WO2001042016A1 - Ink-jet printer - Google Patents

Ink-jet printer Download PDF

Info

Publication number
WO2001042016A1
WO2001042016A1 PCT/JP1999/006822 JP9906822W WO0142016A1 WO 2001042016 A1 WO2001042016 A1 WO 2001042016A1 JP 9906822 W JP9906822 W JP 9906822W WO 0142016 A1 WO0142016 A1 WO 0142016A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning direction
ink
nozzle
dot
ink jet
Prior art date
Application number
PCT/JP1999/006822
Other languages
French (fr)
Japanese (ja)
Inventor
Yukio Morikawa
Jun Moroo
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP1999/006822 priority Critical patent/WO2001042016A1/en
Priority to JP2001543333A priority patent/JP4345046B2/en
Publication of WO2001042016A1 publication Critical patent/WO2001042016A1/en
Priority to US10/159,286 priority patent/US6595614B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/485Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by the process of building-up characters or image elements applicable to two or more kinds of printing or marking processes
    • B41J2/505Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by the process of building-up characters or image elements applicable to two or more kinds of printing or marking processes from an assembly of identical printing elements
    • B41J2/5056Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by the process of building-up characters or image elements applicable to two or more kinds of printing or marking processes from an assembly of identical printing elements using dot arrays providing selective dot disposition modes, e.g. different dot densities for high speed and high-quality printing, array line selections for multi-pass printing, or dot shifts for character inclination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/36Blanking or long feeds; Feeding to a particular line, e.g. by rotation of platen or feed roller
    • B41J11/42Controlling printing material conveyance for accurate alignment of the printing material with the printhead; Print registering
    • B41J11/425Controlling printing material conveyance for accurate alignment of the printing material with the printhead; Print registering for a variable printing material feed amount
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/145Arrangement thereof
    • B41J2/15Arrangement thereof for serial printing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/10Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by matrix printers
    • G06K15/102Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers by matrix printers using ink jet print heads
    • G06K15/105Multipass or interlaced printing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K2215/00Arrangements for producing a permanent visual presentation of the output data
    • G06K2215/111Arrangements for producing a permanent visual presentation of the output data with overlapping swaths

Definitions

  • the present invention relates to an ink jet printer, and more particularly to a head having a plurality of ink jet nozzles (hereinafter, simply referred to as “nozzles”) arranged at substantially equal intervals in a sub-scanning direction.
  • nozzles ink jet nozzles
  • the present invention relates to an ink jet printer that performs small line breaks and large line breaks.
  • the ink jet printer ejects minute ink droplets from a nozzle and attaches them to a medium such as paper, and forms an image with a dot of the attached ink droplets.
  • the ink used is one color, but in the case of a color printer, four types of ink that jet four or more colors such as cyan, magenta, yellow and black are used. The above nozzles are used.
  • FIG. 1 is a sectional view of an ink jet printer.
  • the feed roller 11 rotates in response to the start of printing, and the medium (sheet paper) stored in the paper cassette 10 is fed along the guide 12.
  • the fed sheet is passed under the roller 13 and fed under the head 20, and is further sandwiched between the paper feed rollers 14 and 15.
  • the head 20 is provided with a nozzle 21.
  • Head 20 can be moved in the direction perpendicular to the paper surface movement direction along guide 22.
  • the moving direction is generally called the main scanning direction, and the direction perpendicular thereto, that is, the moving direction of the sheet paper is generally called the sub-scanning direction.
  • a dot for one line corresponding to one nozzle can be printed.
  • the sheet of paper is fed for one line, the dot for one line is printed again, and the dot for the next line is printed. You. By repeating the above operation, printing is performed on the entire sheet.
  • the printed sheet is discharged to tray 16.
  • the portion indicated by reference numeral 3 is a member for preventing the tip of the nozzle 21 from being dried and clogged, and covers the tip of the nozzle 21 when not printing.
  • printing speed is improved by arranging a plurality of nozzles in the sub-scanning direction and simultaneously printing a plurality of dot rows in one main scan. ing.
  • FIG. 2 is a diagram showing an example of an arrangement of nozzles in a head of a color ink jet printer.
  • (1) in Fig. 2 shows an example in which the nozzles of each color are arranged in a single row in the sub-scanning direction.
  • the ink head 31M and the yellow ink head 31 1 are displaced in the main scanning direction.
  • a plurality (m) of nozzles 32-1 to 32-m are arranged at intervals of an integral multiple of the dot pitch.
  • ink is ejected from the head for each color with a shift in the main scanning direction and a time difference determined by the main scanning speed.
  • Each nozzle must be provided with a mechanism for injecting ink, such as a piezo element, which requires a certain amount of space. Therefore, the nozzles cannot be arranged adjacent to each other in correspondence with the dots, and the nozzles are arranged at predetermined intervals in the sub-scanning direction. The printing operation when the nozzles are arranged in this manner will be described later.
  • (2) in FIG. 2 shows an arrangement in which a plurality of nozzle arrays arranged at predetermined intervals in the sub-scanning direction are arranged so that the arrangement interval of the nozzles in the sub-scanning direction is substantially reduced.
  • four color heads of black, cyan, magenta and yellow are provided, and each head has two rows of nozzles 3 4 — 1 and 3 4 — 2 are provided.
  • the two nozzle rows are arranged at a nozzle interval of 1 Z 2 in the sub-scanning direction, and when viewed from the main scanning direction, the two nozzle rows are arranged at equal intervals in the sub-scanning direction. I have.
  • This interval is 1/2 of the nozzle interval of one nozzle row, and this substantial interval is hereinafter referred to as an array interval in the sub-scanning direction.
  • ink is ejected from nozzles in each row with a shift in the main scanning direction and a time difference determined by the main scanning speed.
  • the same printing can be performed as when the nozzles are arranged at a pitch of 1/2 of the nozzle interval of each row.
  • the actual arrangement interval can be narrowed accordingly.For example, if six nozzle rows arranged at a 6-dot pitch are provided, one Adjacent dots can be printed simultaneously in main scanning.
  • the present invention is directed to a head in which the nozzles are arranged at intervals of one or more dots in the sub-scanning direction.
  • the head of the color 'ink jet' printer is shown in FIG. 2, the present invention is not limited to the mono ink jet printer and the color ink jet printer. ⁇ ⁇ Applicable to both printers. In order to simplify the explanation below, An ink jet printer will be described as an example, but the present invention is not limited to this.
  • FIG. 3 shows a head with m nozzles 36-1 to 36-m arranged at a predetermined interval (four dot pitch) in the sub-scanning direction.
  • FIG. 4 is a diagram showing a relative movement between a head and a print medium (paper).
  • the head performs main scanning at the position indicated by 35a, and prints m rows of dots with m nozzles.
  • m horizontal lines of one dot width with a 4-dot pitch are printed, and three dots of space exist between the horizontal lines.
  • the head moves relative to the medium in the sub-scanning direction, and moves to the position indicated by 35b. This movement is called a small line break.
  • the main scanning is performed at that position, and the m-dot line is printed.
  • the m-dot row printed at this time is adjacent to the lower side of the m-dot row that was printed earlier, and is m horizontal lines with a width of 2 dots. At this time, there are two dots of space between the horizontal lines.
  • the main scan is performed with a small line feed at the position indicated by the heading 35, and the m-dot line is printed. This results in m horizontal lines with a width of 3 dots, with a space of 1 dot between the horizontal lines.
  • the main scanning is performed with a small line feed at the position indicated by 35d in the head, and the m-dot line is printed.
  • the first four dots are the ink jetted from the first nozzle, and the second four dots are the second nozzle.
  • Printed with ink jetted from The last four dot rows of the 4 xm dot row are printed with the ink fired from the mth nozzle, and so on for every 4 Xm dot row.
  • the nozzle is a fine hole, and multiple nozzles are formed at the same time by press working. Press molds are made precisely and are created by precision press working, but not all nozzles can be created at the same time. Is inevitable.
  • the deviation of the nozzle position is the deviation of the ink adhesion position on the medium.
  • the deviation of the flying angle of the ink causes the displacement of the adhesion position by an amount obtained by multiplying the distance from the tip of the nozzle to the medium by the angular deviation. Therefore, the sum of the displacements of the attachment positions due to these two factors is the actual displacement, and in fact, the displacement of the attachment positions due to the displacement of the flight angle is large.
  • Fig. 4 shows the position of the three nozzles 37-1 to 37-3 applied to the medium where the ejected ink is applied, as shown in the figure, 38-1 to 38-3 It shows the case where it is shifted.
  • the flight angle is shown to be shifted only in the sub-scanning direction, but it is actually shifted in all directions.
  • the ink jetted from nozzles 3 7 — 1 and 3 7 — 3 shifts upward, and the ink jetted from nozzle 37-2 shifts downward.
  • the four dots are shifted by the same amount in the same direction.
  • Ink is added between the 4-dot line printed with the ink from 3 7 — 1 and the 4-dot line printed with the nozzle 3 7 — 2 A white line (when the medium is white) that does not wear occurs, and a four-dot line printed with an ink from nozzles 3 7 — 2 and a nozzle with a nozzle 3 7 — 3 Between the four dot rows to be printed, the two dot rows overlap, creating a dark horizontal line. In this way, the light and shaded horizontal lines at 4-dot row pitch Will happen. If the flight angle is shifted in the main scanning direction,
  • the vertical line has a four-dot pitch.
  • FIG. 5 is a diagram for explaining a method of creating an ink injection nozzle.
  • the nozzle is formed by pressing a thin nozzle plate 41 with a mold 42 in which a plurality of pins having a hole shape of the nozzle are arranged at predetermined intervals. It is formed by doing. Since it is difficult to make a mold having a large number of pins at the same interval as the actual nozzle pitch (nozzle pitch), for example, at the interval 2 d twice the actual nozzle pitch d, the number of nozzles (m ) To form a mold with half the number of pins (mZ 2). By pressing with such a mold, two mZ nozzle holes are formed at an interval of 2 d as shown in (3) of FIG.
  • a creation method shown in Fig. 6 can be considered.
  • a mold in which m / 2 pins are arranged at an interval d is made, and the nozzle plate 41 is pressed, so that m / Two nozzle holes are formed.
  • the relative position between the mold and the nozzle plate 41 is shifted by dXm / 2, and pressed as shown in (5) of FIG.
  • m nozzles arranged at an interval d are formed as shown in (6) of FIG.
  • the nozzle hole of the nozzle plate is generally formed by the method described with reference to FIG. 5.
  • a nozzle hole is formed by the method described with reference to Fig. 5
  • two adjacent nozzles are formed by pressing with the same pin, so that the flight angles are almost the same. Therefore, the light and shade horizontal lines generated by the deviation of the flight angle of each nozzle described in Fig. 4 are generated at twice the 8-dot pitch and become more conspicuous.
  • the distance between the pins is more than three times, the light and shaded horizontal lines will occur at more than three times the dot pitch, and will be even more noticeable. Also, in the case where the flying angle is shifted in the main scanning direction and the vertical line has jitter, the interval between the jitters becomes longer and thus becomes more conspicuous.
  • the ⁇ interlace method '' is an integer in which N and k are in a coarse relationship with each other when printing is performed using a head in which N nozzles are arranged at intervals of k times the dot pitch.
  • N nozzles are arranged at intervals of k times the dot pitch.
  • a predetermined amount of line feed is performed each time one main scan is completed, so that the entire surface can be printed with the same line feed amount.
  • the head is generally used. It is necessary to limit the number of driving nozzles without using all the nozzles arranged in the same way, or to make the driving rate of the nozzles different for each nozzle.
  • the state of the nozzle changes due to the difference in the driving rate of the nozzle for each nozzle, and the ink viscosity changes due to the ink coming into contact with the outside air at the nozzle. Fluctuations and variations in the driving capability due to the close nozzle driving rate, etc., and the dispersion of the flying characteristics of the ink between the nozzles increases, and the print is substantially limited due to the limitation of the number of driving nozzles. The problem of slowing down occurs.
  • An object of the present invention is to solve such a problem, and an object of the present invention is to realize an ink jet printer capable of obtaining high image quality even when printing is performed by a method in which a small line feed and a large line feed are combined.
  • the ink jet printer of the present invention sets the amount of small line feed to an amount obtained by adding one dot pitch to an integral multiple of the nozzle arrangement interval, and uses nozzles having different flight angles. By printing adjacent dot rows, light and dark horizontal lines and vertical lines are generated at a fine pitch to make them inconspicuous.
  • the ink jet printer according to the present invention has B (B is an integer) ink jet nozzles that jet the same ink at substantially constant nozzle intervals in the sub-scanning direction.
  • Main scanning method that is arranged and is perpendicular to the sub scanning direction
  • An ink jet printer having a head that can move in the horizontal direction and a sub-scanning mechanism that moves the recording medium relative to the ink head in the sub-scanning direction.
  • the interval is A times the dot pitch (d) (where A is an integer).
  • the printing operation consists of one print scan (main scan) in the main scanning direction and n times the nozzle interval.
  • N is an integer
  • one dot pitch ((AX n + 1) xd)
  • a small line feed print that repeats the operation of performing one print scan in the scanning direction C x A—one time (C is an integer), and then (BXA— (AX n + 1) (C x A-1)) It is an operation that repeats a large line feed that performs a large line feed of xd.
  • FIG. 7 is a diagram illustrating the principle of the present invention. As shown in the figure, m nozzles 51-1 to 51-m are arranged at a 4-dot pitch. It is assumed that each nozzle has a different flight angle. First, one print scan (main scan) in the main scan direction is performed at the position of the nozzle 511 to 511 m on the left side. At this time, the dot row at the leading end of the image is set to the position printed by the nozzles 51 to 14. Next, after a small line feed at a 5-dot pitch, one print scan is performed. The positions of the nozzles 5 1 — 1 to 51 — m at this time are shown in the second position from the left. This set of small line feed and one print scan is repeated three times.
  • the row of the four dots 5 5 — 4 to 5 5 — 1 on the right is printed by the pair of nozzles 5 1 — 4 to 5 1 — 1 indicated by reference number 52, and similarly, the reference number
  • the set of nozzles indicated by 5 3 prints the four right-hand dots 56 1 m to 56 — m— 3.
  • each set of four adjacent dot rows is printed by a different nozzle, so even if there is a difference in the flight angle of the ink from the nozzle, one dot row is set. It becomes inconspicuous because a shift occurs every time.
  • a set of small line feeds and one print scan Repeating small line feeds three times, dot lines up to 511-500, etc., 56-m-3 are printed densely.
  • the dot rows corresponding to the three nozzles on the left side are the dot rows 57 — m, 57 — m—1, and 57 — m—2.
  • the power printed by the action, 5 7 — 1 is blank.
  • Greatly break nozzle 5 1 — 1 to print this blank dot line. Therefore, the amount of movement of a large carriage return is (4 X m-5 X 3) dot pitch.
  • printing is performed over the entire surface, and the above operation is expressed by a generalized expression.
  • the amount of movement of the small line feed is (A + 1) d, and this is performed (A-1) times.
  • the total movement amount due to the small line feed is (A + 1) (A-l) d.
  • the first nozzle should be in the next position after the last nozzle from the first state. In the initial state, the amount of movement for the first nozzle to move to the position next to the last nozzle is B x A xd.
  • the total movement amount due to a small line feed is (A + 1) (A-1) d, so if this is subtracted from BXA, the movement amount of a large line feed is (BXA-(A + 1) (A-1)) d.
  • the small line feed is the amount to move to the position one dot ahead of the next nozzle.
  • adjacent nozzles have the same flight angle. If n adjacent nozzles have the same flight angle, it is necessary to move to a position one dot ahead of the nth nozzle in a small line feed. Therefore, the movement amount of the small line feed is (AX n + 1) d, and the movement amount of the large line feed is (BXA-(AX n + 1) (A-1)) d.
  • the line is moved to the position one dot after the nozzle that is an integral multiple of n by a small line feed. It may be moved.
  • each dot row is printed in one print scan (main scan) by one nozzle.
  • a single-pass recording mode the operation of printing each dot row by a plurality of main scans by a plurality of nozzles.
  • a multi-pass recording mode the operation of printing each dot row by a plurality of main scans by a plurality of nozzles. Note that this is the case of a single color head.
  • printing one dot line for each color in one main scan is called a single pass printing mode.
  • the case where one dot line is printed by multiple main scans is called multi-pass printing mode.
  • FIG. 8 is a diagram illustrating small and large line breaks when the principle of the present invention is generalized. As shown in the figure, it is assumed that B nozzles are arranged at an A dot pitch, and that n adjacent nozzles have the same flight angle. Further, it is assumed that the multi-pass printing mode prints one dot row by C main scans.
  • the movement amount of the small line feed is (AX n + 1) d, and this is performed (CXA-1) times, so the total movement amount of the small line feed is (A n + 1) X (CXA-1) d . Accordingly, the movement amount of the large line feed is (B X A-(A x n + 1) (C X A-l)) d.
  • the printer may be one that operates in a single-pass recording mode, one that operates in a multi-pass recording mode, or one that can be arbitrarily selected.
  • FIG. 1 is a cross-sectional view of the ink jet printer.
  • (1) and (2) of FIG. 2 are diagrams showing an example of the arrangement of a plurality of ink jet nozzles arranged at regular intervals in the sub-scanning direction.
  • FIG. 3 illustrates the relative movement of the head and the medium in the sub-scanning direction when printing with a head having a plurality of ink jet nozzles as shown in (1) and (2) of FIG. FIG.
  • FIG. 4 is a diagram for explaining the influence of the shift of the ink spot position for each nozzle.
  • (1) to (6) of FIG. 5 are diagrams for explaining a method of creating a plurality of ink injection nozzles.
  • (1) to (8) of FIG. 6 are views for explaining another method of creating a plurality of ink jet nozzles.
  • FIG. 7 is a diagram illustrating the principle of the present invention.
  • FIG. 8 is a diagram illustrating a more generalized principle of the present invention.
  • FIG. 9 is a diagram showing the nozzle arrangement and the relative movement of the head and the medium in the sub-scanning direction in the first embodiment of the present invention.
  • FIG. 10 is a diagram showing nozzles for printing each dot when printing a strip-shaped vertical line in the first embodiment.
  • (1) to (6) of FIG. 11 are diagrams showing the order in which dots are printed when a vertical line is printed in the first embodiment.
  • FIG. 12 is a view showing the nozzle arrangement and the relative movement of the head and the medium in the sub-scanning direction in the second embodiment of the present invention.
  • FIG. 9 is a diagram showing the order in which dots are printed when printing.
  • (1) to (6) of FIG. 14 are diagrams showing the order in which dots are printed when printing a strip-shaped vertical line in the second embodiment.
  • (1) to (3) of FIG. 15 are diagrams showing modified examples of the order in which dots are printed when a strip-shaped vertical line is printed in the second embodiment.
  • FIG. 16 are views showing the nozzle arrangement in the third embodiment of the present invention.
  • FIG. 17 is a diagram showing the relative movement between the head and the medium in the sub-scanning direction in the third embodiment.
  • FIG. 18 are diagrams showing the order in which dots are printed when printing a strip-shaped vertical line in the third embodiment.
  • FIGS. 19 (1) to (6) are diagrams showing the order in which dots are printed when a strip-shaped vertical line is printed in the modification of the third embodiment.
  • the ink jet printer in the embodiment is a mono-crop printer.
  • the present invention can be applied to a color printer, and each color printer can be used.
  • the operation described below may be performed for each head.
  • the ink jet printer of the embodiment has a cross section as shown in FIG. 1, and the movement of the medium in the sub-scanning direction with respect to the head is different from the conventional example. Therefore, only different portions will be described, and description of other portions will be omitted.
  • FIG. 9 is a diagram showing the arrangement of the nozzles in the head of the ink jet printer according to the first embodiment of the present invention and the relative movement of the medium with respect to the head in the sub-scanning direction.
  • 16 nozzles 6 1 — 1 to 6 1 — 1 6 Strongly arranged in a row at 6-dot pitch intervals. These nozzles are created by the method shown in Fig. 5, and two adjacent nozzles have the same ink flight angle.
  • This printer operates in the single-pass print mode, and prints one dot line in one main scan. Therefore, in the formula for calculating the movement amount of the small and large line feeds, A is 6, B is 16, C is 1, and n is 2.
  • the amount of movement for small line breaks is (2 X 6 + 1) d, or 13 dot pitch
  • the amount of movement for large line breaks is (16 x 6-13 X 5) d, or 31 dot The pitch.
  • Fig. 9 when printing a vertical line, the printing starts from the position of the nozzle 61-1-11 where the vertical line ends.
  • Reference numeral 62 indicates a portion that does not print in the operation until the first large line feed is performed, and 63 indicates operation until the first large line break is performed.
  • the part printed is the part printed by the operation before the first large line feed and the operation after the first large line break until the second large line break. Show.
  • FIG. 10 is a diagram showing nozzles that print each dot when printing a strip-shaped vertical line in the first embodiment
  • FIG. 11 shows the order in which each dot is printed.
  • the adjacent dot rows are printed by nozzles separated by two or more, so the flight angles are always different. Therefore, even if the flight angle of the nozzle is different, the light and dark horizontal lines and vertical lines are generated at a short pitch, and are inconspicuous.
  • FIG. 12 is a diagram showing the arrangement of the nozzles in the head of the ink jet printer according to the second embodiment of the present invention and the relative movement of the medium with respect to the head in the sub-scanning direction.
  • 32 nozzles 6 1 — 1 to 6 1 — 3 2 are arranged in a row at 6-dot pitch intervals. These nozzles are created in the manner shown in Figure 5 so that two adjacent nozzles fly the same ink. Has a sho angle.
  • This printer operates in the single-pass printing mode as described in the first embodiment and also in the multi-pass printing mode in which one dot row is printed by two main scans. Here, the multi-pass recording mode will be described.
  • FIGS. 13 and 14 show the order in which the dots are printed and the nozzles used to print the dots when printing a strip-shaped vertical line in the second embodiment. It is. As shown, adjacent dot rows are printed by nozzles that are two or more apart. In addition, adjacent dots in one dot row are alternately printed by two nozzles, so that the difference due to the different flying angles of the nozzles becomes even less noticeable.
  • FIG. 15 is a diagram showing the order in which each dot is printed when a strip-shaped vertical line is printed in a modification of the second embodiment.
  • the relative movement of the medium with respect to the head in the sub-scanning direction is the same as in the second embodiment, and the same dot row is printed by the same two nozzles.
  • Figure 15 is a diagram showing the order in which each dot is printed when a strip-shaped vertical line is printed in a modification of the second embodiment.
  • the relative movement of the medium with respect to the head in the sub-scanning direction is the same as in the second embodiment, and the same dot row is printed by the same two nozzles.
  • Figure 15 is a diagram showing the order in which each dot is printed when a strip-shaped vertical line is printed in a modification of the second embodiment.
  • the relative movement of the medium with respect to the head in the sub-scanning direction is the same as in the second embodiment, and the same dot row is printed by the same two nozzles.
  • Figure 15 is
  • the nozzles 6 1-25 and 6 1-26 operate alternately during main scanning to print dots in different columns. Similarly, if adjacent nozzles are not operated at the same time, a 6-dot row is printed in a grid as shown in (2) of Fig. 15. Next, nozzle 6 1 — 13 prints the same dot row as nozzle 6 1 — 25, and nozzle 6 1-14 prints the same dot row as nozzle 6 1 — 26. Print the remaining blank dots at this time. Therefore, adjacent nozzles do not operate at the same time. When the above operation is repeated six times, each dot is shown in the form shown in (3) in Fig. 15 Will be printed. It should be noted that although (2) in FIG. 15 shows only a two-dot sequence, this is repeated thereafter.
  • FIG. 16 is a diagram showing the arrangement of nozzles in the head of the ink jet printer according to the third embodiment of the present invention.
  • a first set of 16 pieces 7 1 — 1, 7 1 — 4,..., 7 1 — 4 6 arranged in one row at a 6 dot pitch (6 d) 1 6 sets of 7 7 — 2, 7 1 1 5,..., 7 1 — 4 2nd set of 6 d arranged in a row and 16 nozzles 7 1 — 3, 7 1 —
  • a set of 6, ..., 7 1-4 8 arranged in a row in 6d is provided.
  • the second set is shifted from the first set by a predetermined amount in the main scanning direction and is shifted by 2 d in the sub-scanning direction.
  • the third set is shifted by a predetermined amount in the main scanning direction and 2d in the sub-scanning direction with respect to the second set.
  • 48 nozzles 7 2 — 1 to 7 2 — A print equivalent to a nozzle in which 48 are arranged at 2d intervals can be made.
  • six adjacent nozzles, for example, the nozzles 72-1 to 72-6 have the same ink flight angle.
  • FIG. 17 is a diagram illustrating the relative movement of the medium in the sub-scanning direction with respect to the head in the multi-pass printing mode of the third embodiment. As shown in the figure, the movement amount of the small line feed is 13d.
  • FIG. 18 is a diagram showing the order in which the dots are printed when printing a strip-shaped vertical line in the multi-pass printing mode of the third embodiment. As shown, the adjacent nozzles are controlled so as not to be driven simultaneously. In the third embodiment, all dots within a predetermined range are printed in six main scans.
  • FIG. 19 is a diagram showing the order in which each dot is printed when a strip-shaped vertical line is printed in a modification of the third embodiment.
  • Multipath In the print mode, the printing is performed by dividing the predetermined range of each dot row in the main scanning direction into c main scans. In this modification, the dot is printed in each of C times. Position is determined randomly. First, the width in the main scanning direction to be printed is divided into a plurality of appropriate ranges.
  • the second random number is generated except for the dots printed in the first main scan from the dots in this range, and a probability of 1 / (C-1 1) is generated within that range.
  • the dot to be printed in the second main scan is determined.
  • the same determination is made so that all the dots within this range are printed in C main scans.
  • a light and shaded line or a vertical line due to a variation in the ink jetting direction from the nozzle. Storms occur in short periods that are difficult to see and are randomly distributed, making them even less noticeable

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Ink Jet (AREA)

Abstract

An ink-jet printer for printing an image of high quality even in a printing mode where major line feed and minor line feed are combined, comprising a head which has B ink-jet nozzles (B is an integer) for jetting the same ink arranged in the vertical scanning direction at substantially regular intervals and is movable in the horizontal scanning direction perpendicular to the vertical scanning direction, and a vertical scanning mechanism for moving a recording medium in the vertical scanning direction relatively to the ink head, wherein the nozzle intervals are A times the dot pitch (d) (A is an integer), the printing is performed by repeating a step which includes one print scanning (horizontal scanning) in the horizontal scanning direction, a minor line feed printing and a major line feed for moving the recording medium by a distance (B A-(A n+1)(C A-1)) d, the minor line feed printing is repeating a sub-step (C A-1) times (C is an integer), and the sub-step comprises a minor line feed for moving the recording medium in the vertical scanning direction relatively to the ink head by a distance ((A n+1) d) which is the sum of n times (n is an integer) the nozzle interval and one dot pitch, and one print scanning in the horizontal scanning direction.

Description

明 細 書 イ ンク ジエ ツ トプリ ンタ 技術分野  Description Inkjet printer Technical field
本発明は、 イ ンク ジェ ッ トプリ ンタに関し、 特に副走査方向に複 数のイ ンク噴射ノ ズル (以下、 単にノ ズルと称する。 ) を実質的に 等間隔に配置したへッ ドを有し、 小改行と大改行を行う イ ンク ジェ ッ トプリ ンタに関する。 背景技術  The present invention relates to an ink jet printer, and more particularly to a head having a plurality of ink jet nozzles (hereinafter, simply referred to as “nozzles”) arranged at substantially equal intervals in a sub-scanning direction. The present invention relates to an ink jet printer that performs small line breaks and large line breaks. Background art
イ ンク ジヱ ッ トプリ ンタは、 ノ ズルから微少なイ ンク滴を噴射し て紙などの媒体に付着させ、 付着したイ ンク滴の ドッ 卜で画像を形 成する ものである。 モノ ク ロプリ ンタの場合には、 使用されるイ ン クは一色であるが、 カラ一プリ ンタの場合には、 シアン、 マゼンタ 、 イエロ及び黒等の 4色以上のィ ンクを噴射する 4種類以上のノ ズ ルが使用される。  The ink jet printer ejects minute ink droplets from a nozzle and attaches them to a medium such as paper, and forms an image with a dot of the attached ink droplets. In the case of a monochrome printer, the ink used is one color, but in the case of a color printer, four types of ink that jet four or more colors such as cyan, magenta, yellow and black are used. The above nozzles are used.
図 1 は、 イ ンク ジェ ッ トプリ ンタの断面図である。 プリ ン ト開始 に応じて送り 出 しローラ 1 1 が回転し、 用紙カセ ッ ト 1 0 に収容さ れた媒体 (シー ト紙) がガイ ド 1 2 を沿って送り 出される。 送り出 されたシー ト紙は、 ローラ 1 3 の下を通ってへッ ド 2 0 の下に送ら れ、 更に紙送り ローラ 1 4 と 1 5 の間に挟まれる。 紙送り ローラ 1 4 と 1 5 を回転駆動する こ とにより、 シー ト紙を所望量だけ搬送す るこ とができる。 へッ ド 2 0 にはノ ズル 2 1 が設けられており、 図 示していないァクチユエ一夕を駆動することにより、 ノ ズル 2 1 か らイ ンクが噴射される。 へッ ド 2 0 はガイ ド 2 2 に沿って紙面移動 方向に垂直な方向に移動可能であり、 へッ ド 2 0 の移動を主走査、 その移動方向を主走査方向、 それに垂直な方向、 すなわちこ こでは シ一 ト紙の移動方向を副走査方向と呼ぶのが一般的である。 1 回の 主走査の間に、 プリ ン トする ドッ ト位置でィ ンクを噴射する こ とに より、 1 個のノ ズルに対応する 1 行分の ドッ 卜がプリ ン トできる。 1 回の主走査によるプリ ン トの後、 シー ト紙が 1 行分送られ、 再び 上記の 1 行分の ドッ 卜がプリ ン トが行われ、 次の行の ドッ トがプリ ン トされる。 以上の動作を繰り返すこ とにより シー ト紙全面にプリ ン トが行われる。 プリ ン トの終了したシー ト紙は、 ト レイ 1 6 に排 出される。 なお、 参照番号 3 で示す部分は、 ノ ズル 2 1 の先端が乾 燥して詰まるのを防止するための部材で、 非プリ ン ト時にはノ ズル 2 1 の先端をカバ一する。 FIG. 1 is a sectional view of an ink jet printer. The feed roller 11 rotates in response to the start of printing, and the medium (sheet paper) stored in the paper cassette 10 is fed along the guide 12. The fed sheet is passed under the roller 13 and fed under the head 20, and is further sandwiched between the paper feed rollers 14 and 15. By rotating the paper feed rollers 14 and 15, a desired amount of sheet paper can be transported. The head 20 is provided with a nozzle 21. By driving an actuator (not shown), ink is ejected from the nozzle 21. Head 20 can be moved in the direction perpendicular to the paper surface movement direction along guide 22. The moving direction is generally called the main scanning direction, and the direction perpendicular thereto, that is, the moving direction of the sheet paper is generally called the sub-scanning direction. By jetting ink at the dot position to be printed during one main scan, a dot for one line corresponding to one nozzle can be printed. After printing by one main scan, the sheet of paper is fed for one line, the dot for one line is printed again, and the dot for the next line is printed. You. By repeating the above operation, printing is performed on the entire sheet. The printed sheet is discharged to tray 16. The portion indicated by reference numeral 3 is a member for preventing the tip of the nozzle 21 from being dried and clogged, and covers the tip of the nozzle 21 when not printing.
ノ ズル力く 1 個で、 1 回の主走査の間に ドッ ト 1 行分のプリ ン トを 行うのでは、 1 枚のシー ト紙にプリ ン トを行うのに、 主走査を非常 に多く の回数行う必要があり、 プリ ン ト時間が長いという問題、 す なわちプリ ン ト速度が遅いという問題を生じる。 そこで、 副走査方 向に複数のノ ズルを配置して、 1 回の主走査で複数の ドッ ト行を同 時にプリ ン トするこ とにより、 プリ ン ト速度を向上させる こ とが行 われている。  If a single nozzle prints one line of dots during one main scan, printing on one sheet of paper is very difficult. It needs to be performed many times, which causes a problem that the printing time is long, that is, a problem that the printing speed is slow. In view of this, printing speed is improved by arranging a plurality of nozzles in the sub-scanning direction and simultaneously printing a plurality of dot rows in one main scan. ing.
図 2 は、 カラー · イ ンク ジヱ ッ ト · プリ ンタのへッ ドにおけるノ ズルの配列例を示す図である。 図 2 の ( 1 ) は、 各色のノ ズルを副 走査方向に 1 列に配列した例を示し、 黒イ ンク用へッ ド 3 1 K、 シ アンイ ンク用へッ ド 3 1 C . マゼン夕イ ンク用へッ ド 3 1 M及びィ エローイ ンク用へッ ド 3 1 Υが主走査方向にずれて配置されている 。 各へッ ドでは、 複数 ( m個) のノ ズル 3 2 — 1 〜 3 2 — m力く、 ド ッ ト ピッチの整数倍の間隔で配列されている。 同 じ ドッ トに各色の イ ンクを噴射するには、 主走査方向のずれと主走査速度で決定され る時間差分だけずれて、 各色用へッ ドからイ ンクが噴射される。 各ノ ズルにはピエゾ素子など構成されるイ ンクを噴射するための 機構を設ける必要があり、 ある程度の空間を必要とする。 そのため 、 ノ ズルを ドッ トに対応させて隣接して配列するこ とはできず、 ノ ズルを副走査方向に所定の間隔で配列する。 ノ ズルをこのよ う に配 列した場合のプリ ン ト動作については、 後述する。 FIG. 2 is a diagram showing an example of an arrangement of nozzles in a head of a color ink jet printer. (1) in Fig. 2 shows an example in which the nozzles of each color are arranged in a single row in the sub-scanning direction. The head for black ink 31K and the head for cyan ink 31C. The ink head 31M and the yellow ink head 31 1 are displaced in the main scanning direction. In each head, a plurality (m) of nozzles 32-1 to 32-m are arranged at intervals of an integral multiple of the dot pitch. To eject ink of each color on the same dot, ink is ejected from the head for each color with a shift in the main scanning direction and a time difference determined by the main scanning speed. Each nozzle must be provided with a mechanism for injecting ink, such as a piezo element, which requires a certain amount of space. Therefore, the nozzles cannot be arranged adjacent to each other in correspondence with the dots, and the nozzles are arranged at predetermined intervals in the sub-scanning direction. The printing operation when the nozzles are arranged in this manner will be described later.
図 2 の ( 2 ) は、 副走査方向に所定の間隔で配列されたノ ズル列 を複数配列する こ とにより、 副走査方向のノ ズルの配列間隔を実質 的に狭く した配列を示す。 図 2 の ( 1 ) と同様に、 黒、 シアン、 マ ゼンタ及びイェローの 4色のへッ ドが設けられており、 各へッ ドに は 2列のノ ズル列 3 4 — 1 と 3 4 — 2 が設けられている。 2列のノ ズル列は副走査方向にノ ズル間隔の 1 Z 2 ずら して配列されており 、 主走査方向から見る と 2列のノ ズル列は副走査方向に等間隔で配 列されている。 この間隔は、 1 列のノ ズル列のノ ズル間隔の 1 / 2 であり、 以下この実質的な間隔を副走査方向の配列間隔と呼ぶ。 同 じ ドッ ト列にイ ンクを噴射するには、 主走査方向のずれと主走査速 度で決定される時間差分だけずれて、 各列のノ ズルからィ ンクが噴 射される。 これにより、 各列のノ ズル間隔の 1 / 2 のピッチでノ ズ ルを配列した時と同じプリ ン トが行える。 ノ ズル列の列数を増加さ せればその分だけ実質的な配列間隔を狭く するこ とができ、 例えば 、 6 ドッ ト ピッチで配列されたノ ズル列を 6列設ければ、 1 回の主 走査で隣接した ドッ トを同時にプリ ン トできる。 しかし、 このよう なノ ズルが副走査方向に密な配列はへッ ドの大きさゃコス 卜の点か ら難しい。 本発明は、 ノ ズルが副走査方向に 1 ドッ ト以上の間隔を 空けて配置されたへッ ドを対象とする。 なお、 図 2 では、 カラ一 ' イ ンク ジヱ ッ ト ' プリ ンタのへッ ドを示したが、 本発明はモノ ク ロ • イ ンク ジヱ ッ ト · プリ ン夕とカラー · イ ンク ジヱ ッ ト · プリ ンタ の両方に適用可能である。 以下説明を簡単にするためにモノ ク ロ · イ ンク ジヱ ッ ト · プリ ンタを例と して説明するが、 本発明はこれに 限定される ものではない。 (2) in FIG. 2 shows an arrangement in which a plurality of nozzle arrays arranged at predetermined intervals in the sub-scanning direction are arranged so that the arrangement interval of the nozzles in the sub-scanning direction is substantially reduced. Similar to (1) in Fig. 2, four color heads of black, cyan, magenta and yellow are provided, and each head has two rows of nozzles 3 4 — 1 and 3 4 — 2 are provided. The two nozzle rows are arranged at a nozzle interval of 1 Z 2 in the sub-scanning direction, and when viewed from the main scanning direction, the two nozzle rows are arranged at equal intervals in the sub-scanning direction. I have. This interval is 1/2 of the nozzle interval of one nozzle row, and this substantial interval is hereinafter referred to as an array interval in the sub-scanning direction. To eject ink to the same dot row, ink is ejected from nozzles in each row with a shift in the main scanning direction and a time difference determined by the main scanning speed. As a result, the same printing can be performed as when the nozzles are arranged at a pitch of 1/2 of the nozzle interval of each row. By increasing the number of nozzle rows, the actual arrangement interval can be narrowed accordingly.For example, if six nozzle rows arranged at a 6-dot pitch are provided, one Adjacent dots can be printed simultaneously in main scanning. However, it is difficult to arrange such nozzles densely in the sub-scanning direction because of the size of the head and the cost. The present invention is directed to a head in which the nozzles are arranged at intervals of one or more dots in the sub-scanning direction. Although the head of the color 'ink jet' printer is shown in FIG. 2, the present invention is not limited to the mono ink jet printer and the color ink jet printer.あ る Applicable to both printers. In order to simplify the explanation below, An ink jet printer will be described as an example, but the present invention is not limited to this.
図 3 は、 m個のノズル 3 6 — 1 〜 3 6 — mが副走査方向に所定の 間隔 ( 4 ドッ ト ピッチ) で配置されたへッ ドで、 プリ ン トする時の 副走査方向のへッ ドとプリ ン ト媒体 (紙) との間の相対的な移動を 示す図である。 こ こでは、 帯状の縦線をプリ ン トする ものと して説 明する。 へッ ドが、 3 5 aで示す位置で主走査を行い、 m個のノ ズ ノレで m行の ドッ トをプリ ン トする。 これにより、 4 ドッ ト ピッチの 1 ドッ ト幅の m本の横線がプリ ン トされ、 横線の間には 3 ドッ ト分 の空白が存在する。 次に、 へッ ドが媒体に対して副走査方向に相対 的に移動して、 3 5 bで示す位置に移動する。 この移動を小改行と いう。 その位置で主走査を行い、 m ドッ 卜行をプリ ン 卜する。 この 時プリ ン ト される m ドッ ト行は、 前にプリ ン ト された m ドッ ト行の 下側に隣接しており、 2 ドッ ト幅の m本の横線になる。 この時、 横 線の間には 2 ドッ ト分の空白が存在する。 更に、 へッ ドが 3 5 じで 示す位置に小改行して主走査を行い、 m ドッ ト行をプリ ン 卜する。 これにより、 3 ドッ ト幅の m本の横線になり、 横線の間には 1 ドッ ト分の空白が存在する。 更に、 へッ ドが 3 5 dで示す位置に小改行 して主走査を行い、 m ドッ ト行をプリ ン 卜する。 これにより、 副走 査方向に 4 X m ドッ トの幅の長方形がプリ ン トされる。 次に、 へッ ドが 3 5 eで示す位置に移動する。 これを大改行という。 この大改 行の移動量は、 ドッ ト ピッチの ( 4 X m - 3 ) 倍である。 以下、 上 記と同様の動作を繰り返すこ とにより、 媒体全面に渡るプリ ン 卜が 行える。  Fig. 3 shows a head with m nozzles 36-1 to 36-m arranged at a predetermined interval (four dot pitch) in the sub-scanning direction. FIG. 4 is a diagram showing a relative movement between a head and a print medium (paper). Here, the explanation is based on the assumption that a strip-shaped vertical line is printed. The head performs main scanning at the position indicated by 35a, and prints m rows of dots with m nozzles. As a result, m horizontal lines of one dot width with a 4-dot pitch are printed, and three dots of space exist between the horizontal lines. Next, the head moves relative to the medium in the sub-scanning direction, and moves to the position indicated by 35b. This movement is called a small line break. The main scanning is performed at that position, and the m-dot line is printed. The m-dot row printed at this time is adjacent to the lower side of the m-dot row that was printed earlier, and is m horizontal lines with a width of 2 dots. At this time, there are two dots of space between the horizontal lines. In addition, the main scan is performed with a small line feed at the position indicated by the heading 35, and the m-dot line is printed. This results in m horizontal lines with a width of 3 dots, with a space of 1 dot between the horizontal lines. Further, the main scanning is performed with a small line feed at the position indicated by 35d in the head, and the m-dot line is printed. As a result, a rectangle having a width of 4 X m dots is printed in the sub scanning direction. Next, the head moves to the position indicated by 35 e. This is called a large line break. The movement amount of this large line feed is (4 X m-3) times the dot pitch. Thereafter, by repeating the same operation as described above, printing over the entire surface of the medium can be performed.
図 3 に示すよう に、 上記のようなプリ ン ト動作を行つた場合、 最 初の 4 ドッ ト行は第 1 のノズルから噴射したイ ンクで、 次の 4 ドッ ト行は第 2 のノズルから噴射したィ ンクでという具合にプリ ン 卜さ れ、 4 x m ドッ ト行の最後の 4 ドッ ト行は第 mのノ ズルから噴射し たイ ンクでプリ ン トされ、 以下 4 X m ドッ ト行毎に同じよう に繰り 返される。 As shown in Figure 3, when the above printing operation is performed, the first four dots are the ink jetted from the first nozzle, and the second four dots are the second nozzle. Printed with ink jetted from The last four dot rows of the 4 xm dot row are printed with the ink fired from the mth nozzle, and so on for every 4 Xm dot row.
ノ ズルは微細な穴であり、 プレス加工などにより複数のノ ズルが 同時に形成される。 プレス加工の型は精密に作成され、 精密なプレ ス加工で作成されるが、 すべてのノ ズルを同 じょう に作成する こ と はできず、 ノ ズル位置のずれゃィ ンクの飛翔角度のずれが生じるの が避けられない。 ノズル位置のずれは、 そのまま媒体におけるイ ン クの付着位置のずれになる。 イ ンクの飛翔角度のずれは、 ノ ズルの 先端から媒体までの距離に角度ずれを乗じた量だけ付着位置のずれ を生じる。 従って、 この 2 つの要因による付着位置のずれの和が実 際のずれであり、 実際には飛翔角度のずれによる付着位置のずれが 大きい。  The nozzle is a fine hole, and multiple nozzles are formed at the same time by press working. Press molds are made precisely and are created by precision press working, but not all nozzles can be created at the same time. Is inevitable. The deviation of the nozzle position is the deviation of the ink adhesion position on the medium. The deviation of the flying angle of the ink causes the displacement of the adhesion position by an amount obtained by multiplying the distance from the tip of the nozzle to the medium by the angular deviation. Therefore, the sum of the displacements of the attachment positions due to these two factors is the actual displacement, and in fact, the displacement of the attachment positions due to the displacement of the flight angle is large.
図 4 は、 3個のノ ズル 3 7 — 1 〜 3 7 — 3 力、ら噴射したイ ンクの 媒体への付着位置が、 図示のよう に 3 8 — 1 〜 3 8 — 3で示す位置 にずれた場合を示す。 こ こでは飛翔角度のずれは副走査方向にのみ ずれるよう に示したが、 実際にはあらゆる方向にずれる。 ノ ズル 3 7 — 1 と 3 7 — 3 から噴射したイ ンクは上側にずれ、 ノ ズル 3 7 - 2 から噴射したイ ンクは下側にずれる とする。 このようなへッ ドを 使用 して、 図 3 に示すよう に 4 ドッ ト行ずつを同じノズルでプリ ン トする と、 4 ドッ 卜行は同 じ方向に同 じ量だけずれるので、 ノ ズル 3 7 — 1 からのイ ンクでプリ ン トされる 4 ドッ ト行と、 ノ ズル 3 7 — 2 力、らのイ ンクでプリ ン トされる 4 ドッ ト行の間にはイ ンクが付 着しない白い (媒体が白の場合) 横線が生じ、 ノ ズル 3 7 — 2 から のイ ンクでプリ ン トされる 4 ドッ ト行と、 ノ ズル 3 7 — 3 力、らのィ ンクでプリ ン ト される 4 ドッ ト行の間は 2行の ドッ ト行が重なり、 濃い横線が生じる。 このよう に、 4 ドッ 卜行ピッチで濃淡の横線が 生じる こ とになる。 なお、 飛翔角度が主走査方向にずれた場合にはFig. 4 shows the position of the three nozzles 37-1 to 37-3 applied to the medium where the ejected ink is applied, as shown in the figure, 38-1 to 38-3 It shows the case where it is shifted. Here, the flight angle is shown to be shifted only in the sub-scanning direction, but it is actually shifted in all directions. Assume that the ink jetted from nozzles 3 7 — 1 and 3 7 — 3 shifts upward, and the ink jetted from nozzle 37-2 shifts downward. When such a head is used and four dots are printed with the same nozzle as shown in Fig. 3, the four dots are shifted by the same amount in the same direction. Ink is added between the 4-dot line printed with the ink from 3 7 — 1 and the 4-dot line printed with the nozzle 3 7 — 2 A white line (when the medium is white) that does not wear occurs, and a four-dot line printed with an ink from nozzles 3 7 — 2 and a nozzle with a nozzle 3 7 — 3 Between the four dot rows to be printed, the two dot rows overlap, creating a dark horizontal line. In this way, the light and shaded horizontal lines at 4-dot row pitch Will happen. If the flight angle is shifted in the main scanning direction,
、 縦線に 4 ドッ ト ピッチでジッ 夕が生じる。 The vertical line has a four-dot pitch.
図 5 は、 イ ンク噴射ノ ズルの作成方法を説明する図である。 図 5 の ( 1 ) と ( 2 ) に示すよう に、 ノ ズルは、 ノ ズルの穴形状を有す る ピンを複数個所定の間隔で配列した型 4 2 で薄いノ ズル板 4 1 を プレスする こ とにより形成される。 実際のノ ズル間隔 (ノ ズルピッ チ) と同 じ間隔で多数のピンを有する型を作るのは難しいため、 例 えば、 実際のノ ズルピッチ dの 2倍の間隔 2 dで、 ノ ズル数 ( m ) の半分のピン数 (mZ 2 ) の型を形成する。 このような型でプレス する こ とにより、 図 5 の ( 3 ) に示すように、 間隔 2 dで mZ 2個 のノ ズル穴が形成される。 次に、 図 5 の ( 4 ) に示すよう に型と ノ ズル板 4 1 の相対位置をノ ズルピッチ dだけずら し、 図 5 の ( 5 ) に示すようにプレスする。 これにより、 図 5 の ( 6 ) のよう に、 間 隔 dで配列された m個のノ ズルが形成される。 ピンの間隔を 3 d以 上と して、 ピン数を更に低減し、 プレスの回数を増加させれば、 型 の製作はよ り容易である。  FIG. 5 is a diagram for explaining a method of creating an ink injection nozzle. As shown in (1) and (2) in FIG. 5, the nozzle is formed by pressing a thin nozzle plate 41 with a mold 42 in which a plurality of pins having a hole shape of the nozzle are arranged at predetermined intervals. It is formed by doing. Since it is difficult to make a mold having a large number of pins at the same interval as the actual nozzle pitch (nozzle pitch), for example, at the interval 2 d twice the actual nozzle pitch d, the number of nozzles (m ) To form a mold with half the number of pins (mZ 2). By pressing with such a mold, two mZ nozzle holes are formed at an interval of 2 d as shown in (3) of FIG. Next, as shown in FIG. 5 (4), the relative position between the mold and the nozzle plate 41 is shifted by the nozzle pitch d, and pressing is performed as shown in FIG. 5 (5). As a result, as shown in (6) of FIG. 5, m nozzles arranged at the interval d are formed. If the distance between the pins is 3d or more, the number of pins is further reduced, and the number of presses is increased, the mold manufacturing becomes easier.
図 5 のような作成方法とは別に、 図 6 に示すよ うな作成方法も考 えられる。 図 6 の ( 1 ) と ( 2 ) に示すよう に、 例えば、 m / 2 個 のピンを間隔 dで配列した型を作り、 ノ ズル板 4 1 をプレスする こ とにより、 間隔 dで m / 2個のノ ズル穴が形成される。 次に、 図 6 の ( 4 ) に示すように型とノ ズル板 4 1 の相対位置を d X m/ 2 だ けずら し、 図 6 の ( 5 ) に示すよう にプレスする。 これにより、 図 6 の ( 6 ) のよ う に、 間隔 dで配列された m個のノ ズルが形成され る。 しかし、 この方法では、 2 回のプレス加工時に上側半分と下側 半分にそれぞれ力が加えられるため、 ノ ズル板 4 1 が図 6 の ( 7 ) と ( 9 ) に示すように、 ノズル板 4 1 の中央部で歪が生じる こ とが ある。 また、 狭い間隔でピンを作るのが難しいという問題があり、 1 In addition to the creation method shown in Fig. 5, a creation method shown in Fig. 6 can be considered. As shown in (1) and (2) in FIG. 6, for example, a mold in which m / 2 pins are arranged at an interval d is made, and the nozzle plate 41 is pressed, so that m / Two nozzle holes are formed. Next, as shown in (4) of FIG. 6, the relative position between the mold and the nozzle plate 41 is shifted by dXm / 2, and pressed as shown in (5) of FIG. As a result, m nozzles arranged at an interval d are formed as shown in (6) of FIG. However, in this method, forces are applied to the upper half and the lower half, respectively, during the two press workings, so that the nozzle plate 41 becomes the nozzle plate 4 as shown in (7) and (9) of FIG. Distortion may occur at the center of 1. Also, there is a problem that it is difficult to make pins at narrow intervals, 1
ノ ズル板のノ ズル穴は一般的には図 5で説明した方法で形成される 上記のよう に、 ピンでノ ズル板をプレス してノ ズル穴を形成する 場合、 例えば、 ピンの方向が垂直からずれていると穴の方向がずれ 飛翔角度にずれを生じる。 図 5 で説明した作成方法でノ ズル穴を形 成する場合、 隣接する 2 つのノ ズルは同 じピンでプレス して形成さ れるため、 飛翔角度はほぼ同 じになる。 そのため、 図 4で説明 した 各ノ ズルの飛翔角度のずれにより発生する濃淡の横線は、 2倍の 8 ドッ ト ピッチで発生し、 より 目立つよう になる。 も し、 ピンの間隔 を 3 倍以上にすると、 濃淡の横線は 3倍以上の ドッ ト ピッチで発生 するので、 より一層目立つよう になる。 また、 飛翔角度が主走査方 向にずれて縦線にジッ タが発生する場合も、 ジ ッ 夕の間隔が長く な るので、 より 目立つよう になる。  The nozzle hole of the nozzle plate is generally formed by the method described with reference to FIG. 5. As described above, when the nozzle plate is pressed with a pin to form the nozzle hole, for example, when the direction of the pin is If it deviates from vertical, the direction of the hole will deviate and the flight angle will deviate. When a nozzle hole is formed by the method described with reference to Fig. 5, two adjacent nozzles are formed by pressing with the same pin, so that the flight angles are almost the same. Therefore, the light and shade horizontal lines generated by the deviation of the flight angle of each nozzle described in Fig. 4 are generated at twice the 8-dot pitch and become more conspicuous. If the distance between the pins is more than three times, the light and shaded horizontal lines will occur at more than three times the dot pitch, and will be even more noticeable. Also, in the case where the flying angle is shifted in the main scanning direction and the vertical line has jitter, the interval between the jitters becomes longer and thus becomes more conspicuous.
以上のよう に、 複数のノ ズルを配列したヘッ ドを使用 して、 図 3 で説明 したような小改行と大改行を繰り返す方法でプリ ン トを行う 場合、 ノ ズルの飛翔角度のずれによる横方向の濃淡や縦線のジッ 夕 が発生し、 画質を低下させるという問題がある。 このような問題を 解決するため、 米国特許第 41 98642 号は 「イ ンター レース方式」 と 呼ばれる技術を開示している。 また、 特開平 1 1 - 28827号公報、 特開 平 1 1 - 34398号公報、 特開平 9 - 1 1509 号公報及び特開平 9 - 71009 号公 報などは、 「イ ンター レース方式」 を改良した技術を開示している  As described above, when printing is performed by using a head in which a plurality of nozzles are arranged and repeating small and large line breaks as described in Fig. 3, due to the deviation of the flight angle of the nozzles There is a problem that horizontal shading and vertical line bleeding occur, degrading image quality. In order to solve such a problem, US Pat. No. 4,198,642 discloses a technique called “interlace method”. In addition, JP-A-11-28827, JP-A-11-34398, JP-A-9-1509 and JP-A-9-71009 have improved the "interlace system". Disclosing technology
「イ ンタ一レース方式」 は、 N個のノ ズルを ドッ ト ピッチの k倍 の間隔で配置したヘッ ドを使用 してプリ ン トする場合に、 Nと kを 互いに粗の関係になる整数と し、 1 回の主走査が終了する毎に所定 量の改行を行う方式で、 全面を同一の改行量で印刷できる。 しかし 、 このイ ンタ一 レース方式でプリ ン トを行う には、 一般的にヘッ ド に配置されるすべてのノ ズルを同じように使用せずに駆動ノ ズル数 を制限したり、 または、 ノ ズルの駆動率をノ ズル毎に異ならせる必 要がある。 イ ンク ジェ ッ トプリ ンタにおいては、 ノ ズル毎にノ ズル の駆動率が異なるこ とで、 ノ ズルの状態が変化し、 ノ ズル部でイ ン クが外気に触れるこ とによるイ ンク粘度の変化や、 ノ ズル駆動率の 近いによる駆動能力のばらつきなどが発生し、 ノ ズル間のィ ンクの 飛翔特性のばらつきが大き く なると共に、 駆動ノズル数の制限のた め実質的にプリ ン ト速度が低下する という問題が発生する。 The `` interlace method '' is an integer in which N and k are in a coarse relationship with each other when printing is performed using a head in which N nozzles are arranged at intervals of k times the dot pitch. In this method, a predetermined amount of line feed is performed each time one main scan is completed, so that the entire surface can be printed with the same line feed amount. However, in order to print using this interlaced method, the head is generally used. It is necessary to limit the number of driving nozzles without using all the nozzles arranged in the same way, or to make the driving rate of the nozzles different for each nozzle. In an ink jet printer, the state of the nozzle changes due to the difference in the driving rate of the nozzle for each nozzle, and the ink viscosity changes due to the ink coming into contact with the outside air at the nozzle. Fluctuations and variations in the driving capability due to the close nozzle driving rate, etc., and the dispersion of the flying characteristics of the ink between the nozzles increases, and the print is substantially limited due to the limitation of the number of driving nozzles. The problem of slowing down occurs.
このため、 イ ンク ジヱ ッ 卜のへッ ドに搭載されているすべてのノ ズルを同 じ駆動率で印刷するには、 上記のような一定の改行量でプ リ ン トできるイ ンタ一 レース方式は使用できず、 小改行と大改行を 組み合わせた相対移動を行ってプリ ン トする必要がある。 しかし、 小改行と大改行を組み合わせた方式では、 上記のよう に、 ノ ズル間 の飛翔角度の差に起因する画質の低下がある。 発明の開示  For this reason, in order to print all the nozzles mounted on the head of the ink jet at the same drive rate, an interface that can print with a fixed line feed amount as described above is required. The race system cannot be used, and it is necessary to print by performing relative movement that combines small and large line breaks. However, in the method that combines the small line feed and the large line feed, as described above, the image quality is degraded due to the difference in the flight angle between the nozzles. Disclosure of the invention
本発明は、 このような問題を解決する もので、 小改行と大改行を 組み合わせた方式でプリ ン 卜 した場合でも高画質が得られるィ ンク ジエ ツ トプリ ンタの実現を目的とする。  An object of the present invention is to solve such a problem, and an object of the present invention is to realize an ink jet printer capable of obtaining high image quality even when printing is performed by a method in which a small line feed and a large line feed are combined.
上記目的を実現するため、 本発明のイ ンク ジエ ツ トプリ ンタは、 小改行の量をノ ズルの配列間隔の整数倍に 1 ドッ ト ピッチを加えた 量と し、 異なる飛翔角度のノ ズルで隣接した ドッ ト行をプリ ン トす るこ とにより、 濃淡の横線や縦線のジ ッ タが細かいピッチで発生す るよう に して、 目立たな く する。  In order to achieve the above object, the ink jet printer of the present invention sets the amount of small line feed to an amount obtained by adding one dot pitch to an integral multiple of the nozzle arrangement interval, and uses nozzles having different flight angles. By printing adjacent dot rows, light and dark horizontal lines and vertical lines are generated at a fine pitch to make them inconspicuous.
すなわち、 本発明のイ ンク ジヱ ッ トプリ ンタは、 同一のイ ンクを 噴射する B個 ( Bは整数) のイ ンク噴射ノ ズルが、 副走査方向に実 質的に一定のノ ズル間隔で配置され、 副走査方向に垂直な主走査方 向に移動可能なへッ ドと、 記録媒体をイ ンクへッ ドを対して副走査 方向に相対移動させる副走査機構とを備えるイ ンク ジヱ ッ トプリ ン 夕であって、 ノ ズル間隔は、 ドッ ト ピッチ ( d ) の A倍 ( Aは整数 ) の間隔であり、 プリ ン ト動作は、 主走査方向の 1 回のプリ ン ト走 査 (主走査) と、 ノ ズル間隔の n倍 ( nは整数) に 1 ドッ ト ピッチ を加えた量 ( ( A X n + 1 ) x d ) だけ記録媒体をイ ンクへッ ドに 対して副走査方向に相対移動させる小改行を行った後、 主走査方向 の 1 回のプリ ン ト走査を行う動作を、 C x A— 1 回 ( Cは整数) 繰 り返す小改行プリ ン ト と、 その後、 ( B X A— ( A X n + 1 ) ( C x A - 1 ) ) x dの大改行を行う大改行とを繰り返す動作である こ とを特徵とする。 In other words, the ink jet printer according to the present invention has B (B is an integer) ink jet nozzles that jet the same ink at substantially constant nozzle intervals in the sub-scanning direction. Main scanning method that is arranged and is perpendicular to the sub scanning direction An ink jet printer having a head that can move in the horizontal direction and a sub-scanning mechanism that moves the recording medium relative to the ink head in the sub-scanning direction. The interval is A times the dot pitch (d) (where A is an integer). The printing operation consists of one print scan (main scan) in the main scanning direction and n times the nozzle interval. (N is an integer) plus one dot pitch ((AX n + 1) xd) After performing a small line feed that moves the recording medium relative to the ink head in the sub-scanning direction. A small line feed print that repeats the operation of performing one print scan in the scanning direction C x A—one time (C is an integer), and then (BXA— (AX n + 1) (C x A-1)) It is an operation that repeats a large line feed that performs a large line feed of xd.
図 7 は、 本発明の原理を説明する図である。 図示のよう に、 m個 のノ ズル 5 1 — 1 〜 5 1 — mが、 4 ドッ ト ピッチで配列されている 。 各ノ ズルはそれぞれ飛翔角度が異なるとする。 まず、 もっ と も左 側のノ ズル 5 1 一 1 〜 5 1 一 mの位置で主走査方向の 1 回のプリ ン ト走査 (主走査) を行う。 この時、 画像の先端の ドッ ト行がノ ズル 5 1 一 4 によりプリ ン トされる位置になるよう にする。 次に、 5 ド ッ ト ピッチの小改行を行った後に、 1 回のプリ ン ト走査を行う。 こ の時のノ ズル 5 1 — 1 〜 5 1 — mの位置を、 左から 2番目の位置に 示す。 この小改行と 1 回のプリ ン ト走査の組を 3 回繰り返す。 これ により参照番号 5 2で示したノ ズル 5 1 — 4 〜 5 1 — 1 の組により 右側の 4 つの ドッ ト 5 5 — 4 〜 5 5 — 1 の行がプリ ン トされ、 同様 に参照番号 5 3 で示したノ ズルの組により右側の 4 つの ドッ ト 5 6 一 m〜 5 6 — m— 3 の行がプリ ン トされる。 このよう に、 隣接する 4 つの ドッ ト行の組は、 それぞれ異なるノ ズルによ りプリ ン トされ るので、 たとえノ ズルからのイ ンクの飛翔角度に差があっても、 1 ドッ ト行毎にずれが生じるので目立たな く なる。 小改行と 1 回のプリ ン ト走査の組小改行を 3回繰り返すと、 5 1 一 4力、ら 5 6 — m— 3 までの ドッ 卜行が密にプリ ン ト される。 参照 番号 5 4で示したノズルの組のう ち、 左側の 3個に対応する ドッ ト 行 5 7 — m、 5 7 — m— 1 、 5 7 — m— 2の ドッ ト行は、 上記の動 作でプリ ン ト される力く、 5 7 — 1 は空白である。 ノ ズル 5 1 — 1 を この空白の ドッ ト行をプリ ン トするよう に大改行する。 従って、 大 改行の移動量は、 ( 4 X m— 5 X 3 ) ドッ ト ピッチである。 以下、 同様の動作を繰り返すこ とにより、 全面に渡りプリ ン トが行われる こ こで、 上記の動作を一般化した式で表現する。 例えば、 ノ ズル の配列ピッチを ドッ ト ピッチ dの A倍、 ノ ズル数を Bとすると、 小 改行の移動量は (A + 1 ) dであり、 これを (A— 1 ) 回行うので 、 小改行による合計移動量は (A + 1 ) (A— l ) dである。 大改 行では、 最初の状態から先頭のノ ズルが最後のノ ズルの次の位置に く ればよい。 最初の状態で先頭のノ ズルが最後のノ ズルの次の位置 に移動するための移動量は B x A x dである。 上記のよう に、 小改 行による合計移動量は (A + 1 ) (A— 1 ) dであるから、 B X A からこれを減じれば、 大改行の移動量は ( B X A— ( A + 1 ) (A - 1 ) ) dである。 FIG. 7 is a diagram illustrating the principle of the present invention. As shown in the figure, m nozzles 51-1 to 51-m are arranged at a 4-dot pitch. It is assumed that each nozzle has a different flight angle. First, one print scan (main scan) in the main scan direction is performed at the position of the nozzle 511 to 511 m on the left side. At this time, the dot row at the leading end of the image is set to the position printed by the nozzles 51 to 14. Next, after a small line feed at a 5-dot pitch, one print scan is performed. The positions of the nozzles 5 1 — 1 to 51 — m at this time are shown in the second position from the left. This set of small line feed and one print scan is repeated three times. As a result, the row of the four dots 5 5 — 4 to 5 5 — 1 on the right is printed by the pair of nozzles 5 1 — 4 to 5 1 — 1 indicated by reference number 52, and similarly, the reference number The set of nozzles indicated by 5 3 prints the four right-hand dots 56 1 m to 56 — m— 3. In this way, each set of four adjacent dot rows is printed by a different nozzle, so even if there is a difference in the flight angle of the ink from the nozzle, one dot row is set. It becomes inconspicuous because a shift occurs every time. A set of small line feeds and one print scan Repeating small line feeds three times, dot lines up to 511-500, etc., 56-m-3 are printed densely. In the nozzle set indicated by reference numeral 54, the dot rows corresponding to the three nozzles on the left side are the dot rows 57 — m, 57 — m—1, and 57 — m—2. The power printed by the action, 5 7 — 1 is blank. Greatly break nozzle 5 1 — 1 to print this blank dot line. Therefore, the amount of movement of a large carriage return is (4 X m-5 X 3) dot pitch. Hereinafter, by repeating the same operation, printing is performed over the entire surface, and the above operation is expressed by a generalized expression. For example, if the arrangement pitch of the nozzles is A times the dot pitch d and the number of nozzles is B, the amount of movement of the small line feed is (A + 1) d, and this is performed (A-1) times. The total movement amount due to the small line feed is (A + 1) (A-l) d. In a large line break, the first nozzle should be in the next position after the last nozzle from the first state. In the initial state, the amount of movement for the first nozzle to move to the position next to the last nozzle is B x A xd. As described above, the total movement amount due to a small line feed is (A + 1) (A-1) d, so if this is subtracted from BXA, the movement amount of a large line feed is (BXA-(A + 1) (A-1)) d.
図 7の例では、 各ノ ズルはそれぞれ飛翔角度が異なるので、 小改 行は次のノズルの 1 ドッ ト先の位置に移動する量である。 図 5で説 明したよ うな作成方法でノズルを作成した場合、 隣接するノ ズルは 同じ飛翔角度になる。 n個の隣接するノ ズルが同じ飛翔角度の場合 には、 小改行では n個先のノ ズルの 1 ドッ ト先の位置に移動する必 要がある。 そのため、 小改行の移動量は (A X n + 1 ) dであり、 大改行の移動量は ( B X A— ( A X n + 1 ) (A— 1 ) ) dである 。 なお、 小改行で nの整数倍の先のノ ズルの 1 ドッ ト先の位置に移 動するようにしてもよい。 In the example of FIG. 7, since each nozzle has a different flight angle, the small line feed is the amount to move to the position one dot ahead of the next nozzle. When a nozzle is created by the creation method described in Fig. 5, adjacent nozzles have the same flight angle. If n adjacent nozzles have the same flight angle, it is necessary to move to a position one dot ahead of the nth nozzle in a small line feed. Therefore, the movement amount of the small line feed is (AX n + 1) d, and the movement amount of the large line feed is (BXA-(AX n + 1) (A-1)) d. In addition, the line is moved to the position one dot after the nozzle that is an integral multiple of n by a small line feed. It may be moved.
上記の説明では、 各 ドッ ト行は 1個のノ ズルによる 1 回のプリ ン ト走査 (主走査) でプリ ン トされると した。 一般に、 このような動 作をシングルパス記録モー ドと呼ぶ。 これに対して、 各 ドッ ト行を 複数のノ ズルによる複数回の主走査でプリ ン 卜する動作をマルチパ ス記録モー ドと呼ぶ。 なお、 これは 1 色のヘッ ドの場合で、 カラー プリ ンタの場合には、 各色について 1 ドッ ト行を 1 回の主走査でプ リ ン 卜する場合をシングルパス記録モー ドと呼び、 各色について 1 ドッ ト行を複数回の主走査でプリ ン トする場合をマルチパス記録モ ー ドと呼ぶ。  In the above description, each dot row is printed in one print scan (main scan) by one nozzle. Generally, such an operation is called a single-pass recording mode. On the other hand, the operation of printing each dot row by a plurality of main scans by a plurality of nozzles is called a multi-pass recording mode. Note that this is the case of a single color head.In the case of a color printer, printing one dot line for each color in one main scan is called a single pass printing mode. The case where one dot line is printed by multiple main scans is called multi-pass printing mode.
図 8 は、 本発明の原理をより一般化した時の小改行と大改行を説 明する図である。 図示のよう に、 B個のノ ズルが、 A ドッ ト ピッチ で配列されており、 隣接する n個のノ ズルが同 じ飛翔角度である と する。 更に、 1 ドッ ト行を C回の主走査でプリ ン トするマルチパス 記録モー ドである とする。 小改行の移動量は (A X n + 1 ) dであ り、 これを ( C X A— 1 ) 回行うので、 小改行の合計移動量は (A n + 1 ) X ( C X A— 1 ) dである。 従って、 大改行の移動量は 、 (B X A - (A x n + 1 ) ( C X A— l ) ) dである。  FIG. 8 is a diagram illustrating small and large line breaks when the principle of the present invention is generalized. As shown in the figure, it is assumed that B nozzles are arranged at an A dot pitch, and that n adjacent nozzles have the same flight angle. Further, it is assumed that the multi-pass printing mode prints one dot row by C main scans. The movement amount of the small line feed is (AX n + 1) d, and this is performed (CXA-1) times, so the total movement amount of the small line feed is (A n + 1) X (CXA-1) d . Accordingly, the movement amount of the large line feed is (B X A-(A x n + 1) (C X A-l)) d.
プリ ンタは、 シングルパス記録モー ドで動作する ものでも、 マル チパス記録モー ドで動作する ものでも、 そのいずれかを任意に選択 できる ものでもよい。  The printer may be one that operates in a single-pass recording mode, one that operates in a multi-pass recording mode, or one that can be arbitrarily selected.
隣接するノ ズルが同時にイ ンクを噴射すると ク ロス トークの問題 が発生するので、 マルチパス記録モー ドの時には、 隣接するノ ズル を同時に駆動しないよ う に制御する こ とが望ま しい。  If adjacent nozzles eject ink at the same time, a crosstalk problem will occur. Therefore, in the multi-pass printing mode, it is desirable to control so that adjacent nozzles are not driven simultaneously.
また、 マルチパス記録モー ドで主走査方向にも連続した複数の ド ッ トをプリ ン 卜する時には、 C回のう ちの各回でプリ ン 卜する ドッ ト位置をラ ンダムに決定するようにしてもよい。 これにより、 ノ ズ ルからのイ ンクの噴射方向のばらつきによる影響は更に目立たなく なる。 図面の簡単な説明 When printing multiple dots continuously in the main scanning direction in the multi-pass printing mode, the dot position to be printed in each of the C times is determined randomly. Is also good. As a result, the noise The effect of variations in the direction of ink jet from the nozzle is less noticeable. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 イ ンク ジヱ ッ トプリ ンタの断面図である。  FIG. 1 is a cross-sectional view of the ink jet printer.
図 2の ( 1 ) と ( 2 ) は、 副走査方向に一定の間隔で配列された 複数のイ ンク噴射ノ ズルの配列例を示す図である。  (1) and (2) of FIG. 2 are diagrams showing an example of the arrangement of a plurality of ink jet nozzles arranged at regular intervals in the sub-scanning direction.
図 3 は、 図 2 の ( 1 ) と ( 2 ) のような複数のイ ンク噴射ノズル を有するへッ ドでプリ ン 卜する場合の副走査方向におけるへッ ドと 媒体の相対移動動作を説明する図である。  FIG. 3 illustrates the relative movement of the head and the medium in the sub-scanning direction when printing with a head having a plurality of ink jet nozzles as shown in (1) and (2) of FIG. FIG.
図 4 は、 ノズル毎のイ ンクスポッ ト位置のずれの影響を説明する 図である。  FIG. 4 is a diagram for explaining the influence of the shift of the ink spot position for each nozzle.
図 5の ( 1 ) から ( 6 ) は、 複数のイ ンク噴射ノズルを作成する 方法を説明する図である。  (1) to (6) of FIG. 5 are diagrams for explaining a method of creating a plurality of ink injection nozzles.
図 6の ( 1 ) から ( 8 ) は、 複数のイ ンク噴射ノズルを作成する 別の方法を説明する図である。  (1) to (8) of FIG. 6 are views for explaining another method of creating a plurality of ink jet nozzles.
図 7 は、 本発明の原理を説明する図である。  FIG. 7 is a diagram illustrating the principle of the present invention.
図 8 は、 より一般化した本発明の原理を説明する図である。  FIG. 8 is a diagram illustrating a more generalized principle of the present invention.
図 9 は、 本発明の第 1 実施例におけるノズル配列と副走査方向の へッ ドと媒体の相対移動を示す図である。  FIG. 9 is a diagram showing the nozzle arrangement and the relative movement of the head and the medium in the sub-scanning direction in the first embodiment of the present invention.
図 1 0 は、 第 1 実施例において帯状の縦線をプリ ン トする時の各 ドッ トをプリ ン 卜するノズルを示す図である。  FIG. 10 is a diagram showing nozzles for printing each dot when printing a strip-shaped vertical line in the first embodiment.
図 1 1 の ( 1 ) から ( 6 ) は、 第 1 実施例において縦線をプリ ン 卜する時の ドッ 卜のプリ ン 卜される順序を示す図である。  (1) to (6) of FIG. 11 are diagrams showing the order in which dots are printed when a vertical line is printed in the first embodiment.
図 1 2 は、 本発明の第 2実施例におけるノズル配列と副走査方向 のへッ ドと媒体の相対移動を示す図である。  FIG. 12 is a view showing the nozzle arrangement and the relative movement of the head and the medium in the sub-scanning direction in the second embodiment of the present invention.
図 1 3の ( 1 ) から ( 6 ) は、 第 2実施例において帯状の縦線を プリ ン 卜する時の ドッ 卜のプリ ン 卜される順序を示す図である。 図 1 4 の ( 1 ) から ( 6 ) は、 第 2実施例において帯状の縦線を プリ ン 卜する時の ドッ 卜のプリ ン 卜される順序を示す図である。 図 1 5 の ( 1 ) から ( 3 ) は、 第 2実施例において帯状の縦線を プリ ン 卜する時の ドッ 卜のプリ ン 卜される順序の変形例を示す図で ある。 (1) to (6) in FIG. 13 show vertical strips in the second embodiment. FIG. 9 is a diagram showing the order in which dots are printed when printing. (1) to (6) of FIG. 14 are diagrams showing the order in which dots are printed when printing a strip-shaped vertical line in the second embodiment. (1) to (3) of FIG. 15 are diagrams showing modified examples of the order in which dots are printed when a strip-shaped vertical line is printed in the second embodiment.
図 1 6 の ( 1 ) と ( 2 ) は、 本発明の第 3実施例におけるノズル 配列を示す図である。  (1) and (2) of FIG. 16 are views showing the nozzle arrangement in the third embodiment of the present invention.
図 1 7 は、 第 3実施例における副走査方向のへッ ドと媒体の相対 移動を示す図である。  FIG. 17 is a diagram showing the relative movement between the head and the medium in the sub-scanning direction in the third embodiment.
図 1 8 の ( 1 ) から ( 6 ) は、 第 3実施例において帯状の縦線を プリ ン 卜する時の ドッ 卜のプリ ン 卜される順序を示す図である。 図 1 9の ( 1 ) から ( 6 ) は、 第 3実施例の変形例において帯状 の縦線をプリ ン 卜する時の ドッ 卜のプリ ン 卜される順序を示す図で める。 発明を実施するための最良の形態  (1) to (6) in FIG. 18 are diagrams showing the order in which dots are printed when printing a strip-shaped vertical line in the third embodiment. FIGS. 19 (1) to (6) are diagrams showing the order in which dots are printed when a strip-shaped vertical line is printed in the modification of the third embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例を説明する。 説明を簡単にするために、 実 施例のイ ンク ジヱ ッ トプリ ンタはモノ ク ロプリ ンタであるとするが 、 カラ一プリ ンタであっても本発明を適用することが可能であり、 各色のへッ ド毎に以下に説明する動作を行えばよい。 実施例のイ ン ク ジヱ ッ トプリ ンタは、 図 1 に示すような断面を有し、 媒体のへッ ドに対する副走査方向の移動が従来例と異なるだけである。 従って 、 異なる部分のみを説明し、 他の部分についての説明は省略する。  Hereinafter, examples of the present invention will be described. For the sake of simplicity, it is assumed that the ink jet printer in the embodiment is a mono-crop printer. However, the present invention can be applied to a color printer, and each color printer can be used. The operation described below may be performed for each head. The ink jet printer of the embodiment has a cross section as shown in FIG. 1, and the movement of the medium in the sub-scanning direction with respect to the head is different from the conventional example. Therefore, only different portions will be described, and description of other portions will be omitted.
図 9 は、 本発明の第 1 実施例のイ ンク ジヱ ッ トプリ ンタのへッ ド におけるノ ズルの配列と、 媒体のへッ ドに対する副走査方向の相対 移動を示す図である。 図示のように、 1 6個のノズル 6 1 — 1 〜 6 1 — 1 6 力く 6 ドッ ト ピッチ間隔で 1 列に配列されている。 これらの ノ ズルは、 図 5 の方法で作成され、 隣接する 2個が同じイ ンク飛翔 角度を有する。 このプリ ンタは、 シ ングルパス記録モー ドで動作し 、 1 ドッ ト行を 1 回の主走査でプリ ン トする。 従って、 前述の小改 行と大改行の移動量を算出する式における、 Aは 6 であり、 Bは 1 6 であり、 Cは 1 であり、 n は 2 である。 よって、 小改行の移動量 は ( 2 X 6 + 1 ) d、 すなわち 1 3 ドッ ト ピッチであり、 大改行の 移動量は ( 1 6 x 6 — 1 3 X 5 ) d、 すなわち 3 1 ドッ ト ピッチで ある。 図 9 において、 縦線をプリ ン トする時には、 縦線の先端がノ ズル 6 1 — 1 1 の位置から印字を開始する。 参照番号 6 2 は、 1 回 目の大改行が行われるまでの動作ではプリ ン ト しない部分を示し、 6 3 は 1 回目の大改行が行われるまでの動作ですベての ドッ ト行が プリ ン 卜される部分を示し、 6 4 は 1 回目の大改行が行われるまで の動作と 1 回目の大改行の後 2 回目の大改行が行われるまでの動作 とでプリ ン 卜 される部分を示す。 FIG. 9 is a diagram showing the arrangement of the nozzles in the head of the ink jet printer according to the first embodiment of the present invention and the relative movement of the medium with respect to the head in the sub-scanning direction. As shown, 16 nozzles 6 1 — 1 to 6 1 — 1 6 Strongly arranged in a row at 6-dot pitch intervals. These nozzles are created by the method shown in Fig. 5, and two adjacent nozzles have the same ink flight angle. This printer operates in the single-pass print mode, and prints one dot line in one main scan. Therefore, in the formula for calculating the movement amount of the small and large line feeds, A is 6, B is 16, C is 1, and n is 2. Thus, the amount of movement for small line breaks is (2 X 6 + 1) d, or 13 dot pitch, and the amount of movement for large line breaks is (16 x 6-13 X 5) d, or 31 dot The pitch. In Fig. 9, when printing a vertical line, the printing starts from the position of the nozzle 61-1-11 where the vertical line ends. Reference numeral 62 indicates a portion that does not print in the operation until the first large line feed is performed, and 63 indicates operation until the first large line break is performed. The part printed is the part printed by the operation before the first large line feed and the operation after the first large line break until the second large line break. Show.
図 1 0 は、 第 1 実施例において帯状の縦線をプリ ン トする時に各 ドッ トをプリ ン トするノ ズルを示す図であり、 図 1 1 は各 ドッ 卜が プリ ン ト される順番を示す図である。 図示のよ うに、 隣接する ドッ ト行は、 2個以上離れたノ ズルによりプリ ン ト されるので、 かなら ず飛翔角度が異なる。 従って、 ノ ズルの飛翔角度が異なっても、 濃 淡の横線や縦線のジッ タは、 短いピッチで生じるので、 目立たない o  FIG. 10 is a diagram showing nozzles that print each dot when printing a strip-shaped vertical line in the first embodiment, and FIG. 11 shows the order in which each dot is printed. FIG. As shown in the figure, the adjacent dot rows are printed by nozzles separated by two or more, so the flight angles are always different. Therefore, even if the flight angle of the nozzle is different, the light and dark horizontal lines and vertical lines are generated at a short pitch, and are inconspicuous.
図 1 2 は、 本発明の第 2実施例のイ ンク ジヱ ッ トプリ ンタのへッ ドにおけるノ ズルの配列と、 媒体のへッ ドに対する副走査方向の相 対移動を示す図である。 図示のよう に、 3 2個のノ ズル 6 1 — 1〜 6 1 — 3 2 力く 6 ドッ ト ピッチ間隔で 1 列に配列されている。 これら のノ ズルは、 図 5 の方法で作成され、 隣接する 2個が同じイ ンク飛 翔角度を有する。 このプリ ンタは、 第 1 実施例で説明したのと同様 にシングルパス記録モー ドでも動作する力 、 1 ドッ ト行を 2 回の主 走査でプリ ン トするマルチパス記録モー ドでも動作する。 こ こでは 、 マルチパス記録モー ドについて説明する。 前述の小改行と大改行 の移動量を算出する式における、 Aは 6 であり、 Bは 3 2 であり、 Cは 2 であり、 nは 2 である。 よって、 小改行の移動量は ( 2 X 6 + 1 ) d、 すなわち 1 3 ドッ ト ピッチであり、 大改行の移動量は (FIG. 12 is a diagram showing the arrangement of the nozzles in the head of the ink jet printer according to the second embodiment of the present invention and the relative movement of the medium with respect to the head in the sub-scanning direction. As shown in the figure, 32 nozzles 6 1 — 1 to 6 1 — 3 2 are arranged in a row at 6-dot pitch intervals. These nozzles are created in the manner shown in Figure 5 so that two adjacent nozzles fly the same ink. Has a sho angle. This printer operates in the single-pass printing mode as described in the first embodiment and also in the multi-pass printing mode in which one dot row is printed by two main scans. Here, the multi-pass recording mode will be described. In the above formula for calculating the amount of movement between small and large line breaks, A is 6, B is 32, C is 2, and n is 2. Therefore, the movement of the small line feed is (2 X 6 + 1) d, that is, 13 dot pitch, and the movement of the large line feed is (
3 2 X 6 - 1 3 X 1 1 ) d、 すなわち 4 9 ドッ ト ピッチである。 図 1 3 と図 1 4 は、 第 2 実施例において帯状の縦線をプリ ン トす る時の各 ドッ 卜がプリ ン 卜される順番と各 ドッ 卜をプリ ン トするノ ズルを示す図である。 図示のよう に、 隣接する ドッ ト行は、 2個以 上離れたノ ズルによりプリ ン ト される。 また、 1 ドッ ト行の隣接す る ドッ トは、 2 つのノ ズルで交互にプリ ン トされるので、 ノ ズルの 飛翔角度が異なる こ とによるずれは、 一層目立たな く なる。 3 2 X 6-1 3 X 11 1) d, that is, a 49 dot pitch. FIGS. 13 and 14 show the order in which the dots are printed and the nozzles used to print the dots when printing a strip-shaped vertical line in the second embodiment. It is. As shown, adjacent dot rows are printed by nozzles that are two or more apart. In addition, adjacent dots in one dot row are alternately printed by two nozzles, so that the difference due to the different flying angles of the nozzles becomes even less noticeable.
図 1 5 は、 第 2 実施例の変形例における帯状の縦線をプリ ン トす る時の各 ドッ 卜がプリ ン トされる順番を示す図である。 副走査方向 のへッ ドに対する媒体の相対移動は第 2実施例と同 じであり、 同 じ ドッ ト行は同 じ 2 つのノ ズルでプリ ン トされる。 しかし、 図 1 5 の FIG. 15 is a diagram showing the order in which each dot is printed when a strip-shaped vertical line is printed in a modification of the second embodiment. The relative movement of the medium with respect to the head in the sub-scanning direction is the same as in the second embodiment, and the same dot row is printed by the same two nozzles. However, in Figure 15
( 1 ) に示すよ う に、 例えば、 ノ ズル 6 1 — 2 5 と 6 1 — 2 6 は、 主走査時には交互に動作して異なる列の ドッ トをプリ ン トする。 以 下同様に、 隣接するノ ズルは同時には動作しないよ うにする と、 図 1 5 の ( 2 ) に示すよう に 6 ドッ 卜の列が格子状にプリ ン トされる 。 次に、 ノ ズル 6 1 — 1 3 がノ ズル 6 1 — 2 5 と同じ ドッ ト行を、 ノ ズル 6 1 - 1 4力くノ ズル 6 1 — 2 6 と同 じ ドッ ト行をプリ ン トす るが、 この時に残っている空白部の ドッ トをプリ ン トする。 従って 、 隣接するノ ズルが同時には動作しない。 以上のような動作を 6 回 繰り返すと図 1 5 の ( 3 ) に示すような形で各 ドッ 卜が図示のノ ズ ルでプリ ン トされる。 なお、 図 1 5の ( 3 ) では 2 ドッ ト列のみを 示したが、 後はこれの繰り返しである。 As shown in (1), for example, the nozzles 6 1-25 and 6 1-26 operate alternately during main scanning to print dots in different columns. Similarly, if adjacent nozzles are not operated at the same time, a 6-dot row is printed in a grid as shown in (2) of Fig. 15. Next, nozzle 6 1 — 13 prints the same dot row as nozzle 6 1 — 25, and nozzle 6 1-14 prints the same dot row as nozzle 6 1 — 26. Print the remaining blank dots at this time. Therefore, adjacent nozzles do not operate at the same time. When the above operation is repeated six times, each dot is shown in the form shown in (3) in Fig. 15 Will be printed. It should be noted that although (2) in FIG. 15 shows only a two-dot sequence, this is repeated thereafter.
図 1 6 は、 本発明の第 3実施例のイ ンク ジヱ ッ トプリ ンタのへッ ドにおけるノズルの配列を示す図である。 図示のように、 1 6個の ノズノレ 7 1 — 1 、 7 1 — 4、 ···、 7 1 — 4 6 を 6 ドッ ト ピッチ ( 6 d ) で 1 列に配列した第 1 の組と、 1 6個のノズノレ 7 1 — 2、 7 1 一 5、 …、 7 1 — 4 7を 6 dで 1 列に配列した第 2 の組と、 1 6個 のノズル 7 1 — 3、 7 1 — 6、 ···、 7 1 — 4 8を 6 dで 1列に配列 した第 3の組とを設ける。 第 2の組は、 第 1 の組に対して、 主走査 方向に所定量ずれており、 副走査方向に 2 dずれている。 また、 第 3 の組は、 第 2 の組に対して、 主走査方向に所定量ずれており、 副 走査方向に 2 dずれている。 主走査時に各組を駆動するタイ ミ ング を主走査方向のずれに対応してずらすことにより、 図 1 6の ( 2 ) に示すように、 4 8個のノズル 7 2 — 1 〜 7 2 — 4 8 を 2 dの間隔 で配列したノズルと等価なプリ ン 卜が行える。 図 1 6 に示した第 3 実施例のヘッ ドでは、 隣接する 6個、 例えば、 ノズル 7 2 — 1 〜 7 2 — 6が同じイ ンク飛翔角度を有する。  FIG. 16 is a diagram showing the arrangement of nozzles in the head of the ink jet printer according to the third embodiment of the present invention. As shown in the figure, a first set of 16 pieces 7 1 — 1, 7 1 — 4,..., 7 1 — 4 6 arranged in one row at a 6 dot pitch (6 d), 1 6 sets of 7 7 — 2, 7 1 1 5,…, 7 1 — 4 2nd set of 6 d arranged in a row and 16 nozzles 7 1 — 3, 7 1 — A set of 6, ..., 7 1-4 8 arranged in a row in 6d is provided. The second set is shifted from the first set by a predetermined amount in the main scanning direction and is shifted by 2 d in the sub-scanning direction. Further, the third set is shifted by a predetermined amount in the main scanning direction and 2d in the sub-scanning direction with respect to the second set. By shifting the timing for driving each set during the main scan in accordance with the shift in the main scan direction, as shown in (2) of FIG. 16, 48 nozzles 7 2 — 1 to 7 2 — A print equivalent to a nozzle in which 48 are arranged at 2d intervals can be made. In the head of the third embodiment shown in FIG. 16, six adjacent nozzles, for example, the nozzles 72-1 to 72-6 have the same ink flight angle.
図 1 7 は、 第 3実施例のマルチパス記録モー ドにおける、 媒体の へッ ドに対する副走査方向の相対移動を示す図である。 図示のよう に、 小改行の移動量は 1 3 dである。  FIG. 17 is a diagram illustrating the relative movement of the medium in the sub-scanning direction with respect to the head in the multi-pass printing mode of the third embodiment. As shown in the figure, the movement amount of the small line feed is 13d.
図 1 8 は、 第 3実施例のマルチパス記録モー ドにおける、 帯状の 縦線をプリ ン 卜する時の各 ドッ 卜がプリ ン 卜される順番を示す図で ある。 図示のように、 隣接するノズルは同時には駆動されないよう に制御される。 第 3実施例では、 6 回の主走査で所定範囲内の ドッ 卜がすべてプリ ン 卜される。  FIG. 18 is a diagram showing the order in which the dots are printed when printing a strip-shaped vertical line in the multi-pass printing mode of the third embodiment. As shown, the adjacent nozzles are controlled so as not to be driven simultaneously. In the third embodiment, all dots within a predetermined range are printed in six main scans.
図 1 9 は、 第 3実施例の変形例における、 帯状の縦線をプリ ン ト する時の各 ドッ 卜がプ リ ン トされる順番を示す図である。 マルチパ ス記録モー ドでは各 ドッ ト行の主走査方向の所定の範囲内を c回の 主走査に分けてプリ ン トする力く、 この変形例では C回のうちの各回 でプリ ン 卜する ドッ ト位置をラ ンダムに決定する。 まずプリ ン 卜す る主走査方向の幅を適当な複数の範囲に分割する。 乱数発生器で第FIG. 19 is a diagram showing the order in which each dot is printed when a strip-shaped vertical line is printed in a modification of the third embodiment. Multipath In the print mode, the printing is performed by dividing the predetermined range of each dot row in the main scanning direction into c main scans. In this modification, the dot is printed in each of C times. Position is determined randomly. First, the width in the main scanning direction to be printed is divided into a plurality of appropriate ranges. The random number generator
1 の乱数を発生させ、 各範囲内で、 1 Z C (こ こでは C = 3 ) の確 率で、 最初の主走査でプリ ン トする ドッ トを決定する。 同様に、 こ の範囲内の ドッ 卜から 1 回目の主走査でプリ ン ト した ドッ 卜を除き 、 第 2の乱数を発生させ、 その範囲内で 1 / ( C 一 1 ) の確率で、 2 回目の主走査でプリ ン 卜する ドッ トを決定する。 以下、 同様に決 定し、 C回の主走査でこの範囲内の ドッ 卜がすべてプリ ン トされる ように決定する。 A random number of 1 is generated, and within each range, the dot to be printed in the first main scan is determined with a probability of 1 Z C (here, C = 3). Similarly, the second random number is generated except for the dots printed in the first main scan from the dots in this range, and a probability of 1 / (C-1 1) is generated within that range. The dot to be printed in the second main scan is determined. Hereinafter, the same determination is made so that all the dots within this range are printed in C main scans.
第 3実施例の変形例では、 小改行と大改行を行う従来技術のィ ン ク ジヱ ッ トプリ ンタに比べて、 ノズルからのイ ンクの噴射方向のば らつきによる濃淡の線や縦線のジッ夕などは、 見えにく い短い周期 で発生する上、 ラ ンダムに分散するので、 より一層目立たなく なる  In the modified example of the third embodiment, compared to the ink jet printer of the related art which performs a small line feed and a large line feed, a light and shaded line or a vertical line due to a variation in the ink jetting direction from the nozzle. Storms occur in short periods that are difficult to see and are randomly distributed, making them even less noticeable
産業上の利用の可能性 Industrial applicability
本発明により、 小改行と大改行を行うイ ンク ジエ ツ トプリ ンタに おいて、 ノズルの飛翔角度のばらつきにより画像むらの発生ゃジッ 夕が見えにく く なり、 画質が向上する。  Advantageous Effects of Invention According to the present invention, in an inkjet printer that performs a small line feed and a large line feed, unevenness in the image due to variations in the flight angle of the nozzle becomes less visible, and the image quality is improved.

Claims

請 求 の 範 囲 The scope of the claims
1 . 同一のイ ンクを噴射する B個 (Bは整数) のイ ンク噴射ノ ズ ルが、 副走査方向に実質的に一定のノ ズル間隔で配置され、 前記副 走査方向に垂直な主走査方向に移動可能なヘッ ドと、 1. B (B is an integer) ink ejection nozzles that eject the same ink are arranged at substantially constant nozzle intervals in the sub-scanning direction, and the main scanning is perpendicular to the sub-scanning direction. Head that can be moved in any direction,
記録媒体を前記イ ンクへッ ドを対して前記副走査方向に相対移動 させる副走査機構とを備えるイ ンク ジヱ ッ トプリ ンタであって、 前記ノ ズル間隔は、 ドッ ト ピッチ ( d ) の A倍 ( Aは整数) の間 隔であり、  An ink jet printer including a sub-scanning mechanism for relatively moving a recording medium in the sub-scanning direction with respect to the ink head, wherein the nozzle interval is a dot pitch (d). A interval (A is an integer)
プリ ン ト動作は、  The printing operation is
前記主走査方向の 1 回のプリ ン ト走査と、  One print scan in the main scanning direction;
前記ノ ズル間隔の n倍 ( nは整数) に 1 ドッ ト ピッチを加えた量 ( ( A X n + 1 ) x d ) だけ前記記録媒体を前記ィ ンクへッ ドに対 して前記副走査方向に相対移動させる小改行を行った後前記主走査 方向の 1 回のプリ ン ト走査を行う動作を、 C X A— 1 回 ( Cは整数 ) 繰り返す小改行プリ ン ト と、  The recording medium is moved in the sub-scanning direction with respect to the ink head by an amount ((AXn + 1) xd) obtained by adding one dot pitch to n times the nozzle interval (n is an integer). CXA—A small line feed print that repeats the operation of performing one print scan in the main scanning direction once after performing a line feed for relative movement, and CXA—one time (C is an integer).
その後、 ( B X A— (A X n + 1 ) ( C x A— l ) ) x dの大改 行を行う大改行とを繰り返す動作である こ とを特徴とするィ ンク ジ ェ ッ ト記録装置。  An ink jet recording apparatus characterized in that the operation repeats a large line feed to perform a large line feed of (B X A— (A X n + 1) (C × A—l)) × d.
2. 請求項 1 に記載のイ ンク ジヱ ッ トプリ ンタであって、 前記 Cが 1 で、 1 回の主走査方向の走査でプリ ン ト可能な ドッ ト を、 1 回のプリ ン ト走査でプリ ン トする シングルパス記録モー ドと 前記 Cが 2以上で、 1 回の主走査方向の走査でプリ ン ト可能な ド ッ トを、 C回のプリ ン 卜走査でプリ ン 卜するマルチパス記録モ一 ド とを備えるイ ンク ジエ ツ トプリ ンタ。  2. The ink jet printer according to claim 1, wherein C is 1, and a dot that can be printed by one scan in the main scanning direction is printed by one print scan. Single-pass print mode and a multi-print that prints a dot that can be printed by one scan in the main scanning direction when C is 2 or more, by C print scans An ink jet printer having a path recording mode.
3. 請求項 1 に記載のイ ンク ジヱ ッ トプリ ンタであって、 前記マルチパス記録モー ドでは、 隣接する前記イ ンク噴射ノ ズル を同時に駆動しないように制御されるイ ンク ジエ ツ トプリ ンタ。 3. An ink jet printer according to claim 1, wherein In the multi-pass printing mode, an ink jet printer controlled so as not to simultaneously drive the adjacent ink jet nozzles.
4 . 請求項 1 に記載のイ ンク ジヱ ッ トプリ ンタであって、 前記マルチパス記録モー ドで前記主走査方向に複数の ドッ トを連 続してプリ ン 卜する時には、 前記 C回のう ちの各回でプリ ン トされ る ドッ ト位置はラ ンダムに決定されるイ ンク ジエ ツ トプリ ンタ。  4. The ink jet printer according to claim 1, wherein the plurality of dots are continuously printed in the main scanning direction in the multi-pass printing mode. The dot position that is printed each time is a randomly determined ink jet printer.
5 . 請求項 1 に記載のイ ンク ジヱ ッ トプリ ンタであって、 前記ィ ンク噴射ノ ズルは、 連続した m個が同一のィ ンク飛翔特性 を有し、  5. The ink jet printer according to claim 1, wherein m consecutive ink jet nozzles have the same ink flight characteristics,
前記 nは、 前記 mの整数倍であるイ ンク ジヱ ッ トプリ ンタ。  The above n is an integer multiple of the above m.
PCT/JP1999/006822 1999-12-06 1999-12-06 Ink-jet printer WO2001042016A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP1999/006822 WO2001042016A1 (en) 1999-12-06 1999-12-06 Ink-jet printer
JP2001543333A JP4345046B2 (en) 1999-12-06 1999-12-06 Inkjet printer and image recording method
US10/159,286 US6595614B2 (en) 1999-12-06 2002-06-03 Ink-jet printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/006822 WO2001042016A1 (en) 1999-12-06 1999-12-06 Ink-jet printer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/159,286 Continuation US6595614B2 (en) 1999-12-06 2002-06-03 Ink-jet printer

Publications (1)

Publication Number Publication Date
WO2001042016A1 true WO2001042016A1 (en) 2001-06-14

Family

ID=14237485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/006822 WO2001042016A1 (en) 1999-12-06 1999-12-06 Ink-jet printer

Country Status (3)

Country Link
US (1) US6595614B2 (en)
JP (1) JP4345046B2 (en)
WO (1) WO2001042016A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034017A (en) * 2001-07-24 2003-02-04 Mutoh Ind Ltd Ink jet recording device
JP2020089875A (en) * 2018-12-04 2020-06-11 キヤノン株式会社 Use of non-linear fluid dispenser for forming thick film

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040032452A1 (en) * 2002-08-15 2004-02-19 Josep-Maria Serra Nozzle array for achieving nozzle redundancy in a printer
JP4314813B2 (en) * 2002-11-22 2009-08-19 富士ゼロックス株式会社 Droplet discharge head and droplet discharge apparatus
JP2005001346A (en) * 2003-06-16 2005-01-06 Sony Corp Liquid injection device and liquid injection method
JP3925526B2 (en) * 2004-10-01 2007-06-06 セイコーエプソン株式会社 Droplet ejection device, panel manufacturing method, image display device, and electronic apparatus
JP3925528B2 (en) * 2004-10-01 2007-06-06 セイコーエプソン株式会社 Droplet ejection device, panel manufacturing method, image display device, and electronic apparatus
JP3925527B2 (en) * 2004-10-01 2007-06-06 セイコーエプソン株式会社 Droplet ejection device, panel manufacturing method, image display device, and electronic apparatus
JP3925525B2 (en) * 2004-10-01 2007-06-06 セイコーエプソン株式会社 Droplet ejection device, panel manufacturing method, image display device, and electronic apparatus
JP6838279B2 (en) * 2016-03-31 2021-03-03 ブラザー工業株式会社 Printing equipment
JP2023009390A (en) * 2021-07-07 2023-01-20 セイコーエプソン株式会社 Liquid discharge device and head module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358859A (en) * 1991-06-06 1992-12-11 Canon Inc Recorder and recording method
JPH04361053A (en) * 1991-06-07 1992-12-14 Canon Inc Ink jet recording
JPH0752465A (en) * 1993-06-30 1995-02-28 Canon Inc Ink jet recording device
JPH10181027A (en) * 1996-10-30 1998-07-07 Canon Inc Ink-jet recording apparatus and method for ink-jet recording
JP2000025272A (en) * 1998-07-07 2000-01-25 Seiko Epson Corp Ink jet recorder

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198642A (en) 1978-01-09 1980-04-15 The Mead Corporation Ink jet printer having interlaced print scheme
US5430469A (en) 1991-06-05 1995-07-04 Canon Kabushiki Kaisha Tone recording method using ink recording head
JP3606403B2 (en) 1995-04-27 2005-01-05 セイコーエプソン株式会社 Printing apparatus and printing method
JP3284883B2 (en) 1995-06-30 2002-05-20 セイコーエプソン株式会社 Printing method of serial printer
JP3562308B2 (en) 1997-05-14 2004-09-08 セイコーエプソン株式会社 Printing apparatus and printing method
EP0927633B1 (en) 1997-05-20 2006-01-25 Seiko Epson Corporation Printer and printing therefor
JP3674313B2 (en) 1997-05-20 2005-07-20 セイコーエプソン株式会社 Printing apparatus and method
US6336706B1 (en) * 1998-12-24 2002-01-08 Seiko Epson Corporation Color printing using a vertical nozzle array head
JP3485065B2 (en) * 1999-08-13 2004-01-13 セイコーエプソン株式会社 Print processing that performs sub-scanning combining multiple feed amounts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04358859A (en) * 1991-06-06 1992-12-11 Canon Inc Recorder and recording method
JPH04361053A (en) * 1991-06-07 1992-12-14 Canon Inc Ink jet recording
JPH0752465A (en) * 1993-06-30 1995-02-28 Canon Inc Ink jet recording device
JPH10181027A (en) * 1996-10-30 1998-07-07 Canon Inc Ink-jet recording apparatus and method for ink-jet recording
JP2000025272A (en) * 1998-07-07 2000-01-25 Seiko Epson Corp Ink jet recorder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034017A (en) * 2001-07-24 2003-02-04 Mutoh Ind Ltd Ink jet recording device
JP2020089875A (en) * 2018-12-04 2020-06-11 キヤノン株式会社 Use of non-linear fluid dispenser for forming thick film

Also Published As

Publication number Publication date
US20020191045A1 (en) 2002-12-19
US6595614B2 (en) 2003-07-22
JP4345046B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
JP4689353B2 (en) Inkjet recording apparatus and recording method
US9090065B2 (en) Ink jet printing apparatus and ink jet printing method
US8287091B2 (en) Inkjet printing apparatus and inkjet printing method
JP2000062159A (en) Method for compensating failure of dot forming unit in printer
JP2944805B2 (en) Ink jet printer and printing method
WO2001042016A1 (en) Ink-jet printer
JPH11216856A (en) Apparatus and method for recording
JP2002166578A (en) Method and apparatus for ink jet recording
US6565191B1 (en) Method of color shingling to reduce visible printing defects
EP0997277B1 (en) Draft printing
JPH07276794A (en) Method and device for printing graphic image
JP3015209B2 (en) Inkjet recording method using multicolor ink
EP1083050B1 (en) Printhead arrangement
JP3395123B2 (en) Inkjet printer
JP2005205636A (en) Inkjet recorder and method of inkjet recording
JP4402658B2 (en) Inkjet recording device
JP2005169678A (en) Inkjet type recording apparatus and liquid jetting apparatus
JP4055361B2 (en) Printing using a print head with a staggered arrangement
JP2005306048A (en) Print head with staggered arrangement and printing device using it
JP2000238248A (en) Ink jet recorder
JPH08216416A (en) Ink jet head
US8083310B2 (en) Liquid droplet ejecting apparatus
WO2015137479A1 (en) Printing system and printing method
JP3794587B2 (en) Image forming apparatus and ink discharge driving method
JPH08281973A (en) Ink jet color printer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 543333

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10159286

Country of ref document: US