane 1: low range (New England Biolabs), lane 10: lambda ladder (New England Biolabs).
  • Figure 2 shows the cleavage pattern of chromosomal DNA of the wall-containing parent strain E. coli WF + (2, 5, 8), the L-form Starting strain E. coli LWF + (3, 6, 9) and the further developed strain E. coli LWF + WEI (4, 7, 10) after digestion with 60 units of the restriction endonucleases Spei (2, 3, 4), Notl (5, 6, 7) and Xbal (8, 9, 10) (all from New England Biolabs), track 1: length marker low range (New England Biolabs).
  • the comparative analysis of the protein patterns of two strains also allows conclusions to be drawn about genotypic and phenotypic changes.
  • 2D-PAGE two-dimensional gel electrophoresis
  • the first step is the separation according to the isoelectric point (pl) in a focusing gel (IEF).
  • the focused proteins are separated according to their molecular weight (MW) in an SDS-polyacrylamide gel (SDS-PAGE).
  • the membrane proteins of the starting strain E. coli LWF + were compared with those of the strain E. coli LWF + WEI modified according to the invention.
  • the restriction to the membrane proteins was chosen because the L-form membranes contain only about 500 different proteins, while a multiple of them is present in the whole cells. Furthermore, the membrane proteins are for the most part essential and usually always present in the membrane. Reproducible qualitative differences in the pattern of the membrane proteins are therefore an indication of structural and functional differences in the genome.
  • the cells of the two strains are grown under identical conditions (BHI medium with additions of 0.5% yeast extract and 5% v / v horse serum, incubation in a shaking incubator at 37 ° C.), centrifuged after 24 hours (6000 ⁇ g, 10 min ), washed in 0.4 M sucrose and lysed by osmotic shock (0.05 M TRIS / HCl powder pH 7.0 with the addition of 0.1% MgSO 4 and 30 ⁇ g / ml DNAse).
  • the membranes are isolated and cleaned by ultracentrifugation (80,000 xg, 20 min, 4 ° C, Beckmann Optima XL80) and washing in 0.05 M TRIS / HCl buffer with 0.1% MgSO A.
  • the cleaned membrane fractions are first washed with 5 times the amount of distilled water and then centrifuged for 45 min at 5 ° C at 14000 rpm (Sorvall centrifuge type RMC 14). The pellet is processed as described below.
  • the washed membrane pellet is in 6 times the amount of solubilization buffer (9.5 M urea, 4% 3- [(3-cholamidopropyl) - dimethylammonio] -l-propanesulfonate (CHAPS, Serva), 5% of a 40% ampholyte solution 3-10, 100 mM dithiolthretitol (DTT) was added and additional solid urea was added in an amount of 45% of the membrane weight in order to bring the urea concentration of the total solution back to ⁇ 9.5 M.
  • the suspension is dissolved by shaking at room temperature
  • the mixture is then centrifuged for 50 minutes at 75,000 rpm in an ultracentrifuge (type Beckmann Opti a TLX at 20 ° C.
  • the supernatant contains the membrane proteins dissolved under the selected conditions. 15-20 each ⁇ l of this solution are applied to the focusing gels and analyzed in two dimensions.
  • Figure 3 shows membrane proteins of Escherichia coli LWF + (Gel AI) and E. coli LWF + WEI (Gel Bl) after separation with 2D-PAGE in the pI range 4.8 - 6.7 and the MW range 31 - 60 kDa ,
  • the black arrows mark spots or spot patterns that are only present in the E. coli LWF + strain, and the white arrows document proteins that are specific for the E. coli LWF + WEI strain.
  • the comparison of the spot patterns in the gel areas 3.5 ⁇ pl ⁇ 7.0 and 22 kDa ⁇ MW ⁇ 80 kDa showed approx. 150 detected proteins in the membranes of both L-form strains. The majority of the spots are identical. Of the twelve divergent proteins, six were only in the original E. coli LWF + strain and six were only in the E. coli LWF + WEI strain.
  • the production of recombinant proteins that can be used for vaccination is an urgent task, especially for diseases that were not previously accessible, e.g. Malaria.
  • the MSP1 gene encodes a protein that is synthesized by the merozoite stages of the Plasmodium falciparum pathogen and is a candidate for vaccination strategies against malaria.
  • the strains P. mirabilis LVI and P. mirabilis LVIWEI were transformed with the plasmid p6H-42-3D7.
  • the fermentation of both transformants is compared and documented that the new P. mirabilis LVIWEI strain has better properties in terms of growth and product formation.
  • the P. mirablis LVIWEI (p6H-42-3D7) and P. mirabilis LVI (p6H-42-3D7) strains contain the same plasmid with the gene for the 42 kDa fragment of the malaria surface protein 1 (MSP1) in the allele -Variant 3D7 (MAD20) of the human-specific pathogen Plasmodium falciparum (Pan, W. et al. 1999, Nucleic Acids Research 27, 1094-1103).
  • MSP1 malaria surface protein 1
  • MAD20 allele -Variant 3D7
  • the ⁇ ? PA signal peptide is fused to the 42 kDa fragment, which is necessary for secretion into the medium.
  • the transformants were obtained according to the same steps as described in the patent description and in exemplary embodiment 5.
  • precultures from the growth were first transformants adapted in liquid media.
  • a first preculture was carried out at 37 ° C. (100 ml glass flask with 35 ml BHI medium and additions of 50 mM Na phosphate pH 7.2 and 50 ⁇ g / ml kanamycin) for 24 hours as a shaking culture at 220 rpm second preculture cultivated on the same scale at 28 ° C. for 24 hours.
  • This serves as an inoculum for the third preculture (500 ml glass bottles with 150 ml fermentation medium, cultivated for 12 hours at 26 ° C). After a microscopic inspection of the pre-cultures, the fermenters are inoculated.
  • the fermenter used (BIOSTAT B device, Braun BBI Melsungen) is equipped with a stirred tank culture vessel B2 (working volume 2 1), aeration device, stirrer shaft with two paddle stirrers B5 in the medium and a 6-blade disc stirrer B2 in the foam area, a pH probe ( Ingold 405D-K8S / 200), a p0 2 probe (Mettler Toledo 34 100 3057), a foam probe, a gas mixing station with 2 ml mass flow controller for air and oxygen and a supply air filter 0.2 ⁇ m (Sartorius Midisart 2000), Exhaust air cooler with foam trap, sterile filter (Gelmann Acro 50ST), exhaust gas analysis system (Hartmann and Braun, Frankfurt) with Uras 10p for C0 2 analysis and Magnos 6G for 0 2 analysis, cooling water circuit cooler KK4s (Medingen, 6 ° C), dosing device for glucose with Peristaltic pump WM 101U / 2rpm (Watson-Mar
  • the fermentation samples After centrifugation (6000 x g, 10 min), the fermentation samples are fractionated into the supernatant with soluble product and into the sediment with cell-bound product.
  • the product formation is determined by SDS gel electrophoresis and Western blot with product-specific antibodies and quantitative evaluation of the bands (scan and evaluation software Phoretix ID, NonLinear Dynamics Ltd, UK).
  • the transformant P. mirabilis LVIWEI (p6H-42-3D7) achieves a significantly higher volume yield of synthesized malaria protein. This affects both the amount of cell-bound protein product (Fig. 4a and 4b) and the amount of soluble product, which remains only small in both strains.
  • Controllable overexpression of the product genes is of crucial importance for the successful use of bacterial cells for the synthesis of recombinant protein products.
  • Example 4 documents that such an inducible product synthesis based on the gene constructions and regulatory principles optimized for E. coli is also possible in L-form cells from P. mirabilis LVIWEI.
  • the gene for the green fluorescent protein (GFP; Crameri et al., 1996, Nature Biotechnol. 14, 315-319), representative of the genes of a wide variety of recombinant proteins, was inserted into the expression cassettes under the Control of different promoters cloned.
  • the correctly folded, functional GFP has a chromogenic center that emits greenish light (509nm) when excited in the UV range (395nm).
  • the detection and the strength of the green fluorescence are a measure of the efficiency of the vectors and the product formation in L-form cells with regard to the induction of the transcription start (mRNA formation), the translation (protein synthesis according to the coding mRNA sequence) and the correct folding of the Protein.
  • the GFP gene is under the control of the promoters lac-P / O (+ lacl repressor gene; repressor inactivation by adding 5mM IPTG) or tetA-P / O (+ tetR- Repressor gene, repressor inactivation by adding 200 ⁇ g / ml anhydro-tetracycline [aTC]).
  • the GFP gene is under the control of the promoter region of the lacI repressor gene (P-iacI) or additionally under the control of the promoter region of the ⁇ -lactamase gene (P-jbla) as a tandem Hybrid (P-lacI / P-jbla).
  • Vectors for the lac-P / O-controlled GFP are used as an example for the regulation of the expression level via the gene dose effect, ie influencing the synthesis of the recombinant protein by different numbers (copies) of the vector DNA with the coding gene per cell -Expression constructed using the replication origins ColEl, pBR322 and pl5A.
  • the vectors were transferred to the L-form strains as described in embodiment 5. All vectors carried the kanamycin resistance gene as a selection marker.
  • L-form cells from Proteus mirabilis LVIWEI with the corresponding vectors are cultivated in a shake culture (LFS medium with 0.5% yeast extract; 18 hours at 37 ° C.) without inducers. From these cultures and the plasmid-free control strain, 0.1 ml of cell suspension are spread onto LFS medium agar plates (without or with the addition of an inductor). After 24 hours of growth at 37 ° C, excitation with UV light to emit the green fluorescent light and photography with a CCD camera.
  • the P. mirabilis LVIWEI cells grown and induced on the agar plates in Figure 5 contain vectors with the following features (Table 1).
  • P. mirabilis LVIWEI (pMK3c2GFP) with constitutive GFP expression (No. 4 in Tab. 1 and on agar plate in Fig. 5) shake cultures in LFS medium with and without selective antibiotic (50 ⁇ g / ml kanamycin) as in Example 5 described, which are transferred to fresh medium after 24 hours, ie after approx. 4-5 cell generations, and again cultivated over a total of 12 passages. After every third passage, dilution series (10 " to 10 " ) of the cultures are carried out on LFS medium agar plates with and without selective antibiotic, and after 3 days of growth, the fluorescent or non-fluorescent individual colonies are counted under UV light (Fig 6).
  • GFP expression with various vectors in L-form P. mirabilis LVIWEI cells compared with expression in N-form cells from E. coli production strain RV308. Both cell types are cultivated under the same conditions in complex medium and GFP expression is induced.
  • the cell concentration of the cultures (g dry biomass / 1) was determined by measuring the absorption at 550 nm.
  • the cells are harvested by centrifugation, disrupted by ultrasound treatment, the GFP activity (fluorescence) quantified on the fluorescence photometer and the amount of the total GFP protein synthesized on the basis of the activity via denaturing SDS-PAGE, Coomassie staining and gel evaluation and one Calibration curve quantified.
  • the amount of functional GFP synthesized is based on the biomass used for the P. mirabilis L-form cells or the E. coli N-form cells (specific activity).
  • the values of functional GFP (mg GFP / g dry biomass) listed in Table 2 show the same efficiency of the expression vectors (examples: pMK31GFP (IPTG induction), pMK7GFP (aTC induction) or pMK3c2GFP (constitutive)) for the recombinant Protein formation in the further developed L-shape strains as for already established N-shape strains. -c ⁇ li expression systems and production lines.
  • Table 2 Comparison of the synthesis efficiency for GFP from different vector constructs in P. mirabilis LVIWEI and E. coli RV308 in mg GFP / g dry biomass.
  • the example describes the production of recombinant staphylokinase in membrane-bound form.
  • the strains E. coli LWF + WEI and P. mirabilis LVIWEI were used as L-form cells.
  • Staphylokinase is a medically important plasma activator (15 kDa), which can be synthesized by L-form cells as an extracellular, soluble, functionally active, recombinant gene product (Sieben, S., dissertation, University of Jena, 1998).
  • the 27 amino acid signal peptide is proteolytically separated.
  • the DNA sequence (Behnke, D. and Gerlach, D., Mol. Gen. Genetics 1987, 210, 528-534) of the mature protein (amino acids 28-163) by means of PCR (Boehringer, Expand High Fidelity PCR kit) amplified.
  • the saT construct is modified by selection of suitable primers in order to effect the subsequent fusion with the membrane anchor DNA sequences via a PstI site at the 5 'end and the integration into the expression plasmid pF003-Kan via a HindIII site Allow 3 'end (Tab. 1).
  • This saTc fragment is the basis for all fusion proteins.
  • a spacer sequence of two amino acids is inserted simultaneously between membrane anchor and Sak in all constructs.
  • membrane anchor sequences are made available.
  • the helix 1 (amino acids 1-51; LacYHl) and the helices 1-3 (amino acids 1-127; LacYHl-3) of the lactose permease LacY from E. coli are used as such anchor sequences.
  • Other Anchor sequences are helix 1 (amino acids 1-74; SecYHl) and helices 1-3 (amino acids 1-153, SecYHl-3) of the preprotein translocase SecY from E. coli and helix 1 (amino acids 1-34; CcmAHl) of the swarm protein CcmA from P. mirabilis plus an additional spacer of 5 amino acids in length.
  • the corresponding exact sequences are shown in Figure 7.
  • the DNA of the membrane anchor is isolated by PCR from genomic DNA from E. coli DH5 ⁇ 6 and P. mirabilis VI (Quiagen Genomic DNA Handbook, 1997).
  • primers (Tab. 3) are used which enable integration into the expression plasmid pF003-Kan via a Ndel interface inserted at the 5 'end and fusion with the saJc fragment via a PstI interface inserted at the 3' end ,
  • Table 3 Overview of primers used in the amplification and modification of the fusion fragments.
  • the sak fragment is cloned into the vector pF003, amplified and then fused in the expression vector with the various modified membrane anchor fragments (Tab. 4; Fig. 8).
  • the membrane anchor-sa./c-fusion genes are under the control of the tac promoter and are therefore inducible by IPTG (isopropyl- ⁇ -D-thiogalactopyranoside).
  • the expression plasmids of the pF series described in Table 4 are then used in step 4 to transform into the L-form cells of P. mirabilis LVIWEI and E. coli LWF + WEI.
  • the PEG method is used to transform (Gumpert et al., Loc. Cit.). Isolation of the transformants is carried out on BHI agar plates with additions of horse serum (8%), yeast extract (0.5%) and kanamycin (0-50 ⁇ g / ml). Individual transformant colonies are then transferred to BHI agar plates with the same additions of serum and yeast extract as well as kanamycin (50 ⁇ g / ml) and passaged 1-3 times until dense growth is achieved as colonizing grass.
  • the liquid culture of the transformants is obtained in such a way that an agar block with abundant colony growth is introduced into 30 ml of BHI medium with additions of yeast extract (0.5%) and kanamycin (50 ⁇ g / ml) and incubated with shaking (37 ° C.) becomes. After 2-4 passages under the same growth conditions, liquid cultures are obtained which lead to cell concentrations of Grow 10 / ml. In the case of the transformants of E. coli LWF + WEI, the additions of kanamycin are lower (1-5 ⁇ g / ml).
  • step 5 the liquid culture of the transformant is stimulated to synthesize the fusion protein and separated into the fractions culture medium (supernatant), L-shape cells, L-shape membranes and cytoplasm.
  • transformants e.g. P. mirabilis LVIWEI (pFCcmAHl-Sak) in glass flask (100 ml) or fermenter (21 net volume) in BHI medium with additions of yeast extract (0.5%) and kanamycin (50 ⁇ g / ml) incubated (37 ° C). After 2-6 hours, the addition of IPTG (3 mM) induced the gene expression from the fusion proteins. Samples were taken from the cultures after 8, 24 and 48 hours. The cells are separated by centrifugation (6000 g, 10 min) and the cells as pellet and the culture medium as supernatant.
  • the cells are once in sucrose solution (0.4 M) in dist. Washed water and then disrupted to separate cytoplasm and membranes.
  • the cells of P. mirabilis LVIWEI are disrupted by ultrasound treatment with a Branson Sonifier 240.
  • the cells are resuspended in TRIS / HC1 buffer (0.05 M, pH 7.0) with the addition of MgS0 4 (0.1%) (OD at 600 nm around 10, cell concentration around 10 / ml, 10 ml sample amount) and sonicated for 1 - 3 min with energy level 3, the glass vessel being in an ice bath.
  • MgS0 4 0.1%)
  • the cells are disrupted by osmotic lysis.
  • the cells washed with 0.4 M sucrose are resuspended in TRIS / HCl buffer (0.05 M, pH 7.0) with additions of 0.1% MgSO 4 and 30 ⁇ g / ml DNAse (Boehringer Mannheim) (cell concentration 10 / ml) and left at room temperature.
  • Continuous microscopic control again determines the point in time Cell lysis determined.
  • the suspensions thus obtained are then used to separate the membrane vesicles from the cytoplasm by ultracentrifugation at 80,000 g in an Optima XL80 centrifuge (Beckmann).
  • the biochemical and functional detection of the gene product in the 4 fractions takes place.
  • 30 ⁇ l sample is separated in a Western blot (Ausubel, FM 1999; Current Protocols in Molecular Biology) in the SDS gel (13 - 15%) and the proteins after transfer to a PVDF membrane (Millipore) with staphylokinase-specific primary antibodies and secondary antibodies, which are coupled to alkaline phosphatase and can thus cause a color reaction.
  • the milk agar plate test is used to demonstrate the functional activity.
  • agar plates (15 cm in diameter), which are washed with aqua dest.
  • Agar (30 ml, 1.5%) are filled with additives of skimmed milk (10%) and plasminogen (10 " ⁇ g / ml; Boehringer Mannheim), holes (9 mm in diameter) are punched into which 50 ⁇ l of the samples are added After 2 - 18 hours of incubation (37 ° C) the clearing zones are measured.
  • the plasminogen is activated by biologically active staphylokinase, and the resulting plasmin cleaves the milk casein and leads to clearing zones around the punch hole.
  • staphylokinase The biological activity of staphylokinase can thus be determined quantitatively.
  • the localization of the fusion protein on the outside of the L-shape membrane is examined by trypsin digestion and by freeze-fracture electron microscopy with immunogold labeling on the replicon.
  • the membrane integrity of the fusion protein is proven by the detection of the reconstitution in micelle-forming detergents such as octylglycoside or Triton X100.
  • Fig. 7 documents the amino acid and nucleotide sequences of the membrane anchors and the fusion proteins.
  • sequence of the mature staphylokinase which corresponds to amino acids 28-163 of the complete protein (unlabeled amino acid and nucleotide sequence regions)
  • the following membrane-spanning were inserted N-terminally via an inserted PstI interface (sequence regions bold, italic, underlined) and a corresponding short amino acid linker Domains merged (sequence regions underlined twice): a) Helix 1 (amino acids 1 - 51; LacYHl) of the lactose permease, b) Helices 1 - 3 (amino acids 1 - 127; LacYHl-3) of the lactose permease, c) Helix 1 (amino acids 1 - 74; SecYHl) of the preprotein translocase, d) helices 1 - 3 (amino acids 1 - 153;
  • Fig. 8 shows an example of the expression plasmid pFLacYHl-3-Sak for the synthesis of recombinant membrane-bound staphylokinase with L-form cells from E. coli LWF + WEI.
  • Ptac tac promoter
  • lacYHl-3 Helices 1-3 of lactose permease (As 1-127); sak: gene for staphylokinase (As 28-163)
  • Spacer 2 As; lacYHl-3- ⁇ ak: fusion protein;
  • rrnBT transcription terminator of the rrnB operon; can: kanamycin resistance cassette; ori: replication origin of pBR322; laclq: Lac repressor with a modified promoter.
  • Fig. 9 documents the synthesis of the membrane-bound fusion poteins LacYHl-Sak and LacYHl-3-Sak and explains schematically the principle of the surface display with E. coli LWF + WEI.
  • a Western blot analysis with Sak-specific immunostaining; lane 1, molecular weight standard; lane 2, Sak standard; lane 3, membrane fraction of LacYHl-Sak expressing cells; lane 4, membrane fraction of cells expressing LacYhl-3-Sak
  • b principle of Anchoring of the fusion proteins in the phospholipid bilayer of the membrane; 5, staphylokinase portion; 6, lactose permease content (trans-embrane helices in the phospholipid bilayer).
  • the gene sequences of the integral membrane anchor domains can be derived from the lactose permease LacY, from the preprotein translocase SecY from E. coli and from the swarm protein CcmA (Helix 1) P. mirabilis (Fig. 7) are fused with the staphylokinase gene so that they can be integrated into the plasmid pF003-Kan (Fig. 8).
  • novel membrane anchor staphylokinase gene constructs LacYHl-Sak, LacYHl-3-Sak, SecYHl-Sak, SecYHl-3-Sak and CcmAHl-Sak can be controlled by IPTG induction in the E. coli LWF + WEI and P. strains. mirabilis LVIWEI overexpressed without inhibiting cell growth and damaging or lysing the cells.
  • the gene products of the membrane anchor-staphylokinase fusion proteins are formed in such quantities by the L-form transformants that they are shown in the SDS gel and Western blot as specifically colored bands.
  • Fig. 9a representative of all fusion proteins, the successful expression of the fusion proteins LacYHl-Sak and LacYHl-3-Sak in E. coli LWF + WEI is shown by means of Western blot analysis with Sak-specific antibodies.
  • the gene products are predominantly or exclusively localized in the membrane fractions. Only small amounts can be found in the cytoplasm or in the medium supernatant. In the case of fusion proteins with a helix (Hl), the amount of staphylokinase synthesized is significantly higher (3 - 10 times) than in the case of constructions with 3 helices (Hl-3). It remains almost completely bound to the L-shape membrane. The staphylokinase fused with three helices can only be detected in membrane-bound form.
  • the staphylokinase localized in the membrane fractions is functionally active. Active staphylokinase was detected using the milk agar test.
  • the staphylokinase molecules are on the outside of the L-shape membrane. In addition to the positive functional activity, this was demonstrated by the loss of staphylokinase after proteolytic degradation with trypsin, by reconstitution experiments in Triton X100 and octylglycoside, as well as by immunogold staining and subsequent electron microscopy. It can be concluded from the mechanical and chemical treatments of the membranes (shear forces during cultivation, washing with TRIS / HCl buffer, preparation and washing of the membrane) that the staphylokinase molecules remain very firmly bound to the L-form membrane.
  • the L-shape surface display system opens up new ways of studying structure-function relationships and cell-cell interactions as well as developing new and alternative vaccination strategies and diagnostic test systems.
  • This international depository accepts the microorganism referred to under I, which it received on 2000 - 03 - 06 (date of first deposit) 1
  • microorganism referred to under I was received by this international depository on (date of first deposit) and an application for the conversion of this first deposit into a deposit under the Budapest Treaty was received on (date of receipt of the request for conversion).
  • microorganism identified under I. above was accompanicd by:
  • This International Depositary Authority accepts the microorganism identified under I. above, hich was received by it on 2000 - 03 - 06 (Date of the original deposit) 1 .
  • microorganism identified under I above was received by this International Depositary Authority on (date of original deposit) and a request to oonvert the original deposit to a deposit under the Budapest Treaty was received by It on (date of receipt of requcst for conversion).
  • the microorganism identified under I. above was acco panied by:
  • This International Depositary Authority accepts the microorganism identified under I. above, which was received bi on 2 000 - 03 - 06 (Date of the original deposit) 1 .
  • microorganism identified under I above was received by this International Depositaiy Authority on (date of original deposit) and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on (date of reccipt of request for conversio ⁇ ).
  • the microorganism identified under I. above was accompanied by:
  • This International Depositary Authority accepts the microorganism identified under 1. above, which was received by it on 2000 - 03 - 06 (Date of the original deposit) 1 .
  • microorganism identified under I above was received by this International Depositary Authority on (date of original deposit) and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on (date of receipt of request for conversion).

Abstract

Verfahren zur Gewinnung von modifizierten L-Form-Bakterienstämmen bei dem man (a) einen an ein komplexes Nährmedium adaptierten L-Form-Bakterienstamm alternierend bei unterschiedlichen Temperaturen im Temperaturbereich von 20 bis 40 DEG C kultiviert und (b) bei ansteigender hydromechanischer Belastung der Zellen fermentiert, modifizierte L-Form-Bakterienstämme, die gemäss dem Verfahren erhältlich sind, und deren Verwendung zur Herstellung von Genprodukten.

