WO2001043318A1 - Emetteur/recepteur optique - Google Patents

Emetteur/recepteur optique Download PDF

Info

Publication number
WO2001043318A1
WO2001043318A1 PCT/JP2000/008647 JP0008647W WO0143318A1 WO 2001043318 A1 WO2001043318 A1 WO 2001043318A1 JP 0008647 W JP0008647 W JP 0008647W WO 0143318 A1 WO0143318 A1 WO 0143318A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission channel
signal
sub
main transmission
optical transceiver
Prior art date
Application number
PCT/JP2000/008647
Other languages
English (en)
French (fr)
Inventor
Takeshi Ota
Original Assignee
Photonixnet Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photonixnet Kabushiki Kaisha filed Critical Photonixnet Kabushiki Kaisha
Priority to AU17323/01A priority Critical patent/AU1732301A/en
Publication of WO2001043318A1 publication Critical patent/WO2001043318A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2543Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
    • H04B10/2557Cross-phase modulation [XPM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0771Fault location on the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/074Monitoring an optical transmission system using a supervisory signal using a superposed, over-modulated signal

Definitions

  • the present invention relates to an optical transceiver used for optical fiber communication.
  • FIG. 9 shows a schematic configuration of an optical signal transmitter conventionally used for optical communication.
  • the laser diode 101 is driven by a laser diode drive circuit 110 to drive current, and the optical signal from the laser diode 101 is sent to the optical fiber 111.
  • a part of the optical signal of the laser diode 101 is sent to the monitor photodiode 102 and converted into a photocurrent, and then the optical output setting variable resistor 100 is converted by the comparator 104.
  • the value is compared with the value specified in step 5, and the result is sent to the laser diode drive circuit 110 to control the optical signal intensity.
  • This mechanism is a so-called anamorphic type APC (AutoPowerControll: automatic output control circuit).
  • the laser diode drive circuit 110 modulates the current of the laser diode 101 in accordance with the data to be transmitted, which has been transmitted via the data signal input line 112.
  • An object of the present invention is to provide an optical transceiver having both a high-speed main transmission channel and a low-speed transmission channel that can be used for control purposes.
  • an optical transceiver is provided with A wideband main transmission channel signal coded in a long coding format is superimposed on a narrowband subtransmission channel signal having a power spectrum in a power spectrum blank region of the main transmission channel signal.
  • a transmission unit for generating a combined optical signal is provided, and the transmission power of the main transmission channel signal is set to be larger than the transmission power of the sub transmission channel.
  • the gain control of the receiving unit may be realized by a limiter method. Further, a ratio between the main transmission channel signal strength and the sub transmission channel transmission power may be roughly set so as to correspond to a minimum reception sensitivity ratio. Further, the sub-transmission channel signal may be encoded in a coding format having redundancy, and at least one new transmission channel may be provided in a power vector blank region of the sub-transmission channel.
  • the transmission power of the narrow-band sub-transmission channel is set smaller than the transmission power of the main transmission channel, it is possible to reduce the cross-modulation caused by the gain adjustment limiter. it can. Also, the conditions under which the main transmission channel and the sub transmission channel can be received can be made uniform. In addition, signal transmission of three or more channels can be performed.
  • a wideband main transmission channel signal coded in a coding format with little redundancy is transmitted to an optical transceiver.
  • -A transmitter is provided to generate an optical signal in which a narrow-band sub-transmission channel signal coded by the spread spectrum method is superimposed on a spectrum area overlapping with the spectrum.
  • the transmission power of the channel signal is set to be higher than the transmission power of the sub transmission channel.
  • the signal encoded by the spread spectrum method becomes a noise for the signal of the main transmission channel, and although the error rate characteristic may be slightly deteriorated, the signal can be reliably reproduced. Since the sub-channel signal is coded by the spread spectrum method, it can be reliably demodulated even under the signal of the main transmission channel. As a result, a sub-transmission channel can be easily constructed even when an encoding method with low redundancy is adopted.
  • FIG. 1 is a block diagram showing a first embodiment of the optical transceiver of the present invention.
  • FIG. 2 is a spectrum diagram showing the principle of the first embodiment of the present invention.
  • FIG. 3 is a circuit diagram showing an internal structure of the photodiode 2 with a preamplifier.
  • FIG. 4 is a signal waveform diagram showing the behavior on the transmitting side.
  • FIG. 5 is a signal waveform diagram showing the behavior on the receiving side.
  • FIG. 6 is a signal waveform diagram showing the behavior on the receiving side when the present invention is not used.
  • FIG. 5 is a block diagram showing a second embodiment of the present invention.
  • FIG. 8 is a spectrum diagram showing the principle of the second embodiment of the present invention.
  • FIG. 9 is a block diagram of a conventional optical signal transmitter. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a block diagram of an optical transceiver according to a first embodiment of the present invention.
  • Data for the main transmission channel is sent from the main transmission channel input terminal 11 to the laser diode drive circuit 3.
  • the data for the sub-transmission channel is sent from the sub-transmission channel input terminal 12 to the laser diode drive circuit 4.
  • the modulation currents from the driving circuits 3 and 4 are added to drive the laser diode 1.
  • the illustration of the APC circuit is omitted in FIG.
  • An optical signal sent from an optical fiber is photoelectrically converted and amplified by a photodiode 2 with a preamplifier to become an electric signal, separated by a high-pass filter 5 and a low-pass filter 6, and then transmitted to a Each is sent to the post amplifier 8 and shaped.
  • the output of the post amplifier 7 becomes the reception signal of the main transmission channel and is output from the main transmission channel output terminal 13.
  • Post amplifier The output of 8 becomes the reception signal of the sub transmission channel and is output from the sub transmission channel output terminal 14.
  • the signal transmitted to the main transmission channel was obtained by encoding a 1 Gbps signal using an 8B / 10B code.
  • a signal transmitted to the sub-transmission channel a signal obtained by encoding a 50 Mbs signal using a 4B / 5B code was used.
  • FIG. 2 is a graph showing the operation principle of the present invention.
  • the horizontal axis in FIG. 2 is the frequency, and the vertical axis is the optical signal intensity. Since the 8B / 10B code is a coding format having redundancy, there is a blank part spectrum area in the low frequency area.
  • the power spectrum 31 of the main transmission channel exists in the range of the lower limit F1 and the upper limit F2.
  • the power spectrum 32 of the sub transmission channel exists in the range of the lower limit F 3 and the upper limit F 4.
  • the transmission speed and coding format of the main transmission channel and the sub transmission channel are selected so that F 1> F 4. Therefore, the main transmission channel power spectrum 31 and the sub transmission channel power spectrum 32 do not overlap, and can be separated using a filter.
  • reference numeral 33 denotes a filter characteristic of the high-pass filter 5
  • reference numeral 34 denotes a filter characteristic of the mouth-to-pass filter 6.
  • FIG. 3 is a diagram showing the internal structure of the photodiode 2 with a preamplifier in FIG.
  • the photocurrent from the photodiode 21 is amplified by the transimpedance amplifier 22 and converted into a voltage output.
  • the transimpedance amplifier 22 has a function equivalent to that of an operational amplifier.
  • the conversion ratio between the input current and the output voltage is determined by the feedback resistor 23.
  • the feedback resistor 23 is provided with a clamp diode pair 24 in parallel.
  • the clamp diode pair 24 functions as a kind of gain control, and limits the output voltage to a predetermined value or less for a large input signal current.
  • FIG. 4 is a signal waveform diagram showing the behavior on the transmitting side.
  • FIG. 4 (a) shows the current waveform of the LD drive circuit 3. That is, the signal waveform of the main transmission channel.
  • FIG. 4 (b) shows the current waveform of the LD drive circuit 4. That is, the signal waveform of the sub transmission channel.
  • FIG. 4 (c) shows the drive current waveform applied to the laser diode 1.
  • Fig. 4 (c) is the addition of Fig. 4 (a) and Fig. 4 (b).
  • the main transmission channel has higher current and the sub transmission channel has lower current.
  • FIG. 5 is a signal waveform diagram showing the behavior on the receiving side.
  • Fig. 5 (a) shows the photocurrent from photodiode 21.
  • Fig. 5 (b) shows the output voltage of the transimpedance amplifier. Limiter due to the operation of the clamp diode pair 24 —the output is limited at level 40.
  • FIG. 5 (c) shows the output voltage of the high-pass filter 5.
  • FIG. 5 (d) shows the output voltage of the single-pass filter 6. Since the post-amplifier has a waveform shaping function, it is possible to eliminate the variation in amplitude as shown in Fig. 5 (c).
  • FIG. 6 shows the behavior on the receiving side when the present invention is not used.
  • the signal strength of the main transmission channel and the signal strength of the sub transmission channel are almost equal.
  • FIG. 6 (a) shows the photocurrent from the photodiode 21.
  • the output of the transimpedance amplifier 22 is as shown in FIG. 5 (b). In a certain period, the signal of the main transmission channel is lost. This is a so-called cross modulation phenomenon.
  • the present invention employs a transmission power ratio that is approximately equal to the minimum reception sensitivity ratio of the main transmission channel and the sub transmission channel. By doing so, it is possible to construct so that the main transmission channel and the sub transmission channel can be received at the same time, and it is possible to prevent signal loss due to the nonlinearity of the transimpedance amplifier as shown in FIG. Also, in the optical transceiver, when the optical fiber comes off, there is a concern that the laser beam is emitted into free space, causing health damage to human eyes. To this end, the transmission power must be kept to a minimum. The present invention is also preferable from this viewpoint.
  • the optical transceiver of the present invention can provide a wideband main transmission channel and a narrowband subtransmission channel
  • various application examples are conceivable.
  • the sub-transmission channel as flow control or access control of the main transmission channel.
  • distance measurement between terminals can be performed on the sub-transmission channel, and fiber disconnection can be detected.
  • the construction of an interlock system to know is also conceivable.
  • optical transceiver having three or more channels having different bands can be constructed by applying the concept of the present invention.
  • FIG. 7 shows a block diagram of an optical transceiver according to a second embodiment of the present invention.
  • Data for the main transmission channel is sent from the main transmission channel input terminal 11 to the laser diode drive circuit 3.
  • the data for the sub transmission channel is sent from the sub transmission channel input terminal 12 to the laser diode drive circuit 4 via the M-sequence encoder 51.
  • the modulation currents from the drive circuits 3 and 4 are added to drive the laser diode 1.
  • the APC circuit is not shown.
  • An optical signal sent from an optical fiber is photoelectrically converted and amplified by a photodiode 2 with a preamplifier to become an electric signal, which is sent to a post amplifier 7 and an M-sequence decoder 52.
  • the output of the post amplifier 7 becomes the received signal of the main transmission channel and is output from the main transmission channel output terminal 13.
  • the output of the M-sequence decoder 52 is sent to the post-amplifier 8, and the output is the received signal of the sub-transmission channel and output from the sub-transmission channel output terminal 14.
  • the signal to be sent to the main transmission channel a signal of 2.488 Gbps, which was coded by a code of SONE T (Synchrono ns Opt iCa l Ne two rk), was used. Also, the signal transmitted to the sub-transmission channel is a signal that is spectrum-spread by M-sequence coding.
  • FIG. 8 is a graph showing the operation principle of the present invention.
  • the horizontal axis in FIG. 8 is frequency, and the vertical axis is optical signal intensity. Since the encoding format of SONET has little redundancy unlike the 8B10B encoding format of the first embodiment, there is almost no blank power spectrum region in the low frequency region.
  • spectrum 53 is the spectrum of the main transmission channel
  • spectrum 54 is the spectrum of the sub transmission channel. Lamb. Even if the spectrum-spread signal of the sub-transmission channel overlaps with the spectrum of the main transmission channel, it can be demodulated. Also, when viewed from the main transmission channel, the signal of the spectrum-spread sub-channel is equivalent to a part of noise.
  • the S / N ratio of the main transmission channel is slightly deteriorated by the presence of the sub transmission channel, and the error rate characteristic is slightly impaired.
  • a sub-transmission channel can be constructed even when a coding format having almost no redundancy such as a coding format of SONET is adopted.
  • an optical transceiver capable of simultaneously communicating a wideband main transmission channel and a narrowband subtransmission channel can be realized at low cost. Also, cross modulation of the main transmission channel and the sub transmission channel can be prevented. In addition, the signal of the main transmission channel and the signal of the sub-transmission channel coded by the spread spectrum method in the spectrum area overlapping the main transmission channel are superimposed and communicated, so that the transceiver is inexpensive. Can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Optical Communication System (AREA)

Description

明 細 書
光送受信機 技術分野
本発明は光ファイバ通信に用いられる光送受信機に関する。 背景技術
従来、 光通信に用いられている光信号送信機の概略の構成を第 9図に示す。 レ —ザ一ダイオード 1 0 1力 レーザ一ダイォ一ド駆動回路 1 1 0により電流駆動 され、レーザ一ダイオード 1 0 1からの光信号が光ファイバ 1 1 1へと送られる。 レーザーダイォ一ド 1 0 1の光信号の一部は、 モニタフオ トダイオード 1 0 2へ と送られて、 光電流に変換されてから、 比較器 1 0 4により、 光出力設定用可変 抵抗器 1 0 5で指定された値と比較されて、 その結果がレーザーダイォ一ド駆動 回路 1 1 0へと送られて光信号強度の制御が行われる。 この機構は、 いわゆるァ ナ口グ型の A P C ( A u t o P o w e r C o n t o r o l : 自動出力制御回 路) である。 また、 データ信号入力線 1 1 2を介して送られてきた、 送信すべき データに応じて、 レーザ一ダイォード駆動回路 1 1 0がレーザーダイオード 1 0 1を電流変調する。
光ファイバ通信システム構築上、 データ伝送を行うかたわら、 フロー制御など のために制御信号を送りたい場合がある。 この制御信号は、 通常ではデータ伝送 に比べて低速で良い場合が多い。 ところが、 上述の光送受信機ではひとつの伝送 チャネルしか構築できない。 複数の伝送チャネルを構築するためには光受信機を 並列に並べるか、 あるいは波長多重化の技術を使う必要があった。 これらの方法 は制御信号の伝送には高価であるという欠点があった。 発明の開示
本発明は、 高速の主伝送チャネルと制御用途に用いることのできる低速伝送チ ャネルとを兼ね備えた光送受信機を提供することを目的としている。
本発明の第 1の特徴よれば、 上述の目的を達成するために、 光送受信機に、 冗 長性を有する符号化形式で符号化された広帯域の主伝送チャネル信号と、 該主伝 送チャネル信号のパワースぺク トル空白領域にパワースぺク トルを有する狭帯域 の副伝送チャネル信号とを重ね合わせた光信号を発生する送信部を設け、さらに、 主伝送チャネル信号の送信電力を副伝送チャネルの送信電力より大きく設定する ようにしている。
この構成において、 受信部の利得制御がリ ミ ッタ一方式で実現されてもよい。 また、 前記主伝送チャネル信号強度と前記副伝送チャネル送信電力の比率が、 最 小受信感度の比率に対応するように概略設定されてもよい。 さらに前記副伝送チ ャネル信号が冗長性を有する符号化形式で符号化され、 前記副伝送チャネルのパ ワースべク トラム空白領域に少なく ともひとつの新たな伝送チャネルを設けても よい。
上述の第 1の特徴によれば、 狭帯域の副伝送チャネルの送信電力を主伝送チヤ ネルの送信電力より小さく設定したので、 利得調整用のリ ミッタ一に起因する混 変調を低減することができる。 また、 主伝送チャネルと副伝送チャネルが受信可 能なる条件を揃えることができる。 また、 3チャネル以上の多チャネルの信号伝 送を行うことができる。
また、 本発明の第 2の特徴によれば、 光送受信機に、 冗長性の乏しい符号化形 式で符号化された広帯域の主伝送チャネル信号と、 該主伝送チャネル信号のパヮ
—スぺク トルと重なるスぺク トラム領域にスぺク トラム拡散方式で符号化された 狭帯域の副伝送チャネル信号とを重ね合わせた光信号を発生する送信部を設け、 さらに、 主伝送チャネル信号の送信電力を副伝送チャネルの送信電力より大きく 設定するようにしている。
この構成においては、 主伝送チャネルの信号にとってスぺク トラム拡散方式で 符号化された信号はノイズとなり、 エラ一レート特性をやや劣化させるおそれが あるものの、 確実に再生できる。 副チャネル信号はスペク トラム拡散方式で符号 化されているので、 主伝送チャネルの信号の下でも確実に復調できる。この結果、 冗長度の少ない符号化方式を採用した場合でも、 簡易に副伝送チャネルを構築で ぎる。
なお、 本発明の上述の第 1の特徴および第 2の特徴ならびにその他の特徴は特 許請求の範囲に記載され、 以下に図面を参照して詳述される。 図面の簡単な説明
第 1図は、 本発明の光送受信機の第 1実施例を示すプロックダイアグラムであ る。
第 2図は、 本発明の第 1実施例の原理を示すスぺク トラム図である。
第 3図は、プリアンプ付きフォ トダイオード 2の内部構造を示す回路図である。 第 4図は、 送信側の挙動を示す信号波形図である。
第 5図は、 受信側の挙動を示す信号波形図である。
第 6図は、 本発明によらない場合の受信側の挙動を示す信号波形図である。 第 Ί図は、 本発明の第 2実施例を示すプロックダイアグラムである。
第 8図は、 本発明の第 2実施例の原理を示すスぺク トラム図である。
第 9図は、 従来の光信号送信機のプロックダイアグラムである。 発明を実施するための最良の形態
以下、 本発明の実施例について詳細に説明する。
[第 1実施例]
第 1図に本発明の第 1実施例の光送受信機のプロックダイアグラムを示す。 主 伝送チャネル用のデータは主伝送チャネル入力端子 1 1からレーザーダイオード 駆動回路 3へと送られる。 副伝送チャネル用のデータは副伝送チャネル入力端子 1 2からレーザ一ダイォ一ド駆動回路 4へと送られる。 駆動回路 3 と駆動回路 4 からの変調電流は加算されてレーザーダイオード 1を駆動する。 なお、 第 1図で は A P C回路は図示を省略した。
図示しない光ファイバから送られてきた光信号はプリアンプ付きフォ トダイォ —ド 2によって光電変換及び増幅されて電気信号となって、 ハイパスフィルタ 5 とローパスフィル夕 6によって分離されてから、 ポス トアンプ 7 とポス トアンプ 8へとそれぞれ送られて波形整形される。 ポス トアンプ 7の出力が主伝送チヤネ ルの受信信号となり主伝送チャネル出力端子 1 3から出力される。 ポス トアンプ 8の出力が副伝送チャネルの受信信号なり副伝送チャネル出力端子 1 4から出力 される。
主伝送チャネルへ送られる信号は、 1 G b p sの信号を 8 B / 1 0 B符号によ つて符号化したものを用いた。 また、 副伝送チャネルへ送られる信号は、 5 0 M b sの信号を 4 B / 5 B符号によって符号化したものを用いた。
第 2図は本発明の動作原理を示すグラフである。 第 2図の横軸は周波数、 縦軸 は光信号強度である。 8 B / 1 0 B符号は冗長性を有した符号化形式なので、 低 周波領域には空白のパヮ一スぺク トラム領域が存在する。 主伝送チャネルのパヮ 一スぺク トル 3 1は下限 F 1、 上限 F 2の範囲に存在している。 一方、 副伝送チ ャネルのパワースペク トル 3 2は下限 F 3、 上限 F 4の範囲に存在している。 こ こで、 F 1 > F 4となるように、 主伝送チャネルと副伝送チャネルの伝送速度や 符号化形式を選んでいる。 したがって、 主伝送チャネルパワースペク トル 3 1 と 副伝送チャネルパワースぺク トル 3 2は重ならないので、 フィルターを用いて分 離することができる。 なお、 第 2図の参照番号 3 3はハイパスフィル夕 5のフィ ルタ特性、 参照番号 3 4は口一バスフィルタ 6のフィルタ特性である。
第 3図は第 1図のプリアンプ付きフォ トダイオード 2の内部構造を示す図であ る。 フォ トダイオード 2 1からの光電流はトランスインピーダンスアンプ 2 2に よって増幅されると共に電圧出力に変換される。 トランスインピーダンスアンプ 2 2は機能としては演算増幅器と同等の働きをする。 入力電流と出力電圧の変換 比は帰還抵抗 2 3によって决まる。 また、 帰還抵抗 2 3には並列にクランプダイ ォ一ド対 2 4が設けられている。 クランプダイォ一ド対 2 4は一種の利得制御の 働きをしており、大きな入力信号電流に対して出力電圧を所定値以下に制限する。 第 4図ないし第 6図を用いて、 第 1図の光送受信機の挙動を説明する。 第 4図 は送信側の挙動を示す信号波形図である。 第 4図 (a ) は L D駆動回路 3の電流 波形を示している。 すなわち主伝送チャネルの信号波形である。 第 4図 (b ) は L D駆動回路 4の電流波形を示している。 すなわち、 副伝送チャネルの信号波形 である。 第 4図 ( c ) はレーザ一ダイオード 1 に加えられる駆動電流波形を示し ている。 第 4図 (a ) と第 4図 (b ) の加算が第 4図 ( c ) となっている。 主伝 送チャネルの方が電流が大きく、 副伝送チャネルの方が電流が小さいことに、 本 発明の特徴がある。
第 5図は受信側の挙動を示す信号波形図である。 第 5図 (a ) はフォ トダイォ —ド 2 1からの光電流を示している。 第 5図 (b ) はトランスインピーダンスァ ンプの出力電圧を示している。 クランプダイオード対 2 4の働きのためリ ミ ッタ —レベル 4 0で出力が制限されている。 第 5図 ( c ) はハイパスフィルタ 5の出 力電圧を示している。 また、 第 5図 ( d ) は口一パスフィルタ 6の出力電圧を示 している。 ポス トアンプは波形整形機能を有しているので、 第 5図 ( c ) に見ら れる程度の振幅のばらつきは取り除く ことができる。
第 6図は本発明によらない場合の受信側の挙動を示している。 主伝送チャネル の信号と副伝送チャネルの信号強度がほぼ等しいような場合を考える。 かつ、 受 信側に大きな信号が加えられたとする。 第 6図 ( a ) はフォトダイオード 2 1か らの光電流を示している。 第 5図の場合と同様にリ ミッタ一レベル 4 0で出力が 制限されるために、 トランスインピーダンスアンプ 2 2の出力は第 5図 (b ) の ようになってしまう。 ある期間で主伝送チャネルの信号が消失してしまうのであ る。 いわゆる混変調現象である。
伝送速度が速い信号は広帯域のスペク トラムを有する。 このため、 最小受信感 度は上昇してしまう。 反対に伝送速度の遅い信号は狭帯域のスぺク トラムを有す るために最小受信感度は低い値を取ることができる。 本発明はこの性質を利用し て、 主伝送チャネルと副伝送チャネルの最小受信感度比と概略等しい比率の送信 電力比を採用している。 このようにすることによって、 主伝送チャネルと副伝送 チャネルとが同時に受信できるように構築すると共に、 第 6図に示したような ト ランスィンピ一ダンスアンプの非線形性による信号消失を防ぐことができる。 ま た、 光送受信機では光ファィバが外れた時にレーザ一光が自由空間に放出されて 人間の目に健康被害を与える懸念がある。 そのためにも、 送信電力は必要最小限 にとどめる必要がある。 この観点からも本発明は好ましい。
本発明の光送受信機は広帯域の主伝送チャネルと狭帯域の副伝送チャネルとを 提供することができるので、 様々な応用例が考えられる。 例えば、 副伝送チヤネ ルを主伝送チャネルのフロー制御やアクセス制御として用いる使い方が考えられ る。 また、 端末間の距離計測を副伝送チャネルで行うことや、 ファイバ外れを検 知するインタ一ロックシステムの構築なども考えられる。 あるいは、 主伝送チヤ ネルを時分割制御型のプロ トコル、 副伝送チャネルを回線争奪型のプロ トコルと して、 複数のプロ トコルの特徴を組み合わせたネッ トワークシステムの構築など も考えられる。
なお、 本発明の考え方を応用して 3チャネル以上の帯域の異なるチャネルを有 する光送受信機を構築することもできる。
[第 2実施例]
第 7図に本発明の第 2実施例の光送受信機のプロックダイアグラムを示す。 主 伝送チャネル用のデータは主伝送チャネル入力端子 1 1からレーザーダイオード 駆動回路 3へと送られる。 副伝送チャネル用のデータは副伝送チャネル入力端子 1 2から M系列符号化器 5 1を介してレーザ一ダイォード駆動回路 4へと送られ る。 駆動回路 3と駆動回路 4からの変調電流は加算されてレーザ一ダイオード 1 を駆動する。 なお、 第 7図でも AP C回路は図示を省略した。
図示しない光ファイバから送られてきた光信号はプリアンプ付きフォ トダイォ —ド 2によって光電変換及び増幅されて電気信号となって、 ポス トアンプ 7と M 系列複号化器 5 2へと送られる。 ポス トアンプ 7の出力が主伝送チャネルの受信 信号となり主伝送チャネル出力端子 1 3から出力される。 M系列複号化器 5 2の 出力はポス トアンプ 8へと送られ、 その出力が副伝送チャネルの受信信号なり副 伝送チャネル出力端子 1 4から出力される。
主伝送チャネルへ送られる信号は、 2. 488 Gb p sの信号を S ONE T (S yn c h r o n o u s Op t i c a l N e two rk) の符号ィ匕开 $式によつ て符号化したものを用いた。 また、 副伝送チャネルへ送られる信号は、 M系列符 号化によってスぺク トル拡散された信号となっている。
第 8図は本発明の動作原理を示すグラフである。 第 8図の横軸は周波数、 縦軸 は光信号強度である。 S ON E Tの符号化形式は第 1実施例の 8 B 1 0 B符号化 形式とは異なって冗長度がほとんどないので、 低周波領域にも空白のパワースぺ ク トラム領域はほとんど存在しない。 第 8図におけるスぺク トラム 5 3は主伝送 チャネルのパヮ一スペク トラム、 スペク トラム 54は副伝送チャネルのスぺク ト ラムである。 スぺク トラム拡散された副伝送チャネルの信号は主伝送チャネルの スペク トラムと重なっていても復調することができる。 また、 主伝送チャネルか ら見た場合、 スぺク トラム拡散された副伝送チャネルの信号はノイズの一部と同 等である。 したがって、 副伝送チャネルの存在によって、 主伝送チャネルの S / N比はわずかに悪化してエラ一レート特性をやや損なう。 しかしながら、 本実施 例によれば、 S O N E Tの符号化形式のような冗長度のほとんど無い符号化形式 を採用した場合においても副伝送チャネルを構築できるという利点がある。 産業上の利用可能性
本発明によれば広帯域の主伝送チャネルと狭帯域の副伝送チャネルとを同時に 通信することのできる光送受信機を安価に実現することができる。 また、 主伝送 チャネルと副伝送チャネルの混変調を防ぐことができる。 また、 主伝送チャネル の信号と、 この主伝送チャネルと重なるスぺク トラム領域においてスぺク トラム 拡散方式で符号化された副伝送チャネルの信号とを重ね合わせて通信することで 送受信機を安価に実現できる。

Claims

請求の範囲
1 . 冗長性を有する符号化形式で符号化された広帯域の主伝送チャネル信号と、 該主伝送チャネル信号のパワースぺク トル空白領域にパワースぺク トルを有する 狭帯域の副伝送チャネル信号とを重ね合わせた光信号を発生する送信部を有し、 前記主伝送チャネル信号の送信電力が前記副伝送チャネルの送信電力より大きく 設定されていることを特徴とする光送受信機。
2 . 請求項 1の光送受信機において、 さらに受信部の利得制御がリ ミ ッター方式 で実現されていることを特徴とする光送受信機。
3 . 請求項 1の光送受信機において、 前記主伝送チャネル送信電力と前記副伝送 チャネル送信電力の比率が、 前記主伝送チャネルの最小受信感度と前記副伝送チ ャネルの最小受信感度との比率に対応するように概略設定されていることを特徴 とする光送受信機。
4 . 請求項 1の光送受信機において、 さらに前記副伝送チャネル信号が冗長性を 有する符号化形式で符号化され、 前記副伝送チャネルのパワースぺク トラム空白 領域に少なく ともひとつの新たな伝送チャネルを設けたことを特徴とする光送受 信機。
5 . 冗長性を有する符号化形式で符号化された広帯域の主伝送チャネル信号と、 該主伝送チャネル信号のパワースぺク トル空白領域にパワースぺク トルを有する 狭帯域の副伝送チャネル信号とを重ね合わせた光信号を発生する送信部を有する ことを特徴とする光送受信機。
6 . 冗長性の乏しい符号化形式で符号化された広帯域の主伝送チャネル信号と、 該主伝送チャネル信号のパヮ一スぺク トルと重なるスぺク トラム領域にスぺク ト ラム拡散方式で符号化された狭帯域の副伝送チャネル信号とを重ね合わせた光信 号を発生する送信部を有し、 前記主伝送チャネル信号の送信電力が前記副伝送チ ャネルの送信電力より大きく設定されていることを特徴とする光送受信機。
7 . 冗長性の乏しい符号化形式で符号化された広帯域の主伝送チャネル信号と、 該主伝送チャネル信号のパヮ一スぺク トルと重なるスぺク トラム領域にスぺク ト ラム拡散方式で符号化された狭帯域の副伝送チャネル信号とを重ね合わせた光信 号を発生する送信部を有することを特徴とする光送受信機。
8 . 広帯域の主伝送チャネルと狭帯域の副伝送チャネルとを有する光トランシ一 バにおいて、 主伝送チャネルを信号の伝送に用い、 副伝送チャネルを主伝送チヤ ネルのフロー制御ないしアクセス制御として用いることを特徴とする光送受信機 <
9 . 広帯域の主伝送チャネルと狭帯域の副伝送チャネルとを有する光トランシ一 バにおいて、 前記光トランシ一バを備えた端末間の距離計測を副伝送チャネルで 行うことを特徴とする光送受信機。
1 0 . 広帯域の主伝送チャネルと狭帯域の副伝送チャネルとを有する光トランシ ーバにおいて、 副伝送チャネルを用いてファィバ外れを検知するィンタ一ロック システムを備えたことを特徴とする光送受信機。
PCT/JP2000/008647 1999-12-09 2000-12-07 Emetteur/recepteur optique WO2001043318A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU17323/01A AU1732301A (en) 1999-12-09 2000-12-07 Optical transmitter/receiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP35001699 1999-12-09
JP11/350016 1999-12-09

Publications (1)

Publication Number Publication Date
WO2001043318A1 true WO2001043318A1 (fr) 2001-06-14

Family

ID=18407676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008647 WO2001043318A1 (fr) 1999-12-09 2000-12-07 Emetteur/recepteur optique

Country Status (3)

Country Link
US (1) US20020181051A1 (ja)
AU (1) AU1732301A (ja)
WO (1) WO2001043318A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015061175A (ja) * 2013-09-18 2015-03-30 日本電信電話株式会社 光送信装置、光受信装置、信号重畳装置、信号重畳システム、および、信号重畳方法
JP2021061456A (ja) * 2019-10-02 2021-04-15 パイオニア株式会社 光受信回路

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030043437A1 (en) * 2001-09-04 2003-03-06 Stough Stephen A. Subliminal coherent phase shift keyed in-band signaling of network management information in wavelength division multiplexed fiber optic networks
US20050089334A1 (en) * 2003-10-03 2005-04-28 Zvi Regev Protocol independent managed optical system
WO2005055436A2 (en) * 2003-12-03 2005-06-16 Rad-Op Ltd. Transceiver for optical transmission
US9571199B1 (en) * 2014-05-12 2017-02-14 Google Inc. In-band control of network elements

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144431A (ja) * 1985-12-16 1987-06-27 エヌ・ヴエ−・フイリツプス・グリユイランペンフアブリ−ケン サ−ビス統合デジタル通信伝送方式
JPH01117138U (ja) * 1988-01-29 1989-08-08
JPH0217735A (ja) * 1988-04-29 1990-01-22 Alcatel Cit 伝送路の小容量ディジタルチャネル及び大容量ディジタルチャネルの結合及び分離方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144431A (ja) * 1985-12-16 1987-06-27 エヌ・ヴエ−・フイリツプス・グリユイランペンフアブリ−ケン サ−ビス統合デジタル通信伝送方式
JPH01117138U (ja) * 1988-01-29 1989-08-08
JPH0217735A (ja) * 1988-04-29 1990-01-22 Alcatel Cit 伝送路の小容量ディジタルチャネル及び大容量ディジタルチャネルの結合及び分離方法及び装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015061175A (ja) * 2013-09-18 2015-03-30 日本電信電話株式会社 光送信装置、光受信装置、信号重畳装置、信号重畳システム、および、信号重畳方法
JP2021061456A (ja) * 2019-10-02 2021-04-15 パイオニア株式会社 光受信回路

Also Published As

Publication number Publication date
AU1732301A (en) 2001-06-18
US20020181051A1 (en) 2002-12-05

Similar Documents

Publication Publication Date Title
US6078414A (en) Optical transmitter system
CN107517080B (zh) 一种光功率检测方法、装置、设备及光模块
JP2001217778A (ja) 光送受信機
EP1714392A1 (en) System and method for subcarrier modulation as supervisory channel
CN108768533B (zh) 一种用于高速远距离传输的光收发一体组件
AU658465B2 (en) Optical transmission system
US6052221A (en) Optical receiver having a function for suppressing useless intensity modulation components
CN113114376B (zh) 基于调相调制的调顶信号的光模块及通信方法
JP2008532385A (ja) 光伝送通信におけるシ誘導ブリユアン散乱の抑制のためのシステム及び方法
CA2363871A1 (en) Optical transmission system and optical transmission method
WO2005107104A1 (en) System and method for subcarrier modulation in ism band as supervisory channel
WO2001043318A1 (fr) Emetteur/recepteur optique
KR101411746B1 (ko) 잡음 제거 방법 및 광송수신기
JP3368935B2 (ja) 光伝送装置
US20010019102A1 (en) Light reception circuit capable of receiving large level optical signal
US7460788B2 (en) Transmitting and receiving device
JP3983510B2 (ja) 光増幅装置
JP2006246104A (ja) 光波長分割多重送信装置、光波長分割多重伝送システム、光送信回路
EP1429478A2 (en) Directly modulated laser diode for vestigial sideband modulation
JPH03258038A (ja) 光ファイバ中継伝送路の監視方式
EP1395010B1 (en) Optical frequency shift keying method
JPH1155191A (ja) 端末装置の送信レベル調整を行う通信システム
WO2000014917A2 (en) Implementing an optical wdm connection
JPH07231302A (ja) 光通信方式および装置
JP2006203766A (ja) 光送受信装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10148866

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 543882

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase