WO2001042624A2 - Rotary engine - Google Patents
Rotary engine Download PDFInfo
- Publication number
- WO2001042624A2 WO2001042624A2 PCT/NZ2000/000241 NZ0000241W WO0142624A2 WO 2001042624 A2 WO2001042624 A2 WO 2001042624A2 NZ 0000241 W NZ0000241 W NZ 0000241W WO 0142624 A2 WO0142624 A2 WO 0142624A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piston
- engine
- rotatable member
- lever
- cylinders
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B13/00—Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion
- F01B13/04—Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion with more than one cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B9/00—Reciprocating-piston machines or engines characterised by connections between pistons and main shafts, not specific to groups F01B1/00 - F01B7/00
- F01B9/04—Reciprocating-piston machines or engines characterised by connections between pistons and main shafts, not specific to groups F01B1/00 - F01B7/00 with rotary main shaft other than crankshaft
- F01B9/06—Reciprocating-piston machines or engines characterised by connections between pistons and main shafts, not specific to groups F01B1/00 - F01B7/00 with rotary main shaft other than crankshaft the piston motion being transmitted by curved surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01B—MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
- F01B13/00—Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion
- F01B13/04—Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion with more than one cylinder
- F01B13/045—Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion with more than one cylinder with cylinder axes arranged substantially tangentially to a circle centred on main shaft axis
Definitions
- the invention relates to engines.
- engines that may be used either as a power source or as a pump.
- a further cause of inefficiency, in for example existing internal combustion engines, is that there are gears, cams and other equipment necessary to enable the engine to function. This results in reduced efficiency, and in the final analysis only a small percentage of input energy is transferred to the output.
- Rotary type engines overcome some of the above problems.
- such engines are complex and there are sealing problems between the moving parts. While they have dramatically changed the design of standard piston and cylinder engines they have resulted in complex sealing and design problems which result in unreliability.
- Hybrid type engines are known.
- One such hybrid described in EP09641 36, is a rotary type configuration with the engine block defining a cylindrical rotor having a plurality of bores which open to combustion chambers near its periphery.
- a piston is disposed in each bore.
- Each piston has its own crank with rotation being transferred to the engine block/rotor via a planetary gearbox arrangement.
- Inlet ports, spark plugs and outlet ports are arranged around the periphery of the engine housing in the same manner as a conventional rotary engine.
- the claimed advantage of this configuration is that the power/movement of the pistons is almost completely converted to rotational movement of the engine and thus it produces a greater power output per size/weight than a conventional piston engine.
- a further claimed advantage is that the rotary nature of the engine does away with the need to employ valves and thus the associated problem of valve damage in conventional engines. However, the engine still suffers from considerable sealing problems and losses in the planetary gearbox linking the piston rods to the rotor.
- FIG. 8496/27 Another hybrid type engine is described in AU 8496/27.
- This engine is of the type that has a continuously rotating group of cylinders disposed tangentially on a main rotatable member. Corresponding pistons are intermittently rotating The pistons are attached to piston levers pivoted about the centre of rotation. In order to achieve correct operation of this engine the pistons must be locked against movement in either direction during combustion so that energy can be transferred to the rotatable member via the cylinders. After combustion the piston must accelerate at twice the speed of the rotary member in order to move back to top dead centre for the next combustion stroke. A sophisticated arrangement of gears and levers are required to operate the piston in this manner manner. Because the piston must travel at twice rotational speed the engine's maximum speed is limited by the ability to move the piston from standstill to top dead centre.
- the invention provides for an engine including one or more cylinder and piston groups disposed in or on a rotating member, the longitudinal axis of the one or more cylinder and piston groups being orientated tangential to the rim of the rotating member, and wherein both the cylinders and pistons rotate continuously relative to a stationary part of the engine.
- the invention provides for an engine including : a rotatable member; one or more cylinders disposed around the circumference of the rotatable member, the longitudinal axis of the cylinders being tangential to the circumference of the rotatable member; and one or more pistons, each piston associated with a corresponding cylinder, the engine characterised in that each piston is associated with a piston lever pivoted eccentric to the rotatable member and wherein movement of each piston is controlled such that combustion energy is transmitted to the rotatable member by the cylinder moving away from the piston.
- each piston is controlled independently of rotation of the rotatable member.
- the piston is engaged, either directly or via a connection rod, to the distal end of the piston lever, the proximal end of the piston lever being manipulated to control movement of the piston relative to the cylinder.
- one or more piston controllers are disposed adjacent the proximal end of the piston lever, the proximal end of the piston lever being adapted to movably engage a surface or edge of the piston controller and communicate movement to the piston lever.
- Preferably only one piston controller is disposed concentric to the rotatable member, the piston controller being a cylindrically shaped disk having one or more lobes on its circumferential surface.
- the piston controller is rotationally independent of the rotatable member.
- the piston controller is rotated in the opposite direction to the rotatable member.
- the piston controller is utilised to control the time that the pistons spend at the either end of their stroke.
- an energy stroke delivered to the rotatable member is longer than a combustion stroke of the piston.
- a compression stroke assists in supplying rotational energy to the rotatable member.
- proximal ends of piston lever from two or more diametrically opposed pistons are joined or linked so that excursion of a piston on an compression stroke assists the excursion of a diametrically opposed piston on a compression stroke.
- one or more weights are associated with the one or more piston levers, centrifugal force acting on the weights to aid excursion of the pistons within the cylinders.
- substantially all of the force exerted in movement between the cylinders and pistons is along the longitudinal axis of the cylinders thereby reducing the effect of cylinder bore side thrust.
- the force generated at the cylinders is delivered directly to an output shaft without the intervention of any other mechanical parts.
- Figure 1 illustrates a first four stroke embodiment of an engine according to the invention
- Figure 2 illustrates a second four stroke embodiment of an engine according to the invention
- Figure 3 illustrates a third four stroke embodiment of an engine according to the invention
- Figure 4 illustrates a fourth four stroke embodiment of an engine according to the invention
- Figure 5 illustrates a two stroke embodiment of an engine according to the invention
- Figure 6 illustrates a two stroke reciprocating embodiment of an engine according to the invention
- Figure 7 illustrates a schematic representation of a centrifugal force assisted engine according to an aspect of the invention.
- the invention will now be described with reference to its use as an internal combustion engine. Use of the engine as a pump is not excluded and such use is within the ability to be attributed to the skilled addressee.
- the cylinders 1 are mounted on a main rotatable member, or rotor, 2 with their longitudinal axis tangential to rotor nm 3.
- Each cylinder 1 has an associated piston lever 9 and piston 7 which engages a bore 8 in known manner. Standard piston and cylinder assemblies may be utilised.
- the engine operates opposite to conventional combustion engines in that during combustion movement of the piston 7 is controlled causing the cylinder 1 , which is disposed on rotor 2, to move This results in rotation of rotor 2 and output shaft 6.
- the direction of rotation is shown by arrow A.
- Piston lever 9 is pivotably engaged with rotor 2 at a fulcrum point 5 which is eccentric with rotor 2.
- a piston controller 1 1 In the centre of, and concentric with, rotor 2 is a piston controller 1 1 .
- Piston controller 1 1 is cylind ⁇ cally shaped with a plurality of lobes 1 2 around its circumferential surface 13.
- piston controller 1 1 In the most simple embodiment of the engine piston controller 1 1 is rotationally stationary so that rotor 2, piston levers 9, and hence pistons 7 rotate about it
- each piston lever 9 At the proximal end 1 5 of each piston lever 9 is a roller 1 7 which engages the circumferential surface 1 3 of piston controller 1 1 .
- roller 1 7 As cylinder 1 and rotor 2 rotate piston lever 9 also rotates due to its fulcrum point 5 being eccentrically disposed Roller 17 follows circumferential surface 1 3 communicating motion to piston lever 9.
- the fulcrum 5 of piston lever 9 is closer to proximal end 1 5 of lever 9 than distal end 1 6 of lever 9 and thus a small amount of movement at proximal end 1 5 is translated into substantial movement at distal end 1 6
- a piston connector rod 1 0 is pivotably engaged between distal end 1 6 of piston lever 9 and piston 7.
- piston 7 is moved within the bore 8.
- piston 7 is moved to top dead center of bore 8
- piston 7 cannot move backwards as its movement is controlled by piston lever 9 and piston controller 1 1 .
- cylinder 1 moves away from piston 7 delivering rotational energy to rotor 2 in the direction of arrow A
- piston 7 is pivotably disposed on rotor 2, via piston lever 9, it continuously rotates with rotor 2.
- its speed/motion, and hence position, relative to cylinder 1 can be controlled by shaping of lobes 1 2 on piston controller 1 1 and thus the time taken for piston 7 to go from top-dead-centre to bottom-dead-centre within cylinder 1 can be lengthened to extend the effective energy stroke experienced by rotor 2.
- piston controller 1 1 disposed concentric with rotor 2
- an embodiment of the engine may utilise two or more piston controllers disposed adjacent proximal end 1 5 of piston lever 9.
- the two or more piston controllers could be linked and timed by gears or a timing belt and communicate motion individually to their adjacent piston lever 9. This arrangement would be suitable for an engine with a large diameter rotor and would enable shorter piston levers to be utilised. While such an embodiment is possible it is not preferred as it introduces additional gears and timing mechanisms and thus reduces the simplicity of the engine.
- roller 1 7 will not follow surface 1 3 of the piston controller 1 1 .
- an outer journal or collar 1 8 is provide with a machined inner surface which parallels the profile of the controller surface 1 3.
- collar 1 8 is omitted.
- Roller 1 7 is forced to follow surface 1 3 by a spring 14 which is positioned to apply force to piston lever 9 at a point 20 part way between distal end 1 6 and fulcrum 5.
- end 21 of spring 14 is located in a spring retainer 22 clamping the spring in position.
- FIG. 2 The fundamental principle of operation of the four stroke engine shown in Figures 2 and 3 is the same as that in Figure 1 .
- the embodiments in Figures 2 and 3 introduce the concept of utilising centrifugal force to aid control of the piston.
- a weight 4 is secured to proximal end 1 5 of piston lever 9 by an arm 23.
- the arrangement is such that during rotation of the engine centrifugal force acting on weight 4 causes a radially acting force that assists in holding roller 1 7 against surface 1 3 of the piston controller.
- the use of centrifugal force in the embodiment illustrated in Figure 3 is different in its arrangement but has the same effect in principle as that of Figure 2.
- arm 23 is pivotably engaged with rotor 2 at a fulcrum point 24.
- lever 23 At distal end 26 of lever 23 is a further lever 25 which engages pivoting lever 23 with end 21 of spring 1 4. As the engine is rotated centrifugal forces move arm 4 radially outwards and spring 14 is compressed or preloaded to apply more force to piston lever 9.
- Figure 1 illustrates a four stroke engine.
- the four piston strokes are suction, compression, combustion (or expansion) and exhaust strokes.
- rollers 1 7 and 1 7' ride up onto lobes 1 2 and 1 2' simultaneously forcing both pistons 7 and 7' to top dead centre at the same time.
- a timing belt (shown by dashed line 1 9) controls operation of the cylinder head valves (not shown) .
- the typical arrangement could be such that when piston 7 was on a compression stroke diametrically opposite piston 7' would be on an exhaust stroke.
- any number of cylinders may be disposed around rim 3 of rotor 2 and that by appropriate timing of valves, ignition spark and positioning of lobes 1 2 on piston controller 1 1 a variety of firing sequences may be achieved.
- Timing for the ignition spark may be via a mechanical-type distributor directly driven from the axis of rotor 2 or via a gear on timing belt 1 9 Alternatively, an electronic-type distributor may utilise a transducer adapted to detect the angular position of rotor 2 or piston controller 1 1 .
- the number of cylinders that may be disposed around a single rotor 2 is limited by physical size and complexity in overlapping piston levers for engagement with the piston controller.
- one or more rotors carrying two cylinders each may be disposed along a common output shaft to produce a 2, 4 , 6 etc cylinder engine as desired. It should also be appreciated that the engine could have only one cylinder. In a single cylinder embodiment rotor 2 must be counterbalanced by weight opposite the cylinder, piston and lever.
- Figure 4 illustrates an embodiment of a four stroke engine which has 6 strokes, or 1 .5 ignition cycles, per revolution.
- This engine differs from previous embodiments in that pistons 7 and 7' are travelling in different directions. For example, when piston 7 is travelling down the bore 8 on, say, the expansion stroke piston 7' is travelling up the bore 8 on the compression stroke. Springs 14 keep rollers 1 7 against piston controller surface 1 3.
- An arm 1 6 is also provided which links proximal ends 1 5 and 1 5' of the piston levers.
- FIG. 5 shown is a two stroke embodiment of an engine according to the invention. Combustion occurs each time pistons 7 reach at or near top dead centre of cylinder 1 .
- the arrangement shown in Figure 5 is such that both pistons are simultaneously on compression strokes and expansion strokes.
- lobes 1 2 on piston controller 1 1 the engine could be arranged to have one cylinder on compression stroke while the other was on expansion stroke.
- any number of cylinders may be arranged around rotor 2.
- Piston controller 1 1 can be easily made rotationally and/or directionally independent of rotor 2.
- the stationary piston controller results in each piston doing 8 strokes or two ignition cycles per revolution.
- rotating the piston controller at r results in zero ignition cycles per revolution (i.e.
- An additional advantage of an engine according to the present invention is that it allows for total control over dwell of the piston at any position in the stroke. This is achieved by shaping of the piston controller lobes 1 2 This cannot be achieved in conventional reciprocating piston engines as piston movement is controlled by the crankshaft and other pistons. By achieving better control of timing and dwell through the utilisation of piston controller 1 1 a greater level of fuel burn can be achieved thereby improving efficiency and emissions.
- a further advantage of an engine according to the invention is that energy is directed to rotor 2 during both combustion and compression strokes.
- the energy applied during the combustion stroke has previously been described.
- piston 7 is moving from bottom dead centre to top dead centre within bore 8.
- force is exerted on the top of the bore. This energy is in the direction of rotation and adds to the rotational energy of the engine.
- a still further advantage of an engine according to the invention is that because movement of the piston within the bore is at all times longitudinal to the axis of the cylinder, cylinder bore side thrust is reduced. This reduces both ware on the cylinder bore and the force required to move the piston within the bore.
- cylinder bore side thrust which is caused by rotational movement of the crankshaft pushing the piston against one side of the bore on the up-stroke and against the opposite side wall of the bore on the down-stroke, is a significant problem. Further mechanical losses are also reduced because combustion energy is transmitted directly to the rotational member, and thus the output shaft, rather than through other moving mechanical parts such as connector rods.
- FIG. 6 a two stroke reciprocating embodiment of an engine according to the invention is shown.
- This engine takes significant advantage of the above mentioned principle.
- a substantially L shaped piston lever 26 is utilised.
- the pivoting fulcrum point 5 for L shaped piston lever 26 is at its elbow 27.
- a pivotably engaged lever 27 At proximal end 1 5 of L shaped piston lever 26 is a pivotably engaged lever 27 which links L shaped piston lever 26 to proximal end 1 5' of corresponding piston lever 26' from a diametrically opposed cylinder/piston group.
- piston controller 1 1 is omitted. During the combustion stroke some relative backwards movement of piston 7 is possible.
- Figure 7 illustrates, in schematic, how centrifugal force can used to control movement of the piston 7 This is achieved by a weight 4 and a simple linkage 9 that operates about a pivot 5.
- the force produced by centrifugal force acting on weight 4 is used to maximise the ignition energy direct to the rim 3 of the flywheel 2 and hence the output shaft 6.
- Maximum torque occurs when the explosive energy is directed to the flywheel rim 3 as this is the point of greatest leverage on the output shaft 6.
- Centrifugal force is inherent in most engines and more particularly the flywheel 2. The applicant believes it is the first time ever that centrifugal force has been used to control the pistons 7 through a simple pivot linkage system 9. It drives the piston 7 up the cylinder 1 into the bore 8. When fuel is introduced combustion occurs. Combustion tries to drive the piston 7 back a long the cylinder, however centrifugal force acting through the weight 4 and linkage 9 slows the action down. The result is that mass (flywheel 2) to which the cylinder 1 is attached, moves away from the piston 7, thus supplying energy to the flywheel 2 which moves around its axis or shaft 6 outlet. The flywheel 2 with its inertia and leverage supplies high torque energy output to the shaft 6. Inertia delivers a high smooth torque source to the shaft outlet.
- Centrifugal force also assists in the cleansing of the piston chamber.
- the inlet may be designed to have a ram effect, scooping up a fresh charge of air as the cylinder housing revolves around the fly wheel 2, which is itself due to the wind force.
- centrifugal force providing the energy for combustion almost all of the combustible explosive energy is directed to the rim 3 of the flywheel 2 with minimum losses. Centrifugal force also plays a major role in providing energy to the flywheel engine. As the piston 7 is being driven along the cylinder, it produces drag (which can be increased through a mechanical device) and this provides further rotational energy. As the piston 7 is forced up to the cylinder 1 , compression against the bore 8 adds a significant amount of additional energy to the rotating flywheel 2.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Transmission Devices (AREA)
- Hydraulic Motors (AREA)
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA002393582A CA2393582C (en) | 1999-12-07 | 2000-12-07 | Rotary engine |
| AU19031/01A AU785466B2 (en) | 1999-12-07 | 2000-12-07 | Rotary engine |
| MXPA02005711A MXPA02005711A (es) | 1999-12-07 | 2000-12-07 | Motor. |
| EP00981932A EP1409843A4 (en) | 1999-12-07 | 2000-12-07 | ENGINE |
| JP2001543888A JP2003517531A (ja) | 1999-12-07 | 2000-12-07 | エンジン |
| US10/148,189 US6705202B2 (en) | 1999-12-07 | 2000-12-07 | Rotary engine |
| US10/790,141 US6988441B2 (en) | 1999-12-07 | 2004-03-02 | Rotary engine |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| NZ501608 | 1999-12-07 | ||
| NZ50160899 | 1999-12-07 |
Related Child Applications (3)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10148189 A-371-Of-International | 2000-12-07 | ||
| US10/148,189 A-371-Of-International US6705202B2 (en) | 1999-12-07 | 2000-12-07 | Rotary engine |
| US10/790,141 Continuation US6988441B2 (en) | 1999-12-07 | 2004-03-02 | Rotary engine |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2001042624A2 true WO2001042624A2 (en) | 2001-06-14 |
| WO2001042624A3 WO2001042624A3 (en) | 2001-11-15 |
Family
ID=19927657
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/NZ2000/000241 Ceased WO2001042624A2 (en) | 1999-12-07 | 2000-12-07 | Rotary engine |
Country Status (9)
| Country | Link |
|---|---|
| US (2) | US6705202B2 (enExample) |
| EP (1) | EP1409843A4 (enExample) |
| JP (1) | JP2003517531A (enExample) |
| KR (1) | KR100760324B1 (enExample) |
| CN (1) | CN1217087C (enExample) |
| AU (1) | AU785466B2 (enExample) |
| CA (1) | CA2393582C (enExample) |
| MX (1) | MXPA02005711A (enExample) |
| WO (1) | WO2001042624A2 (enExample) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2012044185A1 (en) * | 2010-09-30 | 2012-04-05 | Tggmc Limited | An engine usable as a power source or pump |
| US11613994B2 (en) | 2019-03-11 | 2023-03-28 | Newlenoir Limited | Piston arrangement |
Families Citing this family (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6705202B2 (en) * | 1999-12-07 | 2004-03-16 | Harcourt Engine Pty Limited | Rotary engine |
| DE10145478B4 (de) * | 2001-09-14 | 2007-01-18 | Erich Teufl | Hubkolbenmaschine mit umlaufendem Zylinder |
| WO2003105704A1 (en) | 2002-06-14 | 2003-12-24 | Smith & Nephew, Inc. | Device and methods for placing external fixation elements |
| RS50691B (sr) * | 2004-02-18 | 2010-06-30 | Vojislav Jurišić | Eliptično-rotacioni sus motor |
| US20090155107A1 (en) * | 2004-04-29 | 2009-06-18 | Francisco Javier Ruiz Martinez | Mechanism For The Recovery Of Energy In Self-Propelled Vehicles |
| US7185625B1 (en) * | 2005-08-26 | 2007-03-06 | Shilai Guan | Rotary piston power system |
| US7721687B1 (en) | 2006-04-17 | 2010-05-25 | James Lockshaw | Non-reciprocating, orbital, internal combustion engine |
| US8161924B1 (en) | 2006-04-17 | 2012-04-24 | James Lockshaw | Orbital, non-reciprocating, internal combustion engine |
| US7814882B2 (en) * | 2006-07-13 | 2010-10-19 | Masami Sakita | Rotary piston engine |
| US7832368B2 (en) * | 2008-06-19 | 2010-11-16 | Evgeni Choronski | Opposite radial rotary-piston engine of Choronski |
| WO2011057446A1 (zh) * | 2009-11-13 | 2011-05-19 | Yu Chun Kwan | 一种气压式不平衡动力装置及使用该装置的能量转换设备 |
| RU2424437C1 (ru) * | 2010-01-26 | 2011-07-20 | Петр Львович Шатров | Роторно-поршневой двигатель внутреннего сгорания шатрова п.л. |
| CN102787912A (zh) * | 2011-05-16 | 2012-11-21 | 郝继先 | 三星滚轮发动机 |
| RU2480594C1 (ru) * | 2011-10-05 | 2013-04-27 | Пётр Львович Шатров | Роторно-поршневой двигатель внутреннего сгорания (варианты) |
| US8555830B2 (en) | 2011-10-14 | 2013-10-15 | James Lockshaw | Orbital, non-reciprocating, internal combustion engine |
| US9249722B2 (en) | 2012-03-23 | 2016-02-02 | Boots Rolf Hughston | Performance of a rotary engine |
| US9376957B2 (en) | 2012-03-23 | 2016-06-28 | Boots Rolf Hughston | Cooling a rotary engine |
| US8931455B2 (en) | 2012-03-23 | 2015-01-13 | Boots Rolf Hughston | Rotary engine |
| ES2443221B1 (es) * | 2012-07-16 | 2014-11-11 | Francisco Javier Ruiz Martinez | Motor térmico de pistones rotativo |
| JP5949489B2 (ja) * | 2012-11-19 | 2016-07-06 | 株式会社デンソー | 固体燃料用の内燃機関 |
| GB2522204B (en) * | 2014-01-15 | 2016-06-22 | Newlenoir Ltd | Piston arrangement |
| US9708911B1 (en) | 2014-09-30 | 2017-07-18 | Gary O. Sandstedt | Gyroscopic internal combustion engine |
| WO2017063710A1 (de) * | 2015-10-16 | 2017-04-20 | Evirgen Bülent Pulat | Drehkolben zylinder motor |
| US9624825B1 (en) * | 2015-12-02 | 2017-04-18 | James Lockshaw | Orbital non-reciprocating internal combustion engine |
| ES2646987B1 (es) * | 2016-06-17 | 2018-08-10 | Francisco Javier Ruiz Martinez | Mecanismo rotativo impulsado por motores eléctricos lineales |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU849627A (en) | 1927-07-25 | 1928-02-21 | Dap-Motors | Improvements in rotary engines and pumps |
| US2417894A (en) | 1943-09-23 | 1947-03-25 | Gienn J Wayland | Rotary diesel engine |
| FR54015E (fr) | 1945-05-14 | 1947-03-27 | Perfectionnements apportés aux machines telles, notamment, que les moteurs à explosion ou les moteurs thermiques | |
| WO1983001091A1 (en) | 1981-09-21 | 1983-03-31 | Jaime Moncada | An improved rotary engine |
| EP0964136A1 (en) | 1998-06-09 | 1999-12-15 | Shih-Pin Huang | Rotary internal combustion engine |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AT8496B (de) | 1900-05-10 | 1902-07-25 | Actiengesellschaft Fuer Maschb | Reguliervorrichtung für Compressoren zur Verhinderung des Überschreitens des beabsichtigten Maximaldruckes. |
| US1285835A (en) | 1916-01-26 | 1918-11-26 | Sunderman Corp | Rotary internal-combustion engine. |
| FR588204A (fr) | 1924-07-12 | 1925-05-04 | Moteur rotatif sans bielles ni vilebrequin | |
| US1766385A (en) | 1928-12-29 | 1930-06-24 | John S Jackson | Internal-combustion engine |
| US1918174A (en) * | 1930-07-26 | 1933-07-11 | Frans L Berggren | Rotary gas motor |
| US1965548A (en) | 1930-12-22 | 1934-07-03 | Alvin L Hart | Internal combustion engine |
| US1943937A (en) | 1931-01-05 | 1934-01-16 | Gustafson Carl Gustaf | Rotary internal combustion engine |
| FR46062E (fr) | 1935-02-16 | 1936-02-15 | Moteur à explosion monocylindrique rotatif quatre temps | |
| AU110318B1 (en) * | 1939-06-14 | 1940-04-04 | Wilkerson Rotary Engine Limited, According tothe invention an internal Company registered | Improvements in or relating to rotating cylinder internal combustion engines |
| US3438358A (en) | 1967-08-25 | 1969-04-15 | Fred W Porsch | Rotary internal combustion engine |
| AU497079B2 (en) | 1973-07-04 | 1978-11-30 | B. & Kostecki E Kostecki | Revolving cylinder i. c. engine |
| US4106443A (en) | 1976-10-12 | 1978-08-15 | Triulzi Joseph P | Rotary internal combustion engine |
| WO1990000218A1 (en) * | 1988-06-28 | 1990-01-11 | Split Cycle Technology Limited | Radial cylinder machine |
| GB8926818D0 (en) * | 1989-11-28 | 1990-01-17 | Ehrlich Josef | Drive/driven apparatus |
| US6705202B2 (en) * | 1999-12-07 | 2004-03-16 | Harcourt Engine Pty Limited | Rotary engine |
-
2000
- 2000-12-07 US US10/148,189 patent/US6705202B2/en not_active Expired - Fee Related
- 2000-12-07 MX MXPA02005711A patent/MXPA02005711A/es active IP Right Grant
- 2000-12-07 EP EP00981932A patent/EP1409843A4/en not_active Withdrawn
- 2000-12-07 CN CN008196370A patent/CN1217087C/zh not_active Expired - Fee Related
- 2000-12-07 AU AU19031/01A patent/AU785466B2/en not_active Ceased
- 2000-12-07 JP JP2001543888A patent/JP2003517531A/ja active Pending
- 2000-12-07 WO PCT/NZ2000/000241 patent/WO2001042624A2/en not_active Ceased
- 2000-12-07 KR KR1020027007312A patent/KR100760324B1/ko not_active Expired - Fee Related
- 2000-12-07 CA CA002393582A patent/CA2393582C/en not_active Expired - Fee Related
-
2004
- 2004-03-02 US US10/790,141 patent/US6988441B2/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU849627A (en) | 1927-07-25 | 1928-02-21 | Dap-Motors | Improvements in rotary engines and pumps |
| US2417894A (en) | 1943-09-23 | 1947-03-25 | Gienn J Wayland | Rotary diesel engine |
| FR54015E (fr) | 1945-05-14 | 1947-03-27 | Perfectionnements apportés aux machines telles, notamment, que les moteurs à explosion ou les moteurs thermiques | |
| WO1983001091A1 (en) | 1981-09-21 | 1983-03-31 | Jaime Moncada | An improved rotary engine |
| EP0964136A1 (en) | 1998-06-09 | 1999-12-15 | Shih-Pin Huang | Rotary internal combustion engine |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2012044185A1 (en) * | 2010-09-30 | 2012-04-05 | Tggmc Limited | An engine usable as a power source or pump |
| US9441538B2 (en) | 2010-09-30 | 2016-09-13 | Grace Motor Works Limited | Engine usable as a power source or pump |
| AU2011307969B2 (en) * | 2010-09-30 | 2017-06-22 | Grace Motor Works Limited | An engine usable as a power source or pump |
| US11613994B2 (en) | 2019-03-11 | 2023-03-28 | Newlenoir Limited | Piston arrangement |
| AU2020235394B2 (en) * | 2019-03-11 | 2025-08-14 | Newlenoir Limited | A piston arrangement |
Also Published As
| Publication number | Publication date |
|---|---|
| KR100760324B1 (ko) | 2007-09-20 |
| EP1409843A4 (en) | 2005-04-13 |
| AU785466B2 (en) | 2007-07-26 |
| US20030051681A1 (en) | 2003-03-20 |
| US6988441B2 (en) | 2006-01-24 |
| CN1454283A (zh) | 2003-11-05 |
| WO2001042624A3 (en) | 2001-11-15 |
| EP1409843A2 (en) | 2004-04-21 |
| CA2393582A1 (en) | 2001-06-14 |
| US20040163532A1 (en) | 2004-08-26 |
| CN1217087C (zh) | 2005-08-31 |
| AU1903101A (en) | 2001-06-18 |
| JP2003517531A (ja) | 2003-05-27 |
| CA2393582C (en) | 2007-10-09 |
| US6705202B2 (en) | 2004-03-16 |
| KR20020076243A (ko) | 2002-10-09 |
| MXPA02005711A (es) | 2004-09-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2393582C (en) | Rotary engine | |
| US4058088A (en) | Oscillating piston engine | |
| US4038949A (en) | Rotary-radial internal combustion engine | |
| EP1268978A1 (en) | Piston motion modifiable internal combustion engine | |
| US9441538B2 (en) | Engine usable as a power source or pump | |
| EP0137622A1 (en) | Improvements in or relating to engines | |
| CN1612975A (zh) | 转缸式活塞发动机 | |
| US20130276761A1 (en) | Variable-compression engine assembly | |
| NZ521197A (en) | Rotary engine with piston(s) recipricating movement controlled independently of a rotatable member to which cylinder(s) attached | |
| NZ531290A (en) | Improved internal combustion engine | |
| WO1999031363A1 (en) | Orbital internal combustion engine | |
| AU2001246251B2 (en) | Piston motion modifiable internal combustion engine | |
| US12116925B1 (en) | Rotary engine with dual axis rotor rotation | |
| AU2001246251A1 (en) | Piston motion modifiable internal combustion engine | |
| CN110454277A (zh) | 容积式双转子工作机器 | |
| OA17507A (en) | An engine usable as a power source or pump. | |
| KR20060027834A (ko) | 자동차용의 엔진으로 회전피스톤에 의한 동력 발생 장치 | |
| WO2000014407A1 (en) | Reciprotating combustion engine | |
| WO2018217130A1 (ru) | Роторный двигатель внутреннего сгорания | |
| WO2002012678A1 (en) | Rotary engine with two-stage compression | |
| JPH0227120A (ja) | カムローターエンジン |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ CZ DE DE DK DK DM DZ EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ CZ DE DE DK DK DM DZ EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2393582 Country of ref document: CA |
|
| ENP | Entry into the national phase |
Ref document number: 2001 543888 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2002/005711 Country of ref document: MX Ref document number: 1020027007312 Country of ref document: KR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 008196370 Country of ref document: CN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 10148189 Country of ref document: US |
|
| WWP | Wipo information: published in national office |
Ref document number: 1020027007312 Country of ref document: KR |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| 122 | Ep: pct application non-entry in european phase | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2000981932 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 19031/01 Country of ref document: AU |
|
| WWP | Wipo information: published in national office |
Ref document number: 2000981932 Country of ref document: EP |
|
| WWG | Wipo information: grant in national office |
Ref document number: 19031/01 Country of ref document: AU |