Description

Neuartige L-Form-Ba terienstämme, Verfahren zu deren Herstellung sowie deren Verwendung zur Herstellung von Genprodukten Novel L-shape ba strains, processes for their production and their use in the production of gene products
Die Erfindung betrifft zellwandlose bakterielle L-Form-Stämme, Verfahren zu deren Gewinnung und deren Verwendung zur Herstellung von Genprodukten.The invention relates to cell wallless bacterial L-form strains, methods for their production and their use for the production of gene products.
Künstlich hergestellte Proteine sind Bestandteil von Arzneimitteln, Lebensmitteln, Waschmitteln und anderen für den täglichen Gebrauch wesentlichen Stoffen und Zusammensetzungen. Zur Herstellung solcher Proteine steht heutzutage eine Vielzahl von unterschiedlichen Verfahren zur Verfügung. Besonders wichtig ist in diesem Zusammenhang die Herstellung von Proteinen in Zellkulturen. Die so hergestellten Proteine werden als reko - binant bezeichnet. Die Herstellung oder Expression rekombinanter Proteine ist in vielen verschiedenen Zellkultursystemen, auch ExpressionsSysteme genannt, im Stand der Technik bekannt. Je nach Typ der verwendeten Zelle unterscheidet man zwischen prokaryoti- schen Expressionssystemen, wenn Bakterien als Produzentenzellen verwendet werden, und eukaryotischen ExpressionsSystemen, wenn eukaryotische Zellen von Hefen, Pilzen, Pflanzen oder Tieren als Produzentenzellen verwendet werden.Artificially produced proteins are part of pharmaceuticals, foods, detergents and other substances and compositions that are essential for daily use. A large number of different methods are available today for the production of such proteins. In this context, the production of proteins in cell cultures is particularly important. The proteins produced in this way are referred to as recombinant. The production or expression of recombinant proteins is known in many different cell culture systems, also called expression systems, in the prior art. Depending on the type of cell used, a distinction is made between prokaryotic expression systems when bacteria are used as producer cells and eukaryotic expression systems when Eukaryotic cells from yeasts, fungi, plants or animals can be used as producer cells.
Trotz der Vielzahl der bekannten und verwendeten Systeme lassen sich zahlreiche Proteine, insbesondere Membranproteine, bisher nicht oder nur mit einer unbefriedigenden Ausbeute und Reinheit herstellen. Bei der Verwendung von eukaryotischen Expressionssystemen liegen die Ursachen dafür vor allem im proteolytischen Abbau der hergestellten Proteine durch zelleigene Proteasen, in der häufig auftretenden Toxizität der fremden Proteine für die Erzeugerzellen sowie, im Falle von Membranproteinen, in der starken Assoziation der hergestellten Proteine mit den Zellmembranen der Produzentenzellen. Hinzu kommt, daß Membranproteine nur in geringen Mengen in den Membranen vorkommen und daß das Membranmaterial nur in begrenzten Mengen verfügbar ist (z.B. bei Säugerzellen) . Die Isolierung der Membranen erfordert zudem meist material- und zeitaufwendige Abtrennverfahren, um störende Strukturen wie Zellwand, Geißeln, Fimbrien und andere Membran- und Zellorganellen zu entfernen.Despite the large number of known and used systems, numerous proteins, in particular membrane proteins, have hitherto not been able to be produced or can only be produced with unsatisfactory yield and purity. When using eukaryotic expression systems, the reasons for this lie primarily in the proteolytic degradation of the proteins produced by cell-specific proteases, in the frequently occurring toxicity of the foreign proteins for the producer cells and, in the case of membrane proteins, in the strong association of the proteins produced with the cell membranes of the producer cells. In addition, membrane proteins are only present in small amounts in the membranes and the membrane material is only available in limited amounts (e.g. in mammalian cells). The isolation of the membranes also usually requires material and time-consuming separation processes to remove disruptive structures such as cell wall, flagella, fimbriae and other membrane and cell organelles.
Die Produktion rekombinanter Proteine in prokaryotischen ExpressionsSystemen hat den Nachteil, daß sich die Proteine häufig zu funktionell inaktiven Aggregaten im Zytosol oder Periplasma, sogenannten "inclusion bodies " , zusammenlagern. Ferner weisen auch prokaryotische Produzentenzellen zelleigene Proteasen auf, welche die hergestellten, fremden Proteine abbauen können. Außerdem erschweren bei der Verwendung von E. coli als Produzentenzellen häufig toxische Zellbestandteile, insbesondere Bestandteile der Zellwände, die Gewinnung von für den Verbraucher unschädlichen Proteinpräparaten.The production of recombinant proteins in prokaryotic expression systems has the disadvantage that the proteins frequently assemble into functionally inactive aggregates in the cytosol or periplasm, so-called "inclusion bodies". Furthermore, prokaryotic producer cells also have cell-specific proteases which can degrade the foreign proteins produced. In addition, when using E. coli as producer cells, toxic cell components, in particular components of the cell walls, often make it difficult to obtain protein preparations that are harmless to the consumer.
Um die mit der Produktion von rekombinanten Proteinen in prokaryotischen Zellen einhergehenden Nachteile zu überwinden, wurde im Stand der Technik die Verwendung sogenannter L-Form- Bakterienzellen vorgeschlagen. L-Form-Stämme sind Bakterien, welche mit einer stark veränderten oder ohne Zellwand wachsen. Nach der Beschaffenheit der Zellumhüllung und ihrer Stabilität lassen sich L-Form-Bakterienstämme in vier Gruppen unterteilen. Sphäroplasten-T p L-Formen besitzen noch Reste der Zellwand, z.B. der äußeren Membran, während Protoplasten-Typ L-Form-Zellen lediglich von der Zytoplasmamembran umgeben sind. Zellen, welche nur unter ständigem Selektionsdruck mit Hilfe von Inhibitoren der Zellwandbiosynthese (beispielsweise Ampicillin) in der L-Form- Phase verbleiben, werden instabile L-Formen genannt. Als stabile L-Formen werden dagegen die Stämme bezeichnet, deren Zellen die Fähigkeit zur Ausbildung einer Zellwand vollständig verloren haben.In order to overcome the disadvantages associated with the production of recombinant proteins in prokaryotic cells, the use of so-called L-shape bacterial cells has been proposed in the prior art. L-shape strains are bacteria that grow with a greatly changed or without a cell wall. According to the nature of the cell envelope and its stability, L-form bacterial strains can be divided into four groups. Spheroplastic T p L forms still have remnants of the cell wall, for example the outer membrane, while protoplast type L form cells are only surrounded by the cytoplasmic membrane. Cells that only remain in the L-form phase under constant selection pressure with the help of inhibitors of cell wall biosynthesis (for example ampicillin) are called unstable L-forms. Strains whose cells have completely lost the ability to form a cell wall are referred to as stable L-forms.
Die Umwandlung von gewöhnlichen Bakterienzellen, sogenannten Elternbakterien, in L-Form-Zellen ist an sich bekannt (J. Gu pert und U. Taubeneck, 1983, Experientia Suppl . Vol. 46 227-241; L.H. Mattmann, 1993, Cell Wall Deficient Forms , CRC Press, Boca Raton.The conversion of ordinary bacterial cells, so-called parent bacteria, into L-form cells is known per se (J. Gu pert and U. Taubeneck, 1983, Experientia Suppl. Vol. 46 227-241; LH Mattmann, 1993, Cell Wall Deficient Forms , CRC Press, Boca Raton.
Hierbei werden Zellen einer Bakterienart zunächst durch Behandlung mit Substanzen, welche die Zellwandbiosynthese hemmen (z.. B. ß-Lactam-Antibiotika, Vancomycin, D-Cycloserin) oder welche die Zellwand abbauen (z.B. lytische Enzyme wie Lysozym) in Sphäroplasten oder Protoplasten umgewandelt. Diese zellwanddefek- ten Zellen werden auf einem geeigneten Medium bis zur Bildung typischer L-Form-Kolonien vermehrt und solange auf L-Form-Medium übertragen, bis ein Wachstum als dichter Kolonierasen erreicht ist.Here, cells of a bacterial type are first converted into spheroplasts or protoplasts by treatment with substances which inhibit cell wall biosynthesis (e.g. β-lactam antibiotics, vancomycin, D-cycloserine) or which break down the cell wall (e.g. lytic enzymes such as lysozyme) , These cell-wall-defective cells are propagated on a suitable medium until typical L-form colonies are formed and transferred to L-form medium until growth as dense colonies is achieved.
Als Nährmedium dient eine Lösung, die eine komplexe Nährkomponente, vorzugsweise frisch hergestellten Fleischextrakt, zur Grundversorgung mit C- und N-Quellen, Aminosäuren und Ionen, einen Wachstumsstimulator, vorzugsweise Hefeextrakt mit essentiellen Vitaminen und Aminosäuren, einen osmotischen Stabilisator zur Vermeidung von Zellyse, vorzugsweise Saccharose oder NaCl, einen Membranstabilisator, vorzugsweise Serum und zweiwertige Kationen wie Mg2+, und einen Zellwandbiosynthese-Inhibitor, vorzugsweise ß-Lactam-Antibiotika wie Penicillin, enthält (primäres L-Form-Medium) .A nutrient medium is a solution that contains a complex nutrient component, preferably freshly prepared meat extract, for basic supply with C and N sources, amino acids and ions, a growth stimulator, preferably yeast extract with essential vitamins and amino acids, an osmotic stabilizer to avoid cell lysis, preferably Sucrose or NaCl, a membrane stabilizer, preferably serum and divalent cations such as Mg 2+ , and a cell wall biosynthesis inhibitor, preferably contains β-lactam antibiotics such as penicillin (primary L-form medium).
Ein häufig verwendetes komplexes Medium ist L-Form-Standard- Medium (LFS) . LFS-Medium enthält frischen Fleischextrakt mit Zusätzen von Hefeextrakt (0,5-1 % w/v) , Pferdeserum (8-10 % v/v) , Saccharose (6-10 % w/v), Penicillin (200-1000 U/ml), Bacto-Agar (1-1,5 % w/v) .A commonly used complex medium is L-form standard medium (LFS). LFS medium contains fresh meat extract with additives of yeast extract (0.5-1% w / v), horse serum (8-10% v / v), sucrose (6-10% w / v), penicillin (200-1000 U / ml), Bacto agar (1-1.5% w / v).
Die Abkürzung w/v steht für Masse pro Volumen, d.h. 10 % w/v entsprechen 10 g pro 100 ml. Falls nicht anders angegeben sind alle Prozentangaben in der vorliegenden Beschreibung w/v-Angaben. Die Abkürzung v/v steht für Volumen pro Volumen.The abbreviation w / v stands for mass per volume, i.e. 10% w / v corresponds to 10 g per 100 ml. Unless otherwise stated, all percentages in the present description are w / v statements. The abbreviation v / v stands for volume per volume.
Der Fleischextrakt wird erhalten, indem man 2 kg Rindfleisch mit 4 1 Wasser für 1 Stunde im Dampftopf extrahiert, man das Filtrat dann mit 0,3 bis 1 % Bacto Pepton und 0,5 bis 2 % NaCl versetzt und auf pH 7,0 eingestellt.The meat extract is obtained by extracting 2 kg of beef with 4 l of water in a steam pot for 1 hour, then adding 0.3 to 1% Bacto Peptone and 0.5 to 2% NaCl to the filtrate and adjusting to pH 7.0 ,
Anschließend selektiert man stabile L-Formen, d.h. solche L- Formen, welche die Fähigkeit zur Reversion, d.h. zur Resynthese der Zellwand in Abwesenheit von Penicillin verloren haben. Dazu werden Agarblöckchen mit L-Form-Kolonien einer Kultur so lange parallel auf LFS-Agarmedium mit und ohne Penicillinzusatz übertragen, bis auf den penicillinfreien Platten nur noch L-Form- Kolonien wachsen und keine Reversion mehr erfolgt. Diese stabilen L-Form-Kolonien werden vermehrt, bis ein dichter Kolonierasen auf den penicillinfreien LSF-Agarplatten erreicht ist.Then you select stable L-shapes, i.e. those L-forms which have the ability to revert, i.e. lost to the resynthesis of the cell wall in the absence of penicillin. For this purpose, agar blocks with L-shape colonies of a culture are transferred in parallel to LFS agar medium with and without the addition of penicillin until only L-shape colonies grow on the penicillin-free plates and no more reversion takes place. These stable L-shape colonies are propagated until a dense colonization is achieved on the penicillin-free LSF agar plates.
Die Herstellung stabiler L-Formen von E. coli wird beispielsweise von U. Taubeneck und E. Schumann in Zeitschrift für Allg. Mikrobiologie, Band 6, 1966, Seiten 341-343, und von P. mlrabiliε von U. Taubeneck in Zeitschrift für Allg. Mikrobiologie, Band 2, 1962, Seiten 132-156 beschrieben. Die stabilen L-Formen werden anschließend an ein Wachstum in lüssigem LFS-Medium adaptiert . Dieses enthält frisch hergestellten Fleischextrakt, (2-5 %), Bacto-Pepton (0,5-1 %), NaCl (0,5- 2 % w/v), Hefeextrakt (0,5-1 % v/v), Pferdeserum (8-10 % v/v) und Saccharose (6-10 %). Hierzu werden Agarblöcke (2 x 2 cm) mit reichlich Kolonierasen in 10-40 ml flüssiges LFS-Medium gegeben und bei 37 °C unter Schütteln bebrütet. Eine Optimierung des Wachstums in flüssigem LFS-Medium wird durch fortlaufende Übertragung der Kulturen (alle 2-5 Tage) in frisches Medium, bis die L-Form-Zellen im Verlauf von 24 Stunden zu Zelldichten von 10 Zellen/ml wachsen, erreicht. Durch fortlaufende Übertragung und Wachstum in frischem LFS-Medium mit stufenweise reduzierten Mengen an Serum und Saccharose werden im Verlauf von 50 - 80 Passagen L-Form-Stämme, z.B. von P. mirabilis und E. coli , selektiert, die auch ohne Zusätze von Serum und Saccharose gutes Wachstum zeigen. Diese können dann durch schrittweisen Ersatz des Fleischextrakt-Anteils des LFS-Mediums durch andere in ihrer Zusammensetzung definierte Nährkomponenten an ein Wachstum in fleischextraktfreien Nährmedien adaptiert werden.The production of stable L-forms of E. coli is described for example by U. Taubeneck and E. Schumann in Zeitschrift für Allg. Microbiology, Volume 6, 1966, pages 341-343, and by P. mlrabiliε from U. Taubeneck in Zeitschrift für Allg. Microbiology, Volume 2, 1962, pages 132-156. The stable L-forms are then adapted to growth in a liquid LFS medium. This contains freshly prepared meat extract, (2-5%), bacto-peptone (0.5-1%), NaCl (0.5-2% w / v), yeast extract (0.5-1% v / v) , Horse serum (8-10% v / v) and sucrose (6-10%). For this purpose, agar blocks (2 x 2 cm) with plenty of colony noses are placed in 10-40 ml liquid LFS medium and incubated at 37 ° C with shaking. Optimization of growth in liquid LFS medium is achieved by continuously transferring the cultures (every 2-5 days) to fresh medium until the L-form cells grow to cell densities of 10 cells / ml over the course of 24 hours. Through continuous transfer and growth in fresh LFS medium with gradually reduced amounts of serum and sucrose, L-form strains, for example of P. mirabilis and E. coli, are selected in the course of 50-80 passages, even without the addition of serum and sucrose show good growth. These can then be adapted to growth in meat extract-free nutrient media by gradually replacing the meat extract portion of the LFS medium with other nutritional components defined in their composition.
Besonders geeignete definierte komplexe Nährkomponenten zum Ersatz des Fleischextrakts sind Brain-heart-infusion-(BHI ) -broth (BHIB), Tryptic-soy-broth (TSOYB) , Todd-Hewitt-broth (THEB) und L-broth (LB) . Die detaillierte Zusammensetzung dieser Nährkomponenten ist in den Firmenhandbüchern Merck-Nährboden Handbuch, E. Merck, Darmstadt, 1992 und Difco-Mannual lOth. Edition 1984, Difco Laboratoris Detroit MI USA beschrieben.Brain-heart-infusion- (BHI) -broth (BHIB), tryptic-soy-broth (TSOYB), Todd-Hewitt-broth (THEB) and L-broth (LB) are particularly suitable, defined, complex nutritional components for replacing the meat extract. The detailed composition of these nutrient components can be found in the company handbooks Merck-Medium, E. Merck, Darmstadt, 1992 and Difco-Mannual lOth. Edition 1984, Difco Laboratoris Detroit MI USA.
Die bekannten L-Form-Stämme zeigen in diesen Medien aus unerklärlichen Gründen oft unbefriedigendes Wachstum.The known L-form strains often show unsatisfactory growth in this media for inexplicable reasons.
Gumpert et al . offenbaren stabile L-Form-Zellen, die auf die Behandlung normaler Bakterienzellen mit Zellwandbiosynthesehem- mern wie beispielsweise Ampicillin und gleichzeitige osmotische Stabilisierung zurück gehen. Diese Zellen bilden keine Zellwand und kein periplasmatisches Kompartiment mehr aus und weisen keinerlei extrazellulär detektierbare Proteasen auf (J. Gumpert, E. Schuhmann, U. Taubeneck 1971, Zeitschrift Allg. Mikrobiologie, 11, 19-33; J. Gumpert, U. Taubeneck 1983, Experientia Suppl . Vol. 46, 227-241).Gumpert et al. disclose stable L-shape cells that are based on the treatment of normal bacterial cells with cell wall biosynthesis inhibitors such as ampicillin and simultaneous osmotic stabilization. These cells no longer form and no longer form a periplasmic compartment no extracellularly detectable proteases (J. Gumpert, E. Schuhmann, U. Taubeneck 1971, Journal Allg. Mikrobiologie, 11, 19-33; J. Gumpert, U. Taubeneck 1983, Experientia Suppl. Vol. 46, 227-241) ,
L-Form-Bakterienstämme sind aus vielerlei Gründen prinzipiell für die Herstellung rekombinanter Proteine geeignet. Beispielsweise ist ihre Membran, die für die Herstellung von Membranproteinen ein adäquates Milieu darstellt, von außen frei zugänglich (K. Gura, J. Gumpert, C. Hoischen, 1997, IMB Anual Report 1996, 101-104; C. Hoischen, K. Gura, C. Luge, J. Gumpert 1997, Journal Bacteriol. 197, 3430-3436). Ferner weisen Protoplasten-Typ L- Form-Stämme außer der zytoplasmatischen Membran keinerlei Zellorganellen auf, von denen das hergestellte Protein abgetrennt werden muß .L-form bacterial strains are principally suitable for the production of recombinant proteins for a variety of reasons. For example, their membrane, which is an adequate milieu for the production of membrane proteins, is freely accessible from the outside (K. Gura, J. Gumpert, C. Hoischen, 1997, IMB Anual Report 1996, 101-104; C. Hoischen, K. Gura, C. Luge, J. Gumpert 1997, Journal Bacteriol. 197, 3430-3436). Furthermore, protoplast-type L-form strains have no cell organelles apart from the cytoplasmic membrane, from which the protein produced has to be separated.
Die DD 269 166 AI beschreibt die Verwendung zellwandloser Gramnegativer Bakterien, wie Pseudomonas, Agrobacterium, Proteus und Escherichia , sowie Gram-positiver Bakterien, wie Staphylococcus , Streptococcus , Bacillus f Lactobacillus r Streptomyces und Thermoactinomyces, zur Gewinnung rekombinanter Genprodukte, wie Streptokinase, Human-Interferon-alpha-1 oder Prochy osin.DD 269 166 AI describes the use of cell-wall-free Gram-negative bacteria, such as Pseudomonas, Agrobacterium, Proteus and Escherichia, as well as Gram-positive bacteria, such as Staphylococcus, Streptococcus, Bacillus f Lactobacillus r Streptomyces and Thermoactinomyces, to obtain recombinant gene products, such as Streptomyinase human, Interferon-alpha-1 or Prochy osin.
Die DD 280 333 AI offenbart ein Verfahren zur Gewinnung milchfällender Enzyme unter Verwendung von stabilen L-Form-Stämmen bakteriellen oder pilzlichen Ursprungs.The DD 280 333 AI discloses a process for the production of milk-producing enzymes using stable L-form strains of bacterial or fungal origin.
Die DD 281 816 A5 betrifft die Herstellung von Serotyp C- Streptokinase unter Verwendung von L-Form-Stämmen von z.B. P. mirabilis und Bac. subtilis .DD 281 816 A5 relates to the production of serotype C streptokinase using L-form strains of e.g. P. mirabilis and Bac. subtilis.
Bisher wurde die Gewinnung von mehr als 20 verschiedenen Proteinen unter Verwendung von L-Form-Expressions-Systemen beschrieben. Die Herstellung der Proteine mit L-Form-Zellen erfolgte zum Teil unter halb-technischen Bedingungen in 2 bis 100 1 Fermentern (J. Gumpert und C. Hoischen 1998, Current Opinion in Biotechnology, 9, 506-509).So far, the production of more than 20 different proteins using L-form expression systems has been described. The proteins with L-shape cells were partly produced under semi-technical conditions in 2 to 100 1 fermenters (J. Gumpert and C. Hoischen 1998, Current Opinion in Biotechnology, 9, 506-509).
Gumpert und Taubeneck offenbaren L-Form-Stämme, die in der Lage sind, in Kulturmedien ohne Zusatz von Serum oder osmotischen Stabilisatoren zu wachsen (J. Gumpert und U. Taubeneck 1983, Experientia Suppl. Vol. 46 (1983) 227-241).Gumpert and Taubeneck disclose L-form strains that are able to grow in culture media without the addition of serum or osmotic stabilizers (J. Gumpert and U. Taubeneck 1983, Experientia Suppl. Vol. 46 (1983) 227-241) ,
Die bekannten L-Form-Zellen sind aufgrund ihrer fehlenden Zellwand empfindlich, beispielsweise gegenüber Umgebungseinflüssen und chemischen und physikalischen Veränderungen des Wachstumsmediums. Sie eignen sich daher eher für die Produktion von Proteinen in kleinen Mengen, weniger für Fermentationen in technischem Maßstab (J. Gumpert und C. Hoischen 1998, Current Opinion in Biotechnology, 9, 506-509).The known L-shape cells are sensitive because of their missing cell wall, for example, to environmental influences and chemical and physical changes in the growth medium. They are therefore more suitable for the production of proteins in small quantities, less for fermentations on an industrial scale (J. Gumpert and C. Hoischen 1998, Current Opinion in Biotechnology, 9, 506-509).
Die Herstellung rekombinanter Genprodukte in membrangebundener Form, wobei die funktioneil aktiven Moleküle auf der Außenseite der Zelloberfläche frei zugänglich sind (Surface-Display) , ist sowohl für die Untersuchung von Struktur-Funktionsbeziehungen, für Interaktionsstudien als auch für diagnostische und immuno- protektive Anwendungen von großer Bedeutung. Hierbei werden antigene Determinanten, Single chain Antikörperfragmente, heterologe Enzyme, Polyhistidyl-Tags und Peptidbibliotheken auf der bakteriellen Oberfläche exprimiert (Stähl, S. und Uhlen, M. , TIBTECH 1997, 15, 185-192). Bei den bisher üblichen bakteriellen Zelltypen, die für das Surface-Display eingesetzt werden, handelt es sich um Gram-negative E. coli Stämme und Gram-positive Stämme, wie z.B. Bac . subtilis und Staphylococcus Arten.The production of recombinant gene products in membrane-bound form, whereby the functionally active molecules on the outside of the cell surface are freely accessible (surface display), is of great importance for the study of structure-function relationships, for interaction studies as well as for diagnostic and immunoprotective applications Importance. Here, antigenic determinants, single chain antibody fragments, heterologous enzymes, polyhistidyl tags and peptide libraries are expressed on the bacterial surface (Stähl, S. and Uhlen, M., TIBTECH 1997, 15, 185-192). The previously common bacterial cell types that are used for the surface display are Gram-negative E. coli strains and Gram-positive strains, e.g. Bac. subtilis and Staphylococcus species.
Beim Surface-Display mit Gram-negativen Stämmen wird das präsentierte Protein in der Regel mit Proteinkomponenten der äußeren Membran, wie OmpA, La B und PhoE, Flagellenproteinen (Flagellin) oder Proteinen der Fimbrien (FimA, FimH) , fusioniert und dadurch in der äußeren Membran verankert . Die Nachteile dieses Systems liegen darin, daß (i) die präsentierten Proteine durch innere Membran, Periplasma und Zellwand (Mureinsacculus und äußere Membran) transportiert werden müssen, (ii) daß die Größe der präsentierten Proteine limitiert ist und (iü) daß durch zahlreiche immunreaktive Komponenten der Zelloberfläche eine Reihe medizinischer Anwendungen ausgeschlossen bleiben.On the surface display with Gram-negative strains, the protein presented is usually fused with protein components of the outer membrane, such as OmpA, La B and PhoE, flagella proteins (flagellin) or proteins of the fimbriae (FimA, FimH), and thereby in the outer Anchored membrane. The disadvantages of this system are that (i) the proteins presented must be transported through the inner membrane, periplasm and cell wall (mureinsacculus and outer membrane), (ii) that the size of the proteins presented is limited and (iü) that a number of medical applications are excluded by numerous immunoreactive components of the cell surface.
In Gram-positiven Bakterien wird das präsentierte Protein meist mit einem Oberflächenprotein der Zellwand (z.B. Protein A, M6 Protein) fusioniert und hierdurch in der Zellwand fixiert. Nachteilig auf das Surface-Display mit Gram-positiven Bakterien wirken sich das Vorhandensein zelleigener Antigendeterminanten und das häufige Auftreten extrazellulärer Proteasen auf. Das präsentierte Protein muß ebenfalls erst durch die z toplasmati- sche Membran und die Zellwand transportiert werden.In Gram-positive bacteria, the presented protein is usually fused with a surface protein of the cell wall (e.g. Protein A, M6 protein) and thereby fixed in the cell wall. The presence of cell-specific antigen determinants and the frequent occurrence of extracellular proteases have a disadvantageous effect on the surface display with Gram-positive bacteria. The protein presented must also first be transported through the z toplasmatic membrane and the cell wall.
Der Erfindung liegt die Aufgabe zugrunde, neue L-Form-Stämme für die biotechnologische Gewinnung von Genprodukten bereitzustellen, die eine erhöhte Stabilität gegenüber chemischen, physikalischen und mechanischen Belastungen aufweisen und die sich daher besonders für Fermentationen unter technischen Bedingungen und insbesondere zur Herstellung membranständiger Proteine eignen.The invention has for its object to provide new L-form strains for the biotechnological production of gene products, which have increased stability to chemical, physical and mechanical loads and which are therefore particularly suitable for fermentations under technical conditions and in particular for the production of membrane proteins ,
Diese Aufgabe wurde überraschenderweise durch ein Verfahren zur Gewinnung von modifizierten L-Form-Bakterienstämmen gelöst, bei dem manSurprisingly, this object was achieved by a process for obtaining modified L-form bacterial strains, in which
a) einen an ein komplexes Nährmedium adaptierten L-Form- Bakterienstamm alternierend bei unterschiedlichen Temperaturen im Bereich von 20 bis 40 °C kultiviert, unda) an L-shaped bacterial strain adapted to a complex nutrient medium is cultivated alternately at different temperatures in the range from 20 to 40 ° C., and
b) die Zellen unter zunehmenden hydromechanischen Belastung fermentiert .b) the cells are fermented under increasing hydromechanical load.
Als Ausgangsstamm für Schritt (a) eignen sich grundsätzlich alle L-Form-Stämme, insbesondere L-Form-Stämme, die mit WachstumsratenBasically all L-form strains, in particular L-form strains, with growth rates are suitable as the starting strain for step (a)
1 8 μ > 0,1 h" zu Zellkonzentrationen von 10 Zellen/ml wachsen. Erfindungsgemäß werden vorzugsweise stabile L-Formen von Bakterien verwendet, insbesondere stabile Protoplasten-Typ L- Formen.1 8 μ> 0.1 h " to cell concentrations of 10 cells / ml. According to the invention, stable L-forms of bacteria are preferably used, in particular stable protoplast-type L-forms.
Es können sowohl in fleischextrakthaltigen Komplexmedien, vorzugweise LFS-Medium, als auch in fleischextraktfreien Komplexmedien, vorzugweise solchen, die auf den oben genannten definierten komplexen Nährkomponenten basieren, besonders bevozugt BHIB, stabil wachsende Stämme . eingesetzt werden. Fleischextraktfreie Medien sind bevorzugt, da diese reproduzierbarer und konstengünstiger in Herstellung und bei der Gewinnung medizinischer Produkte unbedenklicher sind.Strains that grow stably can be found both in meat extract-containing complex media, preferably LFS medium, and in meat extract-free complex media, preferably those based on the complex nutrient components defined above, particularly preferably BHIB. be used. Meat extract-free media are preferred because they are more reproducible and less expensive to manufacture and to produce medical products.
Als Ausgangsstamme geeignete L-Formen werden beispielsweise von J. Gumpert und U. Taubeneck 1983, Experientia Suppl . Vol. 46, 227-241, in der dort zitierten Literatur und in DD 269 166 AI beschrieben. Bevorzugte Ausgangsstamme sind die dort genannten L-Form-Stämme von Escherichia coli, Proteuε mirabilis und Bacillus subtilis . Weitere bevorzugte L-Form-Stämme sind solche von Bacillus licheniformiε f Nocardia asteroides, Pseudomonas stutzeri, Staphylococcus aureus, Streptococcus faecalis, Streptomyces hygroscopicus und Thermo actinomyces vulgaris. Besonders bevorzugte Ausgangsstamme sind die L-Formen von P. mirabilis LVI, P. mirabilis L99 , E. coli LWF+, E. coli LWF- und Bac . subtilis 1,1 70.L-forms suitable as starting strains are described, for example, by J. Gumpert and U. Taubeneck 1983, Experientia Suppl. Vol. 46, 227-241, described in the literature cited therein and in DD 269 166 AI. Preferred starting strains are the L-form strains of Escherichia coli, Proteuε mirabilis and Bacillus subtilis mentioned there. Further preferred L-form strains are those of Bacillus licheniformis for Nocardia asteroides, Pseudomonas stutzeri, Staphylococcus aureus, Streptococcus faecalis, Streptomyces hygroscopicus and Thermo actinomyces vulgaris. Particularly preferred starting strains are the L forms of P. mirabilis LVI, P. mirabilis L99, E. coli LWF +, E. coli LWF- and Bac. subtilis 1.1 70.
Die als Ausgangsstamme des erfindungsgemäßen Verfahrens bevorzugten L-Form-Stämme von P. mirabilis LVI , P. mirabilis L99 , E. coli LWF+, E. coli LWF- und Bac . subtilis L170 sind in der DMSZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen, Marscheroder Weg lb, 38124 Braunschweig) hinterlegt. Die Hinterlegungsnummern lauten: DSM 7988 ( Proteus mirabilis LVI), DSM 7990 ( Proteus mirabilis L99), DSM 7989 {Escherichia coli LWF+), DSM 8012 { Escherichia coli LWF-) und DSM 7978 ( Bacillus subtilis L170) . Es wurde gefunden, daß sich L-Form-Bakterienstämme, die gemäß den obigen Verfahrensschritten (a) oder (b) , vorzugsweise (a) und (b) behandelt wurden, neben einem stabilen Wachstumsverhalten insbesondere durch eine hohe mechanische Belastbarkeit und eine hohe Temperaturtoleranz auszeichnen. Sie sind gegenüber Schwankungen der Wachstumstemperatur, der Mediumzusammensetzung, des pH-Werts und anderer Fermentationsparameter deutlich widerstandsfähiger und eignen sich daher besonders zur Produktion rekombinanter Genprodukte unter technischen Bedingungen.The preferred L-form strains of P. mirabilis LVI, P. mirabilis L99, E. coli LWF +, E. coli LWF- and Bac. subtilis L170 are deposited in the DMSZ (German Collection of Microorganisms and Cell Cultures, Marscheroder Weg lb, 38124 Braunschweig). The deposit numbers are: DSM 7988 (Proteus mirabilis LVI), DSM 7990 (Proteus mirabilis L99), DSM 7989 {Escherichia coli LWF +), DSM 8012 {Escherichia coli LWF-) and DSM 7978 (Bacillus subtilis L170). It has been found that L-form bacterial strains which have been treated according to process steps (a) or (b) above, preferably (a) and (b), in addition to stable growth behavior, in particular due to a high mechanical strength and a high temperature tolerance distinguished. They are significantly more resistant to fluctuations in growth temperature, medium composition, pH and other fermentation parameters and are therefore particularly suitable for the production of recombinant gene products under technical conditions.
Die Schritte (a) und (b) können gleichzeitig oder nacheinander durchgeführt werden. Bevorzugt ist die Reihenfolge Schritt (a) gefolgt von Schritt (b) . Der Schritt (a), der Schritt (b) oder vorzugsweise beide Schritte können ein- oder mehrfach wiederholt werden.Steps (a) and (b) can be carried out simultaneously or in succession. The sequence is preferably step (a) followed by step (b). Step (a), step (b) or preferably both steps can be repeated one or more times.
Der Schritt (a) umfaßt ein mehrstufiges Wachstumsregime mit alternierenden Wachstumstemperaturen. Vorzugsweise wird Schritt (a) in der Weise durchführt, daß man die Temperatur alternierend zwischen zwei Temperaturen Tl und T2 variiert, wobei Tl im Verlauf des Schrittes (a) gleich bleibt und T2 variiert wird. Hierbei liegen die Werte für T2 vorzugsweise unter dem Wert für Tl. Gemäß einer bevozugten Ausführungsform wird T2 stufenweise abgesenkt und nach dem Erreichen der angestrebten minimalen Temperatur auf einen Wert oberhalb von Tl erhöht.Step (a) comprises a multi-stage growth regime with alternating growth temperatures. Step (a) is preferably carried out by varying the temperature alternately between two temperatures T1 and T2, T1 remaining the same during step (a) and T2 being varied. Here, the values for T2 are preferably below the value for T1. According to a preferred embodiment, T2 is gradually lowered and, after reaching the desired minimum temperature, is increased to a value above T1.
In Schritt (a) wird zunächst die betreffende Kultur in frisches Medium überimpft und im Schüttelinkubator bei einer konstanten Temperatur (Tl) über 24 bis 36 Stunden als submerse Schüttelkultur bebrütet (Stufe 1) . Die Kultivierung erfolgt beispielsweise in 100 ml Gefäßen, vorzugsweise in 35 ml 3%igem BHI-Medium mit Zusatz von 0,5 % Hefeextrakt. Die Kultivierung wird fortgesetzt bis eine Zellkonzentration von 10 Zellen/ml erreicht ist.In step (a), the culture in question is first inoculated into fresh medium and incubated in a shaking incubator at a constant temperature (Tl) for 24 to 36 hours as a submerged shaking culture (stage 1). The cultivation takes place, for example, in 100 ml vessels, preferably in 35 ml of 3% BHI medium with the addition of 0.5% yeast extract. The cultivation is continued until a cell concentration of 10 cells / ml is reached.
Anschließend wird ein Teil der Kultur aus Stufe 1 in frisches Medium übertragen ( Inokulum etwa 10 % v/v) und bei einer Tempera- tur (T2), die vorzugsweise niedriger als die Temperatur Tl ist, über einen Zeitraum von vorzugsweise 18 bis 48 Stunden, besonders bevorzugt 24 bis 36 Stunden bebrütet (Stufe 2). Im Anschluß an Stufe 2 wird die Kultur wieder in frisches Medium übertragen und bei der Temperatur Tl kultiviert (Stufe 3) . Tl ist vorzugsweise die für den Ausgangsstamm optimale Wachstumstemperatur, also beispielsweise 37 °C, und wird im Verlauf des Schrittes (a) nicht verändert, während T2 stufenweise abgesenkt wird, vorzugsweise bis auf einen Wert von 20 bis 22 °C besonders bevorzugt etwa 20 °C. T2 wird vorzugsweise in 5 bis 10 Etappen, vorzugsweise etwa 7 Etappen auf die gewünschte Zieltemperatur abgesenkt, so daß Schritt (a) vorzugsweise insgesamt 10 bis 20 und besonders bevorzugt etwa 14 Stufen umfaßt. In jeder Stufe werden die Zellen vorzugsweise für 18 bis 48 Stunden, besonders bevorzugt 24 bis 36 Stunden bei der jeweiligen Temperatur kultiviert. Vorzugsweise wird die Kultivierung jeweils solange fortgesetzt bie eine Zellkonzentration von 10 Zellen/ml erreicht ist.Part of the culture from stage 1 is then transferred to fresh medium (inoculum about 10% v / v) and at a temperature incubated (T2), which is preferably lower than the temperature T1, over a period of preferably 18 to 48 hours, particularly preferably 24 to 36 hours (stage 2). Following stage 2, the culture is transferred back to fresh medium and cultivated at temperature T1 (stage 3). Tl is preferably the optimal growth temperature for the starting strain, for example 37 ° C., and is not changed in the course of step (a), while T2 is gradually reduced, preferably to a value of 20 to 22 ° C., particularly preferably about 20 ° C. T2 is preferably lowered to the desired target temperature in 5 to 10 stages, preferably about 7 stages, so that step (a) preferably comprises a total of 10 to 20 and particularly preferably about 14 stages. In each stage, the cells are preferably cultivated for 18 to 48 hours, particularly preferably 24 to 36 hours, at the respective temperature. The cultivation is preferably continued until a cell concentration of 10 cells / ml is reached.
Die Temperatur T2 wird pro Etappe vorzugsweise um 2 bis 5 °C gesenkt, wobei die Temperaturänderung von Etappe zu Etappe auch unterschiedlich ausfallen kann. Die Verwendung von mehr als zwei unterschiedlichen Temperaturen, also beispielsweise 3 oder 4 Temperaturen ist möglich. Nach dem Erreichen der angestrebten Minimaltemperatur kann T2 gemäß einer bevorzugten Ausführungsform auf einen Wert oberhalb von Tl, vorzugsweise 2 bis 5°C oberhalb der optimalen Wachtumstemperatur, beispielsweise also 40°C angehoben werden.The temperature T2 is preferably reduced by 2 to 5 ° C. per stage, the temperature change from stage to stage also being different. The use of more than two different temperatures, for example 3 or 4 temperatures, is possible. After the desired minimum temperature has been reached, according to a preferred embodiment, T2 can be raised to a value above Tl, preferably 2 to 5 ° C. above the optimal growth temperature, for example 40 ° C.
Gemäß einer besonders bevorzugten Ausführungsform wird die Kultur alle 24 Stunden in frisches Medium gleicher Zusammensetzung übertragen wobei die Wachstumstemperatur alternierend gemäß folgendem Schema variiert wird: Start: Tl = 37°C - T2 = 32 °C → Tl = 37°C * T2 = 30°C → Tl = 37°C → T2 = 28°C - Tl = 37°C - T2 = 26°C - Tl = 37°C - T2 = 24°C - Tl = 37°C -> T2 = 22°C → Tl = 37°C - T2 = 20°C - Tl = 37°C - T2 = 40°C - T2 = 20°C Ende. Als Ergebnis werden Stämme erhalten, die gegenüber den Ausgangsstämmen reproduzierbarer im Wachstumsverlauf, toleranter gegenüber Wachstumstemperaturen und konstanter in der Wachstums- rate sind.According to a particularly preferred embodiment, the culture is transferred every 24 hours in fresh medium of the same composition wherein the growth temperature alternately according to the following scheme is varied: Start: Tl = 37 ° C - T2 = 32 ° C → Tl = 37 ° C * T2 = 30 ° C → Tl = 37 ° C → T2 = 28 ° C - Tl = 37 ° C - T2 = 26 ° C - Tl = 37 ° C - T2 = 24 ° C - Tl = 37 ° C -> T2 = 22 ° C → Tl = 37 ° C - T2 = 20 ° C - Tl = 37 ° C - T2 = 40 ° C - T2 = 20 ° C end. As a result, strains are obtained which are more reproducible in the course of growth compared to the starting strains, more tolerant towards growth temperatures and more constant in the growth rate.
Im Verfahrensschritt (b) werden die L-Form-Zellen alternierend zunehmenden hydromechanischen Belastungen ausgesetzt. Dazu werden die in Schritt (a) erhaltenen L-Form-Kulturen als Ausgangsstamm bei variierenden Scherkräften und vorzugsweise auch bei variierenden Belüftungsraten fermentiert. Variierende Scherkräfte lassen sich beispielsweise durch das Variieren der Rührerdrehzahl erzeugen, mit der das Fermentationsmedium gerührt wird.In method step (b), the L-shape cells are alternately exposed to increasing hydromechanical loads. For this purpose, the L-form cultures obtained in step (a) are fermented as a starting strain with varying shear forces and preferably also with varying aeration rates. Varying shear forces can be generated, for example, by varying the stirrer speed at which the fermentation medium is stirred.
Schritt (b) wird vorzugsweise in einem Fermenter mit einem Nettovolumen von 2 1, einer Höhe von 35 cm und einem Durchmesser von 18 cm durchgeführt, der mit einem Wellendiskusrührer mit einem Durchmesser von 7 cm ausgestattet ist.Step (b) is preferably carried out in a fermenter with a net volume of 2 l, a height of 35 cm and a diameter of 18 cm, which is equipped with a wave disc stirrer with a diameter of 7 cm.
Das Fermentationsregime wird beispielsweise so gestaltet, daß nacheinander mehrere Fermenterlaufe durchgeführt werden, wobei die Zellen eines Fermenterlaufes als Inokulum für den nächsten Fermentationslauf eingesetzt werden.The fermentation regime is designed, for example, so that several fermenter runs are carried out in succession, the cells of one fermenter run being used as an inoculum for the next fermentation run.
Vorzugsweise werden 1000 bis 2000 ml BHIB Medium mit 0,7 % Hefeextrakt und 1 % Saccharose mit 10 % (V/V) der Kultur aus Schritt (a) bzw. der vorherigen Fermenterkultur beimpft und bei konstanter Rührgeschwindigkeit (Festdrehzahl VF) und Belüftungsrate bei vorzugsweise 32 °C bis 37 °C fermentiert. Die Fermenta- tion wird bis zu einer Zellkonzentration von 10 8 bis 109 Zellen/ml fortgesetzt (etwa 24 bis 48 Stunden) . Unter diesen Bedingungen ist der Sauerstoffverbrauch der L-Form-Zellen stark erhöht. Ein Absinken des Sauerstoffpartialdrucks p02 auf Werte unter etwa 5 % sollte vermieden werden. Hierzu wird bei Erreichen eines Sauerstoffpartialdrucks von etwa 5 % die Rührgeschwindigkeit kurzfristig auf einen festgelegten Wert (Umschaltdrehzahl VU) erhöht und bei Erreichen eines Partialdrucks von 20 bis 30 % auf die Festdrehzahl VF zurückgesetzt. Die Prozentangabe bezieht sich auf die Sättigungskonzentration von Sauerstoff in dem betreffenden Kulturmedium. Im Verlauf des Schrittes (b) werden die Festdrehzahl VF und die Umschaltdrehzahl VU des Rührers in den aufeinanderfolgenden Fermenterläufen verändert . Vorzugsweise umfaßt Schritt (b) 5 bis 10, besonders bevorzugt etwa 7 Fermenterläufe .1000 to 2000 ml of BHIB medium with 0.7% yeast extract and 1% sucrose with 10% (V / V) of the culture from step (a) or the previous fermenter culture are preferably inoculated and at a constant stirring speed (fixed speed VF) and aeration rate preferably fermented at 32 ° C to 37 ° C. The fermentation is continued up to a cell concentration of 10 8 to 109 cells / ml (about 24 to 48 hours). Under these conditions, the oxygen consumption of the L-shape cells is greatly increased. A decrease in the oxygen partial pressure p0 2 to values below approximately 5% should be avoided. For this purpose, the stirring speed is briefly increased to a fixed value (changeover speed VU) when an oxygen partial pressure of about 5% is reached and from 20 to 30 when a partial pressure is reached % reset to the fixed speed VF. The percentage refers to the saturation concentration of oxygen in the culture medium in question. In the course of step (b), the fixed speed VF and the changeover speed VU of the stirrer are changed in the successive fermenter runs. Step (b) preferably comprises 5 to 10, particularly preferably about 7, fermenter runs.
Gemäß einer besonders bevorzugten Ausführungsform werden die Rührgeschwindigkeiten in Schritt (b) entsprechend dem folgenden Schema verändert:According to a particularly preferred embodiment, the stirring speeds in step (b) are changed according to the following scheme:
1. Lauf: VF = 200 U/min— VU = 500 U/min;1st run: VF = 200 rpm - VU = 500 rpm;
2. Lauf: VF = 250 U/min— VU = 500 U/min;2nd run: VF = 250 rpm - VU = 500 rpm;
3. Lauf: VF = 300 U/min— VU = 600 U/min;3rd run: VF = 300 rpm - VU = 600 rpm;
4. Lauf: VF = 350 U/min— VU = 600 U/min;4th run: VF = 350 rpm - VU = 600 rpm;
5. Lauf: VF = 400 U/min— VU = 700 U/min;5th run: VF = 400 rpm - VU = 700 rpm;
6. Lauf: VF = 450 U/min-- VU = 700 U/min;6th run: VF = 450 rpm - VU = 700 rpm;
7. Lauf: VF = 500 U/min— VU = 800 U/min.7th run: VF = 500 rpm - VU = 800 rpm.
Die Belüftungsrate wird vorzugsweise auf 0,2 bis 1,0, besonders bevorzugt 0,6 bis 1,0 Volumeneinheiten Luft pro Volumeneinheit Medium pro Minute (1/1 min), ganz besonders bevorzugt etwa 0,7 1/1 min eingestellt.The aeration rate is preferably set to 0.2 to 1.0, particularly preferably 0.6 to 1.0 volume units of air per volume unit of medium per minute (1/1 min), very particularly preferably about 0.7 1/1 min.
Die genaue Zusammensetzung der in den Verfahrensschritten (a) und (b) einzusetzenden Nährmedien wird entsprechend den Stoffwechseltypen und physiologischen Eigenheiten der Elternbakterien ausgewählt. Für die jeweiligen Ausgangsstämme geeignete Medien sind bekannt, siehe z.B. J. Gumpert 1982, Ztschr. Allg. Mikro- biol., 22, 617-627. Vorzugsweise werden in den Schritten (a) und (b) Brain-heart-infusion-broth (BHIB), Todd-Hewitt-broth (THEB) , Tryptic-Soy-broth (TSOYB) oder L-broth (LB) als Medium verwendet . Für die erfindungsgemäß bevorzugten Ausgangsstämme eignet sich besonders ein Medium folgender Zusammensetzung: BHIB (Fa. Difco) 3 g, Hefeextrakt (Fa. Difco) 0,5 g, Saccharose 1 g, destilliertes Wasser 100 ml. Ausgehend von den bekannten Medien kann die optimale Mediumzusammensetzung für Stämme wie beispielsweise Streptokokken und Streptomyceten durch routinemäßige Versuchsreihen ermittelt werden.The exact composition of the nutrient media to be used in process steps (a) and (b) is selected according to the metabolic types and physiological characteristics of the parent bacteria. Media suitable for the respective parent strains are known, see, for example, J. Gumpert 1982, Zschr. Allg. Microbiol., 22, 617-627. Preferably, steps (a) and (b) use brain-heart-infusion-broth (BHIB), Todd-Hewitt-broth (THEB), tryptic-soy-broth (TSOYB) or L-broth (LB) as the medium , A medium of the following composition is particularly suitable for the starting strains preferred according to the invention: BHIB (Difco) 3 g, yeast extract (Difco) 0.5 g, sucrose 1 g, distilled Water 100 ml. Based on the known media, the optimal medium composition for strains such as streptococci and streptomycetes can be determined by routine test series.
Bei der Verwendung der bevorzugten L-Form Ausgangsstamme werden als Verfahrensprodukte die modifizierten Stämme P. mirabilis LVIWEI, P. mirabilis L99WEI, E. coli LWF+WEI, E. coli LWF-WEI und B . subtilis L170WEI erhalten. Diese wurden bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen in Braunschweig unter den Hinterlegungsnummern DSM 13363 (P. mirabilis LVIWEI), DSM 13364 (P. mirabilis L99WEI), DSM 13362 { E. coli LWF+WEI) und DSM 13361 { B. subtilis L170WEI) hinterlegt.When using the preferred L-form parent strain, the modified strains P. mirabilis LVIWEI, P. mirabilis L99WEI, E. coli LWF + WEI, E. coli LWF-WEI and B. preserved subtilis L170WEI. These were obtained from the German Collection of Microorganisms and Cell Cultures in Braunschweig under the accession numbers DSM 13363 (P. mirabilis LVIWEI), DSM 13364 (P. mirabilis L99WEI), DSM 13362 {E. coli LWF + WEI) and DSM 13361 {B. subtilis L170WEI).
Die nach dem erfindungsgemäßen Verfahren gewonnenen L-Form-Stämme weisen im Vergleich zu den Ausgangsstämmen neben den bereits genannten folgende Vorteile auf: unmittelbare Einsetzbarkeit in Fermentationen, homogenere Zellpopulationen mit geringeren Anteilen an lysierenden Zellen, stabilerer Stoffwechsel, höhere Zellzahlen, höhere Biomassekonzentrationen, höhere Verdopplungsraten in der exponentiellen Wachstumsphase, günstigere pH- Profile, bessere Verträglichkeit von Antischaummitteln, bessere Tolerierung von höheren Rührgeschwindigkeiten. Die Zellen können im Temperaturbereich von 20 bis 40°C unmittelbar bei der für die Gewinnung des gewünschten Genprodukts geeigneten Temperatur fermentiert werden.The L-form strains obtained by the process according to the invention have the following advantages compared to the starting strains in addition to the ones already mentioned: immediate usability in fermentations, more homogeneous cell populations with a lower proportion of lysing cells, more stable metabolism, higher cell numbers, higher biomass concentrations, higher doubling rates in the exponential growth phase, more favorable pH profiles, better tolerance of anti-foaming agents, better tolerance of higher stirring speeds. The cells can be fermented in the temperature range from 20 to 40 ° C. directly at the temperature suitable for obtaining the desired gene product.
Ein weiterer Vorteil der modifizierten L-Form-Stämme ist darin zu sehen, daß sie in verfahrenstechnisch relevanten Nährmedien wie BHIB, THEB, TSOYB, ggf. mit Zusatz von Hefeextrakt (0,5-1%) ein verbessertes Wachstum zeigen.Another advantage of the modified L-form strains is that they show improved growth in process-relevant nutrient media such as BHIB, THEB, TSOYB, possibly with the addition of yeast extract (0.5-1%).
Für P. mirabilis LVI WEI wurden im Vergleich zum Ausgangsstamm beispielsweise folgende Werte erzielt: Parameter Ausgangsstamm modifizierter Stamm maximale Zellzahl 1 x 10 8 x 1010 Zellen/ml maximale Verdopplungs- 0,8-1,2 0,5 bis 0,7 Stunden zeit maximal erzielbare 3-4 5 bis 8 g/1 Biomassekonzentration maximal tolerierte 500-600 600 - 800 U/min RührgeschwindigkeitFor P. mirabilis LVI WEI, for example, the following values were achieved compared to the parent strain: Parameters starting strain modified strain maximum cell count 1 x 10 8 x 10 10 cells / ml maximum doubling 0.8-1.2 0.5 to 0.7 hours maximum achievable 3-4 5 to 8 g / 1 biomass concentration maximum tolerated 500 -600 600 - 800 rpm stirring speed
Temperaturbereich für 28-38 20 - 40 °C stabiles WachstumTemperature range for 28-38 20 - 40 ° C stable growth
Ähnliche Verbesserungen wurden für die übrigen L-Formstämme gefunden.Similar improvements have been found for the remaining L-form strains.
Die nach dem erfindungsgemäßen Verfahren gewonnenen L-Form-Stämme eignen sich daher insbesondere für Fermentationen in Rühr- und Airlift-Fermentern von 2 - 300 1 und sind aufgrund ihrer guten Suspendierbarkeit , ihres Tolerierungsvermögens von Antischaum- mitteln und hydromechanischen Stressfaktoren verfahrenstechnisch vorteilhaft handhabbar.The L-form strains obtained by the process according to the invention are therefore particularly suitable for fermentations in stirred and airlift fermenters of 2 to 300 l and, due to their good suspendability, their ability to tolerate antifoams and hydromechanical stress factors, are advantageous in terms of process technology.
Im Vergleich zu den zytoplasmatischen Membranen der Ausgangs-L- Form-Stämme zeigen die zytoplasmatischen Membranen der erfindungsgemäß gewonnenen L-Form-Stämme charakteristische Unterschiede im Proteinmuster. Sie sind beispielhaft für E. coli LWF+ und E. coli LWF+WEI in den Ausführungsbeispielen beschrieben und weisen auf genotypische und phänotypische Veränderungen hin.In comparison to the cytoplasmic membranes of the starting L-form strains, the cytoplasmic membranes of the L-form strains obtained according to the invention show characteristic differences in the protein pattern. They are described by way of example for E. coli LWF + and E. coli LWF + WEI in the exemplary embodiments and indicate genotypic and phenotypic changes.
Weitere genotypische Veränderungen in den neuen Stämmen manifestieren sich in Unterschieden in den Bandenmustern der chromoso- malen DNA nach Verdau mit Restriktasen und Auftrennung mittels Pulsfeld-Gelelektrophorese. Sie sind für E. coli LWF+ und E. coli LWF+WEI ebenfalls in den Ausführungsbeispielen dokumentiert. Die L-Form-Stämme beispielsweise von E. coli, P. mirabilis und B . subtilis besitzen keine extrazellulären bzw. periplasmatischen Proteaseaktivitäten, und damit ist die Gefahr von proteolytischen Abbauprozessen an rekombinanten Proteinen wesentlich verringert.Further genotypic changes in the new strains manifest themselves in differences in the band patterns of the chromosomal DNA after digestion with restrictases and separation by means of pulse field gel electrophoresis. For E. coli LWF + and E. coli LWF + WEI they are also documented in the exemplary embodiments. The L-form strains of, for example, E. coli, P. mirabilis and B. subtilis have no extracellular or periplasmic protease activities, and this significantly reduces the risk of proteolytic degradation processes on recombinant proteins.
Darüber hinaus lassen sich die erfindungsgemäß modifizierten Stämme, z. B. durch die Zugabe von 0,1-lμg/ml lyso-Lecithin zum Kulturmedium, zur Bildung von extrazellulären Membranvesikeln anregen. Diese Eigenschaft ist für die Synthese rekombinanter Membranproteine vorteilhaft .In addition, the strains modified according to the invention, for. B. by adding 0.1-lμg / ml lyso-lecithin to the culture medium to stimulate the formation of extracellular membrane vesicles. This property is advantageous for the synthesis of recombinant membrane proteins.
Ein weiterer Vorteil liegt darin, daß mit den für E. coli (Elternform) optimierten Genkonstrukten (Promotoren, Kontrollsequenzen, Originregionen, Signalsequenzen) eine gut kontrollierbare Genexpression und Produktsynthese möglich ist, so daß auf ein großes Repertoire bekannter Mittel zur genetischen Transformation und Überexpression heterologer Genprodukte zurückgegriffen werden kann. Diese Genkonstrukte können sowohl für modifizierte L-Formen von E. coli als auch für andere Stämme wie beispielsweise P. mirabilis und Bac . subtilis eingesetzt werden.Another advantage is that with the gene constructs (promoters, control sequences, origin regions, signal sequences) optimized for E. coli (parent form), well controllable gene expression and product synthesis is possible, so that heterologous means for a large repertoire of known means for genetic transformation and overexpression Gene products can be used. These gene constructs can be used for modified L forms of E. coli as well as for other strains such as P. mirabilis and Bac. can be used subtilis.
Die erfindungsgemäß gewonnenen L-Form-Stämme weisen zudem eine einheitlichere Zellmorphologie, einen stabilen Zellstoffwechsel und stabile, reproduzierbare Wachstumseigenschaften auf. Sie lassen sich durch Fermentation in 1 bis 300 1 Fermentern kostengünstig in großen Mengen bereitstellen.The L-form strains obtained according to the invention also have a more uniform cell morphology, a stable cell metabolism and stable, reproducible growth properties. They can be provided inexpensively in large quantities by fermentation in 1 to 300 1 fermenters.
Alternativ können an technische Wachstumsbedingungen angepaßte neue L-Form-Stämme durch gezielte genetische Manipulation der Ausgangs-L-Form-Stämme hergestellt werden. Beispielsweise lassen sich durch Mutationen in den Genen recA, hsdRl S f relA, supE und durch Einführung von amber- und ochre-Mutanten Rekombination, Modifikation und Restriktion so gestalten, daß eine verbesserte Transformation und Plasmidstabilität erreicht wird. Desweiteren können durch Insertion von Genen der Transkriptions- und Translationskontrolle, wie JacJ und IacUV-T7, in das Chromosom die Expression und Produktsynthese verbessert werden.Alternatively, new L-form strains adapted to technical growth conditions can be produced by targeted genetic manipulation of the starting L-form strains. For example, by mutations in the genes recA, hsdRl S f relA, supE and by the introduction of amber and ocher mutants, recombination, modification and restriction can be designed in such a way that improved transformation and plasmid stability are achieved. Furthermore, by inserting genes of the transcription and Translation control, such as JacJ and IacUV-T7, into the chromosome can improve expression and product synthesis.
Die erfindungsgemäß gewonnenen L-Form-Stämme eignen sich zur Herstellung beliebiger Genprodukte, insbesondere zur Herstellung rekombinanter Proteine, vorzugsweise löslicher, extrazellulärer Proteine und besonders zur Herstellung membrangebundener Proteine. Die Proteine können als Biochemikalien für die molekularbiologische und medizinische Forschung, als Diagnostika, als Arzneimittel und als Enzyme mit Potential zur StoffUmwandlung eingesetzt werden.The L-form strains obtained according to the invention are suitable for the production of any gene products, in particular for the production of recombinant proteins, preferably soluble, extracellular proteins and particularly for the production of membrane-bound proteins. The proteins can be used as biochemicals for molecular biological and medical research, as diagnostics, as drugs and as enzymes with potential for substance conversion.
Hierzu werden die Zellen zunächst auf an sich bekannte Weise mit einer für ein Genprodukt kodierenden Nucleotidsequenz transformiert, z.B. mit einem geeigneten Vektor, der das Produktgen unter Kontrolle eines oder mehrerer Promotors enthält. Der Vektor enthält vorzugsweise auch eine Gensequenz, die für ein Signalpep- tid kodiert, das einen aktiven Transport des Genprodukts durch die Zytoplasmamembran in das Kulturmedium oder eine Verankerung des Genprodukts an der Membran ermöglicht (Membrananker) . Der transformierte Stamm wird unter geeigneten Bedingungen kultiviert, dann ggf. die Expression der rekombinanten Proteine induziert, z.B. durch Zugabe eines Induktors, und anschließend das rekorabinante Protein isoliert . Verfahren zur Gewinnung von Genprodukten sind ebenfalls Gegenstand der vorliegenden Erfindung.For this purpose, the cells are first transformed in a manner known per se with a nucleotide sequence coding for a gene product, e.g. with a suitable vector containing the product gene under the control of one or more promoters. The vector preferably also contains a gene sequence which codes for a signal peptide which enables active transport of the gene product through the cytoplasmic membrane into the culture medium or anchoring of the gene product on the membrane (membrane anchor). The transformed strain is cultivated under suitable conditions, then, if necessary, the expression of the recombinant proteins is induced, e.g. by adding an inductor, and then isolating the recorabinant protein. Methods of obtaining gene products are also the subject of the present invention.
Die Zellen sind in der Lage, posttranslationale Modifizierungs- prozesse durchzuführen. Die L-Form-Membran ist in ihrem Lipid- anteil so verändert, daß sie für die Insertion und Anreicherung von fremden Membranproteinen genügend Raum bietet und daß in bzw. an der Membran die für die Funktionalität essentiellen Faltungsund Prozessierungsprozesse erfolgen können.The cells are able to carry out post-translational modification processes. The lipid content of the L-form membrane is changed in such a way that it offers sufficient space for the insertion and enrichment of foreign membrane proteins and that the folding and processing processes essential for functionality can take place in or on the membrane.
Die Konstruktion geeigneter Vektoren ist an sich bekannt. Hierzu wird mit üblichen gentechnischen Methoden (T. Maniatis, E. Firtsch, und J. Sambrook 1989 Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Cold Spring Harbor N.Y.; F.N. Ansubel 1998, Current Protocols in Molecular Biology, Wiley and Sons) das Strukturgen eines zu exprimierenden löslichen oder membrangebundenen Proteins oder Fusionsproteins in ein für die Expression geeignetes Plasmid integriert. Die Promotoren müssen für die Produktgene, auch wenn deren Überexpression letal ist, gut regulierbar sein und damit ein Subklonieren ermöglichen. Bevorzugt sind Promotoren, deren Expressionsstart durch Zugabe eines induktiv wirkenden Substrats oder Substratanalogons (Induktor) bzw. durch einen entsprechenden Substratshift erfolgt, z. B. Iac-P/0 und dessen Derivate wie lacUV, tac etc. (H.A. de Boer, L.J. Comstock, M. Vasser, 1983, Proc . Natl . Acad. Sei. USA 80, 21-25), Induktion durch IPGT-Zusatz (Isopropyl-ß-D-Thiogalac- toside) bzw. Glucose/Lactose-Shift; oder fcetA-P/0 (A. Skerra, 1994, Gene 151, 131-135); Induktion durch Zusatz von aTC (anhydro-Tetracyclin) ; Promotoren, deren Expressionsstart durch Änderung der physiologischen Bedingungen eingeleitet wird z. B. λPL (E. Remaut, P. Stanssans, W. Fiers 1981, Gene 15, 81-93); Expressionsstart durch Inaktivierung des Repressormoleküls clts nach Temperaturerhöhung) ; cspA-P/0 (J.A. Vanisa, F. Baneyx, 1996, Appl. Environ. Microbiol. 62, 1444-1447); Expressionsstart durch Temperaturabsenkung) ; Vhb " oxygen-regulated element" (C. Koshla, J. Curtis, P. Bydalek, J.R. Swartz, J.E. Bailey, 1990, Biotech- nol. Bioeng. 48, 151-160); Expressionsstart durch Sauerstoffabsenkung, p02< 5% Sättigung; induzierbare Promotor-Hybride, die aus DNA-Sequenzen verschiedener Promotoren bestehen, z. B. PLtetO-l aus tetA-P/0 und PL-P/0 aus dem Phagen λ (R. Lutz, H. Bujard, 1997, Nucl. Acid. Res . 25, 1203-1210); konstitutive Promotoren und Promotorhybride, die ohne Induktion eine permanente Genexpression erlauben (z. B. P-Jacl (lac-Repressor-Gen) , P- bla (ß-Lactamase-Gen) , P-iacI/P-Jbia-hybrid, speA ( Streptococcus Exotoxin A-Gen) .The construction of suitable vectors is known per se. For this, the usual genetic engineering methods (T. Maniatis, E. Firtsch, and J. Sambrook 1989 Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Cold Spring Harbor NY; FN Ansubel 1998, Current Protocols in Molecular Biology, Wiley and Sons) integrated the structural gene of a soluble or membrane-bound protein or fusion protein to be expressed into a plasmid suitable for expression. The promoters for the product genes, even if their overexpression is lethal, must be easy to regulate and thus enable subcloning. Promoters are preferred whose expression starts by adding an inductively acting substrate or substrate analog (inductor) or by a corresponding substrate shift, e.g. B. Iac-P / 0 and its derivatives such as lacUV, tac etc. (HA de Boer, LJ Comstock, M. Vasser, 1983, Proc. Natl. Acad. Sci. USA 80, 21-25), induction by IPGT- Additive (isopropyl-ß-D-thiogalactoside) or glucose / lactose shift; or fcetA-P / 0 (A. Skerra, 1994, Gene 151, 131-135); Induction by adding aTC (anhydro-tetracycline); Promoters whose expression start is initiated by changing the physiological conditions, e.g. B. λP L (E. Remaut, P. Stanssans, W. Fiers 1981, Gene 15, 81-93); Start of expression by inactivation of repressor molecule cl ts after temperature increase); cspA-P / 0 (JA Vanisa, F. Baneyx, 1996, Appl. Environ. Microbiol. 62, 1444-1447); Start of expression by lowering the temperature); Vhb "oxygen-regulated element" (C. Koshla, J. Curtis, P. Bydalek, JR Swartz, JE Bailey, 1990, Biotechnol. Bioeng. 48, 151-160); Start of expression by lowering oxygen, p0 2 <5% saturation; inducible promoter hybrids consisting of DNA sequences from different promoters, e.g. B. P L tetO-1 from tetA-P / 0 and P L -P / 0 from phage λ (R. Lutz, H. Bujard, 1997, Nucl. Acid. Res. 25, 1203-1210); constitutive promoters and promoter hybrids which allow permanent gene expression without induction (e.g. P-Jacl (lac repressor gene), P-bla (β-lactamase gene), P-iacI / P-Jbia hybrid, speA (Streptococcus exotoxin A gene).
Zwischen der P/O-Region und dem Startcodon der Proteinsynthese müssen desweiteren spezifische DNA-Sequenzen als ribosomale Bindungsstelle (rbs; auch ≤'Λϊ.ne-.Delga.nσ-Sequenz, SD) eingefügt werden, die eine Bindung der mRNA an das Riboso als Voraussetzung für den Proteinsynthesestart ermöglichen.Furthermore, specific DNA sequences must be between the P / O region and the start codon of protein synthesis as ribosomal Binding site (rbs; also ≤'Λϊ.ne-.Delga.nσ sequence, SD) are inserted, which allow binding of the mRNA to the riboso as a prerequisite for the start of protein synthesis.
Die Expressionskassette (P/O, SD, Signalsequenz, Strukturgen) kann von Transkriptionsterminator-Strukturen flankiert werden, um mögliche Interferenzen mit benachbarten Expressionskassetten zu minimieren. Weiterhin können die für eine effektive Steuerung der P/O-Regionen notwendigen Regulatorgene (z. B. lad oder 2acl für IacP/0 und fcacP/O; tetR für tetAP/O; clts857 für PL etc.) auf den gleichen oder anderen autonom replizierenden Vektoren lokalisiert oder in das Chromosom integriert sein.The expression cassette (P / O, SD, signal sequence, structural gene) can be flanked by transcription terminator structures in order to minimize possible interference with neighboring expression cassettes. Furthermore, the regulator genes required for effective control of the P / O regions (e.g. lad or 2acl for IacP / 0 and fcacP / O; tetR for tetAP / O; cl ts857 for P L etc.) can be on the same or other autonomously replicating vectors localized or integrated into the chromosome.
Gensequenzen, die für Signalpeptide kodieren, werden N-terminal vor das Produktgen eingeführt. Als Signalpeptide für Genprodukte, die in das Kulturmedium sekretiert werden sollen, wie Fusionsproteine oder bestimmte Proteindomänen, z.B. den extramembranären Regionen von Rezeptoren, eignen sich prokaryotische oder eukaryotische Signalpeptide. Bevorzugt sind die Signalpeptide des OmpA Proteins (σinpA), der Staphylokinase ( sak) , der alkalischen Phosphatase aus E. coli (phoA) , der Streptokinase ( speA) und der periplasmatischen Pectinlyase aus Erwinia (pelB ) (A.M. Bushueva, A.B. Shevelev, J. Gumpert, G.G. Chestukina, C. Hoischen, M.V. Matz, M.V. Kuryatova und V.H. Stepanov, 1998, FEMS Letters 159, 145-150; M. Kujau, C. Hoischen, D. Riesenberg und J. Gumpert, 1998, Appl. Microbiol. Biotechnol . 49, 51-58; CH. Klessen, K.H. Schmidt, J. Gumpert, H.H. Grosse und H. Malke, 1989, Appl. Environm. Microbiol. 55, 1009-1015). Zum Teil enthalten die Produktgene jedoch bereits natürliche Signalsequenzen, die einen Transport durch die Membran sicherstellen.Gene sequences coding for signal peptides are inserted N-terminally in front of the product gene. As signal peptides for gene products that are to be secreted into the culture medium, such as fusion proteins or certain protein domains, e.g. the extra-membrane regions of receptors, prokaryotic or eukaryotic signal peptides are suitable. The signal peptides of the OmpA protein (σinpA), the staphylokinase (sak), the alkaline phosphatase from E. coli (phoA), the streptokinase (speA) and the periplasmic pectin lyase from Erwinia (pelB) (AM Bushueva, AB Shevelev, J Gumpert, GG Chestukina, C. Hoischen, MV Matz, MV Kuryatova and VH Stepanov, 1998, FEMS Letters 159, 145-150; M. Kujau, C. Hoischen, D. Riesenberg and J. Gumpert, 1998, Appl. Microbiol Biotechnol. 49, 51-58; CH. Klessen, KH Schmidt, J. Gumpert, HH Grosse and H. Malke, 1989, Appl. Environm. Microbiol. 55, 1009-1015). However, some of the product genes already contain natural signal sequences that ensure transport across the membrane.
Für eine Verankerung Proteinen eignen sich besonders solche Signalpeptide die nicht durch L-Form-eigene Signalpeptidasen abgespalten werden können. Diese können aus herkömmlichen Signalpeptiden beispielsweise dadurch erhalten werden, daß die Schnittstellen für Signalpeptidasen beispielsweise durch den Austausch von Aminosäuren so modifiziert werden, daß diese von den Signalpeptidasen nicht erkannt werden.Signal peptides that cannot be split off by L-form signal peptidases are particularly suitable for anchoring proteins. These can be obtained from conventional signal peptides, for example, by the interfaces for signal peptidases, for example, by the Exchange of amino acids are modified so that they are not recognized by the signal peptidases.
Zum besseren Nachweis und zur Aufreinigung des Genprodukts können an das Strukturgen codierende Sequenzen für entsprechende Peptide (z. B. c-myc, His-tag, Strep-tag) oder Proteine (z. B. GST) mit und ohne dazwischen liegenden Sequenzen für eine spezifische Peptidase-Abspaltung angefügt werden.For better detection and purification of the gene product, sequences coding for the structural gene for corresponding peptides (e.g. c-myc, His-tag, Strep-tag) or proteins (e.g. GST) with and without sequences in between for a specific peptidase cleavage can be added.
Im weiteren Verlauf der Vektorkonstruktion erfolgt die Integration dieser Expressionskassetten (Promotor-Signalsequenz- Produktgen-Konstrukte) in ein geeignetes Plasmid. Dieses muß zur Vermehrung in den L-Form-Zellen einen geeigneten Replikations- ursprung und mindestens ein Selektionsgen enthalten. Für die L- Formen aus Gram-negativen Bakterien, insbesondere für P. mirabilis und E. coli , eignen sich vorzugsweise das ColEl Replicon (hohe Kopienzahl), das pBR322 Replicon (= ColEl + rop Gen, mittlere Kopienzahl) und die pI5A und pSCIOl Replicons (niedrige Kopienzahl) . Für L-Formen von Gram-positiven Bakterien wie Bac . subtilis eignen sich Replikationsursprungssequenzen von Vektoren mit breitem Wirtsspektrum (z.B. pUBlOl von Staphylokok- ken, pIP501, pAMßl, pSM19035 von Streptokokken) oder für Streptomyceten L-Formen die Replicons der Vektoren pIYlOl, pWOR und pSG5. Die Wahl des Replikationsursprungs erlaubt zusätzlich eine Variation der Expressionsstärke des Strukturgens über die Kopienzahl und damit der Gendosis .In the further course of the vector construction, these expression cassettes (promoter-signal sequence-product gene constructs) are integrated into a suitable plasmid. This must contain a suitable origin of replication and at least one selection gene for propagation in the L-form cells. For the L forms from Gram-negative bacteria, in particular for P. mirabilis and E. coli, the ColEl replicon (high copy number), the pBR322 replicon (= ColEl + rop gene, medium copy number) and the pI5A and pSCIOl are preferably suitable Replicons (low number of copies). For L-forms of Gram-positive bacteria like Bac. Subtilis are suitable for origins of replication of vectors with a broad host spectrum (e.g. pUBlOl from staphylococci, pIP501, pAMßl, pSM19035 from streptococci) or for streptomyces L-forms the replicons of the vectors pIYlOl, pWOR and pSG5. The choice of the origin of replication additionally allows a variation of the expression level of the structural gene over the number of copies and thus the gene dose.
Die Verwendung kompatibler Replikations-Origins und unterschiedlicher Selektions-Gene auf verschiedenen Vektoren ermöglicht den Einsatz dualer oder multipler Vektorsysteme in L- Form-Zellen für die Koexpression verschiedener Strukturgene (S. Sieben, R. Hertle, J. Gumpert und V. Braun 1998, Arch. Microbiol. 170, 236-242).The use of compatible replication origins and different selection genes on different vectors enables the use of dual or multiple vector systems in L-shape cells for the coexpression of different structural genes (S. Sieben, R. Hertle, J. Gumpert and V. Braun 1998, Arch. Microbiol. 170, 236-242).
Als Selektionsmarker sind Resistenzen gegenüber ß-Lactam- Antibiotika (z.B. Ampicillin) und Chloramphenicol für alle L- Formen ungeeignet. Es müssen deshalb für die Plasmidkonstrukte geeignete Resistenzgene ermittelt werden, wobei vorzugsweise solche gegen Kanamycin, Erythromycin, Nourseothricin, Phleomycin und Neomycin eingesetzt werden.Resistance to ß-lactam antibiotics (eg ampicillin) and chloramphenicol for all L- Forms unsuitable. Resistance genes suitable for the plasmid constructs must therefore be determined, preferably those against kanamycin, erythromycin, nourseothricin, phleomycin and neomycin.
Die Transformation der L-Form-Stämme mit dem Expressionsvektor erfolgt nach einer an sich bekannten Standardmethode (J. Gumpert, H. Cron, R. Plapp, H. Niersbach und C. Hoischen 1996, J. Basic Mircobiol . 36, 88-98). Danach werden L-Form-Zellen mit Plasmid- DNA und Polyethylenglycol MG 6000 im Eisbad und bei 37 °C inkubiert. Nach Zugabe von LFS-Medium erfolgt eine 1-3-stündige Bebrütung bei 37 °C, und danach wird diese Vermehrungskultur auf Selektivagarmedium ausplattiert .The L-form strains are transformed with the expression vector using a standard method known per se (J. Gumpert, H. Cron, R. Plapp, H. Niersbach and C. Hoischen 1996, J. Basic Mircobiol. 36, 88-98 ). Then L-form cells are incubated with plasmid DNA and polyethylene glycol MG 6000 in an ice bath and at 37 ° C. After addition of LFS medium, incubation is carried out at 37 ° C. for 1-3 hours, and then this culture is plated on selective agar medium.
Als Selektivantibiotikum werden entsprechend den Vektorkonstruktionen bevorzugt Kanamycin, Erythromycin, Nourseothricin und Neomycin verwendet. Die positiven Transformanten werden auf Agarmedium vermehrt und durch 2-5 maliges Übertragen in frisches Medium an das Wachstum in flüssigen Nährmedien adaptiert. Bevorzugte Wachstumsmedien sind LFS-Medium und BHIB-Medium mit Zusätzen von 0,3-1% Hefeextrakt, 1-2% Saccharose und 2-50 μg/ l Selektivantibiotikum. Die Agar-Kulturen oder Submers-Kulturen werden auf das Vorhandensein der intakten Plasmid-DNA mit Restriktionsanalyse und Agarose-Gelelektrophorese überprüft.Kanamycin, erythromycin, nourseothricin and neomycin are preferably used as selective antibiotics according to the vector constructions. The positive transformants are propagated on agar medium and adapted to growth in liquid nutrient media by transferring them to fresh medium 2-5 times. Preferred growth media are LFS medium and BHIB medium with additions of 0.3-1% yeast extract, 1-2% sucrose and 2-50 μg / l selective antibiotic. The agar cultures or submerged cultures are checked for the presence of the intact plasmid DNA using restriction analysis and agarose gel electrophoresis.
Eine zweite Transformationsmethode wird in der Weise ausgeführt, daß der Transformationsansatz (Plasmid-DNA/L-Form-Zellen/PEG) nach Aufenthalten im Eisbad und bei 37 °C mit LFS-Medium 1:1 aufgefüllt und 2 - 6 Stunden bei 37 °C bebrütet wird. Danach erfolgen die Zugabe von 2 - 10 ml LFS-Medium mit 2 - 50 μg/ml des entsprechenden Selektivantibiotikums und weitere Inkubation unter Schüttelbedingungen bei 30 - 37 °C über 10 - 48 Stunden. Mit dieser Methode werden Mischpopulationen von Transformanten erhalten, von denen durch Ausplattieren auf Selektivmedium Einzelkolonie-Kulturen gezüchtet werden können. Im Falle der Verwendung von dualen Vektorsystemen (z. B. der gekoppelten und unter Rifampicin-Zusatz spezifischen Expression von Strukturgenen unter Kontrolle des T7-RNA-Polymerase / T7- Promotor-Systems auf den Plasmiden pGPl-2 und pSAT14), werden die L-Form-Zellen zunächst mit einem Plasmid transformiert und selektiert. In diese Transformanten erfolgt danach die Transformation des zweiten Plasmids unter Selektion auf das Vorhandensein der Selektionsmarker beider Plasmide. Im Ergebnis werden L- Form-Transformanten-Kulturen bereitgestellt, die einen oder mehrere Expressionsvektoren enthalten.A second transformation method is carried out in such a way that the transformation mixture (plasmid DNA / L-form cells / PEG) is filled with LFS medium 1: 1 after stays in the ice bath and at 37 ° C. and for 2 - 6 hours at 37 ° C is incubated. Then add 2 - 10 ml LFS medium with 2 - 50 μg / ml of the corresponding selective antibiotic and further incubate under shaking conditions at 30 - 37 ° C for 10 - 48 hours. With this method, mixed populations of transformants are obtained, from which single colony cultures can be grown by plating on selective medium. In the case of the use of dual vector systems (for example the coupled expression of structural genes with the addition of rifampicin under the control of the T7 RNA polymerase / T7 promoter system on the plasmids pGPl-2 and pSAT14), the L -Form cells first transformed with a plasmid and selected. The second plasmid is then transformed into these transformants, selecting for the presence of the selection markers of both plasmids. As a result, L-form transformant cultures are provided which contain one or more expression vectors.
Für eine maximale Produktsynthese können die Wachstums- und Fermentationsbedingungen für die einzelnen Proteine unterschiedlich sein. Sie hängen davon ab, ob die Produktsynthese wachstumsgekoppelt ist oder vorwiegend in der stationären Wachstumsphase erfolgt, ob das Produkt effizienter bei Temperaturen von 26 bis 30 °C oder von 37 °C gebildet wird, und ob das Proteinprodukt pH-empfindlich ist und, z.B. wie Prochymosin, bei pH-Werten über pH 7,3 autokatalytisch abgebaut wird. Es wurde gefunden, daß die erfindungsgemäß modifizierten Zellen in der Lage sind, sich rasch und ohne Probleme an die für das jeweilige Protein optimalen Wachstumsbedingungen anzupassen.For maximum product synthesis, the growth and fermentation conditions for the individual proteins can be different. They depend on whether the product synthesis is growth-linked or predominantly in the stationary growth phase, whether the product is formed more efficiently at temperatures from 26 to 30 ° C or 37 ° C, and whether the protein product is pH-sensitive and, e.g. like prochymosin, is degraded autocatalytically at pH values above pH 7.3. It has been found that the cells modified according to the invention are able to adapt quickly and without problems to the optimal growth conditions for the respective protein.
Die Überexpression von Fremdproteinen in den L-Form-Zellen ist so kontrollierbar, daß im Verlaufe der Isolierung und Kultivierung der Transformanten und ihres Wachstums in flüssigen Medien kein rekombinantes Protein gebildet wird. Die Proteinsynthese wird erst bei Erreichen hoher Zellzahlen induziert.The overexpression of foreign proteins in the L-form cells can be controlled in such a way that no recombinant protein is formed in the course of the isolation and cultivation of the transformants and their growth in liquid media. Protein synthesis is only induced when high cell numbers are reached.
Das Wesen der Kultivierung liegt darin, daß die Kultur möglichst hohe Zellzahlen (10 9-1010 Zellen/ml) erreicht, daß diese zum richtigen Zeitpunkt zur Expression und Überproduktion angeregt werden, daß die Proteine in hohen Konzentrationen sekretiert bzw. in die Membran eingebaut, bzw. auf der Membran präsentiert werden, daß ein Abbau der Proteine vermieden wird und daß die Kulturüberstände bzw. die L-Form-Zellen mit maximalem Gehalt an Proteinprodukten für die anschließende Isolation bereitgestellt werden.The essence of the cultivation is that the culture achieves the highest possible cell numbers (10 9-1010 cells / ml), that these are stimulated for expression and overproduction at the right time, that the proteins are secreted in high concentrations or built into the membrane, or are presented on the membrane that degradation of the proteins is avoided and that the culture supernatants or the L-shape cells with a maximum content of Protein products are provided for subsequent isolation.
Die konkreten Bedingungen und Parameter sind für die eingesetzten Produzentenstämme (L-Formen von E. coli, P. mirabilis, B. subtilis) und für die Proteinprodukte unterschiedlich und müssen im Einzelfall ermittelt und optimiert werden. Im einzelnen betrifft dies die Zusammensetzung der Nährmedien (insbesondere C- und N-Quellen) , die Konzentration der Selektivantibiotika (0,5-50 μg/ml), optimale Wachstums- und Synthesetemperaturen (20- 40 °C, vorzugsweise 26 - 37 °C), Regelung des pH-Wertes (pH 6,0- 8,5, vorzugsweise pH 7,5), optimaler Sauerstoffeintrag durch Wahl der Fermentationsbehälter, Schüttelfrequenzen (50-330 U/min) , Rührgeschwindigkeiten (200-600 U/min) , Belüftungsraten (konstanter p02) , Zufütterung von C- und N-Quellen (insbesondere Glukose), Zeitpunkt zur Induktion der Genexpression (z. B. durch Zugabe von IPTG, anhydro-Tetrazyklin, 20-60 min Temperaturerhöhung auf 42 °C) sowie die Länge der Synthesezeit (4-50 Std.) . Das Wachstum und die Produktsynthese können in dieser Stufe durch zusätzliche Faktoren optimiert werden, z. B. niedermolekulare Effektoren, Vitamine, Aminosäuren-gemische, Lipidkomponenten, Thiolreagenzien und nichtmetabolisierbare Zucker.The specific conditions and parameters are different for the producer strains used (L forms of E. coli, P. mirabilis, B. subtilis) and for the protein products and must be determined and optimized in each individual case. Specifically, this affects the composition of the nutrient media (especially C and N sources), the concentration of the selective antibiotics (0.5-50 μg / ml), optimal growth and synthesis temperatures (20-40 ° C, preferably 26-37 ° C), regulation of the pH value (pH 6.0-8.5, preferably pH 7.5), optimal oxygen input through selection of the fermentation tank, shaking frequencies (50-330 rpm), stirring speeds (200-600 rpm) ), Aeration rates (constant p0 2 ), feeding of C and N sources (especially glucose), time to induce gene expression (e.g. by adding IPTG, anhydro-tetracycline, 20-60 min temperature increase to 42 ° C ) and the length of the synthesis time (4-50 hours). The growth and product synthesis can be optimized at this stage by additional factors, e.g. B. low molecular weight effectors, vitamins, amino acid mixtures, lipid components, thiol reagents and non-metabolizable sugars.
Eine Verbesserung der Bildung von funktioneil aktiven Genprodukten kann auch durch Zugabe von Zuckern erreicht werden, beispielsweise von 1 - 5% Saccharose. Es wird angenommen, daß solche Zucker die Faltungsprozesse verschiedener Proteine verbessern.An improvement in the formation of functionally active gene products can also be achieved by adding sugars, for example 1-5% sucrose. Such sugars are believed to improve the folding processes of various proteins.
Bei hoher struktureller und segregativer Stabilität der Plasmide in den L-Form-Zellen (z. B. von pHCl, pSIS2sak, pMK7GFP) können Wachstum und Produktsynthese auch ohne Zugabe der Selektivantibiotika (Kanamycin, Neomycin, Nourseothricin usw.) erfolgen.Given the high structural and segregative stability of the plasmids in the L-form cells (e.g. of pHCl, pSIS2sak, pMK7GFP), growth and product synthesis can also take place without the addition of selective antibiotics (kanamycin, neomycin, nourseothricin, etc.).
Die anschließende Isolierung und Reinigung der Genprodukte ist davon abhängig, ob das Protein als lösliches extrazelluläres oder als membrangebundenes Protein, z.B. peripheres bzw. integrales Membranprotein anfällt. Da die L-Form-Zellen im Gegensatz zu allen anderen Produzentenzellen in der Regel außer der zytoplasmatischen Membran keine weiteren Zellorganellen wie Geißeln, Fimbrien, Sporen, Zellwände und innere Membransysteme besitzen, entfallen die Reinigungsschritte, die zur Abtrennung dieser Komponenten erforderlich sind. Die Membranen und Membranproteine können relativ einfach durch Zell se (osmotischer Schock, Ultraschall, French Press) und anschließende Zentrifugation und Waschen in Pufferlösungen isoliert und gereinigt werden.The subsequent isolation and purification of the gene products depends on whether the protein is soluble or extracellular is obtained as a membrane-bound protein, for example peripheral or integral membrane protein. Since, in contrast to all other producer cells, the L-shape cells generally have no other cell organelles such as flagella, fimbriae, spores, cell walls and internal membrane systems apart from the cytoplasmic membrane, the cleaning steps required to separate these components are eliminated. The membranes and membrane proteins can be isolated and purified relatively easily by cells (osmotic shock, ultrasound, French press) and subsequent centrifugation and washing in buffer solutions.
Im Falle der Gewinnung von extrazellulären löslichen Proteinen werden die L-Form-Zellen durch Zentrifugation (6000 g/10 min) vom Nährmedium abgetrennt und aus diesem Überstand mit den bekannten Methoden der Proteinisolierung (Fällung, Sedimentation, Extraktion, Filtration, elektrophoretische Auftrennung; Affini- täts-, Ionenaustausch-, Größenausschluß- und hydrophobe Chromatographie etc . ) die Proteine separiert und gereinigt .If extracellular soluble proteins are obtained, the L-shape cells are separated from the nutrient medium by centrifugation (6000 g / 10 min) and from this supernatant using the known methods of protein isolation (precipitation, sedimentation, extraction, filtration, electrophoretic separation; Affini - activity, ion exchange, size exclusion and hydrophobic chromatography, etc.) the proteins are separated and purified.
Zur Isolierung membrangebundener Proteine werden die L-Form- Zellen in gleicher Weise durch Zentrifugation sedimentiert und gewaschen. Die Gewinnung der Protein-Membrankomplexe erfolgt durch Lyse der Zellen (osmotische Lyse, Ultraschallbehandlung, Einfrieren und Auftauen, French-Press-Behandlung) . Die Membranen (leere Zellen) werden anschließend in magnesiumhaltigen (z.B. 0,1 % MgS04) Pufferlösungen gewaschen.To isolate membrane-bound proteins, the L-shape cells are sedimented and washed in the same way by centrifugation. The protein-membrane complexes are obtained by lysing the cells (osmotic lysis, ultrasound treatment, freezing and thawing, French press treatment). The membranes (empty cells) are then washed in magnesium-containing (eg 0.1% MgSO 4 ) buffer solutions.
Der Nachweis der membrangebundenen Proteine erfolgt mit bekannten Methoden, vorzugsweise durch immunochemische Methoden auf der Basis synthetischer Peptide, (Western-Blot, Dot-Blot, ELISA, synthetische Sequenz-spezifische Antikörper) , zytochemische Methoden ( Immunoelektronenmikroskopie mit Immunogold, Fluoreszenzmikroskopie), radiochemische Methoden (Markierung mit S Methionin oder H -Leucin) und funktioneilen Tests (enzymatischeThe membrane-bound proteins are detected using known methods, preferably by immunochemical methods based on synthetic peptides (Western blot, dot blot, ELISA, synthetic sequence-specific antibodies), cytochemical methods (immunoelectron microscopy with immunogold, fluorescence microscopy), radiochemical methods (Labeling with S methionine or H-leucine) and functional tests (enzymatic
Reaktionen, Bindungskinetiken) Die weitere Isolierung und Anreicherung richtet sich nach dem Verwendungszweck, d.h. ob das Proteinprodukt als reines Protein gewonnen werden soll oder als Komplex mit Membranen oder Lipidkomponenten. Die Protein-Membran-Komplexe liegen in der Regel als Vesikel (0,01-5μm Durchmesser) vor und können in Pufferlösungen (TRIS, BBS, mit Zusätzen von 0,1 % MgS04, Phenylmethylsulfonfluorid, Dithiothreitol) als Suspension stabil erhalten bzw. aufbewahrt werden.Reactions, binding kinetics) Further isolation and enrichment depend on the intended use, ie whether the protein product is to be obtained as a pure protein or as a complex with membranes or lipid components. The protein membrane complexes are usually in the form of vesicles (0.01-5 μm diameter) and can be obtained as a suspension in buffer solutions (TRIS, BBS, with additions of 0.1% MgS0 4 , phenylmethylsulfonfluoride, dithiothreitol) or be kept.
Die Membranvesikel können durch Inversion mittels French-Press- Behandlung oder Einfrieren-Auftauen in inside-out Vesikel umgewandelt werden. Dabei werden die zytoplasmaseitigen inneren Bereiche der Proteinmoleküle an der äußeren Oberfläche der Membranvesikel frei zugänglich. Derart hergestellte invertierte Protein-Membran-Komplexemachen Interaktionsstudien und Strukturaufklärung der zytoplasmaseitigen extramembranären Domänen möglich.The membrane vesicles can be converted into inside-out vesicles by inversion using French press treatment or freeze-thaw. The inner areas of the protein molecules on the cytoplasm side are freely accessible on the outer surface of the membrane vesicles. Inverted protein membrane complexes produced in this way make interaction studies and structural elucidation of the cytoplasmic extramembrane domains possible.
In einer weiteren Variante des Verfahrens kann die Lipidmatrix der Membranen durch geeignete Detergentien (SDS, Plantaren, Tween 20, Triton X 100) aufgelöst werden. Dabei kommt es zu einer Freisetzung der integralen und peripheren Membranproteine, und diese können als lösliche oder aggregierte Proteinmoleküle isoliert und gereinigt werden.In a further variant of the method, the lipid matrix of the membranes can be dissolved using suitable detergents (SDS, plantars, Tween 20, Triton X 100). The integral and peripheral membrane proteins are released, and these can be isolated and purified as soluble or aggregated protein molecules.
In einem alternativen Schritt des Verfahrens können die auf diese Weise isolierten membrangebundenen Proteine wieder in Lipid- strukturen mit definierter molekularer Zusammensetzung rekonstituiert werden. Auf diese Weise lassen sich ihre richtige molekulare Konfiguration und ihre Funktionalität erhalten bzw. wiederherstellen. Viele Membranproteine sind nur dann funktionell aktiv, wenn sie in einem geeigneten Lipidmilieu eingebettet sind. Als Lipide eignen sich insbesondere Phospholipide mit ausgeprägter Tendenz zur Bildung unilamellarer Bilayer-Vesikel (z.B. Phosphatidylethanolamin, Phosphatidylglycerol, Phosphatidyl- cholin) . Die erfindungsgemäßen L-Form-Stämme und das erfindungsgemäße Verfahren zur Herstellung von Genprodukten eignen sich besonders zur Herstellung von membrangebundenen Proteinen. Unter membrangebundenen Proteinen werden solche Proteine verstanden, die an Biomembranen gebunden sind. Hierunter fallen sowohl die sogenannten Membranproteine, die aufgrund ihrer chemisch physikalischen Eigenschaften an Membranen binden, entweder integral oder peripher, als auch Proteine, die selbst nicht an Membranen binden und erst durch geeignete Membrananker an die Membran gebunden werden.In an alternative step of the method, the membrane-bound proteins isolated in this way can be reconstituted in lipid structures with a defined molecular composition. In this way, their correct molecular configuration and functionality can be maintained or restored. Many membrane proteins are only functionally active if they are embedded in a suitable lipid environment. Particularly suitable lipids are phospholipids with a pronounced tendency to form unilamellar bilayer vesicles (for example phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine). The L-form strains according to the invention and the method according to the invention for the production of gene products are particularly suitable for the production of membrane-bound proteins. Membrane-bound proteins are understood to mean those proteins which are bound to biomembranes. This includes both the so-called membrane proteins, which bind to membranes due to their chemical and physical properties, either integral or peripheral, as well as proteins that do not themselves bind to membranes and are only bound to the membrane by suitable membrane anchors.
Der Begriff Membranprotein umfaßt integrale oder periphere Membranproteine, wie Rezeptoren (z.B. Acetylcholin, Bradykinin, Endothelin, Hormone), Carrierproteine (z.B. für Aminosäuren, Zucker, Ionen, Peptide, kompatible Solute, Elektronentransport), Ionenkanäle, ABC-Transporter, Preproteintranslokatoren.The term membrane protein includes integral or peripheral membrane proteins, such as receptors (e.g. acetylcholine, bradykinin, endothelin, hormones), carrier proteins (e.g. for amino acids, sugars, ions, peptides, compatible solutes, electron transport), ion channels, ABC transporters, preprotein translocators.
In besonderer Weise eignen sich das erfindungsgemäße Verfahren und die erfindungsgemäßen L-Form-Stämme zur Expression und zur Gewinnung von bakteriellen "outer-membrane-proteins " (Omps), insbesondere Omps mit ß-Faltblattstruktur . Diese Proteine sind in der äußeren Membran von Gram-negativen Zellen lokalisiert. Überraschenderweise war es erstmals möglich, Omps in großen Mengen auch in löslicher Form zu exprimieren. Omps sind mit herkömmlichen bakteriellen Expressionssystemen nur schlecht in reiner Form herstellbar (Meens et al . 1997, Applied. Environment. Microbiol. 63: 2814-2820) . Die Verwendung von L-Form-Stämmen zur Herstellung von Omps, insbesondere Omps in löslicher Form und Omps mit ß-Faltblattstruktur, wurde bisher nicht beschrieben und ist ebenfalls Gegenstand der Erfindung.The method according to the invention and the L-form strains according to the invention are particularly suitable for expression and for the production of bacterial "outer membrane proteins" (Omps), in particular Omps with a β-sheet structure. These proteins are located in the outer membrane of Gram-negative cells. Surprisingly, it was possible for the first time to express Omps in large quantities even in soluble form. Omps are difficult to produce in pure form using conventional bacterial expression systems (Meens et al. 1997, Applied. Environment. Microbiol. 63: 2814-2820). The use of L-shaped strains for the production of omps, in particular omps in soluble form and omps with a β-sheet structure, has not previously been described and is also an object of the invention.
Outer-membrane-proteins (Omps) Gram-negativer Bakterien, speziell pathogener Arten eignen sich in löslicher oder membrangebundener Form für Interaktionstests , Struktur-Funktionsstudien, Diagnostik und Vakzinierung. Zu der zweiten Gruppe membrangebundener Proteine zählen beispielsweise lösliche Proteine und hydrophile Proteine, die erst nach dem Verknüpfen mit beispielsweise einer hydrophobe Aminosäuresequenzen zu einer Bindung an Lipidmembranen in der Lage sind. Die hydrophobe Aminosäuresequenz dient hierbei als Membrananker.Outer-membrane-proteins (Omps) Gram-negative bacteria, especially pathogenic species, are suitable in soluble or membrane-bound form for interaction tests, structure-function studies, diagnostics and vaccination. The second group of membrane-bound proteins includes, for example, soluble proteins and hydrophilic proteins, which are only able to bind to lipid membranes after being linked to, for example, a hydrophobic amino acid sequence. The hydrophobic amino acid sequence serves as a membrane anchor.
Bevorzugte Membrananker sind homologe und heterologe Signalpeptide, wie beispielsweise das eukaryotische Signalpepted des SERP- Proteins aus Plasmodium falciparum, die Schnittstellen besitzen, die von den bakteriellen Leaderpeptidasen nicht erkannt werden.Preferred membrane anchors are homologous and heterologous signal peptides, such as the eukaryotic signal peptide of the SERP protein from Plasmodium falciparum, which have interfaces which are not recognized by the bacterial leader peptidases.
Weiter bevorzugte Membrananker sind Sequenzen homologer und heterologer transmembraner Regionen von Membranproteinen wie hydrophobe Transmembranhelices von homologen und heterologen prokaryotischen und eukaryotischen Membranproteinen, vorzugsweise Helix 1 oder Helices 1 bis 3 der Lactose-Permease LacY von E. coli , der Präprotein-Translokase SecY von E. coli oder des Schwärmproteins CcmA von P. mirabilis .Further preferred membrane anchors are sequences of homologous and heterologous transmembrane regions of membrane proteins, such as hydrophobic transmembrane helices of homologous and heterologous prokaryotic and eukaryotic membrane proteins, preferably helix 1 or helices 1 to 3 of the lactose permease LacY from E. coli, the preprotein translocase SecY from E. coli or the swarm protein CcmA from P. mirabilis.
Ebenfalls geeignet sind synthetische hydrophobe Aminosäuresequenzen mit 8 bis 150, vorzugsweise 10 bis 120, ganz besonders bevorzugt 10 bis 30 Aminosäuren, wie beispielsweise dem Leucin- Zipper. Als ausreichend hydrophob werden Aminosäuresequenzen dann angesehen, wenn sie gemäß den von G. von Heijne publizierten Verfahren an Biomembranen binden (von Heijne G. , "Assembly of Integral Membrane Proteins" in Biological Membranes : Structure, Biogenesis and Dynamics, Springer Verlag Berlin 1994, J.A.F. Op den Kamp (Herausgeber), Seiten 199 bis 205; Cserzo, M. , Wallin, E., Simon, I., Von Heijne G. , Eloffson, A. Protein Eng. 1997, 10: 673-676. Besonders bevorzugte Membrananker sind in den Ausführungsbeispielen beschrieben.Synthetic hydrophobic amino acid sequences with 8 to 150, preferably 10 to 120, very particularly preferably 10 to 30 amino acids, such as the leucine zipper, are also suitable. Amino acid sequences are considered to be sufficiently hydrophobic if they bind to biomembranes according to the methods published by G. von Heijne (by Heijne G., "Assembly of Integral Membrane Proteins" in Biological Membranes: Structure, Biogenesis and Dynamics, Springer Verlag Berlin 1994, JAF Op den Kamp (Editor), pages 199 to 205; Cserzo, M., Wallin, E., Simon, I., Von Heijne G., Eloffson, A. Protein Eng. 1997, 10: 673-676 Membrane anchors are described in the exemplary embodiments.
Die Verankerung von Proteinen an Membranen ermöglicht die Oberflächenpräsentation (Surface Display) der Proteine auf den L-Form-Membranen . Durch das Fehlen von Zellwandkomponenten (Peptidoglyc n, äußere Membran, Lipopolysaccharide) und extrazel- lulären Proteasen ist es mit den L-Form-Stämmen möglich, die interessierenden Proteine direkt auf der Zytoplasmamembr n zu präsentieren. Das Fehlen antigener Komponenten ist im Hinblick auf medizinischen Anwendungen wie Vakzinierungen und diagnostische Methoden vorteilhaft. Das eröffnet gegenüber herkömmlichen Gram-positiven und Gram-negativen bakteriellen Surface-Display- Systemen erhebliche Vorteile. Zudem lassen sich hohe Konzentrationen der Proteine auf der L-Form-Membran erzielen (bis etwa 100 mg/1) . Es wurde überraschend gefunden, daß bei der Verankerung von Proteinen in der Zytoplasmamembran mit heterologen und homologen Ankersequenzen die Proteine zum größten Teil auf der Außenseite der zytoplymatischen Membran angeordnet und biologisch Aktiv sind. Die Proteine sind damit für die Wechselwirkung mit extrazellulären Komponenten, Funktionstests und InteraktionsStudien einfach zugänglich. Die Verankerung erwies sich zudem als sehr stabil, und die Proteinmoleküle wurden beispielsweise im Verlauf der Fermentation nicht von den Membranankersn abgerissen.The anchoring of proteins to membranes enables the surface presentation of the proteins on the L-shape membranes. Due to the lack of cell wall components (peptidoglyc n, outer membrane, lipopolysaccharides) and extracellular With the L-form strains, it is possible to present the proteins of interest directly on the cytoplasmic membrane. The lack of antigenic components is advantageous in terms of medical applications such as vaccinations and diagnostic methods. This opens up considerable advantages over conventional gram-positive and gram-negative bacterial surface display systems. In addition, high concentrations of the proteins can be achieved on the L-shape membrane (up to about 100 mg / 1). It has surprisingly been found that when proteins are anchored in the cytoplasmic membrane with heterologous and homologous anchor sequences, the proteins are largely arranged on the outside of the cytoplymatic membrane and are biologically active. The proteins are therefore easily accessible for interaction with extracellular components, functional tests and interaction studies. The anchoring also proved to be very stable, and the protein molecules were not torn from the membrane anchors during the fermentation, for example.
Durch die Oberflächenpräsentation von Proteinen ist beispielsweise die Gewinnung neuartiger Impfstoffe und Interaktions- Screeningsystemen möglich. Hierzu wird das gewünschte Antigen auf der Membran von L-Form-Zellen verankert, und die Zellen werden dann zur Impfung eingesetzt. Dabei werden vorzugsweise lediglich die aktiven, d.h. antigenen Komponenten beispielsweise von Proteinen zur Verankerung verwendet . Durch die hohe Konzentration an Protein auf der Membran ist nur eine geringe Zellzahl zur Impfung erforderlich, und der Gebrauch patogener Zellen oder Proteine kann ganz vermieden werden.The surface presentation of proteins makes it possible, for example, to obtain novel vaccines and interaction screening systems. For this purpose, the desired antigen is anchored on the membrane of L-shape cells, and the cells are then used for vaccination. Only the active, i.e. antigenic components used, for example, by proteins for anchoring. Due to the high concentration of protein on the membrane, only a small number of cells is required for vaccination, and the use of patogenic cells or proteins can be avoided entirely.
Zu den Proteinen, die sich für das Surface-Display besonders eignen gehören neben verschiedenen antigenen Determinanten von pathogenen Organismen für Vakzinierungen besonders auch Single chain Antikörper und Antikörperfragmente, heterologe Enzyme, Polyhistidyl Tags und Peptidbibliotheken. Die so modifizieten L- Form-Zellen eignen sich für die Verwendung in Diagnostik und Therapie und zur Herstellung von Mitteln für die Diagnostik und Therapie, als Biokatalysatoren, und für die Anwendung in Inter- aktionsscreenings .In addition to various antigenic determinants of pathogenic organisms for vaccinations, the proteins that are particularly suitable for the surface display also include single chain antibodies and antibody fragments, heterologous enzymes, polyhistidyl tags and peptide libraries. The modified L-shape cells are suitable for use in diagnostics and Therapy and for the preparation of agents for diagnostics and therapy, as biocatalysts, and for use in interaction screening.
Die Verwendung von L-Form Zellen zur Oberflächenpräsentation von Proteinen wurde bisher nicht beschrieben und ist daher ebenfalls Gegenstand der vorliegenden Erfindung, ebenso wie Verfahren zur Oberflächenpräsentation von Proteinen unter Verwendung von L-Form Zellen und die Verwendung von L-Formen mit an der Zytoplasmamembran verankerten Proteinen zur Herstellung von Mitteln für Therapie und Diagnostik. Diese Verfahren umfassen die oben beschriebenen Schritte zur Herstellung von Proteinen unter Verwendung von L-Formen, wobei die Zellen mit dem Genkonstrukt aus einer Ankersequenz und einer Proteinsequenz transformiert werden. Die Zellen werden bei der Isolation des Genprodukts vorzugsweise nicht durch Tenside oder dergleichen aufgeschlossen sondern als ganzes isoliert.The use of L-form cells for the surface presentation of proteins has not been described to date and is therefore also a subject of the present invention, as are methods for the surface presentation of proteins using L-form cells and the use of L-forms with anchored to the cytoplasmic membrane Proteins for the manufacture of therapeutic and diagnostic agents. These methods include the steps described above for the production of proteins using L-forms, the cells being transformed with the gene construct from an anchor sequence and a protein sequence. When isolating the gene product, the cells are preferably not disrupted by surfactants or the like but rather isolated as a whole.
Zur Oberflächenpräsentation von Proteinen eignen sich alle L- For en von Bakterien, insbesondere stabile L-Formen und ganz besonders stabile Protoplasten-Typ-L-Formen. Bevorzugte und besonders bevorzugte L-Formen sind die oben als Ausgangsstämme zur Herstellung modifizierter L-Formen genannten, insbesondere die erfindungsgemäß modifizierten L-Formen.All L-Forms of bacteria are suitable for the surface presentation of proteins, in particular stable L-forms and very particularly stable protoplast-type L-forms. Preferred and particularly preferred L-forms are those mentioned above as starting strains for the production of modified L-forms, in particular the L-forms modified according to the invention.
Die erfindungsgemäßen L-Form-Stämme und das erfindungsgemäße Verfahren zur Herstellung von Genprodukten eignet sich weiterhin:The L-form strains according to the invention and the method according to the invention for producing gene products are also suitable:
zur Herstellung von Proteinen zur Verwendung als Arzneimittel und Diagnostika, wie beispielsweise pharmazeutisch wirksamen Enzymen und Enzymaktivatoren (Exo- und Endopeptidasen, Staphylokinase, Streptokinase, Hämolysinaktivator ShlB) , Wachstumsfaktoren, Peptidhormonen, Antikörperkonstrukten (z.B. Fab-, Fv-Fragmenten, deren Single chain Varianten, Miniantikörpern, Diabodies , kompletten Antikörperproteinen) , membranständigen Fusions- proteinen und anderen rekombinanten Fusionsproteinen, mit mono-, bi- oder multivalenten Bindungseigenschaften für die medizinische Diagnostik oder Therapie (z.B. von Tumoren), dazu zählen u.a. Rezeptoren mit Liganden-Bindungseigenschaften;for the production of proteins for use as pharmaceuticals and diagnostics, such as, for example, pharmaceutically active enzymes and enzyme activators (exo- and endopeptidases, staphylokinase, streptokinase, hemolysin activator ShlB), growth factors, peptide hormones, antibody constructs (for example Fab, Fv fragments, their single chain variants , Miniantibodies, diabodies, complete antibody proteins), membrane-bound fusion proteins and other recombinant fusion proteins, with mono-, bi- or multivalent binding properties for medical diagnostics or therapy (eg of tumors), including receptors with ligand binding properties;
zur Herstellung und Präsentation von Immundeterminanten wie Oberflächenantigenen von pro- und eukaryotischen Organismen (z.B. des SERP- und MSPl-Proteins des Malariaerregers Plasmodium falciparum, viralen Hüllproteinen (z.B. vom HIV-Virus und anderen Retroviren) , viralen Transkriptasen zur Antikörperbildung und Immunisierung;for the production and presentation of immunodeterminants such as surface antigens of pro- and eukaryotic organisms (e.g. the SERP and MSPl protein of the malaria pathogen Plasmodium falciparum, viral coat proteins (e.g. from the HIV virus and other retroviruses), viral transcriptases for antibody formation and immunization;
zur Herstellung von Enzymaktivatoren und Enzyminhibitoren wie z.B. Proteaseinhibitoren;for the production of enzyme activators and enzyme inhibitors such as e.g. Protease inhibitors;
zur Herstellung von Enzymen und Proteinen der Signalübertragung;for the production of enzymes and proteins for signal transmission;
und zur Herstellung von Precursorproteinen, d.h. Vorstufen von reifen, biologisch aktiven Proteinen, die aufgrund der fehlenden extrazellulären proteolytischen Aktivität der L-Form-Zellen erhalten bleiben und als inaktive Form für therapeutische und diagnostische Zwecke eingesetzt und im Organismus bzw. Diagnostiktest erst aktiviert werden.and for the production of precursor proteins, i.e. Precursors of mature, biologically active proteins, which are retained due to the lack of extracellular proteolytic activity of the L-form cells and are used as an inactive form for therapeutic and diagnostic purposes and are only activated in the organism or diagnostic test.
Die gewonnenen Proteine sind funktioneil aktiv und enthalten keine störenden Membrankomponenten, wie z.B. Lipopolysaccharide der äußeren Membran Gram-negativer Bakterien, die Gewinnung und Funktionalität der Proteinprodukte stören. Die genannten Genprodukte werden entweder in das Kulturmedium transloziert oder in membrangebundener Form isoliert.The proteins obtained are functionally active and contain no disruptive membrane components, e.g. Lipopolysaccharides of the outer membrane of Gram-negative bacteria, which interfere with the production and functionality of the protein products. The gene products mentioned are either translocated into the culture medium or isolated in membrane-bound form.
Im folgenden wird die Erfindung anhand von Ausführungsbeispielen näher erläutert . Die Beispiele wurden unter Verwendung der hinterlegten L-Form-Stämme durchgeführt, wobei diese durch die Verfahrensschritte (a) und (b) ausgehend von den bekannten Stämmen erhalten wurden. Beispiel 1 zeigt, daß die modifizierten Stämme genotypisch verändert sind.The invention is explained in more detail below on the basis of exemplary embodiments. The examples were carried out using the deposited L-form strains, these being obtained from process steps (a) and (b) starting from the known strains. Example 1 shows that the modified strains are genotypically modified.
Beispiels 2 belegt, daß sie phänotypische und genotypische Membranveränderungen aufweisen.Example 2 shows that they have phenotypic and genotypic membrane changes.
In Beispiel 3 wird gezeigt, daß erfindungsgemäß modifizierte Stämme besser fermentierbar sind und mehr Produkt bilden als die Ausgangsstamme .In example 3 it is shown that strains modified according to the invention are better fermentable and form more product than the starting strain.
Beispiel 4 beschreibt die kontrollierte Genexpression und Produktsynthese mit erfindungsgemäß modifizierten Stämmen.Example 4 describes the controlled gene expression and product synthesis with strains modified according to the invention.
Beispiel 5 beschreibt die Verankerung rekombinater Proteine in der Zytoplasmamembran unter Verwendung homologer und heterologer Peptidsequenzen von integralen Membranproteinen als Membrananker.Example 5 describes the anchoring of recombinant proteins in the cytoplasmic membrane using homologous and heterologous peptide sequences of integral membrane proteins as membrane anchors.
Ausführungsbeispieleembodiments
Ausführungsbeispiel 1Embodiment 1
Vergleich der chromosomalen DNA (Genotyp) des modifizierten L- Form-Stamms Escherichia coli LWF+WEI mit der des Ausgangsstamms Escherichia coli LWF+Comparison of the chromosomal DNA (genotype) of the modified L-form strain Escherichia coli LWF + WEI with that of the parent strain Escherichia coli LWF +
Die Pulsfeldgelelektrophorese ermöglicht die Auftrennung von DNA- Fragmenten über einen großen Längenbereich auf einem Gel . Das erlaubt eine vergleichende Analyse der genomischen DNA von Arten und Stämmen.Pulse field gel electrophoresis enables DNA fragments to be separated over a large length range on a gel. This allows a comparative analysis of the genomic DNA of species and strains.
Veränderungen in der DNA, die Auswirkungen auf die Erkennungs- sequenzen von Restriktionsenzymen haben, ergeben veränderte Bandenmuster. Damit werden nach Restriktasebehandlung Aussagen über die genetische Diversität eines Stammes möglich (Lezhava, A., J. Bacteriol. 1995, 177, 6491-6498; Pandza, K, Microbiol 1997, 143, 1493-1501).Changes in DNA that have an impact on the recognition sequences of restriction enzymes result in changed band patterns. This enables statements about the genetic diversity of a strain to be made after restriction treatment (Lezhava, A., J. Bacteriol. 1995, 177, 6491-6498; Pandza, K, Microbiol 1997, 143, 1493-1501).
Material und Methodenmaterial and methods
Die L-Form-Stämme E. coli LWF+WEI und E. coli LWF+ und der zellwandhaltige Elternstamm E. coli WF+ werden unter gleichen Bedingungen angezüchtet. Die Kultur erfolgte in Steilbrustflaschen (100ml) mit 30 ml LFS-Medium und Zusätzen von Pferdeserum (6% V/V), Hefeextrakt (0,7%) und Saccharose (4%) bei 37° C auf einem Rotationsschüttler bei 200 U/min. Von jedem Stamm werden nach einer 3 - 6 stündigen Kultivierung Proben in einem Äquivalent entsprechend einer optischen Dichte von 2, gemessen bei 550 nm, genommen, um vergleichbare finale Biomassen zu erhalten. Nach einer Zentrifugation der Zellsuspension bei 3000 x g, 4°C und 10 min wurde das Pellet vorsichtig in einer osmotisch gepufferten Hefe-EDTA-Saccharose-Lösung (HES-Puffer nach Evans, M. , Dyson, P. 1993, Trends in Genetics , 9, 72-78) resuspendiert, mit fast erstarrter Agarose ( 0,7%, BioRad) vermischt und anschließend bei 4°C verfestigt. Dadurch lassen sich unspezifische Bandenmuster als Folge von Scherwirkungen vermeiden. Die Proben des Elternstammes E. coli WF+ wurden danach mit Lysozym behandelt (Serva Electrophoresis, 1 mg/ml HES, 2 Std. bei 37 °C ) . Der nachfolgenden alkalischen Lyse der Zellen innerhalb des Agaroseblockes (etwa 0,2 cm ), kombiniert mit einem hinreichenden Proteinverdau (1 mg Proteinase K (Merck Eurolab) /ml N-Lauroylsarcosinat-EDTA-Glycin-NaOH-Lösung (NDS-Lösung; Evans, M. , Dyson, P. 1993, Trends in Genetics 9,72-78) für 16 Std. bei 37°C), schlössen sich die nötigen Waschschritte an: 1 x 15 min mit NDS, 1 x 15 min mit Hefe-EDTA-Lösung (HE-Puffer) , 1 x 1,5 Std. mit HE-Puffer + 50 μg Pefabloc (Röche Diagnostics) /ml bei 37 °C, 5 x 30 min mit HE. Nach einer solchen Behandlung lag die DNA in einer Form vor, die ein sequenzspezifisches Schneiden mit Restriktasen erlaubt. Es wurde eine ausreichende Menge von 60 Units der jeweiligen Restriktase einem Agarosestück (etwa 0,05 3 cm ) zugesetzt und die Inkubationszeit von 16 Std. gewählt, um eine vollständige Spaltung zu erreichen Die Auftrennungsbedingungen der DNA-Fragmente in einem 1,5% Gel (SeaKemGold, FMC Bioproducts) bei 170 V, 22 Std., Pulszeiten von 2,5-38 s und 12°C beruhen auf optimierten Erfahrungswerten. Es wurde eine Puls- feldgelelektrophoreseapparatur des Typs CHEF-DRII (BioRad) verwendet .The L-form strains E. coli LWF + WEI and E. coli LWF + and the cell wall-containing parent strain E. coli WF + are grown under the same conditions. The culture took place in steep breast bottles (100 ml) with 30 ml LFS medium and additions of horse serum (6% v / v), yeast extract (0.7%) and sucrose (4%) at 37 ° C on a rotary shaker at 200 U / minute After a 3-6 hour cultivation, samples are taken from each strain in an equivalent corresponding to an optical density of 2, measured at 550 nm, in order to obtain comparable final biomasses. After centrifugation of the cell suspension at 3000 × g, 4 ° C. and 10 min, the pellet was carefully cautiously placed in an osmotically buffered yeast EDTA-sucrose solution (HES buffer according to Evans, M., Dyson, P. 1993, Trends in Genetics, 9, 72-78) resuspended, mixed with almost solidified agarose (0.7%, BioRad) and then solidified at 4 ° C. As a result, unspecific band patterns as a result of shear effects can be avoided. The samples of the parent strain E. coli WF + were then treated with lysozyme (Serva Electrophoresis, 1 mg / ml HES, 2 hours at 37 ° C). The subsequent alkaline lysis of the cells within the agarose block (approx. 0.2 cm), combined with sufficient protein digestion (1 mg Proteinase K (Merck Eurolab) / ml N-lauroylsarcosinate-EDTA-glycine-NaOH solution (NDS solution; Evans , M., Dyson, P. 1993, Trends in Genetics 9.72-78) for 16 hours at 37 ° C), the necessary washing steps follow: 1 x 15 min with NDS, 1 x 15 min with yeast EDTA solution (HE buffer), 1 x 1.5 hours with HE buffer + 50 μg Pefabloc (Röche Diagnostics) / ml at 37 ° C, 5 x 30 min with HE. After such a treatment, the DNA was in a form that allows sequence-specific cutting with restrictases. A sufficient amount of 60 units of the respective restrictase was added to a piece of agarose (about 0.05 3 cm) and the incubation time of 16 hours was chosen to achieve complete cleavage. The separation conditions of the DNA fragments in a 1.5% gel (SeaKemGold, FMC Bioproducts) at 170 V, 22 hours, pulse times of 2, 5-38 s and 12 ° C are based on optimized empirical values. A pulse field gel electrophoresis apparatus of the type CHEF-DRII (BioRad) was used.
Ergebnisse:Results:
Die eingesetzten Restriktionsendonukleasen (Sdal von MBI Fermentas, alle restlichen von New England Biolabs) haben folgende unterschiedliche spezifische Spaltsequenzen:The restriction endonucleases used (Sdal from MBI Fermentas, all others from New England Biolabs) have the following different specific cleavage sequences:
Spei = A/CTAGT Xbal =T/CTAGASpei = A / CTAGT Xbal = T / CTAGA
Notl = GC/GGCCGC Swal =ATTT/AAATNotl = GC / GGCCGC Swal = ATTT / AAAT
Avrll = C/CTAGG Ascl =GG/CGCGCCAvrll = C / CTAGG Ascl = GG / CGCGCC
Sfil = GGCCNNNN/NGGCC Sdal =CCTGCA/GGSfil = GGCCNNNN / NGGCC Sdal = CCTGCA / GG
Die Restriktionsendonukleasen Xbal, Notl, Swal, Avrll, Ascl, Sfil und Sdal ergaben bei beiden L-Form-Stämmen und dem Elternstamm weitestgehend identische Grund-Fragmentmuster. Das ist ein Nachweis dafür, daß es sich taxonomisch um denselben Organismus, d. h. E. coli , handelt (Abb 1, 2).The restriction endonucleases Xbal, Notl, Swal, Avrll, Ascl, Sfil and Sdal gave largely identical basic fragment patterns in both L-form strains and the parent strain. This is evidence that taxonomically it is the same organism, i. H. E. coli, acts (Fig. 1, 2).
Abbildung 1 zeigt Spaltmuster chromosomaler DNA des modifizierten L-Form-Stammes E coli LWF+WEI (2, 4, 6, 8) und des Ausgangsstammes E. coli LWF+ (3, 5, 7, 9) nach Verdau mit jeweils 60 Units der Restriktionsendonukleasen Swal (2, 3), Spei (4, 5), XBal (6, 7) und Notl (8, 9) (alle von New England Biolabs); die Spuren 1 und 10 zeigen Längenmarker, Spur 1: Low Range (New England Biolabs), Spur 10: Lambda-Ladder (New England Biolabs).Figure 1 shows cleavage patterns of chromosomal DNA of the modified L-form strain E coli LWF + WEI (2, 4, 6, 8) and the starting strain E. coli LWF + (3, 5, 7, 9) after digestion with 60 units each Restriction endonucleases Swal (2, 3), Spei (4, 5), XBal (6, 7) and Notl (8, 9) (all from New England Biolabs); lanes 1 and 10 show length markers, lane 1: low range (New England Biolabs), lane 10: lambda ladder (New England Biolabs).
Abbildung 2 zeigt die Spaltmuster chromosomaler DNA des wandhaltigen Elternstammes E. coli WF+ (2, 5, 8), des L-Form- AusgangsStammes E. coli LWF+ (3, 6, 9) und des weiterentwickelten Stammes E. coli LWF+WEI (4, 7, 10) nach Verdau mit jeweils 60 Units der Restriktionsendonukleasen Spei (2, 3, 4), Notl (5, 6, 7) und Xbal (8, 9, 10) (alle von New England Biolabs), Spur 1: Längenmarker Low Range (New England Biolabs).Figure 2 shows the cleavage pattern of chromosomal DNA of the wall-containing parent strain E. coli WF + (2, 5, 8), the L-form Starting strain E. coli LWF + (3, 6, 9) and the further developed strain E. coli LWF + WEI (4, 7, 10) after digestion with 60 units of the restriction endonucleases Spei (2, 3, 4), Notl (5, 6, 7) and Xbal (8, 9, 10) (all from New England Biolabs), track 1: length marker low range (New England Biolabs).
Nach Verdau mit Spei ist ein klarer Unterschied der Banden im Größenbereich zwischen 240kb und 290kb im Stamm E. coli LWF+WEI und im Stamm E. coli LWF+ zu sehen. Dieser reproduzierbare Unterschied ist ein eindeutiger Hinweis darauf, daß der weiterentwickelte Stamm E. coli LWF+WEI im Vergleich zum Ausgangsstamm E. coli LWF+ genotypisch verändert ist (Abb.l., siehe Pfeile).After digestion with Spei, there is a clear difference between the bands in the size range between 240kb and 290kb in the E. coli LWF + WEI strain and in the E. coli LWF + strain. This reproducible difference is a clear indication that the further developed E. coli LWF + WEI strain is genotypically changed compared to the original E. coli LWF + strain (Fig.l., see arrows).
Spaltungen mit Spei , Notl und Xbal ergaben bei den L-Form-Stämmen ein Muster, das jeweils gleich verschieden zu dem der N-Form ist (Abb.2. , siehe Kreuze) . Nur Spei zeigte einen anderen Unterschied zur N-Form (Abb.2., siehe Kreise).Splits with Spei, Notl and Xbal resulted in a pattern in the L-form strains, which is different in each case from that of the N-form (Fig.2., See crosses). Only Spei showed a different difference from the N-shape (Fig.2., See circles).
Ein Vergleich der Gemeinsamkeiten und Unterschiede in den Bandenmustern zeigt eindeutig, daß die Stämme E. coli WF+, E. coli LWF+ und E. coli LWF+WEI taxonomisch der gleichen Spezies angehören, daß beide L-Form-Stämme gegenüber dem N-Form Elternstamm genotypische Unterschiede zeigen und daß der weiterentwickelte L-Form-Stamm E. coli LWF+WEI gegenüber dem Sammlungsstamm E. coli LWF+ genotypisch verändert ist.A comparison of the similarities and differences in the band patterns clearly shows that the strains E. coli WF +, E. coli LWF + and E. coli LWF + WEI belong taxonomically to the same species, that both L-form strains compared to the N-form parent strain show genotypic differences and that the further developed L-form strain E. coli LWF + WEI is genotypically changed compared to the collection strain E. coli LWF +.
Ausführungsbeispiel 2Embodiment 2
Unterschied in den Proteinkomponenten in zytoplasmatischen Membranen der L-Form-Stämme Escherichia coli LWF+ und E. coli LWF+WEIDifference in the protein components in cytoplasmic membranes of the L-form strains Escherichia coli LWF + and E. coli LWF + WEI
Neben der vergleichenden Analyse der chromosomalen DNA nach Restriktasebehandlung erlaubt auch die vergleichende Analyse der Proteinmuster zweier Stämme Rückschlüsse auf genotypische und phänotypische Veränderungen. Unter Anwendung der zweidimensiona- len Gelelektrophorese (2D-PAGE) ist eine detaillierte Trennung und Charakterisierung von Proteingemischen möglich. Im ersten Schritt erfolgt dabei die Trennung nach dem isoelektrischen Punkt (pl) in einem Fokussiergel (IEF). Im zweiten Schritt werden dann in einem SDS-Polyacrylamidgel (SDS-PAGE) die fokussierten Proteine nach ihrem Molekulargewicht (MW) getrennt.In addition to the comparative analysis of the chromosomal DNA after restriction treatment, the comparative analysis of the protein patterns of two strains also allows conclusions to be drawn about genotypic and phenotypic changes. Using two-dimensional gel electrophoresis (2D-PAGE), a detailed separation and characterization of protein mixtures is possible. The first step is the separation according to the isoelectric point (pl) in a focusing gel (IEF). In the second step, the focused proteins are separated according to their molecular weight (MW) in an SDS-polyacrylamide gel (SDS-PAGE).
Im Ausführungsbeispiel wurden die Membranproteine des Ausgangsstammes E. coli LWF+ mit denen des erfindungsgemäß modifizierten Stammes E. coli LWF+WEI verglichen. Die Beschränkung auf die Membranproteine ist deshalb gewählt worden, weil die L-Form- Membranen nur ca. 500 verschiedene Proteine enthalten, während in den ganzen Zellen ein Vielfaches davon vorliegt. Desweiteren sind die Membranproteine zum größten Teil essentiell und in der Regel ständig in der Membran vorhanden. Reproduzierbare qualitative Unterschiede im Muster der Membranproteine sind deshalb ein Hinweis auf strukturelle und funktionelle Unterschiede im Genom.In the exemplary embodiment, the membrane proteins of the starting strain E. coli LWF + were compared with those of the strain E. coli LWF + WEI modified according to the invention. The restriction to the membrane proteins was chosen because the L-form membranes contain only about 500 different proteins, while a multiple of them is present in the whole cells. Furthermore, the membrane proteins are for the most part essential and usually always present in the membrane. Reproducible qualitative differences in the pattern of the membrane proteins are therefore an indication of structural and functional differences in the genome.
Material und Methodenmaterial and methods
Anzucht der Zellen:Cultivation of the cells:
Die Zellen der beiden Stämme werden unter identischen Bedingungen gezüchtet (BHI-Medium mit Zusätzen von 0,5% Hefeextrakt und 5% v/v Pferdeserum, Bebrütung im Schüttelinkubator bei 37 °C), nach 24 Std. abzentrifugiert (6000 x g, 10 min), in 0,4 M Saccharose ge-waschen und durch osmotischen Schock (0,05 M TRIS/HCl-Pu fer pH 7,0 mit Zusatz von 0,1 % MgS04 und 30 μg/ml DNAse) lysiert. Durch Ultrazentrifugation (80000 x g , 20 min, 4°C, Beckmann Optima XL80) und Waschen in 0,05 M TRIS/HCl-Puffer mit 0,1 % MgSOA erfolgt die Isolierung und Reinigung der Membranen. Probenbehandlung:The cells of the two strains are grown under identical conditions (BHI medium with additions of 0.5% yeast extract and 5% v / v horse serum, incubation in a shaking incubator at 37 ° C.), centrifuged after 24 hours (6000 × g, 10 min ), washed in 0.4 M sucrose and lysed by osmotic shock (0.05 M TRIS / HCl powder pH 7.0 with the addition of 0.1% MgSO 4 and 30 μg / ml DNAse). The membranes are isolated and cleaned by ultracentrifugation (80,000 xg, 20 min, 4 ° C, Beckmann Optima XL80) and washing in 0.05 M TRIS / HCl buffer with 0.1% MgSO A. Sample treatment:
Die gereinigten Membranfraktionen werden zunächst mit der 5- fachen Einwaagemenge dest.Wassers gewaschen und danach 45 min bei 5 °C mit 14000 Upm zentrifugiert (Sorvallzentrifuge Typ RMC 14). Das Pellet wird wie unten beschrieben weiterverarbeitet.The cleaned membrane fractions are first washed with 5 times the amount of distilled water and then centrifuged for 45 min at 5 ° C at 14000 rpm (Sorvall centrifuge type RMC 14). The pellet is processed as described below.
Solubilisierung der Membranproteine:Solubilization of the membrane proteins:
Das gewaschene Membranpellet wird in der 6-fachen Menge Solubili- sierungspuffer (9,5 M Harnstoff, 4 % 3-[ (3-Cholamidopropyl) - dimethylammonio]-l-propansulfonat (CHAPS, Serva) , 5 % einer 40 %igen Ampholytlösung 3-10, 100 mM Dithiolthretitol (DTT) aufgenommen und zusätzlich fester Harnstoff in einer Menge von 45 % der Membraneinwaage zugegeben, um die Harnstoffkonzentration der Gesamtlösung wieder auf ~ 9,5 M zu bringen. Die Suspension wird durch Schütteln bei Raumtemperatur in Lösung gebracht und 2 Std. stehengelassen mit wiederholten Schüttelvorgängen. Anschließend wird die klare Lösung 50 min i^, 75000 Upm in einer Ultrazentrifuge zentrifugiert (Typ Beckmann Opti a TLX bei 20 °C Der Überstand enthält die unter den gewählten Bedingungen gelösten Membranproteine. Jeweils 15 - 20 μl dieser Lösung werden auf die Fokussierungsgele aufgetragen und zweidimensional analysiert.The washed membrane pellet is in 6 times the amount of solubilization buffer (9.5 M urea, 4% 3- [(3-cholamidopropyl) - dimethylammonio] -l-propanesulfonate (CHAPS, Serva), 5% of a 40% ampholyte solution 3-10, 100 mM dithiolthretitol (DTT) was added and additional solid urea was added in an amount of 45% of the membrane weight in order to bring the urea concentration of the total solution back to ~ 9.5 M. The suspension is dissolved by shaking at room temperature The mixture is then centrifuged for 50 minutes at 75,000 rpm in an ultracentrifuge (type Beckmann Opti a TLX at 20 ° C. The supernatant contains the membrane proteins dissolved under the selected conditions. 15-20 each μl of this solution are applied to the focusing gels and analyzed in two dimensions.
Elektrophoresebedingungen:electrophoresis:
® Zur Analyse der Proteinkomponenten wurde das Investigator 2-D® The Investigator 2-D. Was used to analyze the protein components
Electrophoresis System von Oxford Glyco-Systems verwendet.Electrophoresis system used by Oxford Glyco-Systems.
Isoelektrische Fokussierung (1 . Dimension) : Keine Präfokussie- rung, Strom maximal 110 μA/Gel, Spannung konstant 1000 V (17Isoelectric focusing (1st dimension): no prefocusing, maximum current 110 μA / gel, constant voltage 1000 V (17th
Std.) und 2000 V (30 min), d. h. 18000 Vh insgesamt.Hours) and 2000 V (30 min), d. H. 18000 Vh in total.
SDS-PAGE (2. Dimension) : 11,5 % Polyacrylamid-Gele (DuracrylSDS-PAGE (2nd dimension): 11.5% polyacrylamide gels (Duracryl
30,65 % T) , kein Stacking-Gel, Spannung maximal 500 V, 20 W/Gel. Alle Gele werden mit Coomassie Brilliant Blau G-250 nach der Methode von Neuhoff et al . (Electrophoresis 1988, 9, 255-262) gefärbt, bei welcher die kolloidalen Eigenschaften dieses Farbstoffes zur Anwendung kommen.30.65% T), no stacking gel, maximum voltage 500 V, 20 W / gel. All gels are made with Coomassie Brilliant Blau G-250 using the method of Neuhoff et al. (Electrophoresis 1988, 9, 255-262), in which the colloidal properties of this dye are used.
ErgebnisseResults
Abbildung 3 zeigt Membranproteine von Escherichia coli LWF+ (Gel AI) und E. coli LWF+WEI (Gel Bl) nach Auftrennung mit 2D-PAGE in dem pI-Bereich 4,8 - 6,7 und dem MW-Bereich 31 - 60 kDa. Die schwarzen Pfeile markieren Spots bzw. Spotmuster, die nur im Stamm E. coli LWF+ vorliegen, und die weißen Pfeile dokumentieren Proteine, die für den Stamm E. coli LWF+WEI spezifisch sind. Der Vergleich der Spotmuster in den Gelbereichen 3,5 < pl < 7,0 und 22 kDa < MW < 80 kDa ergab in den Membranen beider L-Form-Stämme ca. 150 detektierte Proteine. Die Mehrzahl der Spots ist identisch. Von den zwölf divergierenden Proteinen lagen sechs nur im Ausgangsstamm E. coli LWF+ und sechs nur im Stamm E. coli LWF+WEI vor.Figure 3 shows membrane proteins of Escherichia coli LWF + (Gel AI) and E. coli LWF + WEI (Gel Bl) after separation with 2D-PAGE in the pI range 4.8 - 6.7 and the MW range 31 - 60 kDa , The black arrows mark spots or spot patterns that are only present in the E. coli LWF + strain, and the white arrows document proteins that are specific for the E. coli LWF + WEI strain. The comparison of the spot patterns in the gel areas 3.5 <pl <7.0 and 22 kDa <MW <80 kDa showed approx. 150 detected proteins in the membranes of both L-form strains. The majority of the spots are identical. Of the twelve divergent proteins, six were only in the original E. coli LWF + strain and six were only in the E. coli LWF + WEI strain.
In Abbildung 3 sind die Gelbereiche 4,8 < pl < 6,7 und 31 kDa < MW < 60 kDa als Aus-schnitte vergrößert, und sie zeigen jeweils vier differierende Proteine. Auf Grund der völlig identischen Anzuchtbedingungen und Probenbehandlungen und der mehrfach reproduzierten Daten muß aus den Ergebnissen geschlossen werden, daß die Zusammensetzung der Membranproteine im Stamm E. coli LWF+WEI signifikant verändert ist und daß dies auf Veränderungen im Genotyp beruht. Ausführungsbeispiel 3In Figure 3, the gel areas 4.8 <pl <6.7 and 31 kDa <MW <60 kDa are enlarged as sections, and they each show four different proteins. Due to the completely identical cultivation conditions and sample treatments and the repeatedly reproduced data, it must be concluded from the results that the composition of the membrane proteins in the E. coli LWF + WEI strain has changed significantly and that this is due to changes in the genotype. Embodiment 3
Vergleich von Wachstum und Produktbildung der rekombinanten L- Form-Stämme Proteus mirabilis LVIWEI und Proteus mirabilis LVIComparison of growth and product formation of the recombinant L-form strains Proteus mirabilis LVIWEI and Proteus mirabilis LVI
Die Gewinnung rekombinanter Proteine, die zur Vakzinierung eingesetzt werden können, ist eine vordringliche Aufgabe, insbesondere für bisher dafür nicht zugängliche Krankheiten wie z.B. Malaria. Das MSP1- Gen kodiert ein Protein, das von den Merozoiten-Stadien des Erregers Plasmodium falciparum synthetisiert wird und ein Kandidat für VakzinierungsStrategien gegen Malaria darstellt. Zur Gewinnung des Proteins, d.h. in der Ausführung des 42 kDa großen C-terminalen Fragmentes, wurden die Stämme P. mirabilis LVI und P. mirabilis LVIWEI mit dem Plasmid p6H-42-3D7 transformiert. Im Beispiel wird die Fermentation beider Transformanten verglichen und dokumentiert, daß der neue Stamm P. mirabilis LVIWEI bessere Eigenschaften im Hinblick auf Wachstum und Produktbildung hat .The production of recombinant proteins that can be used for vaccination is an urgent task, especially for diseases that were not previously accessible, e.g. Malaria. The MSP1 gene encodes a protein that is synthesized by the merozoite stages of the Plasmodium falciparum pathogen and is a candidate for vaccination strategies against malaria. To obtain the protein, i.e. in the execution of the 42 kDa C-terminal fragment, the strains P. mirabilis LVI and P. mirabilis LVIWEI were transformed with the plasmid p6H-42-3D7. In the example, the fermentation of both transformants is compared and documented that the new P. mirabilis LVIWEI strain has better properties in terms of growth and product formation.
Material und Methodenmaterial and methods
Die Stämme P. mirablis LVIWEI (p6H-42-3D7) und P. mirabilis LVI (p6H-42-3D7) enthalten das gleiche Plasmid mit dem Gen für das 42 kDa Fragment des Malaria-Surface-Proteins 1 (MSP1) in der Allel-Variante 3D7 (MAD20) des humanspezifischen Erregers Plasmodium falciparum (Pan, W. et al. 1999, Nucleic Acids Research 27, 1094-1103). Am 42 kDa-Fragment ist N-terminal das θΛ?pA-Signalpeptid fusioniert, was für eine Sekretion in das Medium notwendig ist. Die Gewinnung der Transformanten erfolgte nach den gleichen Schritten wie sie in der Patentbeschreibung und im Ausführungsbeispiel 5 beschrieben sind. Sie sind hinsichtlich Plasmididentität (Restriktionsmuster) und der unter Kontrolle des PtetO-l Promotors (Lutz R. and Bujard, H.1997, Nucleic Acids Research 25, 1203-1210) induzierbaren Produktbildung getestet. Zur Fermentation wurden zuerst Vorkulturen aus den an Wachstum in flüssigen Medien adaptierten Transformanten hergestellt. Eine erste Vorkultur erfolgte bei 37 °C (100 ml Glaskolben mit 35 ml BHI-Medium und Zusätzen von 50 mM Na-Phosphat pH 7,2 und 50 μg/ml Kanamycin) über 24 Std. als Schüttelkultur bei 220 rpm. Nachfolgend wird eine zweite Vorkultur in gleichem Maßstab bei 28°C für 24 Std. kultiviert. Diese dient als Inokulum für die dritte Vorkultur (500 ml Glasflaschen mit 150 ml Fermentations- edium, 12 Std. bei 26 °C kultiviert) . Nach einer mikroskopischen Kontrolle der Vorkulturen erfolgt die Beimpfung der Fermenter.The P. mirablis LVIWEI (p6H-42-3D7) and P. mirabilis LVI (p6H-42-3D7) strains contain the same plasmid with the gene for the 42 kDa fragment of the malaria surface protein 1 (MSP1) in the allele -Variant 3D7 (MAD20) of the human-specific pathogen Plasmodium falciparum (Pan, W. et al. 1999, Nucleic Acids Research 27, 1094-1103). The θΛ? PA signal peptide is fused to the 42 kDa fragment, which is necessary for secretion into the medium. The transformants were obtained according to the same steps as described in the patent description and in exemplary embodiment 5. They are tested for plasmid identity (restriction pattern) and the product formation which can be induced under the control of the PtetO-1 promoter (Lutz R. and Bujard, H.1997, Nucleic Acids Research 25, 1203-1210). For the fermentation, precultures from the growth were first transformants adapted in liquid media. A first preculture was carried out at 37 ° C. (100 ml glass flask with 35 ml BHI medium and additions of 50 mM Na phosphate pH 7.2 and 50 μg / ml kanamycin) for 24 hours as a shaking culture at 220 rpm second preculture cultivated on the same scale at 28 ° C. for 24 hours. This serves as an inoculum for the third preculture (500 ml glass bottles with 150 ml fermentation medium, cultivated for 12 hours at 26 ° C). After a microscopic inspection of the pre-cultures, the fermenters are inoculated.
Der eingesetzte Fermenter (BIOSTAT B Gerät, Braun BBI Melsungen) ist ausgerüstet mit Rührkessel-Kulturgefäß B2 (Arbeitsvolumen 2 1), Belüftungseinrichtung, Rührwelle mit zwei Paddelrührern B5 im Medium und einem 6-Blatt-Scheibenrührer B2 im Schaumbereich, einer pH-Sonde (Ingold 405D-K8S/200) , einer p02 -Sonde (Mettler Toledo 34 100 3057), einer Schaumsonde, einer Gasmischstation mit 2 ml Mass-flow Controller für Luft und Sauerstoff und Zuluftfil- ter 0,2μm (Sartorius Midisart 2000), Abluftkühler mit Schaumfalle, Sterilfilter (Gelmann Acro 50ST) , Abgasanalysensystem (Hartmann und Braun, Frankfurt) mit Uras 10p für C02 -Analyse und Magnos 6G für 02-Analyse, Kühlwasserkreislaufkühler KK4s (Medingen, 6°C), Dosiereinrichtung für Glukose mit Peristaltik- pumpe WM 101U/2rpm (Watson-Marlow, Silikonschlauch ID= 1,6 mm) und Steuerung über Schaltuhr, off-line Analytik für Glukose mit ECA 2000 Glukose-Analysator (Medingen) .The fermenter used (BIOSTAT B device, Braun BBI Melsungen) is equipped with a stirred tank culture vessel B2 (working volume 2 1), aeration device, stirrer shaft with two paddle stirrers B5 in the medium and a 6-blade disc stirrer B2 in the foam area, a pH probe ( Ingold 405D-K8S / 200), a p0 2 probe (Mettler Toledo 34 100 3057), a foam probe, a gas mixing station with 2 ml mass flow controller for air and oxygen and a supply air filter 0.2μm (Sartorius Midisart 2000), Exhaust air cooler with foam trap, sterile filter (Gelmann Acro 50ST), exhaust gas analysis system (Hartmann and Braun, Frankfurt) with Uras 10p for C0 2 analysis and Magnos 6G for 0 2 analysis, cooling water circuit cooler KK4s (Medingen, 6 ° C), dosing device for glucose with Peristaltic pump WM 101U / 2rpm (Watson-Marlow, silicone hose ID = 1.6 mm) and control via timer, off-line analysis for glucose with ECA 2000 glucose analyzer (Medingen).
Das Medium im Fermenter ist 1,35 1 BHIB ( 35 g/1) gelöst in Na- Phosphatpuffer (50 mM, pH 7,2) mit Zusätzen von Glukose (0,5%), Saccharose (1%), Hefeextrakt (0,1%), Na-Fumarat (40 mM) , Kanamycin (50 μg/ml) und Ampicillin (200 μg/ml). Es wird mit 150 ml der 12-stündigen Vorkultur beimpft zu einer Startzellkonzentration entsprechend einer OD 550 nm =0,5.The medium in the fermenter is 1.35 1 BHIB (35 g / 1) dissolved in Na phosphate buffer (50 mM, pH 7.2) with the addition of glucose (0.5%), sucrose (1%), yeast extract (0 , 1%), Na fumarate (40 mM), kanamycin (50 μg / ml) and ampicillin (200 μg / ml). It is inoculated with 150 ml of the 12-hour preculture to a starting cell concentration corresponding to an OD 550 nm = 0.5.
Das Fermentationsregime umfaßt: Temperatur = 26 °C; pH-Wert = konstant pH 7,2 (+/- 0,3), reguliert mit H2S0 (12%) und NaOH (12%); Belüftungsrate = 20 SLPM konstant ; Rührgeschwindigkeit = 100 - 500 rpm, gekoppelt an die festgelegte pO 2-Konzentration von 20%; Induktorzugabe anhydro-Tetracyclin (400 μg/1, nach erster Verdopplung der OD und 400 μg/1 nach zweiter Verdopplung der OD, danach 12 Std. Weiterführung der Fermentation) . Als Antischaummittel wurde Ucolub nach Bedarf zugegeben. Zu den in Abb. 4a und 4b angegebenen Meßpunktzeiten werden Proben entnommen (10 ml) und die Zellkonzentration als optische Dichte (OD als Extinktion bei 550 nm, Photometer Spekol 11 Zeiss) als Maß für die Biomasse bestimmt.The fermentation regime includes: temperature = 26 ° C; pH = constant pH 7.2 (+/- 0.3), regulated with H 2 S0 (12%) and NaOH (12%); Ventilation rate = 20 SLPM constant; Stirring speed = 100 - 500 rpm, coupled to the specified pO 2 concentration of 20%; Addition of inductor anhydro-tetracycline (400 μg / 1, after the first doubling of the OD and 400 μg / 1 after the second doubling of the OD, then 12 hours of continued fermentation). Ucolub was added as an anti-foaming agent as needed. At the measuring point times shown in Figs. 4a and 4b, samples are taken (10 ml) and the cell concentration as optical density (OD as extinction at 550 nm, photometer Spekol 11 Zeiss) is determined as a measure of the biomass.
Die Fermentationsproben werden nach Zentrifugation (6000 x g, 10 min) in den Überstand mit löslichem Produkt und in das Sediment mit zellgebundenem Produkt fraktioniert. Die Produktbildung wird durch SDS-Gelelektrophorese und Western blot mit produktspezifischen Antikörpern und quantitativer Auswertung der Banden (Scan- und Auswerte-Software Phoretix lD,NonLinear Dynamics Ltd, UK) ermittelt.After centrifugation (6000 x g, 10 min), the fermentation samples are fractionated into the supernatant with soluble product and into the sediment with cell-bound product. The product formation is determined by SDS gel electrophoresis and Western blot with product-specific antibodies and quantitative evaluation of the bands (scan and evaluation software Phoretix ID, NonLinear Dynamics Ltd, UK).
ErgebnisseResults
Die Ergebnisse der Fermentationskinetik und der Produktbildung mit Proteus mirabilis LVI(p6H-42-3D7) (a) und P. mirabilis LVIWEI (p6H-42-3D7) (b) sind in Abbildung 4 dargestellt. Die Mengen an synthetisierten löslichem und zellgebundenem Malariaprotein sind als relative Einheiten ( "units "= Fläche x Farbintensität der gescannten Produktbanden im Western blot ) angegeben.The results of fermentation kinetics and product formation with Proteus mirabilis LVI (p6H-42-3D7) (a) and P. mirabilis LVIWEI (p6H-42-3D7) (b) are shown in Figure 4. The amounts of soluble and cell-bound malaria protein synthesized are given as relative units ("units" = area x color intensity of the scanned product bands in the Western blot).
