WO2001044666A1 - Pumping device and pumping method - Google Patents

Pumping device and pumping method Download PDF

Info

Publication number
WO2001044666A1
WO2001044666A1 PCT/JP2000/008786 JP0008786W WO0144666A1 WO 2001044666 A1 WO2001044666 A1 WO 2001044666A1 JP 0008786 W JP0008786 W JP 0008786W WO 0144666 A1 WO0144666 A1 WO 0144666A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
outlet
decompression chamber
pumping
pipe
Prior art date
Application number
PCT/JP2000/008786
Other languages
French (fr)
Japanese (ja)
Inventor
Hidemi Ito
Original Assignee
Hidemi Ito
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hidemi Ito filed Critical Hidemi Ito
Publication of WO2001044666A1 publication Critical patent/WO2001044666A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F3/00Pumps using negative pressure acting directly on the liquid to be pumped

Definitions

  • the present invention relates to a pumping apparatus and a pumping method for pumping water and using it as various water resources such as domestic water and irrigation, and for dropping the pumped water to use as a power source such as power generation.
  • a conventional pumping device there is disclosed a technology relating to a liquid pumping device described in Japanese Patent Application Laid-Open Nos. Hei 1-29206 and Hei 6-179798. I have.
  • These are liquid pumping devices connected to decompression means, and are intended to pump liquids containing solids such as earth and sand to high places together with floating bodies floating on the liquid surface of the liquids.
  • This device includes a vacuum chamber provided above the liquid surface, a vacuum pump for forming the vacuum chamber, a pumping pipe for pumping the liquid into the vacuum chamber, a mechanism for mixing air into the liquid to be pumped, It mainly consists of a discharge pipe for discharging the pumped liquid.
  • This device reduces the apparent specific gravity of the liquid by mixing air into the liquid to be pumped, thereby facilitating pumping.However, it is necessary to always operate a vacuum pump in the pumping operation Therefore, it always needs electricity.
  • a technique relating to a water pumping device disclosed in Japanese Patent Application Laid-Open No. 61-200399 of Japanese Patent Application is also disclosed.
  • This is a device that pumps liquid to a high place using an electric pump and atmospheric pressure acting on the surface of the liquid, and uses the pumped liquid to turn a turbine to generate electricity, use it for dam modification, and use it for irrigation. It is intended to be used and stored.
  • This device has a vacuum filling tank at a high position, a vacuum pump, an air intake valve at the top of the vacuum filling tank, and a low-level liquid introduced into the vacuum filling tank. It mainly consists of an inlet pipe, a discharge port from the vacuum filling tank, and a discharge valve device provided at the discharge port.
  • This device stops the vacuum pump when the pumped liquid accumulates in the tank, opens the drain, and uses it for various purposes.Therefore, it is necessary to always operate the vacuum pump during the pumping operation. There is something.
  • the technology related to the pumping equipment shown in (1) required that a vacuum pump be constantly operated during pumping work.
  • this pumping device relies on human power to secure the required water volume only by pressing the pedal for more than 4 hours a day, and the heavy labor is a heavy burden on the residents.
  • the present invention has been made in view of such problems, and can pump water without relying on human power, and does not need to use electricity continuously, and is an efficient and inexpensive pumping device. And to provide a pumping method. Disclosure of the invention
  • the pumping device of the present invention is provided with a decompression chamber that is in a decompressed state, a riser pipe that is installed so as to be able to pump water from a water source to the decompression chamber, and a riser having a height of about 10 m or less from the water surface, and is installed so that water in the decompression chamber can be discharged.
  • a water discharge pipe is provided, the atmospheric pressure is p0, and the pressure in the decompression chamber is Pl, the vertical height from the water surface to the head of the decompression chamber is H, the specific weight of water is a, the downward force on the outlet (the sum of the pushing force by P1 and the force of the gravity of the water in the outlet pipe)
  • F d be the upward force acting on the outlet (push-up force due to atmospheric pressure acting on the outlet), and let F d> F u, and pi ⁇ p 0-1 rH.
  • the inner volume of the water discharge pipe and the shape of the water discharge port are given, and the water in the water discharge pipe is discharged by gravity and pumped from the riser pipe in conjunction with the water discharge so that the pressure in the pressure reducing chamber is kept in an equilibrium state.
  • the state where water is discharged from the water discharge pipe and water is simultaneously pumped from the water intake is continuously performed.
  • the ratio d / D and the average inclination angle are such that F d> Fu. Was within a predetermined range.
  • the ratio d ZD of the diameter d of the outlet to the diameter D of the outlet pipe is 0.03 to 0.8, more preferably 0.2 to 0.5, and the average inclination angle 0 is 10 ° to 80 °, more preferably 30 ° to 60 °. This specifically determines the relationship between the diameter d of the outlet and the diameter D of the outlet, which is required to maintain a state where the water is discharged from the outlet and at the same time is constantly pumped from the inlet.
  • the throttle shape of the water discharge pipe was selected so that the cross-sectional area changes continuously toward the water outlet. As a result, eddies are not generated at the outlet of the water discharge pipe, and the water is discharged smoothly.
  • the decompression chamber is a sphere, when evacuated, it has the strongest shape against external forces due to atmospheric pressure.
  • a vacuum pump for bringing the decompression chamber into a decompressed state and a means for stopping the vacuum pump can be provided.
  • the vacuum pump can be operated by continuing the evacuation and sucking water into the vacuum pump. It will not break down.
  • an exhaust pipe is provided in the decompression chamber, and a blocking valve is provided in the middle of the exhaust pipe, the vacuum pump is pumped by drawing the vacuum and pumping the water into the decompression chamber. And then pumping without a vacuum pump is possible.
  • the pressure in the decompression chamber connected above the water discharge pipe is evacuated to pump the water into the decompression chamber and the water discharge pipe through the rising pipe installed in the water source, and the atmospheric pressure is set to p0
  • the pressure in the decompression chamber is pi
  • the vertical height from the water surface to the head line of the decompression chamber is H
  • the specific weight of water is a
  • the downward force on the outlet (p1 pushing force and the gravity of water in the outlet pipe)
  • F d be the sum of the forces due to the pressure
  • F u be the upward force acting on the outlet (the push-up force exerted on the outlet by the atmospheric pressure)
  • the pumping method of the present invention stores water in a decompression chamber connected above the water discharge pipe, sets the atmospheric pressure to p0, the pressure in the decompression chamber to pi, and the vertical height from the water surface to the headline of the decompression chamber.
  • H is the specific weight of the water
  • the downward force on the outlet (the sum of the pushing force due to pi and the force due to the gravity of the water in the outlet pipe) is Fd, and the upward force on the outlet (to the outlet).
  • Fu denote the pressure exerted by the working atmospheric pressure
  • the pressure in the decompression chamber is equilibrated by using a water discharge pipe with the relationship of p1 and p0-rH.
  • the water in the discharge pipe was discharged by gravity and pumped from the riser in conjunction with the discharge. As a result, the state where the water is discharged from the water discharge pipe and the water is discharged from the water intake continuously is maintained.
  • the pumping method of the present invention is characterized in that water is injected into a decompression chamber connected above a water discharge pipe, the inlet is closed, the atmospheric pressure is p0, the pressure in the decompression chamber is pi, and a riser installed at the water source
  • the vertical height from the water surface of the decompression chamber to the head line of the decompression chamber is H, the specific gravity of water is a, the downward force applied to the outlet (p1 pushing force and water in the outlet pipe)
  • F d be the sum of the forces due to the gravity of the water
  • F u be the upward force applied to the outlet (push-up force due to the atmospheric pressure acting on the outlet)
  • p 1 ⁇ p Pumping and water discharge are started by opening the water discharge port and water intake port using a water discharge pipe having a shape of 0-rH.
  • the evacuation pipe is closed and the evacuation operation is stopped.
  • the evacuation is stopped by closing the evacuation piping, and then the pumping can be performed without using a vacuum pump.
  • FIG. 1 is a sectional view showing an embodiment of a water pump according to the present invention.
  • FIG. 2 is a diagram illustrating the operation principle of the water pump according to the present invention.
  • FIG. 3 is a diagram illustrating the operating principle of the water pump according to the present invention.
  • FIG. 4 is a view for explaining a mode in which the water pump according to the present invention does not operate.
  • FIG. 5 is a diagram illustrating the operation principle of the water pump according to the present invention.
  • FIG. 6 is a diagram for explaining the operation principle of the water pump according to the present invention.
  • FIG. 7 is a cross-sectional view showing another embodiment of the water pump according to the present invention.
  • FIG. 8 is a cross-sectional view of an apparatus for carrying out an experimental verification of the pumping apparatus according to the present invention.
  • FIG. 9 is a diagram for explaining a result of calculating conditions for enabling pumping and discharging in the pumping apparatus according to the present invention.
  • FIG. 10 is a sectional view showing another embodiment of the water pump according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the pumping device 1 is roughly composed of a decompression chamber 2, a riser pipe 4, a water discharge pipe 5, and a narrowed section 7 at the outlet of the water discharge pipe 5.
  • the groundwater is pumped up by setting the tip of the groundwater.
  • the decompression chamber 2 is a spherical tank into which water can be introduced, and is supported and installed above the ground G (for example, at a position of several meters) with support members 12 and 13 as shown in Fig. 1. ing.
  • An exhaust pipe 11 for evacuation, a stop valve 16 provided in the middle of the exhaust pipe 11, and a support member 12 at the other end of the exhaust pipe 11 are used in the upper part of the decompression chamber 2.
  • a vacuum pump 8 is installed. In addition, the vacuum pump 8 is installed so that it can be easily removed.
  • a riser pipe 4 having one end reaching the groundwater vein and a discharge pipe 5 having a water discharge port 6 at the front end for discharging the pumped water are connected. Therefore, the water in the pressure reducing chamber 2 is configured to be movable to the riser pipe 4 and the discharge pipe 5 connected thereto.
  • the material of the decompression chamber 2 can be used with any material as long as it has sufficient strength so that it does not break or deform at atmospheric pressure in order to decompress the interior to a state close to vacuum.
  • stainless steel is desirable as a material that is strong because it is in contact with the material and that has both strength and cost.
  • the riser pipe 4 is connected to the decompression chamber 2 and has the other end submerged in a groundwater vein (for example, several meters in depth), and is provided with an on-off valve 9 having a water intake 15 therein.
  • the height X from the intake 15 to the upper limit water line (A position) in the decompression chamber 2 is set to 10 m or less (for example, 8 m).
  • the on-off valve 9 is wired so that opening and closing can be controlled by remote control (not shown), and when energized, the on-off valve 9 is closed.
  • remote control not shown
  • an intake valve 15 is provided with an on-off valve 9.
  • the on-off valve 9 is provided so that a reduced pressure state can be created by other methods described later.
  • the water discharge pipe 5 is connected to the decompression chamber 2 and extends downward.
  • the water discharge pipe 5 has a water discharge port 6 with an inner diameter d at the end through a throttle-shaped portion 7.
  • the outlet 6 has a cross-sectional area smaller than that of the outlet pipe 5 having the inner diameter D, and smaller than that of the riser 4.
  • the water outlet 6 is provided with an on-off valve 14 that can be opened and closed remotely.
  • the atmospheric pressure is p0
  • the pressure in the decompression chamber 2 is p1
  • the vertical height from the water intake 15 to the head of the decompression chamber 2 is H
  • the specific weight of water is A
  • the downward pressure on the outlet 6 The force (p 1 plus the force due to the gravity of water in the discharge pipe 5) is F d
  • the upward force on the discharge port 6 (push-up force due to the atmospheric pressure acting on the discharge port 6) is F u
  • the inner volume and the constricted shape of the water discharge pipe 5 satisfy Fd> Fu, and satisfy the relationship of p1 ⁇ p0- ⁇ .
  • the shape of the throttle-shaped portion 7 will be described in detail later in the description of the operation of pumping.
  • the pumping device 1 submerges the riser 4 in the groundwater vein, installs the main unit on the ground, and operates the vacuum pump 8 to reduce the pressure. Evacuate the chamber 2, riser 4 and water discharge pipe 5. Then, the atmospheric pressure, which is almost the same as the ground surface, acts on the surface WS of the groundwater W, which is several meters below the ground, and the groundwater W rises to the decompression chamber 2 in a short time.
  • the height X from the intake port 15 to the maximum water level of the decompression chamber 2 can be about 10 m, taking into account the friction loss of the riser pipe 4, etc.
  • the pumping device 1 sets the pumping height X to a value slightly smaller than this limit value (for example, about 8 m) in order to allow room for the water discharge function.
  • the water is pumped above the X min line, preferably to a position about the height X in FIG. 1, the stop valve 16 is closed, and the vacuum pump 8 is stopped. At this point, the vacuum pump 8 can be removed from the pumping device 1 and used for other purposes, such as operating another pumping device.
  • the on-off valve 14 of the water outlet 6 is opened.
  • the water in the water discharge pipe 5 does not immediately fall, and air enters the water discharge pipe 5 as shown by an arrow E in FIG.
  • the reason is that the pressure p 1 in the decompression chamber 2 is reduced to near vacuum, and the downward force F d for pushing out the water in the discharge pipe 5 to the lower part is reduced by the atmospheric pressure p 0. This is because it is smaller than the force F u that pushes upward.
  • This principle is based on the principle that a PET bottle is completely filled with water, a small hole is opened in the lid, and water does not fall even if it is turned upside down. When this hole is made larger than a certain size, air enters through the hole, It is understood that the water begins to fall in place of the air.
  • the inside diameter of the water discharge port 6 be appropriately smaller than the inside diameter of the water discharge pipe 5. If the water discharge port 6 is too large, a large amount of air will be released at the moment when the on-off valve 14 of the water discharge port 6 is opened. The water is sucked into the water pipe 5 and the water in the water discharge pipe 5 drops at a stretch.
  • equation (1) is described in more detail as follows.
  • the upward force F11 acting on the outlet 6 is simple and is equal to the atmospheric pressure p0 multiplied by the cross-sectional area Sd of the outlet 6. That is,
  • the downward force F d is complicated, and is affected by the shape of the throttle-shaped portion 7 in front of the outlet 6.
  • the mosquito 1 acting on the volume 1 of the water immediately above the outlet 6 is given by
  • the shape of the aperture-shaped portion 7 is an inverted truncated cone shape.
  • the component of the downward force is calculated based on FIG.
  • the force F 21 along the inclined surface J is expressed as follows:
  • the force F22 pushing the slope receives the reaction force N from the slope J and conversely cancels out the forces.
  • the force F 21 along the slope J affects the outlet 6.
  • the force F 21 along the inclined surface J is broken down into a vertical force F 23 and a horizontal force F 24 as in the case of F 2.
  • Sa is the cross-sectional area of the water discharge pipe 5.
  • the water discharge starts from water discharge port 6.
  • water can be pumped.
  • the condition that enables this state is that the inner volume V 0 (particularly V 2) of the water discharge pipe 5 and the shape of the constricted portion 7 are given so as to satisfy both the expressions (13) and (14). .
  • the pumping capacity from the riser 4 is 9 m or more (9.5 m in theory). Water can be easily pumped into the decompression chamber 2.
  • Fig. 9 shows the upper limit of the pressure p1 in the decompression chamber 2 where water can be pumped on the horizontal axis (meaning that pumping cannot be performed if it is larger than this), and the vertical axis shows the inner diameter d of the outlet 6 and the inner diameter of the outlet pipe 5. Taking the ratio d ZD of D, calculating and plotting the upper limit of d ZD at which water can be discharged, and displaying it as a straight line.
  • the pumpable Pi is usually said to be deeper than 5m in the groundwater vein, so the ratio d / D ⁇ 0.5 for such applications Is desirable.
  • the lower limit of the ratio d ZD the smaller the d ZD, the more room there is for the continuous water discharge limit (because the straight line L 1 falls to the left). If D is too small (d is too small), it will be squeezed too much and the amount of water discharged will be small.
  • the limit line L1 tends to move upward and as the inclination angle decreases, the limit line L1 tends to move downward, but the inclination is the same. Also, if the inclination angle 0 is too small, the water discharge power will be greatly reduced, and if it is too large, the length of the throttle will be long. It was found that the angle was more preferably 30 ° to 60 °.
  • the throttle shape 7 of the water discharge pipe 5 is not limited to a straight line as in this embodiment, and a curve having a continuously changing angle has a similar function. If the approximate average inclination angle is considered as, it is possible to apply the examination result of the inclination angle ⁇ ⁇ .
  • the pumping apparatus 1 of the present embodiment can pump and drop water after the vacuum pump 8 is stopped.
  • the results of this study have been confirmed in experiments, and the outline is described below.
  • the configuration of the experimental apparatus is an experimental apparatus 100 as shown in Fig. 8, and this experimental apparatus 100 is composed of a decompression chamber 20, a reservoir, a cylinder 30, a riser 40, a water discharge pipe 50, a water discharge port 60,
  • This device is generally constituted by a throttle-shaped portion 70, and is a device for pumping water W by installing the tips of four risers 40 in a water tank 103.
  • the decompression chamber 20, water tank 30, riser pipe 40, water discharge pipe 50, water discharge port 60, and iris-shaped part 70 are all made of glass so that the inside can be clearly seen.
  • the decompression chamber 200 is a spherical tank into which water can be introduced, and has an internal volume of about 20 liters and a total height of about 2 meters.
  • the riser 40 is installed as shown in Fig. 8.
  • An evacuation pipe 110 is provided above the decompression chamber 20 so that evacuation can be performed, and an obstruction plug 160 is provided at the end of the evacuation pipe 110.
  • a water reservoir 30 at the lower part of the decompression chamber 20 a rising pipe 40 reaching one end to the water tank 103, and a water discharge pipe 50 having a water discharge port 60 at the end to discharge the pumped water W 50. Is connected.
  • the water storage cylinder 30 is located below the decompression chamber 20 and is connected to the decompression chamber 20. If the decompression chamber 20 is compared to a human head, the water storage cylinder 30 has a cylindrical shape corresponding to a body, and has a shoulder.
  • the riser pipe 40 extends downward from the part, and has a shape connected to the water discharge pipe 50 below. Its internal volume is about 14 liters. Therefore, the water in the upper part of the water storage tank 30 is configured to be movable to any of the connected decompression chamber 20, riser pipe 40, and water discharge pipe 50.
  • the inner diameter of the riser 40 is 2.1 cm, and a water intake 150 is provided at the lower part of the riser 40 in the water of the water tank 103. Is plugged into the intake 150.
  • the water discharge pipe 50 is connected to the water storage cylinder 30 and extends downward, and has a water discharge port 60 at its end through a throttle-shaped portion 70, and an inner diameter of the water discharge pipe 50 is about 3 cm. And the length is about 15 cm. Further, the throttle shape portion 70 is configured such that the cross-sectional area of the water discharge pipe 50 smoothly changes toward the water discharge port 60.
  • the shape of the throttle shape portion 70 is designed and studied so as to be able to stably maintain a state of pumping water from the water intake port 15 to the water storage cylinder 3 and discharging water from the water discharge port 6. (Molded glass tube).
  • the water tank 103 is filled with water as shown in Fig. 8. Has been done.
  • This state corresponds to a state in which water is raised to a predetermined height X, the stop valve 16 is closed, and the vacuum pump 8 is stopped, as described in the embodiment. At this point, the pressure in the decompression chamber 20 is not reduced, but since the pressure in the decompression chamber 20 is full, a decompression state is instantaneously formed in a state where water is discharged.
  • One method is to remove the water stopcock 140 first and then the water stopcock 102 (a). The other is to remove the water stopcock 102 first and then stop the water stopcock 140 (B).
  • Bernoulli's theorem can be applied to the flow in an incompressible fluid that constantly flows in a gravitational field, based on the energy immortality theorem.
  • the Berne ⁇ ⁇ ⁇ r theorem is that if the velocity of a flow is v, the pressure is p, and the height from the reference plane is h,
  • V 2 / (2 g) is called the velocity head and indicates the kinetic energy of a unit weight of fluid.
  • pZr is called the pressure head and indicates the pressure energy of a unit weight of fluid.
  • H is called the potential head and indicates the potential energy of a unit weight of fluid.
  • the total energy which is the sum of kinetic energy, pressure energy, and potential energy, is constant.
  • the position of the water head line C (the speed here is V 1 and the height is h1) and the position of the outlet 6 (the velocity here is V2, the height is h2, and the pressure is P0 at atmospheric pressure).
  • the pressure energy at the outlet of the outlet 6 is p OZr
  • the pressure energy at the position C is not only the force of the pressure P 1 acting on the water of the volume V 2 in the outlet pipe 5 from above, but also It is considered that the force F23 / Sd exerted on the cross-sectional area Sd of the outlet 6 by F2 in Eq. (9), which is the total gravity of water of volume V2,
  • the difference between the position of the headline C and the position of the outlet 6 is h.
  • V 2 "[2 g ⁇ ((F 23 / (S d-r) + h)
  • V 2 / "(2 g h) (1 9)
  • the average inclination angle ⁇ of the aperture shape part 70 is about 45 °.
  • This flow rate is said to be about 15 cc Z s, which is said to be able to pump out about 15 cc Zs of water.
  • the pumping apparatus 1 of the present invention has a sufficient capacity even if it falls below the theoretical formula in consideration of
  • water transferred from a remote water source S to a position T near the pumping unit 50 by a pumping pump U is substantially the same as the pumping unit 1 described above.
  • a pumping apparatus 50 having the above configuration is used.
  • the riser pipe 4 is configured to be inclined and pumped up.
  • the pump U has the ability to transfer water to the position T.
  • the evacuation chamber 2 is evacuated by the water pump 50 of this embodiment and pumped into the evacuation chamber 2, when the on-off valve 14 of the outlet 6 is opened, the gravity of the water in the outlet pipe 5 and the outlet of the outlet 5 Water is discharged by the squeezing shape 7 of.
  • the pumping pump U since the pressure of the remote pump U acts on the lower position T of the riser 4 and flows smoothly by the inclined riser 4, pumping from the riser 4 is easily performed.
  • the pumping pump U is used for the water transferred from the remote water source S to the position T near the pumping device 50 by the pumping pump U by using the pumping device 50. Even with low capacity, water can be pumped to high places, low-cost equipment can supply inexpensive water, and it can be widely used for domestic water and irrigation water.
  • the decompression chamber 2 is evacuated by a vacuum pump or the like to form a decompression state.
  • water is directly supplied to the decompression chamber.
  • it is also possible to start pumping and discharging water by injecting water (closing the water intake) and opening the water discharge port and water intake when the water is full. .
  • the intake and outlet valves can be operated by batteries, and It is possible to use a simple on-off valve).
  • water has been described as an example.
  • the invention is not limited to fresh water, but can be applied to seawater and other liquids, and is a technology that can be used in various fields.
  • a water level sensor (not shown) may be provided in the decompression chamber 2, and the vacuum pump 8 may be automatically stopped in response to the signal.
  • the stopping means of the vacuum pump 8 may grasp the time required to reach the required water level, and stop the vacuum pump 8 by time management such as a timer until the required time is reached.
  • the decompression chamber 2 is spherical in the embodiment, the decompression chamber 2 is not limited to a spherical shape because it functions as a rectangular parallelepiped as long as it has pressure resistance.
  • the upper part may be spherical and the lower part may be provided with a cylindrical water reservoir 3.
  • the connecting portion between the riser pipe 4 and the water discharge pipe 5 becomes flat, so that there is an advantage that the riser pipe 4 and the water discharge pipe 5 can be easily connected and the device can be easily manufactured.
  • the water pump is used under the water discharge pipe of the present invention to turn a water turbine and connect a generator, it is easily considered that inexpensive power can be obtained. If the pumping devices of the present invention are connected in multiple stages, the water discharge position can be raised, and more effective power generation becomes possible.
  • the pumping device of the present invention for the propulsion power, braking force and steering force of a ship.
  • propulsion can be exerted, and it can be used as a supplement to existing power.
  • a riser pipe and a water discharge pipe are provided, braking force can be obtained.
  • the pumping device of the present invention is used on the left and right sides of the ship, and two pumping devices are provided with the riser pipe and the water discharge pipe reversed, left and right turning becomes possible.
  • the pump is stopped at the stage of pumping water into the decompression chamber, and the decompression chamber is closed. This makes it possible to provide a highly efficient and inexpensive pumping device without the need for continuous use of electricity.
  • this pumping device if a water wheel is turned using this pumping device, a power generator can be easily established, and an effect that inexpensive power can be obtained can be obtained. Also, if this pumping device is connected in multiple stages, water can be pumped to high places, and it can be used for highland living water and irrigation.
  • the pumping device of the present invention can be used for propulsion power, braking force and steering force of a ship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

A pumping device and pumping method, comprising a low pressure chamber (2, 20), a riser pipe (4, 40) installed so as to be able to pump up water from a water source to the low pressure chamber (2, 20), and a discharge pipe (5, 50) installed so as to be able to discharge water in the low pressure chamber (2, 20), characterized in that the inner volume and throttling shape of the discharge pipe is so designed as to satisfy the relations, Fd ? Fu and p1 ? p0 ? ?H, where atmospheric pressure is p0, the low pressure chamber's pressure p1, vertical height from the water surface to the low pressure chamber's head line H, water specific weight ?, downward force applied to the outlet Fd, and upward force applied to the outlet Fu. The pumping device and pumping method ensure continued conditions in which water is pumped from the water source to the low pressure chamber (2, 20) via the riser pipe (4, 40) and discharged from the discharge pipe (5, 50), even after the shutdown of a vacuum pump (8).

Description

明細書  Specification
揚水装置及び揚水方法 技術分野  Pumping device and pumping method
本発明は、 水を汲み上げ、 生活用水や灌漑等の各種水資源として利用 すること、 及び汲み上げた水を落水させて発電などの動力源に用いるこ とを目的とした揚水装置及び揚水方法に関する。 背景技術  The present invention relates to a pumping apparatus and a pumping method for pumping water and using it as various water resources such as domestic water and irrigation, and for dropping the pumped water to use as a power source such as power generation. Background art
従来の揚水装置としては、 日本国特許出願の特開平 1 一 2 0 8 6 0 0 号公報及び特開平 6 - 1 7 7 9 8号公報に示す液体の汲み揚げ装置に 関する技術が開示されている。 これらは減圧手段を接続した液体の汲み 揚げ装置であり、 土砂などの固形物が混在している液体を、 この液体の 液面に浮かぶ浮遊体とともに高所に汲み揚げることを目的としている。 この装置は、 液面の上方に設けた真空室と、 真空室を形成するための真 空ポンプと、 真空室に液体を汲み揚げる汲み揚げ管と、 汲み揚げる液体 に空気を混入させる機構と、 汲み揚げた液体を排出する排出管とで主に 構成されている。  As a conventional pumping device, there is disclosed a technology relating to a liquid pumping device described in Japanese Patent Application Laid-Open Nos. Hei 1-29206 and Hei 6-179798. I have. These are liquid pumping devices connected to decompression means, and are intended to pump liquids containing solids such as earth and sand to high places together with floating bodies floating on the liquid surface of the liquids. This device includes a vacuum chamber provided above the liquid surface, a vacuum pump for forming the vacuum chamber, a pumping pipe for pumping the liquid into the vacuum chamber, a mechanism for mixing air into the liquid to be pumped, It mainly consists of a discharge pipe for discharging the pumped liquid.
この装置は、 汲み揚げる液体に空気を混入させることで液体の見かけ の比重を軽減して汲み揚げを容易にするものであるが、 汲み揚げ作業に おいては常時真空ボンプを作動させる必要があるので、 常に電気を必要 とするものである。  This device reduces the apparent specific gravity of the liquid by mixing air into the liquid to be pumped, thereby facilitating pumping.However, it is necessary to always operate a vacuum pump in the pumping operation Therefore, it always needs electricity.
また、 日本国特許出願の特開昭 6 1 - 2 0 0 3 9 9号公報に示す揚水 装置に関する技術も開示されている。 これは電動ポンプと液体の表面に 作用する大気圧を併用して液体を高所に汲み揚げる装置であり、 汲み揚 げた液体でタービンを回し発電すること、 ダムの改造に利用すること、 灌漑に用いること、 貯蔵すること等を目的としている。 この装置は、 高 い位置にある真空充填タンクと、 真空ポンプと、 真空充填タンク上部に 設けた空気取り入れバルブと、 低い位置の液体を真空充填タンクに導入 する導入管と、 真空充填タンクからの排出口と、 排出口に設けた排出バ ルブ装置とで主に構成されている。 In addition, a technique relating to a water pumping device disclosed in Japanese Patent Application Laid-Open No. 61-200399 of Japanese Patent Application is also disclosed. This is a device that pumps liquid to a high place using an electric pump and atmospheric pressure acting on the surface of the liquid, and uses the pumped liquid to turn a turbine to generate electricity, use it for dam modification, and use it for irrigation. It is intended to be used and stored. This device has a vacuum filling tank at a high position, a vacuum pump, an air intake valve at the top of the vacuum filling tank, and a low-level liquid introduced into the vacuum filling tank. It mainly consists of an inlet pipe, a discharge port from the vacuum filling tank, and a discharge valve device provided at the discharge port.
この装置は、 汲み揚げた液体がタンクに溜まれば真空ポンプを停止し、 排水口を開いて各種用途に利用するものであるので、 汲み揚げ作業にお いては常時真空ポンプを作動させる必要があるものである。  This device stops the vacuum pump when the pumped liquid accumulates in the tank, opens the drain, and uses it for various purposes.Therefore, it is necessary to always operate the vacuum pump during the pumping operation. There is something.
したがって、 上記の日本国特許出願の特開平 1 — 2 0 8 6 0 0号公報、 特開平 6— 1 7 7 9 8号公報及び特開昭 6 1 — 2 0 0 3 9 9号公報な どに示す揚水装置に関する技術は、 揚水作業において常時真空ポンプを 作動させる必要があるものであった。  Therefore, Japanese Patent Application Laid-Open Nos. Hei 1-209600, Hei 6-17798 and Japanese Patent Laid-Open No. 61-239 / 1989, etc. of the above-mentioned Japanese patent applications. The technology related to the pumping equipment shown in (1) required that a vacuum pump be constantly operated during pumping work.
一方、 バングラデシュゃインド等の乾期の厳しい地域においては、 生 活用水供給手段として、 近年足踏みポンプが広く使用されるようになつ てきた。 この装置は自転車のペダルを踏むようにして、 地下数メートル を流れる地下水を汲み上げる装置である (最大 6メートルまで汲み揚げ 可能)。  On the other hand, in areas where the dry season is severe, such as Bangladesh-India, foot pumps have been widely used in recent years as a means of supplying water for domestic use. This device pumps groundwater flowing several meters below the ground by pressing the pedal of a bicycle (up to 6 meters can be pumped).
しかしながら、 この揚水装置は、 1 日 4時間以上もペダルを踏み続け てようやく必要な水量を確保できる人力に頼った装置であり、 その重労 働は住民にとって大きな負担になっている。  However, this pumping device relies on human power to secure the required water volume only by pressing the pedal for more than 4 hours a day, and the heavy labor is a heavy burden on the residents.
また、 電動ポンプが使用できればペダル踏みが不要になるが、 開発途 上国の農村地帯では電気の普及は少なく、 電動ポンプの連続的な使用は 不可能な条件下にある。  If an electric pump can be used, there is no need to step on the pedals. However, in rural areas of developing countries, electricity is not widely used, and continuous use of the electric pump is impossible.
本発明は、 このような問題点を考慮してなされたもので、 人力に頼ら ず水を汲み上げることができ、 且つ、 電気を連続的に使用する必要がな く、 効率の高い安価な揚水装置及び揚水方法を提供することを目的とす る。 発明の開示  The present invention has been made in view of such problems, and can pump water without relying on human power, and does not need to use electricity continuously, and is an efficient and inexpensive pumping device. And to provide a pumping method. Disclosure of the invention
本発明の揚水装置は、 減圧状態にされる減圧室と、 水源から減圧室に 揚水可能に設置され水面から高さ約 1 0 m以下の上昇管と、 減圧室内の 水を放水可能に設置した放水管とを備え、 大気圧を p 0、 減圧室の圧力 を p l、 水面から減圧室の水頭線までの垂直高さを H、 水の比重量をァ 、 放水口にかかる下向きの力 (P 1による押し力と放水管内の水の重力 による力の和) を F d、 放水口にかかる上向きの力 (放水口に働く大気 圧による押し上げ力) を F uとすると、 F d>F uであり、 且つ、 p i <p 0一 rHの関係を有するように、 放水管の内容積と放水口の絞り形 状を与え、 減圧室の圧力が平衡状態を保つように、 放水管内の水の重力 による放水と、 放水に連動して上昇管から揚水を行う。 The pumping device of the present invention is provided with a decompression chamber that is in a decompressed state, a riser pipe that is installed so as to be able to pump water from a water source to the decompression chamber, and a riser having a height of about 10 m or less from the water surface, and is installed so that water in the decompression chamber can be discharged. A water discharge pipe is provided, the atmospheric pressure is p0, and the pressure in the decompression chamber is Pl, the vertical height from the water surface to the head of the decompression chamber is H, the specific weight of water is a, the downward force on the outlet (the sum of the pushing force by P1 and the force of the gravity of the water in the outlet pipe) Let F d be the upward force acting on the outlet (push-up force due to atmospheric pressure acting on the outlet), and let F d> F u, and pi <p 0-1 rH. In addition, the inner volume of the water discharge pipe and the shape of the water discharge port are given, and the water in the water discharge pipe is discharged by gravity and pumped from the riser pipe in conjunction with the water discharge so that the pressure in the pressure reducing chamber is kept in an equilibrium state.
上記揚水装置によれば、 放水管から放水されると同時に取水口から揚 水される状態が継続して行われる。  According to the above-mentioned water pump, the state where water is discharged from the water discharge pipe and water is simultaneously pumped from the water intake is continuously performed.
ここで、 放水口の直径を d、 放水管の直径を D、 絞り形状の水平に対 する平均傾斜角度を Sとしたとき、 F d〉F uとなるように比率 d/D 及び平均傾斜角度 を所定の範囲内とした。 これにより、 放水管から放 水されると同時に取水口から揚水される状態を定常的に維持するため に必要な放水口の直径 dと放水管の直径 Dとの関係が決められる。 さらに具体的には、 この放水口の直径 dと放水管の直径 Dの比率 d Z Dを 0. 03〜0. 8、 より好ましくは 0. 2〜0. 5、 また、 平均傾 斜角度 0を 1 0 ° 〜80 ° 、 より好ましくは 30° 〜6 0° とした。 こ れにより、 放水管から放水されると同時に取水口から揚水される状態を 定常的に維持するために必要な放水口の直径 dと放水管の直径 Dとの 関係が具体的に決められる。  Here, assuming that the diameter of the outlet is d, the diameter of the outlet pipe is D, and the average inclination angle of the constricted shape with respect to the horizontal is S, the ratio d / D and the average inclination angle are such that F d> Fu. Was within a predetermined range. As a result, the relationship between the diameter d of the outlet and the diameter D of the outlet required to constantly maintain the state of being discharged from the outlet at the same time as being discharged from the outlet is determined. More specifically, the ratio d ZD of the diameter d of the outlet to the diameter D of the outlet pipe is 0.03 to 0.8, more preferably 0.2 to 0.5, and the average inclination angle 0 is 10 ° to 80 °, more preferably 30 ° to 60 °. This specifically determines the relationship between the diameter d of the outlet and the diameter D of the outlet, which is required to maintain a state where the water is discharged from the outlet and at the same time is constantly pumped from the inlet.
また、 放水管の絞り形状は放水口に向かって断面積が連続的に変化す る絞り形状とした。 これにより、 放水管出口でうずを生じなくなり、 放 水が滑らかに行われる。  In addition, the throttle shape of the water discharge pipe was selected so that the cross-sectional area changes continuously toward the water outlet. As a result, eddies are not generated at the outlet of the water discharge pipe, and the water is discharged smoothly.
また、 減圧室は球体としたので、 真空引きをした際に、 大気圧による 外側からの力に対し、 最も強い形状となる。  Also, since the decompression chamber is a sphere, when evacuated, it has the strongest shape against external forces due to atmospheric pressure.
さらに、 減圧室を減圧状態とする真空ポンプと真空ポンプの停止手段 を設けた構成とすることもでき、 これによれば、 真空引きを継続し過ぎ て水を真空ポンプに吸い込むことで真空ポンプを故障させることがな くなる。 また、 減圧室に排気管を設けるとともに、 この排気管の途中に閉塞弁 を設けた構成とすれば、 真空引きを行って減圧室に揚水された後、 排気 管の閉塞弁を閉じれば真空ポンプを停止し、 その後真空ポンプを使用せ ずに揚水 '落水が可能になる。 Furthermore, a vacuum pump for bringing the decompression chamber into a decompressed state and a means for stopping the vacuum pump can be provided. According to this, the vacuum pump can be operated by continuing the evacuation and sucking water into the vacuum pump. It will not break down. In addition, if an exhaust pipe is provided in the decompression chamber, and a blocking valve is provided in the middle of the exhaust pipe, the vacuum pump is pumped by drawing the vacuum and pumping the water into the decompression chamber. And then pumping without a vacuum pump is possible.
また、 本発明の揚水方法は、 放水管の上方に連結された減圧室を真空 引きすることで水源に設置した上昇管を介して減圧室及び放水管に揚 水し、 大気圧を p 0、 減圧室の圧力を p i、 水面から減圧室の水頭線ま での垂直高さを H、 水の比重量をァ、 放水口にかかる下向きの力 (p 1 による押し力と放水管内の水の重力による力の和) を F d、 放水口にか かる上向きの力 (放水口に働く大気圧による押し上げ力) を F uとする と、 F d > F uであり、 且つ、 p 1 < p 0— r Hの関係を有する形状の 放水管を用いて、 放水口を開放することで、 揚水及び放水を開始する。  Further, in the pumping method of the present invention, the pressure in the decompression chamber connected above the water discharge pipe is evacuated to pump the water into the decompression chamber and the water discharge pipe through the rising pipe installed in the water source, and the atmospheric pressure is set to p0, The pressure in the decompression chamber is pi, the vertical height from the water surface to the head line of the decompression chamber is H, the specific weight of water is a, the downward force on the outlet (p1 pushing force and the gravity of water in the outlet pipe) Let F d be the sum of the forces due to the pressure, and F u be the upward force acting on the outlet (the push-up force exerted on the outlet by the atmospheric pressure), and F d> Fu and p 1 <p 0 — Start pumping and water discharge by opening the water discharge port using a water discharge pipe with the shape of rH.
これにより、 水源から上昇管を介して水が真空引きされた減圧室に揚 水され、 放水管の放水口を開放すると、 放水管から放水されると同時に 取水口から揚水される状態が開始される。  As a result, water is pumped from the water source through the riser pipe to the vacuum chamber where the water has been evacuated, and when the outlet of the discharge pipe is opened, water is discharged from the discharge pipe and the water is simultaneously pumped from the intake port. You.
また、 本発明の揚水方法は、 放水管の上方に連結された減圧室に水を 蓄え、 大気圧を p 0、 減圧室の圧力を p i、 水面から減圧室の水頭線ま での垂直高さを H、 水の比重量をァ、 放水口にかかる下向きの力 (p i による押し力と放水管内の水の重力による力の和) を F d、 放水口にか かる上向きの力 (放水口に働く大気圧による押し上げ力) を F uとする と、 F d〉F uであり、 且つ、 p 1ぐ p 0— r Hの関係を有する形状の 放水管を用いて、 減圧室の圧力が平衡状態を保つように、 放水管内の水 の重力による放水と、 放水に連動して上昇管から揚水を行うようにした。 これにより、 放水管から放水されると同時に取水口から揚水される状 態が継続して行われる。  In addition, the pumping method of the present invention stores water in a decompression chamber connected above the water discharge pipe, sets the atmospheric pressure to p0, the pressure in the decompression chamber to pi, and the vertical height from the water surface to the headline of the decompression chamber. H is the specific weight of the water, and the downward force on the outlet (the sum of the pushing force due to pi and the force due to the gravity of the water in the outlet pipe) is Fd, and the upward force on the outlet (to the outlet). Let Fu denote the pressure exerted by the working atmospheric pressure) and Fd> Fu, and the pressure in the decompression chamber is equilibrated by using a water discharge pipe with the relationship of p1 and p0-rH. In order to maintain the condition, the water in the discharge pipe was discharged by gravity and pumped from the riser in conjunction with the discharge. As a result, the state where the water is discharged from the water discharge pipe and the water is discharged from the water intake continuously is maintained.
また、 本発明の揚水方法は、 放水管の上方に連結された減圧室に水を 注入し、 注入口を閉じ、 大気圧を p 0、 減圧室の圧力を p i、 水源に設 置した上昇管の水面から減圧室の水頭線までの垂直高さを H、 水の比重 量をァ、 放水口にかかる下向きの力 ( p 1による押し力と放水管内の水 の重力による力の和) を F d、 放水口にかかる上向きの力 (放水口に働 く大気圧による押し上げ力) を F uとすると、 F d〉F uであり、 且つ 、 p 1 < p 0— r Hの関係を有する形状の放水管を用いて、 放水口及び 取水口を開くことで、 揚水及び放水を開始する。 In addition, the pumping method of the present invention is characterized in that water is injected into a decompression chamber connected above a water discharge pipe, the inlet is closed, the atmospheric pressure is p0, the pressure in the decompression chamber is pi, and a riser installed at the water source The vertical height from the water surface of the decompression chamber to the head line of the decompression chamber is H, the specific gravity of water is a, the downward force applied to the outlet (p1 pushing force and water in the outlet pipe) Let F d be the sum of the forces due to the gravity of the water, and F u be the upward force applied to the outlet (push-up force due to the atmospheric pressure acting on the outlet), and F d> Fu, and p 1 <p Pumping and water discharge are started by opening the water discharge port and water intake port using a water discharge pipe having a shape of 0-rH.
これにより、 真空引きをせずに減圧室に直接水を注入し、 放水管の放 水口及び取水口を開放すると、 放水管から放水されると同時に取水口か ら揚水される状態が開始される。  As a result, when water is directly injected into the decompression chamber without evacuation and the outlet and intake of the water discharge pipe are opened, the state where water is discharged from the water discharge pipe and water is simultaneously pumped from the water intake is started. .
また、 本発明の揚水方法は、 減圧室及び放水管に揚水した後は、 真空 引きの配管を閉塞し、 真空引き動作を停止する。 これにより、 真空引き を行って減圧室に揚水された後、 真空引きの配管を閉じれば真空引きを 停止し、 その後真空ポンプを使用せずに揚水'落水が可能になる。  Further, in the water pumping method of the present invention, after pumping water into the decompression chamber and the water discharge pipe, the evacuation pipe is closed and the evacuation operation is stopped. With this, after evacuation is performed and the water is pumped into the decompression chamber, the evacuation is stopped by closing the evacuation piping, and then the pumping can be performed without using a vacuum pump.
本発明の他の目的、 特長は添付の図面に基づく以下の詳細な説明で明 らかにする。 図面の簡単な説明  Other objects and features of the present invention will become apparent from the following detailed description based on the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明に係る揚水装置の実施形態を示す断面図である。 第 2図は本発明に係る揚水装置の作動原理を説明する図である。 第 3図は本発明に係る揚水装置の作動原理を説明する図である。 第 4図は本発明に係る揚水装置が作動しない形態を説明する図であ る。  FIG. 1 is a sectional view showing an embodiment of a water pump according to the present invention. FIG. 2 is a diagram illustrating the operation principle of the water pump according to the present invention. FIG. 3 is a diagram illustrating the operating principle of the water pump according to the present invention. FIG. 4 is a view for explaining a mode in which the water pump according to the present invention does not operate.
第 5図は本発明に係る揚水装置の作動原理を説明する図である。  FIG. 5 is a diagram illustrating the operation principle of the water pump according to the present invention.
第 6図は本発明に係る揚水装置の作動原理を説明する図である。  FIG. 6 is a diagram for explaining the operation principle of the water pump according to the present invention.
第 7図は本発明に係る揚水装置の他の実施形態を示す断面図である。 第 8図は本発明に係る揚水装置の実験検証を行った装置の断面図で ある。  FIG. 7 is a cross-sectional view showing another embodiment of the water pump according to the present invention. FIG. 8 is a cross-sectional view of an apparatus for carrying out an experimental verification of the pumping apparatus according to the present invention.
第 9図は本発明に係る揚水装置で揚水と放水を可能にする条件を計 算した結果を説明する図である。  FIG. 9 is a diagram for explaining a result of calculating conditions for enabling pumping and discharging in the pumping apparatus according to the present invention.
第 1 0図は本発明に係る揚水装置の他の実施形態を示す断面図であ る。 発明を実施するための最良の形態 FIG. 10 is a sectional view showing another embodiment of the water pump according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係る揚水装置及び揚水方法の実施の形態を図面に基づ いて説明する。  Hereinafter, embodiments of a pumping apparatus and a pumping method according to the present invention will be described with reference to the drawings.
まず本発明の揚水装置についてその実施の形態の構成を説明する。 揚水装置 1は、第 1図に示すように、減圧室 2、上昇管 4、放水管 5 、 放水管 5の出口部の絞り形状部 7で大略構成されており、 地下水脈中に 上昇管 4の先端を設置して地下水 Wを汲み上げるものである。  First, the configuration of an embodiment of the pumping device of the present invention will be described. As shown in Fig. 1, the pumping device 1 is roughly composed of a decompression chamber 2, a riser pipe 4, a water discharge pipe 5, and a narrowed section 7 at the outlet of the water discharge pipe 5. The groundwater is pumped up by setting the tip of the groundwater.
減圧室 2は、 内部に水を導入可能にした球形タンクであり、 地面 Gの 上方 (例えば数メートルの位置) に支持部材 1 2及び 1 3で第 1図に示 すように支持され設置されている。 この減圧室 2の上部には真空引きの ための排気管 1 1 と、 この排気管 1 1の途中に設けたストップバルブ 1 6と、 排気管 1 1の他端に支持部材 1 2などを利用して設置された真空 ポンプ 8とが設けられている。 なお、 真空ポンプ 8は容易に取り外せる ように設置されている。 また、 一端が地下水脈に達する上昇管 4と、 先 端に放水口 6を有し揚水した水を放水する放水管 5が接続されている。 したがって、 減圧室 2の水は接続された上昇管 4及び放水管 5に移動可 能なように構成されている。  The decompression chamber 2 is a spherical tank into which water can be introduced, and is supported and installed above the ground G (for example, at a position of several meters) with support members 12 and 13 as shown in Fig. 1. ing. An exhaust pipe 11 for evacuation, a stop valve 16 provided in the middle of the exhaust pipe 11, and a support member 12 at the other end of the exhaust pipe 11 are used in the upper part of the decompression chamber 2. A vacuum pump 8 is installed. In addition, the vacuum pump 8 is installed so that it can be easily removed. A riser pipe 4 having one end reaching the groundwater vein and a discharge pipe 5 having a water discharge port 6 at the front end for discharging the pumped water are connected. Therefore, the water in the pressure reducing chamber 2 is configured to be movable to the riser pipe 4 and the discharge pipe 5 connected thereto.
減圧室 2の材料は、 内部を真空に近い状態に減圧させるために大気圧 で破損や変形が生じることのないような強度を有すればどんな材料で もその機能を発揮できるが、 常に水に接しているために錡に強く、 また 強度とコストを両立する材料として、 例えばステンレス鋼等が望ましい。 上昇管 4は、 減圧室 2に接続されるとともに、 他端を地下水脈 (例え ば深さ数メートル) に沈め、 そこに取水口 1 5を有する開閉弁 9を備え ている。 取水口 1 5から減圧室 2内の上限の水頭線 (A位置) までの高 さ Xは、 1 0 m以下 (例えば 8 m) に設定している。 また、 開閉弁 9は 遠隔操作でその開閉をコン トロールできるように配線され (図示しな い)、 通電すると開閉弁 9が閉じる構成としている。 なお、 減圧室 2を 真空ポンプ 8で減圧状態にする場合は取水口 1 5には開閉弁 9を備え る必要はなく、 後述する他の方法でも減圧状態を作れるように開閉弁 9 を設けている。 The material of the decompression chamber 2 can be used with any material as long as it has sufficient strength so that it does not break or deform at atmospheric pressure in order to decompress the interior to a state close to vacuum. For example, stainless steel is desirable as a material that is strong because it is in contact with the material and that has both strength and cost. The riser pipe 4 is connected to the decompression chamber 2 and has the other end submerged in a groundwater vein (for example, several meters in depth), and is provided with an on-off valve 9 having a water intake 15 therein. The height X from the intake 15 to the upper limit water line (A position) in the decompression chamber 2 is set to 10 m or less (for example, 8 m). The on-off valve 9 is wired so that opening and closing can be controlled by remote control (not shown), and when energized, the on-off valve 9 is closed. When the decompression chamber 2 is decompressed by the vacuum pump 8, an intake valve 15 is provided with an on-off valve 9. The on-off valve 9 is provided so that a reduced pressure state can be created by other methods described later.
また、 上昇管 4の取水口 1 5には、 水以外のもの (砂利など) の侵入 を防ぐために、 フィルター (図示せず) を設けることが望ましい。 放水管 5は、 減圧室 2に接続されるとともに下方に延び、 その端部に は絞り形状部 7を介して内径 dの放水口 6を有している。 この放水口 6 はその断面積が内径 Dの放水管 5よりも小さく、 また上昇管 4の断面積 よりも小さいものとしている。 なお、 放水口 6には、 遠隔操作で開閉可 能な開閉弁 1 4が設けられている。  In addition, it is desirable to provide a filter (not shown) in the intake port 15 of the riser 4 to prevent intrusion of anything other than water (such as gravel). The water discharge pipe 5 is connected to the decompression chamber 2 and extends downward. The water discharge pipe 5 has a water discharge port 6 with an inner diameter d at the end through a throttle-shaped portion 7. The outlet 6 has a cross-sectional area smaller than that of the outlet pipe 5 having the inner diameter D, and smaller than that of the riser 4. The water outlet 6 is provided with an on-off valve 14 that can be opened and closed remotely.
また、 大気圧を p 0、 減圧室 2の圧力を p 1、 取水口 1 5から減圧室 2の水頭線までの垂直高さを H、 水の比重量をア、 放水口 6にかかる下 向きの力 (p 1による押し力と放水管 5内の水の重力による力の和) を F d、 放水口 6にかかる上向きの力 (放水口 6に働く大気圧による押し 上げ力) を F uとすると、 放水管 5の内容積及び絞り形状は、 F d > F uであり、 且つ、 p 1 < p 0— τ Ηの関係を満足するものとした。 これにより、 減圧室 2に揚水後に放水管 5の放水口 6を開放すると、 放水口 6から放水管 5に空気が所定量侵入した後、 放水管 5から放水さ れると同時に取水口 1 5から揚水される状態が開始され、 減圧室 2の圧 力が平衡状態を保つように、 放水管 5内の水の重力による放水と、 放水 に連動して上昇管 4から揚水が行われる構成となる。  The atmospheric pressure is p0, the pressure in the decompression chamber 2 is p1, the vertical height from the water intake 15 to the head of the decompression chamber 2 is H, the specific weight of water is A, and the downward pressure on the outlet 6 The force (p 1 plus the force due to the gravity of water in the discharge pipe 5) is F d, and the upward force on the discharge port 6 (push-up force due to the atmospheric pressure acting on the discharge port 6) is F u Then, the inner volume and the constricted shape of the water discharge pipe 5 satisfy Fd> Fu, and satisfy the relationship of p1 <p0-τΗ. As a result, when the water outlet 6 of the water discharge pipe 5 is opened after pumping into the decompression chamber 2, a predetermined amount of air enters the water discharge pipe 5 from the water discharge port 6, and then water is discharged from the water discharge pipe 5 and simultaneously from the water intake 15. Pumping is started, and the structure is such that the water in the water discharge pipe 5 is discharged by gravity and the water is raised from the riser pipe 4 in conjunction with the water discharge so that the pressure in the decompression chamber 2 is maintained in an equilibrium state. .
この絞り形状部 7の形状については、 後述の揚水の作動説明のところ で詳細に説明する。  The shape of the throttle-shaped portion 7 will be described in detail later in the description of the operation of pumping.
なお、 上昇管 4及び放水管 5の材料は、 減圧室 2と同様な使用環境に あるので、 ステンレス鋼等が望ましい。  Since the material of the riser pipe 4 and the water discharge pipe 5 is in the same use environment as the decompression chamber 2, stainless steel or the like is preferable.
次に、 上記本発明の揚水装置 1による揚水の動作を第 2図から第 6図 を用いて手順を追って説明する。 その際、 本発明の揚水の原理を交えて 説明する。  Next, the operation of pumping water by the pumping apparatus 1 of the present invention will be described step by step with reference to FIGS. 2 to 6. At this time, the principle of pumping of the present invention will be described.
まず初めに、 揚水装置 1を第 1図に示すように地下水脈に上昇管 4を 沈め、 地上に装置本体を設置した後、 真空ポンプ 8を作動させて、 減圧 室 2、 上昇管 4及び放水管 5の真空引きを行う。 すると、 地下数メート ルにある地下水 Wの表面 W Sにも地上とほとんど差のない大気圧が作 用するため、 短時間に地下水 Wは減圧室 2まで上昇する。 First, as shown in Fig. 1, the pumping device 1 submerges the riser 4 in the groundwater vein, installs the main unit on the ground, and operates the vacuum pump 8 to reduce the pressure. Evacuate the chamber 2, riser 4 and water discharge pipe 5. Then, the atmospheric pressure, which is almost the same as the ground surface, acts on the surface WS of the groundwater W, which is several meters below the ground, and the groundwater W rises to the decompression chamber 2 in a short time.
ここで、 減圧室 2を完全な真空状態にすれば水は 1 0 . 3 3 mまで理 論的に上昇可能なことが、 トリチェリの実験として知られている。  Here, it is known as a Toricelli experiment that water can theoretically rise to 10.33 m if the decompression chamber 2 is completely evacuated.
したがって、 第 1図において取水口 1 5から減圧室 2の最高水面まで の高さ Xは上昇管 4の摩擦損失などを考慮しても 1 0 m程度は可能で あり、 実際に本出願人が平成 1 2年 7月 1 6日に横浜において実験を行 つたところ、 1 0 . 1 4 mまで水が上昇したことを確認している。  Therefore, in Fig. 1, the height X from the intake port 15 to the maximum water level of the decompression chamber 2 can be about 10 m, taking into account the friction loss of the riser pipe 4, etc. An experiment was conducted in Yokohama on July 16, 2012, and it was confirmed that water had risen to 0.14 m.
しかし、 揚水装置 1は放水機能に余裕を持たせるために、 揚水高さ X をこの限界値よりも少し小さい値 (例えば 8 m程度) としている。  However, the pumping device 1 sets the pumping height X to a value slightly smaller than this limit value (for example, about 8 m) in order to allow room for the water discharge function.
この場合、 真空ポンプ 8を作動させたままにすると、 排気管 1 1を介 して真空ポンプ 8にも水が達し、 真空ポンプ 8の故障の原因となるので、 真空ポンプ 8の停止手段、 例えば減圧室 2にのぞき窓を設けてそこに水 が近づいたときに真空ポンプ 8を停止するなど、 を設けておく。  In this case, if the vacuum pump 8 is kept operating, water also reaches the vacuum pump 8 via the exhaust pipe 11 and causes a failure of the vacuum pump 8, so that means for stopping the vacuum pump 8, for example, An observation window is provided in the decompression chamber 2, and when the water approaches, the vacuum pump 8 is stopped.
水を少なくとも放水管 5を満水にするために、 X m i nライン以上に、 望ましくは第 1図の高さ X程度の位置まで揚水し、 ストップバルブ 1 6 を閉じ、 真空ポンプ 8を停止する。 この時点で真空ポンプ 8は揚水装置 1から取り外して別の揚水装置の作動など、 他の用途に使用することが できる。  In order to fill the water discharge pipe 5 at least with water, the water is pumped above the X min line, preferably to a position about the height X in FIG. 1, the stop valve 16 is closed, and the vacuum pump 8 is stopped. At this point, the vacuum pump 8 can be removed from the pumping device 1 and used for other purposes, such as operating another pumping device.
次に、 放水口 6の開閉弁 1 4を開放する。 しかし、 放水管 5内の水は すぐに落下せず、 第 2図の矢印 Eに示すように、 空気が放水管 5内に侵 入する。 その理由は、 減圧室 2内の圧力 p 1が真空に近く減圧されてい るために、 放水管 5内の水を下部に押し出す下向きの力 F dが大気圧 p 0により放水管 5内の水を上向きに押す力 F uよりも小さいためであ る。  Next, the on-off valve 14 of the water outlet 6 is opened. However, the water in the water discharge pipe 5 does not immediately fall, and air enters the water discharge pipe 5 as shown by an arrow E in FIG. The reason is that the pressure p 1 in the decompression chamber 2 is reduced to near vacuum, and the downward force F d for pushing out the water in the discharge pipe 5 to the lower part is reduced by the atmospheric pressure p 0. This is because it is smaller than the force F u that pushes upward.
これを数式で示すと、  This can be expressed as a formula:
F d < F u ( 1 ) 式  F d <F u (1)
の関係となる。 この原理は、 ペットボトルに水を完全に満たし、 ふたにごく小さな穴 を開けて逆さにしても水は落下せず、 この穴をある大きさ以上にしたと き空気がその穴から侵入し、 空気と入れ替わって水が落下を始めること で理解される。 It becomes the relationship. This principle is based on the principle that a PET bottle is completely filled with water, a small hole is opened in the lid, and water does not fall even if it is turned upside down. When this hole is made larger than a certain size, air enters through the hole, It is understood that the water begins to fall in place of the air.
ここで、 放水口 6の内径を放水管 5の内径より適度に小さくすること が重要であり、 放水口 6が大きすぎると放水口 6の開閉弁 14を開放し た瞬間に空気が大量に放水管 5に吸い込まれ、 放水管 5内の水は一気に 落水してしまう。  Here, it is important that the inside diameter of the water discharge port 6 be appropriately smaller than the inside diameter of the water discharge pipe 5.If the water discharge port 6 is too large, a large amount of air will be released at the moment when the on-off valve 14 of the water discharge port 6 is opened. The water is sucked into the water pipe 5 and the water in the water discharge pipe 5 drops at a stretch.
これらの関係を理論的に説明するため、 ( 1) 式をさらに詳細に記述 すると以下のようになる。  To theoretically explain these relationships, equation (1) is described in more detail as follows.
放水口 6に働く上向きの力 F 11は単純で、 大気圧 p 0に放水口 6の断 面積 S dを乗じた値である。 すなわち、  The upward force F11 acting on the outlet 6 is simple and is equal to the atmospheric pressure p0 multiplied by the cross-sectional area Sd of the outlet 6. That is,
F u = p O X S d (2) 式  F u = p O X S d (2)
一方、 下向きの力 F dは複雑であり、 放水口 6手前の絞り形状部 7の 形状が影響する。 第 3図に示すように、 まず放水口 6の直上の水の容積 1に作用するカ 1は、 水の比重量をァとして、  On the other hand, the downward force F d is complicated, and is affected by the shape of the throttle-shaped portion 7 in front of the outlet 6. As shown in FIG. 3, first, the mosquito 1 acting on the volume 1 of the water immediately above the outlet 6 is given by
F l =p l XS d + r XV l (3) 式  F l = p l XS d + r XV l (3)
で決まる。 これは、 容積 V Iの水 (断面積は S d) に上方から作用する 圧力 p 1の力と容積 V 1の水の重力の合計である。 Is determined by This is the sum of the force of pressure p 1 and the gravity of water of volume V 1 acting on water of volume V I (cross section S d) from above.
ここで、 放水口 6の設けられた面が第 4図に示すように平底であれば、 容積 V 1の周囲の容積 V 2による力が底面 Zからの反力 N 2とバラン スして打ち消し合うので、 放水口 6にかかる下向きの力 F dは (3) 式 で示される F 1のみである。  Here, if the surface provided with the water outlet 6 is a flat bottom as shown in Fig. 4, the force due to the volume V2 around the volume V1 balances with the reaction force N2 from the bottom Z and cancels out. Therefore, the downward force F d applied to the outlet 6 is only F 1 shown in the equation (3).
しかし、 本発明の実施形態では、 この F 1のみが下向きに力を及ぼす のではなく、 その周囲の容積 V 2の部分も絞り形状部 7の形状のために 下向きに力を及ぼすことになる。 ただし、 容積 V 2による下向きの力 F 2は、 その全てが下向きに働くのではなく、 その一部が下向きに作用す る。  However, in the embodiment of the present invention, not only F1 exerts a downward force, but also a portion of the volume V2 around the F1 exerts a downward force due to the shape of the throttle-shaped portion 7. However, not all of the downward force F2 due to the volume V2 acts downward, but part of the downward force F2 acts.
本実施の形態では、 絞り形状部 7の形が逆円錐台形状であるとし、 そ の場合について第 5図に基づいてその下向きの力の成分を計算する。In the present embodiment, it is assumed that the shape of the aperture-shaped portion 7 is an inverted truncated cone shape. In the case of, the component of the downward force is calculated based on FIG.
F 2は絞り形状部 7の傾斜面 Jに沿った力 F 2 1と斜面を押す力 F 22に分解される。 この傾斜面 Jに沿った力 F 2 1は、 絞り形状部 7の 傾斜角を 0として、 F2 is decomposed into a force F21 along the inclined surface J of the drawn portion 7 and a force F22 for pushing the inclined surface. The force F 21 along the inclined surface J is expressed as follows:
F 2 1 =F 2 X s i n 0 (4) 式  F 2 1 = F 2 Xs i n 0 (4)
また、 斜面を押す力 F 22は、 Also, the force F22 pressing the slope is
F 22 =F 2 X c o s 9 (5) 式  F 22 = F 2 X cos 9 (5)
となる。 Becomes
ここで、 斜面を押す力 F 22は、 逆に傾斜面 Jから反力 Nを受けて力 を打ち消し合う。  Here, the force F22 pushing the slope receives the reaction force N from the slope J and conversely cancels out the forces.
しかし、 傾斜面 Jに沿った力 F 2 1は、 放水口 6に影響を及ぼす。 第 6図に示すように、傾斜面 Jに沿った力 F 2 1は、 F 2の場合と同様に、 垂直方向の力 F 23と水平方向の力 F 24に分解される。  However, the force F 21 along the slope J affects the outlet 6. As shown in FIG. 6, the force F 21 along the inclined surface J is broken down into a vertical force F 23 and a horizontal force F 24 as in the case of F 2.
この水平方向の力 F 24は、  This horizontal force F 24
F 24 = F 2 1 X c o s 0 (6) 式  F 24 = F 2 1 X cos 0 Equation (6)
となる力 F 2が逆円錐台形状の容積 V 2により生じるものなので、 逆 円錐台形状の中心軸対象形状により対象位置でお互いに打ち消しあつ てバランスされる。 Since the force F 2 is generated by the inverted truncated cone-shaped volume V 2, the forces are canceled out and balanced at the target position by the inverted truncated cone shaped central axis symmetric shape.
しかし、 垂直方向の力 F 23は、  But the vertical force F 23 is
F 23 =F 2 1 X s i n 0 (7) 式  F 23 = F 2 1 Xs i n 0 (7)
と表され、 この力が放水口 6に向かって作用することになる。 This force acts toward the outlet 6.
ここで、 (5) 式を (7) 式に代入すると、  Here, substituting equation (5) into equation (7) gives
F 23 =F 2 X ( s i n ^) 2 (8) 式 F 23 = F 2 X (sin ^) 2 (8)
と表される。 It is expressed as
F 2は体積 V 2の水に上方から作用する圧力 p 1の力と容積 V 2の 水の重力の合計であるので、  Since F 2 is the sum of the force of pressure p 1 acting on water of volume V 2 from above and the gravity of water of volume V 2,
F 2 = p 1 X (S a - S d) + r x V 2 (9) 式  F 2 = p 1 X (S a-S d) + r x V 2 (9)
ここで、 S aは放水管 5の断面積である。 Here, Sa is the cross-sectional area of the water discharge pipe 5.
したがって、 放水管 5内の水を下部に押し出す下向きの力 F dは、 F d =F l + F 2 3 Therefore, the downward force F d that pushes the water in the discharge pipe 5 downward is F d = F l + F 2 3
= l x S d + r xv i + ( 1 x (S a - S d) + r V 2) X ( s i n 2 ( 1 0) 式 = lx S d + r xv i + (1 x (S a-S d) + r V 2) X (sin 2 (1 0)
となる。  Becomes
放水口 6の開閉弁 1 4を開放した後、 ある時間帯は放水管 5内の水は 落下せず、 空気が放水管 5を通って減圧室 2の内部に侵入する状態が続 く。 この過程において、 減圧室 2の圧力 p 1は F d〉F uになるまで増 大し 。  After opening the on-off valve 14 of the outlet 6, the water in the outlet 5 does not fall for a certain period of time, and the air continues to enter the decompression chamber 2 through the outlet 5. In this process, the pressure p 1 of the decompression chamber 2 increases until Fd> Fu.
さて、 開閉弁 1 4を開放した後、 空気が放水管 5を通って減圧室 2の 内部に侵入する状態では、 減圧室 2の水位は Aの位置 (垂直高さ X) か らゆっく り低下する。 このとき、 上昇管 4の中の水は、 減圧室 2に空気 が入った分だけ押されて取水口 1 5から一時的に出る。  By the way, after the on-off valve 14 is opened and the air enters the decompression chamber 2 through the water discharge pipe 5, the water level of the decompression chamber 2 gradually decreases from the position A (vertical height X). descend. At this time, the water in the riser pipe 4 is pushed by the amount of air into the decompression chamber 2 and temporarily comes out of the water intake 15.
この空気が減圧室 2に侵入する状態の後、 ( 1 ) 式の F d <F uの関 係が変わり、  After this air enters the decompression chamber 2, the relation of F d <F u in equation (1) changes,
F d = F u ( 1 1 ) 式  F d = F u (1 1)
となったとき、 空気の減圧室 2への流入が停止し、 その後、 , The flow of air into the decompression chamber 2 stops, and then
F d>F u ( 1 2 ) 式  F d> F u (1 2)
の関係になり、 放水口 6より放水が始まる。 The water discharge starts from water discharge port 6.
放水条件を明確にするため、 ( 1 2 ) 式に ( 1 0) 式と (2 ) 式を代入 すると、 Substituting equations (10) and (2) into equation (12) to clarify the water discharge conditions,
p l X S d + r X V l + ( p 1 X (S a - S d) + r V 2 ) X ( s i η θ ) 2> p O X S d ( 1 3) 式 pl XS d + r XV l + (p 1 X (S a-S d) + r V 2) X (si η θ) 2 > p OXS d (1 3)
となる。 Becomes
これと同時に、 上昇管 4より揚水が始まる。 この時点で、 水位 (水頭 線) は減圧室 2の容積や上昇管の内径などの条件により変わるが、 実験 では Bの位置まで水頭線が低下するが、 その後、 この水頭線の位置は一 定に保たれることが分かっている。 なお、 この実験は後述するように本 実施の形態に近い形態で行っており、 実証されている内容である。 ここで、 放水口 6より放水が起こると同時に上昇管 4より揚水が始ま る理由は、 減圧室 2が上部をストップバルブ 1 6で閉塞されているため に、 放水口 6より空気の侵入なしに放水されると、 減圧室 2の圧力 p 1 が低下するため、 その低下を補うように上昇管 4より揚水が可能になる と定性的に説明できる。 その結果、 減圧室 2の圧力が平衡状態を保つよ うに放水管 5内の水の重力による放水と、 放水に連動して上昇管 4から 揚水が行われ、 水頭線の位置は一定に保たれることになる。 At the same time, pumping starts from riser 4. At this point, the water level (headline) changes depending on conditions such as the volume of the decompression chamber 2 and the inner diameter of the riser. In the experiment, the headline dropped to the position B, but after that, the position of the headline was fixed. It is known to be kept. Note that this experiment was performed in a form close to the present embodiment, as described later, and has been proven. Here, at the same time when water is discharged from the water discharge port 6, pumping starts from the riser 4. The reason is that, because the upper part of the decompression chamber 2 is closed by the stop valve 16, if water is discharged from the water outlet 6 without intrusion of air, the pressure p 1 of the decompression chamber 2 decreases, and the pressure drops. It can be qualitatively explained that pumping is possible from the riser 4 so as to supplement the above. As a result, the water in the water discharge pipe 5 is discharged by gravity and pumped from the riser pipe 4 in conjunction with the water discharge so that the pressure in the decompression chamber 2 is maintained in an equilibrium state, and the position of the headline is kept constant. Will be.
ここで、 取水口 1 5から揚水が可能な条件を数式で示す。  Here, the conditions under which water can be pumped from the intake 15 are shown by mathematical expressions.
第 1図に示すように、 水源の水面 WSから水頭線 Bまでの高さを Hと すれば、 この間の水の重量による圧力が r XH (rは水の比重量 = 1 0 0 0 k g f /mz) となり、 水面 WSには大気圧 p 0が作用しているた め、 流体に働く重力と圧力の関係により、 As shown in Fig. 1, assuming that the height from the water surface WS of the water source to the water head line B is H, the pressure due to the weight of the water during this time is r XH (r is the specific weight of water = 100 kgf / m z ), and the atmospheric pressure p 0 is acting on the water surface WS.Therefore, due to the relationship between gravity and pressure acting on the fluid,
p Kp O - r XH ( 1 4) 式  p Kp O-r XH (14)
の場合に揚水が可能となる。 In this case, water can be pumped.
この ( 1 4) 式の条件を満たす p 1であり、 且つ、 ( 1 2) 式、 詳し くは ( 1 3) 式を満足する p 1において、 放水口 6からの放水と上昇管 4からの揚水が可能になる。  At p 1 which satisfies the condition of this equation (14) and which satisfies the equation (1 2), specifically the equation (13), the water discharge from the water discharge port 6 and the riser pipe 4 Pumping becomes possible.
この状態を可能にする条件は、 放水管 5の内容積 V 0 (特に V 2) と 絞り形状部 7の形状を ( 1 3) 式と ( 1 4) 式を両立するように与える ことである。  The condition that enables this state is that the inner volume V 0 (particularly V 2) of the water discharge pipe 5 and the shape of the constricted portion 7 are given so as to satisfy both the expressions (13) and (14). .
この条件の成立性は、 後述するように実験でも確認しているが、 以下 に理論的に数値計算したので、 その内容を説明する。  The feasibility of this condition has been confirmed in experiments, as described later, but is described below in terms of theoretical calculations.
放水口 6の内径 d = 2 mm, 水頭線 Bの位置と放水口 6の位置の差 h Outer diameter of outlet 6 d = 2 mm, difference between head B and outlet 6 h
= 1 0 0 c m、 放水管 5の内径 D= 6 c m、 絞り形状部 7の傾斜角 Θ == 100 cm, inner diameter of water discharge pipe 5 D = 6 cm, inclination angle of iris 7 Θ =
6 0 ° とした場合、下向きの力 F dと上向きの力 F uは( 1 0 )式と(2) 式より、 例えば、 When the angle is 60 °, the downward force F d and the upward force F u are calculated from the equations (10) and (2) as follows:
p 1 = 0. 0 5 k g f Z c m2のとき、 When p 1 = 0.0 5 kgf Z cm 2 ,
F d = 5. 6 6 k g f F u = 0. 0 3 1 k g f  F d = 5.66 kg f F u = 0. 0 3 1 kg f
p 1 = 0. l k g f Zcm2のとき、 When p 1 = 0.lkgf Zcm 2 ,
F d - 7. 5 5 k g f F u = 0. 0 3 1 k g f のようになり、 圧倒的に下向きの力 F dが上向きの力 F uより大きいこ とが分かる。 F d-7.5 5 kgf F u = 0.0 3 1 kgf It can be seen that the downward force F d is overwhelmingly greater than the upward force F u.
また、 減圧室 2の圧力 p 1が 0. 05 k g f Zcm2の場合、 上昇管 4からの揚水能力は 9m以上ある (理論上 9. 5 m) ために、 H=8m の上昇管 4ならば容易に減圧室 2に揚水可能である。 When the pressure p 1 of the decompression chamber 2 is 0.05 kgf Zcm 2 , the pumping capacity from the riser 4 is 9 m or more (9.5 m in theory). Water can be easily pumped into the decompression chamber 2.
(13) 式などの理論式の検証のために、 完全真空で p 1 = 0、 絞り 形状部 7の傾斜角 0 = 0° (放水管 5が平底形状) とすれば  In order to verify the theoretical formulas such as Eq. (13), if p 1 = 0 in full vacuum and the inclination angle of the constriction shape part 0 = 0 ° (the water discharge pipe 5 has a flat bottom shape)
p 1 = 0 k g f Zc m2のとき、 When p 1 = 0 kgf Zc m 2 ,
F d = 0 k g f F u = 0. 031 k g f F d = 0 k g f F u = 0.03 k g f
となり、 Fd<Fuであるので、 放水しないことが分かる。 Since Fd <Fu, it can be seen that water is not discharged.
なお、 絞り形状部 7の傾斜角 0 = 0 ° であれば (第 4図の場合)、 1 = 0. 8 k g f c m2になっても、 Note that if the inclination angle of the aperture-shaped portion 7 is 0 = 0 ° (in the case of Fig. 4), even if 1 = 0.8 kgfcm 2 ,
F d = 0. 028 k g f F u = 0. 031 k g f F d = 0.02 k g f F u = 0.03 k g f
となり、 Fdく Fuであるので、 放水しないことが分かる。 すなわち、 放水管 5の出口が平底では本発明の目的とする揚水装置は成立しない ことが理論式からも確認できる。 It becomes Fd and Fu, so you can see that water is not discharged. In other words, it can be confirmed from the theoretical formula that the water pumping device aimed at by the present invention is not established when the outlet of the water discharge pipe 5 has a flat bottom.
ここで、 放水口 6の内径 dと放水管 5の内径 Dが具体的にどのような 値をとるかについて以下に検討した。  Here, specific values of the inner diameter d of the water discharge port 6 and the inner diameter D of the water discharge pipe 5 were examined below.
第 9図は、 横軸に揚水が可能な減圧室 2の圧力 p 1の上限値 (これよ り大きいと揚水ができないという意味)、 縦軸に放水口 6の内径 dと放 水管 5の内径 Dの比率 d ZDをとり、 放水可能な d ZDの上限値を計算 してプロットし、 それを直線表示している。  Fig. 9 shows the upper limit of the pressure p1 in the decompression chamber 2 where water can be pumped on the horizontal axis (meaning that pumping cannot be performed if it is larger than this), and the vertical axis shows the inner diameter d of the outlet 6 and the inner diameter of the outlet pipe 5. Taking the ratio d ZD of D, calculating and plotting the upper limit of d ZD at which water can be discharged, and displaying it as a straight line.
この図は、 放水管 5の内径 D= 6 c m、 放水口 6の絞り形状は傾斜角 度 0 = 45 ° とし、 放水管 5の放水口 6から水頭線までの高さ hをパラ メータとして、 h= 1 00 c m及び 200 c mの場合について計算した ものである。  In this figure, the inside diameter of the water discharge pipe 5 is D = 6 cm, the throttle shape of the water discharge port 6 is the inclination angle 0 = 45 °, and the height h from the water discharge port 6 of the water discharge pipe 5 to the head line is a parameter. Calculated for h = 100 cm and 200 cm.
揚水装置 1の上昇管 4を、 地下何メートルの深さに設けるか及び地上 何メートルに減圧室 2を設けるかにより、 揚水可能な減圧室 2の圧力 p 1の上限値が決められる。 例えば水源位置が地下 5 で、 地上 2mに水 頭線を得られるようにした場合、 垂直高さ H= 7mとなり、 7mの揚水 が可能な P 1は 0. 3 k g f Zcm2であることが X 1軸と X 2軸の対 応で分かる。 The upper limit of the pressure p1 of the decompression chamber 2 that can be pumped is determined by the depth of the riser 4 of the pumping device 1 and the number of meters below the ground and the number of meters above the decompression chamber 2. For example, the location of the water source is 5 underground, and 2m above the ground If so obtained head line, the vertical height H = 7m, and the pumping is possible P 1 of 7m is seen in correspondence between the X 1 axis and the X 2 axis be 0. 3 kgf Zcm 2.
ここで、 水頭線から放水口 6までの高さ ]!を 1 m確保すると、 直線 L 1 (第 9図参照) が計算される。 この直線 L 1の意味は、 7mの揚水に 必要な p iが 0. 3 k g f /c m2であるので、 これに対応する縦軸の d ZDの値が約 0. 5 (第 9図のライン G 2) となり、 このとき放水可 能な dZDの上限値は 0. 5であることを意味している。 Here, if the height from the headline to the water outlet 6]!] Is secured 1 m, the straight line L1 (see Fig. 9) is calculated. The meaning of this straight line L 1, so necessary for pumping of 7m pi is a 0. 3 kgf / cm 2, the value of d ZD on the vertical axis about 0.5 corresponding thereto (Figure 9 line G 2), which means that the upper limit of dZD at which water can be discharged is 0.5.
すなわち、 放水管 5の内径 D= 6 c mの条件で計算したので、 放水口 6の内径 d = 3 c m以下に絞らないと継続的な放水できないことを意 味している。  That is, since the calculation was performed under the condition of the inner diameter D of the water discharge pipe 5 = 6 cm, it means that the water cannot be continuously discharged unless the inner diameter d of the water outlet 6 is reduced to 3 cm or less.
h= 2 0 0 cmの場合は、 放水管 5内の水の重力が大きいため、 比率 d/Dの上限値は同条件 (横軸の p 1 = 0. 3 k g f /c m2の場合) において約 0. 64となり、 dは 3. 8以下となるので設計範囲は広が る。 しかし、 h = 2 0 0 c mでは地上 2 mの条件で計算しているので、 地面に達することになり、 設計限界となる。 したがって、 深い位置にあ る地下水を揚水するためには地下の深さを大きくとることが望ましい ので、 hはあまり大きくしない方がよく、 水の重量は放水管 5の内径 D で確保するのが地下水の揚水装置 1の場合はよい設計となる。 When h = 200 cm, the upper limit of the ratio d / D is the same under the same condition (when p 1 = 0.3 kgf / cm 2 on the horizontal axis) because the gravity of water in the discharge pipe 5 is large. It is about 0.64, and d is 3.8 or less, so the design range is widened. However, when h = 200 cm, the calculation is performed under the condition of 2 m above the ground, so that it reaches the ground, which is a design limit. Therefore, it is desirable to increase the depth of the underground in order to pump deep groundwater at a deep position.Therefore, h should not be so large, and the weight of water should be secured by the inner diameter D of the discharge pipe 5. Groundwater pumping system 1 is a good design.
したがって、 揚水可能な P iは、 地下水の揚水装置 1の場合、 通常、 地下水脈が 5mより深い場所に多いといわれているので、 このような用 途では比率 d/D≤ 0. 5とするのが望ましいと分かる。  Therefore, in the case of groundwater pumping system 1, the pumpable Pi is usually said to be deeper than 5m in the groundwater vein, so the ratio d / D ≤ 0.5 for such applications Is desirable.
地下水の揚水以外の目的では、 例えば池から水を汲み上げる場合など、 揚水高さの限界が小さくても可能であり、 4mの揚水目的では第 9図の X 1軸と X 2軸の対応に示すように、 p l = 0. 6 k g i /cm2なの で、 比率 (1ZD= 0. 8 (ライン G 1 ) で可能であり、 各種用途に使用 可能となる。 For purposes other than pumping groundwater, it is possible to set the pumping height to a small limit, for example, when pumping water from a pond. Thus, pl = 0.6 kgi / cm 2 , so that the ratio is possible (1ZD = 0.8 (line G 1)), and it can be used for various purposes.
また、 比率 d ZDの下限については、 d ZDが小さいほど継続的な放 水限界を行うのには余裕があるが (直線 L 1が左下がりのため)、 d / Dが小さすぎると (dが小さすぎると) 絞られすぎて放水量小さくなつ てしまう。 放水量 Qの検討は後で詳細に説明するが、 d = 0. 2 cmで Q= 360 c c / s得られており、 これ以上小さくなると Qは大きく減 少し、 またゴミ詰まりなど他の問題が生じる。 したがって、 比率 dZD =0. 2/6 = 0. 03程度が下限 (ライン G4) と考えられ、 より好 ましくは流量 Qを十分に得られ、 ゴミ詰まりなどの問題が起こりにくい ように、 dZDが 0. 2以上 (ライン G 3) とする。 Regarding the lower limit of the ratio d ZD, the smaller the d ZD, the more room there is for the continuous water discharge limit (because the straight line L 1 falls to the left). If D is too small (d is too small), it will be squeezed too much and the amount of water discharged will be small. The water discharge amount Q will be discussed in detail later.However, at d = 0.2 cm, Q = 360 cc / s was obtained.If the water discharge amount becomes smaller, Q will decrease significantly, and other problems such as clogging with dust will occur. Occurs. Therefore, the ratio dZD = 0.2 / 6 = 0.03 is considered to be the lower limit (line G4). More preferably, the flow rate Q is sufficiently obtained, and the dZD is set so that problems such as clogging of the dust hardly occur. Is greater than or equal to 0.2 (line G3).
ここで、 放水管 5の内径 Dについては、 D = 3 cm、 9 cmと変えて 同様に計算したが、 この比率 d ZDの値はまったく同じ範囲が OKゾー ンとなることが分かった。 したがって、 放水管 5の内径 Dの絶対値に関 係なく、 0. 03≤dZD≤0. 8、 より好ましくは 0. 2≤(1ノ0≤ 0. 5とする。  Here, the inside diameter D of the water discharge pipe 5 was calculated in the same manner except that D = 3 cm and 9 cm, but it was found that the value of the ratio d ZD was the OK zone in exactly the same range. Therefore, regardless of the absolute value of the inner diameter D of the water discharge pipe 5, 0.03≤dZD≤0.8, more preferably 0.2≤ (1≤0≤0.5).
また、 絞り形状の傾斜角度 は、 大きいほど限界線 L 1が上方に移動 し、小さいほど下方にいく傾向にあるが、その傾きは同じである。また、 この傾斜角度 0は小さすぎると放水の力が大きく低下し、 大きすぎると、 絞り部の長さが長くなつてしまうので、 多くの場合の計算の結果、 ίΜま 1 0° 〜80° にすること、 より好ましくは 30° 〜60 ° がよいこと が分かった。  Also, as the inclination angle of the aperture shape increases, the limit line L1 tends to move upward and as the inclination angle decreases, the limit line L1 tends to move downward, but the inclination is the same. Also, if the inclination angle 0 is too small, the water discharge power will be greatly reduced, and if it is too large, the length of the throttle will be long. It was found that the angle was more preferably 30 ° to 60 °.
なお、 放水管 5の絞り形状 7は、 この実施の形態のように直線に限定 されることはなく、 連続的に角度が変化する曲線のものでも同様の機能 があり、 この場合はその曲線を近似する平均傾斜角度を として考慮す れば、 上記傾斜角度 Θの検討結果を適用することが可能である。  It should be noted that the throttle shape 7 of the water discharge pipe 5 is not limited to a straight line as in this embodiment, and a curve having a continuously changing angle has a similar function. If the approximate average inclination angle is considered as, it is possible to apply the examination result of the inclination angle 上 記.
以上の検討により、 本実施の形態の揚水装置 1は、 真空ポンプ 8を停 止後に揚水及び落水が可能であることが数値的にもわかった。 この検討 結果を実験でも確認したので、 その概要を以下に説明する。  From the above examination, it was numerically understood that the pumping apparatus 1 of the present embodiment can pump and drop water after the vacuum pump 8 is stopped. The results of this study have been confirmed in experiments, and the outline is described below.
実験装置の構成は第 8図に示すような実験装置 1 00であり、 この実 験装置 1 00は、 減圧室 2 0、 貯水.筒 3 0、 上昇管 40、 放水管 50、 放水口 60、 絞り形状部 7 0で大略構成されており、 水槽 1 03中に 4 本の上昇管 40の先端を設置して水 Wを汲み上げる装置である。 なお、 内部の様子が明瞭に分かるように減圧室 2 0、貯水筒 3 0、上昇管 4 0、 放水管 5 0、 放水口 6 0、 絞り形状部 7 0は全て硝子で製作してある。 この実験装置 1 0 0の構成をさらに説明すると、 減圧室 2 0は、 内部 に水を導入可能にした球形タンクであり、 内容積は約 2 0リッ トル、 全 高は約 2メートルで、 4本の上昇管 4 0で第 8図に示すように設置され ている。 この減圧室 2 0の上部には真空引きが可能なように排気管 1 1 0と、 排気管 1 1 0の先端に閉塞栓 1 6 0とが設けられている。 また、 減圧室 2 0の下部には貯水筒 3 0と、 一端が水槽 1 0 3に達する上昇管 4 0と、 先端に放水口 6 0を有し揚水した水 Wを放水する放水管 5 0が 接続されている。 The configuration of the experimental apparatus is an experimental apparatus 100 as shown in Fig. 8, and this experimental apparatus 100 is composed of a decompression chamber 20, a reservoir, a cylinder 30, a riser 40, a water discharge pipe 50, a water discharge port 60, This device is generally constituted by a throttle-shaped portion 70, and is a device for pumping water W by installing the tips of four risers 40 in a water tank 103. In addition, The decompression chamber 20, water tank 30, riser pipe 40, water discharge pipe 50, water discharge port 60, and iris-shaped part 70 are all made of glass so that the inside can be clearly seen. To further explain the configuration of the experimental apparatus 100, the decompression chamber 200 is a spherical tank into which water can be introduced, and has an internal volume of about 20 liters and a total height of about 2 meters. The riser 40 is installed as shown in Fig. 8. An evacuation pipe 110 is provided above the decompression chamber 20 so that evacuation can be performed, and an obstruction plug 160 is provided at the end of the evacuation pipe 110. In addition, a water reservoir 30 at the lower part of the decompression chamber 20, a rising pipe 40 reaching one end to the water tank 103, and a water discharge pipe 50 having a water discharge port 60 at the end to discharge the pumped water W 50. Is connected.
貯水筒 3 0は減圧室 2 0の下部に位置し減圧室 2 0と連結され、 減圧 室 2 0を人間の頭にたとえると、 貯水筒 3 0は胴体に相当する円柱形状 であり、 その肩部から上昇管 4 0が下部に延び、 下方には放水管 5 0と 接続された形状のものである。 その内容積は約 1 4リツ トルである。 し たがって、貯水筒 3 0の上部の水は接続された減圧室 2 0、上昇管 4 0、 放水管 5 0のどこにでも移動可能なように構成されている。  The water storage cylinder 30 is located below the decompression chamber 20 and is connected to the decompression chamber 20.If the decompression chamber 20 is compared to a human head, the water storage cylinder 30 has a cylindrical shape corresponding to a body, and has a shoulder. The riser pipe 40 extends downward from the part, and has a shape connected to the water discharge pipe 50 below. Its internal volume is about 14 liters. Therefore, the water in the upper part of the water storage tank 30 is configured to be movable to any of the connected decompression chamber 20, riser pipe 40, and water discharge pipe 50.
上昇管 4 0の内径は 2 . 1 c mであり、 上昇管 4 0下部で水槽 1 0 3 の水中に取水口 1 5 0を備えており、 この取水口 1 5 0には開閉栓 1 0 2が取水口 1 5 0に差し込まれている。  The inner diameter of the riser 40 is 2.1 cm, and a water intake 150 is provided at the lower part of the riser 40 in the water of the water tank 103. Is plugged into the intake 150.
放水管 5 0は、 貯水筒 3 0に接続されるとともに下方に延び、 その端 部には絞り形状部 7 0を介して放水口 6 0を有し、 放水管 5 0の内径は 約 3 c mで、 長さは約 1 5 c mである。 また、 絞り形状部 7 0は、 放水 管 5 0の断面積が放水口 6 0に向かって滑らかに変化するように構成 している。  The water discharge pipe 50 is connected to the water storage cylinder 30 and extends downward, and has a water discharge port 60 at its end through a throttle-shaped portion 70, and an inner diameter of the water discharge pipe 50 is about 3 cm. And the length is about 15 cm. Further, the throttle shape portion 70 is configured such that the cross-sectional area of the water discharge pipe 50 smoothly changes toward the water discharge port 60.
この絞り形状部 7 0の形状は、 取水口 1 5から貯水筒 3に揚水し且つ 放水口 6から放水する状態を安定的に維持可能とする絞り形状となる ように検討して設計している (ガラス管の成形品)。  The shape of the throttle shape portion 70 is designed and studied so as to be able to stably maintain a state of pumping water from the water intake port 15 to the water storage cylinder 3 and discharging water from the water discharge port 6. (Molded glass tube).
なお、 放水口 6 0の口径は d 1 = 2 mmで、 放水口 6 0には止水栓 1 4 0が設けられている。 また、 水槽 1 0 3には、 水が第 8図のように満 たされている。 The diameter of the water outlet 60 is d 1 = 2 mm, and the water outlet 60 is provided with a water stopcock 140. The water tank 103 is filled with water as shown in Fig. 8. Has been done.
この実験装置 1 0 0を用いて、 上記実施の形態で説明した揚水装置 1 の揚水 ·落水の原理を以下のように確認した。  Using this experimental apparatus 100, the principle of pumping and falling of the pumping apparatus 1 described in the above embodiment was confirmed as follows.
まず、 真空ポンプで減圧室を真空引きすることで水が 1 0 . 1 4 mま で上昇することは前述のように予備実験で確認していたので、 今回は真 空ポンプを使わない方法を用いた。 すなわち、 減圧室 2 0の上部の排気 口 1 1 0から直接水を満水状態に入れ、 排気口 1 1 0を閉塞栓 1 6 0を 閉塞して、 真空引きしたのと同じ状況を作った。  First of all, it was confirmed by preliminary experiments that water rises to 10.14 m by evacuating the decompression chamber with a vacuum pump, as described above. Using. That is, water was directly filled with water from the exhaust port 110 on the upper part of the decompression chamber 20, and the exhaust port 110 was closed with the plug 160, creating the same situation as when the chamber was evacuated.
この状態は、 実施の形態で説明したように、 水を所定の高さ Xまで上 昇させストップバルブ 1 6を閉じ、 真空ポンプ 8を停止した状態に相当 する。 なお、 この時点で減圧室 2 0は減圧された状態ではないが、 減圧 室 2 0内は満水状態にあるので、 放水が行われる状態では瞬時に減圧状 態が形成される。  This state corresponds to a state in which water is raised to a predetermined height X, the stop valve 16 is closed, and the vacuum pump 8 is stopped, as described in the embodiment. At this point, the pressure in the decompression chamber 20 is not reduced, but since the pressure in the decompression chamber 20 is full, a decompression state is instantaneously formed in a state where water is discharged.
ここで、 2通りの方法を実験した。 一つは先に止水栓 1 4 0を抜き、 後から取水栓 1 0 2を抜く方法 ( a )、 もう一つは先に取水栓 1 0 2を 抜き、 後から止水栓 1 4 0を抜く方法 (b ) である。  Here, two methods were tested. One method is to remove the water stopcock 140 first and then the water stopcock 102 (a). The other is to remove the water stopcock 102 first and then stop the water stopcock 140 (B).
初めに、 (a ) の場合の実験結果について説明する。  First, the experimental results in the case (a) will be described.
先に止水栓 1 4 0を抜き、 後から間断なく (時間にすると 1秒程度) 取水栓 1 0 2を抜くと、 放水口 6 0から空気が放水管 5 0、 貯水筒 3 0 を通って減圧室 2 0に入る。 この状態がしばらく続き、 減圧室 2 0の水 位は第 8図のライン Cまで低下した。  Pull out the water stopcock 140 first and then without interruption (about 1 second in time). After pulling out the water stopcock 102, air passes from the water discharge port 60 to the water discharge pipe 50 and the water storage tank 30. And enter the decompression chamber 20. This state continued for a while, and the water level in the decompression chamber 20 dropped to line C in Fig. 8.
そして、 放水口 6 0より放水が始まった。 この放水状態は 1時間経つ ても連続しており、 加えて、 水頭線 Cが第 8図の Cの位置で変化しない 状態を維持することがわかった。  And the water discharge started from the water outlet 60. It was found that this water discharge state was continuous even after 1 hour, and that the water head line C remained unchanged at the position of C in Fig. 8.
この事実は、 減圧室 2 0の圧力 p 1が変化せず、 放水口 6 0から放水 した量だけ上昇管 4 0から揚水しているためと考えられ、 上記実施の形 態が成立することを証明している。  This fact is considered to be because the pressure p1 in the decompression chamber 20 does not change and water is pumped up from the riser pipe 40 by the amount discharged from the water discharge port 60, and the above-mentioned embodiment is established. Prove.
次に、 (b ) の方法で先に取水栓 1 0 2を抜き、 その後、 間断なく (時 間にすると 1秒程度) 止水栓 1 4 0を抜くと、 この場合も (a ) の場合 と同様の現象を生じることがわかった。 Next, pull out the water faucet 102 first by the method (b), and then without interruption (about 1 second if it is timely), then pull out the water faucet 140, and in this case also in the case of (a) It has been found that the same phenomenon occurs.
したがって、 どちらの方法でも上記実施の形態の揚水 ·落水は成立す ることが分かった。  Therefore, it was found that the pumping / falling of the above-mentioned embodiment was established by either method.
では、 実際に揚水量がどの程度得られるのか見積もるために、 次に、 放水口 6から流れ出る流量の机上検討を行った。  Then, in order to estimate how much the pumped water can actually be obtained, next, a table-top study of the flow rate flowing out of the outlet 6 was performed.
重力の場において定常的に流動する非圧縮性流体中の流れについて は、 エネルギー不滅の定理に基づき、 ベルヌーィの定理を適用できるこ とが流体力学の分野において知られている。 ベルヌ■ ~^ rの定理は、 流れ の速度を v、 圧力を p、 基準面からの高さを hとすれば、  It is known in the field of fluid dynamics that Bernoulli's theorem can be applied to the flow in an incompressible fluid that constantly flows in a gravitational field, based on the energy immortality theorem. The Berne ■ ~ ^ r theorem is that if the velocity of a flow is v, the pressure is p, and the height from the reference plane is h,
V 2/ (2 g) + p/r + =一定 ( 15 ) 式 V 2 / (2 g) + p / r + = constant (15)
と表わされる。 It is expressed as
ここで、 gは重力加速度 (=9. 8mZs 2)、 アは液体の比重量であ る。 Here, g is the gravitational acceleration (= 9.8 mZs 2 ), and a is the specific weight of the liquid.
V 2/ (2 g) は速度水頭と呼ばれ、 単位重量の流体が持つ運動エネ ルギーを示している。 V 2 / (2 g) is called the velocity head and indicates the kinetic energy of a unit weight of fluid.
pZrは圧力水頭と呼ばれ、 単位重量の流体が持つ圧力エネルギーを 示している。  pZr is called the pressure head and indicates the pressure energy of a unit weight of fluid.
また、 hは位置水頭と呼ばれ、 単位重量の流体が持つ位置エネルギー を示している。  H is called the potential head and indicates the potential energy of a unit weight of fluid.
したがって、 重力の場において定常的に流動する非圧縮性流体中の流 れについては、 運動エネルギーと圧力エネルギーと位置エネルギーの合 計である全エネルギーは一定であることを示している。  Therefore, for a flow in an incompressible fluid that constantly flows in a gravitational field, the total energy, which is the sum of kinetic energy, pressure energy, and potential energy, is constant.
本実施の形態の放水管 5内の水が放水口 6から放水する流れについ て上記ベルヌ一ィの定理を単純に適用すれば、 水頭線 Cの位置 (ここの 速度を V 1、 高さを h 1とする) における全エネルギーと、 放水口 6の 位置 (ここの速度を V 2、 高さを h 2とする。 なお圧力は大気圧で P 0 である) で (15) 式を書き表すと、  By simply applying the Bernoulli's theorem to the flow of water in the water discharge pipe 5 from the water discharge port 6 in the present embodiment, the position of the water head line C (the speed here is V 1 and the height is h1) and the position of the outlet 6 (the velocity here is V2, the height is h2, and the pressure is P0 at atmospheric pressure). ,
V 12/ ( 2 g) + p 1 / r + h 1 V 1 2 / (2 g) + p 1 / r + h 1
= v 22Z ( 2 g) 十 p 0 十 h 2 (16) 式 となる。 = v 2 2 Z (2 g) 10 p 0 10 h 2 (16) Becomes
しかし、 放水口 6の出口における圧力エネルギーが p OZrであるの に対し、 位置 Cにおける圧力エネルギーは、 放水管 5内の容積 V 2の水 に上方から作用する圧力 P 1の力だけでなく、 容積 V 2の水の重力の合 計である (9) 式の F 2が放水口 6の断面積 S dに及ぼす力 F 23/S dも加わると考えられ、  However, while the pressure energy at the outlet of the outlet 6 is p OZr, the pressure energy at the position C is not only the force of the pressure P 1 acting on the water of the volume V 2 in the outlet pipe 5 from above, but also It is considered that the force F23 / Sd exerted on the cross-sectional area Sd of the outlet 6 by F2 in Eq. (9), which is the total gravity of water of volume V2,
p l/r+F 23/S d  p l / r + F 23 / S d
と位置 Cにおける圧力エネルギーは表される。 And the pressure energy at position C is represented.
また、 位置 Cにおける速度 V 1は流路面積を絞られた放水口 6の速度 V 2に比べて圧倒的に遅いので、 V 1 = 0で計算できる。 (これは流体 力学の分野では通常行われることである。)  In addition, since the speed V 1 at the position C is overwhelmingly slower than the speed V 2 of the water discharge port 6 whose flow passage area is narrowed, it can be calculated with V 1 = 0. (This is common in the field of fluid mechanics.)
また、 水頭線の位置 Cと放水口 6の位置の差は hなので、 ( 1 6) 式 は、  The difference between the position of the headline C and the position of the outlet 6 is h.
(p l +F 2 3/S d) /r + h  (p l + F 2 3 / S d) / r + h
=v 22/ (2 g) + p O/r (1 7) 式 = v 2 2 / (2 g) + p O / r (17)
となる。 Becomes
( 1 7) 式を v 2について解くと、  Solving (17) for v 2 gives
V 2 = " [ 2 g · { (F 23/ (S d - r ) + h)  V 2 = "[2 g · ((F 23 / (S d-r) + h)
一 (p 0 - 1 ) /rl]  One (p 0-1) / rl]
( 1 8 ) 式  Equation (18)
ここで、 一般に流体力学で知られるトリチェリの定理では、 P l = p 0、 F 2 = 0のとき、 ( 1 8) 式にこれらを代入すると、  Here, according to Toricelli's theorem, which is generally known in hydrodynamics, when P l = p 0 and F 2 = 0, substituting these into equation (18) gives
V 2 =/" ( 2 g h) ( 1 9) 式  V 2 = / "(2 g h) (1 9)
となり、 このことは ( 1 8) 式の検証の一つになっている。 This is one of the verifications of equation (18).
( 1 8) 式を数値を入れて計算した例を示す。  Here is an example of calculating equation (18) with numerical values.
絞り形状部 70の平均傾斜角 θ =約 4 5° であり  The average inclination angle θ of the aperture shape part 70 is about 45 °.
ρ 1 = 0. 0 5 k g f Zc m2と仮定すると、 Assuming ρ 1 = 0.05 kgf Zc m 2 ,
流速 v 2 = 930 c m/ s Flow velocity v 2 = 930 cm / s
と計算され、 この流速 V 2に放水口 6 0の断面積をかけると、 流量 Q = 3 6 0 c c / s By multiplying this flow velocity V 2 by the cross-sectional area of the outlet 60, Flow Q = 360 cc / s
が計算される。  Is calculated.
この流量は、 背景技術で説明した足踏みポンプが約 1 5 c c Z sの水 量を汲み出せるといわれているのに対し、 2 0倍以上の揚水能力を有し ており、 実際の装置が効率を考慮して理論式より低下しても、 本発明の 揚水装置 1が十分な能力を有していることが分かる。  This flow rate is said to be about 15 cc Z s, which is said to be able to pump out about 15 cc Zs of water. Thus, it can be understood that the pumping apparatus 1 of the present invention has a sufficient capacity even if it falls below the theoretical formula in consideration of
ところで、 上記実施の形態では、 本発明の原理を中心に説明したが、 装置としては、 上記原理を成立する範囲での変形が可能なことは明らか である。  By the way, in the above embodiment, the principle of the present invention has been mainly described, but it is apparent that the device can be modified within a range in which the above principle is satisfied.
他の実施形態として、 第 7図に示すように、 遠隔地にある水源 Sから 圧送ポンプ Uで揚水装置 5 0の近くの位置 Tまで移送された水に対し、 前述の揚水装置 1とほぼ同じ構成の揚水装置 5 0を用いる。 ここで、 上 昇管 4は傾斜を与えられて揚水される構成としている。  As another embodiment, as shown in FIG. 7, water transferred from a remote water source S to a position T near the pumping unit 50 by a pumping pump U is substantially the same as the pumping unit 1 described above. A pumping apparatus 50 having the above configuration is used. Here, the riser pipe 4 is configured to be inclined and pumped up.
この構成で圧送ポンプ Uは、 位置 Tまで水を移送できる能力があれば よい。 この実施形態の揚水装置 5 0で減圧室 2を真空引きし、 減圧室 2 に揚水した後、 放水口 6の開閉弁 1 4を開くと、 放水管 5内の水の重力 と放水管 5出口の絞り形状 7により、 放水する。 加えて、 遠隔地の圧送 ポンプ Uの圧力が上昇管 4の下部の位置 Tに作用し、 傾斜した上昇管 4 によりスムーズに流れるので、 上昇管 4からの揚水は容易に行われる。 この実施の形態によれば、 遠隔地にある水源 Sから圧送ポンプ Uで揚 水装置 5 0の近くの位置 Tまで移送された水に対し、 揚水装置 5 0を用 いることで、 圧送ポンプ Uが低能力であっても高所に揚水が可能になり、 低コストの装置で安価な水を供給でき、 生活用水や灌漑用水などに広く 利用可能になる。  In this configuration, it is sufficient that the pump U has the ability to transfer water to the position T. After the evacuation chamber 2 is evacuated by the water pump 50 of this embodiment and pumped into the evacuation chamber 2, when the on-off valve 14 of the outlet 6 is opened, the gravity of the water in the outlet pipe 5 and the outlet of the outlet 5 Water is discharged by the squeezing shape 7 of. In addition, since the pressure of the remote pump U acts on the lower position T of the riser 4 and flows smoothly by the inclined riser 4, pumping from the riser 4 is easily performed. According to this embodiment, the pumping pump U is used for the water transferred from the remote water source S to the position T near the pumping device 50 by the pumping pump U by using the pumping device 50. Even with low capacity, water can be pumped to high places, low-cost equipment can supply inexpensive water, and it can be widely used for domestic water and irrigation water.
また、 本発明の各実施形態では、 減圧室 2を真空ポンプなどで真空引 きすることで減圧状態を形成したが、 実験装置 1 0 0の実験で説明した ように、 減圧室に直接水を注入し (取水口を閉じて)、 満水状態として、 放水口及び取水口を開くことで、 揚水及び放水を開始する方法でも成立 することは、 実験装置 1 0 0の実験で説明したとおりである。 これによれば真空ポンプを不要とすることができ、 電気のない場所で も本発明を実施できるという大きな効果がある (取水口や放水口の開閉 弁はバッテリーによる作動が可能であり、 機械的な開閉弁にすることも 可能であるため)。 Further, in each embodiment of the present invention, the decompression chamber 2 is evacuated by a vacuum pump or the like to form a decompression state. However, as described in the experiment of the experimental apparatus 100, water is directly supplied to the decompression chamber. As described in the experiment with the experimental apparatus 100, it is also possible to start pumping and discharging water by injecting water (closing the water intake) and opening the water discharge port and water intake when the water is full. . This eliminates the need for a vacuum pump and has a great effect that the present invention can be implemented even in places where there is no electricity. (The intake and outlet valves can be operated by batteries, and It is possible to use a simple on-off valve).
また、 本発明の各実施形態では水を例に説明したが、 真水に限らず、 海水、 その他の液体でも成立することは明らかであり、 多方面に利用可 能な技術である。  Further, in each embodiment of the present invention, water has been described as an example. However, it is clear that the invention is not limited to fresh water, but can be applied to seawater and other liquids, and is a technology that can be used in various fields.
例えば、深海にこの揚水装置の上昇管を設置し、そこから揚水すれば、 低温の深海水を容易に汲み上げることができ、 冷房などに使用すること ができる。  For example, by installing an ascending pipe of this pumping device in the deep sea and pumping it from there, low-temperature deep seawater can be easily pumped up and used for cooling.
なお、 地下水が一時的にス小ップしたり、 配管の一部に漏れを生じた 場合などは、 地下水が再び来るようになった時、 あるいは漏れ個所の修 理などを行った後、 真空ポンプで排気を行えば、 再度同じ揚水 ·落水状 態を形成できることは言うまでもない。  If the groundwater temporarily drops or a part of the pipe leaks, the vacuum will not be applied when the groundwater comes again or after repairing the leaked area. It goes without saying that the same pumping / falling state can be formed again by exhausting the water with a pump.
また、 揚水、 放水の平衡状態が何らかの外乱要因 (例えば水以外の不 純物を揚水した場合など) で崩れる場合は、 減圧室の減圧度を保持でき るように定期的に真空ポンプを作動させることも可能である。  Also, if the equilibrium state of pumping and discharging is disrupted by some disturbance factor (for example, when impurities other than water are pumped), operate the vacuum pump periodically to maintain the degree of decompression in the decompression chamber. It is also possible.
また、 真空ポンプ 8の停止手段は、 減圧室 2内に水位センサー (図示 しない) を設け、 その信号を受けて自動的に真空ポンプ 8が停止するよ うにしてもよい。  Further, as a stopping means of the vacuum pump 8, a water level sensor (not shown) may be provided in the decompression chamber 2, and the vacuum pump 8 may be automatically stopped in response to the signal.
または、 真空ポンプ 8の停止手段は、 必要な水位に達する時間を把握 しておき、 その時間になるまでタイマーなどの時間管理で真空ポンプ 8 が停止するようにしてもよい。  Alternatively, the stopping means of the vacuum pump 8 may grasp the time required to reach the required water level, and stop the vacuum pump 8 by time management such as a timer until the required time is reached.
また、 減圧室 2は実施の形態では球形としたが、 耐圧強度を有するも のであれば直方体などでも機能するので、 球形に限定されるものではな い。 例えば、 第 1 0図に示すように、 上部は球形でその下部に円筒形の 貯水筒 3を設けてもよい。 この形状にすると、 上昇管 4や放水管 5の連 結部の形状が平面になるので、 上昇管 4及び放水管 5を連結しやすく、 装置を製作しやすいというメリッ 卜がある。 なお、本発明の揚水装置を用いて、放水管の下部に水車をおいて回し、 発電機を連結すれば、 安価な電力が得られることが容易に考えられる。 本発明の揚水装置を多段に連結すれば放水位置を高くでき、 より効果的 な発電が可能になる。 Although the decompression chamber 2 is spherical in the embodiment, the decompression chamber 2 is not limited to a spherical shape because it functions as a rectangular parallelepiped as long as it has pressure resistance. For example, as shown in FIG. 10, the upper part may be spherical and the lower part may be provided with a cylindrical water reservoir 3. With this shape, the connecting portion between the riser pipe 4 and the water discharge pipe 5 becomes flat, so that there is an advantage that the riser pipe 4 and the water discharge pipe 5 can be easily connected and the device can be easily manufactured. In addition, if the water pump is used under the water discharge pipe of the present invention to turn a water turbine and connect a generator, it is easily considered that inexpensive power can be obtained. If the pumping devices of the present invention are connected in multiple stages, the water discharge position can be raised, and more effective power generation becomes possible.
加えて、 本発明の揚水装置を船の推進動力やブレーキ力及び舵取り力 に用いることも考えられる。 すなわち、 船首に上昇管を設け、 船尾に放 水管を出すと推進力を発揮でき、 既存の動力の補助として用いることが 可能である。 また、 その逆に上昇管と放水管を設ければ、 ブレーキ力を 得ることができる。 さらに、 本発明の揚水装置を船の左右に用い、 2台 の揚水装置を上昇管と放水管を逆に設ければ、 左右旋回が可能になる。 産業上の利用可能性  In addition, it is conceivable to use the pumping device of the present invention for the propulsion power, braking force and steering force of a ship. In other words, if a riser is provided at the bow and a water discharge pipe is provided at the stern, propulsion can be exerted, and it can be used as a supplement to existing power. Conversely, if a riser pipe and a water discharge pipe are provided, braking force can be obtained. Furthermore, if the pumping device of the present invention is used on the left and right sides of the ship, and two pumping devices are provided with the riser pipe and the water discharge pipe reversed, left and right turning becomes possible. Industrial applicability
以上のように、 本発明によれば、 真空ポンプを作動後、 減圧室に揚水 した段階でポンプを停止し、 減圧室を閉塞することで、 真空ポンプをそ の後作動させずに揚水'落水が可能になり、 電気を連続的に使用する必 要がなく、 効率の高い安価な揚水装置を提供することができる。  As described above, according to the present invention, after operating the vacuum pump, the pump is stopped at the stage of pumping water into the decompression chamber, and the decompression chamber is closed. This makes it possible to provide a highly efficient and inexpensive pumping device without the need for continuous use of electricity.
また、 この揚水装置を用いて水車を回せば、 容易に発電装置を成立さ せることができ、 安価な電力を得ることができるという効果が得られる。 また、 この揚水装置を多段に連結すれば、 高所に水を汲み上げること ができ、 高地の生活用水や灌漑などに利用できる。  In addition, if a water wheel is turned using this pumping device, a power generator can be easily established, and an effect that inexpensive power can be obtained can be obtained. Also, if this pumping device is connected in multiple stages, water can be pumped to high places, and it can be used for highland living water and irrigation.
また、 深海にこの揚水装置の上昇管を延ばし、 そこから揚水すれば低 温の深海水を容易に汲み上げることができ、 冷房などに使用することが できる。  By extending the riser pipe of this pumping device to the deep sea and pumping it from there, low-temperature deep seawater can be easily pumped and used for cooling.
また、 本発明の揚水装置を船の推進動力やブレーキ力及び舵取り力に 用いることも可能である。  Further, the pumping device of the present invention can be used for propulsion power, braking force and steering force of a ship.

Claims

請求の範囲 The scope of the claims
1. 減圧状態にされる減圧室と、 水源から減圧室に揚水可能に設置され 水面から高さ約 1 0m以下の上昇管と、 減圧室内の水を放水可能に設置 した放水管とを備え、 大気圧を p O、 減圧室の圧力を p i、 水面から減 圧室の水頭線までの垂直高さを H、 水の比重量をア、 放水口にかかる下 向きの力 (p 1による押し力と放水管内の水の重力による力の和) を F d、 放水口にかかる上向きの力 (放水口に働く大気圧による押し上げ力 ) を F uとすると、 1. Equipped with a decompression chamber that is decompressed, a riser pipe that can be pumped from a water source to the decompression chamber and that is about 10 m or less in height from the water surface, and a water discharge pipe that can discharge water in the decompression chamber. The atmospheric pressure is p O, the pressure in the decompression chamber is pi, the vertical height from the water surface to the head of the decompression chamber is H, the specific weight of water is A, the downward force applied to the outlet (p 1 force) Let F d be the sum of the forces due to the gravity of the water in the outlet pipe and the upward force applied to the outlet (push-up force due to atmospheric pressure acting on the outlet).
F d〉F uであり、 且つ、 p iく p O— rH  F d> F u and p i − p O— rH
の関係を有するように、 放水管の内容積と放水口の絞り形状を与え、 減 圧室の圧力が平衡状態を保つように、 放水管内の水の重力による放水と 、 放水に連動して上昇管から揚水を行う揚水装置。 The inner volume of the water discharge pipe and the shape of the outlet of the water discharge port are given so that the pressure in the pressure reduction chamber is maintained in an equilibrium state, and the water in the water discharge pipe rises in conjunction with the water discharge by gravity and the water discharge A pumping device that pumps water from a pipe.
2. 請求項 1記載の揚水装置において、 放水口の直径を d、 放水管の直 径を D、 絞り形状の水平に対する平均傾斜角度を 0としたとき、 F d〉 2. In the pumping apparatus according to claim 1, when the diameter of the water outlet is d, the diameter of the water discharge pipe is D, and the average inclination angle of the throttle shape with respect to the horizontal is 0, Fd>
F uとなるように比率 d ZD及び平均傾斜角度 0を所定の範囲内とし たことを特徴とする揚水装置。 A pumping apparatus characterized in that the ratio d ZD and the average inclination angle 0 are within predetermined ranges so as to be Fu.
3. 請求項 1または 2記載の揚水装置において、 放水口の直径 dと放水 管の直径 Dの比率 d ZDを 0. 0 3〜0. 8、 より好ましくは 0. 2〜 0. 5、 また、 平均傾斜角度 Sを 1 0° 〜8 0 ° 、 より好ましくは 30° 〜60 ° としたことを特徴とする揚水装置。  3. The pumping apparatus according to claim 1 or 2, wherein the ratio d ZD of the diameter d of the outlet to the diameter D of the outlet pipe is from 0.3 to 0.8, more preferably from 0.2 to 0.5, and A pumping apparatus characterized in that the average inclination angle S is 10 ° to 80 °, more preferably 30 ° to 60 °.
4. 請求項 1〜 3のいずれかに記載の揚水装置において、 放水管の絞り 形状は放水口に向かって断面積が連続的に変化する絞り形状であるこ とを特徴とする揚水装置。  4. The pumping device according to any one of claims 1 to 3, wherein the water outlet pipe has a throttle shape whose cross-sectional area continuously changes toward the water outlet.
5. 請求項 1〜4のいずれかに記載の揚水装置において、 減圧室は球体 であることを特徴とする揚水装置。 5. The pumping device according to any one of claims 1 to 4, wherein the decompression chamber is a sphere.
6. 請求項 1〜 5のいずれかに記載の揚水装置において、 減圧室を減圧 状態とする真空ポンプと真空ポンプの停止手段を設けたことを特徴と する揚水装置。 6. The water pump according to any one of claims 1 to 5, further comprising a vacuum pump for depressurizing the decompression chamber and means for stopping the vacuum pump.
7. 請求項 1〜 6のいずれかに記載の揚水装置において、 減圧室に排気 管を設けるとともに、 この排気管の途中に閉塞弁を設けたことを特徴と する揚水装置。 7. The pumping device according to claim 1, wherein an exhaust pipe is provided in the pressure reducing chamber, and a blocking valve is provided in the exhaust pipe.
8. 放水管の上方に連結された減圧室を真空引きすることで水源に設置 した上昇管を介して減圧室及び放水管に揚水し、 大気圧を p 0、 減圧室 の圧力を p l、 水面から減圧室の水頭線までの垂直高さを H、 水の比重 量をァ、 放水口にかかる下向きの力 (p 1による押し力と放水管内の水 の重力による力の和) を F d、 放水口にかかる上向きの力 (放水口に働 く大気圧による押し上げ力) を F uとすると、  8. Vacuum the decompression chamber connected above the water discharge pipe to pump water to the decompression chamber and the water discharge pipe via the riser installed at the water source, and set the atmospheric pressure to p0, the pressure in the decompression chamber to pl, and the water surface. Is the vertical height from the head to the head of the decompression chamber, H is the specific gravity of water, and F d is the downward force applied to the outlet (the sum of the pushing force by p 1 and the force of gravity of the water in the outlet pipe). If the upward force on the outlet (push-up force due to atmospheric pressure acting on the outlet) is F u,
F d>Fuであり、 且つ、 p iく p 0— rH F d> Fu, and p i−p 0—rH
の関係を有する形状の放水管を用いて、 放水口を開放することで、 揚水 及び放水を開始する揚水方法。 A pumping method that starts pumping and water discharge by opening a water discharge port using a water discharge pipe having the following relationship.
9. 放水管の上方に連結された減圧室に水を蓄え、 大気圧を ρ 0、 減圧 室の圧力を Ρ 1、 水面から減圧室の水頭線までの垂直高さを Η、 水の比 重量をア、 放水口にかかる下向きの力 (ρ 1による押し力と放水管内の 水の重力による力の和) を F d、 放水口にかかる上向きの力 (放水口に 働く大気圧による押し上げ力) を F uとすると、  9. Water is stored in the decompression chamber connected above the water discharge pipe, the atmospheric pressure is ρ0, the pressure in the decompression chamber is Ρ1, the vertical height from the water surface to the head of the decompression chamber is Η, and the specific weight of water The downward force on the outlet (the sum of the pushing force due to ρ1 and the force due to the gravity of the water in the outlet pipe) is Fd, and the upward force on the outlet (push-up force due to the atmospheric pressure acting on the outlet). Is F u,
F d〉F uであり、 且つ、 p iく ρ θ— F d> F u, and p i ρ θ—
の関係を有する形状の放水管を用いて、 減圧室の圧力が平衡状態を保つ ように、 放水管内の水の重力による放水と、 放水に連動して上昇管から 揚水を行う揚水方法。 A water pumping method that uses a water discharge pipe with the following relationship to discharge water from the water discharge pipe by gravity and pumps water from the riser pipe in conjunction with the water discharge so that the pressure in the decompression chamber is kept in an equilibrium state.
1 0. 放水管の上方に連結された減圧室に水を注入し、 注入口を閉じ、 大気圧を ρ 0、 減圧室の圧力を p i、 水源に設置した上昇管の水面から 減圧室の水頭線までの垂直高さを H、 水の比重量をァ、 放水口にかかる 下向きの力 (P 1による押し力と放水管内の水の重力による力の和) を 1 0. Inject water into the decompression chamber connected above the water discharge pipe, close the inlet, set the atmospheric pressure to ρ0, the pressure in the decompression chamber to pi, and the head of the decompression chamber from the surface of the riser installed at the water source. The vertical height to the line is H, the specific weight of the water is a, and the downward force on the outlet (the sum of the pushing force by P1 and the force of gravity of the water in the outlet pipe)
F d、 放水口にかかる上向きの力 (放水口に働く大気圧による押し上げ 力) を F uとすると、 Let F d denote the upward force acting on the outlet (push-up force due to atmospheric pressure acting on the outlet) as F u
F d>F uであり、 且つ、 p l <p 0— rH  F d> F u and p l <p 0—rH
の関係を有する形状の放水管を用いて、 放水口及び取水口を開くことで、 揚水及び放水を開始する揚水方法。 By using a water discharge pipe with the shape of Pumping method to start pumping and discharging.
1 1 . 請求項 8または 9記載の揚水方法において、 減圧室及び放水管に 揚水した後は、 真空引きの配管を閉塞し、 真空引き動作を停止すること を特徴とする揚水方法。  11. The pumping method according to claim 8 or 9, wherein after pumping water to the decompression chamber and the water discharge pipe, the evacuation pipe is closed and the evacuation operation is stopped.
PCT/JP2000/008786 1999-12-14 2000-12-13 Pumping device and pumping method WO2001044666A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP37667399 1999-12-14
JP11/376673 1999-12-14

Publications (1)

Publication Number Publication Date
WO2001044666A1 true WO2001044666A1 (en) 2001-06-21

Family

ID=18507540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008786 WO2001044666A1 (en) 1999-12-14 2000-12-13 Pumping device and pumping method

Country Status (1)

Country Link
WO (1) WO2001044666A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3113673A1 (en) * 1981-04-04 1982-10-28 Allweiler Ag, 7760 Radolfzell Apparatus for sucking off liquids
GB2118251A (en) * 1982-04-01 1983-10-26 George Thomas Richard Campbell Pressure differential liquid transfer system
WO1998005869A1 (en) * 1996-08-01 1998-02-12 Mitsuo Kootaka Vacuum pumping apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3113673A1 (en) * 1981-04-04 1982-10-28 Allweiler Ag, 7760 Radolfzell Apparatus for sucking off liquids
GB2118251A (en) * 1982-04-01 1983-10-26 George Thomas Richard Campbell Pressure differential liquid transfer system
WO1998005869A1 (en) * 1996-08-01 1998-02-12 Mitsuo Kootaka Vacuum pumping apparatus

Similar Documents

Publication Publication Date Title
US6359347B1 (en) Siphon hydroelectric generator
CN100590323C (en) Controllable siphon discharging device and operation method for reservoir drainage or flood discharge
US8740576B2 (en) Pumping system for pumping liquid from a lower level to an operatively higher level
JP5505961B2 (en) Siphon suction force generator, suction force generation method and vacuum consolidation ground improvement method
CN104390093A (en) Water closing and air closing test method and used water closing and air closing dual-purpose blockage test airbag
WO2006025936A1 (en) System for generating fluid movement
JP5633079B2 (en) Automatic intake / exhaust valve device
CN108825174A (en) A kind of injection molding combined steel pipe water drainage gas production device
US20140191509A1 (en) Stauffer submerged electricity generator
WO2001044666A1 (en) Pumping device and pumping method
CN219300201U (en) Device for eliminating water hammer phenomenon and water inlet and drainage system with same
CN209671866U (en) A kind of pipeline plugging air bag
CN107130620A (en) Channel steel cofferdam method for arranging with the flow-compensated function of section
JP2011127378A (en) Apparatus and method for generating suction force by siphon, and vacuum consolidation soil improvement method
US20050207902A1 (en) Machine for removing sump pit water and process for making same
CN210831428U (en) Gas bidirectional non-return control valve
Yang Practical method to prevent liquid-column separation
CN207128059U (en) A kind of prefabricated components tongue-and-groove grouting equipment
CN202484515U (en) Protective device for forward water hammer
JP2000328613A (en) Feed water system
CN215722547U (en) Drainage control system
CN207093396U (en) A kind of portable dive frequency conversion flood control pump
CN104632603B (en) Pump testing loop depassing unit
CN216839322U (en) Inverted siphon type ecological drainage pipeline device on top of gate turning dam
CN209354084U (en) A kind of kill-job lift pipe string device for high pressure oil wells

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): IN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 545726

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase