WO2001042675A1 - Kraftübertragungseinheit mit drehzahlabhängiger hydraulischer kupplung und fliehkraftausgleich - Google Patents

Kraftübertragungseinheit mit drehzahlabhängiger hydraulischer kupplung und fliehkraftausgleich Download PDF

Info

Publication number
WO2001042675A1
WO2001042675A1 PCT/AT2000/000331 AT0000331W WO0142675A1 WO 2001042675 A1 WO2001042675 A1 WO 2001042675A1 AT 0000331 W AT0000331 W AT 0000331W WO 0142675 A1 WO0142675 A1 WO 0142675A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
transmission unit
pressure
piston
power transmission
Prior art date
Application number
PCT/AT2000/000331
Other languages
English (en)
French (fr)
Inventor
Franz Gratzer
Original Assignee
Steyr Daimler Puch Fahrzeugtechnik Ag & Co Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AT00982751T priority Critical patent/ATE289014T1/de
Application filed by Steyr Daimler Puch Fahrzeugtechnik Ag & Co Kg filed Critical Steyr Daimler Puch Fahrzeugtechnik Ag & Co Kg
Priority to EP00982751A priority patent/EP1235993B1/de
Priority to DE50009509T priority patent/DE50009509D1/de
Priority to CA2393063A priority patent/CA2393063C/en
Priority to JP2001543929A priority patent/JP2003516506A/ja
Priority to US10/149,078 priority patent/US7287635B2/en
Publication of WO2001042675A1 publication Critical patent/WO2001042675A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D43/00Automatic clutches
    • F16D43/02Automatic clutches actuated entirely mechanically
    • F16D43/04Automatic clutches actuated entirely mechanically controlled by angular speed
    • F16D43/06Automatic clutches actuated entirely mechanically controlled by angular speed with centrifugal masses actuating axially a movable pressure ring or the like
    • F16D43/08Automatic clutches actuated entirely mechanically controlled by angular speed with centrifugal masses actuating axially a movable pressure ring or the like the pressure ring actuating friction plates, cones or similar axially-movable friction surfaces
    • F16D43/12Automatic clutches actuated entirely mechanically controlled by angular speed with centrifugal masses actuating axially a movable pressure ring or the like the pressure ring actuating friction plates, cones or similar axially-movable friction surfaces the centrifugal masses acting on, or forming a part of, an actuating mechanism by which the pressure ring can also be actuated independently of the masses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/0635Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
    • F16D25/0638Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D43/00Automatic clutches
    • F16D43/02Automatic clutches actuated entirely mechanically
    • F16D43/04Automatic clutches actuated entirely mechanically controlled by angular speed
    • F16D43/06Automatic clutches actuated entirely mechanically controlled by angular speed with centrifugal masses actuating axially a movable pressure ring or the like
    • F16D43/08Automatic clutches actuated entirely mechanically controlled by angular speed with centrifugal masses actuating axially a movable pressure ring or the like the pressure ring actuating friction plates, cones or similar axially-movable friction surfaces
    • F16D43/10Automatic clutches actuated entirely mechanically controlled by angular speed with centrifugal masses actuating axially a movable pressure ring or the like the pressure ring actuating friction plates, cones or similar axially-movable friction surfaces the centrifugal masses acting directly on the pressure ring, no other actuating mechanism for the pressure ring being provided
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D43/00Automatic clutches
    • F16D43/28Automatic clutches actuated by fluid pressure
    • F16D43/284Automatic clutches actuated by fluid pressure controlled by angular speed

Definitions

  • the invention relates to a power transmission unit with an input member and an output member and a speed-dependent hydraulic clutch, in which a hydrostatic displacement machine generates a pressure when a differential speed occurs between the input member and the output member, which acts on a piston acting on a friction clutch, the friction clutch first with the input member and second with the output member drive-connected disks and one of the members forms a housing containing the displacement machine.
  • Such power transmission units are used primarily in drive trains of motor vehicles, preferably all-wheel drive; either together with a differential gear, the hydraulic clutch limiting the differential effect, or for driving the two- th driven axle, the transmitted torque depending on the difference between the wheel speed and the drive shaft connected to the wheels of the other axle.
  • the pressure generated by the displacement machine acts on a clutch, preferably on a multi-plate clutch. This effect can be influenced by various valves, be they automatic ones or be operated by an external control.
  • Such a power transmission unit is known from US Pat. No. 5,536,215. Also from the AT GM 2964.
  • the pressure chamber in which the pressure acting on the piston is built up is in the rotating housing.
  • the operating fluid contained therein is subject to a centrifugal force, by means of which the pressure prevailing in the pressure chamber is increased as a function of speed and is therefore falsified.
  • This is particularly troublesome if the pressure is dependent on the speed difference and is supplied by a hydrostatic displacement machine, in both possible cases: If there are no control valves in the first case of an unregulated clutch, compensation is impossible.
  • control valves are provided which are intended to depressurize the pressure chamber when disengaging, this is not possible at higher absolute speeds because the discharge line connected to the control valve must end on a smaller radius. Due to centrifugal force, the pressure there is always lower than in the pressure chamber.
  • centrifugal force is to be at least partially compensated for to the extent necessary.
  • at least one centrifugal force element is provided in the housing, which exerts a force on the piston corresponding to the square of the rotational speed and counteracting the pressure acting on the piston. Because it is also located in the housing, the compensation in all speed ranges is possible to a certain extent without any control engineering effort and suitable design. A speed dependency of the transmitted torque corresponding to the driving dynamics requirements can thus be set.
  • the extent of the compensation ranges from partial compensation to full compensation to overcompensation.
  • the torque transmitted decreases with increasing speed, which means better traction when driving slowly and better cooperation with electronic braking systems (eg ABS) when driving fast.
  • the at least one centrifugal force element is a centrifugal weight (claim 1).
  • the centrifugal force compensation is thus purely mechanical, in a preferred embodiment the centrifugal element is part of a two-armed lever, one leg of which is the centrifugal weight and the other lever of which is a pressure transducer (claim 3).
  • The, for example three, levers are very simple and can be accommodated in the housing with only minor structural changes. This is the simplest solution and can even be retrofitted to existing couplings.
  • the centrifugal force element is an operating space containing operating fluid and rotating with the housing (claim 4).
  • the hydraulic path is used here to compensate for centrifugal force. Since there is enough operating fluid in and around the coupling, it is not a problem to supply it.
  • the rotating annular space is formed by a cylindrical shell surrounding the housing with an annular wall normal to the axis and by an axis-normal wall of the housing, and the shell is connected to the piston and displaceable in the axial direction 5).
  • the annular space is delimited on one side by a sliding wall and on the other side by a non-sliding wall of the housing.
  • the liquid level in the annulus is determined by the inner radius of the circular, axially normal wall.
  • the axially normal walls are pressed apart by the centrifugal force acting on the working medium in the annular space. This compensating force is transmitted from the sliding sleeve to the piston.
  • the radially outermost zone of the rotating annular space is connected via a channel to a compensation pressure space on the side of the piston facing away from the pressure space (claim 6).
  • the annular space and the channel can also be provided in the interior of the housing. Valves assigned to the channel can even achieve special dynamic driving effects.
  • the compensation pressure chamber is formed by an annular cylinder in the housing and by an annular extension on the side of the piston facing away from the pressure chamber (claim 7).
  • FIG. 1 a longitudinal section through an inventive device in a first embodiment
  • FIG. 2 a longitudinal section through an inventive device in a second embodiment
  • FIG. 3 a longitudinal section through an inventive device in a third embodiment.
  • the input member is denoted by 1, it could also be the output member to which a shaft 2 shown in dashed lines is flanged by means of only indicated screws. It consists of an end plate 3, an essentially cylindrical housing 4 which is integrally or fixedly connected to the end plate 3 and an end plate 5 which is detachably but tightly connected to the housing 4 for assembly purposes.
  • the output member 6 (it could also be the input member) is a hollow shaft, into which an only indicated shaft is inserted by means of a spline, it is supported in bearings 7 in the end plate 3 or the end plate 5 of the input member 1 and can be opposite this be sealed by means of seals 8. Simple sealing rings are sufficient because the speed difference is very small on average. With 9 the axis of rotation or center line is designated.
  • a hydrostatic displacement machine 20 which consists of an inner part 21 and an outer part 22.
  • the former is non-rotatably connected to the output member 6, the second to the input member 1, specifically to the housing 4.
  • the corresponding copper fur teeth are only hinted at.
  • a working space 23 extends between the inner part 21 and the outer part 22 and is supplied via a suction channel 24 in a manner not shown.
  • the hydrostatic displacement machine 20 is followed by an insert 25 which contains a pressure channel 26 and a piston 27 which is acted upon by the pressure fluid brought in through the pressure channel 26 and which delimits a pressure chamber 34 with the insert 25.
  • Part of this pressure fluid can be directed through a piston 27 via a throttle valve 28 into the space containing a clutch 31, in which a number of inner plates 29 and outer plates 30 are arranged.
  • the former are non-rotatably but displaceably connected to the output member 6, the second to the housing 4 of the input member 1.
  • the housing 4 has a plurality of openings 10 distributed around the circumference, through which two-armed angled levers 12 engage.
  • One leg of such a lever is designed as a centrifugal weight 11, the other as a pressure sensor 13, which engages in a recess 14 on the side of the piston 27 facing away from the pressure chamber 34.
  • a bearing edge 15 is provided here on the opening 10 of the housing 4, on which a bearing shoulder 16 is supported on the rear side of the pressure finger 13. This ensures that the lever 12 does not fly away.
  • a nose 18 can be provided which is held by an end stop 17 when the most permissible position of the centrifugal weight 11 is reached.
  • Figure 2 shows a different concept.
  • the housing 4 has a plurality of openings 10 distributed around the circumference, through which radial pins 40 inserted in the piston 27 extend outwards and are connected to a cylindrical shell 41 which surrounds the housing 4 all around. You can transmit a force in the axial direction between the sleeve 41 and the piston 27.
  • the cylindrical shell 41 extends to the left in the illustration, projects beyond the housing 4, and ends in a circular wall 42, which is normal to the axis. Between this wall and an axis normal wall 43 of the housing 4, an annular space 44 is created. see housing 4 and shell 41 sealed and contains working fluid at a height which is determined by the inner diameter of the wall 42.
  • this liquid level 46 is a cylindrical surface.
  • this annular space 44 when the centrifugal force rotates, a pressure is created which pulls the wall 43 of the sleeve 41 to the left in the exemplary embodiment shown and thus again exerts a force on the piston 27 which compensates the centrifugal force in the pressure space 34.
  • the annular space 44 can also be modified in design and location. It is essential that an axial force arises which is opposite to the force acting on the piston 27 in the pressure chamber 34.
  • connection between the annular space and the piston can also be established hydraulically.
  • annular space 50 is again provided, in the exemplary embodiment shown on the side of the piston 27 facing away from the pressure space 34, and in the interior of the housing 4.
  • the annular space 50 is kept filled via a supply bore 51 from the interior of the clutch space, and a drain bore 52 is provided for maintaining a constant (cylindrical) liquid mirror 53.
  • the pressure generated by the centrifugal force in the annular space 50 acts via an axial channel 54 (or several of them) on an annular cylinder 55.
  • the latter is also formed in the housing 4 and seals an annular extension 56 of the piston 27. It forms a compensation pressure space 57 with the ring cylinder 55.
  • the pressure acts on the annular surface 58 and thus compensates for the effect of the pressure prevailing in the pressure chamber 34.
  • the hydrostatic displacement machine can be designed very differently, both with regard to the shape of its rotors and its arrangement in the housing 4.
  • the power transmission unit can be arranged at different points in the drive train, in particular in the power flow before or after the axle differential. It can also be arranged in the interior of a housing containing the axle differential.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)

Abstract

Eine Kraftübertragungseinheit mit einer drehzahldifferenzabhängigen hydraulischen Kupplung, bei der eine hydrostatische Verdrängungsmaschine (20) bei Auftreten einer Differenzdrehzahl zwischen Eingangsglied (1) und Ausgangsglied (6) in einem Druckraum (34) einen Druck erzeugt, der auf einen eine Reibungskupplung (31) beaufschlagenden Kolben (27) wirkt, hat ein Gehäuse (4). Um die auf die Arbeitsflüssigkeit im Druckraum (34) wirkende Fliehkraft auszugleichen, ist im Gehäuse mindestens ein Fliehkraftelement (11, 12, 13) vorgesehen, das auf den Kolben (27) eine dem durch die Fliehkraft in der Druckkammer (34) erzeugten Druck entgegengerichtete Kraft ausübt.

Description

KRAFTUBERTRAGUNGSEINHEIT MIT DREHZAHLABHANGIGER HYDRAULISCHER KUPPLUNG UND FLIEHKRAFTAUSGLEICH
Die Erfindung handelt von einer Kraftübertragungseinheit mit einem Eingangsglied und einem Ausgangsglied und einer drehzahldifferenzabhängigen hydraulischen Kupplung, bei der eine hydrostatische Verdrängungsmaschine bei Auftreten einer Differenzdrehzahl zwischen Eingangsglied und Ausgangsglied in einem Druckraum einen Druck erzeugt, der auf einen eine Reibungskupplung beaufschlagenden Kolben wirkt, wobei die Reibungskupplung erste mit dem Eingangsglied und zweite mit dem Ausgangsglied antriebsverbundene Scheiben und eines der Glieder ein die Verdrängungsmaschine enthaltendes Gehäuse bildet.
Derartige Kraftübertragungseinheiten finden vor allem in Antriebssträngen von Kraftfahrzeugen, vorzugsweise von allradgetriebenen, Verwendung; entweder zusammen mit einem Differentialgetriebe, wobei die hydraulische Kupplung die Differential wirkung begrenzt, oder für den Antrieb der zwei- ten getriebenen Achse, wobei das übertragene Drehmoment von der Differenz zwischen Raddrehzahl und der mit den Rädern der anderen Achse verbundenen Antriebswelle abhängt. Der von der Verdrängungsmaschine erzeugte Druck wirkt auf eine Kupplung, vorzugsweise auf eine Lamellen- kupplung. Diese Wirkung ist durch verschiedene, sei es automatisch wirkende, sei es von einer externen Steuerung betätigte Ventile, beeinflußbar.
Aus der US-PS 5,536,215 ist eine derartige Kraftübertragungseinheit bekannt. Ebenso aus dem AT GM 2964. Bei diesen und allen derartigen Kraft- Übertragungseinheiten befindet sich der Druckraum, in dem der auf den Kolben wirkende Druck aufgebaut wird, im rotierenden Gehäuse. Dadurch unterliegt die darin enthaltene Betriebsflüssigkeit einer Fliehkraft, durch die in der Druckkammer herrschende Druck drehzahlabhängig vergrößert und somit verfälscht wird. Das ist besonders störend, wenn der Druck drehzahl- differenzabhängig ist und von einer hydrostatischen Verdrängungsmaschine geliefert wird, und zwar in beiden möglichen Fällen: Sind im ersten Fall einer ungeregelten Kupplung keine Steuerventile vorhanden, so ist eine Kompensation unmöglich. Sind, im zweiten Fall, Steuerventile vorgesehen, die zum Auskuppeln den Druckraum drucklos machen sollen, so ist das bei hö- heren absoluten Drehzahlen nicht möglich, weil die an das Steuerventil anschließende Abfuhrleitung auf einem kleineren Radius enden muß. Dort ist fliehkraftbedingt der Druck aber immer kleiner als in der Druckkammer.
Es ist daher Ziel der Erfindung, den Besonderheiten von gattungsgemäßen Kupplungen entsprechend diese Nachteile zu beheben. Der Fliehkraftein- fluss soll in einem erforderlichen Ausmaß zumindest teilweise kompensiert werden. Dazu ist erfindungsgemäß im Gehäuse mindestens ein Fliehkraftelement vorgesehen, das auf den Kolben eine dem Quadrat der Drehzahl entsprechende und dem auf den Kolben wirkenden Druck entgegengerichtete Kraft ausübt. Dadurch, dass es sich ebenfalls im Gehäuse befindet, ist ohne rege- lungstechnischen Aufwand bei geeigneter Auslegung die Kompensation in allen Drehzahlbereichen in einem bestimmbaren Ausmaß möglich. Damit kann eine den fahrdynamischen Anforderungen entsprechende Geschwindigkeitsabhängigkeit des übertragenen Momentes eingestellt werden. Das Ausmaß der Kompensation reicht von teilweiser Kompensation über volle Kompensation bis zu Überkompensation. Dabei wird das übetragene Drehmoment mit steigender Geschwindigkeit kleiner, womit bei langsamer Fahrt bessere Traktion, und bei schneller Fahrt bessere Zusammenarbeit mit elektronischen Bremssystemen (z.B. ABS) erreicht wird.
In einer vorteilhaften Konzeption ist das mindestens eine Fliehkraftelement ein Fliehgewicht (Anspruch 1 ). Der Fliehkraftausgleich erfolgt somit rein mechanisch, wobei in einer bevorzugten Ausführungform das Fliehkraftelement Teil eines zweiarmigen Hebels ist, dessen ein Schenkel das Fliehgewicht und dessen anderer Hebel ein Druckfmger ist (Anspruch 3). Die, beispielsweise drei, Hebel sind sehr einfach und mit nur geringen konstruktiven Veränderungen im Gehäuse unterzubringen. Das ist die einfachste und sogar bei bestehenden Kupplungen nachrüstbare Lösung.
Die andere Konzeption besteht darin dass das Fliehkraftelement ein Be- triebsflüssigkeit enthaltender und mit dem Gehäuse rotierender Ringraum ist (Anspruch 4). Hier wird zum Fliehkraftausgleich der hydraulische Weg be- schritten. Da in der und um die Kupplung genug Betriebsflüssigkeit vorhanden ist, ist deren Zufuhr kein Problem. In einer ersten vorteilhaften Ausführungform dieser anderen Konzeption ist der rotierende Ringraum von einer das Gehäuse umgebenden zylindrischen Hülle mit einer kreisringförmigen achsnormalen Wand und von einer achs- normalen Wand des Gehäuses gebildet, und ist die Hülle mit dem Kolben verbunden und in achsialer Richtung verschiebbar (Anspruch 5).
Auf diese Weise ist der Ringraum auf einer Seite von einer verschiebbaren Wand und auf der anderen Seite von einer nicht verschiebbaren Wand des Gehäuses begrenzt. Der Flüssigkeitsspiegel im Ringraum wird durch den inneren Radius der kreisringförmigen achsnormalen Wand bestimmt. Durch die auf das im Ringraum befindliche Arbeitsmedium wirkende Fliehkraft werden die achsnormalen Wände auseinandergedrückt. Diese Kompensationskraft wird von der verschiebbaren Hülle auf den Kolben übertragen.
In einer zweiten vorteilhaften Ausführungform dieser anderen Konzeption steht die radial äusserste Zone des rotierenden Ringraumes über einen Kanal mit einem Kompensations-Druckraum auf der dem Druckraum abgewandten Seite des Kolbens in Verbindung (Anspruch 6). Der Ringraum und der Kanal kann dabei auch im Inneren des Gehäuses vorgesehen sein. Durch dem Kanal zugeordnete Ventile können sogar besondere fahrdynamische Effekte erzielt werden.
Eine besonders elegante Lösung besteht darin, dass der Kompensations- Druckraum von einem Ringzylinder im Gehäuse und von einem Ringfortsatz an der dem Druckraum abgewandten Seite des Kolbens gebildet ist (Anspruch 7). Im Folgenden wird die Erfindung anhand von Abbildungen beschrieben und erläutert. Es stellen dar:
Fig.1 : Einen Längsschnitt durch eine erfindungsgemäße Vorrichtung in einer ersten Ausführungsform, Fig.2: einen Längsschnitt durch eine erfindungsgemäße Vorrichtung in einer zweiten Ausführungsform, Fig.3: einen Längsschnitt durch eine erfindungsgemäße Vorrichtung in einer dritten Ausführungsform.
In Fig. l ist das Eingangsglied mit 1 bezeichnet, es könnte auch das Ausgangsglied sein, an das mittels nur angedeuteter Schrauben eine strichliert gezeichnete Welle 2 angeflanscht ist. Es besteht aus einer Stirnplatte 3, einem im wesentlichen zylindrischen Gehäuse 4 das mit der Stirnplatte 3 ein- stückig oder fest verbunden ist und aus einer Endplatte 5 die zu Montagezwecken lösbar, aber dicht mit dem Gehäuse 4 verbunden ist. Das Ausgangsglied 6 (es könnte auch das Eingangsglied sein) ist eine Hohlwelle, in die mittels Keil Verzahnung eine nur angedeutete Welle eingeführt ist, es ist in Lagern 7 in der Stirnplatte 3 beziehungsweise der Endplatte 5 des Ein- gangsgliedes 1 gelagert und kann gegenüber diesem mittels Dichtungen 8 abgedichtet sein. Einfache Dichtringe genügen, weil die Drehzahl differenz im Durchschnitt sehr klein ist. Mit 9 ist die Drehachse beziehungsweise Mittellinie bezeichnet.
Im Inneren des Gehäuses 4 befindet sich eine hydrostatische Verdrängungsmaschine, 20 die aus einem Innenteil 21 und einem Außenteil 22 besteht. Ersterer ist drehfest mit dem Ausgangsglied 6, zweiterer mit dem Eingangsglied 1 und zwar mit dem Gehäuse 4 verbunden. Die entsprechenden Kup- pelzähne sind nur angedeutet. Zwischen Innenteil 21 und Außenteil 22 erstreckt sich ein Arbeitsraum 23, der über einen Saugkanal 24 in nicht gezeigter Weise versorgt wird. Auf der anderen Seite schließt an die hydrostatische Verdrängungsmaschine 20 ein Einsatz 25 an, der einen Druck- kanal 26 und einen Kolben 27 enthält, der von dem durch den Druckkanal 26 herangeführten Druckfluid beaufschlagt wird und mit dem Einsatz 25 einen Druckraum 34 begrenzt. Ein Teil dieses Druckfluides kann durch einen Kolben 27 über ein Drosselventil 28 in den eine Kupplung 31 enthaltenden Raum geleitet sein, in dem eine Anzahl von Innenlamellen 29 und Au- ßenlamellen 30 angeordnet sind. Erstere sind mit dem Ausgangsglied 6, zweitere mit dem Gehäuse 4 des Eingangsgliedes 1 drehfest, aber verschiebbar verbunden.
Zur Anbringung einer Vorrichtung zum Ausgleich der durch die Fliehkraft in der Druckkammer 34 auf den Kolben 27 ausgeübten Kraft weist das Gehäuse 4 hier mehrere am Umfang verteilte Durchbrüche 10 auf, durch die zweiarmige abgewinkelte Hebel 12 greifen. Ein Schenkel eines solchen Hebels ist als Fliehgewicht 1 1 ausgebildet, der andere als Druckfmger 13, der in einer Ausnehmung 14 an der der Druckraum 34 abgewandten Seite des Kolbens 27 angreift. Anstelle einer den zweiarmigen Hebel 12 durchsetzenden Schwenkachse ist hier am Durchbruch 10 des Gehäuses 4 eine Lagerkante 15 vorgesehen, an der sich eine Lagerschulter 16 an der Rückseite des Druckfingers 13 abstützt. Dadurch ist sichergestellt, dass der Hebel 12 nicht davonfliegt. Am äußersten Ende des Fliehgewichtes 1 1 kann eine Nase 18 vorgesehen sein, die bei Erreichen der äußersten zulässigen Stellung des Fliehgewichtes 1 1 von einem Endanschlag 17 gehalten wird. Die Fig.2 zeigt eine andere Konzeption. Auch da besitzt das Gehäuse 4 mehrere am Umfang verteilte Durchbrüche 10, durch die im Kolben 27 steckende radiale Stifte 40 nach außen reichen und mit einer das Gehäuse 4 rundum uimgebenden zylindrischen Hülle 41 verbunden sind. Sie können zwischen der Hülle 41 und dem Kolben 27 eine Kraft in Achsrichtung übertragen. Die zylindrische Hülle 41 erstreckt sich in der Abbildung nach links, überragt das Gehäuse 4, und endet in einer kreisringförmigen achsnormalen Wand 42. Zwischen dieser und einer achsnormalen Wand 43 des Gehäuses 4 entsteht so ein Ringraum 44. Dieser ist mittels eines Dichtringes 45 zwi- sehen Gehäuse 4 und Hülle 41 abgedichtet und enthält Arbeitsflüssigkeit in einer Höhe, die durch den Innendurchmesser der Wand 42 bestimmt ist.
Bei Rotation des Gehäuses 4 ist dieser Flüssigkeitsspiegel 46 eine Zylinderfläche. In diesem Ringraum 44 entsteht bei Rotation durch die Fliehkraft ein Druck, der die Wand 43 der Hülle 41 im dargestellten Ausführungsbeispiel nach links zieht und so über die Stifte 40 wieder eine die Fliehkraft im Druckraum 34 kompensierende Kraft auf den Kolben 27 ausübt. Der Ringraum 44 kann auch in Ausbildung und Lage abgeändert werden. Wesentlich ist, dass eine achsiale Kraft entsteht, die der im Druckraum 34 auf den Kol- ben 27 wirkenden Kraft entgegengerichtet ist.
Gemäß der Variante der Fig.3 kann die Verbindung zwischen Ringraum und Kolben auch auf hydraulischem Weg hergestellt sein. Dazu ist wieder ein Ringraum 50 vorgesehen, in dem gezeigten Ausführungsbeispiel auf der dem Druckraum 34 abgewandten Seite des Kolbens 27, und im Inneren des Gehäuses 4. Gefüllt gehalten wird der Ringraum 50 über eine Zuführbohrung 51 aus dem Inneren des Kupplungsraumes, eine Abflußbohrung 52 sorgt für die Einhaltung eines konstanten (zylindrischen) Flüssigkeits- spiegeis 53. Der durch die Fliehkraft im Ringraum 50 erzeugte Druck wirkt über einen achsialen Kanal 54 (oder deren mehrere) auf einen Ringzylinder 55. Dieser ist ebenfalls im Gehäuse 4 ausgebildet und nimmt einen Ringfortsatz 56 des Kolbens 27 dichtend. Er bildet mit dem Ringzylinder 55 ei- nen Kompensationsdruckraum 57. Dort wirkt der Druck auf die kreisringförmige Fläche 58 und kompensiert so die Wirkung des in der Druckkammer 34 herrschenden Druckes.
Im Rahmen der Erfindung kann in vielen Details von den dargestellten Aus- führungsbeispielen abgewichen werden. So kann die hydrostatische Verdrängungsmaschine sehr verschieden ausgebildet sein, sowohl hinsichtlich der Form ihrer Rotoren als auch ihrer Anordnung im Gehäuse 4. Schließlich kann die Kraftübertragungseinheit an verschiedenen Stellen des Antriebsstranges angeordnet sein, insbesondere im Kraftfluß vor oder nach dem Achsdifferential. Sie kann auch im Inneren eines das Achsdifferential enthaltenden Gehäuses angeordnet sein.

Claims

PATENTANSPRÜCHE
1. Kraftübertragungseinheit mit einem Eingangsglied und einem Ausgangsglied und einer drehzahldifferenzabhängigen hydraulischen Kupplung, bei der eine hydrostatische Verdrängungsmaschine (20) bei Auftreten einer Differenzdrehzahl zwischen Eingangsglied (1 ;6) und Ausgangsglied (6; 1 ) in einem Druckraum (34) einen Druck erzeugt, der auf einen eine Reibungskupplung (31 ) beaufschlagenden Kolben (27) wirkt, wobei die Reibungskupplung erste mit dem Eingangsglied und zweite mit dem Ausgangsglied antriebsverbundene Scheiben aufweist und eines der Glieder (1 ;6) ein die Verdrängungsmaschine enthaltendes Gehäuse (4) bildet, dadurch gekenn- zeichnet, dass im Gehäuse mindestens ein Fliehkraftelement (1 1 ,12,13; 41 ,44; 50,55) vorgesehen ist, das auf den Kolben (27) eine dem durch die Fliehkraft in der Druckkammer (34) erzeugten Druck entgegengerichtete Kraft ausübt.
2. Kraftübertragungseinheit nach Anspruch 1 , dadurch gekennzeichnet, dass das mindestens eine Fliehkraftelement ein Fliehgewicht (1 1 ) ist.
3. Kraftübertragungseinheit nach Anspruch 2, dadurch gekennzeichnet, dass das Fliehkraftelement ein zweiarmiger Hebel (12) ist, dessen ein Schenkel das Fliehgewicht (1 1) und dessen anderer Hebel einen Druck- finger (13) bildet.
4. Kraftübertragungseinheit nach Anspruch 1 , dadurch gekennzeichnet, dass das Fliehkraftelement ein Betriebsflüssigkeit enthaltender und mit dem Gehäuse (4) rotierender Ringraum (44;50) ist.
5. Kraftübertragungseinheit nach Anspruch 4, dadurch gekennzeichnet, dass der rotierende Ringraum (44) von einer das Gehäuse (4) umgebenden zylindrischen Hülle (41 ) mit einer kreisringförmigen achsnormalen Wand (42) und von einer achsnormalen Wand (43) des Gehäuses (4) gebildet ist, und dass die Hülle (41) mit dem Kolben (27) verbunden und in achsialer Richtung verschiebbar ist.
6. Kraftübertragungseinheit nach Anspruch 4, dadurch gekennzeichnet, dass die radial äusserste Zone des rotierenden Ringraumes (50) über einen Kanal (54) mit einem Kompensations-Druckraum (57) auf der dem Druckraum (34) abgewandten Seite des Kolbens (27) in Verbindung steht.
7. Kraftübertragungseinheit nach Anspruch 6, dadurch gekennzeichnet, dass der Kompensations-Druckraum (57) von einem Ringzylinder 55 im Gehäuse 4 und von einem Ringfortsatz 56 an der dem Druckraum (34) abgewandten Seite des Kolbens 27 gebildet ist.
PCT/AT2000/000331 1999-12-07 2000-12-07 Kraftübertragungseinheit mit drehzahlabhängiger hydraulischer kupplung und fliehkraftausgleich WO2001042675A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT00982751T ATE289014T1 (de) 1999-12-07 1999-12-07 Kraftübertragungseinheit mit drehzahlabhängiger hydraulischer kupplung und fliehkraftausgleich
EP00982751A EP1235993B1 (de) 1999-12-07 2000-12-07 Kraftübertragungseinheit mit drehzahlabhängiger hydraulischer kupplung und fliehkraftausgleich
DE50009509T DE50009509D1 (de) 1999-12-07 2000-12-07 Kraftübertragungseinheit mit drehzahlabhängiger hydraulischer kupplung und fliehkraftausgleich
CA2393063A CA2393063C (en) 1999-12-07 2000-12-07 Force-transmission unit comprising speed-dependent hydraulic clutch and centrifugal force compensation
JP2001543929A JP2003516506A (ja) 1999-12-07 2000-12-07 回転数に関係する液圧クラツチ及び遠心力補償装置を持つ動力伝達装置
US10/149,078 US7287635B2 (en) 1999-12-07 2000-12-07 Force -transmission unit comprising speed -dependent hydraulic clutch and centrifugal force compensation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATGM852/99 1999-12-07
AT0085299U AT4445U1 (de) 1999-12-07 1999-12-07 Kraftübertragungseinheit mit einer drehzahldifferenzabhängigen hydraulischen kupplung

Publications (1)

Publication Number Publication Date
WO2001042675A1 true WO2001042675A1 (de) 2001-06-14

Family

ID=3501285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2000/000331 WO2001042675A1 (de) 1999-12-07 2000-12-07 Kraftübertragungseinheit mit drehzahlabhängiger hydraulischer kupplung und fliehkraftausgleich

Country Status (7)

Country Link
US (1) US7287635B2 (de)
EP (1) EP1235993B1 (de)
JP (1) JP2003516506A (de)
AT (2) AT4445U1 (de)
CA (1) CA2393063C (de)
DE (1) DE50009509D1 (de)
WO (1) WO2001042675A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220185091A1 (en) * 2019-03-07 2022-06-16 Schaeffler Technologies AG & Co. KG Hybrid module with separating clutch and actuation unit without compensation; as well as drive train

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101643115B (zh) * 2009-09-01 2013-04-24 中国石油天然气集团公司 挖泥船砂泵驱动用液力偶合器传动箱
US8453819B2 (en) 2010-02-22 2013-06-04 Twin Disc, Inc. Balanced clutch system
DE102017214431A1 (de) * 2017-08-18 2019-02-21 Zf Friedrichshafen Ag Hydraulische Betätigungsvorrichtung für ein Schaltelement eines Getriebes
DE102019100383A1 (de) 2019-01-09 2020-07-09 Voith Patent Gmbh Fliehkraftkompensation einer hydraulischen Betätigungseinrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733635A (en) * 1985-07-30 1988-03-29 501 Valeo Heat generator for automobile vehicles
EP0443149A1 (de) * 1990-02-23 1991-08-28 Angelo Gambini Fliehkraft-Scheibenkupplung
US5310388A (en) * 1993-02-10 1994-05-10 Asha Corporation Vehicle drivetrain hydraulic coupling
US5536215A (en) 1993-02-10 1996-07-16 Asha Corporation Hydraulic coupling for vehicle drivetrain
FR2760058A1 (fr) * 1997-02-26 1998-08-28 Patrick Savard Dispositif d'embrayage centrifuge, notamment pour vehicule leger

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2446088A (en) * 1941-11-03 1948-07-27 Hobbs Transmission Ltd Power-transmission apparatus
US2966978A (en) * 1957-05-27 1961-01-03 Ford Motor Co Fluid pressure operated clutch
US3199648A (en) * 1963-11-26 1965-08-10 Allis Chalmers Mfg Co Fluid transfer type clutch actuator
JP2673279B2 (ja) * 1987-08-29 1997-11-05 富士重工業株式会社 湿式多板クラッチ
US6041903A (en) * 1997-12-17 2000-03-28 New Venture Gear, Inc. Hydraulic coupling for vehicular power transfer systems
KR100391471B1 (ko) * 2001-07-11 2003-07-12 현대자동차주식회사 자동 변속기 다판 클러치의 리턴 스프링

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733635A (en) * 1985-07-30 1988-03-29 501 Valeo Heat generator for automobile vehicles
EP0443149A1 (de) * 1990-02-23 1991-08-28 Angelo Gambini Fliehkraft-Scheibenkupplung
US5310388A (en) * 1993-02-10 1994-05-10 Asha Corporation Vehicle drivetrain hydraulic coupling
US5536215A (en) 1993-02-10 1996-07-16 Asha Corporation Hydraulic coupling for vehicle drivetrain
FR2760058A1 (fr) * 1997-02-26 1998-08-28 Patrick Savard Dispositif d'embrayage centrifuge, notamment pour vehicule leger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220185091A1 (en) * 2019-03-07 2022-06-16 Schaeffler Technologies AG & Co. KG Hybrid module with separating clutch and actuation unit without compensation; as well as drive train

Also Published As

Publication number Publication date
DE50009509D1 (de) 2005-03-17
AT4445U1 (de) 2001-07-25
CA2393063A1 (en) 2001-06-14
JP2003516506A (ja) 2003-05-13
EP1235993B1 (de) 2005-02-09
CA2393063C (en) 2010-08-10
US20060175173A1 (en) 2006-08-10
EP1235993A1 (de) 2002-09-04
ATE289014T1 (de) 2005-02-15
US7287635B2 (en) 2007-10-30

Similar Documents

Publication Publication Date Title
EP0324152B1 (de) Flüssigkeitskupplung
AT403855B (de) Verfahren und vorrichtung zur steuerung einer kupplung
DE69328130T2 (de) Kupplungseinheit eines automatischen, mechanischen Getriebes
DE60026062T2 (de) Freilaufkupplungseinrichtung
DE602004012997T2 (de) Hydraulische Doppelkupplung
DE68926685T2 (de) Kraftübertragung für ein zwei- und vierradangetriebenes Fahrzeug
DE69831748T2 (de) Selbständige hydraulische kupplung
AT404519B (de) Verfahren und vorrichtung zur steuerung einer kupplung
EP0143898A1 (de) Reibungsbremse bzw. -kupplung mit einer Zwangskühlung
EP0264579A1 (de) Sperrbares Ausgleichsgetriebe
EP1975466A2 (de) Hydrodynamische Kopplungsvorrichtung
DE1450085B1 (de) UEberbrueckungskupplung fuer einen hydrodynamischen Kreislauf
EP2597328B1 (de) Kupplungsanordnung für einen Fahrzeugantriebsstrang
DE69710693T2 (de) Hydraulisch betätigbares Sperrdifferenzial
DE68905466T2 (de) Kupplung für Kraftübertragung.
EP1235993B1 (de) Kraftübertragungseinheit mit drehzahlabhängiger hydraulischer kupplung und fliehkraftausgleich
DE3708054C2 (de)
DE3841238A1 (de) Antriebskupplungseinheit
WO1987006668A1 (en) Self-locking differential for motor vehicles
DE3444843A1 (de) Sperrbares ausgleichsgetriebe fuer kraftfahrzeuge
WO2011069821A1 (de) Kraftfahrzeuggetriebe mit regelbarem differential
DE2913182C2 (de) Spül- und Druckleitungsführung für einen hydrodynamischen Drehmomentwandler mit Überbrückungskupplung
DE3906500C2 (de) Flügelzellenpumpen-Getriebekupplung
DE4424255C2 (de) Vorrichtung zur Steuerung einer Kupplung
WO2000045062A1 (de) Drehzahldifferenzabhängige hydraulische kupplung mit temperaturkompensation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 543929

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000982751

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2393063

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2000982751

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006175173

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10149078

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2000982751

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10149078

Country of ref document: US