WO2001056511A1 - Gerüstfreie (stentlose) herzklappenbioprothese - Google Patents

Gerüstfreie (stentlose) herzklappenbioprothese Download PDF

Info

Publication number
WO2001056511A1
WO2001056511A1 PCT/DE2001/000466 DE0100466W WO0156511A1 WO 2001056511 A1 WO2001056511 A1 WO 2001056511A1 DE 0100466 W DE0100466 W DE 0100466W WO 0156511 A1 WO0156511 A1 WO 0156511A1
Authority
WO
WIPO (PCT)
Prior art keywords
coronary
aortic root
valve
outlets
outlet
Prior art date
Application number
PCT/DE2001/000466
Other languages
English (en)
French (fr)
Inventor
Wolfgang Konertz
Marita Stein Konertz
Pascal Dohmen
Original Assignee
Medos Medizintechnik Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medos Medizintechnik Ag filed Critical Medos Medizintechnik Ag
Priority to AU40459/01A priority Critical patent/AU4045901A/en
Priority to DE10190290A priority patent/DE10190290B4/de
Publication of WO2001056511A1 publication Critical patent/WO2001056511A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2415Manufacturing methods

Definitions

  • the present invention relates to the field of cardiac medicine and, more particularly, to a bioprosthesis for use in the treatment of a heart valve dysfunction in humans.
  • the human heart for pumping blood through the body comprises two chambers (the left and the right heart chamber), each of which is provided with two valves to regulate the flow of blood into and out of them.
  • the right ventricle these are the tricuspid and pulmonary valves, in the left the mitral and aortic valves.
  • the aortic valve and the pulmonary valve in humans are both three-leaf valves that are similar in size and anatomy.
  • valves Due to illness, one or more valves may no longer function normally (as a result of valve damage, degeneration or a congenital defect). Often, especially in the case of the aortic valve, a malfunction results from a narrowing of the valve opening (stenosis) or from a valve insufficiency in which the valve is not fully opened or closed. For some time now, these life-threatening heart valve malfunctions have been treated by replacing the valve with a prosthesis, with a distinction being made between so-called mechanical valves (in which the blood flow is regulated by one or more closures by means of a valve), which consist of rigid bodies, and so-called biological ones Valves, consisting of chemically pretreated biological tissue, in which the blood flow is regulated by natural valve leaflets. Bioprostheses are characterized by a lower thrombembolic risk compared to mechanical valves.
  • Xeno-bioprosthesis 35 years ago, the first implantation of a Xeno bioprosthesis in the aortic position, which was implanted from bovine (bovine) chemically pretreated pericardium. Xeno-bioprosthesis has been on the rise since the introduction of glutaraldehyde for the chemical fixation of the collagen structure (through an intermolecular cross-linking of the collagen fibrils) of porcine (pig-derived) valves.
  • prostheses available for replacing the aortic valve: artificial valves (mechanical double-wing prostheses made of pyrolytic carbon), xentografts (consisting of porcine aortic valves or bovine pericardium, with or without a scaffold (stent)), homologous grafts (obtained from the human aorta; scaffold-free) and autologous grafts (either the patient's own pericardium, mounted intraoperatively on a given scaffold, or the pulmonary valve removed from the patient and implanted in the aortic position).
  • artificial valves mechanical double-wing prostheses made of pyrolytic carbon
  • xentografts consisting of porcine aortic valves or bovine pericardium, with or without a scaffold (stent)
  • homologous grafts obtained from the human aorta; scaffold-free
  • autologous grafts either the patient's own pericardium, mounted intraoperatively on a given
  • the mechanical stress on the xenoprostheses is particularly pronounced in the area of the valve commissures, while in the case of one's own aortic valve, part of the closing force is absorbed by the elasticity of the aortic wall.
  • the valve-holding device of stented xenograft has a significantly lower elasticity than the aorta. The force is absorbed by the commissures when the flap closes.
  • prostheses do not have a fixed holding device. Like all prostheses, they are fixed to the aortic annulus and their commissures are also sewn directly onto the aortic wall, which in turn absorbs some of the mechanical stress. The disadvantage of such scaffold-free valves is in particular a possible distortion of the valve geometry, which can result in prosthesis insufficiency.
  • Bioprostheses xenoprostheses
  • xenoprostheses are now offered by various manufacturers, for example the Hancock bioprosthesis (later Xenomedica (R) bioprosthesis) and the Carpentier-Edwards (R) valve. Both are procine, glutaralehyde-prepared aortic valves that are attached to a support ring.
  • the Hancock bioprosthesis is attached to a flexible, dacron-coated circular polypropylene support ring of semi-flexible nature.
  • the Dacron-coated ring supports are anatomically contoured and have a low profile.
  • the flat, flexible support ring of the Carpentier-Edwards (R) bioprosthesis is made of a cobalt-nickel alloy that is coated with Teflon and has an asymmetrical base.
  • bioprostheses that are free of supporting materials
  • glutaraldehyde without ring support
  • the implantation of bioprostheses treated with glutaraldehyde without ring support promises better clinical durability of these valves, since the functional unit between the aortic valve and the aortic root is preserved. This means that the flap pockets are not subjected to physiological stress, and the flap pockets are stressed physiologically, and the physiological hemodynamics with divergent flow without the formation of dead water are retained.
  • Examples of commercially available stent-free bioprostheses without ring support are the Edwards Prima (R) bioprosthesis (manufacturer: Baxter Edwards AG, CH-6848 Switzerland), the Medtronic Freestyle (R) aortic root bioprosthesis (Medtronic, Inc. Minneapolis, Minn. 55432 -3576) and St. Jude Toronto (R) SPV Bioprosthesis (St. Jude Medical, Inc., St. Paul, Minn 55117).
  • the present invention therefore relates to a heart valve bioprosthesis according to claim 1, preferably a biological heart valve prosthesis without ring support (frame-free or stentless bioprosthesis), consisting of a xenogenic aortic root reserved for implant purposes in a manner known per se, for example with glutaraldehyde Donor mammal, preferably the pig, the aortic root at a distance of approximately 120 degrees to each of the two originally existing coronary outlets, an opening is placed as an additional coronary outlet at a surgically or hemodynamically suitable location, generally in the valve sine without an original coronary outlet, and one of the two original coronary outlets in has been closed in a manner which is suitable for surgery and is known per se.
  • a biological heart valve prosthesis without ring support frame-free or stentless bioprosthesis
  • Fig. 1 The schematic top view of a glutaraldehyde-fixed porcine aortic valve cylinder with its two conor ports 1 and 2 and with the three sail flaps 4, 5 and 6.
  • Fig. 2 The schematic plan view of the aortic valve cylinder rotated by 120 degrees compared to Fig. 1, on which, according to the invention, a coronary outlet, here the right coronary outlet 2, has been closed and a new coronary outlet opening, here the opening 3, has been produced.
  • a coronary outlet here the right coronary outlet 2
  • a new coronary outlet opening here the opening 3
  • the numbers 4, 5 and 6 identify the three sail flaps.
  • FIG. 3 The schematic side view of the aortic valve cylinder according to the invention with the openings 7a and 7b for receiving the coronary ostia, the coronary branches 1 and 3 of the Fig. 2 correspond.
  • the marking line 8 marks the area of the aortic root in which modifications can be made intraoperatively without the function of the heart valve prosthesis being impaired.
  • Numeral 9 indicates reinforcement with fabric.
  • Fig.4 The original procine, glutaraldehyde-treated aortic root with the corona branches 1 (left coronary) and 2 (right coronary) as well as with the marking line 8 (see also Fig. 3) and the reinforcement with tissue (see also Fig. 3).
  • Fig. 5 The top view of a porcine aortic root modified according to the invention with the coronary branches 1 (original), 2 (original, now closed) and 3 (new). The three sail flaps are visible in the positions marked with the numbers 4, 5 and 6.
  • Fig. 6 The side view of a porcine aortic root modified according to the invention with the closed right coronary outlet 2 and the new outlet 3 as well as the marking line 8 and the reinforcement with tissue 9.
  • the number 10 denotes the area of the aortic root below the right coronary outlet 2 (now closed ), the original usually with
  • Muscle tissue that is usually removed this area can then advantageously be reinforced with fabric material, as has been done here.
  • Fig. 7 The illustration corresponds to the side view of Fig. 6, whereby by rotating the aortic root modified according to the invention by 180 degrees, the original coronary outlet 1 is in the foreground and the closed coronary outlet 2 is on the left side of the image.
  • Fig. 8 In this figure, the aortic root according to the invention has been rotated by 90 degrees compared to Fig. 7, so that the coronary branches 1 (old) and 3 (new) can be seen, while the closed branch 2 is not visible.

Abstract

Eine biologische Herzklappenprothese ohne Ringunterstützung (gerüstfreie oder stentlose Bioprothese) unter besonderer Gestaltung der fluidtechnischen Zu- und Abgänge in der Klappe mit dem Ziel einer widerstandsarmen Perfusion der angeschlossenen Körperbereiche, einem guten Auswaschverfahren zur Vermeidung von Thrombosebildung und einer Vereinfachung der Implantationstechnik durch Modifikation des Klappendesigns wurde entwickelt, wobei eine mögliche Verziehung der Klappengeometrie, wie sie bei stentfreien Prothesen auftreten kann, verhindert wird. Die neuartige Bioprothese besteht aus einer gegebenenfalls, zum Beispiel mit Glutaraldehyd, für Implantatzwecke vorbehandelten xenogenen Aortenwurzel eines Spendersäugetiers, vorzugsweise des Schweins, wobei in der zylinderförmigen Aortenwurzel in einem Abstand von etwa 120 Grad zu jedem der beiden originär vorhandenen Koronarabgänge eine Öffnung als zusätzlicher Koronarabgang an einer chirurgisch oder hämodynamisch geeigneten Stelle, im Allgemeinen in dem Klappensinus ohne originären Koronarabgang, plaziert ist und wobei einer der beiden originären Koronarabgänge in chirurgisch geeigneter Weise verschlossen worden ist.

Description

Gerüstfreie (stentlose) Herzklappenbioprothese
Die vorliegende Erfindung betrifft das Gebiet der Herzmedizin und insbesondere eine Bioprothese zur Verwendung bei der Behandlung einer Herzklappenfunktionsstörung beim Menschen.
Bekanntlich umfasst das menschliche Herz zum Pumpen des Blutes durch den Körper zwei Kammern (die linke und die rechte Herzkammer), die jeweils mit zwei Klappen versehen sind, um den Strom des Blutes in diese hinein und aus diesen heraus zu regulieren. In der rechten Herzkammer sind dies die Trikuspidal- und Pulmonalklappen, in der linken die Mitral- und Aortenklappen. Die Aortenklappe und die Pulmonalklappe beim Menschen sind beides dreiblättrige Klappen, die einander sowohl von der Größe als auch der Anatomie her ähnlich sind.
Krankheitsbedingt kann es vorkommen, dass eine oder mehrere Klappen nicht mehr normal funktionieren (als Folge eines Klappenschadens, einer Degeneration oder eines angeborenen Defekts). Oftmals ergibt sich vor allem im Falle der Aortenklappe eine Fehlfunktion aus einer Verengung der Klappenöffnung (Stenose) oder aus einer Klappeninsuffizienz, bei der die Klappe nicht vollständig geöffnet oder geschlossen wird. Seit geraumer Zeit werden diese lebensbedrohlichen Herzklappenfehlfunktionen dadurch behandelt, dass man die Klappe durch eine Prothese ersetzt, wobei man zwischen sogenannten mechanischen Klappen (bei denen der Blutfluss durch einen oder mehrere Verschlüsse mittels Ventil geregelt wird), die aus starren Körpern bestehen, und sogenannten biologischen Klappen, bestehend aus chemisch vorbehandeltem biologischem Gewebe, bei denen der Blutfluss durch natürliche Klappenblättchen geregelt ist, unterscheidet. Bioprothesen zeichnen sich im Vergleich mit mechanischen Klappen durch ein geringeres thrombembolisches Risiko aus.
Hinsichtlich des Ursprungs biologischer Herzklappenprothesen unterscheidet man zwischen solchen allogener und xenogener Natur und spricht dementsprechend von Allo-Bioprothese (Mensch) und Xeno- Bioprothese (Tier).
Vor 35 Jahren gelang erstmals die Implantation einer Xeno-Bioprothese in Aortenposition, die aus bovinem (vom Rind stammenden) chemisch vorbehandeltem Perikard implantiert wurde. Seit der Einführung von Gluta- raldehyd zur chemischen Fixation des Kollagengerüsts (durch eine intermolekulare Quervernetzung der kollagenen Fibrillen) von porcinen (vom Schwein stammenden) Klappen befindet sich die Xeno-Bioprothese auf dem Vormarsch.
Heute hat der Chirurg für den Ersatz der Aortenklappe vier Kategorien von Prothesen zur Verfügung: Kunstklappen (mechanische Doppelflügel- prothesen aus pyrolytischem Carbon), Xentotransplantate (bestehend aus Schweine-Aortenklappen oder aus Rinderperikard, mit oder ohne Gerüst (Stent)), homologe Transplantate (gewonnen aus der menschlichen Aorta; gerüstfrei) und autologe Transplantate (entweder patienteneigenes Peri- kard, intraoperativ montiert auf ein vorgegebenes Gerüst, oder die dem Patienten entnommene und in Aortenposition implantierte Pulmonalklappe).
Die mechanische Belastung der Xenoprothesen ist besonders ausgeprägt im Bereich der Klappenkommissuren, während bei der eigenen Aorten- klappe ein Teil der Verschlusskraft von der Elastizität der Aortenwand abgefangen wird. Der Klappenhalteapparat von gestenteten Xen- totransplantaten hat eine deutlich geringere Elastizität als die Aorta. Hierbei wird die Kraft beim Schluss der Klappe von den Kommissuren abgefangen.
Aus diesem Grund wurden sie sogenannten „Stentless "-Prothesen entwickelt. Diese Prothesen haben keinen festen Halteapparat. Sie werden, wie alle Prothesen, am Aortenanulus fixiert und zusätzlich ihre Kommissuren direkt an die Aortenwand angenäht, die damit wieder einen Teil der mechanischen Belastung auffängt. Der Nachteil solcher gerüstloser Klappen besteht insbesondere in einer möglichen Verziehung der Klappengeometrie, die eine Protheseinsuffizienz zur Folge haben kann. Bioprothesen (Xenoprothesen) werden heute von diversen Herstellern angeboten, beispielsweise die Hancock-Bioprothese (später Xenomedica (R)Bioprothese) und die Carpentier-Edwards (R)- Klappe. Bei beiden handelt es sich um procine, glutaralehydpräparierte Aortenklappen, die auf einem Unterstützungsring befestigt sind.
Die Hancock-Bioprothese ist auf einem flexiblen, mit Dacron überzogenen kreisförmigen Polypropylenunterstützungsring von semiflexibler Beschaffenheit befestigt. Bei der daraus entwickelten Xenomedica (R)- Bioprothese sind die Dacron-überzogenen Ringstützen anatomisch kontu- riert und besitzen ein niedriges Profil. Der flache, flexible Unterstützungsring der Carpentier-Edwards (R)-Bioprothese besteht aus einer Kobalt-Nickel-Legierung, die mit Teflon überzogen ist und eine asymmetrische Basis besitzt.
Aber auch biologische Herzklappenprothesen, die frei von Stützmateria- lien sind ("stentless bioprosthetic valves"), werden kommerziell angeboten. Die Implantation glutaraldehydbehandelter Bioprothesen ohne Ringunterstützung verspricht eine bessere klinische Haltbarkeit dieser Klappen, da die funktioneile Einheit zwischen Aortenklappe und Aortenwurzel erhalten bleibt. Damit unterbleibt eine unphysiologische Beanspruchung der Klappentaschen, und die physiologische Beanspruchung der Klappentaschen, und die physiologische Hämodynamik mit divergentem Fluss ohne Todwasserraumbildung bleibt erhalten. Beispiele von kommerziell bereits verfügbaren stentfreien Bioprothesen ohne Ringunterstützung sind die Edwards Prima (R) Bioprothese (Hersteller: Baxter Edwards AG, CH-6848 Schweiz), die Medtronic Freestyle (R) Aorten wurzel-Bioprothese (Medtronic, Inc. Minneapolis, Minn. 55432-3576) und die St. Jude Toronto (R) SPV Bioprothese (St. Jude Medical, Inc. , St. Paul, Minn 55117).
Bei den Bemühungen um die Entwicklung neuartiger Bioprothesen spielen neben der Präparationstechnik des Fremdmaterials die Orientierung und Gestaltung der fluidtechnischen Zu- und Abgänge in der Klappe eine we- sentliche Rolle für eine langfristig erfolgreiche Funktion. Eine optimale Hämodynamik ist nicht nur wichtig für eine widerstandsarme Perfusion der angeschlossenen Körperbereiche, sondern auch von großer Bedeutung für ein gutes Auswaschverhalten zur Vermeidung von Thrombenbildung. Ziel ist auch, die bislang aufwendige Implantationstechnik durch Modifi- kation des Klappendesigns zu vereinfachen und eine mögliche Verziehung der Klappengeometrie, mit der bei stentfreien Prothesen immer gerechnet werden muss, zu vermeiden.
Gegenstand der vorliegenden Erfindung ist daher eine Herzklappenbioprothese nach Anspruch 1 , vorzugsweise eine biologische Herzklappen- prothese ohne Ringunterstützung (gerüstfreie oder stentlose Bioprothese), bestehend aus einer in an sich bekannter Weise, zum Beispiel mit Gluta- raldehyd, für Implantatzwecke vorbehaltenen xenogenen Aorten wurzel eines Spendersäugetiers, vorzugsweise des Schweins, wobei in der zylin- derförmigen Aortenwurzel in einem Abstand von etwa 120 Grad zu jedem der beiden originär vorhandenen Koronarabgänge eine Öffnung als zusätzlicher Koronarabgang an einer chirurgisch oder hämodynamisch geeigneten Stelle, im allgemeinen in dem Klappensinus ohne originären Ko- ronarabgang, platziert ist und wobei einer der beiden originären Koronarabgänge in chirurgisch geeigneter, an sich bekannter Weise verschlossen worden ist.
Im folgenden wird die Erfindung anhand von Abbildungen (Abb. 1-3 schematische Darstellung, Abb. 4-8 Fotoreproduktionen) näher erläutert. Es zeigen:
Abb. 1 Die schematische Draufsicht auf einen glutaraldehydfixierten porcinen Aortenklappenzylinder mit seinen beiden Konorarab- gängen 1 und 2 sowie mit den drei Segelklappen 4, 5 und 6.
Abb. 2 Die schematische Draufsicht auf den gegenüber Abb. 1 um 120 Grad gedrehten Aortenklappenzylinder, an dem erfindungsgemäß ein Koronarabgang, hier der rechtskoronare Abgang 2, verschlossen wurde und eine neue Koronarabgangsöffnung, hier die Öffnung 3, hergestellt worden ist. Wie in Abb. 1 kennzeichnen die Ziffern 4, 5 und 6 die drei Segelklappen.
Abb. 3 Die schematische Seitenansicht des erfindungsgemäßen Aortenklappenzylinders mit den Öffnungen 7a und 7b zur Aufnahme der Koronarostien, die den Koronarabgängen 1 und 3 der Abb. 2 entsprechen. Die Markierungslinie 8 kennzeichnet den Bereich der Aorten wurzel, in dem intraoperativ Modifizierungen vorgenommen werden können, ohne dass die Funktion der Herzklappenprothese beeinträchtigt wird. Ziffer 9 kennzeichnet eine Verstärkung mit Gewebe.
Abb.4 Die originäre procine, glutaraldehydbehandelte Aortenwurzel mit den Koronaabgängen 1 (linkskoronar) und 2 (rechtskoronar) sowie mit der Markierungslinie 8 (s. auch Abb. 3) und der Verstärkung mit Gewebe (s. auch Abb. 3).
Abb. 5 Die Draufsicht auf eine erfindungsgemäß modifizierte porcine Aortenwurzel mit den Koronarabgängen 1 (originär), 2 (originär, jetzt verschlossen) und 3 (neu). Die drei Segelklappen sind an den mit den Ziffern 4, 5 und 6 versehenen Stellen in der Aufnahme sichtbar.
Abb. 6 Die Seitenansicht einer erfindungsgemäß modifizierten porcinen Aortenwurzel mit dem verschlossenen rechtskoronaren Abgang 2 und dem neuen Abgang 3 sowie der Markierungslinie 8 und der Verstärkung mit Gewebe 9. Die Ziffer 10 bezeichnet den Bereich der Aortenwurzel unterhalb des rechtskoronaren Ab- gangs 2 (jetzt verschlossen), der originär normalerweise mit
Muskelgewebe behaftet ist, das üblicherweise entfernt wird, wobei dieser Bereich vorteilhafterweise sodann mit Gewebematerial verstärkt werden kann, wie hier geschehen.
Abb. 7 Die Abbildung entspricht der Seitenansicht von Abb. 6, wobei durch Drehung der erfindungsgemäß veränderten Aortenwurzel um 180 Grad sich der originäre Koronarabgang 1 im Vordergrund und der verschlossene Koronarabgang 2 an der linken Seite der Aufnahme befindet.
Abb. 8 In dieser Abbildung ist die erfindungsgemäße Aortenwurzel gegenüber der Abb. 7 um 90 Grad gedreht worden, so dass die Koronarabgänge 1 (alt) und 3 (neu) erkennbar sind, während der verschlossene Abgang 2 nicht sichtbar ist.

Claims

Patentansprüche :
1. Gerüstfreie (stentlose) Herzklappenbioprothese mit einer Aortenwurzel eines Spenders, bei der in der Aorten wurzel in einem stumpfen Winkel zu jedem der originär vorhandenen Koronarab- gänge ein zusätzlicher Koronarabgang angeordnet ist und einer der originären Koronarabgänge verschlossen ist.
2. Gerüstfreie (stentlose) Herzklappenbioprothese, bestehend aus einer in an sich bekannter Weise für Implantatzwecke vorbehandelten xenogenen Aortenwurzel eines Spender-Säugetiers, wobei in der zylinderförmigen Aorten wurzel in einem Abstand von etwa
120 Grad zu jedem der beiden originär vorhandenen Koronarabgänge eine Öffnung als zusätzlicher Koronarabgang an einer chirurgisch oder hämodynamisch geeigneten Stelle platziert ist, und wobei einer der beiden originären Koronarabgänge in an sich be- kannter Weise verschlossen worden ist.
3. Prothese nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Aortenwurzel eines Schweins (porcine Aortenwurzel) als Ausgangsmaterial dient.
4. Prothese nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass die als Ausgangsmaterial dienende Aortenwurzel mit Glutaraldehyd behandelt worden ist.
5. Prothese nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Öffnung als weiterer Koronarabgang in dem Klappensinus platziert ist, in dem sich originär kein Aortenabgang befand.
6. Prothese nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der rechtskoronare der beiden Abgänge verschlossen ist.
7. Prothese nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass auf der Aortenwurzel Markierungen aufge- bracht sind, die den Bereich der Aorten wurzel kennzeichnen, der intraoperativ modifiziert werden kann, ohne dass die Funktion der Prothese beeinträchtigt wird.
8. Prothese nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Bereich der Aortenwurzel unterhalb des rechtskoronaren Abgangs, der originär mit Muskelgewebe behaftet ist, das entfernt wird, durch Gewebematerial verstärkt ist.
PCT/DE2001/000466 2000-02-03 2001-02-05 Gerüstfreie (stentlose) herzklappenbioprothese WO2001056511A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU40459/01A AU4045901A (en) 2000-02-03 2001-02-05 Stentless heart valve bioprosthesis
DE10190290A DE10190290B4 (de) 2000-02-03 2001-02-05 Gerüstfreie (stentlose) Herzklappenbioprothese

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2000104775 DE10004775A1 (de) 2000-02-03 2000-02-03 Gerüstfreie Herzklappenbioprothese
DE10004775.0 2000-02-03

Publications (1)

Publication Number Publication Date
WO2001056511A1 true WO2001056511A1 (de) 2001-08-09

Family

ID=7629729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/000466 WO2001056511A1 (de) 2000-02-03 2001-02-05 Gerüstfreie (stentlose) herzklappenbioprothese

Country Status (3)

Country Link
AU (1) AU4045901A (de)
DE (1) DE10004775A1 (de)
WO (1) WO2001056511A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003990A1 (en) * 1990-09-07 1992-03-19 Baxter International Inc. Stentless heart valve and holder
WO1999033412A1 (en) * 1997-12-24 1999-07-08 Edwards Lifesciences Corporation Stentless bioprosthetic heart valve with coronary protuberances

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003990A1 (en) * 1990-09-07 1992-03-19 Baxter International Inc. Stentless heart valve and holder
WO1999033412A1 (en) * 1997-12-24 1999-07-08 Edwards Lifesciences Corporation Stentless bioprosthetic heart valve with coronary protuberances

Also Published As

Publication number Publication date
DE10004775A1 (de) 2001-08-23
AU4045901A (en) 2001-08-14

Similar Documents

Publication Publication Date Title
DE69834945T2 (de) Stützringlose bioprothetische herzklappe mit koronären erhöhungen
US6797000B2 (en) Tri-composite, full root, stentless valve
DE69635557T2 (de) Komplette mitralbioprothese für mitral- oder tricuspidal-herzklappenersatz
DE69635274T2 (de) Bioresorbierbarer stützring einer herzklappe
CA2017705C (en) Human heart valve replacement with porcine pulmonary valve
US6936067B2 (en) Prosthetic heart valve with slit stent
US8747461B2 (en) Cardiac valve prosthesis system
US4261342A (en) Process for installing mitral valves in their anatomical space by attaching cords to an artificial stent
US5163953A (en) Toroidal artificial heart valve stent
US5509930A (en) Stentless heart valve
DE69721550T2 (de) Herzklappenprothese mit nahtteil aus nicht-gleichförmiger radialer breite
DE202008009610U1 (de) Herzklappenprothesensystem
US9259312B2 (en) Pharmacological delivery implement for use with cardiac repair devices
US3548418A (en) Graft valve transplantation for human hearts and graft-support ring therefor
DE4234127C2 (de) Herzklappenprothese
AU734858B2 (en) System, apparatus and method for chemical fixation of stentless cardiac valvular bioprostheses
DE8327414U1 (de) Herzklappenprothese
US6524339B1 (en) Cryopreserved homografts and other stentless bioprosthetic heart valves having natural tissue sewing rings
EP0581233B1 (de) Heterologe Mitral- oder Tricuspidal-Bioherzklappenprothese
US20240050630A1 (en) Designed leaflet thickness via stretching techniques for improved valve durability
EP2522309A1 (de) Ventil für eine Herzklappenprothese
DE10190290B4 (de) Gerüstfreie (stentlose) Herzklappenbioprothese
WO2001056511A1 (de) Gerüstfreie (stentlose) herzklappenbioprothese
Yoganathan et al. Heart valve replacements: Problems and developments
CN115006071A (zh) 主动脉支架

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

REF Corresponds to

Ref document number: 10190290

Country of ref document: DE

Date of ref document: 20080313

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10190290

Country of ref document: DE