EP3167094B1 - Method of nitriding a component of a fuel injection system - Google Patents

Method of nitriding a component of a fuel injection system Download PDF

Info

Publication number
EP3167094B1
EP3167094B1 EP15726870.7A EP15726870A EP3167094B1 EP 3167094 B1 EP3167094 B1 EP 3167094B1 EP 15726870 A EP15726870 A EP 15726870A EP 3167094 B1 EP3167094 B1 EP 3167094B1
Authority
EP
European Patent Office
Prior art keywords
component
nitriding
nitrogen
injection system
nozzle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15726870.7A
Other languages
German (de)
French (fr)
Other versions
EP3167094A1 (en
Inventor
Heinrich Werger
Christian Paulus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3167094A1 publication Critical patent/EP3167094A1/en
Application granted granted Critical
Publication of EP3167094B1 publication Critical patent/EP3167094B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9038Coatings

Definitions

  • the invention relates to a method for nitriding a high pressure loaded, made of an alloy steel component of a fuel injection system.
  • the known nitriding method comprises, in a first step, a nitrocarburizing process in a salt bath and then in a second step a gas nitriding process at a temperature between 520 ° C and 580 ° C at low nitriding potential or low nitriding coefficient (in the range between 0.08 and 0, 5), ie in the so-called ⁇ -range of the teacher diagram.
  • thermochemical diffusion nitration (ammonia, 24h, 480 ° C) of a nozzle body and / or a longitudinally movable nozzle needle, each of alloyed steel as parts of a fuel injection system.
  • the nitriding method of the present invention minimizes the cavitation damage caused by the high pressure load by further increasing the ductility (toughness) under the material surface of the components by the nitriding method.
  • the nitriding process has a positive effect on the swelling resistance. As a result, the life or fatigue strength of the components is increased.
  • Activating reduces the resistance of the component to the diffusion of nitrogen. This step thus increases the nitridability of the component.
  • the subsequent pre-oxidation leads to the component having a higher corrosion resistance during operation.
  • the nitriding process according to the invention reduces, above all, the nitride inclusions along the grain boundaries in the diffusion layer compared with the known nitriding processes.
  • the grain boundaries are less susceptible to breakage, which increases the toughness and thus the robustness against cavitation attack, as well as the swelling resistance of the component.
  • the first nitriding characteristic K N, 1 is between 1 and 10, preferably between 2 and 8.
  • the first nitriding characteristic K N, 1 is thus comparatively high. This results in the teacher diagram at temperatures between 520 ° C and 570 ° C substantially in the ⁇ -nitride region, which ensures a high nitrogen uptake of the activated and flowed around by the nitriding gas component.
  • the second Nitrierkenniere K N, 2 is between 0.2 and 0.4.
  • the second Nitrierkenniere K N, 2 is therefore relatively low. This obstructs a deep in-diffusion of a high nitrogen content into the component. It mainly increases the nitrogen content in the connecting layer; in the base material, the nitrogen content increases to not more than about 6%. The toughness of the component is thus largely retained.
  • a component which has been nitrided by the process according to the invention has on its surface a mass fraction of the nitrogen of between 11% and 25%. This provides a very hard, cavitation, wear and corrosion resistant surface of the component.
  • a component which has been nitrided by the method according to the invention at a first depth t 1 of 10 microns to the surface of the component, a mass fraction of nitrogen between 3% and 8% up.
  • the comparatively large drop in the mass fraction of nitrogen already in 10 ⁇ m component depth leads to a comparatively high toughness of the component despite the high surface hardness.
  • the transition from the connecting layer to the diffusion layer is also approximately at this component depth.
  • a component which has been nitrided by the method according to the invention in a second depth t 2 of 15 microns to the surface of the component to a mass fraction of nitrogen between 2% and 7%. This leads to a further increase in the toughness of the component compared to known nitriding.
  • a component which has been nitrided by the method according to the invention in a third depth t 3 of 20 microns to the surface of the component to a mass fraction of nitrogen between 2% and 6%. This leads to a further increase in the toughness of the component compared to known nitriding.
  • the nitrogen content runs asymptotically to the end of the diffusion zone, and then drops relatively abruptly towards the end of the diffusion zone to the nitrogen content already contained in the base material.
  • the diffusion zone extends to about 500 microns into the component interior.
  • the nitrogen content is lowered so far from the third depth t 3 that only a few nitride intercalations form. The necessary toughness of the material is thus given from this component depth.
  • the component is a nozzle body of a fuel injector for injecting fuel into a combustion chamber of an internal combustion engine, wherein the fuel injector has a nozzle needle which is longitudinally movably guided in the nozzle body. Due to the high pressure and the high flow rate of the fuel in the fuel injector and there especially in the nozzle body just just the nozzle body is suitable for a nitriding process according to the invention. For example, at the injection openings of the nozzle body, which open into the combustion chamber of the internal combustion engine, there may be a very high cavitation load. Due to the increased swelling resistance of the Nozzle body can be minimized by the nitriding process according to the invention caused by cavitation or even avoided altogether.
  • Fig.1 shows a teacher diagram: The different state phases of the system iron-nitrogen of a component as a function of the temperature T and the nitriding coefficient K N are shown.
  • the nitriding index K N is plotted logarithmically above the nitriding temperature T.
  • the nitration time is not indicated in the teacher diagram, but usually ranges from 1 hour to 100 hours.
  • K N p NH 3 p H 2 3 / 2
  • p (NH 3 ) is the partial pressure of the ammonia and p (H 2 ) is the partial pressure of the hydrogen.
  • the partial pressure is in each case the pressure in an ideal gas mixture which is assigned to a single gas component. That is, the partial pressure corresponds to the pressure that would be exerted by the single gas component in the presence of the respective volume.
  • the Partial pressure is usually used instead of the mass concentration when considering the diffusion behavior of the dissolved gas.
  • the state phases of the iron-nitrogen system are divided into an ⁇ -nitride region, a ⁇ -nitride region, a ⁇ '-nitride region, and an ⁇ -nitride region.
  • ⁇ -nitrides have very high proportions of nitrogen and are generally found on the surface of the nitrided component, the so-called connection layer or the underlying diffusion layer.
  • the y'-nitride region also has a high nitrogen content, but with more order of nitrogen atoms than in the ⁇ -nitride region.
  • the y'-nitride region is also found in the bonding and diffusion layer. Both the ⁇ -nitride region and the y'-nitride region are comparatively hard and brittle.
  • ⁇ -nitrides also occur, which have very high nitrogen concentrations.
  • the ⁇ -nitride region has a comparatively low nitrogen concentration and is comparatively tough. ⁇ -nitride regions are usually found in the diffusion layer and in the base material.
  • Fig.1 shows a hatched region 12, which is located substantially in the y'-nitride region, with a temperature T in the range between about 520 ° C and 570 ° C and with a nitriding index K N in the range between about 0.2 and 0 ; 4.
  • this hatched region identifies the process step with the low second nitriding characteristic K N, 2 .
  • Fig.2 shows a diagram in which the mass fraction of the nitrogen "mass% of N" of a nitrided with the inventive method component over the component depth "t [ ⁇ m]” is plotted.
  • the component depth t is perpendicular to the surface and the mass fraction of the nitrogen is specified for a range which is at least 1 mm from the next edge or the next contour transition.
  • the curve “MAX” represents the maximum and the curve “MIN" the minimum mass fraction of the nitrogen of the treated component.
  • the nitrogen-containing compound layer of a component treated with the method according to the invention is only about 5 ⁇ m to 10 ⁇ m thick and then the diffusion layer begins.
  • the diffusion layer can extend to over 500 microns in the component depth, but for reasons of representation in the Fig.2 not shown.
  • FIG. 3 schematically shows a part of a fuel injector 1, wherein only the essential areas are shown.
  • the fuel injector 1 has a nozzle body 4, in which a pressure chamber 2 is formed.
  • the pressure chamber 2 is filled with high-pressure fuel and is fed for example by a common rail, not shown, or a high-pressure pump, not shown, of a fuel injection system.
  • a nozzle needle 3 is arranged longitudinally movable.
  • the nozzle needle 3 opens and closes by their longitudinal movement in the nozzle body 4 formed injection openings 5 for injecting fuel into a combustion chamber of an internal combustion engine, not shown.
  • the nozzle body 4 is exposed to cavitation risks, especially in the area of the injection openings 5.
  • the nitriding method according to the invention is used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Nitrieren eines hochdruckbelasteten, aus einem legierten Stahl bestehenden Bauteils eines Kraftstoffeinspritzsystems.The invention relates to a method for nitriding a high pressure loaded, made of an alloy steel component of a fuel injection system.

Stand der TechnikState of the art

Aus der Offenlegungsschrift DE 102 56 590 A1 ist bekannt, dass eine Einspritzdüse eines Kraftstoffeinspritzsystems sehr widerstandsfähig wird, wenn die Einspritzdüse einen nitrierten Zustand aufweist. Dabei erhöhen sich vor allem die Korrosionsbeständigkeit und der Verschleißwiderstand. Auf das Nitrierverfahren an sich wird in dieser Schrift jedoch nicht eingegangen.From the publication DE 102 56 590 A1 It is known that an injector of a fuel injection system becomes very resistant when the injector has a nitrided state. Above all, the corrosion resistance and the wear resistance increase. However, the nitriding method itself is not dealt with in this document.

Weiterhin ist aus der Offenlegungsschrift WO 2001/042528 A1 ein Verfahren zum Nitrieren einer Einspritzdüse bekannt. Das bekannte Nitrierverfahren weist in einem ersten Schritt ein Nitrocarburierverfahren in einem Salzbad auf und danach in einem zweiten Schritt ein Gasnitrierverfahren bei einer Temperatur zwischen 520°C und 580°C bei niedrigem Nitrierpotential bzw. niedriger Nitrierkennzahl (im Bereich zwischen 0,08 und 0,5), also im sogenannten α-Bereich des Lehrer-Diagramms.Furthermore, from the published patent application WO 2001/042528 A1 a method for nitriding an injection nozzle is known. The known nitriding method comprises, in a first step, a nitrocarburizing process in a salt bath and then in a second step a gas nitriding process at a temperature between 520 ° C and 580 ° C at low nitriding potential or low nitriding coefficient (in the range between 0.08 and 0, 5), ie in the so-called α-range of the teacher diagram.

DE 10 2009 035288 A offenbart die thermochemische Diffusionsnitrierung (Ammoniak, 24 h, 480 °C) eines Düsenkörpers und/oder einer darin längsbeweglichen Düsennadel, jeweils aus legiertem Stahl als Teile eines Kraftstoffeinspritzsystems. DE 10 2009 035288 A discloses thermochemical diffusion nitration (ammonia, 24h, 480 ° C) of a nozzle body and / or a longitudinally movable nozzle needle, each of alloyed steel as parts of a fuel injection system.

Die Belastungen der Bauteile eines Kraftstoffeinspritzsystems mit unter sehr hohem Druck stehendem Kraftstoff können - speziell im Bereich von Drosselstellen - zu einer sehr hohen Kavitationsbelastung dieser Bauteile führen.The loads on the components of a fuel injection system under very high pressure fuel - especially in the field of throttle bodies - lead to a very high cavitation load of these components.

Selbst bei den mit oben beschriebenem Nitrierverfahren behandelten Bauteilen kann dies zu größeren Kavitationsschäden führen.Even with the components treated with the nitriding process described above, this can lead to greater cavitation damage.

Offenbarung der ErfindungDisclosure of the invention

Demgegenüber minimiert das erfindungsgemäße Nitrierverfahren die durch die hohe Druckbelastung hervorgerufenen Kavitationsschäden, indem die Duktilität (Zähigkeit) unter der Materialoberfläche der Bauteile durch das Nitrierverfahren weiter gesteigert wird. Zusätzlich wirkt sich das Nitrierverfahren positiv auf die Schwellfestigkeit aus. Dadurch wird die Lebensdauer bzw. die Dauerfestigkeit der Bauteile gesteigert.On the other hand, the nitriding method of the present invention minimizes the cavitation damage caused by the high pressure load by further increasing the ductility (toughness) under the material surface of the components by the nitriding method. In addition, the nitriding process has a positive effect on the swelling resistance. As a result, the life or fatigue strength of the components is increased.

Dazu weist das Verfahren zum Nitrieren eines hochdruckbelasteten, aus einem legierten Stahl bestehenden Bauteils eines Kraftstoffeinspritzsystems folgende Verfahrensschritte auf:

  • Aktivieren des Bauteils in anorganischer Säure,
  • Voroxidieren des Bauteils in sauerstoffhaltiger Atmosphäre zwischen 380°C und 420°C,
  • Nitrieren des Bauteils zwischen 520°C und 570°C bei einer hohen ersten Nitrierkennzahl KN,1 im ε-Nitrid-Bereich,
  • Nitrieren des Bauteils zwischen 520°C und 570°C bei einer niedrigen zweiten Nitrierkennzahl KN,2 im γ'-Nitrid-Bereich, wobei die Nitrierkennzahl definiert ist als KN = p(NH3)/p(H2)3/2.
For this purpose, the method for nitriding a high pressure-loaded, made of an alloy steel component of a fuel injection system comprises the following method steps:
  • Activating the component in inorganic acid,
  • Preoxidizing the component in an oxygen-containing atmosphere between 380 ° C and 420 ° C,
  • Nitriding of the component between 520 ° C. and 570 ° C. at a high first nitriding index K N, 1 in the ε-nitride range,
  • Nitriding of the component between 520 ° C. and 570 ° C. at a low second nitriding index K N, 2 in the γ'-nitride range, the nitriding index being defined as K N = p (NH 3 ) / p (H 2 ) 3 / 2 .

Durch das Aktivieren wird der Widerstand des Bauteils gegen das Eindiffundieren des Stickstoffs verringert. Dieser Schritt erhöht also die Nitrierbarkeit des Bauteils. Das anschließende Voroxidieren führt dazu, dass das Bauteil im Betrieb eine höhere Korrosionsbeständigkeit aufweist.Activating reduces the resistance of the component to the diffusion of nitrogen. This step thus increases the nitridability of the component. The subsequent pre-oxidation leads to the component having a higher corrosion resistance during operation.

Das eigentliche Nitrieren wird in zwei Schritte unterteilt, bei denen ammoniakhaltiges Gas verwendet wird:

  • Ein erster Nitrierschritt mit einer ersten Nitrierkennzahl KN,1 im ε-Nitrid-Bereich dient der Stickstoffaufnahme des Bauteils und damit der Erhöhung der Härte des Bauteils, sowohl in der sogenannten Verbindungsschicht an der Oberfläche des Bauteils als auch in der darunter liegenden Diffusionsschicht.
  • Ein zweiter Nitrierschritt mit einer zweiten Nitrierkennzahl KN,2 im γ'-Nitrid-Bereich führt dazu, dass die Verbindungsschicht nicht zu dick wird. Die Verbindungsschicht besitzt zwar eine hohe Härte, ist aber gleichzeitig sehr spröde und damit auch sehr anfällig gegenüber Kavitationsbelastungen.
The actual nitriding is divided into two steps using ammonia-containing gas:
  • A first nitriding step with a first nitriding characteristic K N, 1 in the ε-nitride region serves for nitrogen uptake of the component and thus for increasing the hardness of the component, both in the so-called bonding layer on the surface of the component and in the underlying diffusion layer.
  • A second nitriding step with a second nitriding index K N, 2 in the γ'-nitride region results in the bonding layer not becoming too thick. Although the bonding layer has a high hardness, but at the same time is very brittle and thus also very susceptible to cavitation.

Durch das erfindungsgemäße Nitrierverfahren werden neben der Reduktion der Dicke der spröden Verbindungsschicht vor allem die Nitrideinlagerungen entlang der Korngrenzen in der Diffusionsschicht gegenüber den bekannten Nitrierverfahren reduziert. Dadurch werden die Korngrenzen weniger bruchempfindlich, was die Zähigkeit und damit die Robustheit gegenüber Kavitationsangriff, sowie die Schwellfestigkeit des Bauteils erhöht.In addition to the reduction in the thickness of the brittle connecting layer, the nitriding process according to the invention reduces, above all, the nitride inclusions along the grain boundaries in the diffusion layer compared with the known nitriding processes. As a result, the grain boundaries are less susceptible to breakage, which increases the toughness and thus the robustness against cavitation attack, as well as the swelling resistance of the component.

Vorteilhafterweise liegt die erste Nitrierkennzahl KN,1 zwischen 1 und 10, vorzugsweise zwischen 2 und 8. Die erste Nitrierkennzahl KN,1 ist also vergleichsweise hoch. Dadurch befindet man sich im Lehrer-Diagramm bei Temperaturen zwischen 520°C und 570°C im Wesentlichen im ε-Nitrid-Bereich, welcher eine hohe Stickstoffaufnahme des aktivierten und vom Nitriergas umströmten Bauteils sicherstellt.Advantageously, the first nitriding characteristic K N, 1 is between 1 and 10, preferably between 2 and 8. The first nitriding characteristic K N, 1 is thus comparatively high. This results in the teacher diagram at temperatures between 520 ° C and 570 ° C substantially in the ε-nitride region, which ensures a high nitrogen uptake of the activated and flowed around by the nitriding gas component.

Weiterhin vorteilhafterweise liegt die zweite Nitrierkennzahl KN,2 zwischen 0,2 und 0,4. Die zweite Nitrierkennzahl KN,2 ist also vergleichsweise niedrig. Dadurch wird ein tiefes Eindiffundieren eines hohen Stickstoffgehalts in das Bauteil behindert. Es erhöht sich vorwiegend der Stickstoffgehalt in der Verbindungsschicht; im Grundwerkstoff steigt der Stickstoffmassenanteil auf nicht mehr als etwa 6%. Die Zähigkeit des Bauteils bleibt somit weitestgehend erhalten.Further advantageously, the second Nitrierkennzahl K N, 2 is between 0.2 and 0.4. The second Nitrierkennzahl K N, 2 is therefore relatively low. This obstructs a deep in-diffusion of a high nitrogen content into the component. It mainly increases the nitrogen content in the connecting layer; in the base material, the nitrogen content increases to not more than about 6%. The toughness of the component is thus largely retained.

Erfindungsgemäß weist ein Bauteil, das nach dem erfindungsgemäßen Verfahren nitriert wurde, an seiner Oberfläche einen Massenanteil des Stickstoffs zwischen 11% und 25% auf. Dies sorgt für eine sehr harte, kavitations-, verschleiß- und korrosionsbeständige Oberfläche des Bauteils.According to the invention, a component which has been nitrided by the process according to the invention has on its surface a mass fraction of the nitrogen of between 11% and 25%. This provides a very hard, cavitation, wear and corrosion resistant surface of the component.

In einer weiteren vorteilhaften Ausführung weist ein Bauteil, das nach dem erfindungsgemäßen Verfahren nitriert wurde, in einer ersten Tiefe t1 von 10 µm zu der Oberfläche des Bauteils einen Massenanteil des Stickstoffs zwischen 3% und 8% auf. Der vergleichsweise starke Abfall des Massenanteils des Stickstoffs bereits in 10 µm Bauteiltiefe führt zu einer vergleichsweise hohen Zähigkeit des Bauteils trotz der hohen Oberflächenhärte. In etwa dieser Bauteiltiefe befindet sich auch der Übergang von der Verbindungs- zur Diffusionsschicht.In a further advantageous embodiment, a component which has been nitrided by the method according to the invention, at a first depth t 1 of 10 microns to the surface of the component, a mass fraction of nitrogen between 3% and 8% up. The comparatively large drop in the mass fraction of nitrogen already in 10 μm component depth leads to a comparatively high toughness of the component despite the high surface hardness. The transition from the connecting layer to the diffusion layer is also approximately at this component depth.

In einer weiteren vorteilhaften Ausführung weist ein Bauteil, das nach dem erfindungsgemäßen Verfahren nitriert wurde, in einer zweiten Tiefe t2 von 15 µm zu der Oberfläche des Bauteils einen Massenanteil des Stickstoffs zwischen 2% und 7% auf. Dies führt zu einer weiteren Erhöhung der Zähigkeit des Bauteils im Vergleich zu bekannten Nitrierverfahren.In a further advantageous embodiment, a component which has been nitrided by the method according to the invention, in a second depth t 2 of 15 microns to the surface of the component to a mass fraction of nitrogen between 2% and 7%. This leads to a further increase in the toughness of the component compared to known nitriding.

In einer weiteren vorteilhaften Ausführung weist ein Bauteil, das nach dem erfindungsgemäßen Verfahren nitriert wurde, in einer dritten Tiefe t3 von 20 µm zu der Oberfläche des Bauteils einen Massenanteil des Stickstoffs zwischen 2% und 6% auf. Dies führt zu einer weiteren Erhöhung der Zähigkeit des Bauteils im Vergleich zu bekannten Nitrierverfahren.In a further advantageous embodiment, a component which has been nitrided by the method according to the invention, in a third depth t 3 of 20 microns to the surface of the component to a mass fraction of nitrogen between 2% and 6%. This leads to a further increase in the toughness of the component compared to known nitriding.

Ab dieser Bauteiltiefe verläuft der Stickstoffanteil asymptotisch bis zum Ende der Diffusionszone, um dann zum Ende der Diffusionszone relativ abrupt auf den im Grundwerkstoff bereits enthaltenen Stickstoffanteil abzufallen. Üblicherweise reicht die Diffusionszone dabei bis etwa 500 µm ins Bauteilinnere. Der Stickstoffanteil ist ab der dritten Tiefe t3 so weit abgesenkt, dass sich nur noch wenige Nitrideinlagerungen bilden. Die notwendige Zähigkeit des Werkstoffs ist somit ab dieser Bauteiltiefe gegeben.From this component depth, the nitrogen content runs asymptotically to the end of the diffusion zone, and then drops relatively abruptly towards the end of the diffusion zone to the nitrogen content already contained in the base material. Typically, the diffusion zone extends to about 500 microns into the component interior. The nitrogen content is lowered so far from the third depth t 3 that only a few nitride intercalations form. The necessary toughness of the material is thus given from this component depth.

In einer erfindungsgemäßen Ausführung ist das Bauteil ein Düsenkörper eines Kraftstoffinjektors zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine, wobei der Kraftstoffinjektor eine Düsennadel aufweist, die längsbeweglich in dem Düsenkörper geführt ist. Aufgrund des hohen Drucks und der hohen Strömungsgeschwindigkeit des Kraftstoffs in dem Kraftstoffinjektor und dort speziell im Düsenkörper eignet sich eben gerade der Düsenkörper für ein erfindungsgemäßes Nitrierverfahren. Beispielsweise an den Einspritzöffnungen des Düsenkörpers, welche in den Brennraum der Brennkraftmaschine münden, besteht unter Umständen eine sehr hohe Kavitationsbelastung. Aufgrund der gesteigerten Schwellfestigkeit des Düsenkörpers durch das erfindungsgemäße Nitrierverfahren können dadurch hervorgerufene Kavitationsschäden minimiert oder sogar gänzlich vermieden werden.In one embodiment of the invention, the component is a nozzle body of a fuel injector for injecting fuel into a combustion chamber of an internal combustion engine, wherein the fuel injector has a nozzle needle which is longitudinally movably guided in the nozzle body. Due to the high pressure and the high flow rate of the fuel in the fuel injector and there especially in the nozzle body just just the nozzle body is suitable for a nitriding process according to the invention. For example, at the injection openings of the nozzle body, which open into the combustion chamber of the internal combustion engine, there may be a very high cavitation load. Due to the increased swelling resistance of the Nozzle body can be minimized by the nitriding process according to the invention caused by cavitation or even avoided altogether.

Zeichnungendrawings

  • Fig.1 zeigt ein Lehrer-Diagramm, in dem die Nitrierkennzahl KN über der Nitriertemperatur T aufgetragen ist, wobei ein Bereich für einen Verfahrensschritt des erfindungsgemäßen Verfahrens mit einer zweiten Nitrierkennzahl KN,2 gekennzeichnet ist. Fig.1 shows a teacher diagram in which the nitriding index K N is plotted against the nitriding temperature T, wherein an area for a step of the method according to the invention with a second nitriding index K N, 2 is characterized.
  • Fig.2 zeigt ein Diagramm, in dem der Massenanteil des Stickstoffs eines mit dem erfindungsgemäßen Verfahren nitrierten Bauteils in Abhängigkeit der Bauteiltiefe. Fig.2 shows a diagram in which the mass fraction of nitrogen of a nitrided with the inventive method component depending on the component depth.
  • Fig.3 zeigt schematisch einen Teil eines Kraftstoffinjektors, wobei nur die wesentlichen Bereiche dargestellt sind. Figure 3 schematically shows a part of a fuel injector, wherein only the essential areas are shown.
Beschreibungdescription

Fig.1 zeigt ein Lehrer-Diagramm: Es werden die verschiedenen Zustandsphasen des Systems Eisen-Stickstoff eines Bauteils in Abhängigkeit der Temperatur T und der Nitrierkennzahl KN gezeigt. Die Nitrierkennzahl KN ist logarithmisch über der Nitriertemperatur T aufgetragen. Die Nitrierdauer ist im Lehrer-Diagramm nicht angegeben, üblicherweise liegt sie jedoch in einem Bereich zwischen 1 Stunde und 100 Stunden. Fig.1 shows a teacher diagram: The different state phases of the system iron-nitrogen of a component as a function of the temperature T and the nitriding coefficient K N are shown. The nitriding index K N is plotted logarithmically above the nitriding temperature T. The nitration time is not indicated in the teacher diagram, but usually ranges from 1 hour to 100 hours.

Die Nitrierkennzahl KN ist definiert als K N = p NH 3 p H 2 3 / 2

Figure imgb0001
The nitriding index K N is defined as K N = p NH 3 p H 2 3 / 2
Figure imgb0001

Dabei sind p(NH3) der Partialdruck des Ammoniaks und p(H2) der Partialdruck des Wasserstoffs. Der Partialdruck ist jeweils der Druck in einem idealen Gasgemisch, der einer einzelnen Gaskomponente zugeordnet ist. Das heißt, der Partialdruck entspricht dem Druck, den die einzelne Gaskomponente bei alleinigem Vorhandensein im betreffenden Volumen ausüben würde. Der Partialdruck wird üblicherweise dann anstelle der Massenkonzentration verwendet, wenn das Diffusionsverhalten des gelösten Gases betrachtet wird.Here, p (NH 3 ) is the partial pressure of the ammonia and p (H 2 ) is the partial pressure of the hydrogen. The partial pressure is in each case the pressure in an ideal gas mixture which is assigned to a single gas component. That is, the partial pressure corresponds to the pressure that would be exerted by the single gas component in the presence of the respective volume. The Partial pressure is usually used instead of the mass concentration when considering the diffusion behavior of the dissolved gas.

Die Zustandsphasen des Systems Eisen-Stickstoff werden unterteilt in einen ε-Nitrid-Bereich, einen γ-Nitrid-Bereich, einen γ'-Nitrid-Bereich und einen α-Nitrid-Bereich. ε-Nitride weisen sehr hohe Stickstoffmassenanteile auf und sind in der Regel an der Oberfläche des nitrierten Bauteils zu finden, der sogenannten Verbindungsschicht oder der darunter liegenden Diffusionsschicht. Der y'-Nitrid-Bereich weist ebenfalls einen hohen Stickstoffanteil auf, allerdings mit mehr Ordnung der Stickstoffatome als im ε-Nitrid-Bereich. Der y'-Nitrid-Bereich ist ebenfalls in der Verbindungs- und Diffusionsschicht zu finden. Sowohl der ε-Nitrid-Bereich als auch der y'-Nitrid-Bereich sind vergleichsweise hart und spröde. Bei sehr hohen Temperaturen, jedoch außerhalb des erfindungsgemäßen Nitrierverfahrens, treten auch γ-Nitride auf, die sehr hohe Stickstoffkonzentrationen aufweisen. Der α-Nitrid-Bereich weist eine vergleichsweise niedrige Stickstoffkonzentration auf und ist vergleichsweise zäh. α-Nitrid-Bereiche sind üblicherweise in der Diffusionsschicht und im Grundwerkstoff zu finden.The state phases of the iron-nitrogen system are divided into an ε-nitride region, a γ-nitride region, a γ'-nitride region, and an α-nitride region. ε-nitrides have very high proportions of nitrogen and are generally found on the surface of the nitrided component, the so-called connection layer or the underlying diffusion layer. The y'-nitride region also has a high nitrogen content, but with more order of nitrogen atoms than in the ε-nitride region. The y'-nitride region is also found in the bonding and diffusion layer. Both the ε-nitride region and the y'-nitride region are comparatively hard and brittle. At very high temperatures, but outside the nitriding process according to the invention, γ-nitrides also occur, which have very high nitrogen concentrations. The α-nitride region has a comparatively low nitrogen concentration and is comparatively tough. α-nitride regions are usually found in the diffusion layer and in the base material.

Fig.1 zeigt einen schraffierten Bereich 12, der im Wesentlichen im y'-Nitrid-Bereich liegt, mit einer Temperatur T im Bereich zwischen ca. 520°C und 570°C und mit einer Nitrierkennzahl KN im Bereich zwischen ca. 0,2 und 0,4. Dieser schraffierte Bereich kennzeichnet im erfindungsgemäßen Nitrierverfahren den Verfahrensschritt mit der niedrigen zweiten Nitrierkennzahl KN,2. Fig.1 shows a hatched region 12, which is located substantially in the y'-nitride region, with a temperature T in the range between about 520 ° C and 570 ° C and with a nitriding index K N in the range between about 0.2 and 0 ; 4. In the nitriding process according to the invention, this hatched region identifies the process step with the low second nitriding characteristic K N, 2 .

Fig.2 zeigt ein Diagramm, in dem der Massenanteil des Stickstoffs "Mass-% of N" eines mit dem erfindungsgemäßen Verfahren nitrierten Bauteils über der Bauteiltiefe "t [µm]" aufgetragen ist. Dabei verläuft die Bauteiltiefe t senkrecht zur Oberfläche und der Massenanteil des Stickstoffs ist für einen Bereich angegeben, der mit mindestens 1 mm Abstand zur nächsten Kante oder zum nächsten Konturübergang liegt. Die Kurve "MAX" stellt den maximalen und die Kurve "MIN" den minimalen Massenanteil des Stickstoffs des behandelten Bauteils dar. Fig.2 shows a diagram in which the mass fraction of the nitrogen "mass% of N" of a nitrided with the inventive method component over the component depth "t [μm]" is plotted. In this case, the component depth t is perpendicular to the surface and the mass fraction of the nitrogen is specified for a range which is at least 1 mm from the next edge or the next contour transition. The curve "MAX" represents the maximum and the curve "MIN" the minimum mass fraction of the nitrogen of the treated component.

In Fig.2 ist zu erkennen, dass die stickstoffhaltige Verbindungsschicht eines mit dem erfindungsgemäßen Verfahren behandelten Bauteils nur etwa 5 µm bis 10 µm stark ist und danach die Diffusionsschicht beginnt. Die Diffusionsschicht kann bis über 500 µm in die Bauteiltiefe reichen, was aber aus Darstellungsgründen in der Fig.2 nicht gezeigt ist.In Fig.2 It can be seen that the nitrogen-containing compound layer of a component treated with the method according to the invention is only about 5 μm to 10 μm thick and then the diffusion layer begins. The diffusion layer can extend to over 500 microns in the component depth, but for reasons of representation in the Fig.2 not shown.

Fig.3 zeigt schematisch einen Teil eines Kraftstoffinjektors 1, wobei nur die wesentlichen Bereiche dargestellt sind. Der Kraftstoffinjektor 1 weist einen Düsenkörper 4 auf, in dem ein Druckraum 2 ausgebildet ist. Der Druckraum 2 ist mit unter Hochdruck stehendem Kraftstoff gefüllt und wird beispielsweise von einem nicht dargestellten Common Rail oder einer nicht dargestellten Hochdruckpumpe eines Kraftstoffeinspritzsystems gespeist. Im Druckraum 2 ist eine Düsennadel 3 längsbeweglich angeordnet. Die Düsennadel 3 öffnet und schließt durch ihre Längsbewegung im Düsenkörper 4 ausgebildete Einspritzöffnungen 5 zum Einspritzen von Kraftstoff in einen Brennraum einer nicht dargestellten Brennkraftmaschine. Der Düsenkörper 4 ist speziell im Bereich der Einspritzöffnungen 5 Kavitationsrisiken ausgesetzt. Um die Kavitationsresistenz des Düsenkörpers 4 zu erhöhen, wird das erfindungsgemäße Nitrierverfahren eingesetzt. Figure 3 schematically shows a part of a fuel injector 1, wherein only the essential areas are shown. The fuel injector 1 has a nozzle body 4, in which a pressure chamber 2 is formed. The pressure chamber 2 is filled with high-pressure fuel and is fed for example by a common rail, not shown, or a high-pressure pump, not shown, of a fuel injection system. In the pressure chamber 2, a nozzle needle 3 is arranged longitudinally movable. The nozzle needle 3 opens and closes by their longitudinal movement in the nozzle body 4 formed injection openings 5 for injecting fuel into a combustion chamber of an internal combustion engine, not shown. The nozzle body 4 is exposed to cavitation risks, especially in the area of the injection openings 5. In order to increase the cavitation resistance of the nozzle body 4, the nitriding method according to the invention is used.

Das erfindungsgemäße Verfahren zum Nitrieren eines hochdruckbelasteten, aus einem legierten Stahl bestehenden Bauteils eines Kraftstoffeinspritzsystems, beispielsweise des Düsenkörpers 4, besteht aus folgenden Verfahrensschritten:

  1. 1) Aktivieren des Bauteils in anorganischer Säure.
  2. 2) Voroxidieren des Bauteils in sauerstoffhaltiger Atmosphäre zwischen 380°C und 420°C.
  3. 3) Nitrieren des Bauteils zwischen 520°C und 570°C bei einer hohen ersten Nitrierkennzahl KN,1 im ε-Nitrid-Bereich, vorzugsweise mit 1 ≤ KN,1 ≤ 10.
  4. 4) Nitrieren des Bauteils zwischen 520°C und 570°C bei einer niedrigen zweiten Nitrierkennzahl KN,2 im γ'-Nitrid-Bereich, vorzugsweise mit 0,2 ≤ KN,2 ≤ 0,4,
wobei die Nitrierkennzahl definiert ist als KN = p(NH3)/P(H2)3/2.The method according to the invention for nitriding a high pressure-loaded, alloyed steel component of a fuel injection system, for example the nozzle body 4, consists of the following method steps:
  1. 1) Activation of the component in inorganic acid.
  2. 2) pre-oxidation of the component in an oxygen-containing atmosphere between 380 ° C and 420 ° C.
  3. 3) nitriding of the component between 520 ° C and 570 ° C at a high first nitriding index K N, 1 in ε-nitride range, preferably with 1 ≤ K N, 1 ≤ 10.
  4. 4) nitriding the part between 520 ° C and 570 ° C at a low second nitriding potential K N, 2 in the γ'-nitride region, preferably with 0.2 ≤ K N, 2 ≤ 0.4,
wherein the nitriding index is defined as K N = p (NH 3 ) / P (H 2 ) 3/2 .

Dadurch stellt sich für das Bauteil ein Massenanteil des Stickstoffs in Abhängigkeit der Bauteiltiefe t ein, wie er in Fig.2 gezeigt ist.As a result, a mass fraction of the nitrogen as a function of the component depth t, as shown in FIG . 2, arises for the component.

Claims (5)

  1. Method for nitriding a component of a fuel injection system, said component being subject to high pressure and being composed of an alloyed steel,
    characterized by the following method steps:
    - activating the component in inorganic acid,
    - pre-oxidizing the component in an oxygen-containing atmosphere between 380°C and 420°C,
    - nitriding the component between 520°C and 570°C at a high first nitriding potential KN,1 in the ε nitride range,
    - nitriding the component between 520°C and 570°C at a low second nitriding potential KN,2 in the γ' nitride range,
    wherein the nitriding potential is defined as K N = p NH 3 p H 2 3 / 2
    Figure imgb0003
  2. Method according to Claim 1, characterized in that the first nitriding potential KN,1 is between 1 and 10.
  3. Method according to Claim 1 or 2, characterized in that the second nitriding potential KN,2 is between 0.2 and 0.4.
  4. Component nitrided by a method in Claims 1-3, characterized in that the percentage of nitrogen by mass at the surface of the component is between 11% and 25%.
  5. Fuel injector (1) for injecting fuel into a combustion chamber of an internal combustion engine, having a nozzle needle (3) which is guided for longitudinal movement in a nozzle body (4), characterized in that the nozzle body (4) is a component according to Claim 4.
EP15726870.7A 2014-07-11 2015-05-05 Method of nitriding a component of a fuel injection system Active EP3167094B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014213510.9A DE102014213510A1 (en) 2014-07-11 2014-07-11 Method for nitriding a component of a fuel injection system
PCT/EP2015/059781 WO2016005073A1 (en) 2014-07-11 2015-05-05 Method for nitriding a component of a fuel injection system

Publications (2)

Publication Number Publication Date
EP3167094A1 EP3167094A1 (en) 2017-05-17
EP3167094B1 true EP3167094B1 (en) 2019-07-10

Family

ID=53284201

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15726870.7A Active EP3167094B1 (en) 2014-07-11 2015-05-05 Method of nitriding a component of a fuel injection system

Country Status (7)

Country Link
US (1) US10125734B2 (en)
EP (1) EP3167094B1 (en)
JP (1) JP6456000B2 (en)
KR (1) KR102337455B1 (en)
CN (1) CN106661712B (en)
DE (1) DE102014213510A1 (en)
WO (1) WO2016005073A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109312444B (en) * 2016-09-30 2021-01-15 同和热处理技术株式会社 Continuous nitriding furnace and continuous nitriding method
JP6345320B1 (en) 2017-07-07 2018-06-20 パーカー熱処理工業株式会社 Surface hardening processing apparatus and surface hardening processing method
DE102017117483A1 (en) * 2017-08-02 2019-02-07 Schaeffler Technologies AG & Co. KG Method for producing a roller bearing component made of steel
CN109811297A (en) * 2017-11-21 2019-05-28 上海一普顿金属制品有限公司 A kind of nitriding process on hot forged mould surface
CN117157423A (en) 2020-10-15 2023-12-01 康明斯公司 Fuel system component
CN112442650B (en) * 2020-11-11 2023-04-28 中国航发中传机械有限公司 Accurate control method for surface hardness, roughness and white layer depth of engine nitriding gear
JP2022125513A (en) * 2021-02-17 2022-08-29 パーカー熱処理工業株式会社 Method for nitriding steel member
CN113106378B (en) * 2021-04-07 2023-03-24 潍坊丰东热处理有限公司 Heat treatment method of medium carbon alloy steel fitting
DE102022208459A1 (en) * 2022-08-15 2024-02-15 Robert Bosch Gesellschaft mit beschränkter Haftung Process for heat treating chrome steels

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264380A (en) 1979-11-16 1981-04-28 General Electric Company Nitride casehardening process and the nitrided product thereof
DE707661T1 (en) * 1994-04-22 1996-10-10 Innovatique Sa METHOD AND OVEN FOR NITRATING METALLIC MOLDED PARTS AT LOW PRESSURE
JP2916751B2 (en) * 1995-09-08 1999-07-05 鹿児島県 Method for nitriding surface of austenitic stainless steel
AT3588U1 (en) 1999-12-07 2000-05-25 Steyr Daimler Puch Ag METHOD FOR NITRATING OR NITROCARBURING WORKPIECES FROM ALLOY STEELS
DE10056842B4 (en) * 2000-11-16 2005-06-23 Robert Bosch Gmbh Process for the surface treatment of compression coil springs
JP4510309B2 (en) 2001-02-21 2010-07-21 ヤンマー株式会社 Fuel injection valve body and gas nitriding method thereof
DE10147205C1 (en) 2001-09-25 2003-05-08 Bosch Gmbh Robert Process for the heat treatment of workpieces made of temperature-resistant steels
EP1318529A3 (en) * 2001-12-10 2004-01-14 Vacuumschmelze GmbH & Co. KG Surface hardened soft magnetic actuator part and fabrication process
DE10256590A1 (en) 2002-12-04 2004-06-03 Daimlerchrysler Ag Injection nozzle comprises a nozzle body and a needle made from a high alloyed austenitic steel in the nitrided state for controlling the opening of the nozzle
DE102004039926B4 (en) 2004-08-18 2016-09-22 Robert Bosch Gmbh Process for producing a temperature and corrosion resistant fuel injector body
JP4686575B2 (en) * 2008-06-24 2011-05-25 新潟原動機株式会社 Fuel injection device for diesel engine, method for manufacturing the same, and valve device
US20100025500A1 (en) 2008-07-31 2010-02-04 Caterpillar Inc. Materials for fuel injector components
JP5883727B2 (en) * 2012-06-01 2016-03-15 株式会社日本テクノ Gas nitriding and gas soft nitriding methods

Also Published As

Publication number Publication date
US20170138326A1 (en) 2017-05-18
KR20170031182A (en) 2017-03-20
CN106661712A (en) 2017-05-10
JP2017528635A (en) 2017-09-28
KR102337455B1 (en) 2021-12-13
CN106661712B (en) 2019-05-28
WO2016005073A1 (en) 2016-01-14
US10125734B2 (en) 2018-11-13
EP3167094A1 (en) 2017-05-17
DE102014213510A1 (en) 2016-02-18
JP6456000B2 (en) 2019-01-23

Similar Documents

Publication Publication Date Title
EP3167094B1 (en) Method of nitriding a component of a fuel injection system
DE69604341T3 (en) Martensitic. STAINLESS STEEL WITH GOOD RESISTANCE TO HOLE FRICTION CORROSION AND HIGH HARDENING
DE102012212426B3 (en) Rolling element, in particular rolling bearing ring
EP3645756B1 (en) Martensitic hardening steel and its use, in particular for producing a screw
DE29713628U1 (en) Fuel injector
DE68914601T2 (en) Gears with great strength.
WO2010091938A1 (en) Method for producing a control chain
DE102014105005A1 (en) Carburized part, process for its production, and steel for carburised part
DE102012216117A1 (en) Method for producing a self-tapping screw
DE102004048172A1 (en) Chipless produced thin-walled stainless bearing component in particular rolling bearing component
DE10318135A1 (en) Fuel injector for an internal combustion engine comprises a nozzle body having injection holes for the fuel injection and a needle for pushing into the nozzle body for opening and closing the injection holes
EP3017074A1 (en) Wear-resistant, at least partially uncoated steel part
DE102004053935A1 (en) Process for the heat treatment of a component made of a thermosetting heat-resistant steel and a component made of a thermosetting, heat-resistant steel
EP2585244B1 (en) Method for manufacturing a metallic component for high-pressure applications
EP2245296A1 (en) Structural part, especially motor vehicle component, made of a dual-phase steel
DE102004039926A1 (en) Process for producing a temperature and corrosion resistant fuel injector body
DE102015204656A1 (en) Layer formation for rolling bearing components
DE102012217028A1 (en) chain element
DE102018222713A1 (en) Valve needle assembly, injector and fuel injector
DE102011077535A1 (en) Pump, in particular high-pressure fuel pump
DE102006024614A1 (en) Method for treating an outer bearing ring for critical and highly stressed air- and space applications, comprises producing an iron-phosphate layer in the region of a running path in the bearing ring
EP3963121B1 (en) Method for coating a mechanically highly loaded surface of a component, and coated component itself
DE112019002403T5 (en) Martensitic stainless steel
DE102017201300A1 (en) Solenoid valve, internal combustion engine with solenoid valve and method for producing a solenoid valve
DE112017003393T5 (en) MARTENSITIC STAINLESS STEEL FOR FUEL INJECTION ELEMENT AND FUEL INJECTION ELEMENT THAT USES IT

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 8/02 20060101AFI20190207BHEP

Ipc: F02M 61/10 20060101ALI20190207BHEP

Ipc: C23C 8/34 20060101ALI20190207BHEP

Ipc: F02M 61/16 20060101ALI20190207BHEP

Ipc: C23C 8/26 20060101ALI20190207BHEP

INTG Intention to grant announced

Effective date: 20190222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1153653

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015009609

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190710

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191010

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191111

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191011

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015009609

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200505

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200505

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1153653

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230531

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230726

Year of fee payment: 9