1. Unter weitestgehend gleichen Bedingungen (Vorkultur aus intakten L-Form-Zellen, gleichen Wachsturasmedien, Animpfdichten, Wachstumstemperaturen, pH-Regelung, Glukosezufütterung, Induktion der Genexpression und Regelung des Sauerstoffeintrages mit Schwellenwert von pO2=20% durch Kopplung an Erhöhung der Rührgeschwindigkeit) zeigt die Transformante P. mirabilis LVIWEI (p6H-42-3D7) des weiterentwickelten Stammes deutlich bessere Eigenschaften .1. Under largely the same conditions (preculture from intact L-shape cells, the same growth media, seeding densities, growth temperatures, pH control, glucose feeding, induction of gene expression and control of the oxygen input with threshold value of pO 2 = 20% by coupling to increasing the stirring speed ) shows the transformant P. mirabilis LVIWEI (p6H-42-3D7) of the further developed strain clearly better properties.
2. Im Vergleich zum Stamm P. mirabilis LVI (p6H-42-3D7) zeigt sie ein schnelleres Wachstum unmittelbar nach dem Start der Fermentation, eine ausgeprägte exponentielle Wachstumsphase bis 12 Std., sehr viel höhere Zellzahlen und Biomassewerte, verbunden mit wesentlich stärkerer C02 -Bildung und damit aktiveren Stoffwechsel, sowie bessere Verträglichkeit für Antischaummittel. Die Transformante des Ausgangsstamm P. mirabilis LVI (p6H-42-3D7) zeigt dagegen nach Zugabe von Antischaummittel eine Abnahme der Stoffwechselaktivität, verdeutlicht durch das Absinken der CO 2 - Bildung und des 02 -Verbrauches .2. In comparison to the P. mirabilis LVI strain (p6H-42-3D7), it shows faster growth immediately after the start of fermentation, a pronounced exponential growth phase up to 12 hours, much higher cell numbers and biomass values, combined with much higher C0 2 formation and thus more active metabolism, as well as better tolerance for anti-foaming agents. The transformant of the parent strain P. mirabilis LVI (p6H-42-3D7), on the other hand, shows a decrease in metabolic activity after the addition of antifoam, illustrated by the decrease in CO 2 formation and in the consumption of 0 2 .
3. Die Transformante P. mirabilis LVIWEI (p6H-42-3D7) erzielt eine wesentlich höhere Volumenausbeute an synthetisiertem Malariaprotein. Das betrifft sowohl die Menge an zellgebundenem Proteinprodukt (Abb. 4a und 4b) als auch die Menge an löslichem Produkt, die in beiden Stämmen nur gering bleibt .3. The transformant P. mirabilis LVIWEI (p6H-42-3D7) achieves a significantly higher volume yield of synthesized malaria protein. This affects both the amount of cell-bound protein product (Fig. 4a and 4b) and the amount of soluble product, which remains only small in both strains.
Ausführungsbeispiel 4:Example 4:
Funktionalität unterschiedlicher Expressionsvektoren mit regulierbarer Expressionsleistung in L-Form-Zellen von Proteus mirabilis LVIWEIFunctionality of different expression vectors with controllable expression performance in L-form cells from Proteus mirabilis LVIWEI
Für die erfolgreiche Verwendung von Bakterienzellen zur Synthese rekombinanter Protein-produkte ist eine kontrollierbare Überexpression der Produktgene von entscheidender Bedeutung. Das Beispiel 4 dokumentiert, daß eine solche induzierbare Produktsynthese auf der Grundlage der für E. coli optimierten Genkonstruktionen und Regulationsprinzipien auch in L-Form-Zellen von P. mirabilis LVIWEI möglich ist. A) Vektorkonstruktion und Nachweis der regulierbaren Expressionsleistung:Controllable overexpression of the product genes is of crucial importance for the successful use of bacterial cells for the synthesis of recombinant protein products. Example 4 documents that such an inducible product synthesis based on the gene constructions and regulatory principles optimized for E. coli is also possible in L-form cells from P. mirabilis LVIWEI. A) Vector construction and proof of the controllable expression performance:
Methodik:Methodology:
Die eingesetzten Vektoren wurden mit bekannten gentechnischen Methoden konstruiert (Maniatis et al . , 1989, Molecular Cloning: A Laboratory Manual . Cold Spring Harbor Lab. Cold Spring Harbor N.Y.; Ausubel, F.N., 1998, Current Protocols in Molecular Biology. Wiley and Sons).The vectors used were constructed using known genetic engineering methods (Maniatis et al., 1989, Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Lab. Cold Spring Harbor NY; Ausubel, FN, 1998, Current Protocols in Molecular Biology. Wiley and Sons) ,
Als einfacher Nachweis für die Funktionalität der Vektoren wurde das Gen für das Grün-fluoreszierende Protein (GFP; Crameri et al., 1996, Nature Biotechnol . 14, 315-319), stellvertretend für die Gene unterschiedlichster rekombinanter Proteine, in die Expressionskassetten unter der Kontrolle verschiedener Promotoren einkloniert. Das korrekt gefaltete, funktionale GFP besitzt ein chromogenes Zentrum, das bei Anregung im UV-Bereich (395nm) grünliches Licht emitiert (509nm). Der Nachweis und die Stärke der grünen Fluoreszenz sind ein Maß der Effizienz der Vektoren und der Produktbildung in L-Form-Zellen hinsichtlich der Induktion des Transkriptionsstarts (mRNA-Bildung) , der Translation (Proteinsynthese nach kodierender mRNA-Sequenz ) sowie der korrekten Faltung des Proteins .As a simple proof of the functionality of the vectors, the gene for the green fluorescent protein (GFP; Crameri et al., 1996, Nature Biotechnol. 14, 315-319), representative of the genes of a wide variety of recombinant proteins, was inserted into the expression cassettes under the Control of different promoters cloned. The correctly folded, functional GFP has a chromogenic center that emits greenish light (509nm) when excited in the UV range (395nm). The detection and the strength of the green fluorescence are a measure of the efficiency of the vectors and the product formation in L-form cells with regard to the induction of the transcription start (mRNA formation), the translation (protein synthesis according to the coding mRNA sequence) and the correct folding of the Protein.
Für eine induzierbare und gut regulierbare Proteinbildung wird das GFP-Gen unter die Kontrolle der Promotoren lac-P/O (+ lacl- Repressor-Gen; Repressor-Inaktivierung durch Zugabe von 5mM IPTG) bzw. tetA-P/O (+ tetR-Repressor-Gen, Repressor-Inaktivierung durch Zugabe von 200μg/ml anhydro-Tetracyclin [aTC]) gestellt. Für eine konstitutive Produktbildung steht das GFP-Gen unter Kontrolle der Promotor-Region des lacI-Repressor-Gens (P-iacI) bzw. noch zusätzlich unter Kontrolle der Promotor-Region des ß- Lactamase-Gens (P-jbla) als Tandem-Hybrid (P-lacI / P-jbla) . Als Beispiel für die Regulation der Expressionsstärke über den Gendosis-Effekt, d.h. einer Beeinflussung der Synthese des rekombinanten Proteins durch unterschiedliche Anzahl (Kopien) der Vektor-DNA mit dem kodierenden Gen pro Zelle, werden Vektoren für die lac-P/O-kontrollierte GFP-Expression mit den Replikations- origins ColEl, pBR322 und pl5A konstruiert.For an inducible and easily regulatable protein formation, the GFP gene is under the control of the promoters lac-P / O (+ lacl repressor gene; repressor inactivation by adding 5mM IPTG) or tetA-P / O (+ tetR- Repressor gene, repressor inactivation by adding 200μg / ml anhydro-tetracycline [aTC]). For constitutive product formation, the GFP gene is under the control of the promoter region of the lacI repressor gene (P-iacI) or additionally under the control of the promoter region of the β-lactamase gene (P-jbla) as a tandem Hybrid (P-lacI / P-jbla). Vectors for the lac-P / O-controlled GFP are used as an example for the regulation of the expression level via the gene dose effect, ie influencing the synthesis of the recombinant protein by different numbers (copies) of the vector DNA with the coding gene per cell -Expression constructed using the replication origins ColEl, pBR322 and pl5A.
Die Übertragung der Vektoren in die L-Form-Stämme erfolgte wie im Ausführungs-beispiel 5 beschrieben. Alle Vektoren trugen das Kanamycin-Resistenzgen als Selektions-marker .The vectors were transferred to the L-form strains as described in embodiment 5. All vectors carried the kanamycin resistance gene as a selection marker.
Ergebnisse:Results:
L-Form-Zellen von Proteus mirabilis LVIWEI mit den entsprechenden Vektoren werden in einer Schüttelkultur (LFS-Medium mit 0,5% Hefeextrakt; 18 Std. bei 37 °C) ohne Induktoren kultiviert. Von diesen Kulturen und dem plasmidfreien Kontrollstamm werden je 0,1 ml Zellsuspension auf LFS-Medium-Agar-Platten (ohne bzw. mit Induktor-Zusatz) ausgestrichen. Nach 24 Std. Wachstum bei 37 °C erfolgt die Anregung mit UV-Licht zur Emission des grünen Fluoreszenz-Lichtes und die Fotographie mit einer CCD-Kamera.L-form cells from Proteus mirabilis LVIWEI with the corresponding vectors are cultivated in a shake culture (LFS medium with 0.5% yeast extract; 18 hours at 37 ° C.) without inducers. From these cultures and the plasmid-free control strain, 0.1 ml of cell suspension are spread onto LFS medium agar plates (without or with the addition of an inductor). After 24 hours of growth at 37 ° C, excitation with UV light to emit the green fluorescent light and photography with a CCD camera.
Die auf den Agarplatten in Abbildung 5 gewachsenen und induzierten Zellen von P. mirabilis LVIWEI enthalten Vektoren mit folgenden Merkmale (Tabelle 1) . The P. mirabilis LVIWEI cells grown and induced on the agar plates in Figure 5 contain vectors with the following features (Table 1).
Tabelle 1: Promotor-Gen-Konstrukte zur GFP-Synthese in P. mirabilis LVIWEITable 1: Promoter-gene constructs for GFP synthesis in P. mirabilis LVIWEI
Nr. Vektor RReepplliikkaattiiooππssoorriiggiinn KKooppii ieenn//ZZelle Expressionskontrolle durch InduktionNo. Vector RReepplliikkaattiiooππssoorriiggiinn KKooppii ieenn // ZCell expression control by induction
00
1 pMK310gfp pl5A 5 - 10 lacP/O ( + /fld-Repressor) + IPTG1 pMK310gfp pl5A 5 - 10 lacP / O (+ / fld repressor) + IPTG
2 pMK311gfp pBR322 30 - 70 tocP/O ( + Jαcl-Repressor) + IPTG2 pMK311gfp pBR322 30 - 70 tocP / O (+ Jαcl repressor) + IPTG
3 pMK31gfp ColEl (pUC) 120 - • 200 lacP/O (+ fad-Repressor) + IPTG3 pMK31gfp ColEl (pUC) 120 - • 200 lacP / O (+ fad repressor) + IPTG
4 PMK3c2gfp ColEl (pUC) 120 - ■ 200 P-tαcI / P-bla Ix konstitxitiv4 P MK3c2gfp ColEl (pUC) 120 - ■ 200 P-tαcI / P-bla Ix constitutive
5 pMK3c-gfp ColEl (pUC) 120 - • 200 P-lacl konsumtiv5 pMK3c-gfp ColEl (pUC) 120 - • 200 P-lacl consumed
6 pMK7gfp ColEl (pUC) 120 - • 200 tetP/O ( + tertR-Repressor) + aTC6 pMK7gfp ColEl (pUC) 120 - • 200 tetP / O (+ tertR repressor) + aTC
Die aus Abb. 5 zusammengefaßten Ergebnisse dokumentieren, daßThe results summarized in Fig. 5 document that
- Zellen ohne GFP-Expressionsvektoren (Nr. 0) unter allen Bedingungen keine Fluoreszenz zeigen,Cells without GFP expression vectors (No. 0) show no fluorescence under all conditions,
- die drei Konstrukte mit dem lac-Ε/O (Nr. 1-3) nur nach Induktion mit 1-10 mM IPTG das GFP synthetisieren,- the three constructs with the lac-Ε / O (No. 1-3) only synthesize the GFP after induction with 1-10 mM IPTG,
- dabei mit Plasmiden, die in hoher Kopiezahl vorliegen (Nr.3-6, mit ColEl / pUC ori) , mehr GFP gebildet wird als mit solchen, die nur in wenigen Kopien in den Zellen vorhanden sind (Nr. 1, mit pl5A ori) ,- In this case, more GFP is formed with plasmids which are present in high copy number (No. 3-6, with ColEl / pUC ori) than with those which are only present in a few copies in the cells (No. 1, with pl5A ori ),
- auch mit dem tetA-P/O eine spezifische Genexpression möglich ist (Nr. 6) und- A specific gene expression is also possible with the tetA-P / O (No. 6) and
- in den Zellen, die Vektoren mit dem GFP-Gen unter Kontrolle des konstitutiven iacI-P/O enthalten (Nr. 4), unter allen getesteten Bedingungen eine GFP-Synthese erfolgt.- In the cells containing vectors with the GFP gene under the control of the constitutive iacI-P / O (No. 4), GFP synthesis takes place under all conditions tested.
Diese Ergebnisse erlauben die Schlußfolgerung, daß die für die üblichen E. coii-Wirtsstamme konstruierten und optimierten Expressionsvektoren auch in den L-Form-Zellen von P. mirabilis LVIWEI effektiv arbeiten. B) Segregative und strukturelle Stabilität der Expressionsvektoren in L-Form-ZellenThese results allow the conclusion that the expression vectors constructed and optimized for the usual E. coii host strains also work effectively in the L-form cells of P. mirabilis LVIWEI. B) Segregative and structural stability of the expression vectors in L-form cells
Methodik:Methodology:
Von P. mirabilis LVIWEI (pMK3c2GFP) mit konstitutiver GFP- Expression (Nr. 4 in Tab. 1 und auf Agar-Platte in Abb. 5) werden Schüttelkulturen in LFS-Medium mit und ohne Selektivantibiotikum (50μg/ml Kanamycin) wie unter Beispiel 5 beschrieben angelegt, die jeweils wiederum nach 24 Std., d.h. nach ca. 4-5 Zellgenerationen, in frisches Medium übertragen und erneut, insgesamt über 12 Passagen, kultiviert werden. Nach jeder 3. Passage erfolgen Verdünnungsreihen (10" bis 10" ) der Kulturen auf LFS- Medium-Agar-Platten mit und ohne Selektivantibiotikum, und nach 3-tägigem Wachstum werden unter UV-Licht die fluoreszierenden bzw. nicht fluoreszierenden Einzelkolonien ausgezählt (Abb. 6).P. mirabilis LVIWEI (pMK3c2GFP) with constitutive GFP expression (No. 4 in Tab. 1 and on agar plate in Fig. 5) shake cultures in LFS medium with and without selective antibiotic (50μg / ml kanamycin) as in Example 5 described, which are transferred to fresh medium after 24 hours, ie after approx. 4-5 cell generations, and again cultivated over a total of 12 passages. After every third passage, dilution series (10 " to 10 " ) of the cultures are carried out on LFS medium agar plates with and without selective antibiotic, and after 3 days of growth, the fluorescent or non-fluorescent individual colonies are counted under UV light (Fig 6).
Ergebnisse:Results:
Der Verlauf des Anteils fluoreszierender Einzelkolonien, d.h. der plasmidhal tigen Zellen in den Kulturen mit und ohne Selektionsdruck, ergibt auch über lange Kultivierungsdauer (mit über 50 Generationen ohne Selektivantibiotikum) keine signifikanten Unterschiede. Dies wird in Abbildung 6 dolumentiert . Die grüne Fluoreszenz aller plasmidhaltigen Einzelkolonien verdeutlicht damit die strukturelle und funktionelle Stabilität der Vektoren.The course of the proportion of fluorescent single colonies, i.e. the plasmid-containing cells in the cultures with and without selection pressure do not produce any significant differences even over a long cultivation period (with over 50 generations without a selective antibiotic). This is documented in Figure 6. The green fluorescence of all plasmid-containing individual colonies thus illustrates the structural and functional stability of the vectors.
C) Vergleich der Vektor-Effizienz in L-Form- und N-Form- Zellen:C) Comparison of vector efficiency in L-shape and N-shape cells:
Methodik:Methodology:
Als Beispiel für die Produktivität des L-Form-Expressionssystems wurde die GFP-Expression mit verschiedenen Vektoren in L-Form- Zellen von P. mirabilis LVIWEI mit der Expression in N-Form- Zellen vom E. coli Produktionsstamm RV308 verglichen. Beide Zelltypen werden unter gleichen Bedingungen in Komplexmedium kultiviert und die GFP-Expression induziert. Die Bestimmung der Zellkonzentration der Kulturen (g Biotrockenmasse / 1) erfolgte durch Absorptionsmessung bei 550nm. Die Zellen werden durch Zentrifugation geerntet, mittels Ultraschall-Behandlung aufgeschlossen, die GFP-Aktivität (Fluoreszenz) am Fluoreszenz- Photometer quantifiziert und die der Aktivität zugrunde liegende Menge des synthetisierten GFP-Totalproteins über denaturierende SDS-PAGE, Coomassie-Färbung und Gelauswertung und einer Eichkurve quantifiziert. Die Menge an synthetisierten funktionalem GFP wird auf die eingesetzte Biomasse der P. mirabilis L-Form-Zellen bzw. der E. coli N-Form-Zellen bezogen (spezifische Aktivität).As an example of the productivity of the L-form expression system, GFP expression with various vectors in L-form P. mirabilis LVIWEI cells compared with expression in N-form cells from E. coli production strain RV308. Both cell types are cultivated under the same conditions in complex medium and GFP expression is induced. The cell concentration of the cultures (g dry biomass / 1) was determined by measuring the absorption at 550 nm. The cells are harvested by centrifugation, disrupted by ultrasound treatment, the GFP activity (fluorescence) quantified on the fluorescence photometer and the amount of the total GFP protein synthesized on the basis of the activity via denaturing SDS-PAGE, Coomassie staining and gel evaluation and one Calibration curve quantified. The amount of functional GFP synthesized is based on the biomass used for the P. mirabilis L-form cells or the E. coli N-form cells (specific activity).
Ergebnisse:Results:
Die in Tabelle 2 aufgeführten Werte an funktionalem GFP (mg GFP / g Biotrockenmasse) zeigen die gleiche Effizienz der Expressionsvektoren (Beispiele: pMK31GFP ( IPTG-Induktion) , pMK7GFP (aTC-Induktion) bzw. pMK3c2GFP (konstitutiv) ) für die rekom- binante Proteinbildung in den weiterentwickelten L-Form-Stämmen wie für bereits etablierte N-Form-ü?. -cσli-Expressionssysteme und -Produktionsstamme .The values of functional GFP (mg GFP / g dry biomass) listed in Table 2 show the same efficiency of the expression vectors (examples: pMK31GFP (IPTG induction), pMK7GFP (aTC induction) or pMK3c2GFP (constitutive)) for the recombinant Protein formation in the further developed L-shape strains as for already established N-shape strains. -cσli expression systems and production lines.
Tabelle 2: Vergleich der Synthese-Effizienz für GFP von verschiedenen Vektorkonstrukten in P. mirabilis LVIWEI und E. coli RV308 in mg GFP / g Biotrockenmasse.Table 2: Comparison of the synthesis efficiency for GFP from different vector constructs in P. mirabilis LVIWEI and E. coli RV308 in mg GFP / g dry biomass.
Figure imgf000047_0001
Ausführungsbeispiel 5
Figure imgf000047_0001
Embodiment 5
Herstellung von löslichen, funktionell aktiven, rekombinanten Proteinen (Surface-Display) mit Protoplastentyp L-Formen von Proteus mirabilis LVIWEI und Escherichia coli LWF+WEIProduction of soluble, functionally active, recombinant proteins (surface display) with protoplast type L forms from Proteus mirabilis LVIWEI and Escherichia coli LWF + WEI
Das Beispiel beschreibt die Herstellung von rekombinanter Staphylokinase in membrangebundener Form. Als L-Form-Zellen wurden die Stämme E. coli LWF+WEI und P. mirabilis LVIWEI verwendent . Staphylokinase ist ein medizinisch bedeutsamer Plas inogenaktivator (15 kDa), der von L-Form-Zellen als extrazelluläres, lösliches, funktionell aktives, rekombinantes Genprodukt synthetisiert werden kann (Sieben, S., Dissertation , Universität Jena, 1998). Beim Translokationsprozess wird das 27 Aminosäuren lange Signalpeptid proteolytisch abgetrennt.The example describes the production of recombinant staphylokinase in membrane-bound form. The strains E. coli LWF + WEI and P. mirabilis LVIWEI were used as L-form cells. Staphylokinase is a medically important plasma activator (15 kDa), which can be synthesized by L-form cells as an extracellular, soluble, functionally active, recombinant gene product (Sieben, S., dissertation, University of Jena, 1998). In the translocation process, the 27 amino acid signal peptide is proteolytically separated.
Material und Methodenmaterial and methods
In dem ersten Schritt wird die DNA-Sequenz (Behnke, D. und Gerlach, D., Mol. Gen. Genetics 1987, 210, 528-534) des reifen Proteins (Aminosäuren 28-163) mittels PCR (Boehringer, Expand High Fidelity PCR Kit) amplifiziert . Durch Auswahl von geeigneten Primern wird das saT-Konstrukt modifiziert, um die anschließende Fusion mit den Membrananker-DNA-Sequenzen über eine Pstl- Schnittstelle am 5 '-Ende und die Integration in das Expressions- plasmid pF003-Kan über eine Hindlll-Schnittstelle am 3 '-Ende zu ermöglichen (Tab. 1) . Dieses saTc-Fragment ist die Grundlage für alle Fusionsproteine. Durch die Insertion der Pstl-Schnittstelle wird gleichzeitig in alle Konstrukte eine Spacersequenz von zwei Aminosäuren zwischen Membrananker und Sak eingebaut.In the first step, the DNA sequence (Behnke, D. and Gerlach, D., Mol. Gen. Genetics 1987, 210, 528-534) of the mature protein (amino acids 28-163) by means of PCR (Boehringer, Expand High Fidelity PCR kit) amplified. The saT construct is modified by selection of suitable primers in order to effect the subsequent fusion with the membrane anchor DNA sequences via a PstI site at the 5 'end and the integration into the expression plasmid pF003-Kan via a HindIII site Allow 3 'end (Tab. 1). This saTc fragment is the basis for all fusion proteins. By inserting the Pstl interface, a spacer sequence of two amino acids is inserted simultaneously between membrane anchor and Sak in all constructs.
Im zweiten Schritt erfolgt die Bereitstellung von Membrananker- Sequenzen. Als solche Ankersequenzen werden die Helix 1 (Aminosäuren 1-51; LacYHl) und die Helices 1-3 (Aminosäuren 1-127; LacYHl-3) der Laktose-Permease LacY aus E. coli verwendet. Andere Ankersequenzen sind die Helix 1 (Aminosäuren 1-74; SecYHl) und die Helices 1-3 (Aminosäuren 1-153, SecYHl-3) der Preprotein- Translokase SecY aus E. coli sowie die Helix 1 (Aminosäuren 1-34; CcmAHl) des Schwärmproteins CcmA von P. mirabilis zuzüglich eines zusätzlichen Spacers von 5 Aminosäuren Länge. Die entsprechenden genauen Sequenzen sind in Abbildung 7 zusammengestellt. Die DNA der Membrananker wird mittels PCR aus genomischer DNA von E. coli DH5θ6 und P. mirabilis VI isoliert (Quiagen Genomic DNA Handbook, 1997). Hierfür werden Primer (Tab. 3) benutzt, die die Integration in das Expressionsplasmid pF003-Kan über eine am 5 '-Ende eingefügte Ndel-Schnittstelle und die Fusion mit dem saJc-Fragment über eine am 3 '-Ende eingefügte Pstl-Schnittstelle ermöglichen.In the second step, membrane anchor sequences are made available. The helix 1 (amino acids 1-51; LacYHl) and the helices 1-3 (amino acids 1-127; LacYHl-3) of the lactose permease LacY from E. coli are used as such anchor sequences. Other Anchor sequences are helix 1 (amino acids 1-74; SecYHl) and helices 1-3 (amino acids 1-153, SecYHl-3) of the preprotein translocase SecY from E. coli and helix 1 (amino acids 1-34; CcmAHl) of the swarm protein CcmA from P. mirabilis plus an additional spacer of 5 amino acids in length. The corresponding exact sequences are shown in Figure 7. The DNA of the membrane anchor is isolated by PCR from genomic DNA from E. coli DH5θ6 and P. mirabilis VI (Quiagen Genomic DNA Handbook, 1997). For this purpose, primers (Tab. 3) are used which enable integration into the expression plasmid pF003-Kan via a Ndel interface inserted at the 5 'end and fusion with the saJc fragment via a PstI interface inserted at the 3' end ,
Tabelle 3: Übersicht über Primer, die bei der Amplifizierung und Modifizierung der Fusionsfragmente verwendetet wurden.Table 3: Overview of primers used in the amplification and modification of the fusion fragments.
Figure imgf000049_0001
Im dritten Schritt wird das sak-Fragment in den Vektor pF003 einkloniert, amplifiziert und anschliessend im Expressionsvektor mit den verschiedenen modifizierten Membranankerfragmenten fusioniert (Tab. 4; Abb. 8). Die Membrananker-sa./c-Fusions-Gene stehen unter der Kontrolle des tac Promotors und sind damit durch IPTG (Isopropyl-ß-D-Thiogalactopyranosid) induzierbar.
Figure imgf000049_0001
In the third step, the sak fragment is cloned into the vector pF003, amplified and then fused in the expression vector with the various modified membrane anchor fragments (Tab. 4; Fig. 8). The membrane anchor-sa./c-fusion genes are under the control of the tac promoter and are therefore inducible by IPTG (isopropyl-β-D-thiogalactopyranoside).
Tabelle 4: Übersicht über die verwendeten Fusionspartner und die entstandenen ExpressionsplasmideTable 4: Overview of the fusion partners used and the expression plasmids formed
Figure imgf000050_0001
Figure imgf000050_0001
Mit den in Tabelle 4 beschriebenen Expressionsplasmiden der pF- Serie erfolgt dann im Schritt 4 die Transformation in die L-Form- Zellen von P. mirabilis LVIWEI und E. coli LWF+WEI. Tranformiert wird mit der PEG-Methode (Gumpert et al . , aaO) . Die Isolierung der Transformanten wird auf BHI-Agarplatten mit Zusätzen von Pferdeserum (8%), Hefeextrakt (0,5%) und Kanamycin (0—50 μg/ml) durchgeführt. Einzelne Transformantenkolonien werden danach auf BHI-Agarplatten mit den gleichen Zusätzen an Serum und Hefeextrakt sowie Kanamycin (50 μg/ml) übertragen und 1-3 mal passa- giert, bis dichtes Wachstum als Kolonierasen erreicht ist. Die Flüssigkeitskultur der Transformanten wird in der Weise erhalten, daß ein Agarblöckchen mit reichlich Koloniewachstum in 30 ml BHI- Medium mit Zusätzen von Hefeextrakt (0,5%) und Kanamycin (50 μg/ml) eingebracht und unter Schütteln bebrütet (37°C) wird. Nach 2-4 Passagen unter den gleichen Wachstumsbedingungen werden so Flüssigkeitskulturen erhalten, die zu Zellkonzentrationen von 10 /ml wachsen. Im Fall der Transformanten von E. coli LWF+WEI sind die Zusätze von Kanamycin geringer (1 - 5 μg/ml).The expression plasmids of the pF series described in Table 4 are then used in step 4 to transform into the L-form cells of P. mirabilis LVIWEI and E. coli LWF + WEI. The PEG method is used to transform (Gumpert et al., Loc. Cit.). Isolation of the transformants is carried out on BHI agar plates with additions of horse serum (8%), yeast extract (0.5%) and kanamycin (0-50 μg / ml). Individual transformant colonies are then transferred to BHI agar plates with the same additions of serum and yeast extract as well as kanamycin (50 μg / ml) and passaged 1-3 times until dense growth is achieved as colonizing grass. The liquid culture of the transformants is obtained in such a way that an agar block with abundant colony growth is introduced into 30 ml of BHI medium with additions of yeast extract (0.5%) and kanamycin (50 μg / ml) and incubated with shaking (37 ° C.) becomes. After 2-4 passages under the same growth conditions, liquid cultures are obtained which lead to cell concentrations of Grow 10 / ml. In the case of the transformants of E. coli LWF + WEI, the additions of kanamycin are lower (1-5 μg / ml).
Im 5. Schritt wird die Flüssigkeitskultur der Transformante zur Synthese des Fusionsproteins angeregt und in die Fraktionen Kulturmedium (Überstand) , L-Form-Zellen, L-Form-Membranen und Zytoplasma aufgetrennt. Dazu werden Transformanten, z.B. P. mirabilis LVIWEI (pFCcmAHl-Sak) in Glaskölbchen (100 ml) oder Fermenter (21 Nettovolumen) in BHI-Medium mit Zusätzen von Hefeextrakt (0,5%) und Kanamycin (50 μg/ml) inkubiert (37°C). Nach 2 — 6 Std. erfolgte durch Zugabe von IPTG (3 mM) die Induktion der Genexpression von den Fusionsproteinen. Aus den Kulturen wurden nach 8, 24 und 48 Std. Proben entnommen. In ihnen erfolgt durch Zentrifugation (6000 g, 10 min) eine Abtrennung der Zellen als Pellet und des Kulturmediums als Überstand.In step 5, the liquid culture of the transformant is stimulated to synthesize the fusion protein and separated into the fractions culture medium (supernatant), L-shape cells, L-shape membranes and cytoplasm. To do this, transformants, e.g. P. mirabilis LVIWEI (pFCcmAHl-Sak) in glass flask (100 ml) or fermenter (21 net volume) in BHI medium with additions of yeast extract (0.5%) and kanamycin (50 μg / ml) incubated (37 ° C). After 2-6 hours, the addition of IPTG (3 mM) induced the gene expression from the fusion proteins. Samples were taken from the cultures after 8, 24 and 48 hours. The cells are separated by centrifugation (6000 g, 10 min) and the cells as pellet and the culture medium as supernatant.
Die Zellen werden einmal in Saccharoselösung (0,4 M) in dest. Wasser gewaschen und anschließend zur Trennung von Zytoplasma und Membranen aufgeschlossen. Der Aufschluß der Zellen von P. mirabilis LVIWEI erfolgt durch Ultraschallbehandlung mit einem Branson Sonifier 240. Die Zellen werden dazu in TRIS/HC1 Puffer (0,05 M, pH 7,0 ) mit Zusatz von MgS04 (0,1%) resuspendiert (OD bei 600 nm um 10, Zellkonzentration um 10 /ml, 10 ml Probenmenge) und 1 - 3 min mit Energiestufe 3 beschallt, wobei sich das Glasgefäß in einem Eisbad befindet. Durch Kontrolle von Proben im Phasenkontrastmikroskop (Vergrößerung 2000 x ) wird der Zeitpunkt ermittelt, zu dem die Zellen zerstört sind und nur noch Membranvesikel vorliegen.The cells are once in sucrose solution (0.4 M) in dist. Washed water and then disrupted to separate cytoplasm and membranes. The cells of P. mirabilis LVIWEI are disrupted by ultrasound treatment with a Branson Sonifier 240. The cells are resuspended in TRIS / HC1 buffer (0.05 M, pH 7.0) with the addition of MgS0 4 (0.1%) (OD at 600 nm around 10, cell concentration around 10 / ml, 10 ml sample amount) and sonicated for 1 - 3 min with energy level 3, the glass vessel being in an ice bath. By checking samples in a phase contrast microscope (magnification 2000 x), the point in time at which the cells are destroyed and only membrane vesicles are present is determined.
Im Falle der Transformantenkulturen von E. coli LWF+WEI erfolgt der Zellaufschluß durch osmotische Lyse. Dabei werden die mit 0,4 M Saccharose gewaschenen Zellen in TRIS/HCl Puffer (0,05 M , pH 7,0) mit Zusätzen von 0,1% MgS04 und 30 μg/ml DNAse (Boehringer Mannheim ) resuspendiert (Zellkonzentration 10 /ml) und bei Zimmertemperatur stehengelassen. Durch fortlaufende mikroskopische Kontrolle wird wiederum der Zeitpunkt der weitgehenden Zellyse bestimmt. Mit den so erhaltenen Suspensionen erfolgt dann die Trennung der Membranvesikel vom Zytoplasma durch Ultrazen- trifugation bei 80000 g in einer Optima XL80 Zentrifuge (Beckmann) .In the case of the transformant cultures of E. coli LWF + WEI, the cells are disrupted by osmotic lysis. The cells washed with 0.4 M sucrose are resuspended in TRIS / HCl buffer (0.05 M, pH 7.0) with additions of 0.1% MgSO 4 and 30 μg / ml DNAse (Boehringer Mannheim) (cell concentration 10 / ml) and left at room temperature. Continuous microscopic control again determines the point in time Cell lysis determined. The suspensions thus obtained are then used to separate the membrane vesicles from the cytoplasm by ultracentrifugation at 80,000 g in an Optima XL80 centrifuge (Beckmann).
Im 6. Schritt erfolgt der biochemische und f nktioneile Nachweis des Genproduktes in den 4 Fraktionen. Dazu werden 30 μl Probe im Western blot (Ausubel, F. M. 1999; Current Protocols in Molecular Biology) im SDS-Gel (13 — 15%) aufgetrennt und die Proteine nach Transfer auf eine PVDF-Membran (Millipore) mit Staphylokinase- spezifischen primären Antikörpern und sekundären Antikörperm, die an alkalische Phosphatase gekoppelt sind und somit eine Farbreaktion bewirken können, sichtbar gemacht.In the 6th step, the biochemical and functional detection of the gene product in the 4 fractions takes place. For this purpose, 30 μl sample is separated in a Western blot (Ausubel, FM 1999; Current Protocols in Molecular Biology) in the SDS gel (13 - 15%) and the proteins after transfer to a PVDF membrane (Millipore) with staphylokinase-specific primary antibodies and secondary antibodies, which are coupled to alkaline phosphatase and can thus cause a color reaction.
Der Nachweis der funktioneilen Aktivität erfolgt mit dem Milchagar-Plattentest . In Agarplatten (15 cm Durchmesser), die mit aqua dest. Agar (30 ml, 1,5%) mit Zusätzen von Magermilch (10%) und Plasminogen (10" μg/ml; Boehringer Mannheim) gefüllt sind, werden Löcher (9 mm Durchmesser) ausgestanzt, in die 50 μl der Proben gegeben werden. Nach 2 - 18 Std. Inkubation (37°C) erfolgt die Ausmessung der Aufklarzonen. Durch biologisch aktive Staphylokinase wird das Plasminogen aktiviert, und das enstehende Plasmin spaltet das Casein der Milch und führt zu Aufklarzonen um das Stanzloch. Durch Vergleich mit Staphylokinase-Standards kann so die biologische Aktivität der Staphylokinase quantitativ bestimmt werden.The milk agar plate test is used to demonstrate the functional activity. In agar plates (15 cm in diameter), which are washed with aqua dest. Agar (30 ml, 1.5%) are filled with additives of skimmed milk (10%) and plasminogen (10 " μg / ml; Boehringer Mannheim), holes (9 mm in diameter) are punched into which 50 μl of the samples are added After 2 - 18 hours of incubation (37 ° C) the clearing zones are measured. The plasminogen is activated by biologically active staphylokinase, and the resulting plasmin cleaves the milk casein and leads to clearing zones around the punch hole. By comparison with staphylokinase The biological activity of staphylokinase can thus be determined quantitatively.
Im 7. Schritt wird die Lokalisation des Fusionsproteins an der Außenseite der L-Form-Membran durch Trypsinverdau und durch Gefrierbruch-Elektronenmikroskopie mit Immunogoldmarkierung am Replikon untersucht. Zusätzlich wird die Membranständigkeit des Fusionsproteins durch den Nachweis der Rekonstitution in micellenbildenden Detergention wie Octylglycosid oder Triton X100 bewiesen. ErgebnisseIn the 7th step, the localization of the fusion protein on the outside of the L-shape membrane is examined by trypsin digestion and by freeze-fracture electron microscopy with immunogold labeling on the replicon. In addition, the membrane integrity of the fusion protein is proven by the detection of the reconstitution in micelle-forming detergents such as octylglycoside or Triton X100. Results
In Abb. 7 sind die Aminosäure und Nukleotidsequenzen der Membrananker und der Fusionsproteine dokumentiert. Mit der Sequenz der maturen Staphylokinase, die den Aminosäuren 28 — 163 des kompletten Proteins entspricht (nichtmarkierte Aminosäure- und Nukleotidsequenzbereiche) , wurden N-terminal über eine eingefügte PstI Schnittstelle (Sequenzbereiche fett, kursiv, unterstrichen) und einem dementsprechenden kurzen Aminosäurelinker die folgenden membranspannenden Domänen fusioniert (Sequenzbereiche doppelt unterstrichen) : a) Helix 1 (Aminosäuren 1 — 51; LacYHl) der Laktosepermease, b) Helices 1 — 3 (Aminosäuren 1 — 127; LacYHl-3) der Laktose-Permease, c) Helix 1 (Aminosäuren 1 — 74; SecYHl) der Preprotein-Translokase, d) Helices 1 — 3 (Aminosäuren 1 — 153; SecYHl-3) der Preprotein-Translokase und e) Helix 1 (Aminosäuren 1 — 34; CcmAHl) des Schwärmproteins mit einer zusätzlichen Spacersequenz von fünf Aminosäuren (Sequenzbereiche fett, kursiv) .Fig. 7 documents the amino acid and nucleotide sequences of the membrane anchors and the fusion proteins. With the sequence of the mature staphylokinase, which corresponds to amino acids 28-163 of the complete protein (unlabeled amino acid and nucleotide sequence regions), the following membrane-spanning were inserted N-terminally via an inserted PstI interface (sequence regions bold, italic, underlined) and a corresponding short amino acid linker Domains merged (sequence regions underlined twice): a) Helix 1 (amino acids 1 - 51; LacYHl) of the lactose permease, b) Helices 1 - 3 (amino acids 1 - 127; LacYHl-3) of the lactose permease, c) Helix 1 (amino acids 1 - 74; SecYHl) of the preprotein translocase, d) helices 1 - 3 (amino acids 1 - 153; SecYHl-3) of the preprotein translocase and e) helix 1 (amino acids 1 - 34; CcmAHl) of the swarm protein with an additional spacer sequence of five amino acids (sequence areas bold, italic).
In Abb. 8 ist beispielhaft das Expressionsplasmid pFLacYHl-3-Sak zur Synthese von rekombinanter membrangebundener Staphylokinase mit L-Form-Zellen von E. coli LWF+WEI dargestellt. Ptac : tac- Promotor; lacYHl-3 : Helices 1-3 der Laktose-Permease (As 1 — 127); sak : Gen für Staphylokinase (As 28 - 163); Spacer : 2 As; lacYHl-3-εak : Fusionsprotein; rrnBT : Transkriptionsterminator des rrnB Operons; kann : Kanamycinresistenz-Kassette; ori : Replikationsorigin von pBR322; laclq : Lac-Repressor mit modifiziertem Promotor.Fig. 8 shows an example of the expression plasmid pFLacYHl-3-Sak for the synthesis of recombinant membrane-bound staphylokinase with L-form cells from E. coli LWF + WEI. Ptac: tac promoter; lacYHl-3: Helices 1-3 of lactose permease (As 1-127); sak: gene for staphylokinase (As 28-163); Spacer: 2 As; lacYHl-3-εak: fusion protein; rrnBT: transcription terminator of the rrnB operon; can: kanamycin resistance cassette; ori: replication origin of pBR322; laclq: Lac repressor with a modified promoter.
Abb. 9 dokumentiert die Synthese der membrangebundenen Fusions- poteine LacYHl-Sak und LacYHl-3-Sak und erläutert schematisch das Prinzip des Surface-Displays mit E. coli LWF+WEI. a: Western blot-Analyse mit Sak-spezifischer Immunofärbung; lane 1, Molekulargewichtstandard; lane 2, Sak-Standard; lane 3, Membranfraktion von LacYHl-Sak exprimierenden Zellen; lane 4, Membranfraktion von LacYhl-3-Sak exprimierenden Zellen, b: Prinzip der Verankerung der Fusionsproteine im Phospholipidbilayer der Membran; 5, Staphylokinaseanteil; 6 , Laktose-Permeaseanteil (trans embrane Helices im Phospholipid-Bilayer) .Fig. 9 documents the synthesis of the membrane-bound fusion poteins LacYHl-Sak and LacYHl-3-Sak and explains schematically the principle of the surface display with E. coli LWF + WEI. a: Western blot analysis with Sak-specific immunostaining; lane 1, molecular weight standard; lane 2, Sak standard; lane 3, membrane fraction of LacYHl-Sak expressing cells; lane 4, membrane fraction of cells expressing LacYhl-3-Sak, b: principle of Anchoring of the fusion proteins in the phospholipid bilayer of the membrane; 5, staphylokinase portion; 6, lactose permease content (trans-embrane helices in the phospholipid bilayer).
1. Mit den angewandten Verfahren können die Gensequenzen der integralen Membrananker-Domänen (Helix 1 und Helices 1-3 ) von der Laktose-Permease LacY, von der Preprotein-Translokase SecY aus E. coli und von dem Schwärmprotein CcmA (Helix 1) aus P. mirabilis (Abb. 7) so mit dem Staphylokinasegen fusioniert werden, daß sie sich in das Plasmid pF003-Kan integrieren lassen (Abb. 8).1. With the methods used, the gene sequences of the integral membrane anchor domains (Helix 1 and Helices 1-3) can be derived from the lactose permease LacY, from the preprotein translocase SecY from E. coli and from the swarm protein CcmA (Helix 1) P. mirabilis (Fig. 7) are fused with the staphylokinase gene so that they can be integrated into the plasmid pF003-Kan (Fig. 8).
2. Die neuartigen Membrananker-Staphylokinase-Genkonstrukte LacYHl-Sak, LacYHl-3-Sak, SecYHl-Sak, SecYHl-3-Sak und CcmAHl-Sak werden durch IPTG-Induktion kontrollierbar in den Stämmen E. coli LWF+WEI und P. mirabilis LVIWEI überexprimiert, ohne daß das Zellwachstum gehemmt wird und die Zellen geschädigt oder lysiert werden.2. The novel membrane anchor staphylokinase gene constructs LacYHl-Sak, LacYHl-3-Sak, SecYHl-Sak, SecYHl-3-Sak and CcmAHl-Sak can be controlled by IPTG induction in the E. coli LWF + WEI and P. strains. mirabilis LVIWEI overexpressed without inhibiting cell growth and damaging or lysing the cells.
3. Die Genprodukte der Membrananker-Staphylokinase-Fusions- proteine werden in solchen Mengen von den L-Form-Transformanten gebildet, daß sie im SDS-Gel und Western blot als spezifisch gefärbte Banden dargestellt werden. In Abb. 9a ist stellvertretend für alle Fusionsproteine die erfolgreiche Expression der Fusionsproteine LacYHl-Sak und LacYHl-3-Sak in E. coli LWF+WEI mittels Western blot-Analyse mit Sak-spezifischen Antikörpern dargestellt. Die Banden entsprechen den jeweiligen zu erwartenden Molekulargewichten (LacYHl-Sak = 20,8 kDa, LacYHl-3-Sak = 27,9 kDa) . Ungefähr 5 — 50 mg/1 Fusionsprodukt wurden gebildet. Abb. 9b veranschaulicht das Prinzip der Membrananker und der Fusionsproteine. Die Expression der Fusionsproteine SecYHl-Sak (23,7 kDa) und SecYHl-3-Sak (32,1 kDa) konnte in E. coli LWF+WEI mit den gleichen Methoden nachgewiesen werden. SecYHl-3-Sak wird allerdings nur in geringen Mengen exprimiert. P. mirabilis LVIWEI ist weniger gut für die Expression von Fusionsproteinen mit heterologen Membranankern von E. coli geeignet. Die Expression des Fusionsprodukts CcmAHl-Sak in P. mirabilis LVIWEI verlief hingegen sehr erfolgreich. Die Menge membrangebundener Staphylokinase lag im Bereich von 100 mg/1.3. The gene products of the membrane anchor-staphylokinase fusion proteins are formed in such quantities by the L-form transformants that they are shown in the SDS gel and Western blot as specifically colored bands. In Fig. 9a representative of all fusion proteins, the successful expression of the fusion proteins LacYHl-Sak and LacYHl-3-Sak in E. coli LWF + WEI is shown by means of Western blot analysis with Sak-specific antibodies. The bands correspond to the molecular weights to be expected (LacYHl-Sak = 20.8 kDa, LacYHl-3-Sak = 27.9 kDa). Approximately 5-50 mg / 1 fusion product was formed. Fig. 9b illustrates the principle of membrane anchors and fusion proteins. The expression of the fusion proteins SecYHl-Sak (23.7 kDa) and SecYHl-3-Sak (32.1 kDa) could be demonstrated in E. coli LWF + WEI using the same methods. However, SecYHl-3-Sak is only expressed in small amounts. P. mirabilis LVIWEI is less suitable for the expression of fusion proteins with heterologous membrane anchors from E. coli. The expression however, the fusion product CcmAHl-Sak in P. mirabilis LVIWEI was very successful. The amount of membrane bound staphylokinase was in the range of 100 mg / 1.
4. Die Genprodukte sind überwiegend oder ausschließlich in den Membranfraktionen lokalisiert. Nur geringe Mengen können im Zytoplasma oder im Mediumüberstand gefunden werden. Im Falle der Fusionsproteine mit einer Helix (Hl) ist die synthetisierte Menge an Staphylokinase wesentlich höher (3 - 10 mal) als bei den Konstruktionen mit 3 Helices (Hl-3). Sie bleibt fast vollständig an die L-Form-Membran gebunden. Die mit drei Helices fusionierte Staphylokinase ist ausschließlich in membrangebundener Form nachweisbar.4. The gene products are predominantly or exclusively localized in the membrane fractions. Only small amounts can be found in the cytoplasm or in the medium supernatant. In the case of fusion proteins with a helix (Hl), the amount of staphylokinase synthesized is significantly higher (3 - 10 times) than in the case of constructions with 3 helices (Hl-3). It remains almost completely bound to the L-shape membrane. The staphylokinase fused with three helices can only be detected in membrane-bound form.
5. Die in den Membranfraktionen lokalisierte Staphylokinase ist funktionell aktiv. Mit dem Milchagar-Test wurde aktive Staphylokinase nachgewiesen.5. The staphylokinase localized in the membrane fractions is functionally active. Active staphylokinase was detected using the milk agar test.
6. Die Staphylokinasemoleküle befinden sich auf der Außenseite der L-Form-Membran. Neben der positiven funktioneilen Aktivität wurde dies durch den Verlust der Staphylokinase nach proteolyt- ischem Abbau mit Trypsin, durch Rekonstitutionsexperi ente in Triton X100 und Octylglycosid sowie durch Immunogoldfärbung und anschließender Elektronenmikroskopie nachgewiesen. Aus den mechanischen und chemischen Behandlungen der Membranen (Scherkräfte bei Kultivierung, Waschen mit TRIS/HCl-Puffer, Präparation und Waschungen der Membran) kann geschlossen werden, daß die Staphylokinase-Moleküle sehr fest an der L-Form-Membran gebunden bleiben.6. The staphylokinase molecules are on the outside of the L-shape membrane. In addition to the positive functional activity, this was demonstrated by the loss of staphylokinase after proteolytic degradation with trypsin, by reconstitution experiments in Triton X100 and octylglycoside, as well as by immunogold staining and subsequent electron microscopy. It can be concluded from the mechanical and chemical treatments of the membranes (shear forces during cultivation, washing with TRIS / HCl buffer, preparation and washing of the membrane) that the staphylokinase molecules remain very firmly bound to the L-form membrane.
Die Ergebnisse belegen die Entwicklung neuartiger Surface- Display-Systeme, mit denen membrangebundene und Fusionsproteine aus Membrananker-Peptiden und löslichen Proteinen kontrolliert synthetisiert und in relativ großen Mengen in L-Form-Membranvesi- keln hergestellt werden können. Im Vergleich zu den bisherigen bekannten bakteriellen Surface-Display-Systemen liegen die Vorteile dieses Systems darin, daß L-Form-Membranen relativ einfach in reiner Form gewinnbar sind, daß darin immunreaktive Komponenten (z.B. LPS, Muramylpeptide, Fimbrien, Geißeln) weitestgehend fehlen, daß extrazelluläre Proteasen fehlen, daß für das Surface-Display nur die Translokation durch die Zytoplasmamembran notwendig ist, daß relativ große Mengen des Fusionsproteins an der Außenseite der L-Form-Membran exponiert wird und daß das Proteinprodukt als funktionell aktive Moleküle auf der Membran gebunden bleiben.The results demonstrate the development of new surface display systems with which membrane-bound and fusion proteins from membrane anchor peptides and soluble proteins can be synthesized in a controlled manner and produced in relatively large quantities in L-shape membrane vesicles. In comparison to the previously known bacterial surface display systems, the Advantages of this system in that L-form membranes are relatively easy to obtain in pure form, that immunoreactive components (eg LPS, muramyl peptides, fimbriae, flagella) are largely absent, that extracellular proteases are missing, that only translocation is available for the surface display the cytoplasmic membrane requires that relatively large amounts of the fusion protein be exposed on the outside of the L-shape membrane and that the protein product remain bound to the membrane as functionally active molecules.
Damit eröffnen sich mit dem L-Form-Surface-Display-System neue Wege zur Untersuchung von Struktur-Funktions-Beziehungen und Zell-Zell-Interaktionen sowie zur Entwicklung neuer und alternativer Vaccinierungsstrategien und diagnostischer Testsysteme. The L-shape surface display system opens up new ways of studying structure-function relationships and cell-cell interactions as well as developing new and alternative vaccination strategies and diagnostic test systems.
INTERNATIONALES FORMBLATTINTERNATIONAL FORM
Institut für Molekulare Biotechnologie e.V. Beutenbergstr. 11Institute for Molecular Biotechnology e.V. Beutenbergstr. 11
07708 Jena EMPFANGSBESTÄTIGUNG BEI ERSTHINTERLEGUNG, ausgestellt gemäß Regel 7.1 von der unten angegebenen INTERNATIONALEN HINTERLEGUNGSSTELLE07708 Jena FIRST DEPOSIT RECEIPT CONFIRMATION, issued in accordance with rule 7.1 by the INTERNATIONAL DEPOSIT BODY specified below
I. KENNZEICHNUNG DES MIKROORGANISMUSI. LABELING OF THE MICROORGANISM
Vom HINTERLEGER zugeteiltes Bezugszeichen: Von der INTERNATIONALEN HINTERLEGUNGSSTELLE zugeteilte EINGANGSNUMMER: L170WEIReference number assigned by the DEPOSIT: INPUT NUMBER assigned by the INTERNATIONAL DEPOSIT: L170WEI
DSM 13361DSM 13361
II. WISSENSCHAFTLICHE BESCHREIBUNG UND/ODER VORGESCHLAGENE TAXONOMISCHE BEZEICHNUNGII. SCIENTIFIC DESCRIPTION AND / OR PROPOSED TAXONOMIC NAME
Mit dem unter I. bezeichneten Mikroorganismus wurdeWith the microorganism designated under I.
(X ) eine wissenschaftliche Beschreibung(X) a scientific description
(X ) eine vorgeschlagene taxonomische Bezeichnung eingereicht (Zutreffendes ankreuzen).(X) submitted a proposed taxonomic name (check where applicable).
III. EINGANG UND ANNAHMEIII. ENTRANCE AND ACCEPTANCE
Diese internationale Hinterlegungsstelle nimmt den unter I bezeichneten Mikroorganismus an, der bei ihr am 2000 - 03 - 06 (Datum der Ersthinterlegung)1 eingegangen istThis international depository accepts the microorganism referred to under I, which it received on 2000 - 03 - 06 (date of first deposit) 1
IV. EINGANG DES ANTRAGS AUF UMWANDLUNGIV. RECEIPT FOR CONVERSION
Der unter I bezeichnete Mikroorganismus ist bei dieser Internationalen Hinterlegungsstelle am eingegangen (Datum der Ersthinterlegung) und ein Antrag auf Umwandlung dieser Ersthinterlegung in eine Hinterlegung gemäß Budapester Vertrag ist am eingegangen (Datum des Eingangs des Antrags auf Umwandlung).The microorganism referred to under I was received by this international depository on (date of first deposit) and an application for the conversion of this first deposit into a deposit under the Budapest Treaty was received on (date of receipt of the request for conversion).
V. INTERNATIONALE HINTERLEGUNGSSTELLEV. INTERNATIONAL DEPOSIT
Name: DSMZ-DEUTSCHE SAMMLUNG VON Unterschrift(en) -der zur Vertretung der internationalen HinterlegungsstelleName: DSMZ-GERMAN COLLECTION OF Signature (s) -der to represent the international depository
MIKROORGANISMEN UND ZELLKULTUREN GmbH befugten Person(en) oder des (der) von ihr ermächtigten Bediensteten:MIKROORGANISMEN UND ZELLKULTUREN GmbH authorized person (s) or the authorized person (s):
Anschrift Mascheroder Weg 1b D-38124 BraunschweigAddress Mascheroder Weg 1b D-38124 Braunschweig
Datum: 2000 - 03 - 10Date: 2000 - 03 - 10
1 Falls Regel 6.4 Buchstabe d zutrifft, ist dies der Zeitpunkt zu dem der Status einer internationalen Hinterlegungsstelle erworben worden ist Formblatt DSMZ-BP/4 (einzige Seite) 0196 INTERNATIONALES FORMBLATT 1 If rule 6.4 letter d applies, this is the time at which the status of an international depository was acquired Form DSMZ-BP / 4 (single page) 0196 INTERNATIONAL FORM
Institut für Molekulare Biotechnologie e.V. Beutenbergstr. 11Institute for Molecular Biotechnology e.V. Beutenbergstr. 11
07708 Jena LEBENSFÄHIGKEITSBESCHEINIGUNG ausgestellt gemää Regel 10.2 von der unten angegebenen07708 Jena VITABILITY CERTIFICATE issued in accordance with Rule 10. 2 of the below
INTERNATIONALEN HINTERLEGUNGSSTELLEINTERNATIONAL DEPOSIT
I. HINTERLEGER II. KENNZEICHNUNG DES MIKROORGANISMUSI. DEPOSIT II. LABELING OF THE MICROORGANISM
Name: Institut für Molekulare Von der INTERNATIONALEN HINTERLEGUNGSSTELLEName: Institute for Molecular From the INTERNATIONAL DEPOSIT
Biotechnologie e .V. zugeteilte EINGANGSNUMMER: Anschrift: Beutenbergstr . 11 DSM 133 61Biotechnology eV assigned INPUT NUMBER: address: Beutenbergstr. 11 DSM 133 61
07708 Jena Datum der Hinterlegung oder Weiterleitung1: 2 000 - 03 - 0 607708 Jena Date of filing or forwarding 1 : 2,000 - 03 - 0 6
III. LEBENSFÄHIGKEITSBESCHEINIGUNGIII. VIABILITY CERTIFICATE
Die Lebensfähigkeit des unter II genannten Mikroorganismus ist am 2000- 03 - 06 2 geprüft worden. Zu diesem Zeitpunkt war der MikroorganismusThe viability of the microorganism mentioned under II was checked on 2000-03-06 2 . At that time the microorganism was
(X)5 lebensfähig(X) 5 viable
( )3 nicht mehr lebensfähig() 3 no longer viable
IV. BEDINGUNGEN, UNTER DENEN DIE LEBENSFÄHIGKE1TSPRÜFUNG DURCHGEFÜHRT WORDEN IST1 IV. CONDITIONS UNDER WHICH THE VITALITY EXAMINATION HAS BEEN 1
V. INTERNATIONALE HINTERLEGUNGSSTELLEV. INTERNATIONAL DEPOSIT
Name: DSMZ-DEUTSCHE SAMMLUNG VON Unterschriften) der zur Vertretung der internationalen HinterlegungsstelleName: DSMZ-GERMAN COLLECTION OF SIGNATURES) to represent the international depository
MIKROORGANISMEN UND ZELLKULTUREN GmbH befugten Person(en) oder des (der) von ihr ermächtigten Bediensteten:MIKROORGANISMEN UND ZELLKULTUREN GmbH authorized person (s) or the authorized person (s):
Anschrift: Mascheroder Weg lb D-38124 Braunschweig
Figure imgf000058_0001
Address: Mascheroder Weg lb D-38124 Braunschweig
Figure imgf000058_0001
Datum: 2000 - 03 - 10Date: 2000 - 03 - 10
Angabe des Datums der Ersthinterlegung. Wenn eine erneute Hinterlegung oder eine Weiterleitung vorgenommen worden ist, Angabe des Datums der jeweils letzten erneuten Hinterlegung oder Weiterleitung.Indication of the date of first filing. If a new deposit or redirection has been made, the date of the last new deposit or redirection is given.
In den in Regel 10.2 Buchstabe a Ziffer ii und iü vorgesehenen Fällen Angabe der letzten Lebensßhigkeitsprütung.In the cases provided for in Rule 10.2 (a) (ii) and (i), the last vitality test is stated.
Zutreffendes ankreuzen.Tick the appropriate.
Ausfüllen, wenn die Angaben beantragt worden sind und wenn die Ergebnisse der Prüfung negativ waren.Complete if the information has been requested and if the test results are negative.
Formblatt DSMZ-BP/9 (einzige Seite) 0196 INTERNATIONAL FORMForm DSMZ-BP / 9 (single page) 0196 INTERNATIONAL FORM
Institut für Molekulare Biotechnologie e.V. Beutenbergstr. 11Institute for Molecular Biotechnology e.V. Beutenbergstr. 11
07708 Jena RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNAΗONAL DEPOSITARY AUTHORITY identified at the botto of this page07708 Jena RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNAΗONAL DEPOSITARY AUTHORITY identified at the botto of this page
I. IDENTIFICATION OF THE MICROORGANISMI. IDENTIFICATION OF THE MICROORGANISM
Identification reference given by the DEPOSITOR: Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY:Identification reference given by the DEPOSITOR: Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY:
LWF+WEILWF + WHITE
DSM 13362DSM 13362
II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESIGNATIONII. SCIENTIFIC DESCRIPTION AND / OR PROPOSED TAXONOMIC DESIGNATION
The microorganism identified under I. above was accompanicd by:The microorganism identified under I. above was accompanicd by:
(X ) a scieπtific description(X) a scientific description
(X ) a propoεed taxonomic designation(X) a proposed taxonomic designation
(Mark with a cross where applicable).(Mark with a cross where applicable).
III. RECEIPT AND ACCEPTANCEIII. RECEIPT AND ACCEPTANCE
This International Depositary Authority accepts the microorganism identified under I. above, hich was received by it on 2000 - 03 - 06 (Date of the original deposit)1.This International Depositary Authority accepts the microorganism identified under I. above, hich was received by it on 2000 - 03 - 06 (Date of the original deposit) 1 .
IV. RECEIPT OF REQUEST FOR CONVERSIONIV. RECEIPT OF REQUEST FOR CONVERSION
The microorganism identified under I above was received by this International Depositary Authority on (date of original deposit) and a request to oonvert the original deposit to a deposit under the Budapest Treaty was received by It on (date of receipt of requcst for conversion).The microorganism identified under I above was received by this International Depositary Authority on (date of original deposit) and a request to oonvert the original deposit to a deposit under the Budapest Treaty was received by It on (date of receipt of requcst for conversion).
V. INTERNATIONAL DEPOSITARY AUTHORITYV. INTERNATIONAL DEPOSITARY AUTHORITY
Name: DSMZ-DEUTSCHE SAMMLUNG VON Signaturen) of ρerson(s) having the power tα represent theName: DSMZ-GERMAN COLLECTION OF SIGNATURES) of ρerson (s) having the power tα represent the
MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or of authorized official(s):MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or of authorized official (s):
Addrεss: Mascheroder Weg lb D-38124 BraunschweigAddrεss: Mascheroder Weg lb D-38124 Braunschweig
Date: 2000 - 03 -10Date: 2000 - 03 -10
1 Where Rule 6.4 (d) applies, such date is the date on which the Status of international depositary authority was acquired. Form DSMZ-BP/4 (sole page) 0196 INTERNATIONAL FORM 1 Where Rule 6.4 (d) applies, such date is the date on which the Status of international depositary authority was acquired. Form DSMZ-BP / 4 (sole page) 0196 INTERNATIONAL FORM
Institut für Molekulare Biotechnologie e.V. Beutenbergstr. 11Institute for Molecular Biotechnology e.V. Beutenbergstr. 11
07708 Jena VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page07708 Jena VIABILITY STATEMENT issued pursuant to Rule 10. 2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page
Figure imgf000060_0001
Figure imgf000060_0001
The viability of the microorganism identified under II above was tested on 2000 - 03 - 06 J . On that date, the said microorganism wasThe viability of the microorganism identified under II above was tested on 2000 - 03 - 06 J. On that date, the said microorganism was
(X)5 viable(X) 5 viable
( no Ionger viable(no longer viable
IV. CONDITIONS UNDER WHICH THE VIABILITY TEST HAS BEEN PERFORMED4 IV. CONDITIONS UNDER WHICH THE VIABILITY TEST HAS BEEN PERFORMED 4
V. INTERNATIONAL DEPOSITARY AUTHORITYV. INTERNATIONAL DEPOSITARY AUTHORITY
Name: DSMZ-DEUTSCHE SAMMLUNG VON Signaturen) of person(s) having the power to represent theName: DSMZ-GERMAN COLLECTION OF SIGNATURES) of person (s) having the power to represent the
MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or of authorized offιcial(s):MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or of authorized offιcial (s):
Address: Mascheroder Weg lb D-38124 Braunschweig b * uc*< -~ Ϋζ ^eAddress: Mascheroder Weg lb D-38124 Braunschweig b * uc * <- ~ Ϋζ ^ e
- Date: 2000 - 03 - 10- Date: 2000 - 03-10
1 Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most receπt relevant date (date of the πew deposit or date of the transfer). 1 Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most receπt relevant date (date of the πew deposit or date of the transfer).
2 In the cases referred to in Rule 10.2(a) (ii) and (iü), refer to the most receπt viability test. 2 In the cases referred to in Rule 10.2 (a) (ii) and (iü), refer to the most receπt viability test.
3 Mark with a cross the applicable box. Fill in if the Information has been requested and if the results of the test were negative. 3 Mark with a cross the applicable box. Fill in if the information has been requested and if the results of the test were negative.
Form DSMZ-BP 9 (sole page) 0196 INTERNATIONAL FORMForm DSMZ-BP 9 (sole page) 0196 INTERNATIONAL FORM
Institut für Molekulare Biotechnologie e.V. Beutenbergstr. 11Institute for Molecular Biotechnology e.V. Beutenbergstr. 11
07708 Jena RECEIPT IN THE GASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page07708 Jena RECEIPT IN THE GASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page
I. IDENTIFICATION OF THE MICROORGANISMI. IDENTIFICATION OF THE MICROORGANISM
Identification refereπce given by the DEPOSITOR: Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: LVIWEIIdentification refereπce given by the DEPOSITOR: Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: LVIWEI
DSM 133 63DSM 133 63
II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMTC DESIGNATIONII. SCIENTIFIC DESCRIPTION AND / OR PROPOSED TAXONOMTC DESIGNATION
The microorganism identified under I. above was acco panied by:The microorganism identified under I. above was acco panied by:
(X ) a scicntific description(X) a scientific description
(X ) a praposed taxonomic designation(X) a proposed taxonomic designation
(Mark with a cross where applicable).(Mark with a cross where applicable).
III. RECEIPT AND ACCEPTANCEIII. RECEIPT AND ACCEPTANCE
This International Depositary Authority accepts the microorganism identified under I. above, which was received b i on 2 000 - 03 - 06 (Date of the original deposit)1.This International Depositary Authority accepts the microorganism identified under I. above, which was received bi on 2 000 - 03 - 06 (Date of the original deposit) 1 .
IV. RECEIPT OF REQUEST FOR CONVERSIONIV. RECEIPT OF REQUEST FOR CONVERSION
The microorganism identified under I above was received by this International Depositaiy Authority on (date of original deposit) and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on (date of reccipt of request for conversioπ).The microorganism identified under I above was received by this International Depositaiy Authority on (date of original deposit) and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on (date of reccipt of request for conversioπ).
V. INTERNATIONAL DEPOSITARY AUTHORITYV. INTERNATIONAL DEPOSITARY AUTHORITY
Name: DSMZ-DEUTSCHE SAMMLUNG VON Signature(s) of person(s) having the power to represent theName: DSMZ-GERMAN COLLECTION OF Signature (s) of person (s) having the power to represent the
MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or of authorized official(s):MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or of authorized official (s):
Address: Mascheroder Weg lb D-38124 Braunschweig 3>
Figure imgf000061_0001
. %.
Address: Mascheroder Weg lb D-38124 Braunschweig 3>
Figure imgf000061_0001
, %.
Date: 2000 - 03 -10Date: 2000 - 03 -10
' Where Rule 6.4 (d) applies, such date is the date on which the Status of international depositary authority was acquired. Form DSMZ-BP/4 (solc page) 0196 INTERNATIONAL FORM'Where Rule 6.4 (d) applies, such date is the date on which the Status of international depositary authority was acquired. Form DSMZ-BP / 4 (solc page) 0196 INTERNATIONAL FORM
Institut für Molekulare Biotechnologie e.V. Beutenbergstr. 11Institute for Molecular Biotechnology e.V. Beutenbergstr. 11
07708 Jena VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page07708 Jena VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page
I. DEPOSITOR II. IDENTIFICATION OF THE MICROORGANISMI. DEPOSITOR II. IDENTIFICATION OF THE MICROORGANISM
Name: Institut für Molekulare Accession number given by theName: Institute for Molecular Accession number given by the
Biotechnologie e . V . INTERNATIONAL DEPOSITARY AUTHORITY: Address: Beutenbergstr . 11 DSM 13363Biotechnology e. V. INTERNATIONAL DEPOSITARY AUTHORITY: Address: Beutenbergstr. 11 DSM 13363
07708 Jena Date of the deposit or the transfer': 2000 - 03 - 0607708 Jena Date of the deposit or the transfer ': 2000 - 03 - 06
III. VIABILITY STATEMENTIII. VIABILITY STATEMENT
The viability of the microorganism identified under II above was tested on 2000 - 03 - 06 2. On that date, the aid microorganism wasThe viability of the microorganism identified under II above was tested on 2000 - 03 - 06 2 . On that date, the aid microorganism was
(X)' viable(X) 'viable
( )' no longer viable() 'no longer viable
IV. CONDITIONS UNDER WHICH THE VIABILITY TEST HAS BEEN PERFORMED4 IV. CONDITIONS UNDER WHICH THE VIABILITY TEST HAS BEEN PERFORMED 4
V. INTERNATIONAL DEPOSITARY AUTHORITYV. INTERNATIONAL DEPOSITARY AUTHORITY
Name: DSMZ-DEUTSCHE SAMMLUNG VON Signature(s) of person(s) haviπg the power to represent theName: DSMZ-GERMAN COLLECTION OF Signature (s) of person (s) haviπg the power to represent the
MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or of authorized offιcial(s):MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or of authorized offιcial (s):
Address: Mascheroder Weg Ib D-38124 Braunschweig 3 <*?' / ^rcAddress: Mascheroder Weg Ib D-38124 Braunschweig 3 < *? ' / ^ rc
Date: 2000-03 -10Date: 2000-03 -10
1 Indicate the date of original deposit or, where a πew deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer). 1 Indicate the date of original deposit or, where a πew deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).
2 In the cases referred to in Rule 10.2(a) (ii) and (iü), refer to the most recent viability test ' Mark with a cross the applicable box. 2 In the cases referred to in Rule 10.2 (a) (ii) and (iü), refer to the most recent viability test 'Mark with a cross the applicable box.
4 Fill in if the information has been reqnested and if the results of the test were negative. 4 Fill in if the information has been reqnested and if the results of the test were negative.
Form DSMZ-BP/9 (sole page) 0196 INTERNATIONAL FORMForm DSMZ-BP / 9 (sole page) 0196 INTERNATIONAL FORM
Institut für Molekulare Biotechnologie e.V. Beutenbergst . 11Institute for Molecular Biotechnology e.V. Beutenbergst. 11
07708 Jena RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuaπt to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page07708 Jena RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuaπt to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page
I. IDENTIFICATION OF THE MICROORGANISMI. IDENTIFICATION OF THE MICROORGANISM
Identification reference given by the DEPOSITOR: Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: L99WEIIdentification reference given by the DEPOSITOR: Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: L99WEI
DSM 13364DSM 13364
II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESIGNATIONII. SCIENTIFIC DESCRIPTION AND / OR PROPOSED TAXONOMIC DESIGNATION
The microorganism identified under I. above was accompanied by:The microorganism identified under I. above was accompanied by:
(X ) a scieπtific dcscription(X) a scientific description
(X ) a proposed taxoπomic designation(X) a proposed taxonomic designation
(Mark with a cross here applicable).(Mark with a cross here applicable).
III. RECEIPT AND ACCEPTANCEIII. RECEIPT AND ACCEPTANCE
This International Depositary Authority accepts the microorganism identified under 1. above, which was received by it on 2000 - 03 - 06 (Date of the original deposit)1.This International Depositary Authority accepts the microorganism identified under 1. above, which was received by it on 2000 - 03 - 06 (Date of the original deposit) 1 .
IV. RECEIPT OF REQUEST FOR CONVERSIONIV. RECEIPT OF REQUEST FOR CONVERSION
The microorganism identified under I above was received by this International Depositary Authority on (date of original deposit) and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on (date of receipt of request for conversion).The microorganism identified under I above was received by this International Depositary Authority on (date of original deposit) and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on (date of receipt of request for conversion).
V. INTERNATIONAL DEPOSITARY AUTHORITYV. INTERNATIONAL DEPOSITARY AUTHORITY
Name: DSMZ-DEUTSCHE SAMMLUNG VON Signaturen) of personfs) having the power to represent theName: DSMZ-GERMAN COLLECTION OF SIGNATURES) of personfs) having the power to represent the
MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or of authorized official(s):MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or of authorized official (s):
Address: Mascheroder Weg lb D-38124 Braunschweig > i ^ ^~ f , ^_Address: Mascheroder Weg lb D-38124 Braunschweig> i ^ ^ ~ f, ^ _
Date: 2000 - 03 -10Date: 2000 - 03 -10
1 Where Rule 6.4 (d) applies, such date is the date on which the Status of international depositary authority was acquired. Form DSMZ-BP/4 (sole page) 0196 INTERNATIONAL FORM 1 Where Rule 6.4 (d) applies, such date is the date on which the Status of international depositary authority was acquired. Form DSMZ-BP / 4 (sole page) 0196 INTERNATIONAL FORM
Institut für Molekulare Biotechnologie e.V. Beutenbergstr. llInstitute for Molecular Biotechnology e.V. Beutenbergstr. ll
07708 Jena VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page07708 Jena VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page
I. DEPOSITOR II. IDENTIFICATION OF THE MICROORGANISMI. DEPOSITOR II. IDENTIFICATION OF THE MICROORGANISM
Name: Institut für Molekulare Accession number given by theName: Institute for Molecular Accession number given by the
Biotechnologie e . V. INTERNATIONAL DEPOSITARY AUTHORITY: Address: Beutenbergstr . 11 DSM 13364Biotechnology e. V. INTERNATIONAL DEPOSITARY AUTHORITY: Address: Beutenbergstr. 11 DSM 13364
07708 Jena Date of the deposit or the transfer': 2000 -03 - 0607708 Jena Date of the deposit or the transfer ': 2000 -03 - 06
III. VIABILITY STATEMENTIII. VIABILITY STATEMENT
The viafaility of the microorganism identified under II above was tested on 2 000 - 03 - 06 2 . On that date, the Said microorganism wasThe viafaility of the microorganism identified under II above was tested on 2 000 - 03 - 06 2 . On that date, the Said microorganism was
(X)3 viable(X) 3 viable
{ )' πo longer viable{) 'πo longer viable
IV. CONDITIONS UNDER WHICH THE VIABILITY TEST HAS BEEN PERFORMED4 IV. CONDITIONS UNDER WHICH THE VIABILITY TEST HAS BEEN PERFORMED 4
V. INTERNATIONAL DEPOSITARY AUTHORITYV. INTERNATIONAL DEPOSITARY AUTHORITY
Name: DSMZ-DEUTSCHE SAMMLUNG VON Signature(s) of person(s) having the power to represent the MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or of authorized official(s):Name: DSMZ-GERMAN COLLECTION OF Signature (s) of person (s) having the power to represent the MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or of authorized official (s):
Address: Mascheroder Weg Ib D-38124 Braunschweig 1 ^^ ^J~ -7~ ^_Address: Mascheroder Weg Ib D-38124 Braunschweig 1 ^^ ^ J ~ -7 ~ ^ _
Date: 2000- 03 -10Date: 2000-03-10
1 • Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer). 1 • Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).
2 In the cases referred to in Rule 10.2(a) (ii) and (iü), refer to the most recent viability test 2 In the cases referred to in Rule 10.2 (a) (ii) and (iü), refer to the most recent viability test
3 Mark with a cross the applicable box. 3 Mark with a cross the applicable box.
* Fill in if the Information has been requested and if the results of the test were negative.* Fill in if the information has been requested and if the results of the test were negative.
Foim DSMZ-BP 9 (sole page) 0196 Foim DSMZ-BP 9 (sole page) 0196

Claims

Patentansprüche claims
1. Verfahren zur Gewinnung von modifizierten L-Form-Bakterien- stämmen, dadurch gekennzeichnet, daß1. A process for the production of modified L-shape bacterial strains, characterized in that
a) man einen an ein komplexes Nährmedium adaptierten L- Form-Bakterienstamm alternierend bei unterschiedlichen Temperaturen im Temperaturbereich von 20 bis 40 °C kultiviert, unda) one cultivates an L-form bacterial strain adapted to a complex nutrient medium alternately at different temperatures in the temperature range from 20 to 40 ° C., and
b) bei ansteigender hydromechanischer Belastung der Zellen fermentiert .b) fermented with increasing hydromechanical load on the cells.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der in Schritt (a) und (b) eingesetzte L-Form-Bakterienstairan eine stabile Protoplasten-Typ L-Form ist.2. The method according to claim 1, characterized in that the L-form bacterial tarry used in step (a) and (b) is a stable protoplast type L-form.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der L-Form-Bakterienstamm eine L-Form von Escherichia coli, Proteus mirabilis, Bacillus subtilis , Bacillus licheniformis , Nocardia asteroides , Pseudomonas stutzeri, Staphylococcus aureus, Streptococcus faecalis, Streptomyces hygroscopicus oder Thermoactinomyces vulgaris ist.3. The method according to claim 1 or 2, characterized in that the L-form bacterial strain is an L-form of Escherichia coli, Proteus mirabilis, Bacillus subtilis, Bacillus licheniformis, Nocardia asteroides, Pseudomonas stutzeri, Staphylococcus aureus, Streptococcus faecalis, Streptomyces hygroscopic or Thermoactinomyces vulgaris.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der L-Form-Bakterienstamm eine L-Formen von P. mirabilis LVI, P. mirabilis L99, E. coli LWF+, E. coli LWF- oder Bac . subtilis L1 70 ist.4. The method according to claim 3, characterized in that the L-form bacterial strain is an L-form of P. mirabilis LVI, P. mirabilis L99, E. coli LWF +, E. coli LWF- or Bac. subtilis L1 is 70.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man die Schritte (a) und (b) in dieser Reihenfolge durchführt .5. The method according to any one of claims 1 to 4, characterized in that steps (a) and (b) are carried out in this order.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man den Schritt (a) in der Weise durchführt, daß man die Temperatur alternierend zwischen zwei Temperatu- ren Tl und T2 variiert, wobei Tl im Verlauf des Schrittes (a) gleich bleibt und T2 variiert wird.6. The method according to any one of claims 1 to 5, characterized in that step (a) is carried out in such a way that the temperature alternating between two tempera- ren Tl and T2 varies, wherein Tl remains the same in the course of step (a) and T2 is varied.
7. Verfahren nach einem der Ansprüche 1 bis 6 , dadurch gekennzeichnet, daß man den Schritt (b) in der Weise durchführt, daß man die Rührgeschwindigkeit variiert mit der das Fermentationsmedium gerührt wird.7. The method according to any one of claims 1 to 6, characterized in that step (b) is carried out in such a way that the stirring speed is varied with which the fermentation medium is stirred.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß in den Schritten (a) und (b) das Nährmedium aus Brain-heart-infusion-broth (BHIB), Todd-Hewitt-broth (THEB), Tryptic-Soy-broth (TSOYB) und L-broth (LB) ausgewählt ist.8. The method according to any one of claims 1 to 7, characterized in that in steps (a) and (b) the nutrient medium from brain-heart-infusion-broth (BHIB), Todd-Hewitt-broth (THEB), tryptic Soy-broth (TSOYB) and L-broth (LB) is selected.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Belüftungsrate von 0,2 bis 1 Volumen Luft/Minute/Volumen Medium variiert wird.9. The method according to any one of claims 1 to 8, characterized in that the ventilation rate is varied from 0.2 to 1 volume of air / minute / volume of medium.
10. Verfahren zur Gewinnung von modifizierten L-Form-Bakterien- stämmen, dadurch gekennzeichnet, daß man einen an ein komplexes Nährmedium adaptierten L-Form-Bakterienstamm durch Mutationen in den Genen recA, hsdR/S, relA, supE und/oder durch Einführung von amber- und ochre-Mutanten Rekombination, Modifikation und Restriktion und/oder durch Insertion von Genen der Transkriptions- und Translationskontrolle, wie IacJ und IacUV-T7, in das Chromosom modifiziert.10. A method for obtaining modified L-form bacterial strains, characterized in that an L-form bacterial strain adapted to a complex nutrient medium is created by mutations in the genes recA, hsdR / S, relA, supE and / or by introduction of amber and ocher mutants recombination, modification and restriction and / or modified by inserting transcription and translation control genes, such as IacJ and IacUV-T7, into the chromosome.
11. L-Form-Bakterienstamm, erhältlich durch ein Verfahren gemäß den Ansprüchen 1 bis 10.11. L-form bacterial strain, obtainable by a process according to claims 1 to 10.
12. L-Form-Bakterienstamm nach Anspruch 11, dadurch gekennzeichnet, daß er aus der aus P. mirabilis LVIWEI (Hinterlegungs- nu mer DSM 13363); P. mirabilis L99WEI (Hinterlegungsnummer DSM 13364), E. coli LWF+WEI (Hinterlegungsnummer DSM 13362) und B. subtilis L170WEI (Hinterlegungsnummer DSM 13361) bestehenden Gruppe ausgewählt ist. 12. L-form bacterial strain according to claim 11, characterized in that it from the P. mirabilis LVIWEI (depository number DSM 13363); P. mirabilis L99WEI (accession number DSM 13364), E. coli LWF + WEI (accession number DSM 13362) and B. subtilis L170WEI (accession number DSM 13361) existing group.
13. Verfahren zur Herstellung von Genprodukten, dadurch gekennzeichnet, daß man einen L-Form-Bakterienstamm gemäß einem der Ansprüche 11 bis 12 mit einer für ein Genprodukt kodierenden Nukleotidsequenz transformiert, man dann den transformierten L-Form-Bakterienstamm kultiviert und zur Expression des Genprodukts anregt und man schließlich das Genprodukt isoliert.13. A method for producing gene products, characterized in that an L-form bacterial strain according to one of claims 11 to 12 is transformed with a nucleotide sequence coding for a gene product, then the transformed L-form bacterial strain is cultivated and for expression of the gene product stimulates and finally the gene product is isolated.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß man zur Transformation ein Vektorsystem verwendet, das die für das Genprodukt kodierende Nukleotidsequenzen verknüpft mit Regulationssequenzen enthält.14. The method according to claim 13, characterized in that for the transformation a vector system is used which contains the nucleotide sequences coding for the gene product linked to regulatory sequences.
15. Verfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß das Genprodukt ein membrangebundenes Protein ist .15. The method according to claim 13 or 14, characterized in that the gene product is a membrane-bound protein.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß das Produktgen mit einer zusätzlichen Gensequenz verknüpft ist, die für einen Signalpeptid, eine Sequenz einer transmem- branen Region von Membranproteinen oder eine hydrophoben Aminosäuresequenz kodiert.16. The method according to claim 15, characterized in that the product gene is linked to an additional gene sequence which codes for a signal peptide, a sequence of a transmembrane region of membrane proteins or a hydrophobic amino acid sequence.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß die zusätzliche Gensequenz für ein Signalpeptid, das nicht durch prokaryotische Signalpeptidasen vom Produktprotein abgespalten wird, für eine Transmembranhelix von integralen Membranproteinen, für eine homologe oder heterologe trans embrane Region prokaryotischer Membranproteine, für das eukaryo- tische Signalpeptid des SERP-Proteins oder eine hydrophobe Aminosäuresequenz mit 8 bis 150 Aminosäuren kodiert.17. The method according to claim 16, characterized in that the additional gene sequence for a signal peptide that is not cleaved from the product protein by prokaryotic signal peptidases, for a transmembrane helix of integral membrane proteins, for a homologous or heterologous trans-embrane region of prokaryotic membrane proteins, for the eukaryo- table signal peptide of the SERP protein or a hydrophobic amino acid sequence encoded with 8 to 150 amino acids.
18. Verfahren nach einem der Ansprüche 13 bis 17, dadurch gekennzeichnet, daß das Genprodukt ein als Arzneimittel oder Diagnostikum verwendbares Protein, eine Immundeterminante, ein Enzyminhibitor, ein Enzymaktivator, ein Rezeptor, ein Precursor-Protein oder ein Enzym oder ein Protein der Signalübertragung ist.18. The method according to any one of claims 13 to 17, characterized in that the gene product is a protein which can be used as a medicament or diagnostic agent, an immunodeterminant, an enzyme inhibitor, an enzyme activator, a receptor Precursor protein or an enzyme or a signal transmission protein.
19. Verfahren zur Herstellung von an Zelloberflächen gebundenem Protein, dadurch gekennzeichnet, daß man einen L-Form- Bakterienstamm mit einer Nukleotidsequenz transformiert, die für ein Genprodukt und ein damit verbundenes Signalpeptid, eine damit verbundene Sequenz einer transmembrane Region von Membranproteinen oder eine damit verbundene hydrophobe Aminosäuresequenz kodiert, man dann den transformierten L- Form-Bakterienstamm kultiviert und zur Expression des Genprodukts anregt und man schließlich das Genprodukt in an die Zellen des L-Form-Stamms gebundener Form isoliert.19. A process for the production of protein bound to cell surfaces, characterized in that one transforms an L-form bacterial strain with a nucleotide sequence, which for a gene product and an associated signal peptide, an associated sequence of a transmembrane region of membrane proteins or an associated one Hydrophobic amino acid sequence is encoded, the transformed L-form bacterial strain is then cultivated and stimulated to express the gene product, and the gene product is finally isolated in the form bound to the cells of the L-form strain.
20. Verfahren zur Herstellung von outer-membrane-protein (Omp) von Gram-negativen Bakterien, dadurch gekennzeichnet, daß man einen L-Form-Bakterienstamm mit einer Nukleotidsequenz transformiert, die für ein Omp und ein damit verbundenes Signalpeptid, eine damit verbundene Sequenz einer transmembrane Region von Membranproteinen oder eine damit verbundene hydrophobe Aminosäuresequenz kodiert, man dann den transformierten L-Form-Bakterienstamm kultiviert und zur Expression des Genprodukts anregt und man schließlich das Genprodukt isoliert .20. A process for the production of outer membrane protein (Omp) of Gram-negative bacteria, characterized in that an L-form bacterial strain is transformed with a nucleotide sequence which is an associated sequence for an Omp and an associated signal peptide a transmembrane region of membrane proteins or an associated hydrophobic amino acid sequence, then the transformed L-form bacterial strain is cultivated and stimulated to express the gene product and the gene product is finally isolated.
21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß das21. The method according to claim 20, characterized in that the
Omp ein Omp mit ß-Faltblattstruktur ist.Omp is an Omp with a β-sheet structure.
22. Verfahren nach Anspruch 20 oder 21, dadurch gekennzeichnet, daß das Signalpeptid ein Signalpeptid zur Translokation ist.22. The method according to claim 20 or 21, characterized in that the signal peptide is a signal peptide for translocation.
23. Verfahren nach einem der Ansprüche 18 bis 19, dadurch gekennzeichnet, daß das Genprodukt eine antigenen Determinanten von pathogenen Organismen, ein Single chain Antikörper oder Antikörperfragment, ein heterologes Enzym, ein Polyhistidyl Tag oder eine Peptidbibliothek ist. 23. The method according to any one of claims 18 to 19, characterized in that the gene product is an antigenic determinant of pathogenic organisms, a single chain antibody or antibody fragment, a heterologous enzyme, a polyhistidyl tag or a peptide library.
24. L-Form-Bakterienstamm, dadurch gekennzeichnet, daß er rekombinante Proteine aufweist, die über ein Signalpeptid, eine Sequenz einer transmembranen Region von Membranproteinen oder eine hyrophobe Aminosäuresequenz an der Zytoplasmamembran der L-Form-Zellen verankert sind.24. L-form bacterial strain, characterized in that it has recombinant proteins which are anchored to the cytoplasmic membrane of the L-form cells via a signal peptide, a sequence of a transmembrane region of membrane proteins or a hydrophobic amino acid sequence.
25. L-Form-Bakterienstamm nach Anspruch 24, dadurch gekennzeichnet, daß das rekombinante Protein eine antigene Determinante von pathogenen Organismen, ein Single chain Antikörper oder Antikörperfrag ent, ein heterologes Enzym, ein Polyhistidyl Tag oder eine Peptidbibliothek ist.25. L-form bacterial strain according to claim 24, characterized in that the recombinant protein is an antigenic determinant of pathogenic organisms, a single chain antibody or antibody fragment, a heterologous enzyme, a polyhistidyl tag or a peptide library.
26. L-Form-Bakterienstamm, dadurch gekennzeichnet, daß er rekombinante Proteine aufweist, die Omps mit ß-Faltblattstruktur sind.26. L-form bacterial strain, characterized in that it has recombinant proteins which are omps with a β-sheet structure.
27. Impfstoff enthaltend einen L-Form-Bakterienstamm gemäß einem der Ansprüche 24 bis 25.27. Vaccine containing an L-form bacterial strain according to one of claims 24 to 25.
28. Verwendung eines L-Form-Bakterienstamms nach einem der Ansprüche 24 bis 26 zur Expression von Proteinen, als Impfstoff, zur Herstellung eines Mittels für die Diagnostik und Therapie, als Biokatalysator oder für Interaktionsscree- nings .28. Use of an L-form bacterial strain according to one of claims 24 to 26 for the expression of proteins, as a vaccine, for the preparation of an agent for diagnosis and therapy, as a biocatalyst or for interaction screening.
29. Verwendung eines L-Form-Bakterienstamms nach einem der Ansprüchen 10 bis 11 zur Expression von Proteinen. 29. Use of an L-form bacterial strain according to one of claims 10 to 11 for the expression of proteins.
PCT/EP2001/002630 2000-03-10 2001-03-08 Novel l-form bacterial strains, method for producing same and the use thereof for producing gene products WO2001066776A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU52174/01A AU5217401A (en) 2000-03-10 2001-03-08 Novel l-form bacterial strains, method for producing same and the use thereof for producing gene products

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10011617.5 2000-03-10
DE10011617 2000-03-10
DE10011358A DE10011358A1 (en) 2000-03-10 2000-03-12 Producing a modified L-form bacterial strain by culturing the strain in complex medium and subjecting it to temperature stress, provides bacteria useful to produce recombinant proteins
DE10011358.3 2000-03-12

Publications (2)

Publication Number Publication Date
WO2001066776A2 true WO2001066776A2 (en) 2001-09-13
WO2001066776A3 WO2001066776A3 (en) 2002-05-30

Family

ID=26004748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/002630 WO2001066776A2 (en) 2000-03-10 2001-03-08 Novel l-form bacterial strains, method for producing same and the use thereof for producing gene products

Country Status (2)

Country Link
AU (1) AU5217401A (en)
WO (1) WO2001066776A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053111A1 (en) 2002-12-12 2004-06-24 Showa Denko K.K. Method of selecting escherichia coli strain overexpressing foreign gene, escherichia coli mutant thus selected and process for producing enzyme and compound using the same
WO2008025744A1 (en) * 2006-08-28 2008-03-06 Novo Nordisk A/S Extra-cellular production of recombinant proteins
CN102321557A (en) * 2011-09-20 2012-01-18 山东省烟台农业学校 Bacillus L-type induction culture medium
WO2014132064A2 (en) * 2013-02-27 2014-09-04 University Of Newcastle Upon Tyne Cells and methods for fatty acid synthesis
US10584370B2 (en) 2014-12-16 2020-03-10 Soft Cell Biological Research, Llc Screening for L-form bacteria
CN113354719A (en) * 2021-05-11 2021-09-07 重庆市畜牧科学院 Proteus mirabilis antigen identification and application thereof in detection of proteus infection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD269166A1 (en) * 1987-09-07 1989-06-21 Adw Ddr PROCESS FOR PRODUCING RECOMBINANT GENE PRODUCTS
WO1998014583A2 (en) * 1996-10-02 1998-04-09 Hermann Bujard Method for producing recombinants intended for use in a complete malaria antigene gp190/msp1

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD269166A1 (en) * 1987-09-07 1989-06-21 Adw Ddr PROCESS FOR PRODUCING RECOMBINANT GENE PRODUCTS
WO1998014583A2 (en) * 1996-10-02 1998-04-09 Hermann Bujard Method for producing recombinants intended for use in a complete malaria antigene gp190/msp1

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DEMAIN A L ET AL.: "Manual of industrial microbiology and biotechnology, 2nd ed" 1999 , ASM PRESS , AMERICAN SOCIETY OF MICROBIOLOGY, 1325 MASSACHUSETTS AVENUE, N.W., WASHINGTON, DC 20005-4171 XP002182859 VINCI A V ET AL.: "Strain improvement by nonrecombinant methods" Seite 103-113 *
GUMPERT J ET AL.: "Characteristic properties and biological significance of stable protoplast type L-forms" EXPERIENTIA SUPPLEMENTUM, Bd. 46, 12. August 1983 (1983-08-12), Seiten 227-241, XP001012425 ISSN: 0071-335X in der Anmeldung erw{hnt *
GUMPERT J ET AL.: "Use of cell wall-less bacteria (L-forms) for efficient expression and secretion of heterologous gene products" CURRENT OPINION IN BIOTECHNOLOGY, Bd. 9, Nr. 5, Oktober 1998 (1998-10), Seiten 506-509, XP001012424 ISSN: 0958-1669 in der Anmeldung erw{hnt *
K\NNINGER U W ET AL.: "The haemolysin-secreting ShlB protein of the outer membrane of Serratia marcescens: Determination of surface-exposed residues and formation of ion-permeable pores by ShlB mutants in artificial lipid bilayer membranes." MOLECULAR MICROBIOLOGY, Bd. 32, Nr. 6, Juni 1999 (1999-06), Seiten 1212-1225, XP002182856 ISSN: 0950-382X *
SAMBROOK J ET AL.: "Molecular Cloning (Laboratory Manual) Appendix A. Bacterial Strains" 1990 , COLD SPRING HARBOR PRESS , COLD SPRING HARBOR LABORATORIES, US XP002182858 Tabelle A.2 *
SIEBEN S ET AL.: "The Serratia marcescens hemolysin is secreted but not activated by stable protoplast-type L-forms of Proteus mirabilis" ARCHIVES OF MICROBIOLOGY, Bd. 170, Nr. 4, Oktober 1998 (1998-10), Seiten 236-242, XP001034299 *
STAHL S ET AL.: "Bacterial surface display: trends and progress" TRENDS IN BIOTECHNOLOGY, Bd. 15, Nr. 5, 1. Mai 1997 (1997-05-01), Seiten 185-192, XP004059848 ISSN: 0167-7799 in der Anmeldung erw{hnt *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053111A1 (en) 2002-12-12 2004-06-24 Showa Denko K.K. Method of selecting escherichia coli strain overexpressing foreign gene, escherichia coli mutant thus selected and process for producing enzyme and compound using the same
EP1574565A1 (en) * 2002-12-12 2005-09-14 Showa Denko K.K. Method of selecting escherichia coli strain overexpressing foreign gene, escherichia coli mutant thus selected and process for producing enzyme and compound using the same
EP1574565A4 (en) * 2002-12-12 2006-01-18 Showa Denko Kk Method of selecting escherichia coli strain overexpressing foreign gene, escherichia coli mutant thus selected and process for producing enzyme and compound using the same
US7494801B2 (en) 2002-12-12 2009-02-24 Showa Denko K.K. Method of selecting Escherichia coli strain which highly expresses exogenous genes, Escherichia coli mutant strains selected by this method and process for producing enzymes and compounds using the same
WO2008025744A1 (en) * 2006-08-28 2008-03-06 Novo Nordisk A/S Extra-cellular production of recombinant proteins
CN102321557A (en) * 2011-09-20 2012-01-18 山东省烟台农业学校 Bacillus L-type induction culture medium
WO2014132064A2 (en) * 2013-02-27 2014-09-04 University Of Newcastle Upon Tyne Cells and methods for fatty acid synthesis
WO2014132064A3 (en) * 2013-02-27 2014-11-13 University Of Newcastle Upon Tyne Cells and methods for fatty acid synthesis
US10584370B2 (en) 2014-12-16 2020-03-10 Soft Cell Biological Research, Llc Screening for L-form bacteria
CN113354719A (en) * 2021-05-11 2021-09-07 重庆市畜牧科学院 Proteus mirabilis antigen identification and application thereof in detection of proteus infection

Also Published As

Publication number Publication date
WO2001066776A3 (en) 2002-05-30
AU5217401A (en) 2001-09-17

Similar Documents

Publication Publication Date Title
KR100967592B1 (en) Bacteria with reduced genome
DE69333145T2 (en) METHOD FOR THE CONTROLLED PRODUCTION OF POLYPEPTIDES IN BACTERIA
Tandeau de Marsac et al. Expression of the larvicidal gene of Bacillus sphaericus 1593M in the cyanobacterium Anacystis nidulans R2
EP1697523B1 (en) Expression vector and its use for an antibiotic free expression
DE69434807T2 (en) METHOD AND SYSTEM FOR INCREASING THE PRODUCTION OF COMMERCIALLY IMPORTANT EXOPROTEINS IN GRAM-POSITIVE BACTERIA
DE60310385T2 (en) SECRETION OF PROTEINS WITH MULTIPLE DISULFIDE BINDINGS IN BACTERIA AND USES THEREOF
DE10053224A1 (en) Procedure for the exposure of peptides and polypeptides to the cell surface of bacteria
WO2001081597A1 (en) Method for producing recombinant proteins by gram-negative bacteria
EP1903105A1 (en) Process for the production of proteins by fermentation
DE69723855T2 (en) METHOD FOR PRODUCING POLYPEPTIDES IN SURFACTIN MUTANTS OF BACILLUS CELLS
EP1905839B2 (en) Method for the fermentative production of proteins
EP0023882A2 (en) Plasmid vectors, plasmids containing genes for alkaline phosphatases and bacteria containing the latter, their preparation and use
DE102008063900A1 (en) Process for the fermentative production of heterologous proteins by means of Escherichia coli
DE60111783T2 (en) PROCESS FOR PREPARING AND CLEANING SECTURED PROTEINS AND PRODUCING PROTEIN ARRAYS
AU2021292539A1 (en) ADAS comprising bacterial secretion systems
EP2418276B1 (en) Microorganism strain for producing recombinant proteins
DE60023501T2 (en) UNIVERSAL ALLEL EXCHANGE IN MYCOBACTERIUM BY CONDITIONALLY TRANSDUCATING PHAGEN
DE60131261T2 (en) IMPROVED METHODS AND CELLS FOR THE EXPRESSION OF RECOMBINANT PROTEIN PRODUCTS
Wang et al. Mussel settlement mediated by bacterial VgrG proteins via extracellular outer membrane vesicles
WO2001066776A2 (en) Novel l-form bacterial strains, method for producing same and the use thereof for producing gene products
WO2006018205A2 (en) Novel essential genes of bacillus licheniformis and improved biotechnical production method based thereon
KR100457879B1 (en) Plasmid originated from Bifidobacterium, recombinant expression vector using the plasmid and transformation method
DE10011358A1 (en) Producing a modified L-form bacterial strain by culturing the strain in complex medium and subjecting it to temperature stress, provides bacteria useful to produce recombinant proteins
DE4344350A1 (en) Bacteria for the production of stable fusion proteins and methods for their detection
DE10309557A1 (en) A translocation enzyme as a selection marker

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP