WO2001050571A1 - Alimentation continue sans dissipation - Google Patents

Alimentation continue sans dissipation Download PDF

Info

Publication number
WO2001050571A1
WO2001050571A1 PCT/CN2000/000730 CN0000730W WO0150571A1 WO 2001050571 A1 WO2001050571 A1 WO 2001050571A1 CN 0000730 W CN0000730 W CN 0000730W WO 0150571 A1 WO0150571 A1 WO 0150571A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
power
battery
negative electrode
Prior art date
Application number
PCT/CN2000/000730
Other languages
English (en)
French (fr)
Inventor
Baichao Yu
Original Assignee
Baichao Yu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baichao Yu filed Critical Baichao Yu
Priority to AU23423/01A priority Critical patent/AU2342301A/en
Priority to US10/169,240 priority patent/US6738276B2/en
Publication of WO2001050571A1 publication Critical patent/WO2001050571A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the invention relates to an uninterruptible power supply without power consumption.
  • full-power converter refers to a DC-AC or DC-DC converter whose power capacity is always greater than the output power. As for how large, it depends on the respective efficiency.
  • the power converter (ie, inverter) of the ordinary AC uninterruptible power supply uses complex circuits and technologies, and its cost, volume, weight, and power consumption account for more than 99% of the entire machine.
  • the stream voltage output by the uninterruptible power supply enters the computer and its peripherals, it immediately performs the opposite conversion and rectifies and filters the AC voltage into a DC voltage.
  • What the computer and its peripherals really need is the DC component of the AC voltage, instead of the harmonics contained in it. Inverting DC to AC is actually superfluous.
  • each harmonic contained in the AC voltage constitutes a real and potential threat to the computer and its peripherals, and is a major hidden danger to data security. Therefore, the optimal voltage for the computer and its peripherals should be DC voltage .
  • the slow change of voltage with time does not have any adverse impact on the stable operation of the computer and its peripherals.
  • the inverter-free uninterruptible power supply (ZL97241194.1) recently invented eliminates the inverter in ordinary AC uninterruptible power supplies and realizes DC power supply to computers and its peripherals, which is a great progress. Although it does not require a full power converter, it still needs to compensate the voltage to achieve a constant output DC voltage. If the fluctuation range of the input AC voltage is 20% of the output DC voltage, a power capacity of 20% of the full power is required. DC-DC power converter.
  • the mission of the uninterruptible power supply is only: when the mains power is interrupted and the DC voltage in the user equipment drops to 75% of the rated value (usually 20 milliseconds), switch to battery power in time to ensure that the output voltage is not interrupted; when the mains voltage exceeds In the normal range (too low or too high), keep the output voltage within the normal range. Therefore, keeping the output voltage within the normal range is a necessary feature of an uninterruptible power supply, while keeping the output voltage constant is an unnecessary feature.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings, while retaining the necessary features and discarding the redundant features, completely removing the power converters of ordinary uninterruptible power supplies, so that the efficiency is close to 100%, and the cost, volume and weight are reduced to the original 100.
  • the purpose of the present invention is achieved by the following technical scheme: a radio frequency filter, a rectifier filter, and a storage battery are provided.
  • the rectifier filter adopts a half-controlled bridge circuit, and a detection circuit, a control circuit, and a trigger circuit are connected after the rectifier filter.
  • the half-controlled rectifier bridge B1 is used as a full-wave rectifier. Its output DC voltage and the battery's DC voltage directly enter the user equipment without any power conversion.
  • the DC voltage of the rectifier filter is directly output through the diode D4, and the DC voltage of the battery is directly output through the thyristor SCR3. Both voltages are about 300V and are applied to the output at the same time.
  • a predetermined value for example, 176VAC
  • SCR3 is turned on, and the battery voltage is added to the output terminal within 40 microseconds (the conductive time of the digable silicon is not greater than 40 microseconds).
  • a predetermined value for example, 264VAC
  • SCR1 and SCR2 are turned off, the rectifier filter has no output, and the high voltage is cut off.
  • SCR3 is turned on, and the battery voltage is added to the output terminal. Therefore, no matter the input AC power failure, or too low or too high, the output voltage can be maintained at about 300V.
  • Cost, volume and weight are 1% of ordinary uninterruptible power supply with the same power, which saves 99% of resources. It is a truly environmentally friendly product
  • Figure 1 is a block diagram of a non-power uninterruptible power supply
  • Figure 2 is a main circuit diagram, including a radio frequency filter, a rectifier filter and a battery;
  • Figure 3 is a schematic diagram of the detection circuit
  • Figure 4 is a schematic diagram of the control circuit.
  • Figure 5 is a schematic diagram of the trigger circuit.
  • the input voltage Vi is filtered by the RF filter to obtain a clean AC voltage. After this voltage is rectified by the rectifier filter, it becomes a DC voltage V0 that changes slowly with time, while providing load current and battery charging. Current.
  • the detection circuit senses changes in the input voltage, output voltage, and battery voltage, and feeds information about these changes to the control circuit.
  • the control circuit decodes to generate status displays, audible alarms, and trigger signals, and the trigger signals drive the corresponding controllable Silicon, control the input voltage Vi and the battery voltage E1 to switch on and off in a timely manner.
  • the fuse Fl, the capacitors CI, C2, C3, C4, C5, and the inductors ID1, ID2, and ID3 constitute a radio frequency filter.
  • the diodes D1 and D2 are connected in series, the thyristors SCR1 and SCR2 are connected in series, the battery El, the resistor R1, and the diode D3 are connected in series, the electrolytic capacitor C12 and the diode D4 are connected in series, and then the above-mentioned four series branches are connected in parallel, of which Dl, D2, SCR1, SCR2
  • the positive pole is down and the positive poles of D3, D4, El, and C12 are up:
  • the positive and negative poles of SCR3 are connected to the negative pole of C12 and the negative pole of El, respectively;
  • the first two series branches form a half-controlled rectifier bridge B1, and the output voltage V0 of the whole machine passes through the resistor R3
  • the fuse F2 is taken from the two ends of C12; the resistor R4, the
  • the half-controlled rectifier B1 and another full-wave bridge rectifier filter circuit composed of a rectifier bridge B2, an electrolytic capacitor C13, and a resistor R2 are connected to the output end of the RF filter.
  • the detection voltage VT is taken from the output of B2.
  • the resistor R3 is connected to the negative terminal of the output circuit and provides a current sampling voltage A0.
  • Four sets of detection voltages are output from Figure 2: output voltage + V0, -V0; battery voltage + E0, -E0; output current + A0, one AO; input voltage + VT, _VT.
  • the detection circuit in Figure 3 consists of six detection channels with identical structures.
  • the positive electrode of the optocoupler OPT1 light-emitting diode is connected to + VT through the resistor R7, and the negative electrode is connected to a VT through the potentiometer W1.
  • the emitter of the OPT1 transistor is connected to the base of the transistor T1, and their emitters are respectively Grounded through resistors R6 and R5, and their collectors are connected to + 17V; pins 2 and 6 of the control circuit U1 are electrically connected Resistors R8 and R9 are connected to the emitter of the transistor T1, and grounded at the same time through potentiometers W2 and W3.
  • Pin 1 of U1 is pressed to ground, pin 5 is connected to ground through capacitor C6, and pins 4 and 8 are connected to + 5V.
  • Pin 3 generates the output signal VIH .
  • the second detection channel is connected to the input signal VT, which consists of OPT2, T2, U2, W4, W5, W6, R10, Rll, R12, R13, R14, C7;
  • the third detection channel is connected to the input signal V0, which is OPT3, T3 , U3, W7, W8, W9, R15, R16, R17, R18, R19, C8;
  • the fourth detection channel is connected to the input signal A0, which is OPT4, T4, U4, W10, W11, W12, R20, R21, R22, R23, R24, C9;
  • the fifth detection channel is connected to the input signal E0, and consists of OPT5, T5, U5, W13, W14, W15, R25, R26, 27, R28, R29, CIO;
  • the sixth detection channel The input signal E0 is composed of OPT6, T6, U6W16, W17, W18, R30, R3, R32, R33, R34, and Cl l.
  • the detection circuit generates six output signals from the four signals V0, E0, A0, and VT from the main circuit: input voltage is too high VIH, input voltage is too low VIL, output voltage is too high VOH, output current is too high AOH, battery voltage Low EL, battery voltage is too low ELL.
  • the model of OPT1 is 4N26. Its light-emitting diodes are connected to input signals through R7 and W1. Some signals are high voltage and some signals are low voltage. Take different R1 to step down and then adjust W1 to adapt to input signals of different voltage levels.
  • the current through the OPT1 LED is the optimal operating current.
  • Transistor T1 is an emitter follower composed of 2SC733, and R4, which provides a level of current amplification.
  • the type of control circuit U1 is NE555. Pins 2 and 6 are connected to the emitter of T1 at the same time.
  • R8 and R9 are isolation resistors.
  • the position of the adjusting arm of W2 corresponds to the set value of the input voltage "too high”
  • the position of the adjusting arm of W2 corresponds to the set value of the input voltage "not high”
  • adjusting W2 and W3 can change the output signal VIH corresponding to the input voltage VT "too high ", And” not high "turning point.
  • the control circuit in Figure 4 consists of three-input AND gates U10A, U10B, U10C, two-input NAND gates U11A, U11B, two-input NOR gate U12A, two-input AND gate U7A, U7B, U7C, U7D, U8A, U8B, U8C,
  • the NOT gate is composed of U9A, U9B, U9C, and U9D. It generates five trigger control signals TRIG1—TRIG5, and four control signals that light up the status indicator: the whole machine is OK, the battery is discharged EON, the output voltage is normal VOOK, and the input voltage is normal VIOK, a control signal that drives an audible alarm
  • ALLOK ! (! AOH # VOH # VIL #! VIH disorder UE1L);
  • the switching power supply SW1 provides the control voltage of the whole machine.
  • the positive terminal of the input terminal is connected to + E0 through resistor R35, the negative terminal is directly connected to _E0, and the electrolytic capacitor C15 is connected between the positive and negative terminals.
  • the output terminal has two voltages of + 5V and + 17V, and their common ground is GND.
  • the trigger circuit in Figure 5 consists of five groups of circuits with the same structure. Each group of circuits has a switching power supply to provide independent + 17V DC voltage. The positive and negative terminals of these switching power supply inputs are connected to + E0 and E0 respectively.
  • the first group of circuits triggers the SCR SCR1.
  • the negative electrode of the switching power supply SW6 is connected to the negative electrode K of the SCR1.
  • the positive electrode is connected to the collector of the optocoupler OPT11 triode and the collectors of the triodes T15 and T16.
  • the anode of the OPT11 light-emitting diode passes
  • the potentiometer W23 is grounded, and its positive electrode is connected to the control signal TRIG1 through a resistor R55.
  • the emitter of the OPT11 transistor and the emitters of T15 and T16 are simultaneously connected to the control electrode G of the SCR SCR 1 through resistors R54, R53 and R52, respectively.
  • the model of OPT11 is 4N26. Adjusting W23 can change the trigger current through SCR1. Triode T15,
  • the models of the T16 are 2SC733 and 2SC5250 respectively. They and R53 and R52 respectively form an emitter follower, which provides two-stage current amplification.
  • the second group of circuits consists of opto-coupled devices OPT10, transistors T13, T14, potentiometers W22, resistors R8, R49, R50, R51 and switching power supply SW5;
  • the third group of circuits consists of optocoupled devices OPT9, transistors Tll, T12, potentiometers W21, resistors R44, R45, R46, R47 and switching power supply SW4;
  • the fourth group of circuits consists of optocoupler OPT8, transistors T9, T10, potentiometer W20, resistors R40, R41, R42, R43 and switching power supply SW3;
  • the five groups of circuits are composed of optocoupler OPT7, transistors T7, T8, potentiometer W19, resistors R36, R37, R38, R39, and switching power supply SW2.
  • the trigger circuit generates five sets of trigger signals: SCR1 _G, SCR1 -K; SCR2—G, SCR2— K; SCR3 — G, SCR3-K; SCR4—G, SCR4—K; SCR5— G, SCR5—K; Triggering SCR SCR1 respectively
  • the working process of the present invention is as follows:
  • V0 is output.
  • VD charges the battery El through the resistors R1 and D3, and the voltage of E1 is connected to the output terminal through SCR3.
  • VIL 0.
  • TRIG1, TRIG2 are high, and TRIG3 is low, which is the same state as before the power failure.
  • the rectified DC voltage V0 is greater than the terminal voltage of battery E1, and SCR3 is turned off due to reverse bias.
  • the battery voltage is normal and the output terminal is short-circuited. There are two cases:
  • the positive pole of battery E1 is connected to the positive pole of half-controlled rectifier bridge B1.
  • the negative pole of E1 is connected to the negative pole of B1 through resistor R1 and diode D3.
  • the positive poles of Bl and El are directly connected to the output terminal.
  • the negative pole of B1 is connected to the output terminal through diode D4.
  • the negative electrode of E1 is connected to the output terminal through SCR SCR3.
  • the purpose of using a half-controlled rectifier bridge is to quickly cut off the high voltage when the utility voltage is too high. If an ordinary rectifier bridge is used, a thyristor must be added outside the rectifier bridge, which doubles the power loss.
  • SW1 in Figure 4 and SW2-SW6 in Figure 5 are all commercially available low-power switching power supplies. Their rated output power is within 10W. SW2-SW6 are slightly different depending on the power of the triggered thyristor. For small and medium-sized non-power-supply uninterruptible power supplies with an output power of less than 50KW, SW1-SW6 can be replaced by a switching power supply with 6 independent windings.
  • the present invention completely retains the necessary characteristics of an uninterruptible power supply, and its main electrical device is as simple as a few diodes and thyristors. With a rectifier with a rated current of 100A, it can produce an output power of 25KW. Its efficacy is equivalent to A 30KVA ordinary uninterruptible power supply.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Rectifiers (AREA)

Description

无功耗不间断电源 发明领域
本发明涉及一种无功耗不间断电源。
现有技术
无论是交流不间断电源还是直流不间断电源, 其中都有一个全功率变换器, 其 作用有两个: 一是进行功率变换, 二是保持电压恒定。 所谓 "全功率变换器", 是指 一个功率容量恒大于输出功率的 DC— AC或 DC— DC变换器, 至于大多少, 取决于 各自的效率。 为了能输出恒定的正弦波电压, 普通交流不间断电源的功率变换器(即 逆变器) 采用了复杂的电路和技术, 其成本、 体积, 重量、 功耗均占整机 99%以上。 实际上, 不间断电源输出的文流电压一进入计算机及其外设, 立刻就进行相反的变 换, 把交流电压整流滤波成直流电压。 计算机及其外设真正需要的是交流电压中的 直流分量, 而不是其中所包含的各次谐波, 把直流逆变成交流, 实际上是多此一举。 同时, 交流电压中所包含的各次谐波对计算机及其外设构成了现实的和潜在的威胁, 是数据安全的重大隐患, 因此, 供给计算机及其外设的最佳电压应该是直流电压。 另外, 电压随时间的缓慢变化对计算机及其外设的稳定运行并不产生任何不利影响, 这些设备的内部都采用开关稳压电源, 并不要求恒定的供电电压, 在市电正常波动 范围内, 都能稳定可靠地工作。
近期发明的无逆变器不间断电源 (ZL97241194.1 ) , 免除了普通交流不间断电源 中的逆变器, 实现了对计算机及其外设的直流供电, 这是一大进步。 它虽然不需要 全功率变换器, 但仍需要补偿电压, 以实现输出直流电压的恒定, 如果输入交流电 压的波动范围为输出直流电压的 20%, 则需要一个功率容量为全功率的 20%的 DC 一 DC功率变换器。
不间断电源的使命仅仅在于: 当市电中断、 用户设备中的直流电压下降到额定 值的 75 %之前 (一般为 20毫秒) 及时切换到蓄电池供电, 确保输出电压不中断; 当市电电压超出正常范围 (过低或过高) 时, 使输出电压保持在正常范围之内。 因 此, 使输出电压保持在正常范围之内是不间断电源的必要特征, 而使输出电压保持 恒定则是多余特征。
既然直流供电明显优于交流, 进行功率变换已是多此一举; 既然计算机及其外 设在市电正常波动范围内能稳定可靠地工作, 保持电压恒定就大可不必。 功率变换 器在制造过程中浪费了 99%的资源, 在运行过程中浪费了 99%的能源, 显然, 它在 不间断电源中是一个多余的部件。 我们的地球资源有限, 能源短缺, 用不着为了一 个并不必要的特征而继续多耗费 99%的资源和能源。
发明简述
本发明的目的旨在克服上述缺点, 在保留必要特征和摒弃多余特征的同时, 完 全兔除普通不间断电源的功率变换器, 使效率接近百分之百, 使成本、 体积、 重量 减小到原来的百分之一。
本发明的目的是以下述技术方案实现的: 设有射频滤波器, 整流滤波器、 蓄电 池, 整流滤波器采用半控桥式电路, 在整流滤波器之后接有检测电路、 控制电路和 触发电路。 半控整流桥 B1用作全波整流, 其输出直流电压和蓄电池的直流电压不经 任何功率变换, 直接进入用户设备。
整流滤波器的直流电压通过二极管 D4 直接输出, 蓄电池的直流电压通过可控 硅 SCR3直接输出, 两种电压都是 300V左右, 同时加到输出端。 当市电停电, 或输 入电压低于预定值 (例如 176VAC ) 时, SCR3 导通, 在 40微秒 (可挖硅的导通时 间不大于 40微秒) 之内, 蓄电池电压就加到输出端。 当输入电压高于预定值 (例如 264VAC )时, SCR1、 SCR2关断, 整流滤波器无输出, 高压被切断; 与此同时, SCR3 导通, 蓄电池电压加到输出端。 因此, 无论输入交流停电, 还是过低、 过高, 输出 电压都能保持在 300V左右。
无功耗不间断电源完全免除功率变换器, 具有如下优点:
1. 只有相当于一个半导体 PN结所产生的功耗, 整机效率接近百分之百, 是一 种真正意义上的节能产品;
2. 成本、 体积, 重量均为相同功率普通不间断电源的百分之一, 节约了百分之 九十九的资源, 是一种真正意义上的环保产品;
3. 没有频率不稳的问题, 没有谐波干扰的问题, 计算机及其外设运行更稳定, 处理、 传送数据更安全、 更可靠;
4. 因整机发热量小, 可采取自然风冷, 无须旋转散热装置, 可靠性大大提高; 又因减少了百分之九十九的零部件, 可确保整机在寿命期内无故障。
5. 设计简单, 制造容易, 便于推广。 附图说明
图 1是无功耗不间断电源框图;
图 2是主电路图, 包括射频滤波器、 整流滤波器和蓄电池;
图 3是检测电路原理图;
图 4是控制电路原理图。
图 5是触发电路原理图。
发明的详细解释
' 在图 1的框图中, 输入电压 Vi经射频滤波器滤后, 得到洁净的交流电压, 此电 压经整流滤波器后, 变成随时间缓慢变化的直流电压 V0, 同时提供负载电流和蓄电 池充电电流。 检测电路感知输入电压、 输出电压和蓄电池电压的种种变化, 并将有 关这些变化的信息馈送到控制电路, 控制电路通过译码, 产生状态显示、 音响告警 和触发信号, 触发信号驱动相应的可控硅, 控制输入电压 Vi、 蓄电池电压 E1 的适 时接入和断开。
在图 2的主电路图中, 保险 Fl、 电容 CI , C2、 C3、 C4、 C5、 电感 ID1、 ID2、 ID3组成射频滤波器。 二极管 Dl、 D2串联, 可控硅 SCR1、 SCR2串联, 蓄电池 El、 电阻 Rl、 二极管 D3 串联, 电解电容 C12、 二极管 D4 串联, 然后, 上述四个串联 支路并联, 其中 Dl、 D2、 SCR1、 SCR2正极向下, D3、 D4、 El、 C12正极向上: SCR3的正、 负极分别接 C12的负极和 El的负极; 前两个串联支路组成半控整流桥 B1,整机输出电压 V0通过电阻 R3、保险 F2取自 C12的两端;电阻 R4、可控硅 SCR4、 SCR5串联, SCR4、 SCR5的正极向上, R4的一端接 E1的正极, SCR5的负极接 E1 的负极; 电解电容 C14的正、 负极分别接 SCR4的负极和 C12的负极。 半控整流侨 B1和另一个由整流桥 B2、 电解电容 C13、 电阻 R2组成的全波桥式整流滤波电路一 同接在射频滤波器的输出端。 检测电压 VT取自 B2的输出端。 电阻 R3接在输出回 路负端, 提供电流采样电压 A0。 从图 2输出四组检测电压: 输出电压 +V0、 -V0; 蓄电池电压 +E0、 -E0; 输出电流 +A0、 一 AO; 输入电压 +VT、 _VT。
图 3 的检测电路由六个结构完全相同的检测通道组成。 在第一个检测通道中, 光电耦合器件 OPT1 发光二极管的正极通过电阻 R7接 +VT, 负极通过电位器 W1 接一 VT, OPT1三极管的发射极和三极管 T1的基极相连, 它们的发射极分别通过电 阻 R6、 R5接地, 它们的集电极都接 + 17V; 控制电路 U1的 2脚、 6脚分别通过电 阻 R8、 R9接三极管 Tl的发射极, 同时分别通过电位器 W2、 W3接地, U1的 1脚 按地, 5脚通过电容器 C6接地, 4脚、 8脚接 + 5V, 3脚产生输出信号 VIH。
第二个检测通道接输入信号 VT, 由 OPT2、 T2、 U2、 W4、 W5、 W6、 R10、 Rll、 R12、 R13、 R14、 C7 组成; 第三个检测通道接输入信号 V0, 由 OPT3、 T3、 U3、 W7、 W8、 W9、 R15、 R16、 R17、 R18、 R19、 C8 组成; 第四个检测通道接输入信 号 A0, 由 OPT4、 T4、 U4、 W10、 Wl l、 W12、 R20、 R21、 R22、 R23、 R24、 C9 组成; 第五个检测通道接输入信号 E0, 由 OPT5、 T5、 U5、 W13、 W14、 W15、 R25、 R26、 27、 R28、 R29、 CIO组成; 第六个检测通道接输入信号 E0, 由 OPT6、 Τ6、 U6W16、 W17、 W18、 R30、 R3 R32、 R33、 R34、 Cl l 组成。 检测电路从主电路 来的四个信号 V0、 E0、 A0、 VT产生出六个输出信号: 输入电压过高 VIH、 输入电 压过低 VIL, 输出电压过高 VOH, 输出电流过大 AOH, 蓄电池电压低 EL、 蓄电池 电压过低 ELL。
OPT1 的型号是 4N26, 其发光二极管通过 R7和 W1 接输入信号, 有的信号是 高压, 有的信号是低压, 取不同的 R1 降压, 再调节 W1 , 以适应不同电压等级的输 入信号, 使通过 OPT1 发光二极管的电流为最佳工作电流。 三极管 T1 是 2SC733 , 和 R4组成射极跟随器, 提供一级电流放大。 控制电路 U1的型号是 NE555, 2脚和 6脚同时接到 T1的发射极, R8、 R9是隔离电阻。 W2调节臂位置对应输入电压 "过 高" 的设定值, W3 的调节臂位置对应输入电压 "不高" 的设定值, 调节 W2、 W3 可改变输出信号 VIH对应于输入电压 VT "过高", 和"不高"的转折点。根据 NE555 输入、 输出逻辑关系可知: 当要检测输入信号 "过高" 时, 输出信号是低有效, 当 要检测输入信号 "过低" 时, 输出信号是高有效, 在这里 VIH、 V0H、 AOH是低有 效, 而 VIL、 EL、 ELL则是高有效。
图 4的控制电路由三输入与门 U10A、 U10B、 U10C,二输入与非门 U11A、 U11B、 二输入或非门 U12A、 二输入与门 U7A, U7B、 U7C、 U7D, U8A, U8B、 U8C、 非 门 U9A、 U9B, U9C、 U9D组成, 它产生五个触发控制信号 TRIG1— TRIG5 , 四个 点亮状态指示灯的控制信号: 整机正常 ALLOK, 蓄电池放电 EON、 输出电压正常 VOOK、 输入电压正常 VIOK, 一个推动音响告警的控制信号
SPK1 ; 产主上述十个信号的逻辑方程是- TRIGl=TRIG2=!(!VIH#!VOH#!AOH); TRIG3=TRIG4=E0N=!(!AOH#! VOH#!VIH& !VIUELL);
TRIG5=!(VIH&!VIL#AOH& ! ELL&VOH);
ALLOK=! (! AOH#VOH#VIL# ! VIH亂 UE1L);
VOOK=!(!AO議 VOH);
VIOK=!(!VIH#VIL);
SPK=!(!EL&!EI )。
书写上述逻辑方程采用了逻辑设计语言 Abel的符号约定。图 4的电路通过了 Abel 语言的三级模拟, 其中 U7A和 U7D是两个冗余门, 可减少 TRIG1— TRIG5到达被 触发可控硅栅极的时间差。
开关电源 SW1提供全机的控制电压, 其输入端正极通过电阻 R35接 +E0, 负极 直接和 _E0相连, 正负极之间接电解电容 C15。 输出端有 + 5V和 + 17V两组电压, 它们的公共地是 GND。
图 5 的触发电路由五组结构相同的电路组成, 每组电路都有一个开关电源提供 独立的 + 17V直流电压, 这些开关电源输入端的正、 负极分别接 +E0、 一 E0。
第一组电路触发可控硅 SCR1 , 开关电源 SW6的负极接可控硅 SCR1的负极 K, 其正极接光电耦合器件 OPT11三极管的集电极和三极管 T15、 T16的集电极; OPT11 发光二极管的负极通过电位器 W23接地, 其正极通过电阻 R55接控制信号 TRIG1 ,
OPT11三极管的发射极和 T15, T16的发射极分别通过电阻 R54、 R53和 R52同时 接到可控硅 SCR1的控制极 G。
OPT11的型号是 4N26, 调节 W23, 可改变通过 SCR1的触发电流。 三极管 T15、
T16 的型号分别是 2SC733、 2SC5250, 它们和 R53、 R52分别组成射极跟随器, 提 供两级电流放大。
第二组电路由光电耦合器件 OPT10、 三极管 Τ13、 Τ14、 电位器 W22、 电阻 R8、 R49, R50、 R51和开关电源 SW5组成; 第三组电路由光电耦合器件 OPT9、 三极管 Tll、 T12, 电位器 W21、 电阻 R44、 R45、 R46、 R47和开关电源 SW4组成; 第四 组电路由光电耦合器件 OPT8、三极管 Τ9、 Τ10、 电位器 W20、 电阻 R40、 R41、 R42、 R43和开关电源 SW3组成; 第五组电路由光电耦合器件 OPT7、 三极管 Τ7、 Τ8、 电 位器 W19、 电阻 R36、 R37、 R38、 R39和开关电源 SW2组成。
触发电路产生五组触发信号: SCR1 _G、 SCR1 -K; SCR2—G、 SCR2— K ; SCR3 — G、 SCR3-K; SCR4—G、 SCR4—K; SCR5— G、 SCR5— K;分别触发可控硅 SCR1 本发明的工作过程如下:
一、 图 2中组成半控整流桥 B1 的可控硅 SCR1、 SCR2在市电正常时总是导通 的, B1实际上在进行全波整流, 其输出的脉动电压 VD经 C12滤波后变成直流电压
V0输出, 同时 VD通过电阻 Rl、 D3向蓄电池 El充电, E1的电压通过 SCR3接到 输出端。
当一切正常时, 检测电路检测到 VIH= 1、 VIL = 0、 AOH= l、 ELL = 0, 这些 信号通过控制电路的逻辑门后, 得到 TRIG1、 TRIG2为高, TRIG3、 TRIG4、 TRIG5 为低, 于是 SCR1、 SCR2导通, SCR3、 SCR4、 SCR5截止, 输出端电压 V0来自 半控整流桥 Bl。
二、 当蓄电池电压正常、 输出端不短路时, 有下列三种情况-
1. 市电停电时, 检测电路检测到 VIH= 1、 VIL= 1、 AOH= l、 ELL=0, 这些 信号通过控制电路的逻辑门后, 得到 TRIG1、 TRIG2、 TRIG3为高。 SCR1、 SCR2 因无阳极电流而载止, 整流电压 VD等于零, SCR3在此期间一直处于导通状态, 蓄 电池 E1的电压加到输出端。
当市电恢复供电后, VIL = 0, 此信号通过控制电路的逻辑门后, 得到 TRIG1、 TRIG2 为高, TRIG3 为低, 与停电以前的状态相同。 在市电恢复的瞬间, 整流通波 后的直流电压 V0大于蓄电池 E1的端电压, SCR3因反向偏置而截止。
2. 市电电压过低时, 与市电停电的情况类似。 所不同时是, SCR1、 SCR2是 导通的, 整流电压 VD并不等于零。 由于 SCR3 已经导通, D4的正极这一边是 E1 的端电压, 高于加在 D4负极这一边的整流电压 VD, D4被反向偏置, 因此, 输出 端的电压来自 El。 随着市电电压的缓慢回升和蓄电池放电电压的缓谩下降, 加在 D4 正负两极的电压会变得非常接近, D4在一定的时刻变成正向偏置, 此时输出电流将 由 V0和 E0共同提供。 当市电恢复正常后, SCR因反向偏置而截止。
3. 市电电压过高时, 检测电路检测到 VIH = 0, VIL=0、 AOH= l、 ELL=0, 这些信号通过控制电路的逻辑门后, 得到 TRIG、 TRIG2为低、 TRIG3为高, SCR SCR2的控制极不再有触发信号, 当交流电压过零时自动截止, 于是高压被切断。 在 此期间 SCR3—直处于导通状态,蓄电池 E1的电压加到输出端。当市电正常后, VIH = 1, 此信号通过控制电路的逻辑门后, 得到 TRIG1、 TRIG2 为高, TRIG3 为低, 恢复到原来的状态。
三、 蓄电池电压正常、 输出端短路, 有下列二种情况:
1. 在交流电压正常时发生意外短路, 检测电路检测到 V1H= 1, VIL=0、 AOH =0、 ELL = 0, 这些信号通过控制电路的逻辑门后, 得到 TRIGl , TRIG2、 TRIG3 为低, 于是 SCR1、 SCR2, SCR3截止, 输出端电压 V0为零, 保护了用户设备的安 全。 当输出短路故障解除后, AOH- 1 , 恢复到原来的状态。
2. 在交流电压异常 (交流停电、 过低、 过高) 时输出端发生意外短路: 由前面 的分析可知, 在发生短路之前, 蓄电池电压已经通过 SCR3 接到输出端; 短路后, 检测电路检测到 NIH = 0或 VIL= 1、 AOH = 0、 ELL=0, 这些信号通过控制电路的 逻辑门后, 得到 TRIGl , TRIG2 TRIG3为低, TRIG5为高, 于是 SCR1、 SCR2截 止, SCR5导通。 由于 SCR5导通, 引起 SCR3截止, 输出端电压 V0被切断, 保护 了用户设备的安全。 当输出短路故障解除后, ΑΟΗ= 1, 恢复到原来的状态。
这里 SCR5导通引起 SCR3截止的过程与下述蓄电池电压过低时一样。
四、 蓄电池电压过低、 输出端不短路
在交流电压异常 (交流停电、 过低、 过高) 时, SCR3导通, 蓄电池电压接到输 出端。 由图 4中的逻辑电路可以看出, TRIG4是和 TRIG3同步变化的, 因而在 SCR3 导通的同时, SCR4 也导通, E1 的电压通过 R4、 SCR4、 C14、 SCR3 串联支路向 C14充电, 当流经 SCR4的充电电流小于其保持电流时, SCR4自动关断, 此时 C14 上充有与 E1大致相等的电压, 当市电停电时间过长, 蓄电池放电电压接近警戒电压 时, EL= 1, SPK1 发出音响告警, ALLOK状态指示灯灭; 当市电继停电, 蓄电池 放电电压低于警戒电压时, ELL= 1 , 此信号通过控制电路的逻辑门后, 使得 TRIG5 为高, SCR5导通, C14上的正电压通过 SCR5的正向直流电阻加到 SCR3的负极, 于是 SCR3因反向偏置而截止, 蓄电池停止放电, 避兔过放电而损坏。
五、 蓄电池的充放电
蓄电池 E1 的正极和半控整流桥 B1 的正极相连, E1 的负极通过电阻 Rl、 二极 管 D3与 B1的负极相连, Bl、 El的正极直接连到输出端, B1的负极通过二极管 D4 接到输出端, E1的负极通过可控硅 SCR3接到输出端。 在市电正常时, B1通过 D3 , R1对 E1充电。 当 E1刚刚放电完毕, 其端电压较低, 充电电流很大, R1是限流电 阻, 此时对 El的充电进入快充模式。 当 E1充电快充满时, 充电电流变小, R1上的 压降很小, 对充电回路无影响, 此时对 E1的充电进入浮充模式。 由于滤波电解电容 C12接在 D4的右边, 其左边没有接电解电容, 因此, 在 D4左、 右两边的电压波形 是不同的: 左边是频率为 100Hz、 幅度为 308V的单边脉动正弦波 VD, 右边是随时 间缓慢变化的直流电压 V0。 V0 随输入电压、 负载大小而波动, 但蓄电池的充电电 压 VD却始终保持基本不变,约等于交流电压的幅值。这主要是由于 D3、 D4和 SCR3 的隔离作用。 只要市电不停电, E1 永远只充电而不放电, 并且不随 V0 的变化而波 动, 使 E1—直浮充到 308V或更高, 并且一直保持下去。
六、 几点说明
1. 用半控整流桥的目的是为了在市电电压过高时迅速切断高压。 如果用普通整 流桥, 则必须在整流桥之外增加一个可控硅, 这一下子就增加了一倍的功率损耗。
2. 图 4中的 SW1和图 5中的 SW2— SW6都是市售小功率开关电源, 它们的额 定输出功率都在 10W 以内, SW2— SW6 视被触发可控硅的功率大小略有不同。 对 于整机输出功率在 50KW以内的中小型无功耗不间断电源, SW1— SW6可用一个具 有 6个独立绕组的开关电源取代。
3. 当市电超出正常范围时, SCR3导通, E1 的电压加到输出端, 此时 E1 完全 是自由放电, 除 SCR3上的 0.7V压降外, 没有其他功耗, 效率 =(308—0.7) / 308 = 99.8%。 经整流后的直流电压 VD也只通过一个二极管 D4就直接输出, 因此, 上述 效率的计算公式同样适用于市电正常时的情况。
4. 本发明完全保留了不间断电源的必要特征, 而其主电器简单到只有几只二极 管和可控硅, 用额定电流为 100A的整流器件就可以做出 25KW的输出功率, 其功 效相当于一台 30KVA的普通不间断电源。

Claims

权 利 要 求
1. 一种无功耗不间断电源, 设有射频滤波器、 整流滤波器、 蓄电池, 其特征是: 整流滤波器采用半控桥式电器, 在整流滤波器之后接有检测电路、 控制电路和触发 电路。
2.根据权利要求 1所述的电源,其特征是:二极管 D1、D2串联,可控硅 SCR1、 SCR2串联, 蓄电池 El、 电阻 Rl、 二极管 D3串联, 电解电容 C12、 二极管 D4串 联, 然后, 上述四个串联支路并联, 其中 Dl、 D2、 SCR1、 SCR2正极向下, D3、 D4、 El、 C12正极向上; SCR3的正、 负极分别接 C12的负极和 El的负极; 前两个 串朕支路组成半控整流桥 Bl, 整机输出电压 V0通过电阻 R3、 保险 F2取自 C12的 两端; 电阻 R4、 可控硅 SCR4、 SCR5串联, SCR4、 SCR5的正极向上, R4的一 端接 E1的正极, SCR5的负极接 E1的负极, 电解电容 C14的正、 负极分别接 SCR4 的负极和 C12的负极。
3. 根据权利要求 1所述的电源, 其特征是: 检测电路由结构相同的六个检测通 道组成, 在第一个检测通道中, 光电耦合器件 OPT1发光二极管的正极通过电阻 R7 接 +VT, 负极通过电位器 W1 接一 VT, OPT1 三极管的发射极和三极管 T1 的基极 相连, 它们的发射极分别通过电阻 R6、 R5接地, 集电极都接 + 17V; 控制电路 U1 的 2脚、 6脚分别通过电阻 R8、 R9接三极管 T1的发射极, 同时分别通过电位器 W2, W3接地, U1的 1脚连地, 5脚通过电容器 C6接地, 4脚、 8脚接 +5V, 3脚产生 输出信号 VIH。
4.根据权利要求 1所述的电源,其特征是:控制电路由三输入与门 U10A、U10B、 U10C、 二输入与非门 U11A、 U11B、 二输入或非门 U12A、 二输入与门 U7A、 U7B、 U7C、 U7D、 U8A、 U8B, U8C, 非门 U9A、 U9B、 U9C、 U9D 组成, 它产生五个 触发控制信号 TRIG1— TRIG5, 四个点亮状态指示灯的控制信号: 整机正常 ALLOK、 蓄电池放电 EON、 输出电压正常 VOOK, 输入电压正常 VIOK, 和一个推动音响告 警的控制信号 SPK1 ; 产生上述十个信号的逻辑方程是:
TRIGl=TRIG2=!(!VIH#!VOH#!AOH);
TRIG3=TRIG4=E0N=!(!AOH#! VOH#!VIH& !VIUELL);
TRIG5=!(VIH&!VIUAOH& ! EIX&VOH); ALLOK=!(!AOH#VOH#VIL#!VIH#ELL#EL);
VOOK=!(!AOH#!V0H);
VIOK=!(!VIH#VIL);
SPK=!(!EL&!EI )。
5. 根据权利要求 1所述的电源, 其特征是: 触发电路由五组结构相同的电路组 成, 第一组触发可控硅 SCR1 , 开关电源 SW6为本组电路提供独立的 + 17V电压, 负极接可控硅 SCR1 的负极 K, 正极接光电耦合器件 0PP11 三极管的集电极和三极 管 T15、 T16的集电极; OPT11发光二极管的负极通过电位器 W23接地, 正极通过 电阻 R55连控制信号 TRIGl , OPT11三极管的发射极和 T15、 T16的发射极分别通 过电阻 R54、 R53和 R52同时接到可控硅 SCR1的控制极 G。
6. 根据权利要求 1所述的电源, 其特征是: 半控整流桥 B1用作全波整流, 其 输出直流电压和蓄电池的直流电压不经任何功率变换, 直接进入用户设备。
PCT/CN2000/000730 2000-01-03 2000-12-26 Alimentation continue sans dissipation WO2001050571A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU23423/01A AU2342301A (en) 2000-01-03 2000-12-26 Uninterrupted power supply without power loss
US10/169,240 US6738276B2 (en) 2000-01-03 2000-12-26 Uninterrupted power supply without power loss

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN00114301.8 2000-01-03
CN00114301A CN1110116C (zh) 2000-01-03 2000-01-03 无功耗不间断电源

Publications (1)

Publication Number Publication Date
WO2001050571A1 true WO2001050571A1 (fr) 2001-07-12

Family

ID=4584003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2000/000730 WO2001050571A1 (fr) 2000-01-03 2000-12-26 Alimentation continue sans dissipation

Country Status (4)

Country Link
US (1) US6738276B2 (zh)
CN (1) CN1110116C (zh)
AU (1) AU2342301A (zh)
WO (1) WO2001050571A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359792C (zh) * 2004-03-05 2008-01-02 力博特公司 检测不间断电源的整流器零线与电网零线之间的断线故障的方法
GB2517907B (en) * 2013-08-09 2018-04-11 Drayson Tech Europe Ltd RF Energy Harvester
US10374455B2 (en) 2016-04-29 2019-08-06 Hewlett Packard Enterprise Development Lp Uninterruptible power supply including battery modules connected directly to direct current-alternating current inverter
CN109038773B (zh) * 2018-09-06 2023-11-17 濮阳市立圆汽车电器有限公司 一种铅酸电池充电器
DE102021110433A1 (de) 2020-06-24 2021-12-30 Samsung Electronics Co., Ltd. Chipkarte

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07170677A (ja) * 1993-12-14 1995-07-04 Fuji Electric Co Ltd 無停電電源装置の蓄電池充電回路
CN2322302Y (zh) * 1997-08-20 1999-06-02 郁百超 无逆变器不间断电源

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4973896A (en) * 1987-10-21 1990-11-27 Toyo Densan Company, Ltd. Automobile generator apparatus
US5982645A (en) * 1992-08-25 1999-11-09 Square D Company Power conversion and distribution system
US5684686A (en) * 1994-01-12 1997-11-04 Deltec Electronics Corporation Boost-input backed-up uninterruptible power supply
US5751564A (en) * 1994-08-10 1998-05-12 Dien; Ghing-Hsin Dual/multiple voltage level input switching power supply

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07170677A (ja) * 1993-12-14 1995-07-04 Fuji Electric Co Ltd 無停電電源装置の蓄電池充電回路
CN2322302Y (zh) * 1997-08-20 1999-06-02 郁百超 无逆变器不间断电源

Also Published As

Publication number Publication date
CN1271986A (zh) 2000-11-01
US20030002308A1 (en) 2003-01-02
AU2342301A (en) 2001-07-16
US6738276B2 (en) 2004-05-18
CN1110116C (zh) 2003-05-28

Similar Documents

Publication Publication Date Title
CN104578383B (zh) 输入冗余电路
CN201146397Y (zh) 智能型快速应急电源系统
CN206595908U (zh) 一种反激式开关电源
CN206807115U (zh) 一种基于超级电容储能的数据中心供电系统
CN205160194U (zh) 具备主备电检测电路的消防主机综合供电系统
WO2001050571A1 (fr) Alimentation continue sans dissipation
CN101860070B (zh) 机车空调高频软开关不间断电源及其实现方法
CN104868708A (zh) 一种变频器上电缓冲及母线放电电路
CN208028656U (zh) 基于太阳能供电的不间断辅助电源控制装置
CN201797325U (zh) 多路输入并联回馈式节能电子负载
CN208094258U (zh) 一种用于修正波逆变器输出能量回馈电路
CN103259412B (zh) 一种直流升压变频压缩机使用的直流升压电源
CN105375615A (zh) 具备主备电检测电路的消防主机综合供电系统
CN102611088B (zh) 上电限流电路及其应用电路
CN115940382A (zh) 一种备用电源充电装置及车载lcd播放控制器备用电源系统
TW591844B (en) Apparatus for providing battery charging circuit in a UPS system
CN202749900U (zh) 一种用于紧急电力供给电源的单相逆变器
CN201682316U (zh) 机车空调高频软开关不间断电源
CN206004399U (zh) 一种dc‑dc不间断稳压电源电路
Bubovich Use of Multilevel Converters in Light Vehicles of Orthopedic Rehabilitation
CN206250980U (zh) 电流型推挽功率变换电路
CN204597803U (zh) 具有新型保护电路的逆变器
CN204669215U (zh) 一种变频器上电缓冲及母线放电电路
CN2501234Y (zh) 无功耗不间断电源
CN204597602U (zh) 污水处理设备动力系统

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10169240

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP