WO2001060968A1 - Devices for motile sperm separation - Google Patents
Devices for motile sperm separation Download PDFInfo
- Publication number
- WO2001060968A1 WO2001060968A1 PCT/GB2001/000654 GB0100654W WO0160968A1 WO 2001060968 A1 WO2001060968 A1 WO 2001060968A1 GB 0100654 W GB0100654 W GB 0100654W WO 0160968 A1 WO0160968 A1 WO 0160968A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- spermatozoa
- zone
- vessel
- motile
- Prior art date
Links
- 238000000926 separation method Methods 0.000 title claims description 51
- 238000001514 detection method Methods 0.000 claims abstract description 39
- 238000004891 communication Methods 0.000 claims abstract description 12
- 239000002657 fibrous material Substances 0.000 claims abstract description 8
- 230000033228 biological regulation Effects 0.000 claims abstract description 4
- 239000007788 liquid Substances 0.000 claims description 19
- 239000011148 porous material Substances 0.000 claims description 18
- 239000003153 chemical reaction reagent Substances 0.000 claims description 14
- 238000002372 labelling Methods 0.000 claims description 9
- 230000009471 action Effects 0.000 claims description 5
- 238000009739 binding Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 10
- 238000011534 incubation Methods 0.000 abstract description 4
- 239000000243 solution Substances 0.000 description 19
- 238000012360 testing method Methods 0.000 description 17
- 238000013022 venting Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 9
- 210000000582 semen Anatomy 0.000 description 9
- 239000011888 foil Substances 0.000 description 7
- 230000000717 retained effect Effects 0.000 description 7
- 239000000020 Nitrocellulose Substances 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 230000005012 migration Effects 0.000 description 5
- 238000013508 migration Methods 0.000 description 5
- 229920001220 nitrocellulos Polymers 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000000427 antigen Substances 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 230000000994 depressogenic effect Effects 0.000 description 4
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 3
- 108090000107 Acrosin Proteins 0.000 description 3
- 102100026041 Acrosin Human genes 0.000 description 3
- 239000012594 Earle’s Balanced Salt Solution Substances 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 208000002854 epidermolysis bullosa simplex superficialis Diseases 0.000 description 3
- 230000035558 fertility Effects 0.000 description 3
- 229920002674 hyaluronan Polymers 0.000 description 3
- 229960003160 hyaluronic acid Drugs 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 108010067770 Endopeptidase K Proteins 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 230000000469 anti-sperm effect Effects 0.000 description 2
- 238000003149 assay kit Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- HIYAVKIYRIFSCZ-CYEMHPAKSA-N 5-(methylamino)-2-[[(2S,3R,5R,6S,8R,9R)-3,5,9-trimethyl-2-[(2S)-1-oxo-1-(1H-pyrrol-2-yl)propan-2-yl]-1,7-dioxaspiro[5.5]undecan-8-yl]methyl]-1,3-benzoxazole-4-carboxylic acid Chemical compound O=C([C@@H](C)[C@H]1O[C@@]2([C@@H](C[C@H]1C)C)O[C@@H]([C@@H](CC2)C)CC=1OC2=CC=C(C(=C2N=1)C(O)=O)NC)C1=CC=CN1 HIYAVKIYRIFSCZ-CYEMHPAKSA-N 0.000 description 1
- 102100022002 CD59 glycoprotein Human genes 0.000 description 1
- 239000012591 Dulbecco’s Phosphate Buffered Saline Substances 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- -1 HDPR Substances 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 101000897400 Homo sapiens CD59 glycoprotein Proteins 0.000 description 1
- 101000918657 Homo sapiens L-xylulose reductase Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102100029137 L-xylulose reductase Human genes 0.000 description 1
- 208000007466 Male Infertility Diseases 0.000 description 1
- 230000030120 acrosome reaction Effects 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- HIYAVKIYRIFSCZ-UHFFFAOYSA-N calcium ionophore A23187 Natural products N=1C2=C(C(O)=O)C(NC)=CC=C2OC=1CC(C(CC1)C)OC1(C(CC1C)C)OC1C(C)C(=O)C1=CC=CN1 HIYAVKIYRIFSCZ-UHFFFAOYSA-N 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 210000003756 cervix mucus Anatomy 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 201000010063 epididymitis Diseases 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 208000000509 infertility Diseases 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 231100000535 infertility Toxicity 0.000 description 1
- 208000021267 infertility disease Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000012125 lateral flow test Methods 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000007879 vasectomy Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/689—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to pregnancy or the gonads
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0608—Germ cells
- C12N5/0612—Germ cells sorting of gametes, e.g. according to sex or motility
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/70596—Molecules with a "CD"-designation not provided for elsewhere in G01N2333/705
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/36—Gynecology or obstetrics
- G01N2800/367—Infertility, e.g. sperm disorder, ovulatory dysfunction
Definitions
- This invention is in the field of male fertility tests, more specifically tests for separating and detecting motile spermatozoa in a semen sample.
- One such method is microscopic analysis, which is typically carried out in a hospital or commercial laboratory. More recently, however, a number of proposals have been made for test kits which are intended to simplify the detection of spermatozoa.
- WO97/40386 discloses a kit which is based on immunodetection of the 34k ⁇ a human epididymal spermatozoa protein.
- Spermatozoa in a sample are washed three times by centrifugation in Dulbecco-phosphate buffered saline. The samples are then heat denatured at 95°C, centrifuged at 14000g, and the supernatants are then used for analysis.
- WO95/29188 describes a test based on antibodies to the SP- 10 antigen of human spermatozoa.
- EP-A-0387873 discloses a kit which uses solid beads to which are bound antibody specific to the human spermatozoon acrosome.
- the beads are mixed with a sample, incubated, separated, washed, and the number of spermatozoa bound to the beads is measured, preferably by examination with the aid of a microscope.
- test kits do not distinguish between motile and non-motile spermatozoa. This distinction is the most predictive indicator of male infertility. Moreover, they involve procedures wh ⁇ ;h do not lend themselves to home use (e.g. centnfugation, microscopy), thus requiring implementation by a skilled practitioner.
- WO00/09648 discloses an apparatus for separating motile spermatozoa from non-motile spermatozoa in a liquid sample
- the apparatus comprising (I) a vessel having a sample receiving inlet, a filtered sample outlet and a sample separation filter mounted therebetween, the sample separation filter having a sample-receiving surface and an opposed surface, and the sample separation filter being effective substantially to prevent flow of the sample therethrough, but permitting passage of motile spermatozoa therethrough when said opposed surface of said sample separation filter is placed in contact with a liquid medium and ( ⁇ ) means for supplying a liquid to said opposed surface of said filter
- the present invention provides a device for separating motile spermatozoa from a liquid sample, the device having a sample separation vessel comprising-
- the separation medium in the vessel is initially prevented from flowing through the outlet port. This allows an incubation period which allows motile sperm sufficient time to migrate from the sample into the sample separation medium before it exits the vessel.
- the outlet port is opened and the separation medium (including motile spermatozoa) can migrate through the outlet port and leave the vessel e.g for analysis
- the inlet port and the separation medium In order for motile spermatozoa in the sample to enter the separation medium, the inlet port and the separation medium must be in liquid communication. Preferably, however, such communication is initially prevented, thus preventing contamination of the medium via the inlet port before the device is used This may also prevent the medium from escaping from the vessel via the inlet port, although this may be achieved anyway due to, for instance, viscosity or surface tension of the medium.
- the vessel comprises (e) a second actuator, operable to bring the separation medium into communication with a sample via the inlet port.
- a second actuator operable to bring the separation medium into communication with a sample via the inlet port. This might be achieved by storing the medium remotely from the inlet port until the second actuator is operated or, alternatively, by having an inlet port which is initially closed or sealed, which is opened using the actuator.
- the second actuator is operated, thereby bringing the separation medium and the inlet port into communication. This allows motile spermatozoa in the sample to migrate from the sample into the separation medium.
- the (first) actuator is operated, thereby allowing the separation medium (now containing motile spermatozoa) to leave the vessel. It is preferred that the first actuator cannot be operated until the second actuator has been operated.
- feature (e) can operate independently from feature (d).
- the vessel may be of circular cross-section e.g. conical or cylindrical.
- the inlet and outlet ports can take a variety of forms.
- the inlet port might be an open end of a cylinder or cone. This open end can be placed in a sample and, when the separation medium and the sample are in communication, spermatozoa can enter the vessel via the open end. It may be desirable to cover the open end by a mesh or grid, to assist in retaining sample separation medium within the vessel (via surface tension) without preventing the entry of spermatozoa from the sample.
- the outlet port is preferably an opening, hole or aperture in the vessel ' s wall, which may continue into a pipe, tube or conduit leading away from the vessel.
- the inlet and outlet ports are preferably arranged such that, during use, the outlet port is above the inlet port.
- Spermatozoa thus have to swim against gravity in order to exit the vessel, enhancing the preferential migration of motile vs. non-motile sperm.
- the (first) actuator is preferably a rotatable collar containing an opening. Rotation of the collar from a closed position aligns openings in the collar and vessel wall, thereby allowing sample separation medium to leave the vessel via the outlet port.
- Another preferred form of (first) actuator acts to withdraw fluid into a barrel or tube e.g. it withdraws the plunger of a syringe. The plunger will initially block the outlet port but, on withdrawal of the plunger, sample separation medium can flow through the outlet port and into the internal space of the syringe.
- a suitable actuator for effecting withdrawal of the syringe plunger is a rotatable knob which is attached to the plunger e.g. by a rack and pinion mechanism.
- the device includes a second actuator
- this is preferably a button.
- sample separation medium stored within the device is released so that it reaches (e.g. by gravity) the inlet port.
- This can be achieved by, for instance, including a reservoir of medium within the vessel, sealed by a foil wall, together with a foil cutter. Operation of the second actuator causes the cutter to pierce the foil, releasing the medium.
- a preferred arrangement of reservoir is that disclosed in United Kingdom patent application 0021665.5, in which the separation medium is held within a hermetically sealed reservoir.
- the device will include a venting needle for venting the medium from the reservoir, the venting needle comprising a fluid delivery portion and a reservoir- venting portion, the reservoir- venting portion being distal along the needle of the delivery portion, the delivery portion and the venting portion each defining a channel extending from the respective portion through the sidewall of the needle.
- the channels allow the delivery portion, in use, to deliver fluid from the reservoir, for example by venting air at one end and dispensing fluid at the other.
- the venting needle will preferably be at least partially a cannula having a cannulated point at the delivery portion for controlled, pipette-like delivery.
- the distal portion may comprise both the venting portion and the delivery portion.
- the needle preferably has a C-shaped section at the venting portion and the delivery portion.
- the two channels are preferably unitary, the channel extending from the venting portion to the delivery portion.
- the venting needle In a venting position, the venting needle preferably extends through two wall portions of the reservoir such that the venting portion forms a passage through the first wall portion to allow the container to be vented with air and the delivery portion forms a passage through the second wall portion to allow fluid to be dispensed from the reservoir.
- the needle is operated by he second actuator (e.g. it is attached to a button or a screw-advance mechanism).
- the separation medium allows motile spermatozoa, in preference to non-motile sperm, to migrate therethrough. This can be achieved using any suitable buffer (e.g. HEPES, EBSS etc.), as motile spermatozoa will be able to migrate through the medium actively whereas, over the relevant time-scale, non-motile spermatozoa will at best enter passively by diffusion. It is preferred, however, to use a medium that enhances the migration of motile spermatozoa from the sample. Suitable media include cervical mucus [e.g. Keel & Webster (1988) Fertil.
- the medium may be in the form of a solution or a gel.
- the separation medium also serves to 'wash' the sample, in order to remove components such as seminal plasma.
- the device can detect motile spermatozoa after separation.
- the device of the invention preferably comprises spermatozoa detection means in communication with the vessel outlet port.
- the detection means may be integral with the device, or may be provided as a separate component for inserting into the device before, during or after sample separation.
- the invention provides a device for separating and detecting motile spermatozoa in a liquid sample, the device having: - a sample separation vessel comprising:
- a sample separation medium into which motile spermatozoa in the sample can migrate via the sample inlet port; and (d) an actuator operable to open the sample outlet port, thereby allowing the sample separation medium to flow out of the vessel through the sample outlet port, - spermatozoa detection means comprising:
- an application zone in communication with the outlet port (i) an application zone in communication with the outlet port; (ii) a detection zone, in which the presence of spermatozoa can be detected; and (iii) a reagent zone containing a reagent which is capable of reacting with spermatozoa to facilitate their detection in the detection zone, these zones being arranged to permit capillary flow of spermatozoa from the application zone to the detection zone.
- the detection zor.e is a zone past which spermatozoa cannot flow (a 'trapping zone'). During operation, flow of spermatozoa is thus prevented beyond the trapping zone, and sperm are immobilised for detection.
- the trapping zone utilises the principles disclosed in WO00/20866 - the zone is porous with a pore size such that spermatozoa cannot enter. During flow into the trapping zone, therefore, sperm are captured at the entrance; as sperm concentration increases, the amount retained there also increases.
- the trapping zone can be made from any suitable porous material (e.g. HDPR, nitrocellulose) through which spermatozoa cannot migrate. This requirement is reflected in the pore size of the trapping zone.
- the head of a human spermatozoon is typically 3-5 ⁇ m in diameter, and tail length is approximately 50-60 ⁇ m.
- the pore size should be selected accordingly (e.g. nitrocellulose, with a nominal pore size between 5-8 ⁇ m), and an appropriate pore size may be determined empirically by simple experimentation.
- any porous material encountered before the trapping zone must, in contrast to the trapping zone, have a pore size large enough to allow spermatozoa to move relatively freely.
- the nominal pore size of a porous material can be determined by hard particle challenge testing i.e. by determining the maximum diameter of spherical particles which can pass through the material.
- the pore size of a material may be determined by measuring its 'bubble point'.
- the bubble point is the pressure required to force air through a (water) wet membrane, and correlates with the pore size as measured by particle retention (although at extremes of pressure and pore size, the correlation may be weaker).
- the bubble point is generally easier to measure than particle retention and is thus the preferred test when assessing pore size.
- the entrance to the trapping zone is preferably narrow, such that sperm are focused to give a sharper signal.
- immobilised anti-sperm antibody may be utilised.
- detection is based on acrosin.
- the detection zone will contain a reagent for detecting acrosin (e.g. see Mortimer, Practical Laboratory Andrology (1994), page 90) and the reagent zone will include a reagent such as proteinase K or the calcium ionophore A23187 [Perry et al. (1997) J.Exp.Zool. 279:284-290; Perry et al. (1997) J.Exp.Zool. 279:291-300 (1997); Perry et al. (1996) Human Reprod. 1 1 : 1055-1062; Perry et al. ( 1995) Fertil. Steril.
- a preferred reagent for lysing acrosomes is a lysis buffer comprising 2% SDS, 100 ⁇ g/ml proteinase K in 10 mM Tris-HCl and 0.1 M EDTA. During migration, therefore, acrosin is released from the sperm and is detected downstream at the detection zone.
- the reagent zone will contain a reagent which binds to intact spermatozoa or to one or more of the components thereof, and this binding reaction is used to generate a visual signal.
- the reagent zone is a 'labelling zone', containing a label capable of binding to spermatozoa. This is preferably used in conjunction with a trapping zone.
- the label within the labelling zone can be any suitable reagent that can bind to spermatozoa, preferably giving a visible signal. Because only motile spermatozoa will reach the outlet port, the label need not be specific for sperm.
- the label is typically an antibody which can bind to spermatozoa and which has been suitably tagged. It is preferred to use a visible tag, such as colloidal gold (which is visible as a pink colour), although fluorescent, luminescent or radioactive tags can also be used. It will be appreciated that the term 'antibody' may include polyclonal and monoclonal antibodies, as well as antibody fragments (eg. F(ab) 2 . Fc etc.), provided that anti-sperm reactivity is retained.
- a visible tag such as colloidal gold (which is visible as a pink colour)
- fluorescent, luminescent or radioactive tags can also be used.
- the term 'antibody' may include polyclonal and monoclonal antibodies, as well as antibody fragments (eg. F(ab) 2 . Fc etc.), provided that anti-sperm reactivity is retained.
- Preferred labels recognise a surface antigen which is present on the majority of a population of spermatozoa, rather than a subset. Whilst any sperm antigen may be used (eg. P34H (WO97/40836), SP- 10 (WO95/29188), see also EP-A-0387873), 'universal' antigens such as CD59 may also used. As an alternative, a stain, such as eosin, may be used.
- the label is not activated (e.g. re-hydration of dehydrated label) until sample separation medium leaves the vessel- This can be achieved by arranging the labelling zone such that label therein is not activated until the (first) actuator has been operated. Label therefore remains static until motile spermatozoa have left the sample and entered the sample separation medium.
- the labelling zone may be arranged in any suitable position such that its label can contact spermatozoa in the detection zone (e.g. sperm retained at the trapping zone). It may be upstream or downstream of the application zone, or may be integral therewith. If it is upstream, sample separation medium leaving the vessel should be able to contact the labelling zone separately from its contact with the application zone, in order to activate the label; if it is downstream or integral, flow will automatically activate the label. Where the detection means includes both a 'trapping zone' and a 'labelling zone', the pore size of the trapping zone will be such that free label (not bound to spermatozoa) can flow therethrough, whereas label which is bound to spermatozoa cannot.
- bound label is captured at the entrance.
- the amount of capture label also increases. It will be apparent that the label must be smaller than spermatozoa, such that free label is not retarded by the trapping zone.
- the detection means utilises a label
- it preferably includes a zone downstream of the detection zone which retains unbound label (the 'label control' zone).
- This will typically comprise immobilised antibody which can bind to unbound label (e.g. if the label is a murine monoclonal antibody, the label control zone may utilise anti-mouse antibody).
- Label which passes through the detection zone e.g. which is not captured on entry to the trapping zone
- a comparison of the amount of label in the detection zone and the label control zone allows semi-quantitative measurement of the amount of spermatozoa in the sample.
- the application zone is where the sample separation medium leaving the vessel comes into contact with the spermatozoa detection means. It can be formed from any material suitable for allowing capillary flow of spermatozoa therethrough e.g. fibrous material, such as a pad of HDPE material, bonded polyester fibre, glass fibre, or the like.
- spermatozoa tend to be retained within fibrous materials, thus reducing sensitivity. It is therefore preferred to use a non-fibrous application zone. Suitable examples include capillary tubes, the space between two or more sheets of material juxtaposed in close proximity such that capillary flow can occur therebetween, or a series of parallel capillary channels or grooves.
- the labelling zone and the application zone are integral, this is preferably formed from more than one piece of material such that label can be applied during assembly. Where juxtaposed sheets are used, for instance, label can be applied to one or more sheets, and these can then be brought into proximity to permit capillary flow. Similarly, where parallel channels or grooves are used the label can be applied to the channelled material and, optionally, covered by a further sheet.
- capillary flow takes place past a fibrous material rather than through it. Whilst flowing past, liquid can enter the fibrous material (e.g. to re-hydrate a label impregnated therein), but the main capillary flow through the application zone of sperm is not within the fibrous material.
- the application zone and the sample outlet port may be essentially unitary.
- flow of a sample to the detection zone is assisted by a downstream wick, to aid capillary movement.
- the migration path of motile sperm in the sample is: entry to the separation medium via the vessel's inlet port, exit from the separation medium via the vessel's outlet port (upon operation of the actuator after an incubation period), entry to the application zone, and capillary flow to the trapping zone, in which further migration is prevented.
- a visible signal at the trapping zone indicates the presence of motile spermatozoa in the sample
- the visible signal provided by the detection means is preferably external to the vessel, and more preferably one which is also visible from the exterior of the device.
- the detection means is preferably in the form of a lateral flow test strip mounted on the outside of the vessel.
- the vessel may include more than one sample outlet port, each of which may lead to separate detection means. This allows independent tests on the same sample e.g. an assay for motile sperm on one strip and an assay for acrosome reaction on another strip. This can also be achieved by using a single outlet port that leads downstream to several separate detection means.
- the device should be operated at an essentially fixed temperature. This will typically be between 30°C and 44°C, preferably between 35°C and 39°C, and more preferably fixed at or around 37°C. Preferably, therefore, the device includes a temperature sensor.
- the temperature sensor may give a simple signal to indicate when operating temperature has been reached.
- the device could be held in a user's hand, or inserted in a heated water bath, until the signal is given.
- the device also includes its own heat source, which can preferably be regulated e.g. using thermostatic control.
- the heat source should supply heat primarily to the region of the vessel wh ch contains the sample separation medium.
- Power and control circuitry for the heat sourct may conveniently be concealed within an actuator button, or within the body of the device.
- temperature regulation in the device can operate independently from the device's other features.
- the device of the invention may be used with any suitable liquid sample, which is preferably a semen sample.
- the device may include a receptacle for the sample. Preferably, this is in the form of a cup or sloping surface onto which a sample can be deposited, after which it collects at the base (e.g. in a well). The sample inlet can then be placed into contact with the collected sample.
- the receptacle may also include an overflow near its base.
- the receptacle may be integral with the device, or may be provided as a separate component to which the device may be attached before, during or after sample deposition and/or collection.
- the interface between the receptacle and the vessel's inlet port is of a defined area, thereby aiding assay reproducibility.
- the device of the invention can be produced simply and cheaply. Furthermore, it can be used very easily, for instance by the home user.
- the invention thus provides an assay device which can be used at home as a basic screen of, for instance, male fertility.
- the invention also provides corresponding processes.
- the invention provides a process for separating motile spermatozoa from a liquid sample, the process comprising the steps of: (a) providing a vessel having a sample inlet port, a closed sample outlet port, and a sample separation medium;
- the process may initially comprise the step of opening the inlet port.
- the process also comprises steps for detecting spermatozoa in the medium once it has exited the vessel.
- the invention provides a process for separating and detecting motile spermatozoa in a liquid sample, comprising the further steps of: (i) allowing sample separation medium that leaves the outlet port to flow by capillary action into material capable of immobilising spermatozoa; (ii) contacting spermatozoa with a label; and (iii) detecting label that is retained at the entrance to said material.
- the invention further provides a process for separating and/or detecting spermatozoa, wherein sperm flow by capillary action takes place through non-fibrous material.
- the invention further provides a process for separating motile and non-motile spermatozoa, wherein said process takes place at an essentially fixed temperature, preferably around 37°C.
- Figure 1 shows a device according to the invention.
- Figure 2 shows this device after insertion into a receptacle.
- Figures 3 to 6 show the operation of this device.
- Figure 7 shows an overview of using this device.
- Figure 8 shows a second device according to the invention, prior to operation.
- Figure 9 shows the same device separated into its two constituent pieces, with Figure 10 showing an exploded view of the top piece.
- Figure 11 shows the construction of the test strip assembly used in the device.
- Figures 12 to 16 show an overview of using this device.
- the device (10) shown in Figure 1 comprises: a cylindrical plastic vessel (15); a sample inlet port (20), covered by a nylon mesh (21 ) formed from 0.15mm strands spaced by 0.25mm; a hole (30) in its side, shown in the open position; a solution (40) of EBSS supplemented with 0.88mg/ml hyaluronic acid and 0.45% BSA; a plastic rotatable collar (50), including a hole (51) which is shown aligned with hole (30) to form an outlet port (35); a button (60, shown depressed), which houses a battery and circuitry for powering a circumferential heat source (70) and attached to which is a solution reservoir (65, shown empty), a foil seal (66, shown broken), and a hollow foil cutter (68); and an externally mounted test strip (80).
- Figure 2 shows the Figure 1 device ( 10) attached to a semen receptacle (90) with sloped walls.
- a semen sample ( 100) has collected in the well (99) at the base of the receptacle (90), but some of it has overflowed into the receptacle overflow (95).
- FIG 3 shows the device (10) immediately prior to use.
- a semen sample (100) has collected in the well (99) and is in contact with the inlet port (20).
- the outlet port (35) is closed because the hole (51) in the collar (50) is not aligned with the hole (30) in the vessel wall.
- Solution (40) is held in reservoir (65) by foil seal (66), away from the inlet port (20).
- button (60) is depressed, as shown in Figure 4A.
- Foil cutter (68) pierces seal (66), releasing solution (40).
- Motile sperm in the sample (100) are now in liquid communication with solution (40) and are able to migrate into it through the inlet (20), as shown in Figure 4B, whereas non-motile sperm and seminal plasma remain in sample (100).
- Button (60) also activates heat source (70), bringing the temperature of solution (40) to 37°C.
- the solution flows by capillary action through closely-juxtaposed plastic strips (81a & b) at the base of the test strip (80). Between the strips (81a & b) is an area (82) of dehydrated gold-labelled murine anti-CD59. As the solution passes area (82) between the strips (8 la & b), the antibody is re-hydrated and is able to bind to spermatozoa in the solution. Further downstream, the solution reaches nitrocellulose strip (83). The pore size of the strip (83) is too small to allow the spermatozoa to enter, so they are captured at its entrance (84). Free label continues to flow until it is captured downstream at a line (85) of immobilised anti-mouse antibody.
- the device (1 10) shown in Figures 8 and 9 comprises an upper piece (191) and a lower piece (190) which fit together.
- the base of lower piece (190) contains a well (199) into which a semen sample (200) is deposited.
- Upper piece (191) includes a recessed window (1 13), a button (160) and a rotatable knob (150). Knob (150) and button (160) are shaped such that knob (150) cannot be rotated until button (160) has beer depressed.
- upper piece * 191 is formed from a top piece (192) which engages a seating (193).
- button (160) On the bottom of button (160) is a needle (168) and, when button (160) is operated, needle (168) pierces reservoir (165) which, prior to operation, contains a solution (140) of EBSS supplemented with 0.88mg/ml hyaluronic acid and 0.45% BSA.
- Reservoir (165) sits in plastic housing (166), which has a neck portion (1 15) and a head portion (120). The side of neck (1 15) contains a hole (130) which engages the tube portion (186) of test strip assembly (180).
- head portion (120) is covered by a circular nylon mesh (121) formed from 0.15mm strands spaced by 0.25mm.
- mesh (121) is in contact with sample (200) within well (199).
- Knob (150) is attached via a rack and pinion mechanism to plunger (155) which, prior to use, passes through tube ( 186) and towards hole (130).
- Seating ( 193) contains a battery (194) which powers heat source (170). When assembled, heat source (170) surrounds neck (1 15) circumferentially, except in the region of hole (130).
- FIG. 1 Exploded and assembled views of test strip assembly (180) are shown in Figure 1 1.
- tubular portion ( 186) communicates directly with hole (130) and, prior to use, plunger ( 155) engages and fills tube (186), thereby preventing liquid flow therethrough.
- plunger (155) is withdrawn by operation of knob ( 150) in the direction of the arrow in Figure 1 1
- tube (186) opens to form, together with hole ( 130), an outlet port (135) through which liquid can flow.
- Tube ( 186) and plunger (155) therefore operate in the manner of syringe.
- the antibody As liquid passes pad (182), the antibody is re-hydrated and can pass into the liquid, where it is able to bind to spermatozoa.
- the liquid continues to flow towards and into nitrocellulose strip ( 183), aided by a wick ( 188).
- the pore size of strip (183) is too small to allow the spermatozoa to enter, so they are captured at its entrance (184).
- Antibody can bind captured spermatozoa at entrance ( 184) and form a pink line. Any free antibody continues to flow until it is captured downstream at a line (185) of immobilised anti-mouse antibody.
- the device is used as illustrated in figures 12 to 16:
- a semen sample (200; e.g. obtained by masturbation) is placed into lower piece (190) and collects in well (199) whilst lower piece (190) rests on a flat surface.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- Cell Biology (AREA)
- Hematology (AREA)
- Immunology (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Developmental Biology & Embryology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Reproductive Health (AREA)
- Pregnancy & Childbirth (AREA)
- General Engineering & Computer Science (AREA)
- Gynecology & Obstetrics (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- External Artificial Organs (AREA)
- Centrifugal Separators (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU3387201A AU3387201A (en) | 2000-02-16 | 2001-02-16 | Devices for motile sperm separation |
EP01905902A EP1255810B1 (en) | 2000-02-16 | 2001-02-16 | Device for separating and detecting motile spermatozoa |
AT01905902T ATE283913T1 (en) | 2000-02-16 | 2001-02-16 | DEVICE FOR SEPARATING AND DETECTING MOBILE SPERMATOZOA |
CA002399993A CA2399993A1 (en) | 2000-02-16 | 2001-02-16 | Devices for motile sperm separation |
JP2001560340A JP4091767B2 (en) | 2000-02-16 | 2001-02-16 | Device for separating moving sperm |
US10/203,318 US7179641B2 (en) | 2000-02-16 | 2001-02-16 | Device for motile sperm separation |
DE60107538T DE60107538T2 (en) | 2000-02-16 | 2001-02-16 | DEVICE FOR DISCONNECTING AND DETECTING MOVABLE SPERMATOZOES |
AU2001233872A AU2001233872B2 (en) | 2000-02-16 | 2001-02-16 | Devices for motile sperm separation |
US11/324,257 US20060110821A1 (en) | 2000-02-16 | 2006-01-04 | Devices for motile sperm separation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0003596.4A GB0003596D0 (en) | 2000-02-16 | 2000-02-16 | Sperm separation |
GB0003596.4 | 2000-02-16 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/080,928 Division US20050158700A1 (en) | 2000-02-16 | 2005-03-16 | Devices for motile sperm separation |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001060968A1 true WO2001060968A1 (en) | 2001-08-23 |
Family
ID=9885741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2001/000654 WO2001060968A1 (en) | 2000-02-16 | 2001-02-16 | Devices for motile sperm separation |
Country Status (10)
Country | Link |
---|---|
US (2) | US7179641B2 (en) |
EP (1) | EP1255810B1 (en) |
JP (1) | JP4091767B2 (en) |
AT (1) | ATE283913T1 (en) |
AU (2) | AU2001233872B2 (en) |
CA (1) | CA2399993A1 (en) |
DE (1) | DE60107538T2 (en) |
ES (1) | ES2234809T3 (en) |
GB (1) | GB0003596D0 (en) |
WO (1) | WO2001060968A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004053465A2 (en) * | 2002-12-09 | 2004-06-24 | Advanced Fluidix Laboratories, Llc | Male fertility assay method and device |
GB2447417A (en) * | 2007-03-14 | 2008-09-17 | Farhang Abed | Apparatus and method for separating motile sperm |
WO2009043393A1 (en) * | 2007-09-25 | 2009-04-09 | Nanorepro Gmbh | Fertility test |
EP2682747A1 (en) * | 2012-07-02 | 2014-01-08 | ZECH, Josef | Device for spematozoa selection |
US8993310B2 (en) | 2009-03-03 | 2015-03-31 | Consejo Nacional De Investigaciones Cientificas Y Technicas (CONICET) | Device for diagnosis of physiologic status and/or selection of the best spermatozoa of a semen sample based on chemotaxis, and procedure of use thereof |
WO2015077333A1 (en) | 2013-11-20 | 2015-05-28 | Brigham And Women's Hospital , Inc. | System and method for sperm sorting |
US9663755B2 (en) | 2013-11-19 | 2017-05-30 | The Governing Council Of The University Of Toronto | Apparatus and methods for sperm separation |
US10417481B2 (en) | 2015-06-22 | 2019-09-17 | The Brigham And Women's Hospital, Inc. | Home evaluation of the quality of semen samples |
US11352597B2 (en) | 2015-09-28 | 2022-06-07 | My123Baby Medical Limited | Medical device for the selective separation of a biological sample |
US11701655B2 (en) | 2013-05-03 | 2023-07-18 | Motilitycount Aps | Device for analysis of cellular motility |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1672977A4 (en) * | 2003-09-25 | 2008-03-12 | Yeda Res & Dev | Apparatus and methods for selecting capacitated spermatozoa and uses thereof |
US9157063B2 (en) * | 2007-01-16 | 2015-10-13 | Texas Tech University System | Method and apparatus for gender selection based on pH |
US9168028B2 (en) * | 2007-10-23 | 2015-10-27 | Lotus Bio (Nymphaea) Ltd | Cartridge for a biological sample |
WO2009116051A1 (en) * | 2008-03-20 | 2009-09-24 | Tidhar Zanbar | Method and kit for diagnosis of male fertility |
JP2010004770A (en) * | 2008-06-25 | 2010-01-14 | Yuji Tsuji | Device for sperm inspection |
EP2421360B1 (en) * | 2009-04-22 | 2014-05-07 | Lotus Bio (Nymphaea) Ltd. | A sperm separation system |
US8828329B2 (en) | 2010-10-01 | 2014-09-09 | Church & Dwight, Co., Inc. | Electronic analyte assaying device |
EP2756074B1 (en) | 2011-09-14 | 2018-11-07 | Taipei Medical University | Microfluidic chips for acquiring sperms with high motility, productions and applications thereof |
WO2018140999A1 (en) | 2017-01-31 | 2018-08-09 | Genea Ip Holdings Pty Limited | Method and system for processing a biological sample |
KR102095267B1 (en) * | 2018-10-22 | 2020-03-31 | 한국항공대학교산학협력단 | Gravity-based motile sperm sorting device and the sorting method |
WO2024107875A1 (en) * | 2022-11-15 | 2024-05-23 | Reprovantage Laboratories | Sperm separation system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2539628A1 (en) * | 1983-01-25 | 1984-07-27 | Fondation Rech Hormonologie | Method for separating motile cells, especially motile spermatozoa, as well as a device for implementing this method |
SU1486163A1 (en) * | 1987-05-15 | 1989-06-15 | Kubansk Selskokhozyajst Inst | Method of separating spermia by mobility |
US5866354A (en) * | 1996-12-16 | 1999-02-02 | The State Of Oregon Acting By And Through The State Of Board Of Higher Education On Behalf Of Oregon State University | Method for measuring mobility of sperm |
US5908380A (en) * | 1998-01-12 | 1999-06-01 | Zavos; Panayiotis M. | Compartmentalized Zavos sperm swim-up column |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU4381699A (en) * | 1998-06-17 | 2000-01-05 | Genosis, Inc. | Method and kit for the detection of male infertility |
GB9817795D0 (en) * | 1998-08-14 | 1998-10-14 | Genosis Inc | A method and device for separation and detection of spermatozoa in a sample |
-
2000
- 2000-02-16 GB GBGB0003596.4A patent/GB0003596D0/en not_active Ceased
-
2001
- 2001-02-16 AU AU2001233872A patent/AU2001233872B2/en not_active Ceased
- 2001-02-16 ES ES01905902T patent/ES2234809T3/en not_active Expired - Lifetime
- 2001-02-16 EP EP01905902A patent/EP1255810B1/en not_active Expired - Lifetime
- 2001-02-16 AT AT01905902T patent/ATE283913T1/en not_active IP Right Cessation
- 2001-02-16 JP JP2001560340A patent/JP4091767B2/en not_active Expired - Fee Related
- 2001-02-16 AU AU3387201A patent/AU3387201A/en active Pending
- 2001-02-16 CA CA002399993A patent/CA2399993A1/en not_active Abandoned
- 2001-02-16 US US10/203,318 patent/US7179641B2/en not_active Expired - Fee Related
- 2001-02-16 DE DE60107538T patent/DE60107538T2/en not_active Expired - Fee Related
- 2001-02-16 WO PCT/GB2001/000654 patent/WO2001060968A1/en active IP Right Grant
-
2006
- 2006-01-04 US US11/324,257 patent/US20060110821A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2539628A1 (en) * | 1983-01-25 | 1984-07-27 | Fondation Rech Hormonologie | Method for separating motile cells, especially motile spermatozoa, as well as a device for implementing this method |
SU1486163A1 (en) * | 1987-05-15 | 1989-06-15 | Kubansk Selskokhozyajst Inst | Method of separating spermia by mobility |
US5866354A (en) * | 1996-12-16 | 1999-02-02 | The State Of Oregon Acting By And Through The State Of Board Of Higher Education On Behalf Of Oregon State University | Method for measuring mobility of sperm |
US5908380A (en) * | 1998-01-12 | 1999-06-01 | Zavos; Panayiotis M. | Compartmentalized Zavos sperm swim-up column |
Non-Patent Citations (1)
Title |
---|
DATABASE WPI Section PQ Week 199013, Derwent World Patents Index; Class P32, AN 1990-097584, XP002155746 * |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004053465A2 (en) * | 2002-12-09 | 2004-06-24 | Advanced Fluidix Laboratories, Llc | Male fertility assay method and device |
WO2004053465A3 (en) * | 2002-12-09 | 2004-11-11 | Advanced Fluidix Lab Llc | Male fertility assay method and device |
US6929945B2 (en) | 2002-12-09 | 2005-08-16 | Advanced Fluidix Laboratories Llc | Male fertility assay method and device |
US7108966B2 (en) | 2002-12-09 | 2006-09-19 | Pria Diagnostics, Llc | Male fertility assay method and device |
GB2447417A (en) * | 2007-03-14 | 2008-09-17 | Farhang Abed | Apparatus and method for separating motile sperm |
WO2009043393A1 (en) * | 2007-09-25 | 2009-04-09 | Nanorepro Gmbh | Fertility test |
US8993310B2 (en) | 2009-03-03 | 2015-03-31 | Consejo Nacional De Investigaciones Cientificas Y Technicas (CONICET) | Device for diagnosis of physiologic status and/or selection of the best spermatozoa of a semen sample based on chemotaxis, and procedure of use thereof |
EP2682747A1 (en) * | 2012-07-02 | 2014-01-08 | ZECH, Josef | Device for spematozoa selection |
WO2014006043A3 (en) * | 2012-07-02 | 2014-02-27 | Josef Zech | Device for spematozoa selection |
US9606099B2 (en) | 2012-07-02 | 2017-03-28 | Josef Zech | Selection device |
US11701655B2 (en) | 2013-05-03 | 2023-07-18 | Motilitycount Aps | Device for analysis of cellular motility |
US9663755B2 (en) | 2013-11-19 | 2017-05-30 | The Governing Council Of The University Of Toronto | Apparatus and methods for sperm separation |
EP3071704A4 (en) * | 2013-11-20 | 2017-10-04 | Brigham and Women's Hospital, Inc. | System and method for sperm sorting |
WO2015077333A1 (en) | 2013-11-20 | 2015-05-28 | Brigham And Women's Hospital , Inc. | System and method for sperm sorting |
US10422737B2 (en) | 2013-11-20 | 2019-09-24 | The Brigham And Women's Hospital, Inc. | System and method for sperm sorting |
US11982610B2 (en) | 2013-11-20 | 2024-05-14 | The Brigham And Women's Hospital, Inc. | System and method for sperm sorting |
US11009444B2 (en) | 2013-11-20 | 2021-05-18 | The Brigham And Women's Hospital, Inc. | System and method for sperm sorting |
US11946846B2 (en) | 2013-11-20 | 2024-04-02 | The Brigham And Women's Hospital, Inc. | System and method for sperm sorting |
EP4039817A1 (en) * | 2013-11-20 | 2022-08-10 | Brigham and Women's Hospital, Inc. | System and method for sperm sorting |
EP4269984A3 (en) * | 2013-11-20 | 2024-02-07 | Brigham and Women's Hospital, Inc. | System and method for sperm sorting |
US11709122B2 (en) | 2013-11-20 | 2023-07-25 | The Brigham And Women's Hospital, Inc. | System and method for sperm sorting |
US11788943B2 (en) | 2013-11-20 | 2023-10-17 | The Brigham And Women's Hospital, Inc. | System and method for sperm sorting |
US11841309B2 (en) | 2013-11-20 | 2023-12-12 | The Brigham And Women's Hospital, Inc. | System and method for sperm sorting |
US10417481B2 (en) | 2015-06-22 | 2019-09-17 | The Brigham And Women's Hospital, Inc. | Home evaluation of the quality of semen samples |
US10977477B2 (en) | 2015-06-22 | 2021-04-13 | The Brigham And Women's Hosptial, Inc. | Home evaluation of the quality of semen samples |
US11352597B2 (en) | 2015-09-28 | 2022-06-07 | My123Baby Medical Limited | Medical device for the selective separation of a biological sample |
Also Published As
Publication number | Publication date |
---|---|
JP2003523194A (en) | 2003-08-05 |
ES2234809T3 (en) | 2005-07-01 |
EP1255810B1 (en) | 2004-12-01 |
AU3387201A (en) | 2001-08-27 |
DE60107538D1 (en) | 2005-01-05 |
US20030096395A1 (en) | 2003-05-22 |
JP4091767B2 (en) | 2008-05-28 |
US20060110821A1 (en) | 2006-05-25 |
CA2399993A1 (en) | 2001-08-23 |
GB0003596D0 (en) | 2000-04-05 |
EP1255810A1 (en) | 2002-11-13 |
DE60107538T2 (en) | 2005-11-10 |
AU2001233872B2 (en) | 2004-10-07 |
US7179641B2 (en) | 2007-02-20 |
ATE283913T1 (en) | 2004-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060110821A1 (en) | Devices for motile sperm separation | |
AU2001233872A1 (en) | Devices for motile sperm separation | |
US20220280141A1 (en) | Method and apparatus for collecting and preparing biological samples for testing | |
US20230243809A1 (en) | Device for whole blood separation | |
EP1104454B1 (en) | Separation and detection of spermatozoa | |
CN100498335C (en) | In-line test device and methods of use | |
US4632901A (en) | Method and apparatus for immunoassays | |
US4665034A (en) | Device for performing qualitative enzyme immunoassays | |
US20040019301A1 (en) | Integrated confirmation sample in a body fluid test device and method of using | |
RU2706710C1 (en) | Analysis device | |
FI60935C (en) | FOERFARANDE FOER KONCENTRERING OCH RENING AV ETT URIN- OCH SERUMPROV FOER BESTAEMNING AV HCG ELLER DESS BETA-UNDERENHET IMMUNOLOGISKT OCH I FOERFARANDET ANVAENDBAR ANORDNING | |
JP2007511768A (en) | Fluid sample analyzer with sealable sample storage reservoir | |
HU206918B (en) | Analytical detecting instrument | |
EP0293447A1 (en) | A device and method for self contained solid phase immunodiffusion assay. | |
US20080112847A1 (en) | Collecting and testing device and method of use | |
KR20010108273A (en) | Analyzing strip having a fluid cell and a method of analyzing a sample | |
US20050158700A1 (en) | Devices for motile sperm separation | |
US20120149093A1 (en) | Method and Apparatus for Automating Chemical and Biological Assays | |
NO860937L (en) | DIAGNOSTICS FOR ASSAY PROVISIONS. | |
JPH02170051A (en) | Liquid inspection instrument | |
Talbot et al. | Capillary blood collection tubes may affect serum progesterone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2001233872 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2399993 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2001 560340 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001905902 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10203318 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 2001905902 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 2001905902 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2001233872 Country of ref document: AU |