WO2001042528A1 - Method for nitration-hardening or nitrocarburizing work pieces from steel alloys - Google Patents

Method for nitration-hardening or nitrocarburizing work pieces from steel alloys Download PDF

Info

Publication number
WO2001042528A1
WO2001042528A1 PCT/AT2000/000329 AT0000329W WO0142528A1 WO 2001042528 A1 WO2001042528 A1 WO 2001042528A1 AT 0000329 W AT0000329 W AT 0000329W WO 0142528 A1 WO0142528 A1 WO 0142528A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitriding
workpiece
gas
steel alloys
nitrocarburizing
Prior art date
Application number
PCT/AT2000/000329
Other languages
German (de)
French (fr)
Inventor
Walter Beck
Rudolf Mandorfer
Original Assignee
Steyr Daimler Puch Fahrzeugtechnik Ag & Co Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steyr Daimler Puch Fahrzeugtechnik Ag & Co Kg filed Critical Steyr Daimler Puch Fahrzeugtechnik Ag & Co Kg
Priority to DE20023102U priority Critical patent/DE20023102U1/en
Publication of WO2001042528A1 publication Critical patent/WO2001042528A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/52Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in one step
    • C23C8/54Carbo-nitriding
    • C23C8/56Carbo-nitriding of ferrous surfaces

Definitions

  • the invention relates to a method for nitriding workpieces made of alloyed steels.
  • workpieces are, for example, parts of injection nozzles for internal combustion engines.
  • nitrocarburizing should also be read, unless expressly excluded.
  • nitriding processes Two types of nitriding processes are known: those in a gas atmosphere and those in a salt bath.
  • gas nitriding the workpiece is exposed to an atmosphere of an ammonia-containing gas mixture at temperatures between about 500 and 600 ° C for a longer time (up to 100 hours); in salt bath nitriding a liquid bath consisting of various salts at similar temperatures.
  • salt bath nitriding a liquid bath consisting of various salts at similar temperatures.
  • the disadvantage of the salt bath process is that a relatively thick and very brittle connection layer can form on the surface of the workpiece. It is described as the ⁇ 'zone of the TEACHER diagram. Although this is particularly hard and abrasion-resistant, it is disadvantageous in the case of workpieces which are exposed to less mechanical wear, but which are supposed to be tough and heat-resistant with high strength.
  • Nitriding stops are surface zones of reduced nitriding and thus lower strength, which impair the process reliability of the hardening.
  • the method consists in that, after suitable pre-cleaning, the workpiece is first subjected to a nitrocarburizing process in a salt bath with a cyanate content between 30% and 40% until the connecting layer that forms reaches a thickness in the range from 0.5 to 3 ⁇ m; and the workpiece is then subjected to a gas nitriding process at a temperature between 520 and 580 ° Celsius, the composition of the nitriding gas being set to a low nitriding potential.
  • connection layer should remain as thin as possible. That is why this treatment is only given briefly.
  • the accompanying diffusion layer is inevitably generally too thin.
  • the nitriding is therefore completed in the next step.
  • gas nitriding namely, this connection layer is re-formed by the deep nitriding potential, releasing nitrogen atoms to the nitriding gas.
  • an enlarged geometric surface with optimally shaped crystal surfaces which means that the passivity of the surface is overcome, the entire surface is safely activated throughout, nitriding stops can nowhere occur.
  • the surface can now easily and quickly absorb nitrogen atoms to form the diffusion layer.
  • the nitriding time is considerably shortened and that with a lower nitriding potential, sufficiency is found which excludes the formation of nitrides (connecting layer, nitride lines) and thus the diffusion layer remains in the ⁇ zone throughout, i.e. tough and warm. and becomes permanent. But these are exactly the properties required, and they are achieved in a much shorter time.
  • connection layer disintegrates again, leaving behind a porous surface which accelerates the transfer of nitrogen into the workpiece
  • Gas nitriding preferably takes place with a nitriding potential in the range between 0.08 and 0.5. As a result, you remain safely in the ⁇ zone at a nitriding temperature between 500 and 600 ° Celsius.
  • the workpiece is treated with an organic acid, in particular with citric acid, after salt bath nitriding and before gas nitriding.
  • Organic acids form metal salts, which decompose particularly easily in the subsequent gas nitriding and leave a particularly porous and additionally particularly reactive surface, which helps to further shorten the nitriding time.
  • FIG. 1 the TEACHER diagram
  • FIG. 2 an example of a workpiece to be treated by the method according to the invention
  • the measured hardness curve for the two exemplary embodiments of the method according to the invention. 1 shows the LEHRER diagram that the various state phases of the iron-nitrogen system are a function of the nitriding temperature (ordinate) and the nitriding potential (abscissa).
  • the nitriding potential also called nitrogen activity in the atmosphere, is proportional to the ammonia concentration and inversely proportional to an expression of the hydrogen concentration.
  • the ⁇ -zone essentially corresponds to that of the iron-carbon diagram, the nitrogen atoms are deposited in the ⁇ -lattice and increase its strength and toughness without embrittlement, as long as no nitride lines form at the grain boundaries.
  • a trapezoid A is drawn in the diagram, which indicates the temperature range and the range of the nitriding potential for the second step of the method according to the invention.
  • the nitriding temperature is between 500 and 600 ° Celsius, the nitriding potential between 0.04 and 0.4.
  • FIG. 2 shows hatched the body 1 of an injection nozzle with the displaceable nozzle needle 2.
  • the nozzle body 1 ends at the bottom in a nozzle tip 3, which has a conical needle seat surface 4 on the inside, a central blind hole 5 and spray bores 6 distributed over the circumference.
  • the nozzle needle 2 is guided in guides 7, 8 with the highest precision. Between the two guides 7, 8 and between the guide 7 and the nozzle tip 3 there is in each case an annular space 9, 10, the upper one of which, through a channel 11, has fuel at a pressure of 2,000 bar and above, from an unillustrated set injection pump is supplied.
  • the nozzle needle 2 is acted upon by a very strong spring (not shown) so that it rests on the needle seat 4.
  • This workpiece was hardened in two different variants of the method according to the invention:
  • TENIFER ® is a process and trademark protected by DEGUSSA. As soon as the thickness of the connection layer had reached a ⁇ -meter, the workpiece was removed from the salt bath, cooled in salted cold water and thoroughly cleaned in the usual way.
  • the workpiece was gas nitrided, the composition of the ammonia-containing nitriding gas being compiled in accordance with a nitriding potential of 0.1.
  • This nitriding potential corresponds to a residual ammonia content of the nitriding gas of 8%.
  • the workpiece was left in the nitriding furnace at a temperature of 550 ° C. for 82 hours, then taken out, slowly cooled and finally subjected to a test which gave the value shown in FIG. 3 (curve I).
  • the hardness curve for the needle seat on the ordinate is given as Vickers hardness (HV 0.5).
  • the abscissa shows the distance from the edge of the needle seat in millimeters.
  • Example II The procedure was the same as in Example I, but the workpiece was treated in eight percent citric acid (citric acid dihydrate) between the first and second step. Formic acid, acetic acid or oxalic acid would also be suitable. This operation only lasted a few minutes and was carried out with moderate warming and good flow. Thanks to this bath, the time spent in the nitriding furnace for gas nitriding could be reduced to 41 hours, i.e. to about half. The finished workpiece was checked again. The measured hardness Vickers are again shown in Fig. 3, the curve is designated II. It can be seen that, despite half the time, even higher values were achieved in some cases.
  • citric acid citric acid dihydrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

The invention relates to a method for nitration-hardening work pieces from steel alloys. The aim of the invention is to achieve the highest possible long-term creep and stress rupture resistance of such steel alloys in a minimum of time and with high reliability. To this end, the inventive method comprises the following steps: a) subjecting the work piece to a nitrocarburization method in a salt bath with a cyanate content between 30 % and 80 % until the white layer reaches a thickness of 0.5 to 3 νm; b) subjecting the work piece to a gas nitriding method at a temperature of between 500 and 600° C, with a low nitride potential being adjusted so that first the white layer disintegrates while enlarging the geometrical surface. In between these two steps the work piece, for example the injection nozzle of a diesel engine, can be treated with an organic acid.

Description

VERFAHREN ZUM NITRIEREN bzw NITROCARBURIEREN VON WERKSTÜCKEN AUS LEGIERTEN STÄHLEN METHOD FOR NITRATING or NITROCARBURING WORKPIECES FROM ALLOY STEELS
Die Erfindung handelt von einem Verfahren zum Nitrieren von Werkstücken aus legierten Stählen. Dabei ist insbesondere, aber nicht ausschließ- lieh, gedacht an fertig bearbeitete Werkstücke komplexer Gestalt mit schwer zugänglichen Stellen, die sehr hohen Wechselbelastungen bei hohen Temperaturen ausgesetzt sind. Solche Werkstücke sind beispielsweise Teile von Einspritzdüsen für Verbrennungsl aftmaschinen. Im folgenden wird nur mehr von Nitrieren gesprochen, wobei, soferne nicht ausdrücklich aus- genommen, auch Nitrocarburieren mitzulesen ist.The invention relates to a method for nitriding workpieces made of alloyed steels. In particular, but not exclusively, we are thinking of finished machined workpieces of complex shape with hard-to-reach places that are exposed to very high alternating loads at high temperatures. Such workpieces are, for example, parts of injection nozzles for internal combustion engines. In the following, we will only speak of nitriding, although nitrocarburizing should also be read, unless expressly excluded.
Zweierlei Arten von Nitrierverfahren sind bekannt: Solche in einer Gasatmosphäre und solche in einem Salzbad. Beim Gasnitrieren wird das Werkstück einer Atmosphäre aus einem Ammoniak enthaltenden Gasgemisch bei Temperaturen zwischen etwa 500 und 600 °C während einer längeren Zeit (bis zu 100 Stunden) ausgesetzt; beim Salzbadnitrieren einem aus diversen Salzen bestehendem flüssigen Bad bei ähnlichen Temperaturen. Diese Verfahren sind etwa beschrieben in der Broschüre ,fτasnitrieren und Gasnitrocarburieren" der AGA Gas GmbH. Das Gasnitrieren hat vor allem und ganz allgemein den Nachteil der langen Dauer. Diese ist umso länger, je tiefer die Temperatur. Tiefe Temperaturen sind aber erwünscht, um si- eher in der α-Zone des LEHRER-Diagrammes (siehe weiter unten) zu bleiben. In dieser bleibt der Werkstoff auch bei großer Härte noch zähe, dauer- und warmfest. Bei legierten Stählen ist die Nitrierung im allgemeinen behindert durch die Passivierung der Oberfläche des Werkstückes, die umso stärker ist, je höher legiert der Stahl ist, insbesondere mit Chrom. Passivie- rung ist der erhöhte Widerstand, den die Oberfläche dem Eindringen von Stickstoff und/oder Kohlenstoffatomen in das Werkstück entgegensetzt.Two types of nitriding processes are known: those in a gas atmosphere and those in a salt bath. In gas nitriding, the workpiece is exposed to an atmosphere of an ammonia-containing gas mixture at temperatures between about 500 and 600 ° C for a longer time (up to 100 hours); in salt bath nitriding a liquid bath consisting of various salts at similar temperatures. These processes are described, for example, in the brochure "Gas nitriding and gas nitrocarburizing" from AGA Gas GmbH. Above all and in general, gas nitriding has the disadvantage of being long. The lower the temperature, the longer it is - stay in the α zone of the LEHRER diagram (see below), in which the material remains tough, long-term and heat-resistant even with great hardness of the workpiece, which is stronger, the higher the steel is alloyed, especially with chrome, passivation is the increased resistance that the surface offers against the penetration of nitrogen and / or carbon atoms into the workpiece.
Die Salzbadverfahren haben den Nachteil, dass sich an der Oberfläche des Werkstückes eine relativ dicke und sehr spröde Verbindungsschicht bilden kann. Sie ist beschrieben als γ'-Zone des LEHRER-Diagrammes. Diese ist zwar besonders hart und abriebfest, aber nachteilig bei Werkstücken, die weniger mechanischem Verschleiß ausgesetzt sind, dafür aber bei hoher Festigkeit zäh und warmfest sein sollen.The disadvantage of the salt bath process is that a relatively thick and very brittle connection layer can form on the surface of the workpiece. It is described as the γ 'zone of the TEACHER diagram. Although this is particularly hard and abrasion-resistant, it is disadvantageous in the case of workpieces which are exposed to less mechanical wear, but which are supposed to be tough and heat-resistant with high strength.
Da die vorgenannte Passivierung örtlich begrenzt besonders intensiv sein kann, treten dort schädliche Behinderungen des Stickstoffüberganges, sogenannter Nitrierstops, auf. Nitrierstops sind Oberflächenzonen verminderter Aufnitrierung und somit geringerer Festigkeit, die die Prozesssicherheit der Härtung beeinträchtigen.Since the aforementioned passivation can be particularly intensive locally, harmful impairments of the nitrogen transfer, so-called nitration stops, occur there. Nitriding stops are surface zones of reduced nitriding and thus lower strength, which impair the process reliability of the hardening.
Bei Werkstücken komplexer Form, etwa beim Düsenkörper einer Einspritzdüse mit seinen feinen Spritzbohrungen und einem Sackloch am unteren Ende kommt dazu noch das Problem, daß die Stickstoffaufhahme vom örtlichen Nitrierpotential und somit von der örtlichen Konzentration des Nitriergases abhängt. Da diese in der Nähe der Oberfläche des Werkstückes grundsätzlich verarmt, muß der vagabundierende Gasaustausch durch zusaätzliche Umwälzung unterstützt werden. In Totwassergebieten tritt sonst leicht unzureichende Härtung auf, was auch die Prozessicherheit beeinträchtigt.In the case of workpieces of complex shape, such as the nozzle body of an injection nozzle with its fine spray bores and a blind hole at the lower end, there is also the problem that nitrogen absorption depends on the local nitriding potential and thus on the local concentration of the nitriding gas. Since this is basically depleted in the vicinity of the surface of the workpiece, the stray gas exchange must be supported by additional circulation. Otherwise, insufficient hardening occurs in dead water areas, which also affects process reliability.
Es ist somit Ziel der Erfindung, die Nachteile beider Verfahren zu beheben und ein Verfahren vorzuschlagen, nach dem höchste Warm- und Dauerfes- tigkeit erreicht wird, in möglichst kurzer Zeit und mit hoher Prozesssicherheit.It is therefore the aim of the invention to remedy the disadvantages of both methods and to propose a method according to which the highest heat and fatigue strength is achieved in the shortest possible time and with high process reliability.
Das Verfahren besteht darin, dass das Werkstück nach geeigneter Vorreinigung zuerst einem Nitrocarburierverfahren in einem Salzbad mit einem Cyanatgehalt zwischen 30 % und 40 % unterzogen wird, bis die sich bildende Verbindungsschicht eine Dicke in dem Bereich von 0,5 bis 3 μ-meter erreicht; und das Werkstück dann einem Gasnitrierverfahren bei einer Temperatur zwischen 520 und 580° Celsius unterzogen wird, wobei die Zusammensetzung des Nitriergases auf ein tiefes Nitrierpotential eingestellt ist.The method consists in that, after suitable pre-cleaning, the workpiece is first subjected to a nitrocarburizing process in a salt bath with a cyanate content between 30% and 40% until the connecting layer that forms reaches a thickness in the range from 0.5 to 3 μm; and the workpiece is then subjected to a gas nitriding process at a temperature between 520 and 580 ° Celsius, the composition of the nitriding gas being set to a low nitriding potential.
Beim Nitrocarburieren bildet sich zunächst die sehr spröde Verbindungsschicht, die man eigentlich nicht will, darunter beginnt sich grundsätzlich, sozusagen als Begleiterscheinung, die Diffusionsschicht zu bilden. Letztere besitzt schließlich die hier erwünschten vorteilhaften Eigenschaften. Die Verbindungsschicht aber soll möglichst dünn bleiben. Deshalb wird diese Behandlung auch nur kurz vorgenommen. Die begleitend entstehende Diffusionsschicht ist zwangsläufig im allgemeinen zu dünn. Deshalb wird die Nitrierung im darauffolgenden Schritt zuendegeführt. Beim Gasnitrieren nämlich wird diese Verbindungsschicht durch das tiefe Nitrierpotential wieder rückgebildet, unter Abgabe von Stickstoffatomen an das Nitriergas. Was aber bleibt, ist eine vergrößerte geometrischen Oberfläche mit optimal geformten Kristallflächen, dadurch ist die Passivität der Oberfläche über- wunden, die gesamte Oberfläche ist sicher durchgängig aktiviert, Nitrierstops können nirgends mehr auftreten.With nitrocarburizing, the very brittle compound layer that you don't really want to form initially begins, below which, as a by-product, it begins to form the diffusion layer. The latter finally has the advantageous properties desired here. However, the connection layer should remain as thin as possible. That is why this treatment is only given briefly. The accompanying diffusion layer is inevitably generally too thin. The nitriding is therefore completed in the next step. When gas nitriding namely, this connection layer is re-formed by the deep nitriding potential, releasing nitrogen atoms to the nitriding gas. What remains, however, is an enlarged geometric surface with optimally shaped crystal surfaces, which means that the passivity of the surface is overcome, the entire surface is safely activated throughout, nitriding stops can nowhere occur.
Vor allem aber kann die Oberfläche nun zur Bildung der Diffusionsschicht Stickstoffatome leicht und schnell aufnehmen. Das bedeutet, daß die Ni- trierzeit wesentlich verkürzt ist und dass mit einem niederen Nitrierpotential das Auslangen gefunden wird, welches die Bildung von Nitriden (Verbindungsschicht, Nitridzeilen) ausschließt und somit die Diffusionsschicht durchwegs in der α-Zone bleibt, also zähhart, warm- und dauerfest wird. Das sind aber genau die geforderten Eigenschaften, und sie werden in viel kürzerer Zeit erreicht.Above all, the surface can now easily and quickly absorb nitrogen atoms to form the diffusion layer. This means that the nitriding time is considerably shortened and that with a lower nitriding potential, sufficiency is found which excludes the formation of nitrides (connecting layer, nitride lines) and thus the diffusion layer remains in the α zone throughout, i.e. tough and warm. and becomes permanent. But these are exactly the properties required, and they are achieved in a much shorter time.
Das niedere Nitrierpotential im zweiten Schritt hat mehrere Wirkungen:The low nitriding potential in the second step has several effects:
• Die Verbindungsschicht zerfällt wieder, wobei eine poröse Oberfläche zurückbleibt, die den Übergang von Stickstoff in das Werkstück be- schleunigt,The connection layer disintegrates again, leaving behind a porous surface which accelerates the transfer of nitrogen into the workpiece,
• Örtliche Konzentrationsschwankungen des Nitrermediums (verminderte Gasversorgung) wirken sich weniger aus, sodaß die Härtung auch an unzugänglichen Stellen des Werkstückes gut ist,• Local fluctuations in the concentration of the nitrate medium (reduced gas supply) have less effect, so that hardening is good even in inaccessible places on the workpiece,
• Die Diffusionsschicht bleibt sicher in der α-Zone. Diese entspricht einem sehr zähharten Gefüge, • Die Gefahr einer gehäuften Anlagerung von Stickstoffatomen an den Korngrenzen (Nitridzeilen), die auch zu einer Versprödung fuhren würde, ist geringer.• The diffusion layer remains safely in the α zone. This corresponds to a very tough structure, • The risk of accumulation of nitrogen atoms at the grain boundaries (nitride rows), which would also lead to embrittlement, is lower.
Damit sind die drei Hauptziele erreicht: Höchste Warmfestigkeit, große Prozesssicherheit und kurze Nitrierzeit. Es ist überraschend, dass dank der Erfindung ein Umweg besser und schneller zum Ziel führt.The three main goals have been achieved: maximum heat resistance, high process reliability and short nitriding time. It is surprising that, thanks to the invention, a detour leads to the destination better and faster.
Vorzugsweise erfolgt die Gasnitrierung mit einem Nitrierpotential im Be- reich zwischen 0,08 und 0,5. Dadurch bleibt man bei einer Nitriertemperatur zwischen 500 und 600° Celsius sicher in der α-Zone.Gas nitriding preferably takes place with a nitriding potential in the range between 0.08 and 0.5. As a result, you remain safely in the α zone at a nitriding temperature between 500 and 600 ° Celsius.
In einer besonders vorteilhaften Verfahrensführung wird das Werkstück nach der Salzbadnitrierung und vor der Gasnitrierung mit einer organischen Säure, insbesondere mit Zitronensäure, behandelt. Organische Säuren bilden Metallsalze, die in der folgenden Gasnitrierung besonders leicht zerfallen und eine besonders poröse und zusätzlich besonders reaktionsfreudige Oberfläche hinterlassen, was zu einer weiteren Verkürzung der Nitrierzeit verhilft.In a particularly advantageous procedure, the workpiece is treated with an organic acid, in particular with citric acid, after salt bath nitriding and before gas nitriding. Organic acids form metal salts, which decompose particularly easily in the subsequent gas nitriding and leave a particularly porous and additionally particularly reactive surface, which helps to further shorten the nitriding time.
Im folgenden wird die Erfindung anhand von Abbildungen und Ausführungsbeispielen beschrieben und erläutert. Es stellen dar:The invention is described and explained below with the aid of illustrations and exemplary embodiments. They represent:
Fig. 1 : Das LEHRER-Diagramm, Fig. 2: Ein Beispiel eines nach dem erfindungsgemäßen Verfahren zu behandelnden Werkstückes,1: the TEACHER diagram, FIG. 2: an example of a workpiece to be treated by the method according to the invention,
Fig.3: Den gemessenen Härteverlauf zu den beiden Ausführungsbeispielen des erfindungsgemäßen Verfahrens. Fig. 1 zeigt das LEHRER-Diagramm, dass die verschiedenen Zustandspha- sen des Systems Eisen-Stickstoff in Abhängigkeit von der Nitriertemperatur (Ordinate) und vom Nitrierpotential (Abszisse) dasteht. Das Nitrierpoten- tial, auch Stickstoffaktivität der Atmosphäre genannt, ist proportional dem Ammoniakkonzentration und umgekehrt proportional einem Ausdruck der Wasserstoffkonzentration.3: The measured hardness curve for the two exemplary embodiments of the method according to the invention. 1 shows the LEHRER diagram that the various state phases of the iron-nitrogen system are a function of the nitriding temperature (ordinate) and the nitriding potential (abscissa). The nitriding potential, also called nitrogen activity in the atmosphere, is proportional to the ammonia concentration and inversely proportional to an expression of the hydrogen concentration.
Die α-Zone entspricht im wesentlichen der des Eisen-Kohlenstoffdiagram- mes, die Stickstoffatome lagern sich im α-Gitter ab und erhöhen dessen Festigkeit und Zähigkeit ohne Versprödung, solange sich keine Nitridzeilen an den Komgrenzen bilden. Die mit γ' bezeichnete Zone entspricht derThe α-zone essentially corresponds to that of the iron-carbon diagram, the nitrogen atoms are deposited in the α-lattice and increase its strength and toughness without embrittlement, as long as no nitride lines form at the grain boundaries. The zone labeled γ 'corresponds to
spröden Verbindungsschicht beim Nitrieren und dieε-Zone der beim Kar- bonitrieren und Nitrocarburieren. In dem Diagramm ist ein Trapez A einge- zeichnet, das den Temperaturbereich und den Bereich des Nitrierpotentials für den zweiten Schritt des erfindungsgemäßen Verfahrens angibt. Die Nitriertemperatur liegt zwischen 500 und 600° Celsius, das Nitrierpotential zwischen 0,04 und 0,4.brittle connection layer during nitriding and die zone during carbonitriding and nitrocarburizing. A trapezoid A is drawn in the diagram, which indicates the temperature range and the range of the nitriding potential for the second step of the method according to the invention. The nitriding temperature is between 500 and 600 ° Celsius, the nitriding potential between 0.04 and 0.4.
Fig.2 zeigt schraffiert den Körper 1 einer Einspritzdüse mit der darin verschiebbaren Düsenadel 2. Der Düsenkörper 1 endet unten in einer Düsenkuppe 3, die innen eine kegelige Nadelsitzfläche 4, ein zentrales Sackloch 5 und über den Umfang verteilte Spritzbohrungen 6 besitzt. Die Düsenadel 2 ist in Führungen 7, 8 mit höchster Präzision geführt. Zwischen den beiden Führungen 7, 8 und zwischen der Führung 7 und der Düsenkuppe 3 befindet sich je ein Ringraum 9, 10, deren oberem durch einen Kanal 1 1 Brennstoff mit einem Druck von 2000 Bar und darüber von einer nicht darge- stellten Einspritzpumpe zugeführt wird. Die Düsenadel 2 wird von einer sehr starken (nicht dargestellten) Feder abwärts beaufschlagt, sodaß sie auf der Nadel sitzfläche 4 aufliegt.2 shows hatched the body 1 of an injection nozzle with the displaceable nozzle needle 2. The nozzle body 1 ends at the bottom in a nozzle tip 3, which has a conical needle seat surface 4 on the inside, a central blind hole 5 and spray bores 6 distributed over the circumference. The nozzle needle 2 is guided in guides 7, 8 with the highest precision. Between the two guides 7, 8 and between the guide 7 and the nozzle tip 3 there is in each case an annular space 9, 10, the upper one of which, through a channel 11, has fuel at a pressure of 2,000 bar and above, from an unillustrated set injection pump is supplied. The nozzle needle 2 is acted upon by a very strong spring (not shown) so that it rests on the needle seat 4.
Die Beanspruchungen, denen dieser Düsenkörper unterliegt, sind extrem hoch und vielfältig. Der gesamte Düsenkörper wird durch den in den Räumen 9, 10 wirkenden Innendruck radial gedehnt und somit pulsierend auf Zug beansprucht. Die Führungen 7, 8 müssen extrem präzise und hart sein, um die Düsenadel 2 sauber zu führen. Die Nadelsitzfläche 4 muß nebst dem Innendruck den Schlägen der fließenden Ventilnadel 2 standhalten. Alle Flächen, an denen die Strömung umgelekt wird oder eine Querschnittsänderung stattfindet sind zudem kavitationsgefährdet, das ist insbesondere die Umgebung der Spritzbohrungen 6 und das Sackloch 5. Es ist zu erkennen, dass auch im Falle einer Gasdurchströmung bei herausgenommener Düsenadel, entsprechend dem Gasnitrieren im Inneren der Düsenkuppe 3 und vor allem in den Spritzbohrungen 6 nur eine sehr langsame Bewegung des Nitriergases möglich ist. Dort vor allem besteht die Gefahr einer unzureichenden Nitrierung.The stresses to which this nozzle body is subject are extremely high and varied. The entire nozzle body is radially stretched by the internal pressure acting in the spaces 9, 10 and is thus pulsed under tension. The guides 7, 8 must be extremely precise and hard to guide the nozzle needle 2 clean. In addition to the internal pressure, the needle seat surface 4 must withstand the impacts of the flowing valve needle 2. All surfaces on which the flow is redirected or a change in cross-section takes place are also at risk of cavitation, in particular the surroundings of the spray bores 6 and the blind hole 5. It can be seen that even in the event of a gas flow with the nozzle needle removed, corresponding to the gas nitriding inside the nozzle tip 3 and especially in the spray holes 6 only a very slow movement of the nitriding gas is possible. There, above all, there is a risk of insufficient nitriding.
Die Härtung dieses Werkstückes wurde in zwei verschiedenen Varianten des erfindungsgemäßen Verfahrens vorgenommen:This workpiece was hardened in two different variants of the method according to the invention:
Beispiel I:Example I:
Der Düsenkörper gemäß Fig. 2 wurde zuerst in der üblichen Weise gründ- lieh gereinigt und dann während 20 Minuten bei einer Temperatur von 580°C in einem Salzbad nitrocarburiert. Ein geeignetes Salzbad enthält 32 bis 38% eines Kalium- und/oder Natriumcyanates (CNO" - Ion). In vorliegende Falle wurde nach dem TENIFER" Verfahren vorgegangen, ent- sprechend war auch die Zusammensetzung des Salzbades. TENIFER® ist ein von der DEGUSSA geschütztes Verfahren und Warenzeichen. Sobald die Dicke der Verbindungsschicht ein μ-meter erreicht hatte, wurde das Werkstück aus dem Salzbad genommen, in gesalztem Kaltwasser abgekühlt und in der üblichen Weise gründlich gereinigt.2 was first thoroughly cleaned in the usual manner and then nitrocarburized in a salt bath at a temperature of 580 ° C. for 20 minutes. A suitable salt bath contains 32 to 38% of a potassium and / or sodium cyanate (CNO " ion). In the present case, the TENIFER" process was followed. the composition of the salt bath was also promising. TENIFER ® is a process and trademark protected by DEGUSSA. As soon as the thickness of the connection layer had reached a μ-meter, the workpiece was removed from the salt bath, cooled in salted cold water and thoroughly cleaned in the usual way.
Als nächstes wurde das Werkstück gasnitriert, wobei die Zusammensetzung des ammoniakhaltigen Nitriergases entsprechend einem Nitrierpotential von 0,1 zusammengestellt war. Dieses Nitrierpotential entspricht einem Restammoniakgehalt des Nitriergases von 8 %. In dieser Atmosphäre wurde das Werkstück bei einer Temperatur von 550°C während 82 Stunden in dem Nitrierofen belassen, dann herausgenommen, langsam abgekühlt und schließlich einer Prüfung unterzogen, die den in Fig. 3 angegebenen Wert ergab (Kurve I).Next, the workpiece was gas nitrided, the composition of the ammonia-containing nitriding gas being compiled in accordance with a nitriding potential of 0.1. This nitriding potential corresponds to a residual ammonia content of the nitriding gas of 8%. In this atmosphere, the workpiece was left in the nitriding furnace at a temperature of 550 ° C. for 82 hours, then taken out, slowly cooled and finally subjected to a test which gave the value shown in FIG. 3 (curve I).
In Fig.3 ist der Härteverlauf für den Nadelsitz auf der Ordinate als Vickers- Härte (HV 0,5) angegeben. Auf der Abszisse ist der Abstand vom Rand des Nadelsitzes in Millimetern angegeben.In Figure 3, the hardness curve for the needle seat on the ordinate is given as Vickers hardness (HV 0.5). The abscissa shows the distance from the edge of the needle seat in millimeters.
Beispiel II:Example II:
Es wurde genauso wie in Beispiel I vorgegangen, jedoch zwischen erstem und zweitem Schritt das Werkstück in achtprozentiger Zitronensäure (Zitronensäuredihydrat) behandelt. Auch Ameisensäure, Essigsäure oder Oxalsäure wäre geeignet. Diese Operation dauerte nur einige Minuten und er- folgte bei mäßiger Erwärmung und guter Durchflutung. Auf Grund dieses Bades konnte die Verweildauer im Nitrierofen beim Gasnitrieren auf 41 Stunden, also auf etwa die Hälfte reduziert werden. Das fertigbehandelte Werkstück wurde wieder einer Prüfung unterzogen. Die gemessenen Här- ten nach Vickers sind wieder in Fig. 3 angegeben, die Kurve ist mit II bezeichnet. Es ist zu erkennen, daß trotz der halben Zeitdauer teils sogar höhere Werte erzielt wurden.The procedure was the same as in Example I, but the workpiece was treated in eight percent citric acid (citric acid dihydrate) between the first and second step. Formic acid, acetic acid or oxalic acid would also be suitable. This operation only lasted a few minutes and was carried out with moderate warming and good flow. Thanks to this bath, the time spent in the nitriding furnace for gas nitriding could be reduced to 41 hours, i.e. to about half. The finished workpiece was checked again. The measured hardness Vickers are again shown in Fig. 3, the curve is designated II. It can be seen that, despite half the time, even higher values were achieved in some cases.
Weiters wurde das Werkstück auch an allen äusseren und inneren Oberflächen (Bohrungen, Spritzlöchern 6, Sackloch 5 in Fig.2) geprüft. Alle Randschichten zeigten gut übereinstimmende Nitrierhärtetiefen und Härtewerte. Furthermore, the workpiece was also checked on all outer and inner surfaces (bores, spray holes 6, blind hole 5 in FIG. 2). All surface layers showed well matching nitriding depths and hardness values.

Claims

PATENTANSPRÜCHE
1. Verfahren zum Nitrieren von Werkstücken aus legierten Stählen, be- stehend in den folgenden Schritten:1. Process for nitriding workpieces made of alloyed steels, consisting of the following steps:
a) Das Werkstück wird einem Nitrocarburierverfahren in einem Salzbad mit einem Cyanatgehalt zwischen 30 % bis 80 % unterzogen, bis die sich bildende Verbindungsschicht eine Dicke im Bereich von 0,5 bis 3 μ-me- ter erreicht;a) The workpiece is subjected to a nitrocarburizing process in a salt bath with a cyanate content between 30% and 80% until the connecting layer that forms reaches a thickness in the range from 0.5 to 3 μm;
b) Sodann wird das Werkstück einem Gasnitrierverfahren bei einer Temperatur zwischen 500 und 600° Celsius unterzogen, wobei die Zusammensetzung des Nitriergases auf ein tiefes Nitrierpotential eingestellt ist, sodaß die Verbindungsschicht unter Vergrößerung der geometrischen Oberfläche zerfällt.b) The workpiece is then subjected to a gas nitriding process at a temperature between 500 and 600 ° Celsius, the composition of the nitriding gas being set to a low nitriding potential, so that the connecting layer disintegrates while increasing the geometric surface area.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß das Nitrierpotential in dem Gasnitrierverfahren entsprechend dem Schritt b) im Bereich zwischen 0,04 und 0,4 liegt. 2. The method according to claim 1, characterized in that the nitriding potential in the gas nitriding process corresponding to step b) is in the range between 0.04 and 0.4.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zwischen den Schritten a) und b) das Werkstück mit einer organischen Säure behandelt wird.3. The method according to claim 1, characterized in that between the steps a) and b) the workpiece is treated with an organic acid.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die organische Säure Zitronensäure ist.4. The method according to claim 3, characterized in that the organic acid is citric acid.
5. Werkstück, das nach dem Verfahren gemäß einem der Ansprüche 1 bis 3 nitriert ist.5. workpiece which is nitrided by the method according to any one of claims 1 to 3.
6. Werkstück nach Anspruch 5, welches der Körper einer Einspritzdüse ist. 6. Workpiece according to claim 5, which is the body of an injection nozzle.
PCT/AT2000/000329 1999-12-07 2000-12-05 Method for nitration-hardening or nitrocarburizing work pieces from steel alloys WO2001042528A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE20023102U DE20023102U1 (en) 1999-12-07 2000-12-05 Nitrided alloy steel workpiece

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0085399U AT3588U1 (en) 1999-12-07 1999-12-07 METHOD FOR NITRATING OR NITROCARBURING WORKPIECES FROM ALLOY STEELS
ATGM853/99 1999-12-07

Publications (1)

Publication Number Publication Date
WO2001042528A1 true WO2001042528A1 (en) 2001-06-14

Family

ID=3501311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2000/000329 WO2001042528A1 (en) 1999-12-07 2000-12-05 Method for nitration-hardening or nitrocarburizing work pieces from steel alloys

Country Status (3)

Country Link
AT (1) AT3588U1 (en)
DE (1) DE20023102U1 (en)
WO (1) WO2001042528A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013226091A1 (en) 2013-12-16 2015-06-18 Robert Bosch Gmbh Cylinder drum of a hydrostatic axial piston machine with a wear protection layer
WO2016005073A1 (en) * 2014-07-11 2016-01-14 Robert Bosch Gmbh Method for nitriding a component of a fuel injection system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104973A (en) * 1994-10-03 1996-04-23 Nippon Light Metal Co Ltd Method for nitriding steel die without white layer
JPH0985333A (en) * 1995-09-21 1997-03-31 Nippon Light Metal Co Ltd Die for extrusion having hard film excellent in oxidizing resistance, its manufacture and aluminum extruded stock excellent in surface property
DE19730372A1 (en) * 1997-07-16 1999-01-21 Iva Industrieoefen Verfahren A Cleaning and depassivating metal surface to be nitrided or carbonitrided

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08104973A (en) * 1994-10-03 1996-04-23 Nippon Light Metal Co Ltd Method for nitriding steel die without white layer
JPH0985333A (en) * 1995-09-21 1997-03-31 Nippon Light Metal Co Ltd Die for extrusion having hard film excellent in oxidizing resistance, its manufacture and aluminum extruded stock excellent in surface property
DE19730372A1 (en) * 1997-07-16 1999-01-21 Iva Industrieoefen Verfahren A Cleaning and depassivating metal surface to be nitrided or carbonitrided

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 199723, Derwent World Patents Index; Class M13, AN 1997-253721, XP002162149 *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 08 30 August 1996 (1996-08-30) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013226091A1 (en) 2013-12-16 2015-06-18 Robert Bosch Gmbh Cylinder drum of a hydrostatic axial piston machine with a wear protection layer
US10281042B2 (en) 2013-12-16 2019-05-07 Robert Bosch Gmbh Cylinder drum of a hydrostatic axial piston machine having a wear-resistant layer
WO2016005073A1 (en) * 2014-07-11 2016-01-14 Robert Bosch Gmbh Method for nitriding a component of a fuel injection system
DE102014213510A1 (en) 2014-07-11 2016-02-18 Robert Bosch Gmbh Method for nitriding a component of a fuel injection system
CN106661712A (en) * 2014-07-11 2017-05-10 罗伯特·博世有限公司 Method for nitriding component of fuel injection system
JP2017528635A (en) * 2014-07-11 2017-09-28 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for nitriding fuel injector components
US10125734B2 (en) 2014-07-11 2018-11-13 Robert Bosch Gmbh Method for nitriding a component of a fuel injection system
CN106661712B (en) * 2014-07-11 2019-05-28 罗伯特·博世有限公司 Method for nitrogenizing the component of fuel injection system

Also Published As

Publication number Publication date
DE20023102U1 (en) 2002-12-19
AT3588U1 (en) 2000-05-25

Similar Documents

Publication Publication Date Title
EP1642992B1 (en) Non-machined thin walled rust-free bearing component, particularly rolling bearing component
EP0982493B1 (en) Method of making a fuel injection nozzle and fuel injection nozzle
EP3167094B1 (en) Method of nitriding a component of a fuel injection system
DE102005060113B4 (en) Wheel bearing and method for producing the same
EP2131972B1 (en) Method for the production of a high-pressure accumulator pipe made of steel for fuel injection systems and high-pressure accumulator pipe produced according to this method
DE1533239B1 (en) USE OF A STEEL FOR POPPET VALVES
DE4205647C2 (en) Process for the thermochemical-thermal treatment of case-hardening steels
WO2019223925A1 (en) Method for producing a metal component
DE102004039926B4 (en) Process for producing a temperature and corrosion resistant fuel injector body
WO2001042528A1 (en) Method for nitration-hardening or nitrocarburizing work pieces from steel alloys
DE4327440C2 (en) Process for the thermochemical-thermal treatment of case hardening steels, quenched and tempered steels and rolling bearing steels
DE3424225C2 (en)
EP1846655A1 (en) Method for producing an injector body and corresponding injector body
DE112020001983T5 (en) ASSEMBLY FOR FUEL INJECTOR AND COATING PROCESS FOR THE SAME
DE102008061237A1 (en) Gas exchange valve and method for its production
DE102008021963A1 (en) Roller bearing useful in corrosive and/or lubricant-free environment, comprises a bearing component such as a bearing ring, a sleeve or a bush with a rolling body bearing surface and/or a rolling body moving on the bearing surface
EP3538676B1 (en) Method for the heat treatment of a workpiece consisting of a high-alloy steel
DE102015204656A1 (en) Layer formation for rolling bearing components
EP0052092B1 (en) Manufacturing process of hollow machine cylinders
WO2015110199A1 (en) Method for producing a magnetic valve
DE102019134498B4 (en) Method of Making a Highly Loaded Spring and Highly Loaded Spring
DE10254846B4 (en) Method for case-hardening components made of hot-work steels by means of vacuum carburizing
DE102006020075B4 (en) Process for manufacturing a corrosion-resistant rolling bearing and corrosion-resistant rolling bearing
DE4303884A1 (en) A process for producing machine components, in particular rolling bearing elements
DE19752051C1 (en) Producing dimensionally accurate components with nitrided or nitrocarburized surface layers, and resultant component

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP