WO2001049985A1 - VERFAHREN ZUM BETRIEB EINES NOx-SPEICHERKATALYSATORS BEI BRENNKRAFTMASCHINEN - Google Patents

VERFAHREN ZUM BETRIEB EINES NOx-SPEICHERKATALYSATORS BEI BRENNKRAFTMASCHINEN Download PDF

Info

Publication number
WO2001049985A1
WO2001049985A1 PCT/DE2000/004635 DE0004635W WO0149985A1 WO 2001049985 A1 WO2001049985 A1 WO 2001049985A1 DE 0004635 W DE0004635 W DE 0004635W WO 0149985 A1 WO0149985 A1 WO 0149985A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
nox
oxygen
phase
regeneration
Prior art date
Application number
PCT/DE2000/004635
Other languages
English (en)
French (fr)
Inventor
Wilhelm Polach
Bernd Hupfeld
Thomas Wahl
Frank Brenner
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to KR1020017010988A priority Critical patent/KR20010102422A/ko
Priority to DE50004565T priority patent/DE50004565D1/de
Priority to JP2001549897A priority patent/JP2003519317A/ja
Priority to EP00991568A priority patent/EP1163431B1/de
Publication of WO2001049985A1 publication Critical patent/WO2001049985A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel

Definitions

  • the invention relates to the operation of a NOx storage catalytic converter in internal combustion engines which are operated with a lean fuel / air mixture.
  • internal combustion engines are lean-burn gasoline engines or diesel engines.
  • NOx storage catalytic converters are used for exhaust gas aftertreatment, which store the nitrogen oxides emitted during lean engine operation in an initial operating phase, the length of which is of the order of minutes. In a second, shorter operating phase, the length of which is in the range of seconds, the storage is emptied by supplying exhaust gas with reducing agent to the storage catalytic converter.
  • the storage capacity of the NOx catalytic converter depends on the load and is continuously decreasing. If the first phase takes too long, undesirable nitrogen oxide emissions occur. A second phase that is too long results in increased HC and CO emissions. There is therefore the problem of making the change between the two phases in such a way that neither increased NOx nor HC and CO emissions occur.
  • Degree of filling is reached, the system switches from the first phase to the second phase.
  • the degree of filling, which decreases in the second phase, is also modeled or the second phase is ended when an exhaust gas probe behind the storage catalytic converter signals complete regeneration.
  • Modeling in one or both phases requires a very high level of computational effort and therefore places high demands on the motor control.
  • the storage and conversion behavior of the catalyst is changed by aging processes.
  • the regeneration is preferably achieved by injecting fuel into the exhaust line before the catalytic converter.
  • the transition from lean to rich and the entire regeneration phase are particularly critical, since the varying flow conditions make it difficult to meter the appropriate dosage for generating a homogeneous reductant distribution in the exhaust gas upstream of the storage catalytic converter. This appears under the changing flow conditions in the exhaust gas The transition phase cannot be modeled with reasonable effort.
  • the invention relates to the problem of controlling the change between the two phases.
  • An advantage of the invention lies in the substantially more uniform conditions of the regeneration phase.
  • Another advantage is a significantly reduced computing effort when controlling the loading and regeneration of the catalyst.
  • Another advantage is the simple possibility of checking the exhaust gas treatment system and of adapting the control strategy to a catalyst behavior caused, for example, by aging.
  • Figure 1 shows the technical environment in which the invention unfolds its effect.
  • Fig. 2 shows temporal profiles of different signals.
  • Fig3 shows a modified
  • FIG. 1 shows an internal combustion engine 1 with a NOx storage catalytic converter 2, exhaust gas probes 3 and 4, a control device 5, a fuel metering means 6, and various sensors 7, 8, 9 for load L and speed n and, if appropriate, further operating parameters of the Internal combustion engine such as temperatures, throttle valve position etc.
  • the control unit forms, among other things, from the named and possibly further input signals. Fuel metering signals with which the fuel metering means 6 is controlled.
  • Fuel metering means 6 can be used for a so-called intake manifold injection as well as for a
  • the mixture composition can be varied by changing the injection pulse widths with which the fuel metering device is controlled.
  • the core of the method according to the invention primarily relates to the control unit 5 and the exhaust gas probe 4 arranged behind the catalytic converter.
  • Fig. 2 shows the change in Fig. 2a
  • the rear exhaust gas probe can be used, for example, as an oxygen sensor, as a hydrocarbon sensor (HC- Sensor, as a carbon dioxide sensor (CO sensor) or as a nitrogen oxide sensor
  • HC- Sensor as a carbon dioxide sensor
  • CO sensor carbon dioxide sensor
  • the signal from an oxygen sensor is shown, which delivers a high signal level in the case of lack of oxygen and a low signal level in the case of excess oxygen.
  • the low signal level of the rear probe indicates that there is also an excess of air or oxygen behind the catalytic converter.
  • the mixture composition is changed from lambda greater than one to lambda less than one, that is to say a lack of oxygen.
  • the rear sensor 4 reacts to the lack of oxygen by increasing its signal from the low to the high level.
  • the change in the mixture composition shown causes the internal combustion engine to emit hydrocarbons and carbon monoxide as reducing agents.
  • the reducing agent can also be obtained from a storage tank 11 via a
  • Control unit 5 controlled valve 12 are supplied to the exhaust gas upstream of the catalytic converter. The engine can then be operated continuously with a lean mixture.
  • FIG. 3 A corresponding modification of the structure of FIG. 1 is shown in FIG. 3.
  • the regeneration phase is not mathematically modeled and is therefore kept variable. Instead, each becomes
  • Regeneration introduced a predetermined, constant mass of fuel in the exhaust system in front of the catalytic converter.
  • the duration of the storage phase is then adapted to the regeneration phase. Mismatches are caused by an exhaust gas probe located behind the catalytic converter determined and reduced by influencing the length of the injection phase.
  • the storage phase is shortened if an exhaust gas probe does not signal a sufficient change in the concentration of an exhaust gas component towards the end of the regeneration phase. If, on the other hand, such a change occurs too early, the injection phase is extended.
  • the exhaust gas treatment system is checked as follows: If the injection times that occur when the method according to the invention is carried out deviate too much from plausible predefined values, there is a malfunction.
  • Step 1 represents lean engine operation
  • the NOx emitted by the engine in this operating phase is absorbed by the storage catalytic converter.
  • the degree of filling of the storage catalytic converter is calculated in step 2 from operating parameters of the engine, as is known, for example, from DE 1 97 398 48.
  • control unit triggers a regeneration of the storage catalytic converter. This is shown in steps 3 and 4.
  • the predetermined mass of reducing agent can be metered from the tank 11 via the controllable valve 12 into the exhaust gas upstream of the storage catalytic converter.
  • the predetermined mass of reducing agent in the exhaust gas is generated by a rich engine operation. For example, all fuel metering signals intended for normal engine operation with a lean mixture can be increased in a predetermined manner until the sum of the increases in the fuel metering signals corresponds to the desired fuel mass predetermined for the regeneration.
  • step 7 extends the response Injection phase by increasing the threshold value SW-NOx.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Vorgestellt wird ein Verfahren zur Regeneration eines NOx-Speichers im Abgas von Brennkraftmaschinen, der bei Sauerstoffüberschuß im Abgas NOx aus dem Abgas aufnimmt und der sich bei Sauerstoffmangel im Abgas durch Abgabe von Stickstoff regeneriert, bei welchem Verfahren abwechselnd zwischen ersten Phasen mit Sauerstoffüberschuß und zweiten Phasen mit Sauerstoffmangel im Abgas umgesteuert wird, und bei dem der Sauerstoffmangel im Abgas zur Regeneration des Speicherkatalysators durch eine bestimmte, konstant zu haltende Masse an Kraftstoffüberschuß im Abgas vor dem NOx-Speicher erzeugt wird.

Description

Verfahren zum Betrieb eines NOx-Speicherkatalysators bei Brennkraftmaschinen
Stand der Technik
Die Erfindung betrifft den Betrieb eines NOx- Speicherkatalysators bei Brennkraftmaschinen, die mit einem mageren Kraftstoff/Luft-Gemisch betrieben werden. Beispiele solcher Brennkraftmaschinen sind mager betriebene Ottomotoren oder Dieselmotoren.
Bei der Verbrennung magerer Kraftstoff/Luft-Gemische kommen zur Abgasnachbehandlung NOx-Speicherkatalysatoren zum Einsatz, welche die im mageren Motorbetrieb emittierten Stickoxide in einer ersten Betriebsphase speichern, deren Lange in der Größenordnung von Minuten liegt. In einer zweiten kürzeren Betriebsphase, deren Lange im Sekundenbereich liegt, erfolgt eine Entleerung des Speichers durch Zufuhr von Abgas mit Reduktionsmittel zu dem Speicherkatalysator .
Die Speicherfähigkeit des NOx-Katalysators ist beladungsabhangig und nimmt kontinuierlich ab. Dauert die erste Phase zu lange, kommt es zu unerw nschten Stickoxidemissionen. Eine zu lang andauernde zweite Phase hat erhöhte HC- und CO-Emissionen zur Folge. Es besteht daher das Problem, den Wechsel zwischen beiden Phasen so vorzunehmen, daß weder erhöhte NOx- noch HC- und CO-Emissionen auftreten.
In diesem Zusammenhang ist es aus der DE 197 398 48 bekannt, den jeweiligen Grad der Füllung des NOx-Speichers mit NOx zu modellieren. Dabei wird der NOx-Eintrag in den Speicher aus Betriebsarten des Motors wie Ansaugluftmassenstrom und Gemischzusammensetzung bestimmt. Ist ein bestimmter
Füllungsgrad erreicht, wird von der ersten Phase in die zweite Phase gewechselt. Der in der zweiten Phase abnehmende Fullungsgrad wird ebenfalls modelliert oder es erfolgt eine Beendigung der zweiten Phase dann, wenn eine Abgassonde hinter dem Speicherkatalysator eine vollständige Regenerierung signalisiert.
Die Modellierung in einer oder beiden Phasen erfordert einen sehr hohen rechnerischen Aufwand und stellt damit hohe Anforderungen an die Motorsteuerung. Darüber hinaus wird der Katalysator durch Alterungsprozesse in seinem Speicher- und Konvertierungsverhalten verändert .
Bei manchen Fahrzeuganwendungen, speziell bei Dieselfahrzeugen mit NOx-Katalysator wird die Regenerierung vorzugsweise durch das Einspritzen von Kraftstoff in den Abgasstrang vor den Katalysator erreicht. In dieser Variante ist der Übergang von mager nach fett und die gesamte Regenerierphase besonders kritisch, da die variierenden Stromungsverhaltnisse die passende Dosierung zur Erzeugung einer homogenen Reduktionsmittelverteilung im Abgas vor dem Speicherkatalysator erschweren. Unter den wechselnden Stromungsverhaltnissen im Abgas erscheint diese Ubergangsphase mit sinnvollem Aufwand nicht modellierbar zu sein.
Vor diesem Hintergrund betrifft die Erfindung das Problem, den Wechsel zwischen beiden Phasen zu steuern.
Dieses Problem wird durch die Merkmals ombination des Anspruchs gelost.
Vorteile
Ein Vorteil der Erfindung liegt in den wesentlich einheitlicheren Bedingungen der Regenerierphase.
Als weiterer Vorteil ergibt sich ein deutlich verringerter Rechenaufwand bei der Steuerung der Beladung und Regenerierung des Katalysators..
Als weiterer Vorteil ergibt sich eine einfache Möglichkeit zur Überprüfung des AbgasbehandlungsSystems sowie in der verfahrensbedingten Anpassung der Steuerstrategie an ein bspw. durch Alterung verursachtes Katalysatorverhalten.
Im folgenden wird ein Ausfuhrungsbeispiel der Erfindung näher erläutert, wobei die DE 1 97 298 48 zur Offenbarung des technischen Umfeldes mit einbezogen sein soll.
Figur 1 zeigt das technische Umfeld, in dem die Erfindung ihre Wirkung entfaltet. Fig. 2 stellt zeitliche Verläufe verschiedener Signale dar. Fig3 zeigt eine abgewandelte
Struktur zur Realisierung der Erfindung und Fig. 4 zeigt ein Ausführungsbeispiel in Form eines Flußdiagramms. Im einzelnen zeigt Figur 1 einen Verbrennungsmotor 1 mit einem NOx-Speicher-Katalysator 2, Abgassonden 3 und 4, einem Steuergerät 5, einem Kraftstoffzumeßmittel 6, sowie verschiedenen Sensoren 7, 8, 9 für Last L und Drehzahl n sowie ggf. weitere Betriebsparameter des Verbrennungsmotors wie Temperaturen, Drosselklappenstellung etc..
Aus den genannten und ggf. weiteren Eingangssignalen bildet das Steuergerät u.a. Kraftstoffzumeßsignale, mit denen das Kraftstoffzumeßmittel 6 angesteuert wird. Das
Kraftstoffzumeßmittel 6 kann sowohl für eine sogenannte Saugrohreinspritzung als auch für eine
Benzindirekteinspritzung in die Brennräume la der einzelnen Zylinder ausgestaltet sein. Die Variation der Gemischzusammensetzung kann über eine Veränderung der Einspritzimpulsbreiten erfolgen, mit denen das Kraftstoffzumeßmittel angesteuert wird. Der Kern des erfindungsgemäßen Verfahrens betrifft in diesem Umfeld in erster Linie das Steuergerät 5 und die hinter dem Katalysator angeordnete Abgassonde 4.
Fig. 2 stellt in Fig. 2a den Wechsel in der
Gemischzusammensetzung Lambda vor dem Katalysator (Linie 2a) in Verbindung mit dem Signal US der hinteren Abgassonde 4 (Linie 2b) und dem NOx-Konzentration (Linie 2c) hinter dem Katalysator dar. Die hintere Abgassonde kann beispielsweise als Sauerstoffmeßfühler, als Kohlenwasserstoffsensor (HC- Sensor, als Kohlendioxidsensor (CO-Sensor) oder als Stickoxidsensor realisiert sein. Dargestellt ist das Signal eines Sauerstoffsensors, der bei Sauerstoffmangel einen hohen Signalpegel und bei Sauerstoffüberschuß einen niedrigen Signalpegel liefert. In einer ersten Phase Phl von t = 0 bis t = 60 wird der Motor mit Lambda größer als Eins, d.h. mit Luftüberschuß betrieben. Der niedrige Signalpegel der hinteren Sonde (Linie 2b) zeigt an, daß auch hinter dem Katalysator Luft- bzw. Sauerstoffüberschuß herrscht. Zum Zeitpunkt t = 60 wird die Gemischzusammensetzung von Lambda größer Eins auf Lambda kleiner Eins, also Sauerstoffmangel umgesteuert. Kurz danach, etwa zum Zeitpunkt t = 62 reagiert der hintere Sensor 4 auf den Sauerstoffmangel mit einem Anstieg seines Signals vom niedrigen auf den hohen Pegel.
Wie aus Fig. 2 ersichtlich ist, kann der Zeitpunkt t = 62 bspw. durch eine Schwellwertüberschreitung des Signals der hinteren Sonde bestimmt werden.
Die dargestellte Änderung der Gemischzusammensetzung führt dazu, daß der Verbrennungsmotor Kohlenwasserstoffe und Kohlenmonoxid als Reduktionsmittel emittiert. Alternativ zur Emission von reduzierend wirkenden Abgaskomponenten kann das Reduktionsmittel auch aus einem Vorratstank 11 über ein vom
Steuergerät 5 angesteuertes Ventil 12 dem Abgas vor dem Katalysator zugeführt werden. Der Motor kann dann durchgehend mit magerem Gemisch betrieben werden.
Eine entsprechende Abwandlung der Struktur der Fig. 1 ist in Fig. 3 dargestellt.
Bei dem erfindungsgemäßen Verfahren wird die Regenerierphase nicht rechnerisch modelliert und damit variabel gehalten. Statt dessen wird jeweils zur
Regenerierung eine vorbestimmte, konstante Masse an Kraftstoff in den Abgasstrang vor den Katalysator eingebracht. Die Einspeicherphase wird dann in ihrer Dauer an die Regenerierphase angepaßt. Fehlanpassungen werden durch eine hinter dem Katalysator angeordnete Abgassonde festgestellt und durch Beeinflussung der Lange der Einspeicherphase verringert. Dazu wird die Einspeicherphase verkürzt, wenn eine Abgassonde gegen Ende der Regenerierphase keine ausreichende Änderung der Konzentration einer Abgaskomponente signalisiert. Tritt eine solche Änderung dagegen zu früh auf, wird die Einspeicherphase verlängert.
Der Vorteil der wesentlich einheitlicheren Bedingungen der Regenerierphase ergibt sich dann dadurch, daß nur noch der Massenstrom des einzuspritzenden Kraftstoffes an den Abgasmassenstrom angepaßt werden muß, um ein fettes Abgas mit einem bestimmten gewünschten Lambdawert zu generieren.
Der Vorteil eines deutlich verringerten Rechenaufwandes ergibt sich durch den möglichen Verzicht auf eine Modellierung einer zur vollständigen Regenerierung des NOx- Speichers notwendigen Gesamtkraftstoffmasse.
Der weitere Vorteil einer einfachen Möglichkeit zur
Überprüfung des Abgasbehandlungssystems ergibt sich wie folgt: Weichen die Einspeicherzeiten, die sich bei der Durchfuhrung des erfindungsgemaßen Verfahrens einstellen, zu sehr von plausiblen vorgegebenen Werten ab, so liegt eine Fehlfunktion vor.
Der weitere Vorteil der verfahrensbedingten Anpassung der Steuerstrategie an ein bspw. durch Alterung verursachtes Katalysatorverhalten ergibt sich wie folgt: Übersteigt die in der Einspeicherphase in den NOx-Speicher einzuspeichernde Menge dessen alterungsbedingt abnehmende Speicherfahgkeit , wird dies durch eine Reaktion der Abgassonde in der nachfolgenden Regenerierphase bemerkt und bei der Steuerstrategie berücksichtigt. Ein Ausfuhrungsbeispiel eines erfindungsgemaßen Verfahrens ist in der Fig. 4 dargestellt.
Schritt 1 repräsentiert einen Motorbetrieb mit magerem
Gemisch. Das in dieser Betriebsphase vom Motor emittierte NOx wird vom Speicherkatalysator aufgenommen.
Der Grad der Füllung des Speicherkatalysators wird im Schritt 2 aus Betriebsparametern des Motors berechnet, wie es beispielsweise aus der DE 1 97 398 48 bekannt ist.
Erreicht der Grad der Füllung einen Schwellenwert SW-NOx, lost das Steuergerat eine Regeneration des Speicherkatalysators aus. Dies ist in den Schritten 3 und 4 dargestellt .
Erfindungswesentlich ist, das dies mit einer vorbestimmten Reduktionsmittelmasse geschieht. Die vorbestimmte Reduktionsmittelmasse kann im Ausfuhrungsbeispiel der Fig. 3 aus dem Tank 11 über das steuerbare Ventil 12 in das Abgas vor den Speicherkatalysator dosiert werden. Im Ausfuhrungsbeispiel der Fig. 2 wird die vorbestimmte Reduktionsmittelmasse im Abgas durch einen fetten Motorbetrieb erzeugt. Beispielsweise können alle für den normalen Motorbetrieb mit magerem Gemisch bestimmten Kraftstoffzumeßsignale in vorbestimmter Weise solange vergrößert werden, bis die Summe der Vergrößerungen der Kraftstoffzumeßsignale der gew nschten, für die Regeneration vorbestimmten Kraftstoffmasse entspricht.
Wenn diese Kraftstoff oder Reduktionsmittelmasse zudosiert worden ist, erfolgt wieder Magerbetrieb. Gegen Ende der Regenerationsphase wird die Reaktion der der hinteren Sonde 4 auf die Regeneration ausgewertet. Wenn die hintere Sonde ein Sauerstoffmeßfühler ist, kann ihr Signal US mit einem Schwellenwert verglichen werden (Schritt 5) .
Wenn das Signal die Schwelle nicht erreicht, bedeutet dies, das am Ende der Regeneration noch kein Sauerstoffmangel hinter dem Katalysator entstanden ist. Die Reduktionsmittelmenge hat dann nicht zur vollständigen Regenerierung des NOx-Speicherkatalysators ausgereicht. Als Folge wird - anders als beim Stand der Technik - nicht die Reduktionsmittelmenge erhöht, sondern die Einspeicherphase verkürzt. Das dargestellte Beispiel erreicht die Verkürzung durch eine Verringerung des Schwellenwertes SW-NOx im Schritt 6. Fällt die Reaktion der hinteren Sonde dagegen zu stark aus, was beispielsweise durch eine Überschreitung des Schwellenwertes im Schritt 5 festgestellt werden kann, erfolgt im Schritt 7 eine Verlängerung der Einspeicherphase durch eine Vergrößerung des Schwellenwertes SW-NOx.

Claims

Anspruch
Verfahren zur Regeneration eines NOx-Speichers im Abgas von Brennkraftmaschinen, der bei Sauerstoffuberschuß im Abgas
NOx aus dem Abgas aufnimmt und der sich bei Sauerstoffmangel im Abgas durch Abgabe von Stickstoff regeneriert, bei welchem Verfahren abwechselnd zwischen ersten Phasen mit Sauerstoffuberschuß und zweiten Phasen mit Sauerstoffmangel im Abgas umgesteuert wird, dadurch gekennzeichnet, daß der Sauerstoffmangel im Abgas zur Regeneration des Speicherkatalysators durch eine bestimmte, konstant zu haltende Masse an Kraftstoffuberschuß im Abgas vor dem NOx- Speicher erzeugt wird.
PCT/DE2000/004635 1999-12-29 2000-12-29 VERFAHREN ZUM BETRIEB EINES NOx-SPEICHERKATALYSATORS BEI BRENNKRAFTMASCHINEN WO2001049985A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020017010988A KR20010102422A (ko) 1999-12-29 2000-12-29 내연기관에서 NOx 저장 촉매의 동작을 위한 방법
DE50004565T DE50004565D1 (de) 1999-12-29 2000-12-29 VERFAHREN ZUM BETRIEB EINES NOx-SPEICHERKATALYSATORS BEI BRENNKRAFTMASCHINEN
JP2001549897A JP2003519317A (ja) 1999-12-29 2000-12-29 内燃機関からの排気ガス内のNOx貯蔵触媒の再生方法
EP00991568A EP1163431B1 (de) 1999-12-29 2000-12-29 VERFAHREN ZUM BETRIEB EINES NOx-SPEICHERKATALYSATORS BEI BRENNKRAFTMASCHINEN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19963624A DE19963624A1 (de) 1999-12-29 1999-12-29 Verfahren zum Betrieb eines NOx-Speicherkatalysators bei Brennkraftmaschinen
DE19963624.9 1999-12-29

Publications (1)

Publication Number Publication Date
WO2001049985A1 true WO2001049985A1 (de) 2001-07-12

Family

ID=7934900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/004635 WO2001049985A1 (de) 1999-12-29 2000-12-29 VERFAHREN ZUM BETRIEB EINES NOx-SPEICHERKATALYSATORS BEI BRENNKRAFTMASCHINEN

Country Status (7)

Country Link
US (1) US20020134075A1 (de)
EP (1) EP1163431B1 (de)
JP (1) JP2003519317A (de)
KR (1) KR20010102422A (de)
CN (1) CN1342244A (de)
DE (2) DE19963624A1 (de)
WO (1) WO2001049985A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1687336B (zh) * 2005-04-06 2010-10-13 上海纳克润滑技术有限公司 一种高温链条油复合添加剂及其制备方法
US8474243B2 (en) * 2006-12-22 2013-07-02 Cummins, Inc. System for controlling regeneration of an adsorber
DE102016219301A1 (de) * 2016-10-05 2018-04-05 Audi Ag Verfahren und Vorrichtung zur Abgasreinigung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690213A1 (de) * 1994-06-30 1996-01-03 Toyota Jidosha Kabushiki Kaisha Abgasreinigungsvorrichtung für Brennkraftmaschinen
DE19739848A1 (de) * 1997-09-11 1999-03-18 Bosch Gmbh Robert Brennkraftmaschine insbesondere für ein Kraftfahrzeug
DE19830829C1 (de) * 1998-07-09 1999-04-08 Siemens Ag Verfahren zur Regeneration eines NOx-Speicherkatalysators
DE19755600A1 (de) * 1997-12-15 1999-07-01 Bosch Gmbh Robert Betrieb eines Verbrennungsmotors in Verbindungmit einem NOx-Speicherkatalysator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690213A1 (de) * 1994-06-30 1996-01-03 Toyota Jidosha Kabushiki Kaisha Abgasreinigungsvorrichtung für Brennkraftmaschinen
DE19739848A1 (de) * 1997-09-11 1999-03-18 Bosch Gmbh Robert Brennkraftmaschine insbesondere für ein Kraftfahrzeug
DE19755600A1 (de) * 1997-12-15 1999-07-01 Bosch Gmbh Robert Betrieb eines Verbrennungsmotors in Verbindungmit einem NOx-Speicherkatalysator
DE19830829C1 (de) * 1998-07-09 1999-04-08 Siemens Ag Verfahren zur Regeneration eines NOx-Speicherkatalysators

Also Published As

Publication number Publication date
JP2003519317A (ja) 2003-06-17
DE50004565D1 (de) 2004-01-08
CN1342244A (zh) 2002-03-27
KR20010102422A (ko) 2001-11-15
DE19963624A1 (de) 2001-07-12
EP1163431B1 (de) 2003-11-26
EP1163431A1 (de) 2001-12-19
US20020134075A1 (en) 2002-09-26

Similar Documents

Publication Publication Date Title
DE19843879C2 (de) Betrieb eines Verbrennungsmotors in Verbindung mit einem NOx-Speicherkatalysator und einem NOx-Sensor
DE19843871B4 (de) Diagnose eines NOx-Speicherkatalysators mit nachgeschaltetem NOx-Sensor
EP0968362B1 (de) BETRIEB EINES VERBRENNUNGSMOTORS IN VERBINDUNG MIT EINEM NOx-SPEICHER-KATALYSATOR
EP1336037A1 (de) Verfahren und vorrichtung zur steuerung eines abgasnachbehandlungssystems
DE102005022420A1 (de) Abgasreinigungsanlage und Abgasreinigungsverfahren mit externer Reduktionsmittelzudosierung
EP1058578B1 (de) REGENERATION EINES NOx-SPEICHERKATALYSATORS EINES VERBRENNUNGSMOTORS
EP1106798B1 (de) Vorrichtung und Verfahren zur NOx- und/oder SOx-Regeneration eines NOx-Speicherkatalysators
EP0937876B1 (de) Verfahren zur Regeneration einer Stickoxidfalle im Abgassystem eines Verbrennungsmotors
WO2001061173A1 (de) Vorrichtung und verfahren zur steuerung einer nox-regeneration eines nox-speicherkatalysators
DE10114456A1 (de) Vorrichtung und Verfahren zur Koordination von abgasrelevanten Maßnahmen
WO2000019074A1 (de) REGENERATIONSVERFAHREN FÜR EINEN NOx-SPEICHERKATALYSATOR EINER BRENNKRAFTMASCHINE
EP1163431B1 (de) VERFAHREN ZUM BETRIEB EINES NOx-SPEICHERKATALYSATORS BEI BRENNKRAFTMASCHINEN
DE102016210897B4 (de) Steuerung einer Stickoxidemission in Betriebsphasen hoher Last
DE102022204865A1 (de) Verfahren zur Überwachung und Regelung einer Abgasnachbehandlungsanlage mit mehreren in Reihe geschalteten Katalysatoren
WO2002001056A1 (de) Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
DE10018062B4 (de) Mehrzylindermotor für Kraftfahrzeuge mit einer mehrflutigen Abgasreinigungsanlage und Verfahren zur Steuerung eines Betriebs des Mehrzylindermotors
DE102020215507A1 (de) Abgasnachbehandlungsanordnung und Verfahren zur Nachbehandlung eines Abgases einer Brennkraftmaschine
DE10305452A1 (de) Verfahren zur Diagnose eines Katalysators im Abgasstrom einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE10038458B4 (de) Vorrichtung und Verfahren zur Abgasreinigung
DE10241499B4 (de) Verfahren zur Ermittlung des Alterungsgrades eines Stickoxid-Speicherkatalysators einer Brennkraftmaschine insbesondere eines Kraftfahrzeuges
DE19735011A1 (de) Verfahren zur Abgasnachbehandlung mit Kraftstoffnacheinspritzung
DE102005018497A1 (de) Abgasnachbehandlungseinrichtung und Betriebsverfahren für eine magerlauffähige Brennkraftmaschine
DE102022214206A1 (de) Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung
DE102006061686A1 (de) Verfahren und Steuergerät zum Betreiben eines Verbrennungsmotors
DE102019208501A1 (de) Verfahren zum Betrieb einer Abgasnachbehandlungsvorrichtung mit zumindest einem NOx-Speicherkatalysator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00804390.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2000991568

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2001 549897

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017010988

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09914468

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000991568

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000991568

Country of ref document: EP