WO2001061360A2 - Methode d'identification - Google Patents

Methode d'identification Download PDF

Info

Publication number
WO2001061360A2
WO2001061360A2 PCT/GB2001/000693 GB0100693W WO0161360A2 WO 2001061360 A2 WO2001061360 A2 WO 2001061360A2 GB 0100693 W GB0100693 W GB 0100693W WO 0161360 A2 WO0161360 A2 WO 0161360A2
Authority
WO
WIPO (PCT)
Prior art keywords
gpr
variant
protein
activity
sequence
Prior art date
Application number
PCT/GB2001/000693
Other languages
English (en)
Other versions
WO2001061360A3 (fr
Inventor
Alan Wise
Original Assignee
Glaxo Group Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaxo Group Limited filed Critical Glaxo Group Limited
Priority to AU33895/01A priority Critical patent/AU3389501A/en
Publication of WO2001061360A2 publication Critical patent/WO2001061360A2/fr
Publication of WO2001061360A3 publication Critical patent/WO2001061360A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/566Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/72Assays involving receptors, cell surface antigens or cell surface determinants for hormones
    • G01N2333/726G protein coupled receptor, e.g. TSHR-thyrotropin-receptor, LH/hCG receptor, FSH
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Definitions

  • the present invention relates to the identification of modulators of G-protein coupled receptors, and the use of such modulators in the treatment of adipocyte associated conditions.
  • GPCRs G-protein coupled receptors
  • GPCRs are a super-family of membrane receptors that mediate a wide variety of biological functions. Upon binding of extracellular ligands. GPCRs interact with a specific subset of heterotrimeric G proteins that can. in their activated forms, inhibit or activate various effector enzymes and/or ion channels. All GPCRs are predicted to share a common molecular architecture consisting of seven transmembrane helices linked by alternating intracellular and extracellular loops. The extracellular receptor surface has been shown to be involved in ligand binding whereas the intracellular portions are involved in G protein recognition and activation.
  • HSL hormone-sensitive lipase
  • TG triglycerides
  • NEFA non- esterified fatty acids
  • Adipocytes are known to express a number of G,-coupled receptors such as the adenosine Ai, prostaglandin EP3 and nicotinic acid receptors. Agonists at such GPCRs have been shown to be anti-lipolytic. i.e.
  • the nicotinic acid receptor has yet to be identified at the molecular level.
  • the present invention is based on the finding that expression of the G-protein coupled receptor, GPR 31 , is restricted to adipose tissue. GPR 31 may therefore be used as a screening target for the identification and development of novel pharmaceutical agents for use inhibiting lipolysis. Accordingly the present invention provides a method for identification of an agent that modulates GPR 31 activity, which method comprises: (i) contacting a test agent with a cell, such as an adipocyte. which expresses GPR 31 or a variant thereof which is capable of coupling to a G- protein; and
  • test agent may be contacted in step (i) with cells that express GPR 31 or a variant thereof.
  • test agent may be contacted in step (i) with membrane obtained from such cells.
  • kit suitable for identification of an agent that modulates GPR 31 activity, which kit comprises: (a) GPR 31 or a variant thereof which is capable of coupling to a G- protein; and
  • a method for identification of an agent that inhibits lipolysis which method comprises contacting adipocytes in vitro with a test agent which modulates GPR 31 activity and which has been identified by the method of the invention and monitoring lipolysis. thereby determining whether the test substance is an inhibitor of lipolysis: an activator of GPR 31 activity or an inhibitor of lipolysis identified or identifiable by a method of the invention or a polynucleotide which encodes GPR 31 or a variant polypeptide.
  • the polynucleotide may comprise:
  • Figure 1 illustrates the expression of GPR 31 in normal human tissues.
  • SEQ ID NO: 1 shows the DNA and amino acid sequences of human GPR 31.
  • SEQ ID NO: 2 is the amino acid sequence alone of GPR 31.
  • the present invention relates to a human G-protein coupled receptor, GPR 31. and variants thereof.
  • GPR 31 has been cloned previously (Zingoni et al, Genomics 42, 519-523. 1997). Sequence information for GPR 31 is provided in SEQ ID NO: 1 (nucleotide and amino acid) and in SEQ ID NO: 2 (amino acid).
  • SEQ ID NO: 1 nucleotide and amino acid
  • SEQ ID NO: 2 amino acid
  • the invention can therefore use polypeptides consisting essentially of the amino acid sequence of SEQ ID NO: 2 or a functional variant of that sequence.
  • a functional chimeric receptor containing a fragment of SEQ ID NO: 2 may therefore be used.
  • variant refers to a polypeptide which has the same essential character or basic biological functionality as GPR 31.
  • the essential character of GPR 31 can be defined as that of a G-protein coupled receptor. GPR 31 couples to Gj -protein.
  • variant refers in particular to a polypeptide which activates Gj.
  • the ability of the variant to activate Gj-protein can be determined.
  • the effect of the candidate variant on Gj activation can be monitored. This can be carried out, for example, by contacting cells expressing the candidate variant with a ligand which activates Gj-protein when contacted with cells that express GPR 31 , and measuring a Gj-coupled readout.
  • a control experiment is typically also carried out in which cells of the same type as those expressing the candidate variant, but expressing GPR 31 instead, are contacted with the ligand and a corresponding Gj-coupled readout is measured. The effect attained by the candidate variant can then be directly compared with that attained by GPR 31.
  • An alternative way to determine whether a variant polypeptide has the same function as GPR 31 is to determine whether the variant polypeptide binds to a ligand which activates Gj when the ligand is contacted with GPR 31.
  • the ligand should activate Gj when contacted with cells that express GPR 31.
  • the ability of a candidate variant to bind such a ligand can be determined directly by contacting the candidate variant with a radiolabelled ligand that binds to GPR 31 and monitoring binding of the ligand to the variant.
  • the radiolabelled ligand can be incubated with cell membranes containing the candidate variant.
  • Non-specific binding of the candidate variant may also be determined by repeating the experiment in the presence of a saturating concentration of non-radioactive ligand. Preferably a binding curve is constructed by repeating the experiment with various concentrations of the candidate variant.
  • the ability to bind a ligand of GPR 31 also be determined indirectly as described below.
  • polypeptides with more than about 65% identity, preferably at least 80% or at least 90% and particularly preferably at least 95%, at least 97% or at least 99% identity, with the amino acid sequence of SEQ ID NO: 1 or 2 over a region of at least 20. preferably at least 30, at least 40. at least 60 or at least 100 contiguous amino acids or over the full length of the amino acid sequence of SEQ ID NO: 1 or 2. are considered as GPR 31 variants.
  • the UWGCG Package provides the BESTFIT program which can be used to calculate identity (for example used on its default settings) (Devereau et al (1984) Nucleic Acid Research 12, p387-395).
  • the PILEUP and BLAST algorithms can be used to calculate identity or line up sequences (typically on their default settings), for example as described in Algschul S.F. (1993) J. Mol. Evol. 36: 290-300: Altschul, S.F. et al (1990) J. Mol. Biol. 215: 403-10.
  • Software for performing BLAST analyses is publicly available through the National Centre for Biotechnology Information (http://www.ncbi.nlm.nih.gov/).
  • Variant polypeptides therefore include naturally occurring ailelic variants.
  • An ailelic variant will generally be of human or non-human mammal origin, such as bovine or porcine origin.
  • a variant polypeptide can be a non-naturalh occurring sequence.
  • a non-naturally occurring variant may thus be a modified version of GPR 31 , i.e. a modified version of the polypeptide having the amino acid sequence of SEQ ID NO: 1 or 2.
  • the amino acid sequence of GPR 31 may be modified by deletion and/or substitution and/or addition of single amino acids or groups of amino acids as long as the modified polypeptide retains the capability to function as a G-protein coupled receptor. Such amino acid changes may occur in one.
  • Amino acid substitutions may thus be made, for example from 1. 2, 3, 4 or 5 to 10. 20 or 30 substitutions.
  • Conservative substitutions may be made, for example according to the following Table. Amino acids in the same block in the second column and preferably in the same line in the third column may be substituted for each other.
  • a variant polypeptide may be a shorter polypeptide.
  • a polypeptide of at least 20 amino acids or up to 50, 60, 70, 80, 100 or 150 amino acids in length may constitute a variant polypeptide as long as it demonstrates the functionality of GPR 31.
  • a variant polypeptide may therefore lack one, two or more intracellular domains and/or one, two or more extracellular domains and/or one, two or more transmembrane domains.
  • a variant polypeptide may thus be a fragment of the full length polypeptide.
  • a shortened polypeptide may comprise a ligand-binding region (N-terminal extracellular domain) and/or an effector binding region (C- terminal intracellular domain). Such fragments can be used to construct chimeric receptors preferably with another 7-transmembrane G-coupled receptor.
  • variant polypeptides include polypeptides that are chemically modified, e.g. post-translationally modified.
  • such variant polypeptides may be glycosylated or comprise modified amino acid residues. They may also be modified by the addition of histidine residues, for example 6 or 8 His residues, or an epitope tag, for example a T7, HA, myc or flag tag, to assist their purification or detection. They may be modified by the addition of a signal sequence to promote insertion into the cell membrane.
  • the invention also utilises nucleotide sequences that encode GPR 31 or variants thereof as well as nucleotide sequences which are complementary thereto.
  • the nucleotide sequence may be RNA or DNA including genomic DNA. synthetic DNA or cDNA.
  • the nucleotide sequence is a DNA sequence and most preferably, a cDNA sequence.
  • Nucleotide sequence information is provided in SEQ ID NO: 1. Such nucleotides can be isolated from human cells or synthesised according to methods well known in the art, as described by way of example in
  • a useful polynucleotide comprises a contiguous sequence of nucleotides which is capable of hybridising under selective conditions to the coding sequence or the complement of the coding sequence of SEQ ID NO: l.
  • a polynucleotide can hydridize to the coding sequence or the complement of the coding sequence of SEQ ID NO: 1 at a level significantly above background. Background hybridisation may occur, for example, because of other cDNAs present in a cDNA library.
  • the signal level generated by the interaction between a polynucleotide and the coding sequence or complement of the coding sequence of SEQ ID NO: 1 is typically at least 10 fold, preferably at least 100 fold, as intense as interactions between other polynucleotides and the coding sequence of SEQ ID NO: 1.
  • the intensity of interaction may be measured, for example, by radiolabelling the probe, e.g. with J P.
  • Selective hybridisation may typically be achieved using conditions of low stringency (0.3M sodium chloride and 0.03M sodium citrate at about 40°C).
  • medium stringency for example, 0.3M sodium chloride and 0.03M sodium citrate at about 50°C
  • high stringency for example, 0.03M sodium chloride and 0.003M sodium citrate at about 60°C.
  • the coding sequence of SEQ ID NO: 1 may be modified by one or more nucleotide substitutions, for example from 1, 2, 3, 4 or 5 to 10, 25, 50 or 100 substitutions.
  • the polynucleotide of SEQ ID NO: 1 may alternatively or additionally be modified by one or more insertions and/or deletions and/or by an extension at either or both ends.
  • the modified polynucleotide generally encodes a polypeptide which has G-protein coupled receptor activity or inhibits the activity of GPR 31. Degenerate substitutions may be made and/or substitutions may be made which would result in a conservative amino acid substitution when the modified sequence is translated, for example as shown in the Table above.
  • a nucleotide sequence which is capable of selectively hybridising to the complement of the DNA coding sequence of SEQ ID NO: 1 will generally have at least 60%, at least 70%. at least 80%, at least 90%. at least 95%, at least 98% or at least 99%o sequence identity to the coding sequence of SEQ ID NO: 1 over a region of at least 20, preferably at least 30, for instance at least 40, at least 60, more preferably at least 100 contiguous nucleotides or most preferably over the full length of SEQ ID NO: 1.
  • Methods of measuring nucleic acid and protein homology are well known in the art. For example the U GCG Package provides the BESTFIT program which can be used to calculate homology (Devereux et al 1984). Similarly the PILEUP and BLAST algorithms can be used to line up sequences (for example are described in Altschul 1993, and Altschul et al 1990). Many different settings are possible for such programs. In accordance with the invention, the default settings may be used.
  • polynucleotides of the invention Any combination of the above mentioned degrees of sequence identity and minimum sizes may be used to define polynucleotides of the invention, with the more stringent combinations (i.e. higher sequence identity over longer lengths) being preferred.
  • a polynucleotide which has at least 90% sequence identity over 25, preferably over 30 nucleotides forms one aspect of the invention, as does a polynucleotide which has at least 95% sequence identity over 40 nucleotides.
  • Polynucleotides may be used as a primer, eg a PCR primer or a primer for an alternative amplification reaction of a probe, eg labelled with a revealing label by conventional means for identifying mutations in GPR 31 that may be implicated in diseases resulting from abnormal lipolysis. Fragments of polynucleotides may be fused to the coding sequence of other proteins, preferably other G-protein coupled receptors, to form a sequence coding for a fusion protein.
  • Such primers, probes and other fragments will preferably be at least 10, preferably at least 15 or at least 20, for example at least 25, at least 30 or at least 40 nucleotides in length. They will typically be up to 40. 50, 60, 70, 100 or 150 nucleotides in length. Probes and fragments can be longer than 150 nucleotides in length, for example up to 200, 300, 400, 500 nucleotides in length, or even up to a few nucleotides. such as five or ten nucleotides, short of the coding sequence of SEQ ID NO: 1.
  • the polynucleotides have utility in production of GPR 31 or variant polypeptides. which may take place in vitro, in vivo or ex vivo.
  • the polynucleotides may be used as therapeutic agents in their own right, in gene therapy techniques.
  • the polynucleotides are cloned into expression vectors for these purposes.
  • expression vectors are routinely constructed in the art of molecular biology and may for example involve the use of plasmid DNA and appropriate initiators, promoters, enhancers and other elements, such as for example polyadenylation signals which may be necessary, and which are positioned in the correct orientation, in order to allow for protein expression.
  • Other suitable vectors would be apparent to a person skilled in the art.
  • Expression vectors comprise a polynucleotide encoding the desired polypeptide operably linked to a control sequence which is capable of providing for the expression of the coding sequence by a host cell.
  • the term "operably linked” refers to a juxtaposition wherein the components described are in a relationship permitting them to function in their intended manner.
  • a regulatory sequence, such as a promoter, 'Operably linked" to a coding sequence is positioned in such a way that expression of the coding sequence is achieved under conditions compatible with the regulatory sequence.
  • the vectors may be plasmid. virus or phage vectors provided with a origin of replication, optionally a promoter for the expression of the said polynucleotide and optionally a regulator of the promoter.
  • the vectors may contain one or more selectable marker genes, for example an ampicillin resistence gene in the case of a bacterial plasmid or a resistance gene for a fungal vector.
  • Vectors may be used in vitro, for example for the production of RNA or DNA or used to transfect or transform a host cell, for example, a mammalian host cell.
  • the vectors may also be adapted to be used in vivo, for example in a method of gene therapy.
  • Promoters and other expression regulation signals may be selected to be compatible with the host cell for which expression is designed.
  • yeast promoters include S. cerevisiae GAL4 and ADH promoters.
  • Mammalian promoters include the metallothionein promoter which can be induced in response to heavy metals such as cadmium.
  • Viral promoters such as the SV40 large T antigen promoter or adenovirus promoters may also be used. All these promoters are readily available in the art.
  • Mammalian promoters such as ⁇ -actin promoters, may be used. Tissue- specific promoters, in particular adipose cell specific promoters are especially preferred. Viral promoters may also be used, for example the Moloney murine leukaemia virus long terminal repeat (MMLV LTR), the rous sarcoma virus (RSV) LTR promoter, the SV40 promoter, the human cytomegalovirus (CMV) IE promoter, adenovirus. HSV promoters (such as the HSV IE promoters), or HPV promoters, particularly the HPV upstream regulatory region (URR). Viral promoters are readily available in the art.
  • MMLV LTR Moloney murine leukaemia virus long terminal repeat
  • RSV rous sarcoma virus
  • CMV human cytomegalovirus
  • HSV promoters such as the HSV IE promoters
  • HPV promoters particularly the HPV upstream regulatory region (URR).
  • the vector may further include sequences flanking the polynucleotide which comprise sequences homologous to eukaryotic genomic sequences, preferably mammalian genomic sequences, or viral genomic sequences. This will allow the introduction of the relevant polynucleotides into the genome of eukaryotic cells or viruses by homologous recombination.
  • a plasmid vector comprising the expression cassette flanked by viral sequences can be used to prepare a viral vector suitable for delivering the polynucleotides of the invention to a mammalian cell.
  • Retrovirus vectors for example may be used to stably integrate the polynucleotide into the host genome. Replication-defective adenovirus vectors by contrast remain episomal and therefore allow transient expression.
  • Cells are transformed or transfected with the vectors to express the GPR 31 polypeptide or a variant thereof
  • Such cells may be eucaryotic or prokaryotic.
  • transient or, preferably, stable higher eukaryotic cell lines such as mammalian cells or insect cells, lower eukaryotic cells such as yeast, and prokaryotic cells such as bacterial cells.
  • Particular examples of cells which may be used to express GPR 31 or a variant polypeptide include mammalian HEK293T, CHO. HeLa and COS7 cells.
  • the cell line selected will be one which is not only stable, but also allows for mature glycosylation and cell surface expression of the GPR 31 polypeptide or a variant.
  • Cells such as adipocytes expressing the GPR 31 receptor or a variant polypeptide may be used in screening assays. Expression may be achieved in transformed oocytes.
  • the GPR 31 polypeptide or a variant may be expressed in cells such as adipose tissue of a transgenic non-human animal, preferably a rodent such as a mouse.
  • the present invention is concerned in particular with the use of GPR 31 or a functional variant in screening methods to identify agents that may act as modulators of GPR 31 receptor activity and. in particular, agents that may act as modulators of lipolysis.
  • modulators are useful in the treatment of dyslipidaemia, coronary artery disease, atherosclerosis, obesity and thrombosis, angina, chronic renal failure, peripheral vascular disease, stroke, type II diabetes and metabolic syndrome
  • such screening methods involve contacting GPR 31 or a variant polypeptide with a test compound and then determining receptor activity.
  • G-protein activation, and especially G,-protein activation may be determined therefore.
  • a test compound affects receptor activity
  • its effect on lipolysis can be determined by contacting adipocytes in culture with the test compound and measuring lipolysis.
  • Modulator activity can be determined in vitro or in vivo by contacting cells expressing GPR 31 or a variant polypeptide with an agent under test and by monitoring the effect mediated by the GPR 31 or variant polypeptide.
  • a test agent may be contacted with isolated cells which express GPR 31 or a variant polypeptide.
  • the cells may be provided in culture. Cells may be disrupted and cell membranes isolated and used.
  • the GPR 31 or variant polypeptide may be naturally or recombinantly expressed.
  • an assay is carried out in vitro using cells expressing recombinant polypeptide or using membranes from such cells. Suitable eucaryotic and procaryotic cells are discussed above. Preferably adipocytes are used.
  • receptor activity is monitored by measuring a G,-coupled readout.
  • Gi-coupled readout can be monitored using an electrophysiological method to determine the activity of G-protein regulated Ca 2+ or K7 channels or by using fluorescent dye to measure changes in intracellular Ca " levels. Other methods that can typically be used to monitor receptor activity involved measuring levels of or activity of GTP ⁇ S or cAMP.
  • a standard assay for measuring activation of the Gj family of G proteins is the GTP ⁇ S binding assay. Agonist binding to G protein-coupled receptors promotes the exchange of GTP for GDP bound to the a subunit of coupled heterotrimeric G proteins. Binding of the poorly hydrolysable GTP analogue. [ j:, S]GTP ⁇ S, to membranes has been used extensively as a functional assay to measure agonism at a wide variety of receptors.
  • the assay is largely restricted to measuring function of receptors coupled to the Gj family of G proteins due to their ability to bind and hydrolyse guanine nucleotide at significantly higher rates than members of the G q .
  • G s and G 1 families See Wieland and Jakobs, Methods Enzymol. 237, 3-13. 1994.
  • Yeast assays may be used to screen for agents that modulate the activity of GPR 31 or variant polypeptides.
  • a typical yeast assay involves heterologously expressing GPR 31 or a variant polypeptide in a modified yeast strain containing multiple reporter genes, typically FUS1-HIS3 and FUSl-lacZ. each linked to an endogenous MAPK cascade-based signal transduction pathway. This pathway is normally linked to pheromone receptors, but can be coupled to foreign receptors by replacement of the yeast G protein with yeast/mammalian G protein chimeras. Strains may also contain further gene deletions, such as deletions of SST2 and FARl, to potentiate the assay. Ligand activation of the heterologous receptor can be monitored for example either as cell growth in the absence of histidine or with a suitable substrate such as beta-galactosidase (lacZ).
  • lacZ beta-galactosidase
  • melanophore assays may be used to screen for activators of GPR 31.
  • GPR 31 or a variant polypeptide can be heterologously expressed in Xenopus laevis melanophores and their activation can be measured by either melanosome dispersion or aggregation.
  • melanosome dispersion is promoted by activation of adenylate cyclase or phospholipase C. i.e. G s and G q mediated signalling respectively, whereas aggregation results from activation of Gj- protein resulting in inhibition of adenylate cyclase.
  • ligand activation of the heterologous receptor can be measured simply by measuring the change in light transmittance through the cells or by imaging the cell response.
  • control experiments are carried out on cells which do not express GPR 31 or a variant polypeptide to establish whether the observed responses are the result of activation of the GPR 31 or the variant polypeptide.
  • In vitro assay systems to measure lipolysis include cell lines that can be induced to differentiate into adipocytes such as 3T3-Ll(murine) and SAOS-
  • Additional assays may thus be carried out in adipocytes.
  • TG triglycerides
  • NEFA non-esterified fatty acids
  • HSL hormone-sensitive lipase
  • the activity of HSL is regulated by cAMP-dependent protein kinases. Therefore, inhibition of cAMP generation by adenylate cyclase via G, -coupled receptors (e.g. GPR 31 or a variant thereof) results in the reduction of NEFA and glycerol levels generated by adipocytes.
  • GPR 31 hormone-sensitive lipase
  • Chromogenic assays for both NEFA and glycerol are commercially available (Randox) and can be used to verify that pre-treatment of adipocytes with an agonist for GPR 31 results in a reduction in the levels of NEFA and glycerol derived from adipocytes.
  • assays can be performed to measure the cAMP content of adipocytes in the presence and absence of modulators for GPR 31 or a variant thereof in order to correlate reduction in the products of lipolysis with the activation of a Gi-coupled receptor.
  • a standard method for identifying lipolysis inhibitors is as follows. Adipocytes. for example approximately 100,000 in 0.5 ml. are pre-treated with an agent under test.
  • the pre-treated adipocytes are incubated in the presence of adenosine deaminase. thereby to prevent accumulation of endogenous adenosine. Incubation can be carried out for 30 minutes at 37°C. Cells are centrifuged and buffer withdrawn from below the cell layer, heated such as at 70°C for 10 minutes and glycerol can be assayed enzymatically. A suitable assay method is described in McGowan et al. Clin. Chem. 29, 538-543. 1983).
  • test substances which can be tested in the above assays include combinatorial libraries, defined chemical entities, peptide and peptide mimetics, oligonucleotides and natural product libraries, such as display (e.g. phage display libraries) and antibody products.
  • the test substance is a nicotinic acid (Niacin).
  • Assays may also be carried out using known ligands of other G-protein coupled receptors to identify ligands which act as agonists at GPR 41.
  • Test substances may be used in an initial screen of. for example, 10 substances per reaction, and the substances of these batches which show inhibition or activation tested individually. Test substances may be used at a concentration of from InM to 1000 ⁇ M, preferably from l ⁇ M to lOO ⁇ M. more preferably from l ⁇ M to lO ⁇ M.
  • Agents which modulate GPR 31 activity and which can be identified by assays in accordance with the invention can be used in the treatment or prophylaxis of lipid disorders which are responsive to regulation of GPR 31 receptor activity.
  • agents which activate GPR 31 receptor activity and/or which have been identified as inhibitors of lipolysis are preferred.
  • agents may be used in the treatment of dyslipidaemia and conditions associated with dyslipidaemia such as atherosclerosis, obesity, thrombosis or coronary artery disease, angina, chronic renal failure, peripheral vascular disease, stroke, type II diabetes, and metabolic syndrome (syndrome X).
  • the agents may be formulated with a pharmaceutically acceptable carrier and/or excipient as is routine in the pharmaceutical art. See for example Remington's Pharmaceutical Sciences. Mack Publishing Company. Eastern Pennsylvania 17 th Ed. 1985.
  • the carrier or excipient may be an isotonic saline solution but will depend more generally upon the particular agent concerned and the route by which the agent is to be administered.
  • the agents may be administered by enteral or parenteral routes such as via oral, buccal. anal, pulmonary, intravenous, intra-arterial, intramuscular, intraperitoneal. topical or other appropriate administration routes.
  • a therapeutically effective amount of a modulator is administered to a patient.
  • the dose of a modulator may be determined according to various parameters and especially according to the substance used; the age. weight and condition of the patient to be treated: the route of administration; and the required regimen.
  • a physician will be able to determine the required route of administration and dosage for any particular patient.
  • a typical daily dose is from about 0.1 to 50 mg per kg of body weight, according to the activity of the specific modulator, the age.
  • agents which up-regulate GPR 31 expression or nucleic acid encoding GPR 31 or a variant polypeptide may be administered to the mammal.
  • Nucleic acid, such as RNA or DNA, preferably DNA, is provided in the form of a vector, which may be expressed in the cells of a human or other mammal under treatment.
  • up-regulation or expression following nucleic acid administration will enhance GPR 31 activity.
  • Nucleic acid encoding the GPR 31 or variant polypeptide may be administered to a human or other mammal by any available technique.
  • the nucleic acid may be introduced by injection, preferably intradermally. subcutaneously or intramuscularly.
  • the nucleic acid may be administered topically to the skin, or to the mucosal surfaces for example by intranasal. oral, intravaginal, intrarectal administration.
  • Uptake of nucleic acid constructs may be enhanced by several known transfection techniques, for example those including the use of transfection agents.
  • these agents includes cationic agents, for example, calcium phosphate and DEAE-Dextran and lipofectants. for example, lipofectam and transfectam.
  • the dosage of the nucleic acid to be administered can be altered.
  • the nucleic acid is administered in the range of lpg to lmg, preferably to lpg to lO ⁇ g nucleic acid for particle mediated gene delivery and lO ⁇ g to lmg for other routes.
  • Polynucleotides encoding GPR 31 or a variant polypeptide can also be used to identify mutation(s) in GPR 31 genes which may be implicated in human disorders. Identification of such mutation(s) may be used to assist in diagnosis of dyslipidaema and conditions associated with dyslipidaemia such as. atherosclerosis, obesity, thrombosis, angina, chronic renal failure, peripheral vascular disease, stroke, type II diabetes, and metabolic syndrome ( syndrome X) or other disorders or susceptibility to such disorders and in assessing the physiology of such disorders.
  • dyslipidaema and conditions associated with dyslipidaemia such as. atherosclerosis, obesity, thrombosis, angina, chronic renal failure, peripheral vascular disease, stroke, type II diabetes, and metabolic syndrome ( syndrome X) or other disorders or susceptibility to such disorders and in assessing the physiology of such disorders.
  • Antibodies (either polyclonal or preferably monoclonal antibodies, chimeric, single chain, Fab fragments) which are specific for the GPR 31 polypeptide or a variant thereof can be generated. Such antibodies may for example be useful in purification, isolation or screening methods involving immunoprecipitation techniques and may be used as tools to elucidate further the function of GPR 31 or a variant thereof, or indeed as therapeutic agents in their own right. Such antibodies may be used to block ligand binding to the receptor. A variety of protocols for competitive binding or immunoradiometric assays to determine the specific binding capability of an antibody are well known in the art (see for example Maddox et al. J. Exp. Med. 158. 1211 et seq, 1993).
  • TaqmanTM distribution analysis of GPR 31 was carried out to study expression of GPR 31 in normal human tissues. The results are shown in Figure 1. These demonstrate that GPR 41 expression is essentially restricted to adipose tissue.
  • Mammalian cells such as HEK293, CHO and COS7 cells, over-expressing GPR 31 or a variant polypeptide are generated for use in the assay.
  • 96 and 384 well plate, high throughput screens (HTS) are employed using fluorescence based calcium indicator molecules, including but not limited to dyes such as Fura-2, Fura-Red. Fluo 3 and Fluo 4 (Molecular Probes).
  • Secondary screening involves the same technology. Tertiary screens involve the study of modulators in rat, mouse and guinea-pig models of disease relevant to the target.
  • a screening assay may be conducted as follows.
  • Mammalian cells stably over-expressing the relevant polypeptide are cultured in black wall, clear bottom, tissue culture-coated 96 or 384 well plates with a volume of lOO ⁇ l cell culture medium in each well 3 days before use in a FLIPR (Fluorescence Imaging Plate Reader - Molecular Devices). Cells are incubated with 4 ⁇ M FLUO-3AM at 30°C in 5%CO? for 90 mins and are then washed once in Tyrodes buffer containing 3mM probenecid. Basal fluorescence is determined prior to addition of agents to be tested. The GPR 31 or variant polypeptide is activated upon the addition of a known agonist. Activation results in an increase in intracellular calcium which can be measured directly in the FLIPR. For antagonist studies, test agents are preincubated with the cells for 4 minutes following dye loading and washing and fluorescence is measured for 4 minutes. Agonists are then added and cell fluorescence measured for a further 1 minute.
  • FLIPR Fluorescence Imaging Plate Reader -
  • Xenopus oocyte expression may be determined as follows. Adult female Xenopus laevis (Blades Biologicals) are anaesthetised using 0.2% tricaine (3- aminobenzoic acid ethyl ester), killed and the ovaries rapidly removed. Oocytes are then de-folliculated by collagenase digestion (Sigma type I. 1.5 mg ml " ) in divalent cation-free OR2 solution (82.5mM NaCl. 2.5mM KCl. 1.2mM NaH 2 P0 4 . 5mM HEPES: pH 7.5 at 25°C). Single stage V and VI oocytes are transferred to ND96 solution (96mM NaCl. 2mM KCl.
  • the GPR 31 receptor (in pcDNA 3 . Invitrogen) is linearised and transcribed to
  • RNA using T7 (Promega Wizard kit).
  • m'G(5")pp(5')GTP capped cRNA is injected into oocytes (20-50ng per oocyte) and whole-cell currents are recorded using two- microelectrode voltage-clamp (Geneclamp amplifier, Axon instruments Inc.) 3 to 7 days post-RNA injection.
  • Microelectrodes have a resistance of 0.5 to 2M ⁇ when filled with 3M KCl.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Obesity (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Emergency Medicine (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Endocrinology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

L'invention concerne un procédé servant à identifier un agent modulant l'activité du récepteur 31 couplé à la protéine G (GPR 31). Ce procédé consiste à: (i) mettre en contact un agent d'essai avec GPR 31 ou une de ses variantes capable de se coupler à une protéine G et (ii) contrôler l'activité de GPR 31 en présence d'une protéine G, ce qui permet de déterminer si l'agent d'essai module l'activité de GPR 31. L'invention concerne également des activateurs de GPR 31, des inhibiteurs de lipolyse et de polynucléotide GPR 31 qu'on peut utiliser pour traiter la dyslipidémie, la maladie cardiaque coronarienne, l'athérosclérose, la thrombose ou l'obésité, l'angine, la défaillance rénale chronique, la maladie vasculaire périphérique, les attaques, le diabète de type I ou le syndrome métabolique (syndrome X).
PCT/GB2001/000693 2000-02-18 2001-02-19 Methode d'identification WO2001061360A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU33895/01A AU3389501A (en) 2000-02-18 2001-02-19 Assay

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0003898.4 2000-02-18
GBGB0003898.4A GB0003898D0 (en) 2000-02-18 2000-02-18 Assay

Publications (2)

Publication Number Publication Date
WO2001061360A2 true WO2001061360A2 (fr) 2001-08-23
WO2001061360A3 WO2001061360A3 (fr) 2002-03-28

Family

ID=9885980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2001/000693 WO2001061360A2 (fr) 2000-02-18 2001-02-19 Methode d'identification

Country Status (3)

Country Link
AU (1) AU3389501A (fr)
GB (1) GB0003898D0 (fr)
WO (1) WO2001061360A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084298A2 (fr) * 2001-04-11 2002-10-24 Glaxo Group Limited Medicaments
WO2005059561A2 (fr) * 2003-12-12 2005-06-30 Bayer Healthcare Ag Diagnostics et therapeutique destines au traitement de maladies associees au recepteur couple aux proteines g 31 (gpr31)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022129A1 (fr) * 1998-10-13 2000-04-20 Arena Pharmaceuticals, Inc. Recepteurs couples a la proteine g humaine non endogenes et actives de façon constitutive

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000022129A1 (fr) * 1998-10-13 2000-04-20 Arena Pharmaceuticals, Inc. Recepteurs couples a la proteine g humaine non endogenes et actives de façon constitutive

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SOEDER KURT J ET AL: "The beta3-adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a Gi-dependent mechanism." JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 274, no. 17, 23 April 1999 (1999-04-23), pages 12017-12022, XP002174047 ISSN: 0021-9258 *
WALSTON J ET AL: "The beta3-adrenergic receptor in the obesity and diabetes prone rhesus monkey is very similar to human and contains arginine at codon 64" GENE: AN INTERNATIONAL JOURNAL ON GENES AND GENOMES,GB,ELSEVIER SCIENCE PUBLISHERS, BARKING, vol. 188, no. 2, 1 April 1997 (1997-04-01), pages 207-213, XP004059301 ISSN: 0378-1119 *
ZINGONI ALESSANDRA ET AL: "Isolation and chromosomal localization of GPR31, a human gene encoding a putative G protein-coupled receptor." GENOMICS, vol. 42, no. 3, 1997, pages 519-523, XP002174048 ISSN: 0888-7543 cited in the application *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084298A2 (fr) * 2001-04-11 2002-10-24 Glaxo Group Limited Medicaments
WO2002084298A3 (fr) * 2001-04-11 2003-10-16 Glaxo Group Ltd Medicaments
WO2005059561A2 (fr) * 2003-12-12 2005-06-30 Bayer Healthcare Ag Diagnostics et therapeutique destines au traitement de maladies associees au recepteur couple aux proteines g 31 (gpr31)
WO2005059561A3 (fr) * 2003-12-12 2005-11-03 Bayer Healthcare Ag Diagnostics et therapeutique destines au traitement de maladies associees au recepteur couple aux proteines g 31 (gpr31)

Also Published As

Publication number Publication date
GB0003898D0 (en) 2000-04-05
WO2001061360A3 (fr) 2002-03-28
AU3389501A (en) 2001-08-27

Similar Documents

Publication Publication Date Title
US20040254224A1 (en) Medicaments
US7083933B1 (en) Methods for identification of modulators of OSGPR116 activity
EP1354200B1 (fr) Methodes de criblage de ligands gpr40
CA2588646A1 (fr) Outils permettant l'identification de ligands pour recepteurs nucleaires hormonaux
CA2444669A1 (fr) Procedes de criblage de composes modulant l'activite des recepteurs d'hormones
Savkur et al. Ligand-dependent coactivation of the human bile acid receptor FXR by the peroxisome proliferator-activated receptor γ coactivator-1α
Cismowski Non-receptor activators of heterotrimeric G-protein signaling (AGS proteins)
WO2003013551A1 (fr) Titrage de recepteurs couples aux proteines g
JP4324474B2 (ja) Gタンパク質共役受容体媒介活性の新規細胞系アッセイ
US7241579B2 (en) Method of screening for GPR40 ligands
Sikarwar et al. Palmitoylation of Gαq determines its association with the thromboxane receptor in hypoxic pulmonary hypertension
EP1255779A2 (fr) Identification de modulateurs de l'activite gpr41 ou gpr42
EP1254223A1 (fr) Recepteur 2 de cysteinyle leucotriene (cysl t2)
EP1283987A2 (fr) Identification de modulateurs de l'activite de gpr55
WO2001061360A2 (fr) Methode d'identification
WO2005121356A1 (fr) Nouveau procédé de recherche par criblage
GB2371303A (en) Receptor polypeptides with immunomodulatory activity
US20020052001A1 (en) Assay
US20030171545A1 (en) Novel Protein
JP2009539362A (ja) Gタンパク質共役型受容体39(gpr39)
US20020065215A1 (en) Polypeptide
US20060275285A1 (en) Methods of inhibiting a GPCR
GB2374665A (en) G-protein coupled receptor for neuromedin
US20040121395A1 (en) Sequence #115 as a target for identifying weight modulating compounds
US20020115205A1 (en) Polypeptide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP