WO2001038245A1 - Procede et dispositif de formation de laine minerale par centrifugation interne - Google Patents

Procede et dispositif de formation de laine minerale par centrifugation interne Download PDF

Info

Publication number
WO2001038245A1
WO2001038245A1 PCT/FR2000/003243 FR0003243W WO0138245A1 WO 2001038245 A1 WO2001038245 A1 WO 2001038245A1 FR 0003243 W FR0003243 W FR 0003243W WO 0138245 A1 WO0138245 A1 WO 0138245A1
Authority
WO
WIPO (PCT)
Prior art keywords
centrifuge
fibers
wall
orifices
blowing ring
Prior art date
Application number
PCT/FR2000/003243
Other languages
English (en)
Inventor
Daniel Guyot
Laurent Pierucci
Pascal Decker
Original Assignee
Saint-Gobain Isover
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9552473&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001038245(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP00981455A priority Critical patent/EP1255702B1/fr
Priority to PL355499A priority patent/PL197681B1/pl
Priority to HU0203462A priority patent/HU226280B1/hu
Priority to CA2392338A priority patent/CA2392338C/fr
Priority to AU18697/01A priority patent/AU778802B2/en
Application filed by Saint-Gobain Isover filed Critical Saint-Gobain Isover
Priority to DK00981455T priority patent/DK1255702T3/da
Priority to DE60003953T priority patent/DE60003953D1/de
Priority to BRPI0015756-2A priority patent/BR0015756B1/pt
Priority to JP2001539807A priority patent/JP4842481B2/ja
Priority to AT00981455T priority patent/ATE245129T1/de
Publication of WO2001038245A1 publication Critical patent/WO2001038245A1/fr
Priority to NO20022394A priority patent/NO20022394D0/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/04Manufacture of glass fibres or filaments by using centrifugal force, e.g. spinning through radial orifices; Construction of the spinner cups therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/04Manufacture of glass fibres or filaments by using centrifugal force, e.g. spinning through radial orifices; Construction of the spinner cups therefor
    • C03B37/048Means for attenuating the spun fibres, e.g. blowers for spinner cups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention relates to techniques for forming mineral fibers or other thermoplastic materials by the internal centrifugation process associated with drawing by a gas stream at high temperature. It applies in particular to the industrial production of glass wool intended to enter, for example, into the composition of thermal and / or acoustic insulation products.
  • the fiber-forming process to which the invention relates consists in introducing a molten glass stream into a centrifuge, also called fiberizing plate, rotating at high speed and pierced at its periphery by a very large number of orifices through which the glass is projected in the form of filaments under the effect of centrifugal force.
  • patent EP-0 189 354 B1 relates to an improved burner generating the annular drawing current, an internal combustion burner comprising an annular combustion chamber.
  • Patent WO 97/15532 also relates to an improvement of this burner, an improvement consisting in that the drawing gases radially exhibit a temperature gradient, by being warmer near the centrifuge.
  • Patent EP-0 519 797 B1 relates to the addition of a blowing ring arranged at a radial distance from the axis of the centrifuge greater than that of the burner generating the drawing gases, this blowing ring emitting jets of individualized and divergent gases which meet below the lowest row of orifices of the centrifuge and which have the function of generating a cold gas layer coming to channel the hot drawn fibers.
  • the invention relates more particularly, without limitation, however, to thermal and / or sound insulation products having particularly high mechanical properties, for specific applications requiring such properties.
  • These include insulation products supporting masonry elements and which must therefore withstand strong compressions such as elements used to insulate flat roofs accessible to traffic. This is also the case for products used in insulation for the exterior and which must be able, in particular, to resist tearing forces.
  • this type of insulation product is generally of high density, for example at least 40 kg / m 3 , and has undergone, after the fiberizing operation proper, an operation aimed at ensuring that the fibers inside the felt take directions as varied as possible without significantly modifying significantly the general orientation of the sheet of fibers resulting from centrifugation.
  • This operation consists in particular of a "creping" of the fibers, obtained by passing the sheet of fibers between two series of conveyors delimiting its lower and upper faces, a longitudinal compression resulting from the passage of a pair of conveyors driven by a certain speed. to a pair of lower speed conveyors than the previous one.
  • This type of operation is for example described in patent EP-0 133 083.
  • the invention then set itself the goal of improving the mechanical properties of thermal and / or sound insulation products (or at least ensuring better consistency of these properties from one product to another), without degrading the insulation properties, focusing more particularly on the high density insulation products having undergone creping.
  • the invention then consisted in modifying the fiberizing conditions to adjust the dimensions of the fibers so that they lend themselves better to creping, in particular by making them shorter.
  • This modification concerned, among other things, the way in which the fibers having undergone the gaseous hot drawing were channeled, as described below:
  • the invention thus firstly relates to a device for forming mineral fibers by internal centrifugation comprising:
  • centrifuge capable of rotating around an axis, in particular a vertical one, and the peripheral band of which is pierced with a plurality of orifices,
  • the invention further provides that the channeling / adjustment of the dimensions of the fibers adjusted by said pneumatic means is completed by at least one other means, including mechanical means. comprising a cooled wall arranged around the centrifuge facing at least its peripheral band.
  • the annular burner can for example be of the type described in the aforementioned patent EP-0 189 354.
  • the blowing ring may for example be of the type described in the aforementioned patent EP-0 519 797. This patent already explained that the sheet of gas at ambient temperature emitted by the blowing ring enveloping the stretching gas jets of the annular burner, had the role of channeling the fibers, of tightening the torus formed by the fibers between the moment when they are ejected by the centrifuge and the one where they are collected by the receiving member located under the centrifuge.
  • this layer of gas is not a "tight" pneumatic barrier, in the sense that all or part of the fibers are driven by a centrifugal force sufficient to pass through it.
  • this pneumatic barrier brakes them, possibly bending the direction of their movement; but also act on their dimensions: when the fibers strike the sheet of cold gas, the resulting shock is strong enough that the fibers can eventually be broken.
  • the diameter of the fibers is a less crucial parameter to obtain a good level of thermal insulation than for lighter products: we can thus "afford" larger fibers for better mechanical resistance.
  • the diameter is a characteristic which can in particular be controlled by the choice of operating parameters of the annular burner and by the flow of glass supplying the centrifuge.
  • the larger the fibers the longer they are generally. This is where the invention comes in, the mechanical wall making it possible, very schematically, to cut these large fibers to facilitate their creping while retaining their mechanical properties.
  • the invention applies more generally to fibers of all sizes, of any diameter.
  • the pneumatic barrier and the mechanical barrier combine, the first making it possible to modulate the speed, the direction of movement of the fibers, or even already cutting them, the second coming to block them in their radial expansion and complete their adjustment in length.
  • the majority of the fibers ejected from the centrifuge, in particular at least 80 to 90% of the fibers strike the cooled wall, the rest having essentially been stopped by the gases from the blowing ring.
  • the configuration and parameters of this wall can be very freely modulated, in particular its geometry and its relative position relative to the centrifuge, the annular burner, the blowing ring. This wall is cooled, so that the fibers which come into contact with it, which are still relatively hot, are not likely to stick to it.
  • the external surface of the cooled wall facing the centrifuge is essentially metallic, in particular based on stainless steel.
  • this outer surface is concentric around the axis of the centrifuge, in part or in several parts secured by mechanical connecting elements.
  • This outer surface is preferably at least partially cylindrical or in the form of a truncated cone. (In the latter case, the cone is preferably flared in its upper part.
  • “lower” and “upper” refer to a height projected along a vertical axis). This taper is favorable, because it will allow the fibers to be folded down better, and to facilitate interaction with the gases emitted by the blowing ring as will be detailed below.
  • the cooled wall is at least partly in the form of a truncated cone inclined at an angle ai relative to the axis - t of the centrifuge between 0 and 30 °, in particular strictly greater than 0 °, for example between 2 and 20 ° or between 5 and 15 °. (In the most frequently encountered cases, the axis of the centrifuge is vertical or close to vertical).
  • the angle ⁇ 3 made by the axis X 2 with the vertical can be equal to 0.
  • this angle ⁇ 3 can differ from 0 °.
  • oc 3 is between + 30 ° and -30 °, we are in the aforementioned case of a convergence of the gases from the blowing ring towards the cooled wall.
  • the height of the cooled wall measured along a vertical axis is greater than that of the peripheral strip of the centrifuge, the distance measured vertically between the lower end of said wall and the lowest row of orifices of the centrifuge being equal at least half the height of the peripheral strip, in particular between half and twice that height.
  • the wall thus provides sufficient surface area to confine the path of the fibers under the centrifuge, to better support and channel their paths towards the receiving member and guarantee that all or almost all of the fibers are affected by the presence of this wall, even those from the lowest rows of orifices in the centrifuge.
  • this cooled wall consists of integrating it into a mechanical device having a cavity provided with a cooling system by circulation of fluid of the water type, in particular a device of the water box type ("waterjacket"). in English).
  • An annular water box is also used around and below the centrifuge.
  • the configuration of the pneumatic means and that of the wall are such that the gas jets coming from the blowing ring have an emission direction at the outlet of the ring which converges towards the cooled wall, convergence preferably taking place at a height less than that of the middle of the peripheral strip.
  • the jets of gases can be designed to run, at least in part, the wall. As these are generally emitted vertically, the taper of the wall mentioned above will allow progressive convergence and force the gas jets to come along the wall, at least in its lower part.
  • certain embodiments forming part of the invention include a divergence, the gas jets emitted by the blowing ring being able to be directed towards the wall of the centrifuge rather than towards the wall cooled according to the invention. It is preferably provided that the upper edge of the cooled wall is farther from the axis of the centrifuge than are the gas emission points of the blowing ring.
  • the cooled wall can be configured so that its upper edge is attached to the gas emission points of the blowing ring, emission points which are for example in the form of orifices in an annular pipe. , nipples or nozzles as detailed below.
  • this upper edge is at a distance Xi (measured radially with respect to the axis of the centrifuge) from the axes of projection of the gaseous jets (or, in other words, from the centers of the emitting orifices gas jets) of not more than 40 mm, in particular not more than 20 mm and not less than 0.5 mm.
  • the preferred blowing ring comprises elements generating gas jets, preferably individualized and divergent, meeting below the lowest row of orifices in the peripheral strip.
  • Two embodiments are preferred: a tubular ring pierced with orifices on which nipples are fixed or a series of nozzles.
  • the temperature of the drawing gases emitted at the outlet of the annular burner is at most 1600 ° C., in particular between 1350 and 1450 ° C.: it is a temperature which can therefore be lower than that of can be encountered in internal centrifugation, the temperature of the drawing gases generally being at least 1500 ° C., and rather at around 1600 ° C.
  • "Cooler" drawing gases in addition to the energy gain induced, have the advantage of less deteriorating the binder which is sprayed on the fibers under the centrifuge, the fibers having in fact a lower temperature at the time of spraying.
  • An optional additional means for channeling / adjusting the dimensions of the fibers is structural: it consists in adjusting the drilling of the peripheral strip so that the size of the orifices, arranged in concentric rows, varies from top to bottom over the height of the centrifuge. in the centrifugation position, this size of orifices decreasing and then increasing again over said height.
  • the orifices are divided into groups of concentric rows with, from top to bottom, at least one first group of ni "high” rows of circular orifices of diameter di, a second group of n 2 rows “ intermediaries “of circular orifices with diameter d 2 less than di and finally a third group of n 3 " low “rows of circular orifices with diameter d 3 greater than diameter d 2 , with n ⁇ n 2 , n 3 > 1 and in particular between 3 and 10.
  • the invention also relates to the fiber formation process, using in particular the device described above and consisting of internal centrifugation associated with gaseous drawing at high temperature whereby the fiber material is poured inside the rotating centrifuge according to a substantially vertical axis and the peripheral band is perforated with a plurality of orifices, hence the material is ejected and then stretched by a high temperature gas stream emitted by an annular burner, the fibers being channeled, adjusted in size by a pneumatic member in the form of a blowing ring.
  • the method is such that one complete this pipe, this dimensional adjustment by at least one other means, including a physical barrier by mechanical means to the spread of the fibers radially relative to one of the centrifuge: it is the cooled wall described above.
  • the method of the invention consists in adjusting the configuration of this mechanical means, the parameters of the drawing gas and the gases of the blowing ring, and optionally the drilling of the peripheral band of the centrifuge by making micronaire mineral wool. between 3 and 8 under 5 grams.
  • the average diameter of the fibers constituting the mineral wool is advantageously between 4 and 13 ⁇ m.
  • the invention also relates to the application of the method and the device described above to the manufacture of thermal and / or sound insulation materials with a density greater than 40 kg / m 3 , in particular from 40 to 160 kg / m 3 , of which mineral wool was especially crimped.
  • the invention also relates to these high density insulation products themselves, in particular intended for making insulation panels for a car roof.
  • a density of 80 kg / m 3 and a rate of mass binder relative to glass wool of approximately 6% one obtains: * • • a tear resistance of about 20 ⁇ 3 kPA, * + a compressive strength at 10% of about 60 ⁇ 5 kPA, ** • a thermal conductivity of at most 38 W / mk
  • Figure 1 a schematic view in vertical section of the fiberizing installation according to the invention
  • Figure 2 a schematic view enlarged in vertical section of the centrifuge according to a first variant
  • * + FIG. 3 a diagrammatic view enlarged in vertical section of the centrifuge according to a second variant.
  • FIG. 1 very schematically represents a fiberizing installation suitable for implementing the invention and close to the teaching of patent EP 0 519 797 as regards the centrifuge, the annular burner and the blowing ring.
  • This installation is essentially constituted by a bottomless centrifuge 1, the peripheral band 2 of which is pierced with a large number of orifices, fixed to a hub engaged on the rotation shaft 3 along an axis Xi mounted vertically, driven by a motor not shown.
  • the centrifuge is surrounded by an annular burner 9 and a blowing ring 10.
  • the rows are divided into three groups from top to bottom: the intermediate rows have a hole diameter less than the top and bottom rows by at least 0 , 1 or 0.2 mm.
  • the annular burner 9 (in accordance with the teaching of patent EP-0 189 354) generates a gas jet whose temperature at the lips of the burner is of the order of 1450 ° C.
  • the fineness of the fibers is determined by the value of their micronaire
  • micronaire also called “fineness index” takes into account the specific surface thanks to the measurement of the pressure drop aerodynamics when a given quantity of fibers extracted from a non-sized mattress is subjected to a given pressure of a gas - generally air or nitrogen. This measurement is usual in mineral fiber production units, it is standardized (DIN 53941 or ASTM D 1448) and it uses a device called "micronaire device”.
  • the blowing ring 10 is constituted by a tubular ring whose orifices are provided with pins 11 fixed for example by welding.
  • annular device 12 comprising an outer wall 13 of stainless steel facing the centrifuge 2 and in the form of a truncated cone flared upwards .
  • This wall makes an angle ⁇ 1 of approximately 5 to 12 ° relative to the vertical.
  • the vertical axis coincides with the axis of rotation X1 of the centrifuge and with the emission axis X2 of the gas jets from the blowing ring 10.
  • the upper edge 14 of the wall 13 is attached to the wall of the nipples
  • This wall 13 therefore belongs to a device of substantially annular shape disposed opposite the centrifuge, which is of the "water box” type: it is provided in its cavity with a cooling system by circulation of water to ensure that the wall with which the fibers will contact remains at a sufficiently low temperature that it there remain not glued but “bounce” and eventually break under impact.
  • the fibers being formed manage to cross, for the majority of them, the cold gaseous layer emitted by the blowing ring 10, and strike the wall 13 so as to fall back in the converging direction towards the member. not shown.
  • the fibers obtained have a micronaire of approximately 7 to 5 grams.
  • Figure 3 shows the structural elements already described in Figure 2.
  • the gas jets from the blowing ring 10 are emitted along an axis X2 which makes an angle ⁇ 3 of about 60 ° with the vertical. These jets are directed towards the peripheral strip 2 of the centrifuge, and not towards the cooled wall 13.
  • the two embodiments shown in Figures 2 and 3 are not limitative of the invention: many other configurations are possible.
  • the element 12 as well as the crown 10 with its pins 11, so that the substantially horizontal surface of the upper part of the element 12 is at a higher level, relative to the vertical , that the end of the nipples 11 (either by modifying the geometry of the nipples, by inclining them for example, or by modifying the geometry of the upper zone of the element 12, in particular that of its edge 14): we "go back” thus the element 12 relative to the nipples 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Inorganic Fibers (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Thermal Insulation (AREA)
  • Paper (AREA)

Abstract

L'invention a pour objet un dispositif de formation de fibres minérales par centrifugation interne comportant un centrifugeur (1) apte à tourner autour d'un axe X1, notamment vertical et dont la bande périphérique (2) est percée d'une pluralité d'orifices, un moyen d'étirage gazeux à haute température sous forme d'un brûleur annulaire (9), un moyen pneumatique pour canaliser/ajuster les dimensions des fibres sous forme d'une couronne de soufflage (10). La canalisation et l'ajustement des dimensions des fibres opérées par ledit moyen pneumatique sont complétés par au moins un autre moyen, dont un moyen mécanique comprenant une paroi refroidie (12) disposée autour du centrifugeur (1) en regard de sa bande périphérique (2) au moins. L'invention porte aussi sur le procédé mettant en oeuvre le dispositif et des applications.

Description

PROCEDE ET DISPOSITIF DE FORMATION DE LAINE MINERALE PAR CENTRIFUGATION INTERNE
L'invention a trait aux techniques de formation de fibres minérales ou d'autres matériaux thermoplastiques par le procédé de centrifugation interne associée à un étirage par un courant gazeux à haute température. Elle s'applique notamment à la production industrielle de laine de verre destinée à entrer par exemple dans la composition de produits d'isolation thermique et/ou acoustique. Le procédé de formation de fibres auquel se rapporte l'invention consiste à introduire un filet de verre fondu dans un centrifugeur, encore appelé assiette de fibrage, tournant à grande vitesse et percé à sa périphérie par un très grand nombre d'orifices par lesquels le verre est projeté sous forme de filaments sous l'effet de la force centrifuge. Ces filaments sont alors soumis à l'action d'un courant annulaire d'étirage à température et vitesse élevées longeant la paroi du centrifugeur, courant qui les amincit et les transforme en fibres. Les fibres formées sont entraînées par ce courant gazeux d'étirage vers un dispositif de réception généralement constitué par une bande perméable aux gaz. Ce procédé a fait l'objet de nombreux perfectionnements. Ainsi, le brevet EP-0 189 354 B1 porte sur un brûleur amélioré générant le courant annulaire d'étirage, brûleur à combustion interne comprenant une chambre de combustion annulaire.
Le brevet WO 97/ 15532 porte également sur une amélioration de ce brûleur, amélioration consistant en ce que les gaz d'étirage présentent radialement un gradient de température, en étant plus chauds à proximité du centrifugeur. Le brevet EP-0 519 797 B1 porte sur l'ajout d'une couronne de soufflage disposée à une distance radiale de l'axe du centrifugeur supérieure à celle du brûleur générant les gaz d'étirage, cette couronne de soufflage émettant des jets de gaz individualisés et divergents qui se rejoignent en dessous de la rangée d'orifices la plus basse du centrifugeur et qui ont pour fonction de générer une nappe gazeuse froide venant canaliser les fibres étirées à chaud.
L'invention s'intéresse plus particulièrement, sans caractère limitatif cependant, aux produits d'isolation thermique et/ou phonique présentant des propriétés mécaniques particulièrement élevées, pour des applications spécifiques nécessitant de telles propriétés. Il s'agit notamment des produits d'isolation supportant des éléments de maçonnerie et qui doivent par conséquent résister à des fortes compressions tels que les éléments servant à l'isolation des toitures-terrasses accessibles à la circulation. C'est aussi le cas des produits utilisés en isolation pour l'extérieur et qui doivent pouvoir, notamment, résister aux efforts à l'arrachement.
Pour atteindre ces performances, ce type de produit d'isolation est généralement de forte densité, par exemple d'au moins 40 kg/m3, et a subi, après l'opération de fibrage à proprement dire, une opération visant à ce que les fibres à l'intérieur du feutre prennent des directions aussi variées que possible sans trop modifier de façon sensible l'orientation générale de la nappe de fibres issue de la centrifugation. Cette opération consiste notamment en un "crêpage" des fibres, obtenu par passage de la nappe de fibres entre deux séries de convoyeurs délimitant ses faces inférieure et supérieure, une compression longitudinale résultant du passage d'une paire de convoyeurs animés d'une certaine vitesse à une paire de convoyeurs de vitesse inférieure à la précédente. Ce type d'opération est par exemple décrit dans le brevet EP-0 133 083.
Cependant, il a été constaté que cette opération de crêpage ne permettait pas toujours d'obtenir l'amélioration dans les propriétés mécaniques escomptée. L'invention s'est alors fixée comme but d'améliorer les propriétés mécaniques de produits d'isolation thermique et/ou phonique (ou tout au moins d'assurer une meilleure constance de ces propriétés d'un produit à l'autre), sans en dégrader les propriétés d'isolation, en se concentrant plus particulièrement sur les produits d'isolation de haute densité ayant subi un crêpage.
Au lieu de chercher à modifier les paramètres du procédé de crêpage habituel, les inventeurs de la présente demande ont étudié les raisons pour lesquelles ce crêpage n'était pas toujours satisfaisant. Ils sont arrivés à la conclusion qu'après crêpage, il arrivait que les fibres ne présentaient pas suffisamment l'orientation isotrope qu'on espérait, et que ceci était dû au fait, notamment, que leurs dimensions n'étaient pas forcément les plus adaptées : les fibres, trop longues, étaient difficiles par simple crêpage à réorienter aussi aléatoirement qu'il était nécessaire pour assurer la meilleure résistance à l'arrachement et à la compression.
L'invention a alors consisté à modifier les conditions de fibrage pour ajuster les dimensions des fibres afin qu'elles se prêtent mieux au crêpage, notamment en les rendant plus courtes. Cette modification a, entre autres, porté sur la façon dont on canalisait les fibres ayant subi l'étirage gazeux à chaud, comme décrit ci-dessous :
L'invention a ainsi tout d'abord pour objet un dispositif de formation de fibres minérales par centrifugation interne comportant :
*+ un centrifugeur apte à tourner autour d'un axe, notamment vertical, et dont la bande périphérique est percée d'une pluralité d'orifices,
*+ un moyen d'étirage gazeux à haute température sous forme d'un brûleur annulaire,
*+- un moyen pneumatique pour canaliser/ajuster les dimensions des fibres sous forme d'une couronne de soufflage. L'invention prévoit en outre que la canalisation/l'ajustement des dimensions des fibres ajustées par ledit moyen pneumatique soient complétés par au moins un autre moyen, dont un moyen mécanique comprenant une paroi refroidie disposée autour du centrifugeur en regard de sa bande périphérique au moins.
Le brûleur annulaire peut par exemple être du type décrit dans le brevet EP-0 189 354 précité. La couronne de soufflage peut par exemple être du type décrit dans le brevet EP-0 519 797 précité. Ce brevet expliquait déjà que la nappe de gaz à température ambiante émise par la couronne de soufflage enveloppant les jets de gaz d'étirage du brûleur annulaire, avait le rôle de canaliser les fibres, de resserrer le tore formé par les fibres entre le moment où elles sont éjectées par le centrifugeur et celui où elles sont recueillies par l'organe de réception situé sous le centrifugeur.
En fait, schématiquement, cette nappe de gaz n'est pas une barrière pneumatique "étanche", en ce sens que tout ou partie des fibres sont animées d'une force centrifuge suffisante pour la traverser. Par contre, cette barrière pneumatique vient les freiner, infléchir éventuellement la direction de leur mouvement ; mais aussi agir sur leurs dimensions : quand les fibres viennent heurter la nappe de gaz froid, le choc qui en résulte est suffisamment fort pour que les fibres puissent éventuellement être brisées.
C'est donc un moyen pour contrôler la longueur des fibres. Cependant, il s'est révélé insuffisant pour véritablement obtenir une longueur de fibres suffisamment courte pour autoriser un crêpage dans de meilleures conditions sans pour autant compromettre leurs capacités d'isolation. Le moyen mécanique additionnel préconisé par l'invention s'est montré très efficace pour compléter l'action de la couronne de soufflage et offrir plus de possibilités pour contrôler la dimension des fibres. Il s'agit ici donc d'ajouter à la barrière pneumatique de la couronne de soufflage une autre barrière, cette fois mécanique, disposée autour du centrifugeur au-delà de la barrière pneumatique, qui va elle aussi remplir deux rôles : d'abord, elle va canaliser toutes les fibres, toutes celles ayant déjà pu franchir la première barrière pneumatique, sous l'organe récepteur des fibres, ensuite, elle va permettre d'ajuster plus finement la longueur des fibres recueillies : les heurts des fibres contre la paroi physique permettent très efficacement de les raccourcir pour obtenir un crêpage optimal. Outre le crêpage facilité, l'invention permet aussi d'obtenir des fibres dont les dimensions sont moins dispersées, dont l'histogramme des tailles, tend à être plus resserré. Enfin, les fibres plus courtes ont aussi moins tendance à former des agglomérats de fibres collées entre elles, fibres collées qui abaissent aussi bien la qualité thermique que mécanique du produit final, tout particulièrement sa résistance à l'arrachement.
En fait quand on fabrique des produits d'isolation à forte densité, le diamètre des fibres est un paramètre moins crucial pour obtenir un bon niveau d'isolation thermique que pour les produits plus légers : on peut ainsi " se permettre " d'avoir des fibres plus grosses pour une meilleure résistance mécanique. Le diamètre est une caractéristique que l'on peut notamment contrôler par le choix des paramètres de fonctionnement du brûleur annulaire et par le débit de verre alimentant le centrifugeur. Cependant, plus les fibres sont grosses et plus elles sont longues généralement. C'est là où l'invention intervient, la paroi mécanique permettant, très schématiquement, de couper ces grosses fibres pour faciliter leur crêpage en gardant leurs propriétés mécaniques.
Cependant l'invention s'applique de façon plus générale à des fibres de toutes dimensions, de tout diamètre.
La barrière pneumatique et la barrière mécanique se combinent, la première permettant de moduler la vitesse, la direction de mouvement des fibres, voire déjà de les couper, la seconde venant les bloquer dans leur expansion radiale et achever leur ajustement en longueur. Généralement, la majorité des fibres éjectées du centrifugeur, notamment au moins 80 à 90% des fibres, viennent heurter la paroi refroidie, le reste ayant pour l'essentiel été stoppé par les gaz de la couronne de soufflage. Tout comme la barrière pneumatique, on peut moduler très librement la configuration et les paramètres de cette paroi, notamment sa géométrie et sa position relative par rapport au centrifugeur, au brûleur annulaire, à la couronne de soufflage. Cette paroi est refroidie, de façon à ce que les fibres qui entrent en contact avec elle, qui sont encore relativement chaudes, ne risquent pas de s'y coller.
Avantageusement, la surface extérieure de la paroi refroidie tournée vers le centrifugeur est essentiellement métallique, notamment à base d'acier inoxydable.
De préférence, cette surface extérieure est concentrique autour de l'axe du centrifugeur, en une partie ou en plusieurs parties solidarisées par des éléments de liaison mécanique. Cette surface extérieure est de préférence au moins partiellement cylindrique ou sous forme d'un tronc de cône. (Dans ce dernier cas, le cône est de préférence évasé dans sa partie supérieure. Dans tout le présent texte, par convention, "inférieur" et "supérieur" se rapportent à une hauteur projetée selon un axe vertical). Cette conicité est favorable, car elle va permettre de mieux rabattre les fibres, et de faciliter une interaction avec les gaz émis par la couronne de soufflage comme cela sera détaillé plus loin. Avantageusement, la paroi refroidie est au moins en partie sous forme d'un tronc de cône incliné d'un angle ai par rapport à l'axe -t du centrifugeur compris entre 0 et 30° , notamment strictement supérieur à 0° , par exemple entre 2 et 20° ou entre 5 et 15° . (Dans les cas les plus fréquemment rencontrés, l'axe du centrifugeur est vertical ou proche de la verticale).
On peut aussi caractériser la paroi refroidie par rapport à l'axe X2 de projection des jets de gaz (ou de la nappe gazeuse) issus de la couronne de soufflage. On peut ainsi avoir avantageusement un angle d'inclinaison α2 de la paroi sous forme d'un tronc de cône par rapport à l'axe X2 qui est compris entre 0 et 60 ou 70° , notamment entre 2 et 20 ou 30° , ou entre 5 et 15° .
L'angle α3 que fait l'axe X2 avec la verticale peut être égale à 0. Dans ce cas, on va avoir, au vu des valeurs de ai et/ou de α2 décrits plus haut, une convergence des gaz de la couronne de soufflage vers la paroi refroidie. Mais cet angle α3 peut différer de 0° . Avantageusement si oc3 est compris entre +30° et -30° , on se trouve dans le cas précité d'une convergence des gaz de la couronne de soufflage vers la paroi refroidie. Par contre, si α3 a une amplitude supérieure à 30° , (jusqu'à 90° ), on peut avoir le cas de figure où il n'y a plus nécessairement convergence des gaz issus de la couronne de soufflage vers la paroi refroidie, mais plutôt convergence de ces gaz vers le plan selon lequel est disposée la bande périphérique percée d'orifices du centrifugeur.
De préférence, la hauteur de la paroi refroidie mesurée selon un axe vertical est supérieure à celle de la bande périphérique du centrifugeur, la distance mesurée verticalement entre l'extrémité inférieure de ladite paroi et la rangée d'orifices la plus basse du centrifugeur étant égale à au moins la moitié de la hauteur de la bande périphérique, notamment entre la moitié et le double de ladite hauteur. La paroi offre ainsi une surface suffisante pour cantonner la trajectoire des fibres sous le centrifugeur, pour mieux accompagner et canaliser leurs trajectoires vers l'organe de réception et garantir que toutes les fibres ou quasiment toutes sont affectées par la présence de cette paroi, même celles issues des rangées d'orifice les plus basses du centrifugeur.
Le mode de réalisation le plus simple de cette paroi refroidie consiste à l'intégrer dans un dispositif mécanique présentant une cavité munie d'un système de refroidissement par circulation de fluide du type eau, notamment un dispositif du type boîte à eau ("waterjacket" en anglais). On utilise aussi une boîte à eau annulaire autour et en dessous du centrifugeur.
Avantageusement, la configuration du moyen pneumatique et celle de la paroi sont telles que les jets de gaz issus de la couronne de soufflage ont une direction d'émission en sortie de la couronne qui converge vers la paroi refroidie, convergence s'operant de préférence à une hauteur inférieure à celle du milieu de la bande périphérique. En fait, les jets de gaz peuvent être conçus de façon à longer, au moins en partie, la paroi. Comme ceux-ci sont émis généralement verticalement, la conicité de la paroi évoquée plus haut va permettre une convergence progressive et contraindre les jets de gaz à venir longer la paroi, au moins dans sa partie inférieure. Comme évoqué plus haut, cette convergence n'est pas systématique, certains modes de réalisation faisant partie de l'invention incluent une divergence, les jets de gaz émis par la couronne de soufflage pouvant être dirigés vers la paroi du centrifugeur plutôt que vers la paroi refroidie selon l'invention. On prévoit de préférence que le bord supérieur de la paroi refroidie est plus éloigné de l'axe du centrifugeur que ne le sont les points d'émission de gaz de la couronne de soufflage. Préférentiellement, on peut configurer la paroi refroidie de façon à ce que son bord supérieur se trouve accolé aux points d'émission des gaz de la couronne de soufflage, points d'émission qui sont par exemple sous forme d'orifices d'une conduite annulaire, de tétons ou de buses comme détaillé par la suite. On peut aussi l'en éloigner un peu : avantageusement, ce bord supérieur est à une distance Xi (mesurée radialement par rapport à l'axe du centrifugeur) des axes de projection des jets gazeux (ou, autrement dit, des centres des orifices émettant les jets de gaz) d'au plus de 40 mm, notamment d'au plus 20 mm et d'au moins 0,5 mm.
La couronne de soufflage préférée comporte des éléments générateurs de jets de gaz, de préférence individualisés et divergents se rejoignant en dessous de la rangée d'orifices la plus basse de la bande périphérique. Deux modes de réalisation sont préférés : un anneau tubulaire percé d'orifices sur lesquels sont fixés des tétons ou une série de buses.
Avantageusement, la température des gaz d'étirage émis à la sortie du brûleur annulaire est d'au plus 1600°C, notamment comprise entre 1350 et 1450° C : c'est une température qui peut donc être moins élevée que celle que l'on peut rencontrer en centrifugation interne, la température des gaz d'étirage étant généralement d'au moins 1500°C, et plutôt aux environs de 1600°C. Des gaz d'étirage "plus froids", outre le gain énergétique induit, présentent l'intérêt de moins détériorer le liant que l'on vient pulvériser sur les fibres sous le centrifugeur, les fibres ayant de fait une température moins élevée au moment de la pulvérisation. Il est également vraisemblable que des fibres étirées à des températures inférieures aux températures habituelles seraient plus "fragiles" mécaniquement, ce qui faciliterait leur coupure en fibres courtes lors de leur traversée de la nappe froide émise par la couronne de soufflage puis leur impact contre la paroi mécanique selon l'invention. Ce choix de température d'étirage contribuerait ainsi également, indirectement, à l'ajustement des dimensions des fibres.
Un moyen additionnel optionnel pour canaliser/ajuster les dimensions des fibres est structurel : il consiste à ajuster le perçage de la bande périphérique de façon à ce que la taille des orifices, disposés en rangées concentriques, varie de haut en bas sur la hauteur du centrifugeur en position de centrifugation, cette taille d'orifices diminuant puis augmentant à nouveau sur ladite hauteur.
Selon un mode de réalisation préféré, les orifices sont répartis en groupes de rangées concentriques avec, de haut en bas, au moins un premier groupe de ni rangées " hautes " d'orifices circulaires de diamètre di, un second groupe de n2 rangées " intermédiaires " d'orifices circulaires de diamètre d2 inférieur à di et enfin un troisième groupe de n3 rangées " basses " d'orifices circulaires de diamètre d3 supérieur au diamètre d2, avec n^ n2, n3 > 1 et notamment compris entre 3 et 10. De préférence, on a les relations suivantes entre les diamètres di, d2 et d3 :
® - di est voisin de d , avec dι=d3 + /-0,2 mm, notamment dι=d3 ± 0, 1 mm,
® - d3-d2 ≈ d d2,
® - d3-d2 compris entre 0, 1 et 0,5 mm, avec notamment d3-d2 > 0, 1 mm ou
>0.2mm L'invention a également pour objet le procédé de formation des fibres, utilisant notamment le dispositif décrit ci-dessus et consistant en une centrifugation interne associée à un étirage gazeux à haute température selon lequel le matériau à fibre est déversé à l'intérieur du centrifugeur tournant selon un axe essentiellement vertical et dont la bande périphérique est percée d'une pluralité d'orifices, d'où le matériau est éjecté puis étiré par un courant gazeux à haute température émis par un brûleur annulaire, les fibres étant canalisées, ajustées en dimension par un organe pneumatique sous forme d'une couronne de soufflage. Le procédé est tel que l'on complète cette canalisation, cet ajustement en dimensions par au moins un autre moyen, dont un moyen mécanique faisant barrière physiquement à la propagation des fibres radialement par rapport à l'une du centrifugeur : il s'agit de la paroi refroidie décrite plus haut.
Le procédé de l'invention consiste à ajuster la configuration de ce moyen mécanique, les paramètres de gaz d'étirage et des gaz de la couronne de soufflage, et optionnellement le perçage de la bande périphérique du centrifugeur par fabrique de la laine minérale de micronaire compris entre 3 et 8 sous 5 grammes. Le diamètre moyen des fibres constituant la laine minérale est avantageusement compris entre 4 et 13 μm. L'invention concerne également l'application du procédé et du dispositif décrits plus haut à la fabrication de matériaux d'isolation thermique et/ou phonique de densité supérieure à 40 kg/m3, notamment de 40 à 160 kg/m3, dont la laine minérale a notamment été crêpée.
L'invention concerne également ces produits d'isolation à forte densité eux-mêmes, notamment destinés à faire des panneaux d'isolation pour toit-auto. Généralement, pour une épaisseur de 50 mm, une densité de 80 kg/m3 et un taux de liant massique par rapport à la laine de verre d'environ 6%, on obtient : *• une résistance à l'arrachement d'environ 20 ± 3 kPA, *+ une résistance à la compression à 10% d'environ 60 ± 5 kPA, ** une conductivité thermique d'au plus 38 W/m.k. L'invention sera décrite plus en détails ci-après à l'aide des figures suivantes : *" figure 1 : une vue schématique en coupe verticale de l'installation de fibrage selon l'invention, *• figure 2 : une vue schématique agrandie en coupe verticale du centrifugeur selon une première variante, *+ figure 3 : une vue schématique agrandie en coupe verticale du centrifugeur selon une seconde variante.
La figure 1 représente très schématiquement une installation de fibrage propre à la mise en œuvre de l'invention et voisine de l'enseignement du brevet EP 0 519 797 en ce qui concerne le centrifugeur, le brûleur annulaire et la couronne de soufflage. Cette installation est essentiellement constituée par un centrifugeur sans fond 1 dont la bande périphérique 2 est percée d'un grand nombre d'orifices, fixés à un moyeu en prise sur l'arbre de rotation 3 selon un axe Xi monté vertical , entraîne par un moteur non représenté. Le filet de verre fondu alimente le centrifugeur en passant par l'arbre creux 3 et s'écoule dans un panier 5 à fond plein pourvu d'une paroi cylindrique percée d'un petit nombre d'orifices relativement gros, par perçage et par exemple, d'un diamètre de l'ordre de 3 mm grâce auxquels le verre fondu est distribué sous forme de filets primaires 7 dirigés vers l'intérieur de la bande périphérique d'où il est expulsé sous l'effet de la force centrifuge sous forme de filaments 8.
Le centrifugeur est entouré d'un brûleur annulaire 9 et d'une couronne de soufflage 10. Les rangées sont réparties en trois groupes de haut en bas : les rangés intermédiaires ont un diamètre de trou inférieur aux rangées hautes et basse d'au moins 0, 1 ou 0.2 mm.
Le brûleur annulaire 9 (conforme à l'enseignement du brevet EP-0 189 354) engendre un jet gazeux dont la température aux lèvres du brûleur est de l'ordre de 1450° C. La finesse des fibres est déterminée par la valeur de leur micronaire
(F) sous 5g. La mesure du micronaire appelée aussi 'indice de finesse" rend compte de la surface spécifique grâce à la mesure de la perte de charge aérodynamique lorsqu'une quantité donnée de fibres extraites d'un matelas non ensimé est soumise à une pression donnée d'un gaz - en général de l'air ou de l'azote. Cette mesure est usuelle dans les unités de production de fibres minérales, elle est normalisée (DIN 53941 ou ASTM D 1448) et elle utilise un appareil dit "appareil micronaire".
La couronne de soufflage 10 est constituée par un anneau tubulaire dont les orifices sont munis de tétons 11 fixés par exemple par soudure. En permettant un guidage prolongé des jets, les tétons conduisent à une plus grande stabilité des conditions d'émission des jets individualisés et de ce fait la régularité de fonctionnement de la couronne en est favorablement affectée.
Selon l'invention, et comme cela est représenté plus clairement en figure 2 , il y a un dispositif annulaire 12 comprenant une paroi extérieure 13 en acier inoxydable tournée vers le centrifugeur 2 et sous la forme d'un tronc de cône évasé vers le haut. Cette paroi fait un angle α1 d'environ 5 à 12° par rapport à la verticale. Dans le cas particulier non limitatif de la figure 2, l'axe vertical est confondu avec l'axe de rotation X1 du centrifugeur et avec l'axe d'émission X2 des jets de gaz issus de la couronne de soufflage 10. Le bord supérieur 14 de la paroi 13 est accolé à la paroi des tétons
11 de la couronne de soufflage. Son bord inférieur est à une hauteur nettement inférieure à celle de la rangée d'orifices la plus basse du centrifugeur.
Cette paroi 13 appartient donc à un dispositif de forme sensiblement annulaire disposé en regard du centrifugeur, qui est du type "boîte à eau" : il est muni dans sa cavité d'un système de refroidissement par circulation d'eau pour assurer que la paroi avec laquelle les fibres vont entrer en contact reste à une température suffisamment faible pour qu'elle n'y restent pas collées, mais "rebondissent" et se brisent éventuellement sous l'impact. En fonctionnement, les fibres en cours de formation parviennent à franchir pour la majorité d'entre elles, la nappe gazeuse froide émise par la couronne de soufflage 10, et viennent heurter la paroi 13 de façon à se rabattre en direction convergeante vers l'organe de réception non représenté.
N'est pas représentée non plus, car conventionnelle, la couronne de pulvérisation de liant sous le centrifugeur. La laine minérale recueillie en nappe est ensuite traitée thermiquement de façon conventionnelle pour réticuler le liant notamment, puis subit un crêpage selon l'enseignement du brevet EP-0 133 083.
Les fibres obtenues présentent un micronaire d'environ 7 sous 5 grammes.
Leurs performances thermiques et mécaniques à 80 kg/m3 ont été mentionnées plus haut. Par ailleurs, il a été constaté que les propriétés mécaniques de ce type de produit d'isolation lourd étaient aussi bonnes, voire meilleures, quand pour un même centrifugeur on augmente la tirée de 22 tonnes/jour à 35 tonnes/jour. C'est tout-à-fait remarquable dans la mesure où on observe généralement la tendance inverse à savoir une détérioration progressive des propriétés mécaniques quand le rendement de production augmente dans le cas des produits dits légers ou de faible densité (c'est-à- dire d'une densité inférieure à 40 kg/m3). C'est une conséquence étonnante et avantageuse de l'invention, pouvant peut-être s'expliquer par le fait que plus le débit de verre éjecté du centrifugeur est élevé, plus les impacts des fibres sur la paroi refroidie sont importants/violents et plus on réduit la taille des fibres.
La figure 3 reprend les éléments structurels déjà décrits en figure 2. Dans ce mode de réalisation, les jets de gaz issus de la couronne de soufflage 10 sont émis selon un axe X2 qui fait un angle α3 d'environ 60° avec la verticale. Ces jets sont dirigés vers la bande périphérique 2 du centrifugeur, et non vers la paroi refroidie 13. Les deux modes de réalisation représentés aux figures 2 et 3 ne sont pas limitatifs de l'invention: beaucoup d'autres configurations sont possibles. Ainsi, on peut configurer l'élément 12 ainsi que la couronne 10 avec ses tétons 11 , de façon à ce que la surface sensiblement horizontale de la partie supérieure de l'élément 12 se trouve à un niveau plus élevé, par rapport à la verticale, que l'extrémité des tétons 11 (soit en modifiant la géométrie des tétons, en les inclinant par exemple, soit en modifiant la géométrie de la zone supérieure de l'élément 12, notamment celle de son bord 14) : on "remonte" ainsi l'élément 12 par rapport aux tétons 11. On peut aussi choisir la démarche inverse, en "abaissant" un peu l'élément 12 par rapport auxdits tétons 11 , la seule contrainte étant d'éviter cependant que des fibres puissent passer au-dessus de la paroi 13 refroidie.

Claims

REVENDICATIONS
1. Dispositif de formation de fibres minérales par centrifugation interne comportant : • un centrifugeur (1 ) apte à tourner autour d'un axe Xi, notamment vertical et dont la bande périphérique (2) est percée d'une pluralité d'orifices, • un moyen d'étirage gazeux à haute température sous forme d'un brûleur annulaire (9),
*+ un moyen pneumatique pour canaliser/ajuster les dimensions des fibres sous forme d'une couronne de soufflage (10), caractérisé en ce que la canalisation et l'ajustement des dimensions des fibres opérées par ledit moyen pneumatique sont complétés par au moins un autre moyen, dont un moyen mécanique (12) comprenant une paroi refroidie (13) disposée autour du centrifugeur (1 ) en regard de sa bande périphérique (2) au moins.
2. Dispositif selon la revendication 1 , caractérisé en ce que la surface de la paroi refroidie (13) tournée vers le centrifugeur (1 ) est essentiellement métallique, notamment en acier inoxydable .
3. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la paroi refroidie (13) est concentrique autour de l'axe du centrifugeur (1 ), et présente une surface extérieure dirigée vers le centrifugeur (1 ) qui est au moins partiellement cylindrique ou sous forme d'un tronc de cône, de préférence évasé en partie supérieure.
4. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la paroi refroidie (13) est au moins en partie sousforme d'un tronc de cône incliné d'un angle ai par rapport à l'axe Xi du centrifugeur (1 ) compris entre 0 et 30° , notamment strictement positif et de préférence compris entre 2 et 20° .
5. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la paroi (13) refroidie est au moins en partie sous forme d'un tronc de cône incliné d'un angle α2 par rapport à l'axe X2 de projection des jets de gaz issus de la couronne de soufflage (10) compris entre 0 et 60 ou 70° , notamment égal à 0 ou compris entre 2 et 20 ou 30° ou entre 5 et 15° .
6. Dispositif selon l'une des revendications précédentes, caractérisé en ce que l'axe X2 de projection des jets de gaz issus de la couronne de soufflage (10) fait un angle α3 avec la verticale qui est égal à 0 ou différent de 0, notamment de ± 30° ou d'amplitude supérieure.
7. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la hauteur de la paroi refroidie (13) mesurée selon un axe vertical est supérieure à celle de la bande périphérique (2) du centrifugeur (1 ), la distance mesurée verticalement entre l'extrémité inférieure de ladite paroi et la rangée d'orifices la plus basse du centrifugeur (1 ) étant égale à au moins la moitié de la hauteur de la bande périphérique (2), notamment entre la moitié et le double de ladite hauteur.
8. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la paroi refroidie (13) fait partie d'un dispositif mécanique (12) présentant une cavité munie d'un système de refroidissement par circulation de liquide, dispositif notamment de type boîte à eau.
9. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la configuration du moyen pneumatique par rapport à celle de la paroi refroidie (13) est telle que les jets de gaz issus de la couronne de soufflage (10) ont une direction d'émission qui converge vers la paroi refroidie.
10. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la couronne de soufflage (10) comporte des éléments générateurs de jets de gaz individualisés divergents se rejoignant au-dessous de la rangée d'orifices la plus basse de la bande périphérique, ladite couronne étant notamment constituée par un anneau tubulaire percé d'orifices sur lesquels sont fixés les tétons (11 ) ou par une série de buses.
11. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la température du gaz d'étirage émis à la sortie du brûleur annulaire est d'au plus 1600°C, notamment comprise entre 1350 et 1450°C.
12. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'un moyen supplémentaire est prévu pour canaliser/ajuster les dimensions des fibres, moyen structurel consistant à prévoir une taille pour les orifices de la bande périphérique qui, de haut en bas en position de centrifugation, varie en diminuant puis en augmentant sur la hauteur de la bande périphérique (2).
13. Dispositif selon la revendication 12, caractérisé en ce que les orifices de la bande périphérique (12) sont répartis en trois groupes de rangées hautes, intermédiaires et basses ayant des diamètres d1 , d2, d3 respectant les relations suivantes : (D - dι=d3 +/- 0,2 mm, de préférence dι=d3 ± 0,1 mm, (D - d3-d2 = drd2, ® - d3-d2 compris entre 0,1 et 0,5 mm, notamment supérieur à 0,1 ou 0.2 mm.
14. Procédé de formation de fibres minérales par centrifugation interne associée à un étirage gazeux à haute température selon lequel le matériau à fibrer est déversé à l'intérieur d'un centrifugeur (1 ) tournant autour d'un axe notamment vertical et dont la bande périphérique (2) est percée d'une pluralité d'orifices, d'où le matériau est éjecté puis étiré par un courant gazeux à haute température émis par un brûleur annulaire (9), les fibres étant canalisées/ajustées en dimension par un moyen pneumatique sous forme d'une couronne de soufflage (10), caractérisé en ce qu'on complète la canalisation et l'ajustement en dimension de fibres par au moins un autre moyen, dont un moyen mécanique (12) faisant barrière physiquement à la propagation des fibres radialement par rapport à l'axe X1 du centrifugeur (1 ).
15. Procédé selon la revendication 14, caractérisé en ce que la barrière physique est un élément mécanique offrant une paroi (13) disposée autour du centrifugeur en regard de la bande périphérique (2), notamment refroidie et essentiellement métallique au moins en surface.
16. Procédé selon la revendication 14 ou 15, caractérisé en ce que ladite paroi (13) est au moins partiellement cylindrique ou sous forme d'un tronc de cône évasé de préférence en partie supérieure.
17. Procédé selon l'une des revendications 14 à 16, caractérisé en ce que les jets de gaz émis par la couronne de soufflage (10) convergent vers cette paroi (12) et/ou la longent au moins en partie.
18. Procédé selon l'une des revendications 14 à 17, caractérisé en ce que les jets de gaz émis par la couronne de soufflage (10) sont individualisés, divergents, et se rejoignent après la rangée d'orifices la plus basse du centrifugeur (1 ).
19. Procédé selon l'une des revendications 14 à 16, caractérisé en ce que les gaz émis par la couronne de soufflage (10) convergent vers la bande périphérique (2) du centrifugeur (1 ).
20. Procédé selon l'une des revendications 14 à 19, caractérisé en ce que les gaz d'étirage sont émis à la sortie du brûleur annulaire (9) à une température d'au plus 1600°C, notamment comprise entre 1350 et 1450°C.
21. Procédé selon l'une des revendications 15 à 20, caractérisé en ce que la majorité des fibres éjectées du centrifugeur viennent heurter la paroi (12).
22. Application du dispositif selon l'une des revendications 1 à 13 ou du procédé selon l'une des revendications 14 à 21 à la fabrication de laine minérale de micronaire compris entre 3 et 8 sous 5 grammes.
23. Application du dispositif selon l'une des revendications 1 à 13 ou du procédé selon l'une des revendications 14 à 22 à la fabrication de matériau d'isolation thermique et/ou phonique de densité supérieure à 40 kg/m3, notamment de type crêpés.
24. Produits d'isolation thermique ou phonique de densité au moins 40 kg/m3, notamment compris entre 40 et 160 kg/m3, obtenus à partir de laine minérale obtenue avec le dispositif selon l'une des revendications 1 à 13 ou selon le procédé conforme à l'une des revendications 14 à 22 puis crêpée, et présentant notamment une résistance à l'arrachement d'environ 20 kPA et une résistance à la compression d'environ 60 kPA pour une épaisseur d'environ 50 mm, un taux de liant d'environ 6% et une densité de 80 kg/m3.
PCT/FR2000/003243 1999-11-24 2000-11-22 Procede et dispositif de formation de laine minerale par centrifugation interne WO2001038245A1 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
AT00981455T ATE245129T1 (de) 1999-11-24 2000-11-22 Verfahren und vorrichtung zur herstellung von mineralwolle mittels innerlicher zentrifugalkraft
PL355499A PL197681B1 (pl) 1999-11-24 2000-11-22 Sposób i urządzenie do wytwarzania włókien zwłaszcza włókien wełny mineralnej
HU0203462A HU226280B1 (hu) 1999-11-24 2000-11-22 Berendezés és eljárás ásványi szálak képzésére belsõ centrifugálással, ezek alkalmazása ásványgyapot, valamint hõ- és/vagy hangszigetelõ anyag elõállítására, továbbá hõ- és/vagy hangszigetelõ termék
CA2392338A CA2392338C (fr) 1999-11-24 2000-11-22 Procede et dispositif de formation de laine minerale par centrifugation interne
AU18697/01A AU778802B2 (en) 1999-11-24 2000-11-22 Method and device for forming mineral wool by internal centrifuging
EP00981455A EP1255702B1 (fr) 1999-11-24 2000-11-22 Procede et dispositif de formation de laine minerale par centrifugation interne
DK00981455T DK1255702T3 (da) 1999-11-24 2000-11-22 Fremgangsmåde og indretning til fremstilling af mineraluld ved intern centrifugering
DE60003953T DE60003953D1 (de) 1999-11-24 2000-11-22 Verfahren und vorrichtung zur herstellung von mineralwolle mittels innerlicher zentrifugalkraft
BRPI0015756-2A BR0015756B1 (pt) 1999-11-24 2000-11-22 dispositivo e processo de formaÇço de fibras minerais por centrifugaÇço interna, lç mineral, e, produto de isolamento tÉrmico ou acéstico.
JP2001539807A JP4842481B2 (ja) 1999-11-24 2000-11-22 内部遠心法による鉱物綿の形成方法及び装置
NO20022394A NO20022394D0 (no) 1999-11-24 2002-05-21 Fremgangsmåte og innretning for fremstilling av mineralull ved indre sentrifugering

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9914768A FR2801301B1 (fr) 1999-11-24 1999-11-24 Procede et dispositif de formation de laine minerale par centrifugation interne
FR99/14768 1999-11-24

Publications (1)

Publication Number Publication Date
WO2001038245A1 true WO2001038245A1 (fr) 2001-05-31

Family

ID=9552473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/003243 WO2001038245A1 (fr) 1999-11-24 2000-11-22 Procede et dispositif de formation de laine minerale par centrifugation interne

Country Status (17)

Country Link
EP (1) EP1255702B1 (fr)
JP (1) JP4842481B2 (fr)
KR (1) KR100661062B1 (fr)
AR (1) AR026601A1 (fr)
AT (1) ATE245129T1 (fr)
AU (1) AU778802B2 (fr)
BR (1) BR0015756B1 (fr)
CA (1) CA2392338C (fr)
DE (1) DE60003953D1 (fr)
DK (1) DK1255702T3 (fr)
FR (1) FR2801301B1 (fr)
HU (1) HU226280B1 (fr)
NO (1) NO20022394D0 (fr)
PL (1) PL197681B1 (fr)
RU (1) RU2252199C2 (fr)
TR (1) TR200201376T2 (fr)
WO (1) WO2001038245A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2854626A1 (fr) * 2003-05-07 2004-11-12 Saint Gobain Isover Produit a base de fibres minerales et dispositif d'obtention des fibres
FR2857900A1 (fr) * 2003-07-23 2005-01-28 Saint Gobain Isover Structure sandwich a base de fibres minerales et son procede de fabrication
CN109999973A (zh) * 2019-04-29 2019-07-12 佛山科学技术学院 一种纤维爆破离心机
CN111099822A (zh) * 2020-01-23 2020-05-05 北京财方富圆新科贸有限公司 一种生产超细高强度玻璃纤维的离心机
CN117682754A (zh) * 2023-12-04 2024-03-12 湖北嘉辐达节能科技股份有限公司 一种玻璃棉离心成纤机

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2835906B1 (fr) 2002-02-13 2004-06-04 Saint Gobain Isover Bruleur a combustion interne, notamment pour l'etirage de fibres minerales
DE10337087B4 (de) * 2003-08-12 2006-12-14 Saint-Gobain Isover G+H Ag Verfahren zur Erzeugung eines Granulates aus Altglas und Verwendung
FR2918676B1 (fr) * 2007-07-13 2009-08-21 Saint Gobain Isover Sa Dispositif pour une installation de formation de matelas de fibres
FR3000971B1 (fr) * 2013-01-11 2016-05-27 Saint Gobain Isover Produit d'isolation thermique a base de laine minerale et procede de fabrication du produit
FR3057567B1 (fr) * 2016-10-14 2022-04-01 Saint Gobain Isover Procede de formation de fibres minerales
FR3068963B1 (fr) * 2017-07-11 2020-04-24 Saint-Gobain Isover Assiette de fibrage
KR20240038701A (ko) * 2021-07-21 2024-03-25 쌩-고벵 이조베르 취입되는 미네랄 울을 포함하는 제품
FR3132532A1 (fr) * 2022-02-04 2023-08-11 Saint-Gobain Isover Produit comprenant une laine minerale a souffler
FR3132531A1 (fr) * 2022-02-04 2023-08-11 Saint-Gobain Isover Produit comprenant une laine minerale a souffler
FR3139584A1 (fr) * 2022-09-13 2024-03-15 Saint-Gobain Isover Panneau en laine de verre pour l’absorption acoustique, procédé de fabrication et utilisation associés

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0189354A1 (fr) * 1985-01-25 1986-07-30 Saint-Gobain Isover Perfectionnements à la fabrication de fibres minerales
WO1997015532A1 (fr) * 1995-10-27 1997-05-01 Isover Saint-Gobain Procede et appareil de production de laine minerale

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178738A (ja) * 1985-02-01 1986-08-11 Toshiba Corp 光学ヘツド

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0189354A1 (fr) * 1985-01-25 1986-07-30 Saint-Gobain Isover Perfectionnements à la fabrication de fibres minerales
WO1997015532A1 (fr) * 1995-10-27 1997-05-01 Isover Saint-Gobain Procede et appareil de production de laine minerale

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2854626A1 (fr) * 2003-05-07 2004-11-12 Saint Gobain Isover Produit a base de fibres minerales et dispositif d'obtention des fibres
WO2004099095A2 (fr) * 2003-05-07 2004-11-18 Saint-Gobain Isover Produit a base de fibres minerales, dispositif d’obtention des fibres et procede d’obtention
HRP20050949B1 (hr) * 2003-05-07 2013-10-11 Saint-Gobain Isover Proizvod baziran na mineralnim vlaknima, mehanizam za proizvodnju navedenih vlakana i proizvodni postupak
WO2004099095A3 (fr) * 2003-05-07 2005-02-17 Saint Gobain Isover Produit a base de fibres minerales, dispositif d’obtention des fibres et procede d’obtention
US7399510B2 (en) 2003-07-23 2008-07-15 Saint-Gobain Isover Mineral fibre-based sandwich structure and method for the production thereof
EA007862B1 (ru) * 2003-07-23 2007-02-27 Сэн-Гобэн Изовер Конструкция типа сэндвич на основе минерального волокна и способ ее изготовления
WO2005019124A1 (fr) * 2003-07-23 2005-03-03 Saint-Gobain Isover Structure sandwich a base de fibres minerales et son procede de fabrication
AU2004266860B2 (en) * 2003-07-23 2010-03-25 Saint-Gobain Isover Mineral fibre-based sandwich structure and method for the production thereof
FR2857900A1 (fr) * 2003-07-23 2005-01-28 Saint Gobain Isover Structure sandwich a base de fibres minerales et son procede de fabrication
CN109999973A (zh) * 2019-04-29 2019-07-12 佛山科学技术学院 一种纤维爆破离心机
CN109999973B (zh) * 2019-04-29 2024-03-26 佛山科学技术学院 一种纤维爆破离心机
CN111099822A (zh) * 2020-01-23 2020-05-05 北京财方富圆新科贸有限公司 一种生产超细高强度玻璃纤维的离心机
CN117682754A (zh) * 2023-12-04 2024-03-12 湖北嘉辐达节能科技股份有限公司 一种玻璃棉离心成纤机

Also Published As

Publication number Publication date
KR20020049012A (ko) 2002-06-24
HUP0203462A2 (en) 2003-02-28
NO20022394L (no) 2002-05-21
ATE245129T1 (de) 2003-08-15
RU2002116704A (ru) 2004-01-10
CA2392338A1 (fr) 2001-05-31
KR100661062B1 (ko) 2006-12-22
DK1255702T3 (da) 2003-11-10
BR0015756A (pt) 2002-07-16
CA2392338C (fr) 2011-04-19
EP1255702B1 (fr) 2003-07-16
TR200201376T2 (tr) 2002-09-23
PL197681B1 (pl) 2008-04-30
FR2801301A1 (fr) 2001-05-25
DE60003953D1 (de) 2003-08-21
JP4842481B2 (ja) 2011-12-21
BR0015756B1 (pt) 2010-02-23
AU1869701A (en) 2001-06-04
FR2801301B1 (fr) 2002-01-04
AU778802B2 (en) 2004-12-23
NO20022394D0 (no) 2002-05-21
EP1255702A1 (fr) 2002-11-13
AR026601A1 (es) 2003-02-19
JP2003514757A (ja) 2003-04-22
PL355499A1 (en) 2004-05-04
RU2252199C2 (ru) 2005-05-20
HU226280B1 (hu) 2008-07-28

Similar Documents

Publication Publication Date Title
EP1255702B1 (fr) Procede et dispositif de formation de laine minerale par centrifugation interne
CA2436894C (fr) Procede et dispositif de formation de laine minerale
CA2071561C (fr) Procede et dispositif de formation de fibres
EP1620367A2 (fr) PRODUIT A BASE DE FIBRES MINERALES, DISPOSITIF D’OBTENTION DES FIBRES ET PROCEDE D’OBTENTION
EP2257503B1 (fr) Produit a base de fibres minerales et son procede d'obtention
EP0189354B1 (fr) Perfectionnements à la fabrication de fibres minerales
WO1999065835A1 (fr) Dispositif et procede de centrifugation de fibres minerales
EP0091866B1 (fr) Formation de fibres comprenant une centrifugation
WO2006061545A1 (fr) Dispositif de formation de feutres de fibres
EP2516339B2 (fr) Centrifugeur de fibrage, dispositif et procédé de formation de fibres minérales
EP2872455A1 (fr) Dispositif de formation de fibres minerales
EP0991601B2 (fr) Dispositif de fibrage de laine minerale par centrifugation libre
FR2918676A1 (fr) Dispositif pour une installation de formation de matelas de fibres
EP1742887A1 (fr) Procede et dispositif de formation de fibres minerales
CA3069242A1 (fr) Assiette de fibrage
WO1997017305A1 (fr) Procede et dispositif pour la centrifugation libre de fibres minerales
FR2771085A1 (fr) Procede de formation de laine minerale
EP0953547A2 (fr) Dispositif et procédé de fibrage pour produire de la laine minérale

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA HU JP KR NO PL RU TR US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 18697/01

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020027005671

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2001 539807

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2392338

Country of ref document: CA

Ref document number: 2002/01376

Country of ref document: TR

ENP Entry into the national phase

Ref document number: 2002 2002116704

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020027005671

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2000981455

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000981455

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000981455

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 18697/01

Country of ref document: AU