WO2001066468A1 - Method for producing lithium manganese composite oxide and lithium cell using said lithium manganese composite oxide - Google Patents

Method for producing lithium manganese composite oxide and lithium cell using said lithium manganese composite oxide Download PDF

Info

Publication number
WO2001066468A1
WO2001066468A1 PCT/JP2001/001814 JP0101814W WO0166468A1 WO 2001066468 A1 WO2001066468 A1 WO 2001066468A1 JP 0101814 W JP0101814 W JP 0101814W WO 0166468 A1 WO0166468 A1 WO 0166468A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
manganese
composite oxide
metal element
manganese composite
Prior art date
Application number
PCT/JP2001/001814
Other languages
French (fr)
Japanese (ja)
Inventor
Tokuo Suita
Kenji Kataoka
Original Assignee
Ishihara Sangyo Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha, Ltd. filed Critical Ishihara Sangyo Kaisha, Ltd.
Priority to AU41065/01A priority Critical patent/AU4106501A/en
Publication of WO2001066468A1 publication Critical patent/WO2001066468A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention provides a method for producing a lithium-manganese composite oxide containing a heterogeneous metal element, which is a compound useful for a positive electrode material of a lithium battery, and a lithium-manganese composite oxide containing a heterogeneous metal element obtained by the production method.
  • a lithium-manganese composite oxide containing a heterogeneous metal element which is a compound useful for a positive electrode material of a lithium battery
  • a lithium-manganese composite oxide containing a heterogeneous metal element obtained by the production method.
  • Lithium secondary batteries have been rapidly spreading in recent years because of their high voltage, excellent charge / discharge cycle characteristics, light weight, and small size. In particular, batteries with a high electromotive force of 4 V class are required. As such a lithium secondary battery, one using cobalt or a composite oxide of nickel and lithium as a positive electrode active material is known. However, cobalt and nickel are expensive, and future resources are depleted. ⁇ is considered a problem.
  • Lithium manganate having a composite oxide formula L i M n 2 0 4 spinel type crystal structure which you express the like of manganese and lithium, useful as a positive electrode active material of a lithium secondary battery of 4 V class
  • manganese as a raw material is inexpensive and abundant in resources, it is a promising alternative to lithium cobaltate and lithium nickelate.
  • the lithium manganate represented by the above chemical formula has a stoichiometric composition, and a lithium battery using this as a positive electrode active material has a theoretical capacity of 148 mAhZg.
  • lithium batteries as secondary batteries have poor cycle characteristics, especially at high temperatures of 50 ° C or higher, and the battery capacity decreases when charging and discharging are repeated, and the life of the positive electrode also decreases. Therefore, lithium manganate having excellent cycle characteristics is required.
  • No. 68 discloses a method of mixing a manganese oxide, a lithium compound, and a compound containing a divalent or trivalent metal element as a third component, followed by heating and baking.
  • this method also has a poor reactivity between the starting materials, and thus requires long-time heating and sintering at a high temperature, has problems with crystallinity and interparticle sintering, and additionally requires a sufficient amount of metal elements.
  • the desired performance cannot be obtained because it cannot be dissolved in lithium manganate and is locally non-uniformly dissolved.
  • Japanese Patent Application Laid-Open No. 10-116615 discloses a method in which a transition metal compound is precipitated on lithium manganate, and then dried and dehydrated at 150 ° C. or lower.
  • the transition metal compound can be uniformly present on the surface of the lithium manganate, but the improvement effect is insufficient because the transition metal compound is not incorporated into the lithium manganate crystals.
  • the present invention overcomes the above-mentioned problems of the prior art and provides a lithium-manganese composite oxide containing a dissimilar metal element having excellent cycle characteristics and high charge / discharge capacity suitable for a lithium battery industrially and economically.
  • the present invention provides a method for producing the composition in an advantageous manner.
  • the lithium-manganese composite oxide precursor contained a specific heterogeneous metal element having the property of being easily replaced by the manganese ion or lithium ion of the precursor.
  • a specific heterogeneous metal element having the property of being easily replaced by the manganese ion or lithium ion of the precursor.
  • the present invention comprises Fe, Cr, Co, Ni, Al, Mg, Ca, Zn, V, Nb, Mo, Ti, Zr, Ga and In. At least one selected from the group For producing a lithium-manganese composite oxide containing a different metal element, characterized by heating and calcining a lithium-manganese composite oxide precursor containing the same metal element, and a heterogeneous metal element obtained by the production method
  • the present invention relates to a lithium battery using a lithium-manganese composite oxide.
  • Figure 1 shows the charge and discharge characteristics of Sample B.
  • Figure 2 shows the charge and discharge characteristics of Sample J.
  • FIG. 3 is an X-ray diffraction chart of Sample i.
  • Figure 4 shows the X-ray diffraction chart of sample ii.
  • FIG. 5 is an X-ray diffraction chart of Sample B.
  • Figure 6 shows the X-ray diffraction chart of Sample J.
  • the lithium / manganese composite oxide precursor referred to in the present invention is not simply a mixture of a manganese oxide and a lithium compound, but one in which lithium ion is incorporated in the crystal structure of a manganese oxide. It may be a mixture of a suitable precursor and lithium manganate.
  • the phrase “containing the metal element” means that a metal element or a compound containing a metal element is present inside or on a surface of an inclusion such as a precursor or a manganese oxide described below.
  • lithium-manganese composite oxide precursor containing a dissimilar metal element In order to synthesize such a lithium-manganese composite oxide precursor containing a dissimilar metal element, one of manganese oxide, manganese oxide or manganese acid reacted with an acid, and a lithium compound are mixed in a medium solution such as water. To produce a lithium-manganese composite oxide precursor, and the compound containing the metal element may be applied to the surface of the precursor. Alternatively, after the compound containing the metal element is contained on the surface of the manganese-based starting material by, for example, being applied thereto, the lithium compound is reacted with the medium in a medium such as water.
  • the lithium-manganese composite oxide precursor may be reacted with a compound containing a metal element in a medium to incorporate metal ions into the precursor.
  • a compound containing a metal element may be allowed to react in a medium solution to incorporate metal ions into a precursor, and there is no particular limitation.
  • the reaction temperature of the lithium compound with at least one selected from the group consisting of manganese oxide, manganese oxide reacted with an acid, and manganic acid is preferably 60 to 100 ° C. in a medium solution. Is 70 to 100 ° C. If the reaction is difficult to proceed, use a pressure-resistant container such as an autoclave, and maintain the temperature at 100 ° C or higher, preferably 200 ° C or lower under saturated steam pressure or under pressure. May be subjected to a hydrothermal treatment at 180 ° C. or lower. It is preferable to supply an oxidizing agent such as air, oxygen, ozone, aqueous hydrogen peroxide, or peroxodisulfate, since the reaction proceeds even under normal pressure.
  • an oxidizing agent such as air, oxygen, ozone, aqueous hydrogen peroxide, or peroxodisulfate
  • lithium compound used in the present invention examples include lithium hydroxide, lithium nitrate, lithium carbonate, lithium hydrogen carbonate, lithium chloride, lithium sulfate, and the like. Are preferred because they are excellent.
  • Manganese oxide reacted with an acid or because the manganese oxide such as H 2 M n 0 4 and H 2 M N_ ⁇ 3 (Aman Gansan) are easier to react with the metal element of the lithium compound or heterologous, It is preferable to use this in the present invention. Although the reason is not clear, it is presumed that manganic acid has hydrogen ion activity and is not easily exchanged with other cations. Manganese oxide that has been reacted with an acid is similar to manganese acid because part of the manganese ions in the crystal structure of the manganese oxide is replaced with hydrogen ions, and the substituted hydrogen ions are active. It is presumed that the exchangeability with other cations is high.
  • the acid to be reacted with the manganese oxide is not particularly limited, such as an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, and hydrofluoric acid, and an organic acid such as acetic acid and formic acid.
  • an inorganic acid is preferable because its effect is large.
  • hydrochloric acid is more preferable because it can be carried out industrially advantageously.
  • the concentration of the acid to be added is preferably in the range of 0.05 to 10N.If the acid concentration is lower than the above range, the required amount of addition increases and the slurry concentration also decreases, so it is not industrial. . In addition, a high acid concentration is not preferable because manganese oxide is easily decomposed.
  • the manganese oxide to be reacted with the oxide or acid there can be used manganese oxide, manganese oxide, manganese oxide, and the like.
  • the manganese oxide may be synthesized by oxidizing manganese, and the crystal structure of the manganese oxide is not particularly limited, such as a spinel type, a rutile type, or a scandium oxide type. If the manganese composite oxide has a crystal structure mainly composed of a spinel type, the battery characteristics are excellent as a positive electrode material. Therefore, it is preferable to use a spinel type manganese oxide. As such a manganese oxide manga, tetramanganese manganese is mentioned.
  • a manganese oxide is prepared by reacting a manganese compound with a basic compound in a medium such as water to synthesize a manganese hydroxide and then oxidizing the manganese oxide. It is particularly preferable because the size-particle size distribution is uniform. Furthermore, if the manganese oxide is used as a seed (nucleus or seed crystal, hereinafter referred to as a seed) and the manganese oxide is grown in a medium, particles having a large particle diameter can be synthesized, and the particle diameter divided by the particle It is more preferable because the shape can be easily controlled.
  • Manganese compounds include manganese sulphate, manganese chloride, manganese nitrate, manganese acetate, manganese carbonate and the like. Can be used.
  • a compound containing a metal element is allowed to react and react.
  • a metal element is contained in a manganese oxide and this is reacted with a lithium compound in a medium, a lithium-manganese composite acid precursor containing the metal element used in the present invention is obtained.
  • a manganese oxide having a compound containing a metal element adhered to the surface is used as a seed, and particles are grown in the same manner as described above. And then reacting with a lithium compound to obtain a lithium-manganese composite oxide precursor containing a metal element.
  • the manganese oxide containing a metal element obtained by the above-described method may be reacted with an acid in advance and then with the lithium compound in order to increase the reactivity with the lithium compound.
  • the production method of growing particles of manganese oxide in a medium using the above-mentioned manganese oxide as a seed involves reacting a manganese compound and a basic compound in a medium.
  • the reaction can be carried out by a third step in which the manganese acid seed is grown while the acid is reacted while reacting with the basic compound in a medium solution.
  • the first step if the manganese compound is reacted with the basic compound to partially neutralize the manganese compound, the manganese oxide seed can be greatly grown, which is advantageous.
  • the concentration of manganese ions remaining in the medium after partial neutralization is adjusted to 5 to 60 (gZl), preferably 10 to 40 (g / 1). Partially neutralized.
  • a compound containing a metal element such as a lithium-manganese composite oxide precursor or manganese oxide, and the desired Fe, Cr, Co, and Ni.
  • a metal element such as a lithium-manganese composite oxide precursor or manganese oxide
  • Fe, Cr, Co, and Ni Fe, Cr, Co, and Ni.
  • Al, Mg, Ca, Zn, V, Nb, Mo, Ti, Zr force to dry-mix with a compound containing at least one metal element selected from the group consisting of Ga and In, These can be dried after mixing in a medium.
  • the content is suspended in a medium such as water, and the metal salt is reacted with a basic compound in the slurry to form a hardly soluble sediment on the surface of the content. It may be formed.
  • the compound containing the metal element is deposited as a uniform layer, and not only the yield is good, but also at this stage, a part of the metal element is incorporated into the inclusion, and the reactivity in the heating and firing step is reduced. I like it because it improves.
  • a water-soluble compound containing a metal element or an aqueous solution thereof, or a solution obtained by dissolving a poorly water-soluble compound with an acidic or basic compound is used.
  • the basic compound are added to the slurry and allowed to react, and a sparingly soluble precipitate such as an oxide, hydrated oxide, or hydroxide of the metal element is formed on the surface of the substance to be contained. It can be applied as a laminate.
  • the addition order of the metal salt solution and the basic compound or the addition thereof at the same time can be appropriately selected depending on the reaction conditions.However, depending on the basic compound, the concentration of the free hydroxyl group in the slurry is set to 0.001 in advance. to 2.
  • '0 (mole Z 1) was preferably in 0.0 1 to 1.0 (mol / / 1), a reaction by adding a metal compound Is desirable.
  • the reaction temperature is 25 to 95 ° C, preferably 25 to 75 ° C.
  • the metal compound sulfates, nitrates, acetates, carbonates, chlorides, oxides and hydroxides of these metals can be used.
  • an alkali metal compound such as hydroxide or carbonate, or an ammonia compound such as ammonia, ammonium carbonate, ammonium sulfate, or ammonium nitrate may be used.
  • the ammonium compound is not decomposed and volatilized during the calcination and does not remain.
  • a lithium compound such as thiium hydroxide, because it does not become an impurity even if it remains in the final product lithium-manganese composite oxide.
  • the lithium / manganese composite oxide precursor containing the specific metal element obtained as described above is heated and calcined to produce a lithium / manganese composite oxide containing a different metal element.
  • the reactivity between the lithium-manganese composite oxide precursor and these metal elements is good, and the metal element is easily incorporated into the precursor by replacing with manganese ions or lithium ions by heating and firing.
  • a low-temperature sintering not only provides a uniform composition, but also allows a relatively large amount of the metal element to form a solid solution in the lithium manganate crystal.
  • the lithium-manganese composite oxide containing a different metal element after the heating and sintering may be appropriately pulverized or crushed according to the sintering or aggregation state.
  • the heating and sintering temperature varies depending on the composition, particle size, sintering atmosphere, etc. of the lithium / manganese composite oxide precursor containing the heterogeneous metal element.
  • the temperature should be at least the temperature at which the manganese composite oxide changes its phase, generally at least 400 ° C, preferably at least 500 ° C, and preferably at 850 ° C or less to prevent sintering, and at least 500 ° C and 800 It is more preferable that the temperature be not higher than ° C.
  • the firing atmosphere is not particularly limited as long as it is an oxygen-containing atmosphere such as in the air, and the oxygen partial pressure can be appropriately set.
  • Different metal elements containing lithium-manganese composite oxide obtained by the method of the present invention have the general formula L i 1 + x M y Mn 2 - x - a compound represented by y 0 4, x in the formula, There range of 0.3 to 1.5 is preferred composition expressed by the value of y is (1 + x) / (2 -xy), in particular or general formula L iMn 2 0 4, etc. L i 4/3 Mn 5/3 0 Represented by Those having a spinel type crystal structure are preferable, and may be a single phase of lithium-manganese composite oxide or a mixture of lithium-manganese composite oxide and manganese oxide.
  • the different metal element-containing lithium-manganese composite oxide obtained by the present invention includes Fe, Cr, Co, Ni, Al, Mg, Ca, Zn, V, Nb, Mo, Ti, Zr, It contains at least one metal element selected from the group consisting of Ga and In.
  • the reactivity between the compound containing these metal elements and the lithium-manganese composite oxide precursor is excellent, even if the treatment amount is relatively large, most of the metal elements are crystals of lithium manganate. It is presumed that they are dissolved in solid solution, and the effect of improving cycle characteristics, especially at high temperatures, is high. Further, since the crystallinity is excellent and the composition is uniform, a lithium battery using this has excellent various battery characteristics such as initial discharge capacity.
  • the content is represented by MZMn atomic ratio, where M is the above-mentioned metal element, and the total amount of the different metals is 0.01 to 0.4. If the content of the metal element is less than this range, the desired charge / discharge cycle characteristics cannot be obtained, and if the content is too large, the charge / discharge capacity decreases.
  • the metal element content is preferably from 0.025 to 0.15 in terms of MZMn atomic ratio.
  • the content of the metal element is preferably 0.1 to 0.4 in terms of MZMn atomic ratio.
  • lithium manganate usually contains trivalent and tetravalent manganese.
  • stoichiometric lithium manganate contains the same amount of trivalent and tetravalent manganese. This trivalent manganese originally has an instability called the Jan-Teller effect, and one of the causes is that the more trivalent manganese, the more unstable the crystal structure and the easier the decay. It is said to be one.
  • the lithium-manganese composite oxide containing a different metal element obtained by the present invention has a uniform particle size distribution and particle shape, has few lattice defects, has excellent crystallinity, and has a homogeneous composition.
  • those using the manganese oxide synthesized by the seed method described above are lithium metal composite oxides containing different metal elements containing large particles having an average particle diameter of 0 :! to 50 ⁇ m. Lithium containing foreign metal elements with large particle size
  • the composite oxide Since the composite oxide has excellent filling properties and can be filled in a large amount into a compact or paste as a positive electrode active material, a lithium battery using this has a high energy density.
  • this since this is grown into a desired large particle at the stage of synthesizing manganese oxide, it is not necessary to sinter by heating and sintering to grow the particle. If the particle size is smaller than the above range, desired filling properties cannot be obtained, and the cycle characteristics of a lithium battery using the same are poor. If the particle size is large, various characteristics desired for the lithium battery cannot be obtained.
  • the average particle diameter is measured by a laser scattering method.
  • the present invention is a lithium battery using the above-described lithium / manganese composite oxide containing a different metal element as a positive electrode active material.
  • a lithium battery refers to a primary battery using lithium metal for the negative electrode, a rechargeable secondary battery using lithium metal for the negative electrode, a carbon material, a tin compound, lithium titanate, or the like for the negative electrode. Is a rechargeable lithium ion secondary battery.
  • the lithium-manganese composite oxide containing a heterogeneous metal element of the present invention has few lattice defects and excellent crystallinity, and contains a specific heterogeneous metal compound uniformly. When used as an active material, crystal collapse is unlikely to occur during charge / discharge, and battery characteristics are also excellent.
  • a material having a crystal structure mainly composed of a spinel it can be charged or discharged in a potential region of about 2 to 3.5 V, or a voltage of about 3.5 to 4.5 V.
  • Certain 4 V class, and 5 V class positive electrode active material of around 5 V can be obtained. Useful for things.
  • the lithium-manganese composite oxide powder of the present invention may be added to a carbon-based conductive agent such as acetylene black, carbon, or graphite powder, or polytetrafluoroethylene. It can be obtained by adding, kneading, and molding a binder such as a chemical modified polyethylene resin or a polyvinylidene fluoride resin. Further, in the case of a cylindrical or prismatic battery, an organic solvent such as N-methylpyrrolidone is added to the lithium-manganese composite oxide powder of the present invention in addition to these additives, and the mixture is kneaded. Into a paste, applied to a metal current collector such as an aluminum foil, and dried.
  • a metal current collector such as an aluminum foil
  • Lithium ion is dissolved in the electrolyte of a lithium battery in a polar organic solvent that is electrochemically stable, that is, is not oxidized or reduced in a wider range than the potential range that operates as a lithium ion battery. Things can be used.
  • a polar organic solvent propylene carbonate, ethylene carbonate, getyl carbonate, dimethoxetane, tetrahydrofuran, butyl lactone, or a mixture thereof can be used.
  • As a solute serving as a lithium ion source lithium perchlorate, lithium hexafluorophosphate, lithium tetrafluoroborate, or the like can be used. Also between the electrodes?
  • a flexible polypropylene film / polyethylene film is arranged as a separator.
  • Battery types include a separator between the positive and negative electrodes in the form of pellets, pressure bonding to a sealed can with a polypropylene gasket, injection of electrolyte, and a sealed coin-type battery.
  • the negative electrode material is coated on a metal current collector, the separator is sandwiched and wound, inserted into a battery can with a gasket, injected with an electrolyte, and sealed.
  • the performance of the lithium-manganese composite oxide containing dissimilar metal elements as a positive electrode material is determined by configuring a secondary battery using metallic lithium or the like for the negative electrode, and charging and discharging an appropriate voltage range with a constant current. Its capacity can be measured. Also charge and discharge By repeating, the quality of the cycle characteristics can be determined from the change in the capacity.
  • a slurry in which manganese oxide (2400 g in terms of Mn) was dispersed in water was charged into a stainless steel reaction vessel, and the temperature was raised to 60 ° C.
  • 1 (mol Z1) of sulfuric acid 6.99 (1) was added with stirring over 1 hour, and then reacted for 2 hours. Then, the mixture was filtered and washed with water to obtain a manganese oxide reacted with an acid.
  • the temperature of the slurry 1 (1) was raised to 60 ° C while blowing nitrogen (1 UZ for 1 UZ) with stirring, and a 4.5 (mol / 1) aqueous solution of lithium hydroxide 0.273 (1) was added. Then, 0.426 (1) of a chromium chloride aqueous solution having a concentration of 50 (g / 1) in terms of Cr was added over 1 hour, and the mixture was reacted for 5 days. After the reaction, the reaction solution was cooled, filtered, and washed with a 0.05 (mol / 1) aqueous solution of lithium hydroxide to obtain a lithium-manganese composite oxide precursor containing Cr.
  • the Cr-containing lithium manganese composite oxide precursor was dried at 110 ° C for 12 hours and then 750 in air. For 3 hours to obtain a lithium-manganese composite oxide.
  • Example 1 was repeated except that the addition amount of the lithium hydroxide monohydrate in the fifth step was 5.500 mol and the addition amount of the salt solution in the sixth step was 0.639 (1).
  • a lithium / manganese composite oxide containing a different metal element was obtained in the same manner.
  • Sample ii is the Cr-containing lithium-manganese composite oxide before thermal firing.
  • the above slurry 1 (1) was heated to 60 while stirring with nitrogen (1 / min) while blowing nitrogen at a rate of 4.5 (mol / 1) aqueous lithium hydroxide solution 0.236 (1) and water. 0.138 (1) was added, and then an aqueous solution of chromium chloride at a concentration of 50 (g / 1) in terms of Cr, 0.426 (1), was added over 1 hour, followed by a reaction for 3 hours. After the reaction, the reaction solution was cooled, filtered, and washed with a 0.05 (molar Z1) aqueous solution of lithium hydroxide to obtain a Cr-containing lithium-manganese composite oxide precursor.
  • the lithium-manganese composite oxide precursor containing Cr was heated and calcined in the same manner as in the seventh step of Example 1, and then 20 g of the sample was disintegrated in an agate mortar to contain the dissimilar metal element of the present invention. A lithium-manganese composite oxide was obtained.
  • Sample D [Li /
  • the addition amount of lithium hydroxide monohydrate was 5.063 mol
  • the addition amount of lithium hydroxide aqueous solution was 0.454 (1).
  • Example 1 except that water was not added, and that an aqueous solution of iron sulfate having a concentration of 50 (g / 1) in terms of Fe was used instead of an aqueous solution of chlorinated chloride and 0.823 (1).
  • a lithium / manganese composite oxide containing a dissimilar metal element of the present application was obtained.
  • the amount of addition of hydrithium hydroxide monohydrate was set to 4.671
  • the amount of addition of water was set to 0.673 (1).
  • the amount of aqueous solution added was 0.0356 (1), and an aqueous solution of iron sulfate with a concentration of 50 (g / 1) in terms of Fe was added instead of the aqueous solution of potassium chloride.
  • the same operation as in Example 4 was carried out except that heat was applied, to obtain a lithium-manganese composite oxide containing a different metal element.
  • the amount of water added was set to 0.082 (1), and an aqueous solution of cobalt sulfate having a concentration of 50 (g / 1) 0.
  • the amount of water added was set to 0.456 (1), the amount of the aqueous solution of sodium hydroxide was set to 0.145 (1), and Mg
  • the lithium metal containing the different metal element of the present application was Manganese composite oxide was obtained.
  • Example 2 The slurry containing the lithium manganese composite oxide precursor obtained in the fifth step of Example 1 was filtered, and then washed with 0.1 (mol Z1) of lithium hydroxide solution 2 (1), Dried at 10 ° C for 12 hours. The dried product was further heated and fired in air at 750 ° C. for 3 hours, and then pulverized with a small frit mill in the same manner as in Example 1 to obtain lithium manganate.
  • aqueous slurries of lithium-manganese composite oxide and lithium manganate (samples A to K) containing different metal elements obtained in Examples 1 to 9 and Comparative Examples 1 and 2 were sufficiently ultrasonically dispersed, and the laser was used. After adjusting the transmittance by light to 85 ⁇ 1%, the average particle diameter was measured on a volume basis using a laser-diffraction, Z-scattering particle size distribution analyzer (LA-90: manufactured by HORIBA, Ltd.).
  • the lithium-manganese composite oxide containing CrFeCo and Mg obtained by the present invention has powder properties equivalent to those of lithium manganate not containing a different kind of metal element. Power.
  • the positive electrode was vacuum-dried for 120 T for 4 hours, and then incorporated in a sealable coin-type evaluation cell in a glove pot having a dew point of 170 ° C or lower.
  • the evaluation cell used was a stainless steel (SUS316) material with an outer diameter of 2 Omm and a height of 1.6 mm.
  • the negative electrode used was 0.5 mm thick metallic lithium molded into a 14 mm diameter circular shape.
  • L i PF 6 at a concentration of 1 mol Z liter was used, and a mixed solution of ethylene carbonate and dimethyl carbonate (mixed at a volume ratio of 1: 2) was used.
  • the positive electrode was placed in the lower can of the cell for evaluation, a porous polypropylene film was placed as a separator on the positive electrode, and seven drops of a nonaqueous electrolyte were dropped from above on the porous polypropylene film.
  • the negative electrode was placed on top of it, and an upper can with a gasket made of polypropylene was covered, and the outer peripheral edge was crimped and sealed.
  • a hydrophilic non-woven polypropylene nonwoven fabric was placed above and below the separator as necessary.
  • the coin-type evaluation cell thus prepared was set in a dedicated battery holder, and the battery characteristics were measured with a load of 5 kg applied.
  • the charge / discharge capacity was measured at a constant current with the voltage range set from 4.3 V to 3.5 V and the charge / discharge current set at 0.84 mA (about 3 cycles / day).
  • the value measured in the second cycle at 25 ° C was defined as the initial charge-discharge characteristics.
  • the cycle characteristics were measured at 25 ° C. and 50 ° C., and represented by the respective capacity retention ratios ⁇ (30th discharge capacity Z5th discharge capacity) ⁇ 100 ⁇ .
  • Table 2 shows the initial charge / discharge characteristics and cycle characteristics of samples A to K.
  • Figures 1 and 2 show the charge and discharge characteristics of Samples B and J.
  • the lithium-manganese composite oxide containing Cr, Fe, Co and Mg obtained by the present invention has an initial charge / discharge characteristic equivalent to that of conventional lithium manganate not containing a different kind of metal element, In particular, the cycle characteristics at high temperatures are excellent.
  • Lithium-manganese composite acid precursor obtained in Example, Cr-containing lithium manganese composite oxide precursor before heating and calcination, Cr-containing lithium manganese composite oxide and lithium manganate (sample ii, A, B, J) were subjected to powder X-ray diffraction analysis. In addition, CuK ai ray was used as an X-ray source.
  • the surface index (hk1) (311), (222), (400), (331), (333), (440), and (531) surface spacing d was obtained from the diffraction peak angle, and the lattice constant a was calculated as an average value using the following equations. Table 3 shows the results. Samples A and B have smaller lattice constants than Sample J, and Sample B, which has a high Cr content, has a smaller lattice constant than Sample A, which has a low Cr content. It turns out that it is forming a solid solution.
  • the present invention provides a method for preparing a lithium manganese composite oxide precursor containing Fe, Cr, Co, Ni, Al, Mg, Ca, Zn, V, Nb, Mo, Ti, Zr, Ga and I. n and at least one metallizing element selected from the group consisting of n, and by heating and calcining, a lithium-manganese composite oxide containing a heterogeneous metal element containing the above-described metal element and having excellent crystallinity. It is a manufacturing method.
  • a lithium battery using the lithium-manganese composite oxide containing a dissimilar metal element obtained according to the present invention as a positive electrode active material has excellent cycle characteristics particularly at ordinary temperatures and high temperatures.

Abstract

A method for producing a lithium manganese composite oxide containing another type of metal, characterized in that it comprises providing a lithium manganese composite oxide precursor containing at least one metal element selected from the group consisting of Fe, Cr, Co, Ni, Al, Mg, Ca, Zn, V, Nb, Mo, Ti, Zr, Ga and In, and heating and burning the precursor. The method allows the production of a lithium manganese composite oxide containing another type of metal which contains the above metal with uniformity and has excellent crystallinity.

Description

明 細 書 リチウム ·マンガン複合酸化物の製造方法及ぴ該リチウム ン複合酸化物 を用いてなるリチウム電池 技術分野  Description Method for producing lithium-manganese composite oxide and lithium battery using said lithium composite oxide
本発明は、 リチウム電池の正極材料などに有用な化合物である異種金属元素含 有リチウム ·マンガン複合酸化物の製造方法、 及びその製造方法で得られる異種 金属元素含有リチウム ·マンガン複合酸化物を用いてなるリチウム電池に関する。 背  The present invention provides a method for producing a lithium-manganese composite oxide containing a heterogeneous metal element, which is a compound useful for a positive electrode material of a lithium battery, and a lithium-manganese composite oxide containing a heterogeneous metal element obtained by the production method. Related to a lithium battery. Height
リチウム二次電池は高電圧で、 充放電サイクル特性に優れ、 且つ軽量、 小型で あるため、 近年急速に普及してきており、 特に 4 V級の高起電力のものが求めら れている。 このようなリチウム二次電池としてコバルトまたほニッケルとリチウ ムとの複合酸化物を正極活物質として用いたものが知られているが、 コバルトや ニッケルは高価であり、 また将来的な資源の枯渴が問題とされている。  Lithium secondary batteries have been rapidly spreading in recent years because of their high voltage, excellent charge / discharge cycle characteristics, light weight, and small size. In particular, batteries with a high electromotive force of 4 V class are required. As such a lithium secondary battery, one using cobalt or a composite oxide of nickel and lithium as a positive electrode active material is known. However, cobalt and nickel are expensive, and future resources are depleted.渴 is considered a problem.
マンガンとリチウムとの複合酸化物である化学式 L i M n 2 0 4などで表され るスピネル型の結晶構造を有するマンガン酸リチウムは、 4 V級のリチウム二次 電池の正極活物質として有用であり、 また原料となるマンガンが安価で資源的に 豊富であるので、 コバルト酸リチウムやニッケル酸リチウムに替わるものとして 有望である。 Lithium manganate having a composite oxide formula L i M n 2 0 4 spinel type crystal structure which you express the like of manganese and lithium, useful as a positive electrode active material of a lithium secondary battery of 4 V class In addition, since manganese as a raw material is inexpensive and abundant in resources, it is a promising alternative to lithium cobaltate and lithium nickelate.
前記の化学式で表されるマンガン酸リチウムは化学量論組成であり、 これを正 極活物質として用いたリチウム電池は 1 4 8 mA h Z gの理論容量を有する。 し かし、 このようなリチウム電池は二次電池として、 特に 5 0 °C以上の高温下での サイクル特性が悪く、 充放電を繰り返すと電池容量が減少し、 また正極の寿命も 低下してしまうので、 サイクル特性が優れたマンガン酸リチウムが求められてい る。  The lithium manganate represented by the above chemical formula has a stoichiometric composition, and a lithium battery using this as a positive electrode active material has a theoretical capacity of 148 mAhZg. However, such lithium batteries as secondary batteries have poor cycle characteristics, especially at high temperatures of 50 ° C or higher, and the battery capacity decreases when charging and discharging are repeated, and the life of the positive electrode also decreases. Therefore, lithium manganate having excellent cycle characteristics is required.
従来より、 化学量論組成よりリチウムが多くなるようにマンガン酸^ ^物とリチ ゥム化合物を混合、 焼成したり、 あるいは酸素が多くなるように焼成条件を調整 してサイクル特性を改良する方法が知られている。 しかし、 マンガン酸化物とリ チウム化合物の反応性が悪いため、 長時間の焼成や機械的な粉碎を何度も繰り返 さなければ均質な組成となり難く、 反応性を上げるために高温で焼成すると、 酸 素が脱離した格子欠陥の多いマンガン酸リチウムになる。 また、 加熱焼成工程で 粒子間の不均一な焼結が起こるので、 粒子の大きさや形状の制御が困難である。 異種の金属元素をマンガン酸リチウムの結晶中に固溶させたリチウム ·マンガ ン複合酸ィヒ物にすることで、 サイクル特性を改良する方法も知られており、 特公 平 7— 3 4 3 6 8号公報にはマンガン酸ィ匕物、 リチウム化合物及び第 3成分とし て 2価或いは 3価の金属元素を含む化合物を混合し、 加熱焼成する方法が開示さ れている。 し力 し、 この方法も出発物質同士の反応性が悪いので、 高温で長時間 の加熱焼成を必要とし、 結晶性や粒子間焼結の問題があり、 加えて十分な量の金 属元素をマンガン酸リチウム中に固溶できず、 また局所的に不均一に固溶される ので、 所望の性能が得られない。 Conventionally, a method of improving the cycle characteristics by mixing and firing a manganese acid compound and a lithium compound so that lithium is greater than the stoichiometric composition, or by adjusting firing conditions so that oxygen is increased. It has been known. However, manganese oxides and Since the reactivity of the titanium compound is poor, it is difficult to obtain a homogeneous composition unless prolonged firing or mechanical pulverization is repeated many times.Oxygen desorbed when fired at high temperature to increase the reactivity It becomes lithium manganate with many lattice defects. In addition, since non-uniform sintering between particles occurs in the heating and firing step, it is difficult to control the size and shape of the particles. It is also known to improve the cycling characteristics by dissolving different metal elements in lithium manganate crystals to form a lithium-manganese complex oxide. No. 68 discloses a method of mixing a manganese oxide, a lithium compound, and a compound containing a divalent or trivalent metal element as a third component, followed by heating and baking. However, this method also has a poor reactivity between the starting materials, and thus requires long-time heating and sintering at a high temperature, has problems with crystallinity and interparticle sintering, and additionally requires a sufficient amount of metal elements. The desired performance cannot be obtained because it cannot be dissolved in lithium manganate and is locally non-uniformly dissolved.
特開平 1 0— 1 1 6 6 1 5号公報には、 マンガン酸リチウムに遷移金属化合物 を沈析後、 1 5 0 °C以下で乾燥、 脱水する方法が開示されている。 この方法では 遷移金属化合物をマンガン酸リチウムの表面に均一に存在させることができるも のの、 マンガン酸リチウムの結晶中に取り込まれないので、 改良効果は不十分で める。  Japanese Patent Application Laid-Open No. 10-116615 discloses a method in which a transition metal compound is precipitated on lithium manganate, and then dried and dehydrated at 150 ° C. or lower. In this method, the transition metal compound can be uniformly present on the surface of the lithium manganate, but the improvement effect is insufficient because the transition metal compound is not incorporated into the lithium manganate crystals.
発明の開示 Disclosure of the invention
本発明は以上に述べた従来技術の問題点を克服し、 リチウム電池に好適なサイ クル特性が優れ、 且つ充放電容量の高い異種金属元素含有リチウム ·マンガン複 合酸化物を工業的、 経済的に有利に製造する方法を提供するものである。  The present invention overcomes the above-mentioned problems of the prior art and provides a lithium-manganese composite oxide containing a dissimilar metal element having excellent cycle characteristics and high charge / discharge capacity suitable for a lithium battery industrially and economically. The present invention provides a method for producing the composition in an advantageous manner.
本発明者らは鋭意研究を重ねた結果、 リチウム ·マンガン複合酸化物前駆体に 前駆体のマンガンイオンまたはリチウムイオンと容易に置換される性質を有する 特定の異種の金属元素を含有させ、 これを加熱焼成すれば、 常温下ばかりでなく 高温下でもサイクル特性に優れ、 且つ格子欠陥が少なく結晶性が優れた均一な組 成の異種金属元素含有リチウム ·マンガン複合酸化物を工業的、 経済的に有利に 製造できることを見出した。  The present inventors have conducted intensive studies and found that the lithium-manganese composite oxide precursor contained a specific heterogeneous metal element having the property of being easily replaced by the manganese ion or lithium ion of the precursor. By heating and firing, it is possible to industrially and economically produce a homogeneous composition of lithium-manganese composite oxide containing a heterogeneous metal with excellent cycle characteristics, low lattice defects, and excellent crystallinity not only at room temperature but also at high temperature. It has been found that it can be manufactured advantageously.
すなわち本発明は、 F e、 C r、 C o、 N i、 A l、 M g、 C a、 Z n、 V、 N b、 M o、 T i、 Z r、 G a及び I nからなる群から選ばれる少なくとも 1種 の金属元素を含有させたリチウム ·マンガン複合酸化物前駆体を加熱焼成するこ とを特徴とする異種金属元素含有リチウム ·マンガン複合酸化物の製造方法、 及 ぴその製造方法で得られる異種金属元素含有リチウム ·マンガン複合酸化物を用 いてなるリチウム電池に関する。 That is, the present invention comprises Fe, Cr, Co, Ni, Al, Mg, Ca, Zn, V, Nb, Mo, Ti, Zr, Ga and In. At least one selected from the group For producing a lithium-manganese composite oxide containing a different metal element, characterized by heating and calcining a lithium-manganese composite oxide precursor containing the same metal element, and a heterogeneous metal element obtained by the production method The present invention relates to a lithium battery using a lithium-manganese composite oxide.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は試料 Bの充放電特性である。  Figure 1 shows the charge and discharge characteristics of Sample B.
図 2は試料 Jの充放電特性である。  Figure 2 shows the charge and discharge characteristics of Sample J.
図 3は試料 iの X線回折チャートである。  FIG. 3 is an X-ray diffraction chart of Sample i.
図 4は試料 iiの X線回折チヤ一トである。  Figure 4 shows the X-ray diffraction chart of sample ii.
図 5は試料 Bの X線回折チャートである。  FIG. 5 is an X-ray diffraction chart of Sample B.
図 6は試料 Jの X線回折チヤ一トである。  Figure 6 shows the X-ray diffraction chart of Sample J.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明では、 先ず F e、 C r、 C o、 N i、 A l、 M g、 C a、 Z n、 V、 N b、 M o、 T i、 Z r、 G a及ぴ I nからなる群から選ばれる少なくとも 1種 の金属元素を含有させたリチウム ·マンガン複合酸化物前駆体を生成させる。 本 発明でいうリチウム .マンガン複合酸化物前駆体とは、 単なるマンガン酸化物と リチウム化合物の混合物ではなく、 マンガン酸ィ匕物の結晶構造中にリチウムィォ ンが取り込まれたものであって、 このような前駆体とマンガン酸リチウムとの混 合物であってもよい。 また、 上記金属元素を含有させるとは、 前駆体や後述のマ ンガン酸化物などの被含有物の内部または表面に金属元素または金属元素を含む 化合物を存在させることをいう。  In the present invention, first, from Fe, Cr, Co, Ni, Al, Mg, Ca, Zn, V, Nb, Mo, Ti, Zr, Ga and In A lithium-manganese composite oxide precursor containing at least one metal element selected from the group consisting of: The lithium / manganese composite oxide precursor referred to in the present invention is not simply a mixture of a manganese oxide and a lithium compound, but one in which lithium ion is incorporated in the crystal structure of a manganese oxide. It may be a mixture of a suitable precursor and lithium manganate. In addition, the phrase “containing the metal element” means that a metal element or a compound containing a metal element is present inside or on a surface of an inclusion such as a precursor or a manganese oxide described below.
このような異種金属元素含有リチウム ·マンガン複合酸化物前駆体を合成する には、 マンガン酸化物、 酸と反応させたマンガン酸化物またはマンガン酸の 1種 とリチウム化合物とを水などの媒液中で反応させ、 リチウム ·マンガン複合酸ィ匕 物前駆体を生成し、 この前駆体の表面に該金属元素を含む化合物を被着してもよ い。 あるいは、 上記マンガン系出発物質の表面に該金属元素を含む化合物を被着 するなどして含有させた後、 リチウム化合物と水などの媒液中で反応させてもよ レ、。 さらに、 リチウム ·マンガン複合酸化物前駆体を金属元素を含む化合物と媒 液中で反応させ、 金属イオンを前駆体中に取り込ませてもよく、 また、 前駆体を 合成する際に金属元素を含む化合物を媒液中に存在させて反応させ、 金属イオン を前駆体中に取り込ませてもよく、 特に制限はない。 In order to synthesize such a lithium-manganese composite oxide precursor containing a dissimilar metal element, one of manganese oxide, manganese oxide or manganese acid reacted with an acid, and a lithium compound are mixed in a medium solution such as water. To produce a lithium-manganese composite oxide precursor, and the compound containing the metal element may be applied to the surface of the precursor. Alternatively, after the compound containing the metal element is contained on the surface of the manganese-based starting material by, for example, being applied thereto, the lithium compound is reacted with the medium in a medium such as water. Further, the lithium-manganese composite oxide precursor may be reacted with a compound containing a metal element in a medium to incorporate metal ions into the precursor. At the time of synthesis, a compound containing a metal element may be allowed to react in a medium solution to incorporate metal ions into a precursor, and there is no particular limitation.
マンガン酸化物、 酸と反応させたマンガン酸化物及ぴマンガン酸からなる群か ら選ばれる少なくとも 1種とリチウム化合物との媒液中での反応温度としては 6 0〜1 0 0 °C、 好ましくは 7 0〜1 0 0 °Cである。 また、 この反応が進み難い場 合、 オートクレープなどの耐圧容器を用レ、、 飽和水蒸気圧下、 または加圧下で温 度を 1 0 0 °C以上、 好ましくは 2 0 0 °C以下、 さらに好ましくは 1 8 0 °C以下で 水熱処理を行ってもよい。 空気、 酸素、 オゾン、 過酸化水素水、 ペルォキソニ硫 酸塩などの酸化剤を供給してやれば、 常圧下でこの反応を行っても反応がさらに 進むので好ましい。  The reaction temperature of the lithium compound with at least one selected from the group consisting of manganese oxide, manganese oxide reacted with an acid, and manganic acid is preferably 60 to 100 ° C. in a medium solution. Is 70 to 100 ° C. If the reaction is difficult to proceed, use a pressure-resistant container such as an autoclave, and maintain the temperature at 100 ° C or higher, preferably 200 ° C or lower under saturated steam pressure or under pressure. May be subjected to a hydrothermal treatment at 180 ° C. or lower. It is preferable to supply an oxidizing agent such as air, oxygen, ozone, aqueous hydrogen peroxide, or peroxodisulfate, since the reaction proceeds even under normal pressure.
本発明で用いるリチウム化合物としては、 水酸化リチウム、 硝酸リチウム、 炭 酸リチウム、 炭酸水素リチウム、 塩ィヒリチウム、 硫酸リチウムなどが挙げられる 力 中でも水酸化リチウムのような塩基性ィヒ合物が反応性が優れているので好ま しい。  Examples of the lithium compound used in the present invention include lithium hydroxide, lithium nitrate, lithium carbonate, lithium hydrogen carbonate, lithium chloride, lithium sulfate, and the like. Are preferred because they are excellent.
酸と反応させたマンガン酸化物、 または H 2 M n 0 4や H 2 M n〇3 (亜マン ガン酸) などのマンガン酸はリチウム化合物や異種の金属元素との反応が容易で あるので、 本発明ではこれを用いることが好ましい。 その理由は明確ではないが マンガン酸は水素イオンが活性を有し、 他の陽イオンと交換され易いのではない カ と推測される。 また、 酸と反応させたマンガン酸化物は、 マンガン酸化物の結 晶構造中のマンガンイオンの一部が水素イオンと置換され、 置換された水素ィォ ンが活性であるため、 マンガン酸と同様に他の陽イオンとの交換性が高レ、のでは ないかと推測される。 Manganese oxide reacted with an acid, or because the manganese oxide such as H 2 M n 0 4 and H 2 M N_〇 3 (Aman Gansan) are easier to react with the metal element of the lithium compound or heterologous, It is preferable to use this in the present invention. Although the reason is not clear, it is presumed that manganic acid has hydrogen ion activity and is not easily exchanged with other cations. Manganese oxide that has been reacted with an acid is similar to manganese acid because part of the manganese ions in the crystal structure of the manganese oxide is replaced with hydrogen ions, and the substituted hydrogen ions are active. It is presumed that the exchangeability with other cations is high.
マンガン酸ィ匕物と反応させる酸としては塩酸、 硫酸、 硝酸、 フッ酸などの無機 酸、 酢酸、 ギ酸などの有機酸など特に制限は無いが、 無機酸がその効果が大きい ので好ましく、 硫酸、 または塩酸であれば工業的に有利に実施できるのでさらに 好ましい。 添加する酸の濃度は 0 . 0 5〜1 0規定とするのが好ましく、 酸の濃 度が上記範囲より低いと必要添加量が多くなり、 スラリ一濃度も低下してしまう ので、 工業的でない。 また、 酸濃度が高いとマンガン酸化物が分解し易くなるの で好ましくない。 ン酸化物または酸と反応させるマンガン酸化物としては、 四酸化三マン ガン、 二酸■(匕マンガン、 三酸^ ^二マンガン、 一酸化マンガンなどを用いることが でき、 水酸化マンガンや含水酸化マンガンを酸化してこれらのマンガン酸化物を 合成してもよい。 また、 マンガン酸ィ匕物の結晶構造もスピネル型、 ルチル型、 酸 化スカンジウム型など特に制限はない。 しかし、 目的とするリチウム 'マンガン 複合酸ィヒ物はスピネル型を主体とする結晶構造を有していれば、 正極材料として 電池特性が優れているので、 マンガン酸化物もスピネル型のものを用いるのが好 ましい。 このようなマンガン酸ィ匕物として四酸ィ匕三マンガンが挙げられる。 The acid to be reacted with the manganese oxide is not particularly limited, such as an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, and hydrofluoric acid, and an organic acid such as acetic acid and formic acid. However, an inorganic acid is preferable because its effect is large. Alternatively, hydrochloric acid is more preferable because it can be carried out industrially advantageously. The concentration of the acid to be added is preferably in the range of 0.05 to 10N.If the acid concentration is lower than the above range, the required amount of addition increases and the slurry concentration also decreases, so it is not industrial. . In addition, a high acid concentration is not preferable because manganese oxide is easily decomposed. As the manganese oxide to be reacted with the oxide or acid, there can be used manganese oxide, manganese oxide, manganese oxide, and the like. The manganese oxide may be synthesized by oxidizing manganese, and the crystal structure of the manganese oxide is not particularly limited, such as a spinel type, a rutile type, or a scandium oxide type. If the manganese composite oxide has a crystal structure mainly composed of a spinel type, the battery characteristics are excellent as a positive electrode material. Therefore, it is preferable to use a spinel type manganese oxide. As such a manganese oxide manga, tetramanganese manganese is mentioned.
本発明においては、 マンガン酸化物としてマンガン化合物と塩基性化合物とを 水などの媒液中で反応させ、 マンガン水酸化物を合成した後、 これを酸ィ匕したも のを用いるのが、 粒子径ゃ粒度分布が均一であるので特に好ましい。 さらに、 こ のマンガン酸化物をシード (核晶、 種結晶のこと以下シードという) として媒液 中でマンガン酸化物を粒子成長させれば、 大粒子径のものが合成でき、 且つ粒子 径ゃ粒子形状の制御も容易であるのでより好ましい。 マンガン化合物としては硫 酸マンガン、 塩化マンガン、 硝酸マンガン、 酢酸マンガン、 炭酸マンガンなどが、 塩基性ィヒ合物としては水酸化ナトリウム、 水酸化カリウム、 水酸化リチウム、 了 ンモユアガス、 アンモニア水などのを用いることができる。  In the present invention, a manganese oxide is prepared by reacting a manganese compound with a basic compound in a medium such as water to synthesize a manganese hydroxide and then oxidizing the manganese oxide. It is particularly preferable because the size-particle size distribution is uniform. Furthermore, if the manganese oxide is used as a seed (nucleus or seed crystal, hereinafter referred to as a seed) and the manganese oxide is grown in a medium, particles having a large particle diameter can be synthesized, and the particle diameter divided by the particle It is more preferable because the shape can be easily controlled. Manganese compounds include manganese sulphate, manganese chloride, manganese nitrate, manganese acetate, manganese carbonate and the like. Can be used.
上記の方法でマンガン水酸化物、 マンガン酸化物またはマンガン酸化物シード を合成する際、 または後述のマンガン酸ィヒ物シードを粒子成長させる際に、 金属 元素を含む化合物を存在させて、 反応させ、 マンガン酸化物に金属元素を含有さ せ、 これとリチウム化合物とを媒液中で反応させると、 本発明で用いる金属元素 を含有させたリチウム ·マンガン複合酸ィヒ物前駆体が得られる。 また、 金属元素 を含む化合物を表面に被着したマンガン酸ィ匕物をシードとし、 これを同様の方法 で粒子成長させるか、 あるいはマンガン酸化物シードを粒子成長後、 金属元素を 含む化合物を表面に被着させてからリチウム化合物と反応させて、 金属元素を含 有させたリチウム ·マンガン複合酸ィ匕物前駆体を得てもよい。 さらに、 以上に述 ベた方法で得られる金属元素を含有させたマンガン酸ィヒ物は、 リチウム化合物と の反応性を高めるため、 予め酸と反応させてからリチウム化合物と反応させても よい。 前記したマンガン酸化物をシードとして媒液中でマンガン酸ィヒ物を粒子成長さ せる製造方法、 すなわちシード法によるマンガン酸化物の合成は、 マンガン化合 物と塩基性化合物とを媒液中で反応させてマンガン水酸化物を得る第 1の工程、 該マンガン水酸化物を酸ィ匕させてマンガン酸ィ匕物シードを得る第 2の工程、 該マ ンガン酸化物シードの存在下で、 マンガン化合物と塩基性化合物とを媒液中で反 応させながら酸ィヒさせてマンガン酸ィヒ物シードを粒子成長させる第 3の工程によ り行うことができる。 第 1の工程において、 マンガン化合物と塩基性ィヒ合物とを 反応させて部分中和すると、 マンガン酸化物シードを大きく成長させることがで きるので有利である。 特に粒子径が大きいマンガン酸化物を得るには、 部分中和 後に媒液中に残存するマンガンイオンの濃度を 5〜 60 (gZ l ) 、 好ましくは 1 0〜40 (g/ 1) になるように部分中和する。 When synthesizing manganese hydroxide, manganese oxide or manganese oxide seed by the above method, or when growing particles of manganese oxide seed described below, a compound containing a metal element is allowed to react and react. When a metal element is contained in a manganese oxide and this is reacted with a lithium compound in a medium, a lithium-manganese composite acid precursor containing the metal element used in the present invention is obtained. Alternatively, a manganese oxide having a compound containing a metal element adhered to the surface is used as a seed, and particles are grown in the same manner as described above. And then reacting with a lithium compound to obtain a lithium-manganese composite oxide precursor containing a metal element. Furthermore, the manganese oxide containing a metal element obtained by the above-described method may be reacted with an acid in advance and then with the lithium compound in order to increase the reactivity with the lithium compound. The production method of growing particles of manganese oxide in a medium using the above-mentioned manganese oxide as a seed, that is, the synthesis of manganese oxide by a seed method, involves reacting a manganese compound and a basic compound in a medium. A first step of obtaining a manganese hydroxide, a second step of obtaining a manganese oxide seed by oxidizing the manganese hydroxide, and a manganese compound in the presence of the manganese oxide seed. The reaction can be carried out by a third step in which the manganese acid seed is grown while the acid is reacted while reacting with the basic compound in a medium solution. In the first step, if the manganese compound is reacted with the basic compound to partially neutralize the manganese compound, the manganese oxide seed can be greatly grown, which is advantageous. In particular, in order to obtain a manganese oxide having a large particle diameter, the concentration of manganese ions remaining in the medium after partial neutralization is adjusted to 5 to 60 (gZl), preferably 10 to 40 (g / 1). Partially neutralized.
金属元素を含む化合物を含有させる場合には様々の手法が用いられ、 リチウム •マンガン複合酸化物前駆体やマンガン酸化物などの被含有物と目的とする F e、 C r、 C o、 N i、 A l、 Mg、 Ca、 Zn、 V、 Nb、 Mo、 T i、 Z r、 Ga及ぴ I nからなる群から選ばれる少なくとも 1種の金属元素を含む化合物と を乾式で混合する力、 これらを媒液中で混合した後乾燥することもできる。 ある いは、 被含有物を水などの媒液中に懸濁させ、 このスラリー中で上記の金属の塩 と、 塩基性化合物とを反応させ、 被含有物の表面に難溶性の沈積層を形成させて もよい。 この方法は金属元素を含む化合物が均一な層として被着され、 歩留まり も良いばかりでなく、 この段階で金属元素の一部が被含有物の内部に取り込まれ、 加熱焼成工程での反応性を向上させるので好ましレ、。  Various methods are used to incorporate a compound containing a metal element, such as a lithium-manganese composite oxide precursor or manganese oxide, and the desired Fe, Cr, Co, and Ni. , Al, Mg, Ca, Zn, V, Nb, Mo, Ti, Zr, force to dry-mix with a compound containing at least one metal element selected from the group consisting of Ga and In, These can be dried after mixing in a medium. Alternatively, the content is suspended in a medium such as water, and the metal salt is reacted with a basic compound in the slurry to form a hardly soluble sediment on the surface of the content. It may be formed. In this method, the compound containing the metal element is deposited as a uniform layer, and not only the yield is good, but also at this stage, a part of the metal element is incorporated into the inclusion, and the reactivity in the heating and firing step is reduced. I like it because it improves.
例えば、 水系スラリ一中で被着処理を行うには、 金属元素を含む水溶性の化合 物またはその水溶液、 あるレ、は難水溶性のものを酸性または塩基性ィヒ合物で溶解 した溶液と、 塩基性ィヒ合物とをスラリーに添カ卩し反応させ、 被含有物の表面に前 記金属元素の酸化物、 水和酸化物、 または水酸ィ匕物などの難溶性の沈積層として 被着することができる。 金属塩溶液と塩基性ィヒ合物の添加順序や、 あるいはこれ らを同時に添加するかは、 反応条件によって適宜選択できるが、 塩基性化合物に より予めスラリー中のフリー水酸基濃度を、 0. 001〜2.' 0 (モル Z 1 ) 、 好ましくは 0. 0 1〜1. 0 (モル/ / 1 ) にし、 金属化合物を添加して反応させ ることが望ましい。 反応温度としては 25〜95°C、 好ましくは 25〜75°Cで ある。 For example, to perform the deposition treatment in an aqueous slurry, a water-soluble compound containing a metal element or an aqueous solution thereof, or a solution obtained by dissolving a poorly water-soluble compound with an acidic or basic compound is used. And the basic compound are added to the slurry and allowed to react, and a sparingly soluble precipitate such as an oxide, hydrated oxide, or hydroxide of the metal element is formed on the surface of the substance to be contained. It can be applied as a laminate. The addition order of the metal salt solution and the basic compound or the addition thereof at the same time can be appropriately selected depending on the reaction conditions.However, depending on the basic compound, the concentration of the free hydroxyl group in the slurry is set to 0.001 in advance. to 2. '0 (mole Z 1), was preferably in 0.0 1 to 1.0 (mol / / 1), a reaction by adding a metal compound Is desirable. The reaction temperature is 25 to 95 ° C, preferably 25 to 75 ° C.
金属化合物としては、 これらの金属の硫酸塩、 硝酸塩、 酢酸塩、 炭酸塩、 塩ィ匕 物、 酸化物、 水酸化物などを用いることができる。 塩基性ィヒ合物に制限はなく、 水酸化物や炭酸塩などアルカリ金属化合物や、 アンモニア、 炭酸アンモニゥム、 硫酸アンモニゥム、 硝酸アンモニゥムなどのアンモニゥム化合物を用いてもよい。 アンモニゥム化合物は焼成時に分解、 揮散して残留しないが、 特に水酸ィヒリチウ ムのようなリチウム化合物を用いれば、 最終生成物のリチウム ·マンガン複合酸 化物に残留しても不純物とはならないので好ましい。  As the metal compound, sulfates, nitrates, acetates, carbonates, chlorides, oxides and hydroxides of these metals can be used. There is no limitation on the basic compound, and an alkali metal compound such as hydroxide or carbonate, or an ammonia compound such as ammonia, ammonium carbonate, ammonium sulfate, or ammonium nitrate may be used. The ammonium compound is not decomposed and volatilized during the calcination and does not remain. However, it is preferable to use a lithium compound such as thiium hydroxide, because it does not become an impurity even if it remains in the final product lithium-manganese composite oxide.
以上のようにして得られた前記の特定の金属元素を含有させたリチウム ·マン ガン複合酸化物前駆体を加熱焼成して異種金属元素含有リチウム ·マンガン複合 酸化物を製造する。 本発明ではリチウム ·マンガン複合酸化物前駆体とこれらの 金属元素との反応性がよく、 加熱焼成により金属元素がマンガンイオンまたはリ チウムイオンと置換して容易に前駆体中に取り込まれるため、 比較的低温度の焼 成で均一な組成のものが得られるばかりでなく、 比較的多量であっても金属元素 をマンガン酸リチウムの結晶中に固溶させることができる。 加熱焼成後の異種金 属元素含有リチウム ·マンガン複合酸化物は焼結や凝集状態に応じて、 適宜粉碎 または壊碎してもよい。  The lithium / manganese composite oxide precursor containing the specific metal element obtained as described above is heated and calcined to produce a lithium / manganese composite oxide containing a different metal element. In the present invention, the reactivity between the lithium-manganese composite oxide precursor and these metal elements is good, and the metal element is easily incorporated into the precursor by replacing with manganese ions or lithium ions by heating and firing. A low-temperature sintering not only provides a uniform composition, but also allows a relatively large amount of the metal element to form a solid solution in the lithium manganate crystal. The lithium-manganese composite oxide containing a different metal element after the heating and sintering may be appropriately pulverized or crushed according to the sintering or aggregation state.
加熱焼成温度としては異種金属元素含有リチウム ·マンガン複合酸化物前駆体 の糸且成、 粒度、 焼成雰囲気などにより異なるが、 異種金属元素含有リチウム -マ ンガン複合酸化物前駆体が異種金属元素含有リチウム ·マンガン複合酸化物に相 変化する温度以上であればよく、 概ね 400°C以上、 好ましくは 500°C以上で、 焼結を防ぐために 850 °C以下で行うのが好ましく、 500 °C以上 800 °C以下 とするのがさらに好ましい。 焼成雰囲気は大気中など酸素含有雰囲気であれば特 に制限は無く、 酸素分圧は適宜設定できる。  The heating and sintering temperature varies depending on the composition, particle size, sintering atmosphere, etc. of the lithium / manganese composite oxide precursor containing the heterogeneous metal element. The temperature should be at least the temperature at which the manganese composite oxide changes its phase, generally at least 400 ° C, preferably at least 500 ° C, and preferably at 850 ° C or less to prevent sintering, and at least 500 ° C and 800 It is more preferable that the temperature be not higher than ° C. The firing atmosphere is not particularly limited as long as it is an oxygen-containing atmosphere such as in the air, and the oxygen partial pressure can be appropriately set.
本発明の方法で得られる異種金属元素含有リチウム ·マンガン複合酸化物は、 一般式 L i 1 +xMyMn 2xy04で表される化合物であって、 式中の x、 y の値が (1 + x) / (2-x-y) で表して 0.3〜1.5の範囲が好ましい組成 物あり、 特に一般式 L iMn 204や、 L i 4/3Mn 5/30 などで表される スピネル型の結晶構造を有するものが好ましく、 リチウム 'マンガン複合酸化物 の単一相であっても、 リチウム ·マンガン複合酸化物とマンガン酸化物の混合物 であってもよい。 Different metal elements containing lithium-manganese composite oxide obtained by the method of the present invention have the general formula L i 1 + x M y Mn 2 - x - a compound represented by y 0 4, x in the formula, There range of 0.3 to 1.5 is preferred composition expressed by the value of y is (1 + x) / (2 -xy), in particular or general formula L iMn 2 0 4, etc. L i 4/3 Mn 5/3 0 Represented by Those having a spinel type crystal structure are preferable, and may be a single phase of lithium-manganese composite oxide or a mixture of lithium-manganese composite oxide and manganese oxide.
また、 本発明により得られる異種金属元素含有リチウム ·マンガン複合酸化物 は、 Fe、 C r、 Co、 N i、 A l、 Mg、 Ca、 Zn、 V、 Nb、 Mo、 T i、 Z r、 Ga及ぴ I nからなる群から選ばれる少なくとも 1種の金属元素を含む。 前述のように、 これらの金属元素を含む化合物とリチウム ·マンガン複合酸化物 前駆体との反応性が優れているので、 処理量が比較的多くても金属元素の大部分 がマンガン酸リチウムの結晶中に固溶されているものと推測され、 サイクル特性 の、 特に高温下での改良効果が高い。 また、 結晶性が優れ、 組成も均一であるの で、 これを用いたリチウム電池は初期放電容量など諸電池特性が優れている。 例 えば、 マンガン酸化物にこれらの金属元素を含む化合物を被着した後、 リチウム 化合物と混合し加熱焼成しても本発明のように均一な組成のものは得られない。 その含有量は前記の金属元素を Mとした時、 MZMn原子比で表して、 異種金 属を総量で 0. 01〜0. 4含有する。 この範囲より金属元素の含有量が少ない と所望の充放電サイクル特性が得られず、 多いと充放電容量が低下してしまう。 従って、 充放電電位が 3. 5〜4. 5V程度の、 いわゆる 4 V級のリチウム電池 に用いるには金属元素含有量が MZMn原子比で表して 0. 025〜0. 15で あるのが好ましく、 充放電電位が 5 V前後の 5 V級の場合は金属元素含有量が M ZMn原子比で表して 0. 1〜0. 4であるのが好ましい。  Further, the different metal element-containing lithium-manganese composite oxide obtained by the present invention includes Fe, Cr, Co, Ni, Al, Mg, Ca, Zn, V, Nb, Mo, Ti, Zr, It contains at least one metal element selected from the group consisting of Ga and In. As described above, since the reactivity between the compound containing these metal elements and the lithium-manganese composite oxide precursor is excellent, even if the treatment amount is relatively large, most of the metal elements are crystals of lithium manganate. It is presumed that they are dissolved in solid solution, and the effect of improving cycle characteristics, especially at high temperatures, is high. Further, since the crystallinity is excellent and the composition is uniform, a lithium battery using this has excellent various battery characteristics such as initial discharge capacity. For example, even if a compound containing these metal elements is applied to a manganese oxide and then mixed with a lithium compound and heated and fired, a product having a uniform composition as in the present invention cannot be obtained. The content is represented by MZMn atomic ratio, where M is the above-mentioned metal element, and the total amount of the different metals is 0.01 to 0.4. If the content of the metal element is less than this range, the desired charge / discharge cycle characteristics cannot be obtained, and if the content is too large, the charge / discharge capacity decreases. Therefore, for use in a so-called 4 V class lithium battery having a charge / discharge potential of about 3.5 to 4.5 V, the metal element content is preferably from 0.025 to 0.15 in terms of MZMn atomic ratio. When the charge / discharge potential is in the 5 V class of about 5 V, the content of the metal element is preferably 0.1 to 0.4 in terms of MZMn atomic ratio.
一般的に、 充放電を繰り返すとリチウム電池の電池容量が低下するのは、 充放 電毎に正負極活物質からリチウムイオンが脱離、 揷入され、 格子結晶が収縮、 膨 張するのに伴い、 結晶の崩壊が進むためであるといわれている。 また、 マンガン 酸リチウムは通常 3価と 4価のマンガンを含んでおり、 例えば化学量論組成のマ ンガン酸リチウムは 3価と 4価を同量含んでいる。 この 3価のマンガンは本来ャ ーン.テラー効果と呼ばれる不安定性を有しおり、 3価のマンガンが多い程、 結 晶構造が不安定ィヒし、 崩壌が進みやすくなることも原因の一つであるといわれて いる。  Generally, the battery capacity of a lithium battery decreases when charge and discharge are repeated, because lithium ions are desorbed and imported from the positive and negative electrode active materials every time charge and discharge are performed, and the lattice crystal shrinks and expands. It is said that this is because the crystal collapse proceeds. In addition, lithium manganate usually contains trivalent and tetravalent manganese. For example, stoichiometric lithium manganate contains the same amount of trivalent and tetravalent manganese. This trivalent manganese originally has an instability called the Jan-Teller effect, and one of the causes is that the more trivalent manganese, the more unstable the crystal structure and the easier the decay. It is said to be one.
前記の金属化合物が効果を示す理由については必ずしも明確ではないが、 異種 の金属元素が取り込まれた組成のリチウム ·マンガン複合酸化物では結晶の格子 定数が小さくなり、 リチウムが脱離した結晶の格子定数に近接し、 リチウムィォ ンの脱離、 揷入による格子体積の変動幅が軽減されるためではないかと推測され る。 あるいは、 本発明のような異種の金属元素を固溶させると、 3価のマンガン と置換してその含有量を低下させ、 ヤーン ·テラー効果が軽減されるのではない 力 とも推測される。 It is not always clear why these metal compounds are effective, but In a lithium-manganese composite oxide with a composition incorporating a metallic element, the lattice constant of the crystal becomes smaller, approaches the lattice constant of the crystal from which lithium has been desorbed, and the lattice volume changes due to desorption and incorporation of lithium ions. It is presumed that the width is reduced. Alternatively, it is presumed that when a dissimilar metal element as in the present invention forms a solid solution, it is replaced with trivalent manganese to reduce its content, and the Jahn-Teller effect is not reduced.
さらに、 本発明により得られる異種金属元素含有リチウム ·マンガン複合酸ィ匕 物は粒度分布や粒子形状が均一であり、 格子欠陥が少なく結晶性が優れ、 均質な 組成である。 特に前記したシード法により合成したマンガン酸ィ匕物を用いたもの は、 平均粒子径が 0. :!〜 5 0 ^ mの大粒子の異種金属元素含有リチウム ガン複合酸化物である。 粒子径が大きい異種金属元素含有リチウム  Furthermore, the lithium-manganese composite oxide containing a different metal element obtained by the present invention has a uniform particle size distribution and particle shape, has few lattice defects, has excellent crystallinity, and has a homogeneous composition. In particular, those using the manganese oxide synthesized by the seed method described above are lithium metal composite oxides containing different metal elements containing large particles having an average particle diameter of 0 :! to 50 ^ m. Lithium containing foreign metal elements with large particle size
合酸化物は充填性に優れ、 正極活物質として成形体やペーストに多量に充填でき るため、 これを用いたリチウム電池はエネルギー密度が高い。 また、 これはマン ガン酸化物の合成段階で所望の大粒子に成長させるので、 加熱焼成により焼結さ せて粒子成長させる必要がないので均一な粒子となる。 粒子径が上記範囲より小 さいと所望の充填性が得られず、 またこれを用いたリチウム電池のサイクル特性 は悪く、 大きいとリチウム電池に所望とする諸特性が得られない。 尚、 ここでい う平均粒子径はレーザー散乱法により測定したものである。 Since the composite oxide has excellent filling properties and can be filled in a large amount into a compact or paste as a positive electrode active material, a lithium battery using this has a high energy density. In addition, since this is grown into a desired large particle at the stage of synthesizing manganese oxide, it is not necessary to sinter by heating and sintering to grow the particle. If the particle size is smaller than the above range, desired filling properties cannot be obtained, and the cycle characteristics of a lithium battery using the same are poor. If the particle size is large, various characteristics desired for the lithium battery cannot be obtained. Here, the average particle diameter is measured by a laser scattering method.
次に本発明は上記の異種金属元素含有リチウム ·マンガン複合酸化物を正極活 物質として用いてなるリチウム電池である。 本発明でいうリチウム電池とは、 負 極にリチウム金属を用いた一次電池、 及ぴ負極にリチウム金属を用いた充電可能 な二次電池、 負極に炭素材料、 スズ化合物、 チタン酸リチウムなどを用いた充電 可能なリチウムィオン二次電池のことをいう。 本発明の異種金属元素含有リチウ ム ·マンガン複合酸化物は格子欠陥が少なく結晶性が優れ、 特定の異種の金属化 合物を均一に含有しているので、 これを特にリチウム二次電池の正極活物質とし て用ると、 充放電時に結晶の崩壌が起こり難く、 電池特性にも優れたものになる。 さらに、 スピネル型を主体とする結晶構造を有するものを用いると、 2〜3 . 5 V程度の電位領域で充放電が可能な 3 V級や、 それが 3 . 5〜4. 5 V程度であ る 4 V級、 さらに 5 V前後である 5 V級の正極活物質が得られ、 中でも 4 V級の ものに有用である。 Next, the present invention is a lithium battery using the above-described lithium / manganese composite oxide containing a different metal element as a positive electrode active material. As used herein, a lithium battery refers to a primary battery using lithium metal for the negative electrode, a rechargeable secondary battery using lithium metal for the negative electrode, a carbon material, a tin compound, lithium titanate, or the like for the negative electrode. Is a rechargeable lithium ion secondary battery. The lithium-manganese composite oxide containing a heterogeneous metal element of the present invention has few lattice defects and excellent crystallinity, and contains a specific heterogeneous metal compound uniformly. When used as an active material, crystal collapse is unlikely to occur during charge / discharge, and battery characteristics are also excellent. Furthermore, if a material having a crystal structure mainly composed of a spinel is used, it can be charged or discharged in a potential region of about 2 to 3.5 V, or a voltage of about 3.5 to 4.5 V. Certain 4 V class, and 5 V class positive electrode active material of around 5 V can be obtained. Useful for things.
リチウム電池用正極は、 コイン型電池用とする場合には、 本発明のリチウム · マンガン複合酸化物粉体に、 アセチレンブラックや、 カーボン、 グラフアイト粉 末などの炭素系導電剤や、 ポリ四フッ化工チレン樹脂や、 ポリビニリデンフルォ ライド樹脂などの結着剤を添加、 混練し、 成型して得ることができる。 さらに、 円筒型、 あるいは角型電池用とする場合には、 本発明のリチウム ·マンガン複合 酸化物粉体に、 これらの添加物以外に N—メチルピロリドンなどの有機溶剤も添 加し、 混練してペースト状とし、 アルミニウム箔のような金属集電体上に塗布し、 乾燥して得ることができる。  When the positive electrode for a lithium battery is used for a coin-type battery, the lithium-manganese composite oxide powder of the present invention may be added to a carbon-based conductive agent such as acetylene black, carbon, or graphite powder, or polytetrafluoroethylene. It can be obtained by adding, kneading, and molding a binder such as a chemical modified polyethylene resin or a polyvinylidene fluoride resin. Further, in the case of a cylindrical or prismatic battery, an organic solvent such as N-methylpyrrolidone is added to the lithium-manganese composite oxide powder of the present invention in addition to these additives, and the mixture is kneaded. Into a paste, applied to a metal current collector such as an aluminum foil, and dried.
リチウム電池の電解液には、 電気化学的に安定な、 すなわちリチウムイオン電 池として作動する電位範囲より広い範囲で、 酸化、 還元されることのない極性有 機溶媒に、 リチウムイオンを溶解させたものを使用することができる。 極性有機 溶媒としては、 プロピレンカーボネートやエチレンカーボネート、 ジェチルカ一 ボネート、 ジメ トキシェタン、 テトラヒドロフラン、 プチルラクトンなどや 、 それらの混合液を用いることができる。 リチウムイオン源となる溶質には、 過 塩素酸リチウムや六フッ化リン酸リチウム、 四フッ化ホウ素酸リチウムなどを用 いることができる。 また電極間には多?し性のポリプロピレンフィルムゃポリェチ レンフィルムが、 セパレータとして配置される。  Lithium ion is dissolved in the electrolyte of a lithium battery in a polar organic solvent that is electrochemically stable, that is, is not oxidized or reduced in a wider range than the potential range that operates as a lithium ion battery. Things can be used. As the polar organic solvent, propylene carbonate, ethylene carbonate, getyl carbonate, dimethoxetane, tetrahydrofuran, butyl lactone, or a mixture thereof can be used. As a solute serving as a lithium ion source, lithium perchlorate, lithium hexafluorophosphate, lithium tetrafluoroborate, or the like can be used. Also between the electrodes? A flexible polypropylene film / polyethylene film is arranged as a separator.
電池の種類としては、 ペレット状の正極と負極の間にセパレータを置き、 ポリ プロピレン製のガスケットのついた封口缶に圧着し、 電解液を注入し、 密閉した コィン型のものや、 正極材料や負極材料を金属集電体上に塗布し、 セパレータを はさんで卷き取り、 ガスケットのついた電池缶に挿入し、 電解液を注入し、 封入 した円筒型のものなどが挙げられる。 また特に電気化学特性を測定することを目 的とした三極式の電池もある。 この電池は正極と負極以外に参照極も配置し、 参 照極に対して他の電極の電位をコント口ールすることにより、 各電極の電気化学 的な特性を評価するものである。  Battery types include a separator between the positive and negative electrodes in the form of pellets, pressure bonding to a sealed can with a polypropylene gasket, injection of electrolyte, and a sealed coin-type battery. The negative electrode material is coated on a metal current collector, the separator is sandwiched and wound, inserted into a battery can with a gasket, injected with an electrolyte, and sealed. There are also three-electrode batteries specifically for measuring electrochemical properties. This battery evaluates the electrochemical characteristics of each electrode by arranging a reference electrode in addition to the positive electrode and the negative electrode, and controlling the potential of other electrodes with respect to the reference electrode.
異種金属元素含有リチウム ·マンガン複合酸化物の正極材料としての性能につ いては、 負極に金属リチウム等を用いて二次電池を構成し、 適当な電圧範囲を定 電流で充放電することにより、 その容量を測定することができる。 また充放電を 繰り返すことにより、 容量の変化からそのサイクル特性の良否を判断することが できる。 The performance of the lithium-manganese composite oxide containing dissimilar metal elements as a positive electrode material is determined by configuring a secondary battery using metallic lithium or the like for the negative electrode, and charging and discharging an appropriate voltage range with a constant current. Its capacity can be measured. Also charge and discharge By repeating, the quality of the cycle characteristics can be determined from the change in the capacity.
実施例 Example
以下に本発明の実施例を示すが、 本発明はこれらの実施例に限定されるもので はない。  Examples of the present invention will be described below, but the present invention is not limited to these examples.
実施例 1 Example 1
1. マンガン水酸化物の合成  1. Synthesis of manganese hydroxide
8. 37 (モル /1) の水酸ィ匕ナトリウム溶液 1. 305 (1) と、 水 0. 8 83 (1) をステンレス製の反応容器に仕込んだ。 この中に窒素ガスを 5 ( 1 / 分) で吹き込みながら、 硫酸マンガン (MnS04として 88. 06%含有) 1. 873 k gを 7. 500 k gの水に溶解した溶液を攪拌しながら急速に添カ卩し 7 0 °Cで中和した。 その後、 70 で 3時間熟成してマンガンの水酸化物を得た。 中和後の溶液に残存するマンガンイオンの濃度は 30 (gXl) であった。 8.37 (mol / 1) 1.305 (1) sodium hydroxide solution and 0.883 (1) water were charged into a stainless steel reaction vessel. While blowing nitrogen gas therein in 5 (1 / min), rapid added with stirring a solution of (88.06% containing as MnS0 4) 1. 873 kg of manganese sulfate in water 7. 500 kg The mixture was neutralized at 70 ° C. Then, it was aged at 70 for 3 hours to obtain a manganese hydroxide. The concentration of manganese ions remaining in the solution after neutralization was 30 (gXl).
2. マンガン酸化物シードの合成  2. Synthesis of manganese oxide seed
得られたマンガン水酸化物を含む溶液を攪拌しながら、 空気を 5 (1ノ分) で 吹き込み 70°Cの温度で酸化し、 p Hが 6. 4になった時点で酸化を終了させ、 マンガン酸化物シードを得た。  While stirring the obtained solution containing manganese hydroxide, air was blown in at 5 (1 min) and oxidized at a temperature of 70 ° C. When the pH reached 6.4, the oxidation was terminated. A manganese oxide seed was obtained.
3. マンガン酸化物シードの成長  3. Manganese oxide seed growth
上記のマンガン酸化物シードを含む溶液を 70°Cに保ち、 硫酸マンガン  Keep the above solution containing manganese oxide seed at 70 ° C,
(MnS〇4として 88. 06 %含有) 5. 618 k gを水 21. 28 k gに溶 解した水溶液を添加した後、 攪拌下で空気/窒素 の混合ガスを 5 (1/ 分) で吹き込みながら、 8. 37 (モル/ /1) の水酸化ナトリウム 9. 1 33 (1) を 64時間かけて添加し、 中和、 酸ィ匕させてマンガン酸ィ匕物シードを成長 させた。 pHが 8. 0になった時点で成長反応を終了し、 濾過、 水洗してマンガ ン酸化物を得た。 After a 5. 618 kg (MnS_〇 88.06% containing as 4) was added an aqueous solution prepared by dissolve in water 21. 28 kg, while blowing a mixed gas of air / nitrogen at 5 (1 / min) under stirring And 8.37 (mol // 1) of sodium hydroxide 9.133 (1) were added over 64 hours, neutralized and oxidized to grow manganese oxidized seeds. When the pH reached 8.0, the growth reaction was terminated, followed by filtration and washing with water to obtain manganese oxide.
4. マンガン酸化物と酸との反応  4. Reaction between manganese oxide and acid
マンガン酸化物 (Mn換算 2400 g) を水に分散させたスラリーをステンレ ス製反応容器に仕込み 60°Cに昇温した。 このスラリー中に 1 (モル Z1) の硫 酸 6. 99 (1) を 1時間かけて攪拌しながら添加し、 その後 2時間反応させて から濾過水洗して、 酸と反応させたマンガン酸化物を得た。 A slurry in which manganese oxide (2400 g in terms of Mn) was dispersed in water was charged into a stainless steel reaction vessel, and the temperature was raised to 60 ° C. To this slurry, 1 (mol Z1) of sulfuric acid 6.99 (1) was added with stirring over 1 hour, and then reacted for 2 hours. Then, the mixture was filtered and washed with water to obtain a manganese oxide reacted with an acid.
5. リチウム 'マンガン複合酸化物前駆体の合成  5. Synthesis of lithium'manganese composite oxide precursor
酸と反応させたマンガン酸化物 (Mn換算 500 g) を水に分散させたスラリ 一に水酸化リチウム一水塩 5. 373モルを添加して溶解させた後、 水を加えて 1. I l l (1) にしガラス製反応容器に仕込んだ。 空気を 2 (1Z分) でこの スラリーに吹き込み、 攪拌しながら 90°Cに昇温して 10時間反応させた後、 温 度を 60°Cまで冷却し、 リチウム ·マンガン複合酸化物前駆体を含むスラリーを 得た。 上記スラリーを分取、 濾過し、 0. 05 (モル Z1) の水酸化リチウム溶 液で洗浄した後、 乾燥した。 (試料 i)  5.373 mol of lithium hydroxide monohydrate was added to a slurry of manganese oxide (500 g in Mn), which had been reacted with an acid, dispersed in water and dissolved. (1) Nishi was charged into a glass reaction vessel. Air was blown into the slurry at 2 (1Z minute), the temperature was raised to 90 ° C with stirring, and the reaction was allowed to proceed for 10 hours. Then, the temperature was cooled to 60 ° C, and the lithium-manganese composite oxide precursor was cooled. The resulting slurry was obtained. The slurry was separated, filtered, washed with a 0.05 (molar Z1) lithium hydroxide solution, and dried. (Sample i)
6. クロム化合物の被着'含有  6. Inclusion of chromium compound
上記のスラリー 1 (1) を攪拌下で窒素を 1 UZ分) で吹き込みながら 60 °Cに昇温し、 4. 5 (モル /1) の水酸ィ匕リチウム水溶液 0. 273 ( 1 ) を添 加し、 次いで C r換算で 50 (g/ 1 ) の濃度の塩化クロム水溶液 0. 426 (1) を 1時間かけて添加した後、 5日寺間反応させた。 反応後、 冷却してから濾 過し、 0. 05 (モル /1) の水酸ィ匕リチウム水溶液で洗浄して、 C rを含有す るリチウム ·マンガン複合酸化物前駆体を得た。  The temperature of the slurry 1 (1) was raised to 60 ° C while blowing nitrogen (1 UZ for 1 UZ) with stirring, and a 4.5 (mol / 1) aqueous solution of lithium hydroxide 0.273 (1) was added. Then, 0.426 (1) of a chromium chloride aqueous solution having a concentration of 50 (g / 1) in terms of Cr was added over 1 hour, and the mixture was reacted for 5 days. After the reaction, the reaction solution was cooled, filtered, and washed with a 0.05 (mol / 1) aqueous solution of lithium hydroxide to obtain a lithium-manganese composite oxide precursor containing Cr.
7. 異種金属元素含有リチウム 'マンガン複合酸化物前駆体の焼成  7. Calcination of lithium 'manganese composite oxide precursor containing different metal elements'
C rを含有するリチウム 'マンガン複合酸化物前駆体を 110°Cで 12時間乾 燥させた後、 空気中で 750。 で 3時間加熱焼成してリチウム ·マンガン複合酸 化物を得た。  The Cr-containing lithium manganese composite oxide precursor was dried at 110 ° C for 12 hours and then 750 in air. For 3 hours to obtain a lithium-manganese composite oxide.
8. 異種金属元素含有リチウム 'マンガン複合酸化物の粉碎  8. Disintegration of lithium-manganese composite oxide containing different metal elements
焼成後のリチウム ·マンガン複合酸化物 200 gを小型フレツトミル (吉田製 作所製) で 5分間粉碎した。 (試料 A) [L iノ (Mn + Cr) =0. 525、 C r /Mn = 0. 05]  After firing, 200 g of the lithium-manganese composite oxide was ground with a small fret mill (Yoshida Seisakusho) for 5 minutes. (Sample A) [Li (Mn + Cr) = 0.525, Cr / Mn = 0.05]
実施例 2 Example 2
第 5の工程における水酸ィ匕リチウム一水塩の添加量を 5. 500モル、 第 6の 工程における塩ィヒク口ム水溶液の添加量を 0. 639 ( 1 ) とした以外は実施例 1と同様の方法で異種金属元素含有リチウム ·マンガン複合酸化物を得た。 (試 料 B) [L i / (Mn + C r ) = 0. 525、 C r/Mn = 0. 075] 尚、 カロ 熱焼成前の C r含有リチウム ·マンガン複合酸化物を試料 iiとする。 Example 1 was repeated except that the addition amount of the lithium hydroxide monohydrate in the fifth step was 5.500 mol and the addition amount of the salt solution in the sixth step was 0.639 (1). A lithium / manganese composite oxide containing a different metal element was obtained in the same manner. (Sample B) [Li / (Mn + Cr) = 0.525, Cr / Mn = 0.075] Sample ii is the Cr-containing lithium-manganese composite oxide before thermal firing.
実施例 3 Example 3
第 6の工程における塩ィ匕クロム水溶液に代えて、 Fe換算で 50 (g/1) の 濃度の硫酸鉄水溶液 0. 457 ( 1 ) を添加した以外は実施例 1と同様の方法で 異種金属元素含有リチウム ·マンガン複合酸化物を得た。 (試料 C) [L iZ (Mn + F e) =0. 525、 F e/Mn = 0. 05]  In the same manner as in Example 1, except that 0.457 (1) of an aqueous solution of iron sulfate having a concentration of 50 (g / 1) in terms of Fe was added instead of the aqueous solution of salted chromium in the sixth step, An element-containing lithium-manganese composite oxide was obtained. (Sample C) [L iZ (Mn + Fe) = 0.525, Fe / Mn = 0.05]
実施例 4 Example 4
1 · リチウム 'マンガン複合酸化物前駆体の合成  1 · Synthesis of lithium'manganese composite oxide precursor
実施例 1の第 4の工程で得られた酸と反応させたマンガン酸化物 (Mn換算 4 50 g) を水に分散させたスラリーに、 水酸化リチウム一水塩 4. 959モルを 添カ卩して溶解させた後、 水を加えて 1 (1) にしガラス製反応容器に仕込んだ。 空気を 2 (1ノ分) でこのスラリーに吹き込み、 攪拌しながら 90°Cに昇温して 14時間反応させた後、 温度を 60°Cまで冷却し、 リチウム ·マンガン複合酸ィ匕 物前駆体を含むスラリ一を得た。  4.959 mol of lithium hydroxide monohydrate was added to a slurry in which manganese oxide (450 g in terms of Mn) reacted with the acid obtained in the fourth step of Example 1 was dispersed in water. Then, water was added to make 1 (1), and the mixture was charged into a glass reaction vessel. Air was blown into the slurry at 2 (1 minute), the temperature was raised to 90 ° C with stirring, and the reaction was allowed to proceed for 14 hours. Then, the temperature was cooled to 60 ° C, and the lithium-manganese composite oxide precursor was cooled. Obtained a slurry containing the body.
2. クロム化合物の被着'含有 2. Inclusion of chromium compound
上記のスラリ一1 (1) を攪拌下で窒素を 1 ( 1 /分) で吹き込みながら 60 に昇温し、 4. 5 (モル/ 1) の水酸化リチウム水溶液 0. 236 (1) と水 0. 138 (1) を添加し、 次いで Cr換算で 50 (g/1) の濃度の塩化クロ ム水溶液 0. 426 (1) を 1時間かけて添加した後、 3時間反応させた。 反応 後、 冷却してから濾過し、 0. 05 (モル Z1) の水酸化リチウム水溶液で洗浄 して C rを含有するリチウム ·マンガン複合酸化物前駆体を得た。  The above slurry 1 (1) was heated to 60 while stirring with nitrogen (1 / min) while blowing nitrogen at a rate of 4.5 (mol / 1) aqueous lithium hydroxide solution 0.236 (1) and water. 0.138 (1) was added, and then an aqueous solution of chromium chloride at a concentration of 50 (g / 1) in terms of Cr, 0.426 (1), was added over 1 hour, followed by a reaction for 3 hours. After the reaction, the reaction solution was cooled, filtered, and washed with a 0.05 (molar Z1) aqueous solution of lithium hydroxide to obtain a Cr-containing lithium-manganese composite oxide precursor.
3. 異種金属元素含有リチウム ·マンガン複合酸化物前駆体の焼成 3. Firing of precursors of lithium and manganese composite oxides containing different metal elements
C rを含有するリチウム ·マンガン複合酸化物前駆体を実施例 1の第 7の工程 と同様にし加熱焼成した後、 試料 20 gを瑪瑙乳鉢で解砕し、 本発明の異種金属 元素を含有するリチウム ·マンガン複合酸化物を得た。 (試料 D) [L i /  The lithium-manganese composite oxide precursor containing Cr was heated and calcined in the same manner as in the seventh step of Example 1, and then 20 g of the sample was disintegrated in an agate mortar to contain the dissimilar metal element of the present invention. A lithium-manganese composite oxide was obtained. (Sample D) [Li /
(Mn + C r) =0. 54、 C r/Mn = 0. 05]  (Mn + Cr) = 0.54, Cr / Mn = 0.05]
実施例 5 Example 5
第 2の工程において水の添加量を 0. 107 (1) としたこと、 及ぴ塩ィヒクロ ム水溶液に代えて F e換算で 50 (g/1) の濃度の硫酸鉄水溶液を 0. 458 ( 1 ) を用いたこと以外は実施例 4と同様にして本願の異種金属元素含有リチウ ム ·マンガン複合酸ィ匕物を得た。 (試料 E) [L i / (Mn + F e) =0. 54、 F e/Mn = 0. 05] In the second step, the addition amount of water was set to 0.107 (1), and an aqueous solution of iron sulfate having a concentration of 50 (g / 1) in terms of Fe was replaced with 0.458 A lithium / manganese composite oxide containing a different metal element of the present application was obtained in the same manner as in Example 4 except that (1) was used. (Sample E) [Li / (Mn + Fe) = 0.54, Fe / Mn = 0.05]
実施例 6 Example 6
第 1の工程において水酸化リチウム一水塩の添加量を 5. 063モルとしたこ と、 第 2の工程にぉレ、て水酸化リチウム水溶液水の添加量を 0. 454 ( 1 ) と したこと、 水を添加しなかつたこと、 及ぴ塩化ク口ム水溶液に代えて F e換算で 50 (g/1) の濃度の硫酸鉄水溶液を 0. 823 ( 1 ) 用いたこと以外は実施 例 4と同様にして、 本願の異種金属元素含有リチウム ·マンガン複合酸化物を得 た。 (試料 F) [L iノ (Mn + F e) = 0. 53、 F e/Mn = 0. 09] 実施例 7  In the first step, the addition amount of lithium hydroxide monohydrate was 5.063 mol, and in the second step, the addition amount of lithium hydroxide aqueous solution was 0.454 (1). Example 1 except that water was not added, and that an aqueous solution of iron sulfate having a concentration of 50 (g / 1) in terms of Fe was used instead of an aqueous solution of chlorinated chloride and 0.823 (1). In the same manner as in 4, a lithium / manganese composite oxide containing a dissimilar metal element of the present application was obtained. (Sample F) [L i (Mn + Fe) = 0.53, Fe / Mn = 0.09] Example 7
第 1の工程において水酸ィヒリチウム一水塩の添加量を 4. 671モノレとしたこ と、 第 2の工程において水の添加量を 0. 673 ( 1 ) としたこと、 水酸ィ匕リチ ゥム水溶液の添加量を 0. 0356 (1) としたこと、 及び塩化ク口ム水溶液に 代えて F e換算で 50 (g/1) の濃度の硫酸鉄水溶液を 0. 091 5 (1) 添 カロしたこと以外は実施例 4と同様に行い、 異種金属元素含有リチウムマンガン複 合酸化物を得た。 (試料 G) [L i / (Mn + F e) =0. 535、 F e/Mn =0. 01]  In the first step, the amount of addition of hydrithium hydroxide monohydrate was set to 4.671, and in the second step, the amount of addition of water was set to 0.673 (1). The amount of aqueous solution added was 0.0356 (1), and an aqueous solution of iron sulfate with a concentration of 50 (g / 1) in terms of Fe was added instead of the aqueous solution of potassium chloride. The same operation as in Example 4 was carried out except that heat was applied, to obtain a lithium-manganese composite oxide containing a different metal element. (Sample G) [Li / (Mn + Fe) = 0.535, Fe / Mn = 0.01]
実施例 8 Example 8
第 2の工程において水の添力卩量を 0. 082 (1) としたこと、 及ぴ塩ィ匕クロ ム水溶液の代わりに C o換算で 50 (g/1) の濃度の硫酸コバルト水溶液を 0. In the second step, the amount of water added was set to 0.082 (1), and an aqueous solution of cobalt sulfate having a concentration of 50 (g / 1) 0.
483 (1) 用いたこと以外は実施例 4と同様にして、 本願の異種金属元素含有 リチウム ·マンガン複合酸ィヒ物を得た。 (試料 H) [L x/ (Mn + C o) =0.483 (1) In the same manner as in Example 4 except that the compound was used, a lithium / manganese composite oxide containing a different metal element of the present application was obtained. (Sample H) [L x / (Mn + Co) = 0.
54、 C oZMn = 0, 05] ·. ' 54, CoZMn = 0, 05] ·. '
実施例 9 Example 9
第 2の工程において水の添加量を 0. 456 (1) としたこと、 水酸ィヒリチウ ム水溶液の添加量を 0. 145 ( 1 ) としたこと、 及び塩化ク口ム水溶液の代わ りに Mg換算で 50 (g/1 ) の濃度の硫酸マグネシウム水溶液を 0. 1 99 (1) 用いたこと以外は実施例 4と同様にして、 本願の異種金属元素含有リチウ ム 'マンガン複合酸化物を得た。 (試料 I) [L i / (Mn+Mg) =0. 54、 Mg/Mn= 0. 05] In the second step, the amount of water added was set to 0.456 (1), the amount of the aqueous solution of sodium hydroxide was set to 0.145 (1), and Mg In the same manner as in Example 4 except that an aqueous solution of magnesium sulfate having a concentration of 50 (g / 1) in terms of 0.1 (99) was used, the lithium metal containing the different metal element of the present application was Manganese composite oxide was obtained. (Sample I) [L i / (Mn + Mg) = 0.54, Mg / Mn = 0.05]
比較例 1 Comparative Example 1
実施例 1の第 5の工程で得られたリチウム 'マンガン複合酸化物前駆体を含む スラリーを濾過し、 次いで 0. 1 (モル Z1) の水酸化リチウム溶液 2 (1) で 洗浄した後、 1 1 0°C12時間で乾燥した。 乾燥物をさらに空気中で 750°C3 時間加熱焼成後、 実施例 1と同様に小型フレツトミルで粉碎し、 マンガン酸リチ ゥムを得た。 (試料】)  The slurry containing the lithium manganese composite oxide precursor obtained in the fifth step of Example 1 was filtered, and then washed with 0.1 (mol Z1) of lithium hydroxide solution 2 (1), Dried at 10 ° C for 12 hours. The dried product was further heated and fired in air at 750 ° C. for 3 hours, and then pulverized with a small frit mill in the same manner as in Example 1 to obtain lithium manganate. (Sample)
比較例 2 Comparative Example 2
二酸ィ匕マンガン 40 g、 炭酸リチウム 8. 72 g及ぴ酸化鉄 1. 79 gを乳鉢 でよく混合した後、 450°Cで 1 5時間仮焼した。 冷却後乳鉢で混合し、 更に 8 00 で 15時間焼成した後、 実施例 4と同様に瑪瑙乳鉢で解碎して異種金属元 素含有リチウム ·マンガン複合酸化物を得た。 (試料 K) [L i / (Mn + F e) =0. 525、 F e/Mn = 0. 05〕  After 40 g of manganese diacid, 8.72 g of lithium carbonate and 1.79 g of iron oxide were mixed well in a mortar, they were calcined at 450 ° C. for 15 hours. After cooling, the mixture was mixed in a mortar, baked at 800 for 15 hours, and then crushed in an agate mortar in the same manner as in Example 4 to obtain a lithium-manganese composite oxide containing a different metal element. (Sample K) [L i / (Mn + Fe) = 0.525, Fe / Mn = 0.05]
評価 1 Rating 1
実施例 1〜 9、 比較例 1、 2で得られた異種金属元素含有リチウム .マンガン 複合酸化物及ぴマンガン酸リチウム (試料 A〜K) の比表面積を、 比表面積測定 装置 (モノソープ:ュアサアイォニタス製) を用い、 BET法にて測定した。 評価 2  The specific surface areas of the lithium-manganese composite oxides and lithium manganates (samples A to K) containing different metal elements obtained in Examples 1 to 9 and Comparative Examples 1 and 2 were measured using a specific surface area measuring device (monosoap: (Manufactured by Asaionitas) using the BET method. Rating 2
実施例 1〜 9、 比較例 1、 2で得られた異種金属元素含有リチウム .マンガン 複合酸化物及ぴマンガン酸リチウム (試料 A〜K) の水性スラリ一を十分に超音 波分散し、 レーザー光による透過率が 85 ± 1%になるように調製した後、 レ 一ザ一回折 Z散乱式粒度分布測定装置 (LA— 90 :堀場製作所製) を用い体積 基準で平均粒子径測定した。  The aqueous slurries of lithium-manganese composite oxide and lithium manganate (samples A to K) containing different metal elements obtained in Examples 1 to 9 and Comparative Examples 1 and 2 were sufficiently ultrasonically dispersed, and the laser was used. After adjusting the transmittance by light to 85 ± 1%, the average particle diameter was measured on a volume basis using a laser-diffraction, Z-scattering particle size distribution analyzer (LA-90: manufactured by HORIBA, Ltd.).
評価 3 Rating 3
実施例 1〜 9、 比較例 1、 2で得られた異種金属元素含有リチウム 'マンガン 複合酸化物及ぴマンガン酸リチウム (試料 A〜K) それぞれ 50 gを 100  Lithium containing different metal elements obtained in Examples 1 to 9 and Comparative Examples 1 and 2 Manganese composite oxide and lithium manganate (Samples A to K)
(ml) のメスシリンダーに入れ、 100回タッピングしてタップ密度を測定し た。 試料 A Kの比表面積、 平均粒子径、 タップ密度を表 1に示す。 本発明により 得られた C r F e C o及ぴ Mgを含有するリチウム ·マンガン複合酸ィヒ物は、 異種の金属元素を含有しないマンガン酸リチウムと同等の粉体物性を有している ことがわ力る。 (ml), and the tap density was measured by tapping 100 times. Table 1 shows the specific surface area, average particle size, and tap density of sample AK. The lithium-manganese composite oxide containing CrFeCo and Mg obtained by the present invention has powder properties equivalent to those of lithium manganate not containing a different kind of metal element. Power.
【表 1】  【table 1】
Figure imgf000018_0001
Figure imgf000018_0001
評価 4 Rating 4
実施例 1 9、 比較例 1 2で得られた異種金属元素含有リチウム 'マンガン 複合酸化物及ぴマンガン酸リチウム (試料 A K) を正極活物質とした場合のリ チウムニ次電池の充放電特性、 及びサイクル特性を評価した。 電池の形態や測定 条件について説明する。  The charge / discharge characteristics of a lithium secondary battery using the lithium-containing manganese composite oxide and lithium manganate (sample AK) obtained in Example 19 and Comparative Example 12 as the positive electrode active material, and The cycle characteristics were evaluated. The battery configuration and measurement conditions will be described.
上記各試料と、 導電剤としてのグラフアイト粉末、 及び結着剤としてのポリ四 フッ化工チレン樹脂を重量比で 7 0 : 24 : 6で混合し、 乳鉢で練り合わせ、 直 径 1 0mmの円形に成型してペレツト状とした。 ペレツトの重量は 4 Omgであ つた。 このペレツトに直径 1 Ommの円形に切り出した金属チタン製のメッシュ を重ね合わせ、 1 4. 7MP aでプレスして正極とした。  Each of the above samples, graphite powder as a conductive agent, and polytetrafluoroethylene resin as a binder were mixed at a weight ratio of 70: 24: 6, and kneaded in a mortar to form a circle having a diameter of 10 mm. It was molded into a pellet. The pellet weighed 4 Omg. A titanium metal mesh cut into a circle having a diameter of 1 Omm was overlapped on the pellet, and pressed at 14.7 MPa to obtain a positive electrode.
この正極を 1 20 T4時間真空乾燥した後、 露点一 7 0°C以下のグローブポッ タス中で、 密閉化可能なコイン型評価用セルに組み込んだ。 評価用セルには、 材 質がステンレス (SUS 3 1 6) 製で、 外径 2 Omm、 高さ 1. 6 mmのものを 用いた。 負極には厚み 0. 5 mmの金属リチウムを直径 1 4 mmの円形に成形し たものを用いた。 非水電解液として、 1モル Zリットルとなる濃度で L i P F 6 を溶解したエチレンカーボネートとジメチルカーボネートの混合溶液 (体積比で 1 : 2に混合)を用いた。 The positive electrode was vacuum-dried for 120 T for 4 hours, and then incorporated in a sealable coin-type evaluation cell in a glove pot having a dew point of 170 ° C or lower. The evaluation cell used was a stainless steel (SUS316) material with an outer diameter of 2 Omm and a height of 1.6 mm. The negative electrode used was 0.5 mm thick metallic lithium molded into a 14 mm diameter circular shape. As a non-aqueous electrolyte, L i PF 6 at a concentration of 1 mol Z liter Was used, and a mixed solution of ethylene carbonate and dimethyl carbonate (mixed at a volume ratio of 1: 2) was used.
正極は評価用セルの下部缶に置き、 その上にセパレーターとして多孔性ポリプ ロピレンフィルムを置いて、 その上から非水電解液をスポィドで 7滴滴下した。 さらにその上に負極をのせ、 ポリプロピレン製のガスケットのついた上部缶を被 せて外周縁部をかしめて密封した。 尚、 厚みを調整するため、 必要に応じてセパ レーターの上下に親水化処理したポリプロピレン製不織布を置いた。  The positive electrode was placed in the lower can of the cell for evaluation, a porous polypropylene film was placed as a separator on the positive electrode, and seven drops of a nonaqueous electrolyte were dropped from above on the porous polypropylene film. The negative electrode was placed on top of it, and an upper can with a gasket made of polypropylene was covered, and the outer peripheral edge was crimped and sealed. In order to adjust the thickness, a hydrophilic non-woven polypropylene nonwoven fabric was placed above and below the separator as necessary.
作製したコィン型評価用セルを、 専用の電池ホルダーにセットし、 5 k gの荷 重をかけた状態で電池特性を測定した。 充放電容量の測定は、 電圧範囲を 4 . 3 Vから 3 . 5 Vに、 充放電電流を 0 . 8 4 mA (約 3サイクル/日) に設定して、 定電流で行った。 2 5 °Cで 2回目のサイクルに測定した数値を初期充放電特性と した。 サイクル特性の測定は 2 5 °Cと 5 0 °Cで行い、 それぞれの容量維持率% { ( 3 0回目の放電容量 Z 5回目の放電容量) X 1 0 0 } で表した。  The coin-type evaluation cell thus prepared was set in a dedicated battery holder, and the battery characteristics were measured with a load of 5 kg applied. The charge / discharge capacity was measured at a constant current with the voltage range set from 4.3 V to 3.5 V and the charge / discharge current set at 0.84 mA (about 3 cycles / day). The value measured in the second cycle at 25 ° C was defined as the initial charge-discharge characteristics. The cycle characteristics were measured at 25 ° C. and 50 ° C., and represented by the respective capacity retention ratios {{(30th discharge capacity Z5th discharge capacity) × 100}}.
試料 A〜Kの初期充放電特性、 サイクル特性を表 2に示す。 また、 試料 B、 J の充放電特性を図 1及び 2に示す。 本発明により得られた C r、 F e、 C o及ぴ M gを含有するリチウム ·マンガン複合酸化物は、 初期充放電特性が異種の金属 元素を含有しない従来のマンガン酸リチウムと同等で、 特に高温下でのサイクル 特性が優れていることがわかる。 Table 2 shows the initial charge / discharge characteristics and cycle characteristics of samples A to K. Figures 1 and 2 show the charge and discharge characteristics of Samples B and J. The lithium-manganese composite oxide containing Cr, Fe, Co and Mg obtained by the present invention has an initial charge / discharge characteristic equivalent to that of conventional lithium manganate not containing a different kind of metal element, In particular, the cycle characteristics at high temperatures are excellent.
【表 2】 [Table 2]
Figure imgf000020_0001
Figure imgf000020_0001
評価 5 Rating 5
実施例で得られたリチウム ·マンガン複合酸ィヒ物前駆体、 加熱焼成前の C r含 有リチウム 'マンガン複合酸化物前駆体、 C r含有リチウム 'マンガン複合酸化 物及ぴマンガン酸リチウム (試料 ii、 A、 B、 J) について粉末 X線回折分 析を行った。 なお、 X線源としては、 CuKa i線を用いた。 試料 A、 B、 Jに ついては、 面指数 (h k 1 ) = (3 1 1) 、 (222) 、 (400) 、 (33 1) 、 (333) 、 (440) 、 (531) 面の面間隔 dを回折ピーク角度より 求め、 それぞれ下式を用い格子定数 aを、 平均値として算出した。 結果を表 3に 示す。 試料 A、 Bの格子定数は試料 Jよりも小さくなつており、 また C rの含有 量の多い試料 Bは含有量の少ない試料 Aよりも格子定数が小さくなっていること から C rが均一に固溶していることがわかる。 Lithium-manganese composite acid precursor obtained in Example, Cr-containing lithium manganese composite oxide precursor before heating and calcination, Cr-containing lithium manganese composite oxide and lithium manganate (sample ii, A, B, J) were subjected to powder X-ray diffraction analysis. In addition, CuK ai ray was used as an X-ray source. For samples A, B, and J, the surface index (hk1) = (311), (222), (400), (331), (333), (440), and (531) surface spacing d was obtained from the diffraction peak angle, and the lattice constant a was calculated as an average value using the following equations. Table 3 shows the results. Samples A and B have smaller lattice constants than Sample J, and Sample B, which has a high Cr content, has a smaller lattice constant than Sample A, which has a low Cr content. It turns out that it is forming a solid solution.
2 1/2  2 1/2
a = d (h " + k 1つ a = d (h "+ k one
試料 i、 ii、 B、 Jの X線回折チヤ一トをそれぞれ図 3〜 6に示す。 試料 iは Mn 304に類似した回折パターンであるが、 18〜 1 9。 でのピークの分離が 認められる。 高角側は L iとの反応生成物に起因するピークであり、 前駆体が生 成していることがわかる。 試料 iiには試料 iよりさらに 1 8〜1 9° の高角側 のピーク強度が増加し、 32. 5° 、 44. 5° 付近のピーク強度も増加する など、 前駆体に C rを被着した段階で、 反応が進んでいると推測される。 試料 A、 Bの回折パターンは、 L i Mn 204と同じパターンのスピネル型に帰属できる ピークのみが観察される。 従って、 試料 Bは結晶構造中の C rが均一に固溶して 単一相になっていることがわかる。 X-ray diffraction charts of samples i, ii, B, and J are shown in Figs. Although the sample i is the diffraction pattern similar to Mn 3 0 4, 18~ 1 9 . Separation of peaks is observed. The high angle side is a peak due to a reaction product with Li, which indicates that a precursor is generated. Sample ii has more peak intensity on the high angle side of 18 to 19 ° than sample i, and peak intensity around 32.5 ° and 44.5 ° also increases. It is presumed that the reaction has progressed at this stage. Sample A, Diffraction pattern of B, only the peak attributable to the spinel having the same pattern as L i Mn 2 0 4 is observed. Therefore, it can be seen that in Sample B, Cr in the crystal structure was uniformly dissolved to form a single phase.
【表 3】  [Table 3]
Figure imgf000021_0001
Figure imgf000021_0001
産業上の利用可能性 Industrial applicability
本発明は、 リチウム 'マンガン複合酸化物前駆体に F e、 C r、 C o、 N i、 A l、 Mg、 Ca、 Zn、 V、 Nb、 Mo、 T i、 Z r、 Ga及ぴ I nからなる 群から選ばれる少なくとも 1種の金属化元素を含有させ、 これ加熱焼成すること で、 上記の金属元素を均一に含有する結晶性の優れた異種金属元素含有リチウム ·マンガン複合酸化物を製造する方法である。 本発明により得られた異種金属元 素含有リチウム ·マンガン複合酸化物を正極活物質として用いたリチウム電池は、 特に常温およぴ高温でのサイクル特性に優れてレヽる。  The present invention provides a method for preparing a lithium manganese composite oxide precursor containing Fe, Cr, Co, Ni, Al, Mg, Ca, Zn, V, Nb, Mo, Ti, Zr, Ga and I. n and at least one metallizing element selected from the group consisting of n, and by heating and calcining, a lithium-manganese composite oxide containing a heterogeneous metal element containing the above-described metal element and having excellent crystallinity. It is a manufacturing method. A lithium battery using the lithium-manganese composite oxide containing a dissimilar metal element obtained according to the present invention as a positive electrode active material has excellent cycle characteristics particularly at ordinary temperatures and high temperatures.

Claims

請求の範囲 The scope of the claims
1. Fe、 C r、 Co、 Ni、 Al、 Mg、 Ca、 Zn、 V、 Nb、 Mo、1. Fe, Cr, Co, Ni, Al, Mg, Ca, Zn, V, Nb, Mo,
T i、 Z r、 G a及ぴ I nからなる群から選ばれる少なくとも 1種の金属元素を 含有させたリチウム 'マンガン複合酸化物前駆体を加熱焼成することを特徴とす る異種金属元素含有リチウム ·マンガン複合酸化物の製造方法。 A heterometallic element containing a lithium manganese composite oxide precursor containing at least one metal element selected from the group consisting of Ti, Zr, Ga and In Method for producing lithium-manganese composite oxide.
2. 該金属元素を含有させたリチウム 'マンガン複合酸化物前駆体が ( 1 ) マ ンガン酸化物、 酸と反応させたマンガン酸化物及びマンガン酸からなる群から選 ばれる少なくとも 1種とリチウム化合物とを反応させてリチウム ·マンガン複合 酸化物前駆体を得る工程、 (2) リチウム 'マンガン複合酸化物前駆体に該金属 元素を含有させる工程により得られることを特徴とする請求項 1記載の異種金属 元素含有リチウム ·マンガン複合酸化物の製造方法。  2. The lithium manganese composite oxide precursor containing the metal element comprises: (1) at least one selected from the group consisting of manganese oxide, manganese oxide reacted with an acid, and manganic acid; Reacting to obtain a lithium-manganese composite oxide precursor; and (2) obtaining the lithium-manganese composite oxide precursor by containing the metal element. A method for producing an element-containing lithium-manganese composite oxide.
3. 該金属元素を含有させたリチウム 'マンガン複合酸化物前駆体が ( 1 ) マ ンガン酸化物、 酸と反応させたマンガン酸化物及ぴマンガン酸からなる群から選 ばれる少なくとも 1種に該金属元素を含有させる工程、 (2) リチウム化合物と 反応させる工程により得られることを特徴とする請求項 1記載の異種金属元素含 有リチウム ·マンガン複合酸化物の製造方法。  3. The lithium manganese composite oxide precursor containing the metal element contains at least one selected from the group consisting of (1) manganese oxide, manganese oxide reacted with an acid, and manganic acid. 2. The method for producing a lithium-manganese composite oxide containing a different metal element according to claim 1, wherein the method is obtained by a step of containing an element, and (2) a step of reacting with a lithium compound.
4. 請求項 2記載の第 2の工程において、 リチウム ·マンガン複合酸ィ匕物前駆 体の存在下で、 (a) Fe、 Cr、 Co、 N i、 Al、 Mg、 Ca、 Zn、 V、 Nb、 Mo、 T i、 Z r、 G a及ぴ I nからなる群から選ばれる少なくとも 1種 の金属元素を含む化合物及ぴ (b) 塩基性ィヒ合物を反応させることにより、 該金 属元素を含有させることを特徴とする異種金属元素含有リチウム ·マンガン複合 酸化物の製造方法。  4. In the second step according to claim 2, in the presence of the lithium-manganese composite oxide precursor, (a) Fe, Cr, Co, Ni, Al, Mg, Ca, Zn, V, (B) reacting a compound containing at least one metal element selected from the group consisting of Nb, Mo, Ti, Zr, G a and In and (b) a basic compound to obtain the gold; A method for producing a lithium-manganese composite oxide containing a dissimilar metal element, characterized by containing a group element.
5. 請求項 3記載の第 1の工程において、 マンガン酸化物、 酸と反応させたマ ンガン酸化物及ぴマンガン酸からなる群から選ばれる少なくとも一種の存在下で、 5. In the first step according to claim 3, in the presence of at least one selected from the group consisting of a manganese oxide, a manganese oxide reacted with an acid, and a manganic acid,
(a) F e、 Cr、 Co、 N i、 Al、 Mg、 Ca、 Zn、 V、 Nb、 Mo、 T i、 Z r、 G a及ぴ I nからなる群から選ばれる少なくとも 1種の金属元素を 含む化合物及び (b) 塩基性化合物とを反応させることにより、 該金属元素を含 有させることを特徴とする異種金属元素含有リチウム ·マンガン複合酸化物の製 造方法。 (a) at least one metal selected from the group consisting of Fe, Cr, Co, Ni, Al, Mg, Ca, Zn, V, Nb, Mo, Ti, Zr, Ga and In Producing a lithium-manganese composite oxide containing a heterogeneous metal element, characterized in that the metal-element-containing compound is reacted with a compound containing the element and (b) a basic compound. Construction method.
6. 該金属元素が酸化物、 水和酸化物、 水酸化物の少なくとも 1種として含有 されることを特徴とする請求項 4または 5記載の異種金属元素含有リチウム ·マ ンガン複合酸化物の製造方法。  6. The production of a lithium-manganese composite oxide containing a different metal element according to claim 4 or 5, wherein the metal element is contained as at least one of an oxide, a hydrated oxide, and a hydroxide. Method.
7. 塩基性化合物がリチウム化合物であることを特徴とする請求項 4または 5 記載の異種金属元素含有リチウム ·マンガン複合酸化物の製造方法。  7. The method for producing a lithium-manganese composite oxide containing a different metal element according to claim 4, wherein the basic compound is a lithium compound.
8. マンガン酸化物が (1) マンガン化合物と塩基性化合物とを反応させてマ ンガン水酸化物を得る工程、 (2) マンガン水酸ィ匕物を酸ィヒさせる工程により得 られることを特徴とする請求項 2または 3記載の異種金属元素含有リチウム ·マ ンガン複合酸化物の製造方法。  8. Manganese oxide is obtained by (1) a step of reacting a manganese compound with a basic compound to obtain a manganese hydroxide, and (2) a step of acidifying a manganese hydroxide. 4. The method for producing a lithium-manganese composite oxide containing a different metal element according to claim 2 or 3.
9. マンガン酸化物が (1) マンガン化合物と塩基性化合物とを反応させてマ ンガン水酸ィヒ物を得る工程、 (2) マンガン水酸化物を酸化させてマンガン酸ィ匕 物シードを得る工程、 (3) マンガン酸化物シードの存在下で、 マンガン化合物 と塩基性化合物とを反応させながら酸ィヒさせてマンガン酸ィヒ物シードを粒子成長 させる工程により得られることを特徴とする請求項 2または 3記載の異種金属元 素含有リチウム 'マンガン複合酸化物の製造方法。  9. Manganese oxide (1) Step of reacting manganese compound and basic compound to obtain manganese hydroxide, (2) Oxidizing manganese hydroxide to obtain manganese oxide seed (3) a step of causing a manganese compound and a basic compound to react with each other in the presence of a manganese oxide seed to cause the manganese oxide seed to grow particles of the manganese oxide seed. Item 4. The method for producing a lithium-manganese composite oxide containing a dissimilar metal element according to Item 2 or 3.
10. F e、 Cr、 Co、 N i、 Al、 Mg、 Ca、 Zn、 V、 Nb、 Mo、 T i、 Z r、 G a及び I nからなる群から選ばれる少なくとも 1種の金属元素を Mとした時、 原子比 MZM nで表して、 異種金属元素を総量で 0. 01〜 0. 4 含有することを特徴とする請求項 1記載の異種金属元素含有リチウム ·マンガン 複合酸化物の製造方法。  10. At least one metal element selected from the group consisting of Fe, Cr, Co, Ni, Al, Mg, Ca, Zn, V, Nb, Mo, Ti, Zr, Ga and In The production of a lithium-manganese composite oxide containing a heterogeneous metal element according to claim 1, wherein the total amount of the heterogeneous metal element is 0.01 to 0.4, expressed as an atomic ratio MZMn, where M Method.
11. 0. 1〜50 μιηの平均粒子径を有することを特徴とする請求項 10記載 の異種金属元素含有リチウム ·マンガン複合酸化物の製造方法。  11. The method for producing a lithium-manganese composite oxide containing a different metal element according to claim 10, wherein the composite oxide has an average particle diameter of 0.1 to 50 μιη.
12. 請求項 1記載の異種金属元素含有リチウム 'マンガン複合酸ィヒ物を正極活 物質として用いることを特徴とするリチウム電池。  12. A lithium battery, comprising using the lithium-manganese composite oxide containing a dissimilar metal element according to claim 1 as a positive electrode active material.
PCT/JP2001/001814 2000-03-09 2001-03-08 Method for producing lithium manganese composite oxide and lithium cell using said lithium manganese composite oxide WO2001066468A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU41065/01A AU4106501A (en) 2000-03-09 2001-03-08 Method for producing lithium manganese composite oxide and lithium cell using said lithium manganese composite oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-65298 2000-03-09
JP2000065298 2000-03-09

Publications (1)

Publication Number Publication Date
WO2001066468A1 true WO2001066468A1 (en) 2001-09-13

Family

ID=18584855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001814 WO2001066468A1 (en) 2000-03-09 2001-03-08 Method for producing lithium manganese composite oxide and lithium cell using said lithium manganese composite oxide

Country Status (2)

Country Link
AU (1) AU4106501A (en)
WO (1) WO2001066468A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10199532A (en) * 1997-01-10 1998-07-31 Toyota Central Res & Dev Lab Inc Positive electrode material for lithium secondary battery
JPH1167204A (en) * 1997-08-08 1999-03-09 Fine Ceramics Gijutsu Kenkyu Kumiai Manufacture of positive electrode active material of nonaqueous electrolyte secondary battery
JP2000072443A (en) * 1998-08-26 2000-03-07 Ube Ind Ltd Production of lithium manganese multiple oxide and its use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10199532A (en) * 1997-01-10 1998-07-31 Toyota Central Res & Dev Lab Inc Positive electrode material for lithium secondary battery
JPH1167204A (en) * 1997-08-08 1999-03-09 Fine Ceramics Gijutsu Kenkyu Kumiai Manufacture of positive electrode active material of nonaqueous electrolyte secondary battery
JP2000072443A (en) * 1998-08-26 2000-03-07 Ube Ind Ltd Production of lithium manganese multiple oxide and its use

Also Published As

Publication number Publication date
AU4106501A (en) 2001-09-17

Similar Documents

Publication Publication Date Title
EP1837937B1 (en) Lithium manganese-based composite oxide and method for preparing the same
JP3489685B2 (en) Lithium manganate, method for producing the same, and lithium battery using the same
CN109565045B (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery
JP3922040B2 (en) Lithium manganese composite oxide, method for producing the same, and use thereof
JP3606290B2 (en) Method for producing cobalt-containing lithium nickelate for positive electrode active material of non-aqueous battery
JP2021501980A (en) Manufacturing method of positive electrode active material
JPH05283076A (en) Nonaqueous electrolyte secondary battery and manufacture of positive electrode active material thereof
JP7212289B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries
KR20120069691A (en) Process for the preparation of lithium metal oxides involving fluidized bed techniques
JPH11302020A (en) Lithium manganese compound oxide, its production and its use
JP5069007B2 (en) Method for producing lithium / transition metal composite oxide
JP5673932B2 (en) Lithium manganese composite oxide having cubic rock salt structure and method for producing the same
JP4997609B2 (en) Method for producing lithium manganese composite oxide
JP2003292322A (en) Method for manufacturing active substance for positive electrode of lithium ion secondary battery
JP7135354B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery
KR100638132B1 (en) Method for producing lithium manganate and lithium cell using said lithium manganate
JP7338133B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2001114521A (en) Trimanganese tetraoxide and method for its production
JP7119302B2 (en) Positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material precursor for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery
WO2018066633A1 (en) Titanium- and/or germanium-substituted lithium manganese composite oxide and method for producing same
JP6834363B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries, electrodes for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
JP2002338246A (en) Method for manufacturing lithium/manganese compound oxide and lithium cell formed using lithium/manganese compound oxide
JPH08217451A (en) Needle manganese complex oxide, production and use thereof
JP2019021426A (en) Positive electrode active material precursor for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the positive electrode active material precursor for nonaqueous electrolyte secondary battery, and method for manufacturing the positive electrode active material for nonaqueous electrolyte secondary battery
JP3822437B2 (en) Method for producing lithium manganate and lithium battery using the lithium manganate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase